
Wide-Area Data Network
Performance Engineering

Wide-Area Data Network
Performance Engineering

Robert G. Cole
Ravi Ramaswamy

Artech House
Boston • London

Library of Congress Cataloging-in-Publication Data
Cole, Robert G., 1955–

Wide-area data network performance engineering / Robert G. Cole, Ravi Ramaswamy.
p. cm. — (Artech House telecommunications library)

Includes bibliographical references and index.
ISBN 0-89006-569-1 (alk. paper)
1. Wide-area networks (Computer networks) 2. Computer network protocols.

I. Ravi Ramaswamy. II. Title. III. Series.
TK5105.87.C65 2000
004.67—dc21 99-052404

CIP

British Library Cataloguing in Publication Data
Cole, Robert G.

Wide-area data network performance engineering
1. Wide-area networks (Computer networks) 2. Data
transmission systems 3. Systems engineering
I. Title II. Ramaswamy, Ravi
004.6’7

ISBN 0-89006-569-1

Cover design by Andrew Ross

Copyright © 2000 AT&T. All rights reserved.

Printed and bound in the United States of America. No part of this book may be reproduced or
utilized in any form or by any means, electronic or mechanical, including photocopying,
recording, or by any information storage and retrieval system, without permission in writing
from the publisher.

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Artech House cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any trademark or
service mark.

International Standard Book Number: 0-89006-569-1
Library of Congress Catalog Card Number: 99-052404

10 9 8 7 6 5 4 3 2 1

To
Alexandria and Melanie

and
Anjali, Ashwin, and Ratna

Contents

Preface xv
Acknowledgments xvii

1 Introduction 1

1.1 Enterprise Networking 1

1.2 Our Approach to Performance Engineering 4

1.3 Layout of the Book 5

Part I
General Principles 9

2 Wide-Area Networking Technologies 11

2.1 Introduction 11

2.2 Time-Division Multiplexing Networks 13

2.3 X.25 Networks 15

2.4 Frame Relay 19

2.4.1 Frame Relay Network Architecture 19

2.4.2 Frame Relay and Enterprise Networks 29

2.5 Asynchronous Transport Mode 30

2.6 Internetworking Protocol 37

2.6.1 IP Architecture 38

vii

2.6.2 IP on Broadcast Networks 42

2.6.3 IP on ATM (and Other NBMA) Networks 43

2.7 Multiprotocol Encapsulation: Agreements for PPP,
X.25, Frame Relay, ATM, and IP 47

2.8 Link Level Interworking Agreements 49

2.9 Summary 52

3 Performance Analysis: Some Basic Tools 55

3.1 Introduction 55

3.2 Network Delays 56

3.2.1 Delay and Latency 57

3.2.2 Propagation 59

3.2.3 Transmission, or Insertion Delays, on Serial Lines 61

3.2.4 Processing 64

3.2.5 Queuing 66

3.2.6 Delay Synopsis 69

3.3 Timing Diagrams: A Data Communications
Score Card 69

3.4 Pipelining 74

3.5 Throughput 79

3.5.1 Windowing Systems 82

3.5.2 Lossless Throughput Systems Summary 93

3.5.3 Optimal Window Sizes and Bulk Data Transfer
Times 94

3.5.4 Throughput Summary 98

3.6 Summary 99

4 Techniques for Performance Engineering 101

4.1 Introduction 101

4.2 Load Engineering 102

4.3 Latency-Sensitive and Bandwidth-Sensitive
Applications 106

viii Wide-Area Data Network Performance Engineering

4.4 Methods to Discriminate Traffic in a
Multiprotocol Network 108

4.4.1 Window Size Tuning 109

4.4.2 Type of Service Routing 113

4.4.3 Priority Queuing 115

4.4.4 Processor Sharing 121

4.4.5 Adaptive Controls 124

4.4.6 Selective Discards 126

4.5 Data Collection 127

4.5.1 LAN/WAN Analyzers 127

4.5.2 Network Management Systems and RMON
Probes 128

4.5.3 A Taxonomy of Commercially Available Tools
for Performance Engineering Data Networks 130

4.6 An Example: Deploying New Applications 132

4.7 Summary 135

5 Frame Relay Performance Issues 137

5.1 Introduction 137

5.2 Private Line Versus Frame Relay 138

5.2.1 Dual Insertion Delay 140

5.2.2 Delay Variation 147

5.2.3 Application Impact of Migration to Frame Relay 148

5.3 Global Frame Relay Connections 150

5.4 Bandwidth sizing 152

5.4 Bandwidth sizing 153

5.4.1 Sizing Ports and PVCs 151

5.5 Traffic Discrimination 165

5.5.1 Congestion Shift From Routers Into the
Network 165

5.5.2 Response to the Congestion shift 166

5.6 Global Versus Local DLCI 174

Contents ix

5.7 Virtual Circuit Scaling Issues 176

5.8 Summary 177

6 Using Pings for Performance Analysis 181

6.1 Introduction 181

6.2 Pings 182

6.3 Calculating Ping Delays 184

6.3.1 Leased Line Connection 184

6.3.2 Frame Relay Connection 186

6.3.3 Observations 187

6.4 Using Pings to Verify Network Latency 189

6.5 General Comments Regarding the Use of Pings
to Estimate Network Latency 191

6.6 Calculating Delays for Large Pings 192

6.6.1 Example 1: Leased Lines 193

6.6.2 Example 2: Calculating Large Ping Delays Over
Frame Relay 194

6.6.3 Some Comments Regarding the Use of Large
Pings to Calculate Throughput 195

6.7 Summary 196

Part II
Specific Application/Protocol Suites 197

7 WAN Performance Analysis of TCP/IP
Applications: FTP, HTTP, and Telnet 199

7.1 Introduction 199

7.2 Some Essential Aspects of TCP Operation 201

7.3 Calculating TCP Bulk Data Transfer Times and
Throughput 204

7.3.1 Variables Affecting TCP File Transfer
Performance 205

7.3.2 Computing File Transfer Times for a Simple
Point-to-Point Connection 205

x Wide-Area Data Network Performance Engineering

7.3.3 Private Line Analysis 208

7.3.4 Frame Relay Analysis 215

7.3.5 General Formulas for Calculating TCP
Throughput for Private Lines and Frame Relay 222

7.4 Calculating TCP Throughput for Loaded WAN
Links 225

7.4.1 Private Line Case 226

7.4.2 Frame Relay Case 227

7.5 WAN Performance Issues for HTTP 230

7.5.1 Summary of HTTP WAN Performance Issues 232

7.5.2 A Sample Trace of an HTTP Transaction 232

7.5.3 Estimating HTTP Performance Over a WAN
Connection 234

7.6 TCP Telnet Performance Issues 242

7.7 Review of Methods to Provide Traffic
Discrimination for TCP/IP Applications 247

7.7.1 Prioritize Telnet Over Bulk Data Transfers at
the Router 247

7.7.2 Separate Telnet on Its Own PVC 249

7.7.3 Traffic Shaping at the Router 249

7.7.4 More General Bandwidth Management
Techniques 250

7.8 Summary 250

8 WAN Performance Considerations for Novell
NetWare Networks 253

8.1 Introduction 253

8.2 Overview 254

8.3 Overhead and Bandwidth Considerations 256

8.4 Novell Windowing Schemes 260

8.4.1 NetWare Pre-Release 3.11 261

8.4.2 NetWare Release 3.11 262

8.4.3 NetWare Releases 3.12 and 4.0 264

Contents xi

8.5 Private Line and Frame Relay Formulas 265

8.5.1 Private Line Formulas 267

8.5.2 Frame Relay Formulas 271

8.5.3 Cross-Application Effects: Mixing Novell and
TCP/IP 276

8.6 Summary 277

9 WAN Performance Issues for Client/Server
Applications 279

9.1 Introduction 279

9.2 Client/Server Overview 281

9.3 Client/Server Application WAN Traffic
Characterization 283

9.3.1 Examples of Two-Tier Application Traffic
Patterns 284

9.3.2 Example of a Three-Tier Transaction 288

9.4 Data Collection 290

9.5 Bandwidth Estimation Guidelines 292

9.5.1 Applications With a Ping-Pong Traffic
Characteristic 292

9.5.2 What Happens When Think Times Are Not
Available? 293

9.5.3 Bandwidth Estimation for Bulk Data Transfers 294

9.5.4 Bandwidth Estimation for Hybrid Transactions 295

9.5.5 Example of an SAP R3 Application 296

9.5.6 An Approach to Computing Response Times 298

9.5.7 Response Times for Bulk Data Transfer
Transactions 300

9.5.8 Response Times for Hybrid Transactions 300

9.6 The Thin Client Solution 300

9.6.1 The Remote Presentation Approach 300

9.6.2 The Network Computing Approach 307

9.7 Summary 308

xii Wide-Area Data Network Performance Engineering

10 WAN Design and Performance Considerations
for SNA Networks 311

10.1 Introduction 311

10.2 SNA Transport Methods: A Review 312

10.2.1 TCP/IP Encapsulation: Data Link Switching 312

10.2.2 Emulation Using SNA Gateways 314

10.2.3 Direct Encapsulation Over Frame Relay:
RFC1490 315

10.2.4 SNA Translation: TN3270 316

10.2.5 Web Access to Mainframe Applications 316

10.3 Data Center Architecture Issues for Large SNA
Networks 319

10.4 Quality of Service Issues for SNA 322

10.4.1 Delay Trade-Offs in SNA Migration to IP 324

10.4.2 FEP-to-FEP Issues 326

10.4.3 Traffic Discrmination 327

10.5 Summary 328

Part III
Case Studies 331

11 Case Studies 333

11.1 Introduction 333

11.2 TCP/IP Case Studies 334

11.2.1 Validating Network Latency and Throughput 334

11.2.2 TCP Bulk Data Transfer 337

11.2.3 Sizing Bandwidth for a TCP/IP Application 339

11.3 Client/Server Application Case Studies 342

11.3.1 Troubleshooting Response Times for a Sales-Aid
Application Over a Global Frame Relay Network 343

11.3.2 Troubleshooting Response Times for Custom
Client/Server Application Over a Frame Relay
Network 347

Contents xiii

11.3.3 Troubleshooting Performance Problems for an
Oracle Financials Application Using Citrix
Winframe Over a Global Frame Relay Network 349

11.4 Novell Networking Case Studies 353

11.4.1 How Novell SAPs Can Impact Performance 353

11.4.2 Comparing Leased Line and Frame Relay
Performance for Novell File Transfers 357

11.4.3 A Paradox: Increasing Bandwidth Results in
Worse Performance 359

11.5 SNA-Related Case Studies 360

11.5.1 Migration From SNA Multidrop to DLSw 361

11.5.2 Insuring SNA Performance in the Presence of
TCP/IP Traffic 365

11.6 Quantifying the WAN Bandwidth Impact of
SNMP Polling 369

Appendix A: Queuing: A Mathematical
Digression 375

Appendix B: Throughput in Lossy Environments 381

B.1 Introduction 381

B.2 Transmission Errors 382

B.3 Buffer Overflows 385

B.4 Transmitter Time-Outs 387

B.5 Out-of-Sequence Receptions 388

B.6 Impact of Packet Losses on Throughputs 388

Appendix C: Definitions 393

List of Acronyms 395

About the Authors 401

Index 403

xiv Wide-Area Data Network Performance Engineering

Preface

This book has its origins in our data network performance engineering work at
the erstwhile AT&T Bell Laboratories in the late 1980’s and continuing into
the better part of this decade in AT&T Solutions. Two distinct, but related,
aspects of that work can be singled out as the major contributors to this book:
the AT&T Datakit fast packet switch, and the rapid deployment of public
frame relay services. Few in the networking industry have heard of Datakit, but
it was one of AT&T’s early attempts at providing a vehicle to use packet tech-
nologies to integrate separate wide-area networks. A handful of AT&T’s large
customers built private frame relay-like networks based on the Datakit family
of switches and end devices. Subsequently, public frame relay services and
multi-protocol routers gained popularity in the early 1990s. Wide-area net-
work integration has since matured tremendously. The next phase of the
integration, that is, combining voice, data, video, and multi-media applications
over IP, is currently under way.

In the days of Datakit and early frame relay services, we spent a great deal
of time and effort trying to understand and quantify the performance impact of
integrating multiple protocols and applications on a packet network. In those
days, the important protocols were IBM’s SNA/SDLC and various bisynchro-
nous and asynchronous protocols. Corporate networks also carried IP, Novell
IPX, AppleTalk and others, initially over local area networks, but soon over
wide-area networks. We soon realized that much of the battle in modeling
application performance was in developing a detailed understanding of the
packet processing within the protocol stacks and the packet flows across LANs
and WANs. A thorough understanding of issues such as protocol overhead,

xv

windowing, time-out, retransmission issues in TCP/IP, Novell IPX, and SNA
was required.

Equally important is the development of methods to quantify perform-
ance. Here we recognized two approaches—build atomistic and deterministic
models of packet processing and packet flows and use simple queuing theory
formulas to capture the effects of congestion, or build sophisticated queuing
models with complex mathematical assumptions about traffic patterns, packets
size variability, and so on. It did not take us very long to realize that the former
approach yielded favorable results when compared to test results and measure-
ments, as long as the networks were operating within their engineered limits. It
also did not take us long to realize that the formal queuing theory approach was
too impractical to be of value to network managers trying to get quick answers
to pressing performance issues.

During the years since Datakit and the early days of frame relay, we and
others at AT&T have continued this work. We have given training sessions
to numerous internal and external clients in the area of wide-area network
performance engineering from an end-user application perspective. We have
continued to find success in our approach towards modeling, engineering, and
architecting numerous corporate enterprise data networks.

This book is an effort to bring together all the methods and ideas we have
developed and the experiences we have gained over the years. It combines
the three aspects of performance engineering we discussed—protocol and
application details, deterministic models of packet flows, and a very small dose
of queuing theory to capture the effects of congestion. Our target audience are
those individuals responsible for designing, maintaining, and trouble shooting
performance problems in data networks, as well as those responsible for capac-
ity planning, performance assurance, application testing, and other responsi-
bilities related to data networking. The treatment is technical in nature (“bit
and bytes”) and every effort has been taken to explain technical terms. It relies
on back-of-the-envelope analysis, and does not employ complex techniques in
mathematics, although where appropriate, there are some digressions into more
complex analysis. These are mainly in the form of appendices and references.
While there are no absolute prerequisites, a background in data communica-
tions will certainly help.

We realize that, despite our efforts to make the book as up to date as
possible, some of the protocol implementations and capabilities will change.
However, we believe that the methodology described in this book will survive
the years, because, to a large extent, they are independent of specific imple-
mentations and protocols. It is our sincere hope that in writing this book we
have been able to convey to the reader the art and science of wide-area network
performance engineering.

xvi Wide-Area Data Network Performance Engineering

Acknowledgments

Many have contributed to this book and it is with great pleasure that we
acknowledge their contributions. First, we would like to thank Diane Sheng,
our manager during the late 80s and early 90s, for introducing us to data net-
working and performance modeling, and for her support during this period.
This book would not have been possible but for the support and encourage-
ment of our management at AT&T, in particular, Bill Strain and Bill Gewirtz.
We owe much thanks to Bill Strain and Lawrence Brody for their thorough and
frequent reviews and comments of the entire manuscript, including multiple
rewrites. Thanks are also due to Rick Oberman and Lalitha Parameswaran for
their review of specific chapters and for their insightful comments, discus-
sions and suggestions. And to Larry Booth and Bill Zimmerman for their early
reviews of our initial chapters. The staff at Artech House has been a great help
during the somewhat trying times of manuscript development. In particular,
we wish to thank Barbara Lovenvirth for her help and her patience throughout.
We know we put her in numerous difficult situations. The technical referees
provided many suggestions to improve the book in both its technical accuracy
and its organization. We thank them for their efforts. We also wish to thank
Mark Walsh at Artech House for his support and encouragement early in the
development of the manuscript.

Finally, to our families. This has been a hectic time in our lives and theirs
and the writing of this book has only exacerbated the situation.

I, Bob Cole, wish to acknowledge the loving support of my wife Melanie
and daughter Alexandria. I dedicate the book to them. Without their encour-
agement, understanding and support, I never would have been able to complete
the writing of this book.

I, Ravi Ramaswamy, dedicate this book to my wonderful wife Ratna,
and my two beautiful children, Anjali and Ashwin, without whose love and
support, this book could not have been written. Thanks again for enduring all
those innumerable nights and weekends away from home.

Bob Cole
Havre de Grace, Maryland

Ravi Ramaswamy
Belle Mead, New Jersey

Preface xvii

1
Introduction

1.1 Enterprise Networking

It seems like a long time ago, but in the early to mid-1980s, there were few
wide-area network (WAN) data network architectures from which to choose
other than leased lines and X.25. The dominant protocol suite was IBM’s Sys-
tem Network Architecture (SNA). Most corporate data resided in mainframes
and AS/400s. E-mail was virtually unknown. The Internet was primarily a tool
for academia. Novell was the leader in local-area network (LAN) operating
systems. LANs were LANs and WANs were WANs, and the twain never met.
Routers were a quaint curiosity.

How times have changed! Today, just over a decade later, the buzz words
in the networking industry are no longer X.25, Novell, or SNA, but frame relay,
ATM, VPNs, intranets, Internet, and so on. The Internet Protocol (IP) has
emerged as the de facto networking standard. Routers and switches are ubiqui-
tous, client/server applications are everywhere, corporations live and die by
e-mail, and the Internet is being seriously considered as a tool for corporate
communications.

Everything over IP is the vision of the future.

Many trends have contributed to this facelift, but some of the technol-
ogy trends of the 1990s seem to have had more impact than others—public
frame relay services, multiprotocol router technology, and an emerging set of

1

applications built on the Transmission Control Protocol/Internetwork Proto-
col (TCP/IP). The subsequent introduction of Web technologies has also had a
tremendous impact on data networks as well.

Performance engineering of wide-area networks is the topic of this book.
We examine this issue against the backdrop of migration of legacy networks
to high-speed multiprotocol and multiapplication networks. In the old days of
SNA networking, performance engineering of low-speed multidrop SDLC and
high-speed front-end processor (FEP)-to-FEP was a complex task, involving
intricate details of the SNA protocol suite. However, the principles and meth-
ods were well understood, and sufficient field experience and expertise existed.
With the introduction of multiprotocol routers, legacy networks can be inte-
grated and traditional LAN-based applications and protocols such as Novell,
AppleTalk, and NetBIOS can begin to compete for WAN resources. Packet
switching technologies, like frame relay and asynchronous transfer mode
(ATM), introduce another significant element in the performance engineering
equation. With the proliferation of client/server applications, intranet Web-
based applications, and increasing demand for Internet access, the task of
performance engineering becomes a daunting one. What was an almost exact
science in SNA networking, performance engineering in today’s environments
requires a skillful combination of art and science.

This concept can be better understood in the context of one of the promi-
nent trends in data networking, that is, the convergence of packet layer trans-
port and the integration of high-level protocol suites onto a common transport
layer. The common packet transport technologies we refer to include frame
relay, ATM, and the IP technologies. Riding on these common packet trans-
port methods are the high-level application/protocol suites such as TCP/IP,
Novell NetWare, numerous client/server applications, SNA, and others
commonly found in corporate enterprise networks. Figure 1.1 is a schematic
showing the mapping of these applications and protocols onto this common
network infrastructure. The figure shows the high-level protocols being
mapped onto the IP layer or directly onto the link layer technologies, for
example, frame relay and ATM. Highlighted between these two layers is a mul-
tiprotocol integration layer. This is not meant to represent a strict protocol layer;
rather, it represents the collection of tools, techniques, and protocols necessary
to ensure a successful mapping for the multiple high-level protocols onto the
underlying packet transport.

Traditional 3270 applications are inquiry–response in nature, following a
“small in, large out” transaction pattern, that is, a 100- to 200-byte inquiry into
the host and a 700- to 1000-byte response from the host. The network typically
has low traffic volumes. Contrast that with a frame relay network, as shown
in Figure 1.1, carrying a multitude of applications such as legacy traffic,

2 Wide-Area Data Network Performance Engineering

client/server applications, Internet access, and e-mail. Legacy traffic has low
traffic volumes, but needs consistent response times. Client/server applications
are frequently chatty, but can also send large bulk data transfers. Internet/intra-
net traffic is bursty in nature. Considering all of these issues, it is clear why per-
formance engineering is not only important but also at once more complicated.
In this book, we examine in great detail the tools, techniques, and methodolo-
gies available today for performance engineering complex multiprotocol and
multiapplication wide-area networks. The objective is to provide the necessary
analytical skills to the network engineer, architect, and administrator so they
persons can accomplish protocol integration in as smooth and seamless a fash-
ion as possible.

To illustrate the various tools and techniques used in performance engi-
neering, we have chosen to rely throughout the book on frame relay and private
lines as the underlying transport technology. Frame relay is representative of
modern packet technology services, another being ATM, and is an increasingly
popular transport service being deployed within corporate enterprise networks.
The growth of frame relay services during the 1990s has been tremendous. As
Figure 1.1 shows, this multiprotocol integration often occurs through an inter-
mediate IP layer, but sometimes direct mapping onto frame relay is performed.
However, the techniques and issues discussed throughout this book apply
to the other transport services as well, for example, X.25, ATM, and Virtual
Private Networks (VPNs). In addition, even though we focus on the four
high-level protocol suites shown in Figure 1.1 in this book, the performance

Introduction 3

TCP/IP SNA NetWare Client/server

IP

Frame relay, ATM, X.25, TDM

High-level
protocol suites

Common packet
transport layer

Multi-protocol
integration layer

Figure 1.1 High-level protocol integration onto a common packet transport infrastructure.

engineering methodology we discuss can be applied to other protocol suites and
applications.

1.2 Our Approach to Performance Engineering

In the process of performance engineering wide-area networks, the network
engineer, architect, or administrator needs to understand in some detail how
applications behave over various underlying data network architectures. We
approach this issue by building an atomistic-level understanding of the
packet flows across data networks. We then build a deterministic model of
the packet flows. Finally we augment this model with some simple statistical
reasoning, as appropriate. From our experience, the process of building an
atomistic model of packet flows forces several important thought processes on
the network engineer. First, one is forced to extract the most important aspects
of the high-level protocols involved in the analysis. This means understanding
packet size and protocol overhead characteristics, windowing and flow control
mechanisms, and packet fragmentation. Next, the engineer must understand
the details of mapping of the high-level protocols onto the underlying transport
mechanisms. Once this knowledge is built, we provide tools for representing
this information in the form of timing diagrams. Timing diagrams explicitly
show the timing relationships between the numerous activities that must occur
in order to transport data over the network. Once this atomistic-level timing
diagram is developed, it is relatively straightforward to augment this base model
to capture the effects of statistical traffic multiplexing or cross applications
effects, as discussed throughout the book.

Although the emphasis in this book is on building an analytical under-
standing of network dynamics, we strongly believe that analysis is not the end
but the beginning point in performance engineering. One needs to be able to
recognize first-order performance effects, make reasonable assumptions regard-
ing the network and applications, perform “back-of-the-envelope” or “quick-
and-dirty” calculations, interpret the results, and draw intelligent conclusions
about the network. The mere use of off-the-shelf analytical or simulation mod-
eling tools is not sufficient. These tools also require information about the
network and applications that is often hard to obtain. For instance, think of a
new client/server application that needs to be deployed enterprise wide. Infor-
mation regarding transaction characteristics and usage patterns is difficult to
obtain. However, the network manager needs to plan for bandwidth upgrades
ahead of time.

One way to confirm assumptions used to build models is to perform
test measurements. By collecting data from live test results, the engineer can

4 Wide-Area Data Network Performance Engineering

confirm the assumptions used to build the model of the expected performance
of the applications being deployed or integrated onto the underlying transport
network. Once the application is deployed, it is necessary to constantly monitor
key aspects of the network in order to ensure that satisfactory performance is
maintained. Here again the models are useful to help in the determination of
what to monitor and how to determine if modifications to the network archi-
tecture or design are required.

Finally, although this book focuses on an analytical understanding of
WANs and of applications deployed on them, we make no pretense that these
techniques will resolve all problems in a data network. Needless to say, improp-
erly configured routers, hardware and software errors in end systems, and faulty
WAN links contribute significantly to poor performance in a network.
Nevertheless, an understanding of the set of basic principles that governs the
performance wide-area networks and applications is important when trouble-
shooting problems in a network.

Clearly, there are numerous aspects to successfully deploying or inte-
grating new applications onto a corporate enterprise-wide network. These
include integration testing, deployment and migration planning, network
monitoring and maintenance, and life cycle management. Although we briefly
discuss these activities, the main goal of this book is to provide the network
engineer, architect, and administrator with the skills and tools needed to
develop simple performance models to aid in network design, engineering,
and troubleshooting these seemingly complex multiprotocol, enterprise-wide
data networks.

1.3 Layout of the Book

We have laid out the book in the following parts:

Part One: General Principles
The first part of the book lays the foundation for performance engineering
multiprotocol enterprise networks. The discussions in the first part of the book
remain at a protocol/application independent level. The techniques and princi-
ples presented in this part of the book are generic, and are applicable to per-
formance engineering network applications in general. Although the following
part of the book concentrates on specific high-level protocol suites, the material
in this part can be applied to any application protocol being mapped onto a
packet transport infrastructure. The following chapters comprise this first part
of the book:

Introduction 5

• Chapter 2: Wide-Area Networking Technologies. This chapter provides
an overview of the underlying packet transport technologies found in
corporate data networks.

• Chapter 3: Performance Analysis: Some Basic Tools. This chapter covers
the basic aspects of performance modeling and performance issues nec-
essary to build simple models of data application behavior.

• Chapter 4: Techniques for Performance Engineering. This chapter dis-
cusses tools and techniques to consider when building and supporting
multiprotocol data networks.

• Chapter 5: Frame Relay Performance Issues. This chapter expands on the
previous chapter by focusing on frame relay-specific issues.

• Chapter 6: Using Pings for Performance Analysis. This brief chapter ana-
lyzes the results from this simple tool and demonstrates its utility in
testing and troubleshooting various networking situations.

Part Two: Specific Application/Protocol Suites
The second part of the book concentrates on specific high-level applica-
tion/protocol suites. We discuss these because of the dominant role they play in
enterprise data networking. This material is subject to the development sched-
ules of the corporations responsible for the development of specific networking
protocols. These chapters discuss issues specific to the various protocols when
they are mapped onto underlying packet transport technologies and when they
are multiplexed with other protocol suites on a common transport medium.
The following chapters comprise this second part of the book:

• Chapter 7: WAN Performance Analysis of TCP/IP Applications: FTP,
HTTP, and Telnet. This first chapter on a specific high-level protocol
suite identifies the salient features of TCP/IP necessary to build simple
models of TCP/IP performance.

• Chapter 8: WAN Performance Considerations for Novell NetWare Net-
works. This chapter presents aspects of the Novell NetWare network-
ing suite.

• Chapter 9: WAN Performance Issues for Client/Server Applications.
Although not a specific protocol suite, this chapter discusses a set of
issues related to the development, evolution, and performance of cli-
ent/server applications.

• Chapter 10: WAN Design and Performance Considerations for SNA Net-
works. This chapter covers issues with the IBM SNA applications and
integration onto IP and frame relay networks.

6 Wide-Area Data Network Performance Engineering

Part Three: Case Studies
This last part of the book contains various case studies that the authors have
been involved in over the years. They were chosen because we felt they were
representative of common situations occurring in the evolution of enterprise
networks. They also help to emphasize some of the prominent points discussed
earlier in the book. A single chapter, Chapter 11, comprises this part of the
book.

Introduction 7

Part I
General Principles

2
Wide-Area Networking Technologies

2.1 Introduction

In this chapter we present an overview of the prominent high-speed, wide-area
networking (WAN) technologies which have been deployed, or are being
deployed, in today’s multiprotocol, enterprise network environments. These
technologies include time-division multiplexing (TDM) or private line, X.25,
frame relay (FR), asynchronous transfer mode (ATM), and the internet proto-
col (IP). We consider other networking technologies, for example, IBM’s sys-
tems network architecture (SNA), Novell’s NetWare, and Apple’s AppleTalk,
as single-protocol networks or end-system protocols and as such these are dis-
cussed elsewhere in the book. Here we focus on those technologies which are
often used to integrate (or multiplex) multiple end-system protocols.

The development and deployment of high-speed network technologies
has accelerated during the last decade, and we expect this trend to continue at
an even higher pace into the turn of the century. Prior to the mid-1980s most
multiprotocol network environments physically separated the individual proto-
cols onto separate, “private-line based” networks. These networks were rather
inefficient in their bandwidth utilization and were rigid and inflexible in their
ability to be modified based on changing end-system requirements. Further,
interoperability between applications developed to run over different networks
required cumbersome gateways.

In response, packet networking emerged in the 1980s, primarily in the
form of X.25 networks, but also in ARPA’s support for the development of IP
networking. X.25 standards are based on virtual circuit technology, where a
logical connection is established through the network prior to sending any data.

11

X.25 networking placed a high protocol processing demand on the network
switches to handle circuit establishment during the call setup phase and to han-
dle error recovery and network congestion issues in this statistically multiplexed
network during the data transport phase. In contrast, IP technology placed a
premium on end-system protocol processing, relying on end systems to handle
session establishment, to respond to network congestion, and to accomplish
packet error recovery. While the ARPA IP network remained primarily a net-
work of interest to the research community at this time, X.25 networking was
widely promoted by public network service providers and (in a more limited
extent) began to support multiprotocol environments. This multiprotocol inte-
gration relied on packet assemblers/dissemblers (PADs) with built-in terminal
adaptation1 (TA) functionality to wrap the native protocols into the X.25 pro-
tocol stack and provide the WAN interface to the X.25 WAN networks. Due
to the relatively low speed (limited to roughly 56 Kbps) of these X.25 networks,
the utility of integrating multiple protocols onto this single technology never
fully developed.

In the late 1980s fast packet technologies were developed that increased
the speed of the WANs. Fast packet technologies are virtual circuit based, like
X.25, but they streamlined the protocol processing required in the network
during the data transport phase. This in turn allowed the switches to operate at
higher speeds (limited initially to roughly 45-Mbps trunking2). Frame relay
networks were one realization of these emerging fast packet technologies. Due
to the relatively high speed of frame relay networks and their attractive
economics in public network deployments, there was a huge push in the data
communications industry to integrate multiple networks running different
protocol stacks onto this common, layer 2 technology.

So what is the impetus for the emergence of ATM switching? Frame relay
is capable of supporting the integration of multiple data networking applica-
tions and protocols on a common WAN, but does not naturally3 support inte-
gration of non-real-time and real-time applications4 onto a single platform. Just
as the industry expects cost savings by integrating multiple data applications
onto a single WAN, it also expects cost savings by integrating real-time
and non-real-time applications onto a single WAN. ATM was developed to

12 Wide-Area Data Network Performance Engineering

1. Terminal adaptation is the operation of converting, or wrapping, the native protocol, for
example, IBM’s SNA, into a protocol suitable for transport over a WAN.

2. It is always dangerous to state (and forever rely on) rate limitations that are technology
based, that is, not based on some physical law. Technology evolves at an ever increasing rate
and this soon invalidates earlier assertions.

3. This does not imply that it cannot be done. In fact, frame relay networks are being used to
carry real-time applications.

naturally support both real-time and non-real-time applications. ATM is based
on virtual circuit technology but is unique in that it bases data transport on
fixed size cells. This fixed sized cell format allows for simple algorithms to
handle constant bit rate applications, such as PCM encoded digital voice. This
fixed sized cell format also has generated much criticism of ATM in ineffi-
ciently carrying variable sized data packets.

More recently, IP has emerged as a network technology for multiprotocol
network integration. Not only is IP being used in this fashion, it is also directly
replacing the underlying network layers of legacy protocols like Novell’s
NetWare 5.0. Also, like ATM, there is a strong push to have IP support the
integration of real-time and non-real-time applications.

In summary, the WAN technologies used for multiprotocol integration
have evolved from TDM networking into datagram transport such as IP, and
virtual circuit transport such as X.25, frame relay, and ATM. We provide a
more detailed discussion of each of the dominant WAN technologies in the fol-
lowing sections of this chapter. Where possible, we try to identify the salient
features of the technologies and networking environments where they might be
applied. Further we identify reference materials for further reading in each of
the sections.

2.2 Time-Division Multiplexing Networks

TDM networks are still a prominent WAN technology even today. Their pri-
mary advantage is that they provide guaranteed delay and throughput perform-
ance to data applications. These networks are often used to keep separate
the data applications running over different protocol stacks, for example, SNA,
IP, and AppleTalk. The job of network engineer is simplified in this network-
ing scenario. Engineers can analyze the applications requirements in buckets
separated by the protocol families and engineer the TDM network accordingly.
There are no issues to consider regarding the cross applications/protocol effects
when merging different protocol stacks onto a lower layer network layer. There
are, however, significant network topology design issues to consider in order to

Wide-Area Networking Technologies 13

4. By real-time transport we mean the ability to deliver information at a constant delay, with
negligible delay variation, to a user of the network. A real-time application is one that
requires real-time transport. A non-real-time application does not require real-time trans-
port. An example of a real-time application is PCM voice telephony or H.260 video distri-
bution, where the information must be presented to the user at precise time points in order
to maintain a smooth picture or a steady audio stream. Non-real-time applications are data
applications such as e-mail transport.

minimize the network costs due to the distance-dependent pricing structure for
these private line services.

TDM networks consist of private lines interconnecting TDM multiplex-
ers (see Figure 2.1). These multiplexers are switches that transfer time slots on
incoming lines to other time slots on outgoing lines. The time slots are fixed
duration on any given line and are typically a bit or a byte in length. The rela-
tionship between an incoming time slot and an outgoing time slot is manually
provisioned into the TDM switches. The frequency of the time slot determines
the bandwidth dedicated to the individual application. The bandwidth is allo-
cated, typically, in multiples of 64 Kbps or in submultiples of 64 Kbps, for
example, 2.4, 4.8, and 9.6 Kbps. Because TDM switches rely on time relation-
ships to determine the time slot positions, they do not depend on detecting
information within the time slots. In fact, the switches have no mechanism to
determine if the time slots are idle or if they contain application information.
Because of this, the TDM switches cannot take full advantage of the bandwidth
available by allowing different applications to share facility bandwidth in real
time. An advantage, however, is that no special equipment is necessary to sup-
port the different data protocols; protocol multiplexing occurs at the physical
layer of the OSI protocol stack [1].

Once engineered, these TDM networks are relatively static in nature.
Modern TDM multiplexers support dynamic reconfigurations; however, the
reconfigurations are typically initiated in response to facility failures. Time-of-
day reconfigurations are also feasible to take into account the time-of-day varia-
tions in traffic, although this is rarely implemented in practice.

One dominant advantage of TDM networks today is their ability to sup-
port data, video, and voice applications. In fact, most large TDM networks
carry all three types of traffic. These networks provide some bandwidth sharing

14 Wide-Area Data Network Performance Engineering

Router
Minicomputer

Router

TDM facility
network

Minicomputer

Minicomputer

Router

Figure 2.1 TDM networks do not support sharing of bandwidth into the wide-area network.

between voice and data traffic for disaster recovery scenarios. Critical data
applications can preempt voice bandwidth during disaster recovery scenarios,
and the voice traffic can overflow to public voice networks until the failure
is repaired. TDM networking supports disparate networks and ensures that
interference between applications on these networks will not occur. The disad-
vantage of TDM networking is that it maintains disparate networks and hence
bandwidth sharing is not possible.

Our primary interest in TDM or private line networks is to function as a
baseline network configuration. Due to price pressures, that is, due to public
packet services being priced lower than comparable TDM networks, many
engineers are considering replacing their TDM networks with newer packet
networks. In the process, it is necessary to develop a model of the behavior of
the data applications on the new packet network and compare this to the cur-
rent behavior on the TDM networks. If the engineer is not careful, perform-
ance can be degraded when moving to the packet network. Therefore, network
engineers must be cautious when considering a migration to packet net-
work technologies to integrate data applications.

2.3 X.25 Networks

X.25 is an International Telecommunications Union (ITU) standard for a vir-
tual circuit packet network technology developed in the mid-1970s. This stan-
dard was developed primarily by the telecommunications industry and public
services providers. This technology is widely deployed around the world today.
X.25 switches employ statistical multiplexing of data packets and operate at
relatively low speeds, for example, 2.4 Kbps up to 1.5 Mbps. Virtual circuit
technology relies on the preestablishment of a circuit across the network. This
circuit can be manually provisioned, as in permanent virtual circuits (PVCs), or
they can be signaled dynamically by the premises equipment, called switched
virtual circuits (SVCs). A circuit is established between two data terminal
equipment (DTE) interfaces. Once a virtual circuit (VC) is established, packets
travel across the network, over the VCs, and maintain their relative ordering
over the circuit. Further, X.25 provides a reliable, VC service, in the sense that
packet delivery is guaranteed at the data link level and packet streams follow the
same predefined path through the network.

X.25 technology was developed at a time when the quality of transmis-
sion systems was suspect. Digital transmission systems were not widely
deployed and in many parts of the world the quality of the analog transmission
systems (measured in terms of bit or packet error rates) was poor. As a result,
packet retransmissions were common in these environments and the X.25

Wide-Area Networking Technologies 15

technology was designed to maximize data throughput over these relatively
noisy transmissions facilities by implementing data link level retransmissions.
Further, due to the relatively low speed of the transmission facilities and that
the technology was a statistical multiplexing format, significant network con-
gestion control mechanisms were required. To maximize data throughput, a
very conservative approach to congestion control was adopted, that of employ-
ing both link-by-link flow control and end-to-end flow control (as shown in
Figure 2.2). Quality of service (QoS) parameters are supported in X.25 net-
works but are limited to the notion of a throughput class. The throughput class
is the expected throughput, measured in kilobits per second (Kbps), over a
given X.25 virtual circuit. The mechanism typically employed to control this
QoS parameter is the size of the layer 3 flow control window. This parameter is
negotiated either out of band for PVC provisioning of circuits or through the
X.25 signaling protocol for SVC establishment. However, this QoS parameter
is not an accurate estimate of circuit throughput (as discussed in Chapter 3 on
estimating window limited throughputs).

In contrast to TDM switches, packet switches, such as X.25 switches,
detect the existence of information on incoming links. In packet technologies,
data are carried in variable size packets. The existence of these packets, for the
most part, is determined by the existence of special flag bytes. These flags,
which are guaranteed to be unique by a technique called byte stuffing, delimit
the beginning and ending of a data packet. Therefore, an X.25 packet switch
will monitor the incoming facility searching for a beginning of packet flag.
Once found it will search for the end-of-packet flag and will place the data
between these flags in a packet buffer. Packet processing (e.g., forwarding,
retransmissions, flow control, etc.) is then based on protocol information that

16 Wide-Area Data Network Performance Engineering

X.25 Switch X.25 Switch X.25 Switch MinicomputerMinicomputer

End-to-end flow control

Link retransmission
and flow control

Link retransmission
and flow control

Link retransmission
and flow control

Link retransmission
and flow control

Figure 2.2 An X.25 connection showing both link retransmission and flow control and end-
to-end flow control.

is either prepended (in a packet header) or appended (in a packet trailer) to the
packet. Packet forwarding is based on the virtual circuit identifier (VCI) that is
carried in the packet header. Errored packets are determined based on error
checking information carried in the packet trailer. If the packet is determined
to be errored, then the packet is discarded and a retransmission is requested
across the data link. The format of the X.25 data packet is shown in Figure 2.3.

The flags help to delimit the X.25 packet on the physical transmission
facility. The level 2 header control contains the level 2 window and flow con-
trol information. The VC identifier is contained in the level 3 control header,
as is the level 3, end-to-end, flow control information. Finally, the trailer con-
tains a cyclic redundancy check (CRC) for error detection. (For an excellent
discussion of error detection and correction technologies, refer to [2].)

The flow control will limit the amount of data stored in the switch for
any given VCI, hence reducing the probability of buffer overflows. Statistical
multiplexing on the outgoing transmission facility is made possible because of
the switches’ ability to distinguish packet information from transmission idle.
This allows DTE to share access bandwidth between multiple destinations, as
identified in Figure 2.4. This is referred to as a multiplexed network interface.
The X.25 network relies on the VCI to determine the network egress point.

To support end user applications riding on a variety of end-system data
protocols, it is necessary to deploy a terminal adaptation device. The TA per-
forms a transformation between the end-system application protocols and the
X.25 networking protocols. This conversion comes in two varieties:

1. Encapsulation, where the end systems’ protocols are wrapped in the
X.25 protocol and are carried across the X.25 network intact. In this
case the X.25 network can be considered to be like a pipe, albeit a
pipe with some unusual characteristics, which transports the native
protocol. (See the later section on multiprotocol encapsulation
standards.)

2. Conversion, where the end systems’ protocols are terminated and
replaced by the X.25 protocol. In this case, each TA on the edge of
the X.25 network appears to the respective end system as its corre-
sponding end device.

Wide-Area Networking Technologies 17

Flag Level 2
header CRC 16 FlagLevel 3

control Data field

Figure 2.3 An X.25 packet format showing flags, level 2 header and trailers, level 3 control,
and the data field.

Numerous X.25 TA devices are available in the market. There are encap-
sulating TAs for SDLC, bisync protocols, polled asynchronous protocols, and
Borroughs polled protocols, DEC’s DDCMP protocol, to name a few. Also,
encapsulations are defined for the various internetworking protocols, for exam-
ple, IP, AppleTalk’s IP, Novell’s IPX, XNS’s IP, SNA’s FID 2 and FID 4
networking layer, onto X.25. Conversion TAs have been developed that con-
vert, for example, SDLC and bisync polled protocols and character asynchro-
nous protocols to X.25. In fact, the X.3 standard defines the mapping of
character asynchronous protocols to X.25 and these TAs are referred to typi-
cally as packet assemblers/disassemblers. It is common to refer to TAs (both
encapsulating and converting) that support the polled protocols as PADs as well.

An extensive list of X.25 network service providers exists. These providers
offer public X.25 transport services to end users. These services are offered by
private telecommunications companies and by public and government-owned
PTTs. To interconnect these numerous, autonomous X.25 networks and to
provide worldwide X.25 services, the ITU developed an interworking standard,
called X.75. The X.75 standard defines the network interface between autono-
mous X.25 networks. Consistent and unique addressing is ensured by the ITU
X.121 standard. With the development of these standards, the various X.25
service providers were able to work out pair-wise interconnection agreements
and to build a worldwide X.25 network infrastructure. A high-level view of this

18 Wide-Area Data Network Performance Engineering

X.25 Network
MinicomputerRouter

Minicomputer
Router

Minicomputer
Router

Figure 2.4 A typical X.25 configuration demonstrating the multiplexed interface supported
by X.25.

infrastructure is shown in Figure 2.5. In this example, two DTEs are intercon-
nected via an SVC or PVC that spans several autonomous X.25 service provid-
ers’ networks. Here link-by-link flow control and error recovery occurs on each
of the internal X.25 links and the X.75 gateway links. The level 3 controls still
extend end to end between the two respective DTEs.

In summary, there was some interest in using X.25 networks to integrate
multiple data applications onto this technology in the 1980s but this activity
has greatly diminished with the development and wide deployment of frame
relay networks. Because this trend never fully materialized, there was little
work in developing capabilities into X.25 to improve enterprise network
deployment, such as improved QoS capabilities through fair sharing or priority
queuing algorithms.

2.4 Frame Relay

2.4.1 Frame Relay Network Architecture

As the deployment of digital transmission systems progressed in the early
1980s, the quality, in terms of bit and burst error statistics, improved to the
point that the need for packet switches to perform extensive error recovery
mechanisms became unnecessary (or rather was rarely invoked). In fact, the
software to perform error recovery mechanism and extensive hop-by-hop flow
control limited the throughput of the individual link processors. Performance
studies at the time showed that optimum end-to-end performance was achieved
by eliminating this unnecessary protocol processing, which allowed link proces-
sor data throughput to increase to 1.5-Mbps rates and higher. Error recovery
and flow control were relegated to end-to-end transport protocols, for example,
TCP. In this case, the network simply discarded errored frames and relied
on the transport protocols to detect frame losses and to handle frame

Wide-Area Networking Technologies 19

MinicomputerRouterMinicomputer Router X.25 networkX.25 network

X.75
interface

Figure 2.5 An example of multiple X.25 networks interconnected through X.75 interface
gateways.

retransmissions. Instead of relying on windowing to manage congestion,
access control mechanisms were employed in the network. This is illustrated in
Figure 2.6.

Like X.25 technology, frame relay is based on virtual circuit, connection-
oriented forwarding. Further it relies on statistical multiplexing and supports
both PVCs and SVCs. Figure 2.7 shows the packet level header and trailer for a
frame relay packet. The frame header consists of two bytes for virtual circuit
addressing, or data link connectionl identifiers (DLCIs). The frame trailer con-
sists of two bytes of a frame check sequence, that is, a 16-bit CRC, for error
detection. The frame is delimited by a beginning and ending flag sequence,
consisting of one byte each.

Unlike X.25, congestion control in frame relay networks had to be han-
dled in a fundamentally different method due to the lack of layer 2 and 3 flow
control feedback. At the frame relay layer, the sending device could not rely on
a windowing scheme with real-time acknowledgments to derive the status of

20 Wide-Area Data Network Performance Engineering

End-to-end flow control

FR switch FR switch FR switch
Mini-

computer
Mini-

computerRouter

Error checking
and discard

Error checking
and discard

Error checking
and discard

Error checking
and discard

AC

Access control
mechanisms

Figure 2.6 A frame relay connection showing error checking and discards on a link-by-link
basis and end-to-end flow control.

Flag FlagDLCI CRC-16Data

Figure 2.7 Packet format for a frame relay packet.

the individual virtual circuits. Also, the frame relay network could not rely on a
layer 2 window to throttle network traffic in periods of network congestion.
Without a throttling capability, a throughput collapse could occur [3].

Frame relay implemented several new networking mechanisms to address
these issues, as discussed in the following paragraphs.

A link management protocol was implemented to communicate the status
of the access link and the individual virtual circuits. DTE devices rely on this
protocol and the information provided by it to determine when it considers the
virtual circuits and access links as functional and when to initiate failure recov-
ery mechanisms. Without this protocol, the DTE would have no mechanism to
monitor the frame relay network, the network access and egress facilities, or the
individual VCs and would continue transmitting frames into the network even
in conditions of network failure.

In credit management schemes, an access control mechanism was developed
to control the rate at which the DTE’s frames can be transmitted into the net-
work on an individual virtual circuit basis. Again, without layer 2 windowing,
the network would not be able to flow control the rate of incoming frames
without a credit management scheme. A QoS parameter, termed the commit-
ted information rate (CIR), is defined for each individual virtual circuit. The
definition of the CIR is rather ambiguous, but in some instances is interpreted
as the minimum throughput on the virtual circuit supported by the frame relay
network. The frame relay network is thus engineered to support this VC-based
throughput during periods of network congestion. During slack periods on the
network, the individual VC throughputs can exceed the CIR. If the network is
congested, and the DTE is attempting to send in excess of the available net-
work bandwidth, then the network may discard these frames at the congestion
point in order to protect other users’ traffic in the network.

Various congestion control feedback mechanisms were developed. These
include (1) backward explicit congestion notifications (BECNs) and forward
explicit congestion notifications (FECNs), (2) a discard eligible (DE) bit in the
frame relay header, and (3) an R-bit setting in the link management protocol.
The FECNs (BECNs) are sent downstream (upstream) on individual VCs in
response to the DTE sending in excess of their CIR. The frames that the net-
work determines to exceed the CIR are tagged as such through the DE bit and
are subject to network congestion. The R bit is sent over the link management
interface in the upstream direction and is to be interpreted by the DTE as an
indication to slow down transmission across all VCs on the interface. In reality,
there is little that the DTE can do to throttle the data sources. This is indicated
in Figure 2.8. The tagging of FECN, BECN, and DE bits is counted by man-
agement systems and used as a capacity management tool to help determine

Wide-Area Networking Technologies 21

when to upgrade CIR and/or port capacity or take other appropriate actions.
These are discussed further in the following subsections.

2.4.1.1 Link Management Interface
Frame relay standards define a link management interface (LMI), which pro-
vides the attached CPE capabilities to monitor and manage the frame relay
links, ports, and VCs. The definition of a separate LMI for frame relay was
required due to the fact that frame relay provides the user with a best effort
service. Unlike X.25, where the user is provided with acknowledgments at both
the link level and the network level that their packets were successfully received,
frame relay service provides no such indication. Instead the user relies on infor-
mation obtained through the LMI to determine the status of the access and
egress links and the provisioned VCs.

Various versions of the link management capabilities are defined in the
various standards and de facto standards. In general, LMI defines message
formats and exchanges between the network interface and the CPE. The capa-
bilities defined through the link management protocols include:

• PVC status, for example, what VCs are provisioned and the status of
the provisioned VCs, that is, are they active or inactive;

• Notification of adds, changes, or deletes of VCs;

• Local link status polling and notification of far end link status; and

• CPE access to configuration parameters, for example, maximum frame
size and FECN/BECN and DE bit setting thresholds.

22 Wide-Area Data Network Performance Engineering

FR switch FR switch FR switch
Router

Mini-
computer

Mini-
computerRouter

BECNs FECNs

Source

Frame
discards

Frame
discards

Frame
discards

Figure 2.8 A frame relay reference connection demonstrating the lack of end-to-end flow
control mechanisms in many important networking scenarios.

The CPE can pass this information to higher layers and initiate various actions
based on the link and VC status. For example, in the event that a link or VC
fails, this information is received from LMI and the CPE can initiate a net-
work layer rerouting. Also, some CPE use the add, change, delete information
in an autoconfiguration process. For example, on notification of a new VC, the
attached router can initiate the inv-ARP protocol [4] to configure IP connec-
tivity to the far end router on the new VC.

2.4.1.2 Credit Management Schemes

Frame relay networks define a bandwidth management policy for the VC estab-
lished on the network interface from the customer access device to the frame
relay network. The network interface is multiplexed, meaning that multiple
VCs are simultaneously established on the access facilities. For each of the VCs,
whether they are permanent or switched VCs, a bandwidth policy is defined.
Policies generally define the long-term bandwidth associated with the VC,
referred to as the CIR. The policy also defines the nature of the bursting—an
information rate higher than the subscribed CIR—associated with the VC.
Frame relay service providers generally allow traffic to burst into their networks
at speeds higher than the subscribed CIR of the VC for a limited period of
time. The effectiveness of this bursting depends on overall network congestion
control implementations and network engineering policies. By definition,
“bursting” is not guaranteed at all times. This introduces an element of variabil-
ity relative to available bandwidth.

It is convenient to define the frame relay bandwidth management policy
in terms of a “leaky bucket” algorithm [5]. Figure 2.9 shows a schematic of a
frame relay access control filter, based on a leaky bucket scheme. This access
control filter (ACF) maintains a token buffer, which determines the treatment
received by incoming data frames. When a data frame is received by the ACF, it
compares the size of the data packet to the equivalent token pool in reserve.
Each token has an equivalent packet size associated with it; for example, each
token is worth 24 bytes. If a sufficient number of tokens is stored in the buffer
to cover the size of the data packet, then the entire packet is allowed entry into
the frame relay network, the equivalent number of tokens is removed from the
token buffer, and no further processing of the data packet is required. If there
are not enough tokens in the buffer to fully cover the size of the incoming data
packet, then the ACF generally implements one of two different strategies:

1. The packet is tagged as exceeding the token rate through the DE bit
on the frame header and is sent into the frame relay network. (We
refer to this scheme as the “tag-and-send” ACF.)

Wide-Area Networking Technologies 23

2. It is buffered in the access module and delayed until the necessary
number of tokens is built up in the token buffer. (We refer to this as
the “delaying” ACF.)

Each VC on the network interface has a separate ACF and its associated token
buffer. These separate ACFs on the network interface run independently of
each other.

The bandwidth policy for each VC is defined by the parameters specify-
ing the leaky bucket. The parameters defining the leaky bucket are the CIR (the
rate at which the token buffer is replenished), K (the maximum number of
tokens allowed in the token buffer), and the size of the data buffer (for the
delaying ACF).

The ACF results in the following output characteristics. The long-term,
untagged output from the ACF has a maximum data rate equal to the CIR, the
rate at which the token buffer is replenished. This has a smoothing effect on
the delaying ACF output stream, that is, the data traffic is effectively metered
out at the rate of the CIR. If the input stream to the ACF has been idle for a
long enough period of time, the output will consist of an initial “burst” of data
equal to or less than the total size of the token buffer, that is, the K parameter.
Therefore, except for the initial burst of data, the untagged output from the
delaying ACF is smoothed in comparison to the input stream. This is illus-
trated in Figure 2.10. In this figure, the token generation process is shown at
the top. The token rate is constant and determines the CIR. The second line
shows a given arrival process.

It is assumed in Figure 2.10 that one token is equivalent to a single data
packet. (Often several tokens are necessary to allow a given data packet to pass

24 Wide-Area Data Network Performance Engineering

Token buffer of size K

A token
generator

(R per second)
Closed loop
feedback

Incoming
data packets Outgoing data packets

Access control filter schematic

Figure 2.9 A schematic of an implementation of a frame relay access control filter.

through the filter when the frame relay network performs internal pipe-
lining.) The incoming stream shows several bunches of packets arriving. The
third line shows the expected output stream from a delaying ACF. It is assumed
that the incoming stream had been idle for a sufficient amount of time to allow
the token buffer to completely fill. Further, it is assumed that the size of the
token buffer is three, that is, K = 3. Therefore, the first three packets are trans-
mitted into the frame relay network. From then on, the remaining packets
from the arrival process are buffered and metered into the network at a con-
stant rate as determined by the CIR. This is in contrast with the fourth
line, which shows the output process from a tag-and-send ACF. Here, the
untagged packets (those indicated by the arrows) show similar output charac-
teristics as the output from the delaying ACF from the line above. However,
the tag-and-send ACF does not buffer packets that arrive in excess of the
ACF bandwidth policy; it instead tags those packets and sends them without
delay into the frame relay network. These are shown as arrows with X’s
through them.

Most public frame relay service providers allow traffic to burst into their
networks at speeds higher than the subscribed CIR. This introduces an element
of variability relative to the available bandwidth. Again, the effectiveness of this
bursting depends on overall network congestion and, by definition, is not guar-
anteed at all times. The network congestion is affected by the specific conges-
tion control schemes implemented in the frame relay network and the nature of
the network engineering. In the following subsections, we discuss two different
frame relay network congestion control strategies: closed-loop and open-loop
feedback schemes.

2.4.1.3 Closed-Loop versus Open-Loop Feedback Schemes
At first blush, it appears that the tag-and-send ACF results in improved
performance over that of the delayed ACF. Certainly in periods of no traffic

Wide-Area Networking Technologies 25

Token generation process

Incoming data packets

Outgoing data packets
for a delaying ACF

Outgoing data packets
for a tag-and-send ACF

Tagged data
packets

Untagged
data packets

× ×× × ×

Figure 2.10 Input and output process from several types of ACFs.

congestion in the frame relay network, the tag-and-send ACF provides better
delay performance than the delaying ACF simply due to the fact that the tag-
and-send ACF will never delay packet access to the frame relay cloud, whereas
the delaying ACF will.

To improve the low load performance of the delaying ACF scheme, these
frame relay networks also implement a type of closed-loop feedback algorithm
in order to dynamically adjust the token arrival rate. The closed-loop schemes
typically have the network switches indicate in the network packet headers the
status of the buffers along the VC path. The egress switch, that is, the last frame
relay switch on the VC path, uses this information to send back to the ACF
the status of the VC. For example, these could indicate that the components
are lightly loaded, moderately loaded, or heavily loaded. In periods of low load
along the VC path, the delaying ACF can increase the token arrival rate and
hence increase the flow of data packets into the network over the VC. This
reduces the buffer delay experienced by the data packets in the access module.
In the event that the load on the VC path increases, the delaying ACF can
reduce the rate of the token generation process in order to lessen the load on the
VC and, in turn, manage the VC congestion. Therefore, the token generation
rate for the closed-loop feedback scheme will vary from a low equal to the CIR
to a maximum information rate (MIR). The MIR will be bounded by the mini-
mum of the access and egress facility speed associated with the VC, but may be
further bounded at a lower speed depending on the specific implementation. If
the VC path becomes congested, the ACF is notified through the closed-loop
feedback mechanism. The ACF then reduces the effective rate by diminishing
the token generation rate, potentially down to the minimum CIR value. This
reduces the load on the congested network resource and places a greater burden
on the ACF buffer by throttling the rate of admission of the data packets into
the frame relay network. Because the delaying ACF in this method is capable of
buffering the incoming data and then can meter the data into the network at
the current token rate, the triggers within the network that sense network con-
gestion can be extremely sensitive, for example, 10 data packets in queue. By
crossing a threshold, the closed-loop systems do not discard the data as the first
reaction. They instead indicate to the ACF that it should reduce the current
token generation rate.

In contrast, the tag-and-send ACF is associated with an open-loop
scheme. Here, the data packets are sent without delay into the frame relay
network. Those packets exceeding the CIR are tagged as such. The DE bit is
used to indicate that this packet exceeded the CIR according to the ACF policy.
There is no feedback derived from the network to influence the behavior of the
ACF. If the VC path becomes congested, the congested resource reacts by dis-
carding packets with the DE bit set first. By discarding data packets from the

26 Wide-Area Data Network Performance Engineering

“offending” VCs, as indicated by the DE bit, the end systems’ transport pro-
tocol will hopefully throttle back the rate at which they send data into the
network. This reduces the congestion on the overloaded frame relay network
resource.5 In the open-loop congestion control systems, the triggers within the
network, for example, buffer occupancy thresholds, have to be set at fairly high
values, say, 75% occupancy, because they immediately initiate a data discard
strategy. This is a fairly harsh response and should be avoided in all but the
most extreme cases. Therefore, the buffer threshold is set fairly high.

The actions of both the tag-and-send and the delaying ACF are prompted
by congestion at overloaded resources within the network. As mentioned ear-
lier, there are numerous resources along a given VC path, any of which can
become overloaded. Each of these resources is front ended with a data buffer (in
a statistical multiplexing environment). For example, Figure 2.11 shows a
high-level schematic of a frame relay switch. The example highlights the input
and output buffers on the various interface modules. Each interface module
contains an input buffer, which stores incoming data off the transmission facil-
ity until it can be transmitted over the switch data bus. Each interface module
also contains an output buffer, which stores data pulled from the switches’ data
buses until they can be transmitted onto the outgoing transmission facility.
Typically, each of these buffers will maintain thresholds that trigger specific
actions, if exceeded. In the event that the buffer occupancy exceeds this thresh-
old, specific actions will be triggered. A common action taken by a resource in a
frame relay network relying on an open-loop congestion control architecture is
to discard packets with the DE bit set.

2.4.1.4 CPE Participation: FECNs, BECNs, and Other Mechanisms
Let us now examine situations of extreme congestion that cannot be fully han-
dled within the wide-area network. We will find that it is necessary to invoke
the support of the various other data communications equipment within the
data path. For extreme congestion situations, various mechanisms have been
built into the frame relay network standards. By indicating to the other data
communication equipment that the frame relay network is experiencing net-
work congestion, it is hoped that this other equipment can slow down the flow

Wide-Area Networking Technologies 27

5. There is no guarantee that the load on the network will be reduced. By dropping packets
the network may just be forcing end systems to retransmit the dropped packets (and often
additional packets within the transport window). However, the hope is that the end system
is running a transport protocol, which will dynamically adjust its window in response to
packet discards, such as TCP. This would then reduce the congestion on the network gener-
ated by this data source.

of data into the already congested network. Unfortunately, this is not always
the case.

The various explicit congestion notifications are communicated either
through several bits defined in the frame relay packet headers or through a sepa-
rate link management protocol run over the frame relay interface. FECNs and
BECNs are communicated through the FECN and BECN bits in the frame
headers, respectively. FECN/BECN bits are set on a per-VC basis by the
frame relay carrier when the VC experiences congestion. The R bit is set in
response to congestion in the interface module within the ingress frame relay
switch and is communicated to the CPE through the link management proto-
col. As such, the R bit throttles traffic on the entire frame relay interface.

Figure 2.12 shows the ECNs found within frame relay network imple-
mentations. In the figure, it is assumed that the direction of the traffic flow
is from the left to the right. In this case, the forward (downstream) direction is
from left to right and the backward (upstream) direction is from right to left.
Therefore, the FECN indicates to the receiver that there is congestion on the
forward direction VC, while the BECN indicates to the transmitter that there is

28 Wide-Area Data Network Performance Engineering

I / O module

I / O module

I / O module

I / O module

Switch schematic

Figure 2.11 High-level schematic of a frame relay switch.

congestion on the VC. The R bit tells the transmitter to halt transmission—a
basic form of flow control.

Essential to the value of this type of communication is the ability of the
CPE attached to the frame relay network to be able to respond in a useful
way. Evident in Figure 2.12 is the fact that the attached CPE, in this example a
router, is not the source of the traffic, but rather an intermediate switch in the
path. Therefore, to be an effective means of alleviating congestion, either the
router requires a significant buffer or it needs some means of pushing back on
the ultimate traffic sources. Unfortunately, this is not always the case. Routers
typically support various different networking protocols, not all of which allow
for the router to “push back” on the traffic sources to flow control their output.

2.4.2 Frame Relay and Enterprise Networks

Frame relay is the first packet-based technology which has received large sup-
port in enterprise networks for integration of multiple data applications onto a
single backbone. This is due primarily to two effects: (1) By minimizing the
protocol processing, the throughput of the link processors increased dramati-
cally over previous packet switching technologies; and (2) efficient link utiliza-
tion of a statistical multiplexing technology provides economic incentives for
corporations to migrate their data networks to this new WAN technology. Link
throughputs of 45 Mbps are now generally available on frame relay switching
products.

Numerous networking devices, or TAs, are available in the market that
will adapt the native networking protocols, for example, SDLC, bisync, and IP,
onto a frame relay interface. These devices can be categorized as encapsulators
and protocol converters as for the X.25 PADs discussed in the previous section.
In fact, some vendors have simply upgraded their X.25 PADs to similar frame

Wide-Area Networking Technologies 29

Router

Minicomputer A

Router A

Workstation A

ACF

BECNBECN FECNFECN FECN

Workstation B

Minicomputer B

Source Receiver

Other CPE
feedback

BECN

Figure 2.12 Explicit congestion notifications within the frame relay standards.

relay devices, known as FR access devices (FRADs). Router vendors helped to
stimulate the demand for frame relay networking by developing FR interfaces
on their products. Initially, routers simply performed IP, and other layer 3 pro-
tocol, encapsulation onto their FR interfaces. However, routers have also incor-
porated FRAD functionality into their products in order to support legacy
protocols such as SDLC and bisync. Standards are developed to ensure inter-
working of these encapsulations and conversion methods. These are discussed
in Section 2.7.

2.5 Asynchronous Transport Mode

The deployment of frame relay networks is providing an economic and per-
formance incentive to integrate disparate data networks onto a common WAN
environment. However, for numerous years, the vision has been of a common
WAN environment to integrate voice, video, and data applications. The ATM
technology was developed by the telecommunications industry as the tech- nol-
ogy to achieve this integration. The International Telecommunications
Union–Telecommunications Sector (ITU-TS), formally CCITT, laid the
groundwork for the ATM standards in the late 1980s. During these discus-
sions, various architectures were analyzed, with the ATM method of carrying
traffic from voice, video, and data applications being chosen.

In our earlier discussion of TDM networking, we saw that the fundamen-
tal transport entity is the time slot. Incoming time slots are mapped to outgoing
time slots on TDM switches resulting in time slot mapping across the TDM
WAN. These mappings are deterministic and so is the performance characteris-
tics of the connection. Thus a deterministic QoS channel is established and is
capable of transporting real-time traffic (that is, traffic that has a fixed delay
requirement in its delivery to the end system) with little effort. These fixed time
slots carry a fixed length information entity, typically a bit or a byte. However,
TDM transport is relatively inefficient in its ability to carry statistical data traffic.

In contrast, packet switches operate by mapping variable length packets
of data from incoming ports to outgoing ports. The switch cannot rely on tem-
poral methods to determine the boundaries of the information. Instead, the
information is delimited by data flags (a redefined bit pattern that is unique to
this function on the link). Once an information packet is identified, the switch
determines its forwarding based on a circuit identifier, for example, the VCI in
X.25 or DLCI in frame relay, or a datagram address in IP, which is carried
in the packet header. Because the information is explicitly delimited with flags
and carries its own forwarding information, it is possible for the packet switches
to perform statistical multiplexing on the outgoing links.

30 Wide-Area Data Network Performance Engineering

The ITU-TS decided that, in order to develop a technology designed to
carry both real-time and non-real-time traffic, it must combine the above
aspects of TDM and packet switching technologies. Toward this end, the deci-
sion was made that (like TDM) ATM would base its transport on a fixed length
data unit, termed an ATM cell. Further, to support statistical multiplexing, this
ATM cell would contain a header field, which among other functions, carried
a virtual circuit identifier for cell forwarding. The choice of the cell length was
53 bytes (48 bytes of payload and 5 bytes of cell header), which represented a
compromise between a desire for small cells optimized to carry PCM encoded
voice and large cells optimized to carry data.6 This cell format is shown in
Figure 2.13.

The ATM switches organize these cells into physical level frame struc-
tures, for example, SONET frames and DS-3 physical layer convergence proto-
col (PLCP) frames, as shown in Figure 2.14.

Early on, there was much discussion of whether the respective cell slots
in the physical layer frames should be preallocated (i.e., synchronous transport
mode), not preallocated (i.e., asynchronous transport mode), or a hybrid of
both where the first N cell slots are preallocated and the remaining M cell slots
are not, which is termed hybrid transfer mode (HTM). Obviously, the out-
come of these discussions was that ATM was the preferred choice.

With the framing structure identified earlier, it is easy to develop a simple
conceptual model describing how ATM switches could carry both real-time
and non-real-time traffic over a common trunking interface. In reality, other
algorithms are used (based primarily on priority queuing and bandwidth
accounting methods at circuit setup), but our model is a useful one for discus-
sion purposes. The PLCP frame in Figure 2.14 has a duration of 125 sec.7 A
cell payload is 48 bytes, and 12 cell slots exist per PLCP. Therefore, a single cell
slot per PLCP frame amounts to 3.0 Mbps of traffic. To carry a number of, say,

Wide-Area Networking Technologies 31

Header
control VC identifier Header error

check Data field

5 bytes 48 bytes

Figure 2.13 The ATM cell format.

6. We are using the term “optimal” very loosely in this discussion.

7. The 125-sec period was chosen to match the 8-kHz timing frequency of the current digital
hierarchy. In fact, the period of the DS-3 PLCP is traceable to a Stratum 1 clock and can be
used to derive timing for networking equipment.

1.5-Mbps constant bit rate video streams or 1.5-Mbps circuit emulation traffic
streams, then the ATM switch could reserve a single cell slot per every other
PLCP frame.8 For the variable bit rate data traffic, their cells can be statistically
multiplexed into the remaining, unreserved cell slots in the PLCP frames. This
is a conceptually simple algorithm, yet it is capable of multiplexing onto a sin-
gle facility both real-time and non-real-time traffic and in the process achieve
high facility utilization.

Like frame relay and X.25, ATM is a connection-oriented technology
relying on the establishment of virtual connections. ATM standards are defined
for both permanent virtual connections and switched virtual connections.
ATM interfaces are defined to operate from as low as 1.5 Mbps to 2.4 Gbps
and higher rates. ATM is a fast packet-based technology, like frame relay, in the
sense that error recovery and flow control mechanisms are relegated to the end
systems. The network-based congestion control mechanisms are rate-based,
access controls similar to those discussed for frame relay networks.

32 Wide-Area Data Network Performance Engineering

ATM cell #1

ATM cell #2

ATM cell #3

ATM cell #11

ATM cell #12

PLCP
overhead

125 micro-second period

Figure 2.14 The physical layer structure of the DS-3 PLCP framing for ATM trunking.

8. This assumes that real-time traffic from a video source is encoded into a constant bit rate
cell stream, that is, that the 1.5-Mbps video encoder will generate a full ATM cell every
250 sec. However, video encoders do not have to generate a constant bit rate stream.

Because ATM is intended to support all application types, the definitions
and types of QoS classes for ATM networks are numerous. Fundamentally,
ATM supports constant bit rate (CBR) and variable bit rate (VBR) connec-
tions. CBR connections are characterized by delivering cells across the network
with extremely low cell losses and extremely low cell delay variation (or cell
jitter). VBR connections are characterized with a higher cell loss probability
and with little concern regarding the cell delay variation. Both CBR and
VBR connections are further characterized by a minimum sustainable cell rate
(SCR), which is interpreted in a fashion similar to the CIR for a frame relay
virtual circuit. ATM networks control the access rate by implementing a credit
management scheme.

Figure 2.15 shows various layers in the ATM suite of standards. The
ATM layer defines the precise structure of the fixed size ATM cell. This layer
defines the cell-based transport and multiplexing capability. Below the ATM
layer resides the physical layer, composed of the physical medium standard and a
PLCP. This PLCP layer defines how the fixed size ATM cells are mapped onto

Wide-Area Networking Technologies 33

Physical

PLCP

ATM

AAL

Higher layersHigher layers
UserControl

ATM cell #1
ATM cell #2

ATM cell #12 Nibbles

125 micro-seconds

Cell payload

CLP PTRR
VCI
VCI

VCIVPI
VPIGFC or VPI

Data NxPADS R L CRC32

DLCI FR header Data

A frame relay packet

An AAL Type 5 frame

An ATM cell

PLCP for DS-3

PLCP
overhead

Class
C

Class
B

Class
A

Class
D

Signalling

Layerm
anagem

ent
Plane

m
anagem

ent

Figure 2.15 Broadband Integrated Services Digital Network (B-ISDN) reference model and
individual layer protocols with an example of frame relay over ATM (see dis-
cussion of FR-ATM interworking in Section 2.8).

the various physical transmission standards available to the ATM layer. These
range from DS-1 (1.544-Mbps) up to STS-12c (622-Mbps) signals. For
example, Figure 2.14 shows a PLCP for mapping 12 ATM cells onto a 125-sec
framing structure defined on a DS-3 signal format.

The layers above the ATM layer, that is, the ATM adaptation layers
(AALs), are responsible for mapping basic service classes onto a common ATM
layer. The basic services defined are:

• Class A: Connection-oriented CBR transport for applications requiring
bit synchronization.

• Class B: Connection-oriented VBR transport for applications requiring
bit synchroppnization.

• Class C: Connection-oriented VBR transport for applications not requir-
ing bit synchronization.

• Class D: Connectionless VBR transport for applications not requiring
bit synchronization.

• Class X: An unspecified class of service.

Typical applications using Class A services include circuit emulation of
private lines and CBR video, and applications using Class B services include
packet voice and video. Applications using Class C services include frame relay
and X.25 packet applications, and applications using Class D services include
SMDS. Different AALs are defined for the various service classes, for example,
AAL Type 5 is defined for Class C services. Functions performed by one or
more of the AALs include converting higher level, variable size protocol data
units into 48-byte ATM cell payloads (a function termed segmentation and reas-
sembly, or SAR), error detection and/or correction, cell sequencing, buffering,
and isochronous playout of data. Figure 2.15 shows an example of a frame relay
application being carried over an ATM AAL Type 5 Class C service. Here the
frame relay frame header and data are carried in an AAL Type 5 data unit that
is padded out to an integral multiple of 48 bytes (including the AAL Type 5
trailer). This is then segmented into an ATM cell stream, which is then mapped
onto a DS-3 signal for transmission.

The protocol layers just discussed, for example, the physical layers up to
the AALs, define the data transport (or user plane as identified in Figure 2.15)
aspects of the ATM standards. In addition to these, the standards define
control, layer, and plane management protocols. The control plane contains
the signaling specification. This defines the protocol exchanges between, for
example, a user and the network, required to invoke the network to establish a

34 Wide-Area Data Network Performance Engineering

SVC for the end user. In the event that the CPE and network have not imple-
mented the ATM signaling protocol, then PVCs can be manually administered
for the end user. The layer management protocols are responsible for manage-
ment of the specific protocol layers, such as operations, administration, and
maintenance (OAM) cell flows to manage ATM virtual connections. Plane
management extends across individual layer boundaries, such as ILMI’s capa-
bility to manage ATM interfaces. For an excellent overview of the ATM
standards, refer to [6].

Initial deployment of ATM switching was in local-area networking envi-
ronments, where ATM offers a higher speed alternative to switched Ethernet
and FDDI LANs. To support the relatively dynamic and high point-to-point
throughput requirements of the LAN environment, extensive ATM SVC capa-
bilities were developed. This is in distinct contrast with the development of
frame relay switches in the WAN environment. The ATM Forum, an industry
consortium developed to define interoperability standards for ATM networks,
has defined numerous networking capabilities for ATM switches in LAN and
WAN environments. In the LAN environment, the ATM Forum has defined
the LAN emulation capability. This capability gives an ATM switch or network
the appearance of a MAC layer LAN, for example, Ethernet or token ring. The
LAN emulation capability relies on ATM SVCs and the definition of regis-
tration and multicast servers to emulate the multiaccess, broadcast capabilities
of an Ethernet, token ring, and FDDI LANs. An advantage of MAC layer emu-
lation is the ability to support existing, nonrouted applications, for example,
DEC’s LAT or Microsoft’s NetBEUI, on ATM networks.9

Because of the perception by many that ATM network deployment will
be ubiquitous in the future, there is a concerted effort by the ATM Forum to
extend the flexibility of ATM LAN capabilities into a vast WAN infrastructure.
This has led to some rather interesting addressing and routing capabilities
defined for ATM networks, borrowed from concepts developed by ISO and the
IETF. First, a flexible addressing scheme was adopted by the ATM Forum,
based on the network services access point (NSAP) addressing plan developed
by ISO. The advantages of this addressing plan lie in (1) the large size of the
address space, that is, 20 bytes; (2) the capability of embedding legacy address-
ing plans, for example, X.121, E.164, and IP, within the NSAP format; (3)
the capability of supporting geographically based and organizationally based
addressing plans; and (4) the existence of an organizational infrastructure
defined for the administration of this addressing plan.

Wide-Area Networking Technologies 35

9. An alternative implementation of LAN capabilities on ATM is defined in the Internet Engi-
neering Task Force’s (IETF) Classical IP on ATM standard, discussed in the following sec-
tion on the internetworking protocol.

Coupled with the adoption of a flexible addressing scheme, the ATM
Forum has defined a flexible and dynamic routing capability for large
ATM infrastructures. This capability is termed the private network-to-network
interface (P-NNI) standard. The P-NNI routing capability borrows from the
dynamic routing capabilities defined by the IETF and ISO during the 1990s.
The P-NNI architecture includes the definitions of autonomous systems (ASs),
which are segments of the ATM infrastructure under the administration of
a separate organization, routing metrics based on various QoS parameters,
dynamic exchanges of routing updates, and flexible initialization and configu-
ration discovery capabilities.

The joint definitions of flexible addressing and dynamic routing capabili-
ties has led to the term ATM internets being applied to this overall architecture.
(Refer to the following section on the discussion of the IP architecture to see
the similarities.) This is illustrated in Figure 2.16.

In addition to the flexibility being defined into ATM in the areas of rout-
ing, addressing, and QoS support, TA functions are being standardized for

36 Wide-Area Data Network Performance Engineering

ATM
subnet 9

ATM
subnet 3

ATM
subnet 10

ATM
subnet 5

Autonomous
system 3

Autonomous
system 5

Autonomous
system 39

Autonomous
system 10

ATM
LAN

LAN
server

ATM autonomous systems
interconnections

ATM subnetwork
interconnections

ATM LAN Architecture

An ATM internet

AS #3

ATM Subnet 5

PNNI interface

PNNI interface

Figure 2.16 An example of an ATM internet with interconnected autonomous systems con-
sisting of interconnected ATM LANs.

numerous applications. These standard adaptations include encapsulation TAs
to map the following:

• A digital bit stream, for example, a 1.5-Mbps DS-1 signal onto an
ATM CBR virtual circuit, termed circuit emulation;

• A frame relay, or an X.25, connection onto a VBR ATM connection;

• n × 64-Kbps video standards onto a CBR ATM circuit;

• PCM encoded voice onto a CBR ATM circuit;

• Routed protocols, for example, IP and IPX, onto a VBR ATM circuit;

• Nonrouted protocols, for example, DEC LAT and NetBEUI, by
mapping MAC layer protocols (Ethernet, token ring, FDDI) onto
VBR ATM circuits, that is, the ATM Forum’s LAN emulation
service; and

• MPEG 2 encoded video onto a VBR ATM circuit.

They also include conversion TAs to map:

• Frame relay circuits into VBR ATM circuits.

This list is not meant to be all-inclusive and, due to the rate at which new
ATM-related standards are being defined, could not be inclusive.

Clearly, an advantage of ATM is the range of terminal adaptations being
developed that will allow for a broad range of integration capabilities. However,
this comes with a price, namely, the relatively high overhead associated with
small cell sizes. Another downside to ATM networking is the relatively high
complexity of the technology, primarily in the signaling capabilities required to
support all of the various services being demanded of the technology.

2.6 Internet Protocol

The internet protocol (IP) suite was developed in the 1970s and early 1980s in
response to a networking project funded by the Defense Advanced Research
Projects Agency. The purpose of the project was to develop a computer net-
working technology, which was robust under a wide range of network failure
scenarios. There are many excellent books on IP, including [7, 8]. Reference [9]
presents an excellent overview of the issues when setting up an Internet connec-
tion from a corporate network.

Wide-Area Networking Technologies 37

2.6.1 IP Architecture

The IP architecture that evolved from this project consists of hosts connected
to subnetworks and subnetworks interconnected through gateways, also called
routers. These routers communicate through routing protocols in order to learn
dynamically the topology of the subnetwork interconnectivity. This collection
of subnetworks, hosts, and routers is termed an internet. The total collection of
all interconnected internets is the Internet. The Internet is further divided into
numerous ASs, which are internets under the administrative domain of a single
organization. This hierarchical topology is shown in Figure 2.17.

The basic transport entity defined is the IP packet (see Figure 2.18).10

Packets are transported as individual messages, or datagrams. Instead of prede-
fining a connection, real or virtual, as in connection-oriented networks like
frame relay or ATM, the IP packets contain in their data header all the

38 Wide-Area Data Network Performance Engineering

Subnet 4

Router

Subnet 23

Subnet 2

Subnet 5
Router

Router

AS 3 AS 5
AS 39

AS 10

Subnet 5
Router

Autonomous systems
interconnections

Subnetwork
interconnections

Subnetwork
architecture

The Internet

AS 3

Subnet 5

Figure 2.17 The high-level overview of the IP Internet architectural model.

10. Throughout this book we assume IP version 4 to be the protocol version. For an excellent
overview of IP version 6, see [10].

information, that is, the destination interface’s IP address, required for the
routers in the path to determine the correct forwarding in order to correctly
deliver the packet to its destination. The IP address is divided into a network
portion and a host interface portion. The network portion identifies the
subnetwork to which the host is attached and the host portion identifies
the interface over which the host is attached to the subnetwork. The IP header
processing is performed by the hosts and gateways along the data path.

The routers are interconnected by links (also subnets). The links can
be categorized into broadcast subnetworks or nonbroadcast multiple access
(NBMA) subnetworks. Broadcast subnetworks support an efficient mechanism
to deliver a packet to all hosts/gateways attached to the same network. NBMA
subnetworks do not support an efficient method to deliver a packet to all
attached hosts/gateways. Examples of broadcast subnetworks are Ethernet,
token ring, FDDI, and point-to-point links. (Note that a point-to-point link,
for example, a T1 or 56-Kbps private line facility, is a degenerate case of a
broadcast network in that there exists only one other host/gateway in addition
to the sending host/gateway.) Examples of NBMA subnetworks are X.25
networks, frame relay networks, ATM, and SMDS. We elaborate on these IP
concepts in the following subsections.

2.6.1.1 Internets
As mentioned earlier, internets are a connected collection of subnetworks and
routers. An internet is, for example, a corporation’s private-based router data
network. Recently the term intranet has come into vogue to describe a corpora-
tion’s private internet. By subnetworks, we mean a collection of hosts directly
connected with one another and sharing a common IP network address. By
routers, we mean gateways connected to two or more subnetworks. Hosts are
identified by their interfaces (a host can have more than one interface) and the
addresses assigned to their interfaces. Internet addresses are hierarchical and are
composed of a network portion, say, A, and a host (or host interface) portion,
say, 1. We will refer to this address as A.1. All Internet addresses are of this
form, and the basic complexity relates to how the 32 bits of an address are div-
vied up into network space and host space. This is also true when subnetting
and supernetting is used, which are mechanisms that allow corporations more
flexibility in determining the subnetwork/host address boundary.

Wide-Area Networking Technologies 39

Header
control Source IP address Destination

IP address Data FlagFlag

Figure 2.18 Format of an IP packet.

So for the sake of further discussion, just remember the following:
addresses consist of network and host portions, they will be identified as A.1 or
C.5 or whatever, and all hosts with the same network address are assumed (by
the routers) to be directly connected. (It is also true that all hosts that are
directly connected, in the IP sense, have the same network address.) This last
point is extremely important and has important implications when working
through topology design considerations in NBMA networks.

2.6.1.2 IP Packet Forwarding

A router’s primary function is packet forwarding. Routers receive packets from
one subnetwork interface, search a forwarding table for the destination address
(from the packet header), determine the next hop address (e.g., G.5) to forward
the packet to, and determine the interface to send it out over. Therefore,
routers have forwarding tables that consist of a destination address, next hop
address, and a router interface. At a minimum, the forwarding tables consist of
a destination address prefix, next hop address, and a router interface, where the
destination address prefix is the first N bits of the address. The router then finds
the longest prefix match to the destination address of the packet to be for-
warded. This allows the routers to aggregate multiple destination address
entries into a single address prefix in order to save memory in the router (for
example, the Internet in 1996 had roughly 2 million subnet addresses defined
that would make for an extremely large forwarding table in the absence of route
aggregation). The router enters the table with the destination address and
returns with the next host address, and interface pair. With this information
the packet is handed to the interface, which determines the subnet-layer address
(this may be an Ethernet address, an E.164 address, or a frame relay DLCI),
and sends the packet onto the subnetwork with the appropriate subnet-layer
address. This continues, hop by hop, until the packet reaches its destination
host address.

2.6.1.3 IP Routing

Somehow, the packet forwarding tables have to get populated. This is accom-
plished in one of two ways, statically or dynamically. In static routing, an
administrator generates the table entries and they forever remain the same (or
until the administrator logs in and changes them again). Basically two types of
routing protocols are used to accomplish dynamic routing: distance vector and
link state. In addition, dynamic routing protocols are defined to support two
levels of administration: intradomain and interdomain routing. Intradomain
routing protocols address routing within a single AS. Interdomain routing pro-
tocols address routing between different ASs. Table 2.1 categorizes the various

40 Wide-Area Data Network Performance Engineering

open and proprietary routing protocols typically found in today’s intranets and
Internet.

In dynamic distance vector routing (for example, IGRP, EGRP, RIP, or
BGP), the routers pass to their neighbors information regarding networks to
which they are connected and their distance from those networks. (If they are
directly connected to a network, then they list a distance of one.) For interdo-
main, distance vector protocols, for example, BGP4, the routers pass AS names
of the ASs they can reach, the AS path of the intermediate ASs required to reach
the specified AS, and the list of the network addresses within the specified AS.
Because the entire AS path is carried, this is referred to as path vector routing.
The specific form these messages take, their frequency of exchange, and the
response routers take on receipt of these messages define the particular routing
protocol the routers implement (e.g., RIP, IGRP). In link state routing, routers
flood the network with information about their local links. From this informa-
tion, routers build a link state map of the entire network (or at least that part of
their network sharing this level of detail). This link state map is then used by
the router to build the forwarding table. See [11] for an excellent discussion of
routing protocols in today’s internets.

2.6.1.4 IP Quality of Service Issues
Increasingly, pressures have been exerted on the IP architects to embed within
the IP network support for QoS capabilities. More and more applications,
which rely on various performance guarantees in order to function properly,
are being run over IP networks. These include applications such as transaction
applications relying on small network delays in order to process large volumes
of transactions; high-throughput applications requiring bounds on the time to
transport files across the network; and video, audio, and multimedia applica-
tions requiring bounds on the delay variability across the network.

To address these new pressures for QoS support, the IETF has been
developing several additional protocols and mechanisms. These include a sig-
naling protocol called reservation service protocol (RSVP), a new transport

Wide-Area Networking Technologies 41

Table 2.1
A Classification of Popular Routing Protocols in Internets Today

Intradomain Interdomain

Distance vector RIP, RIP II, IGRP, EIGRP BGP, IDRP

Link state OSPF, IS-IS

protocol called real-time transport protocol (RTP), and differential services as
a means to provide priority treatment to selected packets. These capabilities
and others are being developed to provide improved QoS transport within
internets.

2.6.1.5 IP Multicasting
Up to now, our discussions have concentrated on pair-wise communications
between a single transmitter and receiver pair. But for some applications it is
useful to define a capability where a single source simultaneously transmits to
multiple receivers. This capability is referred to as multicasting. Example appli-
cations where multicasting is useful are video and audio distribution for
distance learning, video teleconferences, and brokerage trading applications.
Multicasting is distinct from broadcasting in that the multicast receivers form a
subset of the totality of receivers. IP is not unique in supporting multicasting.
In fact, multicasting capabilities are found in frame relay and ATM technolo-
gies. However, because IP is a connectionless network protocol, it seems better
suited to support multicasting in a scalable and relatively efficient fashion.

2.6.2 IP on Broadcast Networks

We now discuss the interface between the IP layer and the subnet technology
when the subnet is a broadcast subnet. The IP architectural model consists of
routers interconnecting various layer 2 networks (or subnets). The routers com-
municate with one another to build routing tables and the routers utilize these
tables to determine the appropriate packet forwarding tables based on the desti-
nation IP address. Once the router determines the appropriate interface and
next IP hop to forward the packet to, several tasks are left to the router prior to
transmitting the packet out onto the broadcast subnet:

• MAC address discovery: The router must determine the MAC layer
address of the next IP hop on the subnetwork.

• MAC format encapsulation: The router must encapsulate the IP packet
into the MAC layer packet format with the MAC level destination
address.

The IETF has defined a MAC address discovery protocol, referred to as
the address resolution protocol (ARP). When a router interface receives from
the router forwarding process an IP packet to send out to the attached subnet, it
must know the subnet address of the next IP hop. It finds this address in the
interface’s local ARP cache. If not, then the interface will broadcast an ARP

42 Wide-Area Data Network Performance Engineering

request packet onto the subnet, requesting the MAC address associated with
the IP address of the next hop. When the end station associated with the IP
next hop receives the ARP request, it sends back a unicast message with its local
MAC address. The original router interface can then cache this address in its
local ARP cache, and it can now forward the original IP packet. To do so it
must encapsulate the original IP packet into the appropriate subnet technology
frame format with the correct MAC address, which is now resident in its local
ARP cache. The mapping of the IP packet into the appropriate subnet frame
format is defined in an encapsulation standard for IP over the specific sub-
net technology, for example, IP over Ethernet or IP over frame relay. This is
discussed later in Section 2.7.

2.6.3 IP on ATM (and Other NBMA) Networks

Commercial interest in a number of NBMA-based WANs has grown consid-
erably during the last 5 years. This interest is primarily economic and was ini-
tially fueled by the widespread deployment of frame relay network services by a
number of the local and interexchange carriers. Due to this interest, a number
of IETF working groups have defined various architectures for IP interworking
on NBMA subnets. In this section we focus primarily on IP over ATM subnets,
but much of the discussion holds for other NBMA subnets as well, for example,
frame relay, X.25, and SMDS technologies.

ATM has many capabilities and hence many different implementations
(as discussed in the earlier section on ATM technologies). Wide-area network
implementations today tend to be based on PVC capabilities. Local-area net-
work implementations tend to be based on switched virtual circuit implemen-
tations. For IP to map effectively on a subnet technology, it relies on certain
subnet features, for example, broadcasting. Because of the diversity of ATM
implementations, multiple IP on ATM models are defined or are in the process
of definition [12]. Several of these are discussed in the following subsections.

2.6.3.1 IP on PVC-Based ATM WANs
The first model developed is that of IP mapped onto a PVC-based NBMA
subnet. Here all hosts and routers are not necessarily directly connected (as
evidenced by the majority of corporate frame relay network designs being
implemented today). Some NBMA network designs are fully interconnected
(hence the routers on the network are directly connected) and some designs are
sparsely interconnected (hence all routers are not directly connected). When
the underlying VC topology is being designed, it must be cognizant of the IP
subnet topology as well. Reference [13] discusses the various ways to configure
IP overlays on frame relay networks.

Wide-Area Networking Technologies 43

2.6.3.2 IP on SVC-Based ATM LANs (ATM LIS and LAN Emulation)
ATM LANs are proliferating due to the capability of ATM to support rates in
excess of 100 Mbps and provide that bandwidth on a point-to-point basis. To
effectively support the dynamic LAN environment, the ATM LAN must sup-
port switched virtual circuits. The question then becomes: What is the right
model to support IP in a LAN environment over ATM?

Laubach [14] proposed the classical IP over ATM model to support LAN
environments. Classical IP over ATM defines the notion of the logical IP sub-
net (LIS) as a way to preserve the traditional IP/subnet architecture when the
subnet technology is an NBMA network. To provide the necessary broadcast
capability, the classical IP model defines a server on the LAN subnet to which
workstations register, and to which workstations send their ARP request mes-
sages. The server is responsible for responding to the ARP request which the
ATM address of the workstation with the appropriate IP address. The server
maintains this IP-to-ATM address mapping table, which it builds through the
workstation registration process. This is illustrated in Figure 2.19.

An alternative model for supporting IP traffic over an ATM LAN is the
LAN emulation (LANE) standard developed by the ATM Forum. Pictorially,
the LANE model is similar to that shown for the classical IP model of
Figure 2.19. The difference lies in the protocol interface the two models show
to the higher layer protocols. As discussed earlier, the classical IP model has the

44 Wide-Area Data Network Performance Engineering

ATM WANRouter A

Host K.8

Host K.11Host K.2

Host K.7

LIS server

ATM SVC-based LAN LIS

Figure 2.19 A Classical IP LAN showing a single server LIS.

IP layer attaching directly to the ATM stack, that is, the standards map IP,
ARP, and so on directly to the ATM AAL Type 5 and the ATM signaling pro-
tocols. LANE, instead, presents an 802 MAC layer interface to the higher layer
protocol, that is, the higher layer protocols are mapped onto the 802 MAC
layer such as an Ethernet or token ring or FDDI subnet. This allows ATM
to support various nonroutable protocols, for example, DEC’s LAT or IBM’s
NetBEUI protocols, in contrast to the classical IP model, which supports only
routable protocols, such as IP or IPX. LANE then provides a mapping of ATM
capabilities onto the MAC layer capabilities. To accomplish this, LANE defines
a multicast/broadcast server (as in classical IP) that provides for the LAN mul-
ticast/broadcast capabilities.

2.6.3.3 IP on SVC-Based ATM WANs (NHRP and Tag Switching)
Consider the typical IP over a NBMA subnet topological design shown in
Figure 2.20. In this design, traffic between router B1 and router D1 must tran-
sit the NBMA network four times and through three separate tandem routers,
even though routers B1 and D1 are both connected to the same NBMA
network. It would be more efficient if, instead, the packets could flow directly
between these two routers given the current topological design. Efficiency is
gained through two aspects: (1) Minimizing the number of router hops should

Wide-Area Networking Technologies 45

Router B1

Router B2 Router DH1

Router D1

Subnetwork B

Subnetwork C

Subnetwork H

Subnetwork D

Host K8

Host M5

Router CH1Router BC1

VC-based NBMA network

Figure 2.20 A typical topological design for an internet with four subnetwork addresses
and interconnected over a NBMA subnetwork technology.

improve the end-to-end performance of the traffic flow both in the delay
and the throughput sense and (2) reducing the number of IP packets flowing
through the routers (in the “middle” of this path) should improve the overall
combined IP and ATM network efficiency.

Several capabilities are under development to address these concerns, as
discussed next.

The next hop resolution protocol (NHRP) is one approach being developed
to address these issues. With this protocol implemented, router B1, when get-
ting ready to forward the first packet of a flow between host K8 and host M5,
will first issue an NHRP request to the next router. The purpose of the NHRP
request is to identify the last, or exit, router from the NBMA network to host
M5. This request packet gets forwarded eventually to router D1, which, know-
ing that it is the exit router, responds to the request packet with its subnetwork
address, for example, its X.121 address for X.25 or its E.164 address for FR and
SMDS, or its NSAP address for ATM, to the original issuing router, in this case
router B1. On receipt of the response packet, router B1 signals the NBMA net-
work to set up a virtual connection (in the case of SMDS no virtual connection
request is necessary) to the interface address of router D1. Once this virtual
connection is established between router B1 and D1, router B1 indicates in its
forwarding table that this VC is for IP packets destined for host D5, and then it
begins forwarding IP packets destined for host M5 onto this new VC. Once the
packets stop flowing to host M5, the connection will eventually time out and it
will be torn down.

This topological example is rather simple in that all stub networks, for
example, subnetworks indicated as K and M, are directly connected to routers
attached to the NBMA network. Running NHRP for other topologies is more
difficult due to the possibility of routing loops. For a more complete discussion
of NHRP see [15, 16].

Another capability under consideration is tag switching. There is a con-
cern among some Internet engineers that the forwarding capacity of traditional
routers will eventually be exhausted due to the growth in the size of the for-
warding tables, the amount of Internet traffic, and the complexity of the search
algorithms. NHRP can provide some relief to this problem by minimizing
the number of routers each IP packet has to traverse. This reduces the load on
intermediate routers. However, some Internet engineers are looking for more
dramatic improvements. At the time the debate began, router technology was
capable of forwarding roughly 200,000 IP packets per second. With the average
IP packet size in the Internet being roughly 200 bytes, this amounts to forward-
ing roughly 320 Mbps per router. Assuming that we load trunk interfaces
on a router at 50% utilization, this amounts to a single router supporting a

46 Wide-Area Data Network Performance Engineering

maximum of four OC-3 facilities. Given the growth of typical Internet national
backbone provider networks, this limit is rapidly being reached.

Tag switching was proposed as a new IP forwarding architecture to
improve router forwarding throughputs. Tag switching defines a capability for
routers to aggregate IP packets into flows through the router’s switching fabric.
The routers then append a tag onto the IP packet associated with the flow.
Once a tag is appended, the routers can forward based on this simple tag,
and thus smaller tag forwarding tables can be implemented in hardware.
Thus, packet forwarding rates are improved over the packet forwarding
methods that are based on software. Some tag switching proposals attempt
to map these flows onto ATM VCI-like tags and then rely on an underlying
ATM transport to handle most of the IP packet forwarding through the hybrid
ATM/IP network.

As tag switching is being defined, improvements in forwarding rates
of traditional routers have occurred as well. At this time, it is too early to tell
whether tag switching will be widely deployed.

2.7 Multiprotocol Encapsulation: Agreements for PPP, X.25,
Frame Relay, ATM, and IP

What are multiprotocol encapsulation standards all about? Consider the pic-
ture in Figure 2.21 of two devices, for example, a pair of routers or FRADs
or terminal adapters, which multiplex and demultiplex multiple traffic streams
over an underlying transport technology. The encapsulation device on the left

Wide-Area Networking Technologies 47

Underlying transport network

Encapsulation
device

Encapsulation
device

Protocol A

Protocol B

Protocol A

Protocol B

Figure 2.21 A typical encapsulation scenario.

takes in packets from its LAN interfaces (Figure 2.21 shows it to have two
separate LAN interfaces supporting two different LAN protocols) and some-
how wraps those LAN protocol packets into a packet format familiar to the
underlying transport network. Here the transport network may be an X.25 net-
work, a frame relay network, an ATM network, or even a simple private line
network. The LAN protocols can be nonroutable protocols such as DEC’s LAT
or Microsoft’s NetBEUI protocols or they may be routable protocols such as IP
or IPX or AppleTalk.

Consider now the encapsulation device shown at the right in Figure 2.21,
which must somehow demultiplex the incoming packet stream and determine
what LAN interface to forward the packets onto. Once this encapsulation
device opens up (or unwraps) the incoming packet from the underlying trans-
port network, it needs to have some way to identify the protocol type of the
packet inside. Otherwise the encapsulation device will have no way of knowing
how to interpret the header information in the LAN protocol packets. It is the
role of the encapsulation layer to identify to the demultiplexing device the type
of protocol packet inside and hence what protocol process inside the demulti-
plexing device to hand the packet to for processing.

The encapsulation identifier is a protocol layer inserted between the
encapsulated protocol and the protocol of the underlying transport protocol.
This is shown generically in Figure 2.22. The encapsulation protocol field
shown in this figure comes in various guises depending on the particular trans-
port technology being discussed. If the transport technology is PPP, then this
field is termed the protocol field. If the transport technology is Ethernet, then
this field is referred to as the Ethernet type field.

Other technologies are identified in Table 2.2. Here the term NLPID
refers to the network layer protocol ID and LLC/SNAP refers to the logical link
control/subnetwork access point. Even though these various transport tech-
nologies have implemented different mechanisms, they all serve a similar func-
tion, that of identifying the protocol of the packet wrapped inside of the
transport technology frame so that the receiving demultiplexer is capable of
handing the inside packet to the appropriate protocol processor. It is absolutely
critical that the multiplexing and the demultiplexing agents implement the
identical encapsulation standard.

48 Wide-Area Data Network Performance Engineering

Protocol Protocol packetTransport
header

Transport
trailer

Figure 2.22 Packet encapsulation inside a protocol for transport.

2.8 Link Level Interworking Agreements

We have discussed various, prominent WAN technologies in this chapter.
Typical enterprise networks consist of several different WAN networking tech-
nologies. The reasons for this include are twofold.

First, the various WAN technologies have different price and perform-
ance points. X.25 networks generally support 9.6- to 56-Kbps access lines and
have a rather ubiquitous presence worldwide. Frame relay networks generally
support 56-Kbps to 1.5-Mbps access lines, but are less widely deployed world-
wide. ATM supports access lines ranging from 1.5 to 155 Mbps and higher and
is just starting to see more extensive deployment worldwide. Also because of the
relative maturity of X.25 and frame relay services, they tend to be very competi-
tively priced.

Second, enterprise networks are in a constant state of evolution and tran-
sition to newer technologies. Extensive router deployment has driven custom-
ers to deploy frame relay technologies. It is anticipated that new multimedia
services will drive customers to deploy ATM networks.

Given the existence of these multiple WAN technologies deployed within
single enterprise networks, it is natural to want to provide an interworking
capability between these subnetworks. Figure 2.23 shows routers accessing the
WAN via the FR protocol at speeds between 56 Kbps and 1.5 Mbps (DS-1),

Wide-Area Networking Technologies 49

Table 2.2
Various Examples of Encapsulation Standards and Their References

Transport Technology Demultiplexing Field Overhead (bytes) Reference

Point-to-point protocol Protocol field 8 RFC 1548

Ethernet Ethernet type 18 RFC 894

Frame relay NLPID 8* RFC 1490

ATM LLC/SNAP 16† RFC 1483

802.3 LLC/SNAP 26‡ RFC 1042

X.25-SVC Call setup 10§ RFC 877

*Overhead includes the contribution from the frame relay link level header and trailer as well as the NLPID field.

†Overhead includes the AAL5 trailer and LLC/SNAP encapsulation method. Does not include padding in order to fill out an integral multiple of
†48 bytes, nor does this include the layer 2 cell header overhead of 5 bytes per each 53-byte cell.

‡Overhead includes the 802.3 MAC header and CRC and the LLC/SNAP fields.

§Overhead includes layer 2 and 3 headers, flags, and a 16-bit CRC. Assumes protocol type established in the call setup phase of the X.25 SVC
†establishment.

with interworking between the FR and ATM networks through an interwork-
ing function (IWF). The IWF is performing the link layer interworking
between frame relay and ATM in this example. This allows customers whose
data centers require network access bandwidths of DS-3 or greater to interwork
with their regional and branch offices, which require network access band-
widths from 56 Kbps to T1. It further allows customers to migrate from
FR-to-ATM on an as-needed basis, as their bandwidth requirements increase
from sub-T1 to above T1 rates.

ITU-T standard I.555 defines two methods of interworking ATM and
FR end points11: network interworking and service interworking. Network inter-
working defines the capability of carrying frame relay connections over an
ATM connection. Service interworking defines a translation between ATM
and FR connections.

50 Wide-Area Data Network Performance Engineering

Router B1

Router B2
Router DH1

Router D1

Host K8

Host M5

Router CH1Router BC1

VC-based
ATM network

VC-based
FR network

Interworking function

Figure 2.23 A typical enterprise network showing two subnetwork technologies, for exam-
ple, FR and ATM, interconnected through an interworking function.

11. ITU-T standard I.1555 also defines the capability to interwork X.25 end points with frame
relay end points. However, because the dominant example involves FR-to-ATM interwork-
ing, we will not discuss X.25 link layer interworking.

For the network interworking option, a connection is established between
the end user’s FR UNI on the FR network to the end user’s ATM UNI on the
ATM service (see Figure 2.24). The IWF encapsulates the FR frame onto
an ATM cell stream as identified in the I.555 standard. We discussed encapsu-
lation protocols in an earlier section. However, in link layer interworking
a different method is employed. Because a single link layer protocol is
being encapsulated, one can simply preconfigure the demultiplexing agent to
know the identity of the encapsulated protocol at the time at which the vir-
tual connection is established. For PVCs this is implemented through manual
provisioning. For SVCs, this must be indicated in the SVC signaling
protocol.

Frame relay encapsulation on ATM is accomplished through the ATM
AAL Type 5 Class C service. Here the frame relay frame header and data are
carried in an AAL Type 5 data unit, which is padded out to an integral multiple
of 48 bytes (including the AAL Type 5 trailer). This is then segmented into an
ATM cell stream, which is then mapped onto a DS-3 signal for transmission.
(This was detailed earlier in Figure 2.15.)

An advantage of network interworking is that the WAN network is trans-
ported to the higher level protocols, that is, the higher level protocols are multi-
plexed onto an end-to-end frame relay connection using the NLPID
encapsulation define for frame relay networks. Over the ATM access facility,
this frame relay connection is tunneled through an ATM AAL Type 5
connection.

Service interworking is illustrated in Figure 2.25. Although the ITU-T
I.555 standard defines service interworking as a mapping from frame relay to
ATM, this is not totally a link layer mapping. High-level protocol mappings are
required for this to be of use to CPE. Referring to Table 2.2, we see that the
higher layer encapsulation protocols used by routers connected to frame relay
and ATM networks differ. (Routers utilize an NLPID encapsulation on frame

Wide-Area Networking Technologies 51

FR switch IWF switch ATM switch

AC
Mini-

computer A
Mini-

computer B
Router A Router A

AC

ATM virtual circuit
FR virtual circuit

Figure 2.24 FR-to-ATM network interworking.

relay interfaces and they utilize an LLC/SNAP encapsulation on native ATM
interfaces.) Therefore, service interworking must include translations of these
multiplexing fields as well.

Figure 2.25 shows that there does not exist an end-to-end connection in
the case of service interworking. Instead, the two separate FR and ATM circuits
are concatenated by the IWF. In addition, the IWF must implement the
NLPID to LLC/SNAP conversion for this configuration to be useful to
the majority of the CPE connected to FR and ATM networks today.

2.9 Summary

We have discussed a number of the prevalent WAN technologies deployed
in multiprotocol enterprise networks today. These include private line TDM
multiplexer networks, X.25 networks, frame relay, ATM, and IP networks. We
have tried to give a sense of the history of these technologies and their different
deployments. Each of these technologies has their own unique performance
characteristics and pricing structures. Hence, different design issues come to
bear when implementing and growing these respective networks. Finally, we
have attempted to give a sense of the new developments in IP and ATM
networking and have alluded to the activities, which indicate a convergence
of these capabilities, for example, P-NNI, NHRP, and tag switching develop-
ments. These are truly interesting times we live in with respect to the rapid
advances in data communications—and it is just these rapid advances that
will keep network administrators and designers fully employed for many years
to come.

In the next chapter, we begin to discuss the basics of delay and through-
put performance analysis over wide-area networks. This discussion is at a level
that is relatively independent of the specific WAN technologies discussed in
this book. In later chapters we will combine our knowledge of the specific

52 Wide-Area Data Network Performance Engineering

FR switch IWF switch ATM switch

AC
Mini-

computer A
Mini-

computer B
Router A Router A

AC

ATM virtual circuitFR virtual circuit

Figure 2.25 Frame relay-to-ATM service interworking.

WAN technologies from this chapter with our basic performance knowledge
obtained from the next chapter.

References

[1] Tanenbaum, A., Computer Networks: Towards Distributed Processing Systems, Englewood
Cliffs, NJ: Prentice Hall, 1981.

[2] Lin, S., and D. Costello, Jr., Error Control Coding: Fundamentals and Applications,
Englewood Cliffs, NJ: Prentice Hall, 1983.

[3] Schwartz, M., Telecommunications Networks: Protocols, Modeling and Analysis, Reading,
MA: Addison-Wesley, 1987.

[4] Bradley, T., and C. Brown, “Inverse Address Resolution Protocol," IETF RFC 1293,
1992.

[5] Turner, J., “New Directions in Communications (or Which Way to the Information
Age?),” IEEE Commun. Mag., October 1986.

[6] Handel, R., M. Huber, and S. Schroder, S., ATM Networks: Concepts, Protocols,
Applications, Reading, MA: Addison-Wesley, 1994.

[7] Stevens, W. R., TCP/IP Illustrated, Volume 1: The Protocols, Reading, MA: Addison-
Wesley, 1994.

[8] Comer, D., Internetworking with TCP/IP, Volumes 1 and 2, Englewood Cliffs, NJ:
Prentice Hall, 1991.

[9] Dowd, K., Getting Connected: The Internet at 56Kbps and Up, Cambridge, MA: O’Reilly
& Associates, 1996.

[10] Huitema, C., IP Version 6: The New Internet Protocol, Englewood Cliffs, NJ: Prentice
Hall, 1996.

[11] Huitema, C., Internet Routing Protocols, Englewood Cliffs, NJ: Prentice Hall, 1995.

[12] Cole, R., D. Shur, and C. Villamizar, “IP over ATM: A Framework Document,” IETF
RFC 1932, 1996.

[13] deSouza, O., and M. Rodrigues, “Guidelines for Running OSPF Over Frame Relay
Networks,” IETF RFC 1586, 1994.

[14] Laubach, M., “Classical IP and ARP over ATM,” IETF RFC 1577, 1994.

[15] Luciani, J., et al., “NBMA Next Hop Resolution Protocol (NHRP),” IETF RFC 2332,
1998.

[16] Cansever, D., “NHRP Protocol Applicability Statement,” IETF RFC 2333, 1998.

Wide-Area Networking Technologies 53

3
Performance Analysis: Some Basic Tools

3.1 Introduction

This chapter provides the basic performance analysis background necessary to
analyze complex scenarios commonly encountered in today’s data network
designs. The material in this section is by no means meant to be all inclusive,
and the reader, if interested, is encouraged to pursue in more depth the materi-
als identified in the references. Two texts come to mind that provide a more
detailed and in-depth analysis: one by Bertsekas and Gallager [1] and the other
by Schwartz [2].

Many of the ideas and techniques presented in this chapter are approxi-
mate when used to analyze practical applications. However, we believe that it
is not important for the network analyst to provide an exact evaluation of the
network performance, but only to develop an understanding of the network
behavior in order to make correct design decisions to improve the network. An
exact analysis would require an exact model of the traffic loads and patterns and
exact understandings of the network components, for example, modems, trans-
mission systems and paths, switches, network servers, and the applications.
Because each of these inputs is impractical to characterize in the necessary
detail, we instead strive for a reasonable and approximate understanding of
each and rely heavily on approximate models. As will be discovered in the
remainder of this book and based on our experience, we have found this
approach to be successful in providing insights into multiprotocol network
performance.

These are the two most often asked questions when assessing the perform-
ance of data networks:

55

1. What is the latency or delay for a packet to traverse the network?

2. What is the end-to-end throughput expected when transmitting a
large data file across the network?

Network engineers should be able to answer these questions. In the event that
the performance of the network does not satisfy the requirements of the end
applications and users, the engineer must recommend modifications to the
network design necessary to improve the performance. In general, the network
engineer is responsible for designing the network to meet necessary perform-
ance requirements while minimizing the expense of maintaining the network.

The primary purpose of this chapter is to provide a fundamental overview
of the considerations required to answer these two questions. We have organ-
ized this chapter as follows:

• Network delays. We begin with a discussion and identification of the
delay components encountered in most data networks. Simply, this
section discusses how to estimate the time for a single data packet to
travel from the transmitting computer interface to the receiving com-
puter interface across a typical data network. This analysis is funda-
mental to the capability to estimate transaction response times and file
transfer throughputs of the end user applications.

• Timing diagrams. Timing diagrams present a pictorial representation
of network delays. We outline the construction of timing diagrams and
discuss their utility in developing an overall understanding of network
level performance.

• Pipelining. Pipelining is a means for the network to achieve some level
of parallelism in the delivery of data. This is accomplished by seg-
menting information into smaller packets for transport. We discuss the
impact of pipelining on end-to-end performance.

• Network throughput. We build on the discussion of network delays by
walking through examples of estimating file transfer throughputs
across typical data network paths. We discuss the effects of network
delays and protocol windows on file throughput.

3.2 Network Delays

Fundamental to the design and analysis of high-speed data networks is a thor-
ough understanding of the impact of design decisions on end-to-end delays.

56 Wide-Area Data Network Performance Engineering

Data networks are characterized as communications systems that deliver data,
in the form of packets, from one computer to another computer. The time nec-
essary for the network to deliver these packets of information has many impor-
tant ramifications. In general, we define delay as the time to carry the packet of
information between two defined points in the communications network path.

The two points chosen to define the delay are dependent on the particular
question to be addressed. For example, a common question asked of engineers
is the delay the user of a computer would see when requesting a file from
another computer attached to a common network. In this instance the points
are (1) when the user initiates the request for the information on a distant com-
puter, for example, the user enters a get request during a file transfer protocol
(FTP) session, and (2) when the last byte of data is stored locally on the user’s
computer. In this example, the delay includes all data network components
(discussed later in this chapter) as well as any delays associated with the two
computers communicating with one another.

3.2.1 Delay and Latency

Within this book we attempt to define and maintain a distinction between
delay and latency. We attribute to latency those delay contributors that are rela-
tively fixed and beyond the control of the network engineer to control or mod-
ify. Examples of network latency are wire propagation delay or delays associated
with switch or router forwarding within a common carrier network. All other
delay contributors with which the network engineer has some amount of con-
trol over, we simply refer to as delay. Examples of delay are queuing delays in
customer-premises equipment (CPE) or insertion delays on an access or egress
link to a frame relay service.

We draw this distinction between latency and delay for a simple reason.
It is extremely important to understand the design parameters, which can be
modified in order to improve performance and to understand the impact of
those design characteristics, which are immutable. Do not waste time trying to
modify immutable characteristics.

We categorize network delay into the following components:

• Propagation delay is the time for a given signal to travel down the com-
munication facility. This delay is associated with the physical distance
that the communication facility spans and network electronic compo-
nents such as digital cross-connect systems.

• Transmission delay is the time associated with inserting, or writing, the
packet onto the communications facility.

Performance Analysis: Some Basic Tools 57

• Processing delay is the time required for a processing unit to perform a
required action on the packet as it traverses a network switching or
translation device.

• Queuing delay is the time associated with a packet waiting in a buffer
prior to a given action being performed on the packet, for example,
processing or transmission.

Each of these delay components must be considered when analyzing a particu-
lar network, because each of these components can be significant. As an exam-
ple, consider an IP data packet traveling across a router network as identified in
Figure 3.1. Here an IP packet incoming to the router on the left is to be trans-
mitted to the router on the right. We assume that the leftmost router is located
in Los Angeles (LA) and the right router is located in New York City (NYC).
They are connected via a long-haul serial line, roughly 3000 miles in length.
The processor (CPU) in the LA router must decide where to forward the packet
and performs a forwarding table lookup. Once this lookup is performed the
CPU places the packet in the queue for the serial line interface card. The time
for this table lookup and placing the packet in the interface card buffer is a proc-
essing delay for this packet. The packet finds multiple packets in queue ahead of
it and must wait for these packets to be transmitted out of the interface card
prior to its transmission. This waiting time is a queuing delay for this packet.
Given that the packet is of finite length, for example, 1500 bytes, and the serial
line is operating at a finite speed, there is a delay between the time the first bit
of the packet is transmitted onto the serial line to the time the last bit is finally
transmitted onto the serial line. This delay is referred to as a transmission delay
for the packet. Finally, due to the finite propagation speed over the communi-
cation channel, there is a delay between the time when the LA router transmits

58 Wide-Area Data Network Performance Engineering

CPU

Incoming
data
packets

Forwarding
table

lookup

Router in LA

3000 miles

Serial line

CPU

Forwarding
table

lookup

Router in NYC

Figure 3.1 Delay components for a packet through a router path.

the first bit of the packet to the time when the NYC router receives the first bit
of the packet. This network latency is referred to as the propagation delay.

In the subsections to follow, we discuss each of these components sepa-
rately and in much more detail.

3.2.2 Propagation

We define propagation delay as the time for the signal to travel from one end of the
communications facility to the other end. The propagation delay is not insignifi-
cant, and the speed at which a signal travels through a transmission system is
less than, but comparable to, the speed of light. For reference, the speed of light
in a vacuum is roughly 5.35 msec per 1000 miles, while communications facili-
ties typically have propagation delays on the order of 8 msec per 1000 miles.
Propagation delay can become relatively significant when analyzing the per-
formance of high-speed data networks, for example, a DS-3 facility. For exam-
ple, the time to insert a 1500-byte packet onto a 1000-mile DS-3 (or 45-Mbps)
facility is only 0.3 msec. The propagation delay of 8 msec (best case) is signifi-
cant in comparison.

For the transmission systems that are deployed in carriers’ networks,
other factors must be considered. Common fiber transmission channels in
today’s long-haul carrier networks perform numerous optical-to-electrical
conversions in order to amplify the signal. (Newer fiber systems are deploying
optical amplifiers, which eliminate the optical to electronic conversions.) These
conversions add delay to the propagation times for the signal. Further, long-
haul networks are comprised of point-to-point transmission systems that are
interconnected via digital cross-connect systems. A corporation’s private line
circuit, the communications path between two networking components, is
built from multiple point-to-point transmission systems interconnected via
digital cross connects. These cross connects add processing and buffer delays as
well. Field measurements of typical propagation delays for common transmis-
sion systems show that terrestrial facilities, such as microwave, coax, and fiber,
all have propagation delays of roughly 8 msec per 1000 miles. In contrast, satel-
lite transmission systems show propagation delays of roughly 5.5 msec per
1000 miles. The majority of satellite transmission systems are based on satellites
in geosynchronous orbit. Therefore, the transmission path from transponder to
satellite and back to another transponder is roughly 2 times 26,400 miles,
resulting in a total, round-trip propagation time of 280 msec.

The preceding calculations require the engineer to know the actual path
length of the communications facility in question. This is rarely the case. What
is known are the originating and terminating points for the transmission
path. This is typically two known city or building locations. However, the

Performance Analysis: Some Basic Tools 59

transmission path is never a direct line between the two locations. A typical
route between Albuquerque and Denver may travel through Los Angeles and
San Francisco, depending on the fiber routes deployed. Long-haul carrier net-
works are built up from fiber routes that travel along “rights of way” belonging
to the carriers. These rights-of-way typically follow highways, railways, and gas
pipelines throughout the country. Figure 3.2 shows a typical facility map for a
common carrier network. Further, depending on the availability of capacity on
the transmission network, it may be in the carrier’s interest to route the circuit
along somewhat longer paths. This may be dependent on the time of day (when
utilizing switched communications circuits) or it may change over a period
of months as the carriers constantly re-groom their network circuits. It is not
unreasonable to assume that the terrestrial circuit miles between two locations
may be a factor of from 1.3 to 2 times the distance of a direct line between the
locations.

Looking at Figure 3.2, one can see that relatively few fiber routes traverse
the country. This impacts the propagation delays quoted in technical references
of the long-haul carrier private line services. Even though the farthest distance
between any two cities within the domestic United States is roughly 4000 miles
(which should result in a propagation delay of less than 32 msec), one typically
finds the carriers quoting propagation delays of less than or equal to 60 msec

60 Wide-Area Data Network Performance Engineering

Figure 3.2 A facility map for a common carrier network.

(roughly corresponding to a route distance of 7500 miles). This difference
between city pair distance and route distance is exacerbated during times of
network failures. During these periods, in the event that the network is self-
healing, the route miles will probably increase. This will increase the measured
propagation delays during these periods until the original route is restored.

Unlike other components of delay that we discuss in this section, there is
not much the engineer can do about propagation delays. For this reason, we
associate propagation delays with network latency. In this context, the follow-
ing possibilities come to mind:

• Physically move the communicating locations closer together. This is
probably not a practical solution.

• Redesign the protocol or application to be less “latency sensitive,” or
rewrite the application so that fewer message exchanges are required
over the WAN to accomplish the same application task. (See the dis-
cussion of client/server applications in Chapter 9.)

• Move from satellite to terrestrial facilities. This is not always an option
for many situations due to the lack of terrestrial facilities, for example,
to remote mining locations or outer space.

• Review the facility routing of your network connections with your
communications carrier. Attempt to have private line circuits routed
on the most optimal (direct) routes between network end points.

• Switched facilities, for example, switched 56- or 384-Kbps circuits,
will have different delay characteristics depending on the actual facility
routing. Facility routing can vary based on network utilization or
time-of-day routing patterns. This can have an effect on the perform-
ance of latency sensitive applications.

In summary, the propagation delay is the time for the signal to travel
from one end of the communications facility to the other end. As discussed,
this delay is a function of the nature of the communications facility, for exam-
ple, satellite or terrestrial, and of the actual path length. The communications
path can take some nonintuitive routes through carrier networks.

3.2.3 Transmission, or Insertion Delays, on Serial Lines

We define transmission delay (Ts) of a packet as the time between the transmission
of the first bit of the packet to the time of transmission of the last bit of the packet
onto a communications facility. Information is carried across data networks in

Performance Analysis: Some Basic Tools 61

the form of packets. These packets come in various forms and sizes, depending
on the particular data networking technology. We measure the length of pack-
ets, S, in this book in terms of bytes. We represent the speed of a transmission
link, L, in terms of bits per second (bps). For calculations in this book, we
assume that a byte is equal to 8 bits.

There exists a delay associated with the transmission equipment writing
the bits in the packet onto the communications facility. This delay is related to
the packet length and the transmission channel speed as

Ts = 8 × S / L (3.1)

which is simply the (number of bits in the packet)/(line speed in terms of bits per
second). This seemingly simplistic expression carries with it some hidden com-
plications. To begin with, the length of the packet is not always obvious. Usu-
ally the packet is defined in various other units, for example, bytes, characters,
or octets. If the packet is given in terms of octets, then it is unambiguous to
translate this into bits as an octet is defined as 8 bits. However, translating bytes
or characters into bits can be problematic due to the fact that protocols are
sometimes defined in terms of bytes or characters of differing lengths. For
example, although most modern protocols are 8-bit protocols (such as HDLC,
SDLC, bisync), there exist 6-bit protocols (such as ALC, a protocol popular in
older airline reservation systems), 10-bit protocols (such as various asynchro-
nous protocols with a stop and start bit for each byte), and we have even
encountered a 9-bit protocol (the Universal Receiver Protocol used in the
AT&T DATAKIT fast packet switch is based on a 9-bit protocol). Therefore,
some care should be taken in converting the byte count of a packet into the
packet bit length. For calculations in this book, we assume that a byte is equal
to 8 bits.

Also, the rate, or speed, of a communications channel may be unclear
because (1) the channel speed may be defined in terms other than bits per sec-
ond or (2) the channel speed may be variable or statistical in nature. It is com-
mon for modem channels to be defined in terms of the baud rate. The baud
rate is defined as the number of signal transitions per second supported by the
modem pair. A single signal transition is capable of conveying more than a sin-
gle bit of information. Depending on the modem technology in question, the
number of bits of information conveyed in a single signal transition varies from
1 to as high as 3 bits. Table 3.1 shows the relationship between baud rates and
bit rates for some of the more popular modem standards defined.

With the advent of modem compression technologies, even when the bit
rate of the transmission channel is known, the effective bit rate may be greater

62 Wide-Area Data Network Performance Engineering

when the bit streams can be compressed. The performance of the transmission
channel will be a function of the type of compression schemes utilized and the
nature of the data to be transmitted. In practice, for systems with compression
enabled, it is necessary to run test measurements on the actual system and
application in order to determine accurately the effective transmission speed of
the communications facility. The effective bit rate of the transmission system
may vary depending on transmission errors when coupled with forward error
correction systems. Transmission systems are not perfect and sometimes the bit
integrity of the packet is changed due to transmission errors. Error detection
schemes have been developed that allow the receiving system to detect when
the bit integrity of the packet has changed. More sophisticated schemes, called
forward error correction systems, not only detect the change in the bit integrity
of the packet but they also allow the receiving system to correct these bit errors
(under many, but not all, circumstances). Some modem standards include
forward error correction capabilities and, depending on the frequency of trans-
mission errors, may modify over time the transmission baud rate, that is, may
choose a lower baud rate to compensate for a higher transmission error rate.
Also, dial-up modem connections must first initialize the communications
between the modem pairs. The result of this initialization determines the trans-
mission speed achieved for the communication path. This depends on the qual-
ity of the systems subtending the path between the modem pairs. For example,
v.34 modems are capable of achieving 28.8 Kbps. In practice, the transmission
speeds can be less.

It is relatively simple to affect the transmission delay experienced by data
packets. Referring to (3.1), we see that either one can decrease the length of the

Performance Analysis: Some Basic Tools 63

Table 3.1
Relationship Between Baud Rates and Bit Rates for Some Popular Modems

Modem Standard
Baud Rate
(transitions/s) Bits per Transition Bit Rates

v.34 9,600 3 28.8 Kbps

v.32 bis 4,800 3 14.4 Kbps

v.32 4,800 2 9.6 Kbps

v.22 bis 2,400 1 2.4 Kbps

Bell 212 1,200 1 1.2 Kbps

Bell 103 1,300 1 300 bps

data packet or increase the speed of the communications facilities. The data
packet length can be affected by defining a smaller packet size. Some protocols
allow for the engineer to define the packet size. This can be useful depending
on the nature of the application. For terminal-to-host, echoplex applications
where a number of keystrokes are collected by a PAD and forwarded to the
host, smaller packet size definitions can sometimes improve the performance
of the network as perceived by the typist. However, smaller packet sizes imply
greater protocol overhead, and can therefore diminish overall system
throughput.

The speed of the communications facility can be affected by1 increasing
the speed of the communications facility. You can pretty much always increase
communications facility speed (given that cost is not an issue). Analog modems
can be replaced by faster modems or by Integrated Services Digital Network
(ISDN) lines. Dedicated Digital Data Service (DDS) lines can be replaced by
DS-1 or DS-3 digital circuits.

In summary, the transmission delay is the time for a system to insert the
packet onto a communications facility. This delay is proportional to the length
of the data packet and inversely related to the transmission rate of the commu-
nication channel. However, due to the considerations discussed in this section,
certain subtleties exist when estimating these delays. These subtleties include
the bit nature of the protocol, the capability of the communications equipment
to support compression, and the quality of the communications facilities, for
example, the error rates of the line. For an overview of the practical aspects
of data communications protocols, modems, error control, and so on, refer to
McNamara [3].

3.2.4 Processing

We define processing delay as the time required for a processing unit to perform
a required action on the packet as it traverses a network switching or translation
device. As a packet traverses a network there exist switching and translation
points where protocol processing or signal conversion processing is performed.
This processing necessarily introduces an additional delay, dependent on
the amount of processing required and the speed of the processor performing
this task.

Consider the signal processing performed by a pair of v.34 modems. The
modem converts a digital signal stream from a computer to an analog stream to

64 Wide-Area Data Network Performance Engineering

1. The apparent speed of a communications facility can be modified through the use of com-
pression schemes. However, it is not always clear how this will affect the packet delay. In
fact, packet delay is generally increased while overall data throughput is also increased.

transmit over the analog voice communications facility, and the other modem
converts the analog signal back to a digital stream. If you were to connect two
modems back to back and measure the time between the first bit of a packet
entering the first modem to the time the first bit of a packet exits the second
modem, you would observe a delay on the order of 5 to 70 msec. The majority
of this delay is due to modem processing, although some of this time is due to a
store-and-forward delay due to link level framing. These processing delays are
typically quoted in the technical specifications of most modems on the market
today. This measured delay depends on the particular modem implementation,
the encoding scheme utilized by the modem pair, and the link level frame size
(affecting the store-and-forwarding delay component). Typically, the higher
the transmission speed of a given modem technology, the larger the modem
processing delay incurred (i.e., you don’t get something for nothing). You can
expect pair-wise v.34 modem delays to be on the order of 70 msec. In addition,
modems in v.42 mode also perform packet buffering, which adds to their
observed delays.

In packet switching technologies, processing is required to perform the
necessary link protocol terminations, forwarding table lookups, and internal
transmissions across internal communications buses. This can be observed by
measuring the time between the receipt to the switch of the last bit of a data
packet to the transmission of the first bit of the packet onto the outgoing com-
munications channel (when there exists no addition packet load on the switch).
This measurement will provide a best case estimate for the switch delay. A given
packet switch can contribute a nontrivial processing delay. However, due to the
rapid increases in microprocessor speeds over the years the contribution of this
delay component has been reduced dramatically.

Also new, lightweight protocols have been developed that rely on
improvements in transmission systems and in turn reduce the amount of proc-
essing required. Examples include fast packet technologies such as frame relay
and ATM and IP technology. As an indication of the amount of reduction in
packet switching processing delays typical over the last 10 years, compare
typical processing delays found in mid-1980s vintage X.25 switches versus
mid-1990s vintage IP routers. Switching delays of 20 to 100 msec were not
uncommon on unloaded X.25 switches. Today’s routers, performing simple
IP forwarding, can switch IP packets in less than 1 msec.

Equipment designers have several options to improve processing delays,
including the following:

• Faster processors. Engineers should be sure that the problem is indeed
a processing bottleneck. To determine this, they must understand
the nature of the load on the processor. If a faster processor is

Performance Analysis: Some Basic Tools 65

implemented, it may introduce or create other bottlenecks/problems
elsewhere in the network.

• Process pipelining. This divides the processing to be performed into
separable tasks that can be processed in parallel. This effectively
reduces overall processing delay when compared to serial processing.

• More processors. This is effectively the same as reducing the load on a
given processor. This assumes that the processing can be performed in
parallel for multiple packets.

• Simplify the nature of the processing. Sometimes the protocols or appli-
cations can be simplified to minimize the nature of the processing
required. This technique has enabled fast packet switches to achieve
extremely high packet processing rates.

In summary, processing delay is the time required for a processing unit
to perform a required action on the packet as it traverses network switching
or translation devices. This delay is a function of the networking technologies
deployed, the vintage of the implementation, and the speed of the processing
units performing the task. Modem pair-wise processing delays can be as high
as 70 msec or more. Early X.25 switches can introduce delays on the order of
20 to 100 msec. Modern IP routers performing simple IP forwarding introduce
processing delays of less than 1 msec.

3.2.5 Queuing

We define queuing delay as the time a packet waits in a queue or buffer prior to
receiving some type of service, for example, protocol processing, transmission onto a
communications facility.

3.2.5.1 Introduction to Queuing
In this section we discuss queues and their delays at a rather intuitive level. In
Appendix A, we present a somewhat more mathematical treatment of queuing
systems. Within the appendix, we present some representative formulas, which
reinforce the intuitive concepts presented in this section. For an excellent over-
view of queuing theory, see Cooper [4].

Figure 3.3 shows the essential components of a queuing system. Packets
enter the queue or buffer, and they wait for the server or processor to serve all
the packets in queue ahead of our given packet. Once the processor initiates
service on our given packet, the queuing delay ends and the service time begins.
The type of service given is a function of the system.

66 Wide-Area Data Network Performance Engineering

It turns out that the queuing delay is a function of the input process (i.e.,
the nature of the arrivals and the offered load), the output process (i.e., service
time characteristics to process a customer), and the speed or rate of the server.
The input process describes the nature of the packet arrivals into the buffer.
The input process is described as smooth when the packets arrive at a fairly uni-
form rate, for example, one packet per second or 5 Kbps. The input process is
described as bursty when the packets arrive in bunches, for example, 20 packets
arrive in the first second and then no packets arrive for the next 20 sec and this
process repeats.

The average rate of packet arrivals, referred to as the average load on the
system, is required to further characterize the arrival process. The service
process characterizes the nature of the service processing. The departure process
is a function of both the arrival and the service process. Fixed sized packets
being served by a fixed rate processor will have a uniform service time. If these
packets had a smooth arrival process then they would depart the system in a
smooth fashion as well. However, if these packets were variable sized, then their
departure from the queue would be nonuniform.

It is fairly obvious that the speed of the server will affect the total queuing
delay of a packet in the system. At first blush, it is not so obvious that the total
queuing delay is a function of both the input and the output processes. Con-
sider driving down the highway and arriving at a toll booth. If a large amount
of other traffic is there and the toll taker is relatively slow, then the waiting time
you experience to get your service at the toll booth will be quite large. Now,
consider the impact of the arrival process on your waiting time. As the traffic
load diminishes (and approaches zero) your waiting (or queuing) time goes to
zero (i.e., the probability that on arrival at the toll booth you will find cars
ahead of you is small). Also, if the time to process/serve each car increases (for
example, the speed at which the toll taker collects tolls decreases), the typical
waiting time each car experiences increases.

Not so obvious is the fact that your waiting time is also dependent on the
nature of the arrivals and the nature of the service time statistics for a fixed

Performance Analysis: Some Basic Tools 67

Queue ServerInput
processes

Figure 3.3 Components of a queuing system.

offered load. If cars arrive at the toll taker’s booth in bunches, then queuing
delays increase on average reflecting the fact that the cars toward the end of the
bunch have to wait for the cars in the front of the bunch. Whereas, if the cars
are uniformly spread out in the time of their arrivals to the toll taker, then their
waiting times will be smaller. If we fix the arrival process to be uniformly dis-
tributed, we can still affect the waiting time by varying the service time statistics
(i.e., the variability is the time the toll taker takes to accept the toll). For a serv-
ice time process that is the same for each car, as long as the offered load results
in a stable system, the waiting time for each car is zero. However, for the same
load, if we assume a variable service time, cars will typically experience a waiting
time resulting from the fact that occasionally the service time will exceed the
time between the uniform car arrivals. Hence, to determine the waiting times
for queuing systems, both the nature of the arrival and the departure (or service
time distribution) processes must be considered.

With this thought in hand, a rather complex mathematical model is usu-
ally required. More often than not, however, this level of detail is either not
available or not required. Often simple rule-of-thumb estimates are sufficient.
Systems have minimal queuing delays at low loads (for example, less than 10%
utilization), their delays grow extremely large at high loads (for example, greater
than 90% utilization), and for the most part they are roughly equal to the
typical packet service time at moderate loads (for example, roughly 50%
utilization).

In summary, queuing delay is the time a packet has to wait in a queue or
buffer prior to receiving some type of service, for example, protocol processing
or transmission onto a communications facility. The queuing delay is a func-
tion of the nature of the packet arrivals to the queue, and the nature of the
service times for the various packets in the queue the number of servers.

One of the simpler and most useful results of queuing theory is the
M/M/1 model. (See Appendix A for an explanation of notation and a further
discussion on queuing results.) The M/M/1 model assumes Poisson arrivals
and exponential services times. This model yields a simple expression for the
queuing delay, Dq, as a function of the system load, U, and the mean service
time, Ts, that is:

Dq = [U / (1 − U)] × Ts
(3.2)

Notice that these are extremely simple formulas and therefore are extremely
useful aids to estimating ball-park queuing delays in network. One easy point
to remember for simple estimations is that the queuing delay for a system at
50% load is simply equal to the service time. For example, if a communications

68 Wide-Area Data Network Performance Engineering

facility is running at 50% utilization and the average transmission delay is
8 msec (the transmission delay for a 1500-byte packet on a 1.5-Mbps facility),
then an estimate for the queuing delay is 8 msec. If you remember nothing else
from this section on queuing delays, remember this.

Appendix A goes into a little more mathematical detail than is generally
necessary. We offer it up for those readers who are interested.

3.2.6 Delay Synopsis

We have discussed four different delay and latency components found in com-
munications networks. These are:

1. Propagation delay is the time for a given signal to travel down the
communications facility. This latency is associated with the physical
distance spanned by the communications facility.

2. Transmission delay is time associated with inserting, or writing, the
packet onto the communications facility.

3. Processing delay is the time required for a processor unit to perform a
required action on the packet as it traverses a network switching or
translation device.

4. Queuing delay is the time associated with a packet waiting in a buffer
prior to a given action being performed on the packet, for example,
processing or transmission.

This ends our discussion of the fundamentals of a delay analysis in typical
communications paths. This analysis will be relied on time and time again in
the remainder of this book.

3.3 Timing Diagrams: A Data Communications Score Card

We now introduce the concept of a timing diagram. The timing diagram is an
extremely useful tool and should be relied on when trying to develop an under-
standing of the delay points and packet flows through a data network. The
timing diagram illustrates and records the details of the packet flow through
network reference connections. We use the term score card because the timing
diagram is an aid that keeps track of where frames are at any given time and
how many packets or bytes remain to be transmitted at any given point in the
reference connection at a given time.

Performance Analysis: Some Basic Tools 69

The term timing diagram refers to a specific reference connection, which
is often shown at the top of the timing diagram. Associated with processing and
queuing points in the reference connection, for example, switching equipment,
the timing diagrams contain a vertical line underneath these points. A time axis
is associated with timing diagrams that runs from top to bottom, that is, time
starts at the top and increases as we move down the timing diagram. Packet
transmission times are represented by the width of the packet in traveling
from one queuing and processing point to the next. A slope associated with the
packet transmission indicates the propagation delay between the queuing and
processing points. The greater the slope the greater the propagation distance
between the two points.

At the queuing and processing points, the delay associated with the
queuing and processing point is indicated by the vertical distance between the
receipt of the last bit of the packet into the queuing point to the transmission of
the first bit of the packet out of the queuing point. By summing up the individ-
ual delay components on a timing diagram, one is able to determine the total
delay associated with a given transaction or transmission across the reference
connection.

Figure 3.4 shows a relatively simple reference connection, similar to our
LA to NYC example, and the associated timing diagram for the time to input a
packet transmitted from a terminal to the distant computer on the far side of
the reference connection. We will refer to this reference connection as reference
connection #1 (RC#1).

The left-hand side of Figure 3.4 shows the time at which the user at
terminal A hits the enter key (or submit button). This prompts the terminal to
transmit the data packet toward minicomputer B. The packet queues at the ter-
minal while waiting to be transmitted over the LAN segment. It is transmitted
to the router, where it is processed and queued for transmission onto the WAN
facility. The packet is then transmitted onto the WAN facility and propagates
to the distant router at the right-hand side of the figure. Again the packet is
processed and is queued for transmission onto LAN segment B. It is transmit-
ted onto the LAN segment and into the transaction processing minicomputer
B. The packet then must queue in the transaction processing computer’s run
queue to await processing by the application. The entire time for this packet to
travel across the network and to start processing in the transaction processing
computer is labeled the input delay in the figure.

In the timing diagram, time is assumed to flow linearly from the top to
the bottom. Therefore, the longer the delay, the longer the gap between incom-
ing and outgoing events. The longer the transmission time for a packet, the
thicker the appearance of the packet width on the timing diagram. The greater

70 Wide-Area Data Network Performance Engineering

the distance between end points, the greater the propagation delay, and the
greater the downward slope of the packet traveling across a facility.

To illustrate these principles further, let us trace again the packet flow
across the reference connection. This time we will concentrate on the label
points (a) through (h) on the diagram:

(a) This gap represents the time that the packet sits in terminal A’s net-
work interface card (NIC) output queue awaiting permission to access
the LAN segment. In this figure, we do not distinguish between proc-
essing delays and queuing delays; instead, we chose to combine these
into a single delay. The longer the delay in the terminal, the larger the
gap on the diagram, the further down the packet transmission is initi-
ated on the diagram.

(b) This gap represents the transmission time of the packet onto the LAN
segment. This shows up on the timing diagram as the packet thick-
ness. The faster the transmission facility or LAN technology, the

Performance Analysis: Some Basic Tools 71

Source

(a)
(b)

(c)

(d)

(e)

(f)
(g)

(h)

Processing

Processing

Input
delay

Terminal A Router A Router B Minicomputer B

Figure 3.4 A simple reference connection and associated timing diagram.

thinner the packet appears on the timing diagram. Also, this packet
line appears essentially flat on the timing diagram because of the
minimal propagation delay of the packet on the LAN segment. This is
because of the geographic proximity of the terminal to the router on
the common LAN segment.

(c) This gap, similar to gap (a), represents the processing and queuing
delays experienced by the packet while within the router and waiting
for transmission onto the private line facility. The longer the delay,
for example, the greater the congestion on the WAN facility, the
longer the queuing delay waiting for transmission, the greater the gap
appears on the timing diagram.

(d) This gap accounts for the wire propagation delay over the private
line facility that interconnects routers A and B. The farther apart the
routers, the greater the propagation delay and the greater the slope of
the packet line.

(e) Like gap (b), this represents the transmission time of the packet onto
the private line facility. Because the private line facility in this exam-
ple is slower than the LAN segment technology, the transmission time
for the packet is greater. This is reflected in the fact that the thickness
of the packet is greater than that for the LAN segment. For example,
the time to transmit a 1500-byte packet onto an Ethernet segment
is 1.2 msec, whereas the time to transmit this same frame onto a
1.5-Mbps T1 facility takes 7.7 msec, which is roughly 6 times slower.
Therefore the thickness of the packet transmission on the WAN facil-
ity, in this example, should be roughly 6 times greater than for the
same packet being transmitted onto the Ethernet LAN segment.

(f) This is another point in the reference connection where the packet
will experience processing and queuing delays. This is represented on
the timing diagram as another gap.

(g) This is identical to gap (b).

(h) This represents the waiting time for the transaction processor to
begin processing the transaction.

The total input time is simply the sum of the individual delay components (a)
through (h).

Figure 3.4 shows the timing diagram for a one-way “input time” for
a packet to travel from the terminal to the host. Communication, however,
is generally two way, and this is represented on a timing diagram by charting
packet delays in both directions. This is illustrated in Figure 3.5, which

72 Wide-Area Data Network Performance Engineering

explicitly shows an acknowledgment flowing in the reverse direction in
response to the receipt of the packet in the forward direction.

Figure 3.5 is typical of those used to analyze the behavior of windowing
systems, as discussed in the sections following this one. It shows a large packet
flowing from the left-hand side of the figure to the right-hand side of the figure.
In response to the receipt of this packet, the right-hand station transmits an
acknowledgment back to the left-hand side of the figure. Here we show the
explicit details of the acknowledgment delays in the reverse direction. This
level of detail is required when determining the round-trip delays in estimating
response times or file transfer throughputs. However, for simplicity of presen-
tation, we will often summarize the flow of an acknowledgment as a single
arrowed line (this arrowed line is also shown in the figure). This will often
be the case when discussing the various types of windowing systems and in
qualitatively discussing their behavior.

Also, some protocols will attempt to “piggyback” acknowledgments on
larger data packets that are flowing in the reverse direction. When this is the

Performance Analysis: Some Basic Tools 73

Processing

Round
trip

Ack

Packet

Figure 3.5 A timing diagram showing an explicit acknowledgment flowing in the reverse
direction.

case, the complexity of the acknowledgment flow is increased. Essentially the
ack must wait for a period of time for a packet flowing in the reverse direction.
If no packet is queued for transmission within a given time-out period, then the
ack is sent back to the transmitter on its own. However, if a packet is queued
for transmission within the time-out period, then the ack is carried on this
larger packet back to the transmitter. In this case, the delay characteristics for
the ack assume the characteristics of the larger data packet. So whenever a single
arrow is used to simplify the diagrams, remember that there is further detail
hidden in this apparent simplicity.

The utility of the timing diagram is that it graphically highlights the delay
contributions of each component in a communications path, shows the com-
ponent’s contribution to the overall delay a packet experiences, and establishes
the correct relationship between these various components when determining
how to sum all the components to develop an end-to-end delay estimate. In
this sense, we refer to the timing diagram as a data communications score card. It
also forces the engineer to understand the delay contributions in a given net-
work connection and the relationship of the delays.

3.4 Pipelining

We now concentrate on the impact of protocol overhead and multiple hops on
the overall insertion delays. The result of this discussion is the introduction of
the concept of pipelining data across packet networks.

It is important to define more precisely what we mean by a transaction
before we head into a discussion of transaction delays across data networks.

Loosely speaking, we would say that a transaction is a unit of work that an
end user submits to a server. Typically, an end user submits a request for a lim-
ited amount of information from the server and the server responds by sending
the information in the form of a single (or a few) data packets over the network.
A transaction could be a single inquiry/response or it could be in the form
of multiple inquiry/responses for some client/server applications. However, in
general, it is assumed that a transaction has a relatively short duration, spanning
only a few seconds.

In contrast to a transaction-based application, we will analyze a file trans-
fer application. A file transfer typically involves a request for a large amount of
information to be transmitted to the requesting user in the form of numerous
data packets. This larger number of data packets far exceeds the end-to-end
window of the transport layer over which the application runs, as discussed in
following sections. Of course, there exists no clear boundary between a short
transaction and a large file transfer, for example, some transactions request

74 Wide-Area Data Network Performance Engineering

information fitting into tens of packets comparable to the end-to-end transport
window.

We now consider several questions relating to the performance of a single
transaction from terminal A to workstation B in the reference connection
found in Figure 3.4. We refer to this reference connection as RC#1. The sim-
plest question to ask is what is the end-to-end delay of this transaction across
this reference connection.2 As the single transaction is carried across the con-
nection, it experiences three separate insertion delays, two while being inserted
onto the LAN segments and one while being inserted onto the private line facil-
ity. This is shown in Figure 3.6.

The timing diagram also shows the additional insertion delays due to the
packet protocol overhead. This protocol overhead can be nontrivial, for exam-
ple, PPP, IP, and TCP protocol overhead can amount to 48 (20 bytes for TCP,
20 bytes for IP, and 8 bytes for PPP = 48) bytes for each telnet packet (and the
data packets in a typical telnet session can average 10 to 20 bytes or less). The
timing diagram on the left in Figure 3.6 shows the packet flow when the data
packet is large enough to carry the entire transaction, while the timing diagram

Performance Analysis: Some Basic Tools 75

Terminal
A

Router
B

Router
A

Terminal
B

Terminal
A

Router
B

Router
A

Terminal
B

Delay
savings

Key:
Data
Overhead

Figure 3.6 Transaction delay due to multiple packet insertions.

2. We identified numerous contributors to the delay experienced by a packet being transported
across a data network, for example, insertion, queuing, and propagation. However, for the
remainder of this section, we focus our attention primarily on insertion delays.

on the right shows the flow when the transaction is carried in two separate data
packets. From a comparison of the two timing diagrams, it is apparent that the
delay for the transaction is less when the total transaction is placed into a single
data packet. This is due to the additional delays associated with transmitting
multiple packet headers when breaking up the transaction into multiple pack-
ets. From this simple example, we would conclude that the optimal delay per-
formance for the transaction occurs when choosing the packet size to be large
enough to carry the entire transaction.

Consider now the case when our transaction is carried over the reference
connection shown in Figure 3.7. We refer to this as reference connection #2
(RC#2).

The timing diagrams in Figure 3.8 show the effects of multiple WAN
hops on the performance of the single transaction. The left-hand diagram

76 Wide-Area Data Network Performance Engineering

Source

Terminal A
Router G Router J Minicomputer BRouter H Router I

Figure 3.7 Reference connection #2.

Terminal
A

Minicomputer
B

Terminal
A

Minicomputer
B

Delay
savings

Figure 3.8 Timing diagrams illustrating the advantages of data pipelining.

shows the case where the packet size is chosen to carry the entire transaction,
while the right-hand diagram shows the case where the packet size is chosen
such that two packets are required to carry the entire transaction.

The total delay for the transaction to travel across the reference connec-
tion is less for the right-hand case where we have chosen a smaller packet size to
carry the transaction. This is true even though the smaller packets force us
to transmit a greater amount of protocol overhead onto the private line facili-
ties. This is opposite of our conclusion when analyzing the single hop reference
connection, RC#1.

The advantage of choosing smaller packets, for this reference connection,
is that the network achieves a certain amount of parallelism in being able to
simultaneously transmit portions of the transaction over multiple private line
facilities. This effect, referred to as packet pipelining, is utilized in various high-
speed packet networks, for example, frame relay and ATM, to lessen the nega-
tive impact that the packet network has on the end-to-end performance. The
disadvantage of a large packet format is that the transaction is carried across the
network in a store-and-forward fashion; the net result is an increase in the over-
all end-to-end delay for low-speed data networks.

Pipelining takes advantage of the trade-off of carrying greater overhead in
order to reduce the cumulative effect of the store-and-forward delays inherent
in data networks. For a given transaction size, number of network hops and
protocol overhead size, there exists an optimal choice of packet size in order to
minimize the end-to-end transaction delay. However, because these quantities
are variable within a given network implementation, engineers must generally
make a “best guess” at the optimal packet size, for example, the designers of
ATM technology rather arbitrarily decided to fix their packet size to 48 bytes.3

Pipelining reduces delays if the underlying network is “slow.” The relative
advantage of pipelining when the underlying network is “fast” is lessened. For
instance, consider transferring 1000-byte frames on an X.25 network with four
serially connected 56-Kbps private lines versus transferring the same packet
over frame relay with T1/T3 private line facilities. The transmission time of a
1000-byte packet in the X.25 network facility is (1000 bytes × 8 bits/byte) /
56 Kbps = 0.143 sec, and the time to transmit over four serially connected
facilities is 4 × 0.143 = 0.572 sec (see Figure 3.9).

What if we were to reduce the packet size to 250 bytes? To estimate the
transit time in this case look at the second timing diagram in Figure 3.9. The

Performance Analysis: Some Basic Tools 77

3. OK, this decision was not arbitrary, it was more of a compromise between two opposing
camps with different sets of requirements. The first wanted a 32-byte cell size to optimize
performance for voice. The other camp wanted a cell size of 64 bytes, which was considered
more appropriate for data applications.

total transit time can be estimated by following the first packet of the group
(of four) across the first three 56-Kbps facilities. Due to the fact that this first
packet is transmitted onto three separate facilities, its total transit time across
those three facilities is roughly 3 × (250 bytes × 8 bits/byte) / 56 Kbps = 3 ×
0.0357 sec or 0.107 sec. The entire four packets are transmitted onto the final
slow facility (also indicated as highlighted packets). The time to transmit the
four packets is 4 × 0.0357 sec or 0.143 sec. Then the time to transmit the 1000
bytes over the four facilities reduces to roughly 0.107 + 0.143 sec or 0.250 sec.
This is to be compared with the 0.572 sec for the total transit time for the case
of 1000-byte packets. This represents a reduction of the transmission delays
by 56%.

In contrast, the comparable transmission time in the case of a T3
(45-Mbps) facility is (1000 bytes × 8 bits/byte) / 45 Mbps = 0.00018 sec for
a single packet and across four facilities is 0.00072 sec. Since this delay is

78 Wide-Area Data Network Performance Engineering

X.25 network

Switch C
Mini-

computer
A

Mini-
computer

B
Router A

Switch ESwitch D
Router B

56 Kbps 56 Kbps56 Kbps56 Kbps

Router A Router B Router A Router B

Delay
savings

Transit
delay

Figure 3.9 Improvement in transit delays due to pipelining on slow facilities.

negligible compared to other delay components in networks (for example,
propagation delays of 8 msec per 1000 miles), pipelining will provide little to
no perceivable improvement in performance. To reiterate, the trade-off with
pipelining is increasing packet overhead versus reducing packet transmission
delays.

3.5 Throughput

In the previous sections, a fair amount of time was spent discussing the various
contributors to delays that a packet traversing a communications network
would experience. This is the base knowledge required to begin to address
performance, engineering, and network design questions when analyzing
high-speed data communications networks. We now begin to build on this
base knowledge by discussing throughput computations. In doing so, we begin
to reveal the higher level complexities of data communications networks.

Let us first define delay and throughput. For this discussion, the follow-
ing definitions will apply:

• Delay is the time to complete a single, elemental function, for example,
the time to transmit a single packet onto a communication facility or
the time to serve a single customer in a queue.

• Throughput is the long-term rate of completion of numerous, elemen-
tal functions averaged over a period long compared to the delay to
complete a single, elemental function, for example, the time to send a
large data file comprised of numerous data packets.

At first thought, one might assume that there exists a simple relationship
between the delay and the throughput of a system. In fact, this relationship
should be of the form X = Ts

−1, where X is the system throughput and Ts, as
defined here, is the system delay. This relationship does hold for some, but not
all systems. We refer to systems for which this relationship between throughput
and delay holds as simple throughput systems. An example of a simple through-
put system is a transmission facility on which data packets are transmitted. If
the delay to transmit a single packet is 10 msec, then the system throughput is
1/(10 msec) or 100 packets per second. In contrast, a complex throughput system
is defined as one for which the simple inverse relationship between delay and
throughput does not hold. A common example of a complex throughput
system in data communications is a windowing protocol system.

Performance Analysis: Some Basic Tools 79

Often, when a computer attempts to transmit a file consisting of numer-
ous data packets across a data network, it does not simply transmit the packets
continuously one after another. Instead, to avoid overloading the communica-
tions network or the receiving computer, it sends some number of packets and
then stops until the receiving computer acknowledges the receipt of some or all
of the packets.

The number of outstanding data packets sent before waiting for the
receiving computer to acknowledge is referred to as the window size. Two of
the different types of windowing systems are as follows:

• Simplex windowing systems. Here the transmitting system is allowed to
send Nw packets before ceasing transmission. Once it receives a single
acknowledgment for the Nw packets, it sends the next Nw packets and
so on. Nw may be sent to one, two, or a larger number of packets.

• Sliding windowing systems. Here the transmitting system can have at
most Nw packets outstanding, that is, have transmitted without receiv-
ing an acknowledgment, before stopping transmission. A sliding win-
dow system associates a single acknowledgment with each data packet
or group of data packets and can transmit another packet for each
acknowledgment received. This allows the window to “slide” without
having to stop and wait.

Windowing systems are further categorized as dynamic versus fixed, and
go-back-n versus selective-repeat. A dynamic windowing system is one that incor-
porates a feedback mechanism to readjust the size of the window, Nw, that
it maintains. A fixed windowing system does not adjust the size of its window.
The distinction between go-back-n and selective-repeat systems results from
the possibility of packet losses in data communications networks. Packet losses
can occur due to a number of effects, including misdelivered packets, transmis-
sion errors, time-outs, and buffer overflows.

Besides providing feedback to the windowing systems, acknowledgments
serve to notify the transmitter of the successful reception of the data packet by
the intended receiver. In the event of a packet loss, the receiver will not receive
an acknowledgment for the lost packet, and it will have to retransmit the
packet. For a go-back-n windowing system, the transmitter will retransmit
the lost packet and all subsequent packets (whether lost or not). For a selective-
repeat windowing system, the transmitter will only retransmit the lost packets.

Using this categorization of windowing systems, we can classify some of
the more common transport windowing protocols as follows:

80 Wide-Area Data Network Performance Engineering

• The IP-based Transmission Control Protocol (TCP) employs a
dynamic, go-back-n, sliding window protocol. TCP actually employs
a byte-streaming protocol, where it maintains a count of the bytes
transmitted and the acknowledgments specify the highest count byte
consecutively received. However, the underlying networking layer, IP,
employs a packet-based transport and hence the performance of TCP
windowing can be assumed to be packet based as well. The actual
window to transmit is set by the TCP receiver. Also, the adjustment of
the window size is dynamic with respect to the characteristics of
the underlying network (delay, loss, etc.). TCP is continually evolv-
ing. Selective repeat capabilities are being incorporated into various
implementations.

• The Novell NetWare protocols initially utilized a fixed, simplex
windowing system. Prior to their software release 3.11, NetWare
transmitters would send a single packet and wait for the acknowledg-
ment before sending the next packet. This proved to severely limit
system throughput (as discussed later). Since then, Novell has
enhanced the capabilities of their transport protocols in several ways.
(See Chapter 8 on Novell networking.)

• The IBM Systems Network Architecture (SNA) employs a session
level windowing mechanism, referred to as session level pacing. This
windowing system is a simplex, fixed windowing scheme with the twist
that the first packet of the packet stream is acknowledged (not the last,
which is typically assumed). Upon receipt of this acknowledgment, the
session level pacing transmitter is allowed to transmit the next packet
stream. In addition to session level windowing, SNA also employs win-
dows at the virtual route level and the link-level, that is, SDLC/LLC2.

• The AppleTalk Data Stream Protocol (DSP) employs a static, go-
back-n, sliding window protocol. It is similar to TCP in that it is also
a byte-streaming protocol.

As demonstrated by the examples given, it is typical to find that the
so-called Internet-based protocols, for example, TCP/IP and NetWare, usually
implement transport level windowing schemes, whereas others, most notably
SNA, employ windows at the session, routing, and link layers.

Another approach taken to limit buffer overflow in some more recent
implementations of data protocols is a rate-based flow control. Here, the trans-
mitter explicitly spaces the transmission of successive data packets to control
the system throughput. Typically the spacing is controlled by a system clock in

Performance Analysis: Some Basic Tools 81

the transmitter. Adaptive schemes are possible by providing the transmitter
feedback on the utilization of the end-to-end system. Based on this feedback,
the transmitter can increase (slow down) or decrease (speed up) the spacing
between data packet transmissions. Examples include the ACF in frame relay
implementations and the interpacket gap in NetWare.

We break up the remainder of our discussion into a description of win-
dowing and rate-based systems in the next section. We follow this with an
analysis of how to determine the optimal window sizes in various WAN envi-
ronments and present simple formulas for throughput and bulk transfer times.

3.5.1 Windowing Systems

For most purposes, understanding the performance and behavior of through-
put systems in lossless environments is sufficient. We provide a discussion of
throughput systems in lossy environments as a digression in Appendix B. In
this section, we will derive simple expressions, which relate the throughput of
windowing systems to the packet delays across the network and to the number
of bytes in the window. This derivation is not rigorous, but instead will rely on
a few simple examples. We begin with an analysis of a simple windowing sys-
tem, and then generalize this discussion to a more complex sliding windowing
system. Before proceeding, we want to emphasize that the following discussion
focuses only on the windowing system being the bottleneck to the overall sys-
tem throughput. In some instances this is the case; in others it is not. We will
conclude the overall discussion of end-to-end throughput by investigating all
the potential throughput limiting factors in a path. The system throughput is
then related to the resource with the minimum throughput, be it the window-
ing system, a given network transmission facility, or even a processor.

3.5.1.1 Simplex Windowing Systems
Our first example is based on a simplex, fixed windowing system. This is a rela-
tively simple system to analyze. Assume for this example that the hosts have
direct frame relay interfaces, that is, that there are no intermediate routers. The
reference connection is shown in Figure 3.10. Here, the connection between
the transmitting and receiving hosts is a frame relay WAN accessed at 56 Kbps.
The frame relay network consists of three frame switches and two 1.5-Mbps
trunks.

In Figure 3.11, we present a timing diagram that explicitly demonstrates
the delay components when sending a packet from the transmitter (e.g., a
transmitting computer) to the receiver (e.g., a receiving computer).

The timing diagram shows the delay components in computing the
round-trip time for sending a packet from the transmitting host in our

82 Wide-Area Data Network Performance Engineering

reference connection to the receiving host, and the receiving host transmitting
an acknowledgment back to the transmitting host. Time begins when the

Performance Analysis: Some Basic Tools 83

FR network

FR switchTransmitting
computer

FR switchFR switch Receiving
computer

56 Kbps 56 Kbps1.5 Mbps1.5 Mbps

FR interface FR interface

Figure 3.10 An example reference connection over a wide-area frame relay network.

56 Kbps 56 Kbps1.5 Mbps 1.5 Mbps

Transmitter ReceiverNetwork delays

Packet
Xmit

Ack
rec'd

Round
trip

delay
Thickness =

insertion delay

Slope
propagation

delay per
unit distance

=

Processing
and queuing

delays

Figure 3.11 Timing diagram for a simplex windowing system and the network connection
shown in Figure 3.10.

transmitting host queues the packet for transmission onto the 56-Kbps access
line to the frame relay network. The first bit of the packet arrives at the first
frame relay switch after a propagation delay (which is a function of the distance
to the first switch and the propagation delay per unit distance). The switch then
accumulates the remainder of the packet. This is a function of the access line
rate and the number of bits in the packet, which is reflected in the diagram
as the thickness of the packet transmission. The first switch then processes
and queues the packet for transmission onto the internal 1.5 Mbps network
facility.

Again, the time to transmit the packet is reflected in the thickness of the
packet transmission time (which is now smaller due to the high-speed network
trunk facility). This process continues until the packet is received at the receiv-
ing host. The receiving host then generates an acknowledgment, and queues
this for transmission back to the transmitting host. The acknowledgment
(which is considerably shorter than the original packet) travels the reverse path
back to the transmitting host. We define the round-trip delay as the total delay
between when the transmitting host first queued the packet for transmission onto the
access facility to the time the transmitting host receives the last bit of the acknowl-
edgment and finishes the acknowledgment processing.

Now, consider the definition for the behavior of a simplex, fixed window-
ing system. Here the transmitter is allowed to send a single packet, and then it
must wait for the reception of the acknowledgment prior to sending the next
packet, and so on, until the transmitting host has sent all of the data it wishes to
send to the receiving host. We idealize the previous timing diagram by hiding
the complexity of the frame relay network delays into a single delay compo-
nent, referred to as the network delay.4

Figure 3.12 shows multiple rotations of the simplex, fixed windowing sys-
tem. This process will continue until the transmitting systems has sent its entire
data file. As seen from the previous timing diagram, for each round-trip delay
period, the transmitter is able to transmit a single packet (which in the case of a
simplex, fixed windowing system is equal to the entire window’s worth of data
bits). Therefore, the end-to-end throughput is calculated simply as the ratio of
the number of bits in the packet (we are assuming a fixed sized packet) divided
by the round-trip delay:

X = W / Rd
(3.3)

84 Wide-Area Data Network Performance Engineering

4. This is useful for simplifying the example, but is also necessary in practice. It is often the
case that the frame relay network provider will not divulge the details of the VC to the end
user.

where X is the end-to-end throughput,5 Rd is the round-trip delay for a packet,
and W is the window size (which in this example is simply the number of bits in
each packet transmitted). Note that the computation of Rd will reflect the lower
level protocol overhead while the W does not.

Performance Analysis: Some Basic Tools 85

56Kbps 56Kbps

1st
window
rotation

Transmitter ReceiverNetwork delays

Xmit

Ack rec'd

Round
trip

delay

Ack rec'd

Xmit

Round
trip

delay

Network
processing

and queuing
delays

Window

Window

2nd
window
rotation

Figure 3.12 Timing diagram showing multiple window rotations for a simplex, throughput
system.

5. Notice that the throughput is different than if we computed it assuming that the transmitter
can transmit unimpeded, that is, that the throughput is simply the inverse of the packet
transmission delay onto the frame relay access facility. Therefore, we refer to this windowing
system as a complex throughput system.

Clearly, this formula holds for any simplex, fixed windowing system,
independent of the window size. This is true independent of whether the trans-
mitting host must stop sending after a single packet or multiple packets, as long
as the receiver collects all the packets in the window, and it returns a single
acknowledgment for the entire window. A simple way to visualize this is to
assume that the packet in the preceding timing diagram is really two packets,
each half the size of the original. The only change to the above diagram, for the
most part, is that the transmitter sends two consecutive packets, then stops to
wait for the acknowledgment as shown in Figure 3.13.

86 Wide-Area Data Network Performance Engineering

56 Kbps 56 Kbps

1st
window
rotation

Transmitter ReceiverNetwork delays

Ack rec'd

Round
trip

delay

Ack rec'd

Xmit

Round
trip

delay

Network
processing

and queuing
delays

Window

Window

2nd
window
rotation

Xmit

Figure 3.13 A simplex, fixed window system with multiple packets per window.

We have made several assumptions to estimate the end-to-end through-
puts for these simplex, fixed windowing systems. Two of these assumptions are
as follows:

(1) The assumption of static loads on the queuing delay components in the
end-to-end path. In reality the loads on the end-to-end queuing com-
ponents vary over time. It is often the case that estimates of network
loads have to be made, or more often, estimates of the network delays
are made based on guidelines and bounds generated by the network
providers, administrators, and so on.

(2) The assumption that the packets of a given window see identical
delays across the network. In reality, the consecutive packets within
the same window should see increasing network delays due to the
effective load the previous packets add to the network components.
This assumption is valid when the ratio of the access transmission
times to the network trunks transmission times and network process-
ing times are large, for example, for a 56-Kbps access line and
1.5-Mbps network trunk speeds as in Figure 3.10.

We will make liberal use of assumptions in order to develop simple
expressions of network performance. However, the use of these expressions is
not meant to replace actual network measurements. Instead their primary value
is in aiding the network analyst, engineer, and administrators in developing an
understanding of the essential aspects of the networks and protocol interac-
tions. This will aid the engineer in developing useful models of network per-
formance in order to predict behavior of new network applications and to
develop useful capacity management guidelines in order to grow their networks
in a graceful fashion.

Let us get back to the discussion of simplex, fixed windowing systems.
Looking at Figure 3.13, we observe that the use of the transmitter and access
line resources is very inefficient; that is, after transmitting the window, the
transmitter must wait for the acknowledgment, causing the access line to go
idle. This effect causes the calculated throughput for these windowing systems
to be smaller than the maximum attainable end-to-end throughput for the sys-
tem. The maximum attainable throughput is estimated by identifying the sin-
gle, slowest component in the end-to-end path, for example, the slow access
line to the WAN or the speed of the transmitter output device driver, and
computing the bit rate at which that single component can transmit or process
data. This slowest component is the bottleneck to the system throughput. In
Figure 3.13, the maximum rate is reasonably assumed to be 56 Kbps, which is
the WAN access line speed. Assuming a round-trip delay of 200 msec and a

Performance Analysis: Some Basic Tools 87

window size of 4000 bits, we get a windowing throughput of 20 Kbps (which is
significantly less than 56 Kbps). In this case, we say that the system’s through-
put is window limited. One can define the system efficiency as the ratio of
actual to the maximum achievable throughput, which in this example is 20/56
or 0.42. Systems employing simplex windowing systems are always window
limited. As a result, sliding windowing systems were developed.

3.5.1.2 Sliding Window Systems
Sliding window systems allow the transmitting host to continue sending pack-
ets even though the acknowledgment for the first packet has not yet been
received by the transmitter. This helps to eliminate the inefficiency seen in the
simplex windowing systems discussed previously. Figure 3.14 shows a timing

88 Wide-Area Data Network Performance Engineering

1

1

56 Kbps 56 Kbps1.5 Mbps 1.5 Mbps

Transmitter ReceiverNetwork delays

Packet
Xmit

1st ack

Round
trip

delay

1

6
5
4
3
2

1

6

2

2
3

Packet
Xmit

Processing
and queuing

delays

3

5
4

Figure 3.14 Timing diagram for a sliding windowing system and the network connection
shown in Figure 3.10.

diagram for a sliding windowing system running across the reference connec-
tion shown in Figure 3.10. Here, the window size is six packets. Notice that the
transmitter continues to transmit packets up to its window prior to receiving
the acknowledgment on the first packet. Once it receives the acknowledgment
for the first packet it is allowed to send one more packet. In fact, it is allowed,
from this point on, to send a packet for each acknowledgment received.

Allowing the transmitter to send additional packets before receiving the
acknowledgment of the first (and successive) packet improves the end-to-end
system efficiency. However, the estimate for the throughput is identical in form
to the expression for the throughput of the simplex system in (3.3). We esti-
mate the throughput by observing that the transmitter is allowed to have up to
N packets in transit within the round-trip delay cycle. Therefore, we have

X = W / Rd
(3.4)

where X is the system throughput, Rd is the round-trip delay of a given trans-
mitted packet (and its associated acknowledgment), and W = 8 × Nw × S is the
system window size. This is the product of the number of packets in the win-
dow, Nw, and the (average) length of the packets, S (converted to bits by the
factor of 8). This approximate expression for the throughput holds only as long
as the window is not too large. If the window becomes too large then other fac-
tors tend to limit the system throughput, for example, facility bandwidth, and
processor throughput. Strictly speaking, this expression represents the system
throughput in the event that the window is the throughput limiting factor in
the system.

As an example of the utility of this expression, consider the question of
tuning an end-system window to ensure a given throughput between two com-
puters of 1.5 Mbps (but no more). Assume that one computer is in LA and the
other is in NYC. First, let us estimate the round-trip delay. The distance, as the
crow flies, between LA and NYC is roughly 3000 miles. Given that the facility
route miles are expected to be roughly 1.3 times longer, we will assume that
the facility route mileage between LA and NYC is roughly 4000 miles. This
equates to a propagation delay of 32 msec one way, and 64 msec round-trip.
Rounding this up to 100 msec to account for additional networking delays,
and inverting (3.4) to solve for the window size as a function of round-trip
delay and throughput, we calculate that W = X × Rd = 1.5 Mbps × 100 msec =
152 Kbits = 18,750 bytes. This is a significant window size in comparison with
typically sized windows in the more popular networking protocols.

Performance Analysis: Some Basic Tools 89

3.5.1.3 Rate-Based Throughput Systems
Several years ago rate-based throughput systems were proposed, most notably
the “leaky bucket” mechanism [5]. Rate-based throughput systems control not
the number of outstanding packets in transit, as in windowing systems, but the
explicit rate, for example, packets per second, at which the packets are transmit-
ted. These systems are implemented as access control filters in frame relay and
ATM access ports, as discussed in Chapter 2.

Figure 3.15 shows a schematic of a rate-based throughput system in
which asynchronously generated data packets are queued for transmission in a
data buffer (strictly speaking, this represents a delaying ACF). In a typical frame
relay implementation, the rate-based control exists in the access port, the asyn-
chronous packet arrival represents packets arriving from the access line, and the
time smoothed packet stream on the right-hand side of this figure represents
the packet stream allowed access to the frame relay network. Queued packets

90 Wide-Area Data Network Performance Engineering

A data generator,
generating data packets

asynchronously

A time smoothed
output stream

Access control filter schematic

A token generator,
generating K tokens

per second

Token generation process

Packet arrival process

Derived packet
transmission process

Time

Figure 3.15 A simple schematic of a rate-based throughput system (top) and its effect on
an example arrival process (bottom).

are transmitted, one at a time, when a token is available. Tokens are generated
at a constant rate, for example, one token every 10 msec. When no data packets
are queued, no traffic is admitted into the network.

Also shown in Figure 3.15 is an example of a derived packet transmission
process, based on the regular token generation process and the asynchronous
packet arrival process. Notice that the packet transmissions are smoothed rela-
tive to the initial arrivals, and there exists a minimum spacing between the
initiation of packet transmissions, which is simply the inverse of the token gen-
eration rate.

Rate-based schemes were proposed as a mechanism to reduce the prob-
ability of overload in packet networks. This is accomplished by spreading out
the packet arrivals to a congested network resource, thus reducing the queuing
delays and reducing the number of packets in the congested resource’s buffer.
We know from the preceding discussion of queuing delays and the effects of
various arrival processes on the waiting time that by smoothing the arrival
process we reduce the waiting times of the number of packets in queue.

Several variations of this rate-based scheme have been proposed and
developed. These include (1) the leaky bucket mechanism, which adds a finite
sized buffer for the tokens; and (2) a closed-loop feedback mechanism that
adjusts the rate at which the tokens arrive. These variations were discussed in
Section 2.4.

Adding a finite sized token buffer to rate-based schemes has the effect of
collecting tokens during idle periods up to the finite token buffer size. When
new packets arrive, they are immediately transmitted until the tokens in the
buffer are exhausted. From this point on, the packets are queued and the sys-
tem behaves as if the token buffer did not exist. Therefore, the behavior of this
leaky bucket mechanism is intermediate between a system having no rate-based
mechanism and that of a rate-based system with no token buffer. This is shown
in Figure 3.16.

At low loads and small transaction sizes, the token buffer scheme has little
effect on the transmission of the arriving packets. This is because, with a high
probability, tokens exist in the token buffer that allow for immediate transmis-
sion of the arriving data packets. At high loads and/or large file transfers, a
small probability exists that there are enough stored tokens queued to allow for
immediate transmission of the data packets, and the data must be queued until
the necessary number of tokens appear. Overall, this has the advantage that
for small transaction-oriented applications, few additional delays are added to
end-to-end performance due to the leaky bucket algorithm. However, for large
file transfer applications, the leaky bucket algorithm tends to smooth the loads
by queuing the data packets and pacing them out onto the transmission facility;
hence, reducing the probability of buffer congestion.

Performance Analysis: Some Basic Tools 91

Although not discussed in the section on queuing models, an expression
that estimates the mean queuing delay in the leaky bucket scheme [6] is

E (W) = [U / (1 − U)]Ts × exp[− (1 − U)K /S] (3.5)

where U is the system load, S is the system average packet size, and K is a meas-
ure of the size of the token buffer (in the same units used to measure the
average packet size). This expression is derived based on several simplifying
assumptions, for example, Poisson arrivals, exponential service times, and
infinitesimal token sizes. Even so, this expression verifies the discussion in the
previous paragraph. That is, for transaction-oriented traffic, the existence of the
token buffer reduces the mean waiting time. If the token buffer does not exist,
K = 0, then the mean waiting time reverts to the familiar M/M/1 expression.
However, for finite token buffers, the mean waiting time is dramatically
reduced. This is illustrated in Figure 3.17.

92 Wide-Area Data Network Performance Engineering

A data generator,
generating data packets

asynchronously

A time smoothed
output stream

Access control filter schematic

A token generator,
generating C tokens

per second

A token buffer of size K

Token generation process

Packet arrival process

Derived packet transmission
process for K 2=

Time

Figure 3.16 The leaky bucket algorithm components adding a finite token buffer (K = 2
tokens) to the rate-based scheme in Figure 3.15.

Although the token buffer size has a dramatic impact on the expected
transaction waiting time in the token buffer scheme, this has little or no impact
on the long-term throughput of this system. The long-term throughput in this
scheme is determined solely by the rate at which the tokens accumulate.

3.5.2 Lossless Throughput Systems Summary

We discussed three different throughput systems in this section:

1. A simplex windowing system, where the transmitter had at any
instant in time a single packet in transit to the receiver. As we
saw, this tended to severely limit the overall system throughput
performance.

2. A sliding windowing system, where the transmitter was allowed to
have multiple packets in transit toward the receiver at any instant in
time. This tended to improve system performance. This also raised

Performance Analysis: Some Basic Tools 93

0.1

1.0

0.5

0.70.50.3

2.5

2.0

1.5

0

3.0

4.0

3.5

Load

Key:
K 0
K 2
K 4
K 10

=
=
=
=

W
ai

tin
g

tim
e

Figure 3.17 A plot showing the effects of increased token buffer size on the expected wait-
ing time.

the issue of how to set or tune the system’s sliding window. This tun-
ing represents a trade-off between large system throughputs and low
packet losses.

3. A rate-based throughput system, in which the transmitter explicitly
spaced the transmission of packets based on an internal clock. This
had the advantage of reducing congestion by smoothing out the
packet arrival process.

Fundamentally, all three systems are implemented to reduce the probability
of overflowing buffers. This occurs in situations where large speed mismatches
exist between the maximum transmitter rate and the minimum network trans-
mission rate or the receiver rate. Without some bound on the number of
outstanding data packets (for example, a sliding window) or a bound on the
transmission rate (for example, a rate-based transmitter), buffers would eventu-
ally overflow, causing severe network congestion and packet losses. For the
interested reader, the impact of packet loss on throughput system performance
is presented in Appendix B.

3.5.3 Optimal Window Sizes and Bulk Data Transfer Times

We wish to spend a few moments talking about optimal window sizes. We feel
it is important to understand the dynamics of windowing systems and the
effects of varying the size of the transport protocol window. We realize
that tuning transport window sizes is often out of one’s control. However, that
should not give us cause to ignore the topic. By understanding the potential
effects and by predicting their existence, other tools may be considered to
improve overall network performance. (We discuss various tools and capabili-
ties in Sections 4.5 and 5.4 in later chapters.)

Consider, RC#1 when carrying file transfer traffic (instead of
transaction-based traffic). Suppose that terminal A has a large file, for example,
10 MB, to transmit to minicomputer B. Further assume that the transport pro-
tocol uses a sliding window scheme. Given this, what is the optimal window
size to carry the file transfer across RC#1?

Figure 3.18 shows the startup events for a file transfer over our RC#1 in
the case of three progressively larger window sizes. The timing diagram on the
far left represents a window size of two data packets, the middle diagram repre-
sents a window size of three data packets, and the timing diagram on the far
right represents a window size of four data packets. In each case roughly the
same events occur.

On startup, the transmitting workstation can transmit its entire window
over the relatively high-speed LAN network to the router connecting the LAN

94 Wide-Area Data Network Performance Engineering

Perform
ance

A
nalysis:Som

e
B

asic
T

ools
95

Packet 3

1

Packet 1

Packet 2

2

1

2

3

Packet 1
Packet 2

Packet 3

Ack 2
Earliest

transmission
onto the

trunk

Earliest
transmission

onto the
trunk

Idle
period

1

Packet 1

Packet 2

2

1

2

4

Packet 1
Packet 2
Packet 3

Packet 4

Ack 2 3

Packet 3

1

Packet 1

Packet 2

2

1

2

5

Packet 1
Packet 2
Packet 3
Packet 4

Packet 5

Queuing
delay

3Packet 4

3 3

4

Idle
period Earliest

transmission
onto the trunk

Figure 3.18 File transfer startup for progressively larger window sizes.

to the WAN. The router is then forced to buffer the data packets until it is able
to insert the packets onto the relatively low-speed WAN private line facilities.
Eventually, the first data packet arrives to the receiving host, which acknowl-
edges it. The receipt of the first acknowledgment by the source opens the trans-
mitter’s window, allowing it to transmit the next data packet. Again, due to the
high-speed mismatch between the fast LAN and the slower WAN private line
facility, this packet may have to queue in the router to await transmission.

Now, notice the differences in the waiting time for the data packet that is
transmitted in response to the first acknowledgment in all three cases, as dis-
cussed next.

For the case of a sliding window of two, the packet experiences no waiting
time at all to be transmitted onto the WAN private line facility. This is because
the private line facility has been idle for a period of time waiting for the arrival
of the next data packet. This represents an inefficient utilization of the slow pri-
vate line facility. During the file transfer, in order to minimize the transmission
time of the file, we would like the slowest link in the reference connection, that
is, the WAN facility in RC#1, to be running at close to 100%. Otherwise, this
particular end user will observe a network with rather sluggish performance.
This may seem somewhat nonintuitive because we would also expect that the
line utilization should be kept at or below 70% in order to maintain good end
user performance. However, these are two different concepts.

In the first case, during the period of the file transfer, we would like
the transfer to be able to perform well in the absence of other traffic and fully
utilize the network resources. On the other hand, when measuring the average
utilization on a given resource in the network over some period of time, for
example, 15-min intervals, we would like this time average utilization to be
70% or less.

For the case of the sliding window of three, the packet also experiences no
waiting time at all to be transmitted onto the WAN facility. This is because the
WAN facility is idle at the time of arrival of this next data packet. However,
unlike before, the WAN facility was not idle for an extended period of time. In
fact, it only recently became idle. In this case, the WAN facility will be running
at near 100% utilization.

For the case of the sliding window of four, the packet experiences a wait-
ing time at the router before being transmitted onto the WAN facility. This is
because the WAN facility is slow enough that it takes longer for it to transmit
the entire sliding window than for the round-trip time associated with trans-
mitting the first data packet across the reference connection and receiving the
first acknowledgment at the transmitter. Because the WAN private line facility
in RC#1 is the slowest link in the example, it is not possible to achieve a higher
throughput than supported by this link. The only effect that increasing the

96 Wide-Area Data Network Performance Engineering

sliding window has at this point is to cause a larger and larger queue to develop
in the router. Increasing the window will not give the end application an
improvement in performance. Therefore, why increase the window beyond this
point?6

In this particular set of examples, we see that the window size of three
achieves good end-system performance while minimizing the size of the queue
at the slow link.

The preceding description of the dynamics of the windows tended to be
very atomic in nature. Another way to think about choosing optimal window
sizes for sliding window protocols is more flow based. For sliding window
protocols like TCP, a very simple formula is used to compute the optimal
window size:

Optimal window size W ∗ = Bandwidth of slowest link in the path ×
Round-trip delay for a packet

(3.6)

This formula is often referred to as the delay bandwidth product. By drawing
timing diagrams, you can see very clearly that if you set the window size W to
this optimal value, then acks will be received at the exact moment that you
complete inserting the window on the slowest link. If W > W ∗, then window is
too large because acks will be received before window closes. If W < W ∗, then
acks will be received after window closes, meaning that the system can take
more data.

In most cases, the sliding window size must be somewhat larger than the
number of the slowest links in the reference connection. How much larger
depends on the specifics of the reference connection, for example, the nature of
the propagation delays and the number of additional higher speed links.

Because of the dependence of the “optimal” window size on the specifics
of the reference connection, it is not possible to pick the right window size to
accommodate all applications and all paths through a given enterprise network.
Instead, the analyst must optimize for the average or the worst case reference
connection. Once the reference connection is chosen, then the analysis can be
performed and an appropriate window size can be determined. Unfortunately,
many transport level windowing implementations do not let you pick window
sizes. For these, the best you can do is determine the default value of the trans-
port level windows for the protocols supported in the network and understand
the impact on end user performance that these windows will have. Also, for

Performance Analysis: Some Basic Tools 97

6. You may ask, why not? We will discuss why not in Section 4.4.

many protocol implementations the sliding window size is dynamic, and the
end systems can adjust the window size based on lost packets and calculated
delays based on receipt of acks.

3.5.4 Throughput Summary

Let us now wrap up our discussion of the throughput analysis by building a
simple formula for estimating bulk data transfer times. We first need to find the
system throughput and then estimate the bulk transfer time.

We have identified several considerations when determining end-to-end
system throughput, including processor speeds, facility rates, rate-based access
controls, and windowing throughputs. In analyzing the throughput of given
data applications, each must be considered separately, and then combined to
fully understand the interactions in the end-to-end path. The observed system
throughput, X syst , is determined as follows:

{ }X X X X Wsyst cpu facility access window= min , , , (3.7)

were X cpu is simply the inverse of the time for a given processor in the path to
process information related to a single data packet (converted to bits per sec-
ond), X facility is the bandwidth of the transmission facilities in question, X access is
the throughput of the access control mechanisms (as determined by the token
generation rate), and X window is the throughput limit as determined by the nature
and size of the windowing schemes involved. (Often several windows are lay-
ered on top of one another and each must be considered and the minimum
throughput determined.) All of these have the potential for being the through-
put bottleneck, so each must be individually considered and the minimum
must be identified.

For example, consider what is required in determining the throughput for
a system such as that shown in Figure 3.10. Let us assume an end-to-end sliding
window. Also, assume rate-based access mechanism controlling packet access
exists to the frame relay WAN with an effective token arrival rate of 16 Kbps.
Given these assumptions, we are required to perform multiple levels of analysis.

First, an estimate of the windowing throughput should be made that
ignores for the moment the access control. If the windowing throughput is
determined to exceed 16 Kbps, then the access control is the throughput bottle-
neck limiting the system throughput to 16 Kbps. If the windowing throughput
is determined to be less than 16 Kbps, then it is the throughput bottleneck.

Of course, other throughput limitations may exist, for example, processor
limitations. It is the job of the network engineer to identify all of the potential

98 Wide-Area Data Network Performance Engineering

throughput bottlenecks in their networks and to understand the impact they
may have on end users applications.

Once the system throughput, X syst, is identified, it is a simple matter to
estimate the data transfer time for the file transfer in question. If the file to be
transferred is F × 8 bits in length and the system throughput (or throughput
bottleneck) is X syst bps, then the file transfer time, T, is

T F X= × 8 / syst (3.8)

As an example, if F × 8 = 800 Kbits and the system throughput is X syst =
16 Kbps, then the file transfer time is T = 800,000 / 16,000 = 50 sec.

One final word of caution. Care should be exercised when using this
expression to ensure that common units and consistent measurables are being
used. For example, it is a common mistake to forget to include protocol over-
head when estimating transfer times. In this case, either (1) the X syst must be
decreased to account for packet overhead (i.e., to describe the throughput in
terms of user data bits per second) and use the application level file size figures,
or (2) expand the file size to include the packet overhead. Because the protocol
overhead is a function of the specific protocol suite, we discuss these overhead
issues in the later chapters of this book.

3.6 Summary

In this chapter, we have tried to give the network engineer an overall apprecia-
tion of the complexities of analyzing application performance over data net-
works. We began with a detailed discussion of the various factors affecting the
delay in transmitting a single packet across a data network. We used this infor-
mation to show how to estimate the system throughput. We discussed various
types of flow control mechanisms that have been implemented in networking
protocols that ensure that network and end-system buffers do not overflow
due to the transmission of too much data in too short a time period. These
mechanisms included windowing systems and rate-based flow control systems.
Finally, we ended the chapter with a section on optimal window sizes and file
transfer times.

We hope this chapter was sufficient to provide the reader with an overall
appreciation of various performance issues. In the later chapters of this book
we will revisit many of these same issues and performance questions within
the context of specific network protocol implementations and protocol
interactions.

Performance Analysis: Some Basic Tools 99

References

[1] Bertsekas, D., and R. Gallager, Data Networks, Englewood Cliffs, NJ: Prentice Hall, 1987.

[2] Schwartz, M., Telecommunications Networks, Protocols, Modeling and Analysis, Reading,
MA: Addison-Wesley, 1987.

[3] McNamara, J. E., Technical Aspects of Data Communications, Bedford, MA: Digital Press,
1982.

[4] Cooper, R. B., Introduction to Queuing Theory, New York, NY: Elsevier, 1981.

[5] Turner, J. S., “New Directions in Communications (or Which Way to the Information
Age?),” IEEE Commun. Mag., October 1986.

[6] Cansever, D., and R. G. Cole, private communications, 1992.

100 Wide-Area Data Network Performance Engineering

4
Techniques for Performance Engineering

4.1 Introduction

In this chapter we present general techniques for performance engineering data
networks. We begin by discussing a collection of techniques: load engineering,
application characterization, application discrimination methods and collec-
tion and traffic monitoring. We end this chapter with a section that ties these
various techniques and tools together. The context we choose is a discussion of
the process to follow when implementing a new application in an existing data
network. The discussion of load engineering in the first section of this chapter
builds on our knowledge of queuing systems, their stability, and general load
versus delay characterization. This knowledge is leveraged to define measurable
component thresholds in order to maintain satisfactory application level per-
formance over the enterprise network.

We next classify applications into two broad categories: latency sensitive
and bandwidth sensitive. Even this broad classification of application types
is useful when engineering data networks for application-level performance
objectives. This discussion is followed by an extensive taxonomy of techniques
to minimize cross-application interference effects in multiprotocol, enterprise
networks. Techniques discussed here include type of service routing, priority
queuing, processor sharing, adaptive controls, and selective discards.

This is followed up by a section on network management and data
collection tools. These are useful in several areas including (1) data collection
and application-level characterization and (2) traffic monitoring and forecast-
ing. The general techniques we consider in this chapter are used in one way or
another for performance engineering data networks. To reinforce this concept,

101

we conclude the chapter with a step-by-step identification of the process to
follow when deploying a new application over an existing corporate network.

4.2 Load Engineering

In Chapter 3 we developed various queuing models relating component delays
to their utilization. We also know that queuing systems are stable, that is, they
have finite queuing time and queue lengths, when their load remains less than
100%. The goal of load engineering is to ensure that the load on the system
remains less than an identified threshold, above which performance degrada-
tion occurs. This is accomplished through (1) defining appropriate target
component utilization on critical components within the network, (2) constant
monitoring of the load on system components, and (3) making necessary
adjustments to component load in the event that it becomes too high or too
low, based on a developed action plan.

Within this section, we concentrate on a simple queuing model akin to a
packet buffer system feeding a private line facility. In Section 5.4 in the follow-
ing chapter, we discuss load engineering of a more complex frame relay inter-
face and its associated virtual circuits.

As discussed in Chapter 3, the queuing time is a function of Ts(average),
the average service time, and U, the utilization. The component utilization is a
product of the arrival rate, L, and Ts(average), that is, U = L × Ts(average). In
fact, the queuing delay increases when either (or both) the service time or the
arrival rate on the system increases. As a rule of thumb, queuing delays in a
system should not overly dominate the service times; say, queuing time should
never be more than twice the service time.

Looking at the curve for the queuing time in an M/M/1 system, shown
in Figure 4.1 (and discussed in Chapter 3), this implies that the load on the
system should remain less than roughly 70%. In the figure, the queuing time is
measured in units of Ts(average). This point can be thought of as the location
in the curve above which small increases in load will result in large increases in
queuing times. If instead we wanted to keep the queuing delays less than or
roughly equal to the insertion times, then from the figure we see that the utili-
zation should be maintained at less than or equal to 50%. Again, these esti-
mates are based on the M/M/1 queuing model and results will vary depending
on the specific queuing model used.

From Chapter 3, we know that the queuing delay, Q, as a function of
utilization, U, is:

Q = [U / (1 − U)] × Ts(average)

102 Wide-Area Data Network Performance Engineering

For the queuing delay to be equal to Ts(average), we see that the utilization
should be equal to 50%, that is,

Q = [0.5 / (1 − 0.5)] × Ts(average) = Ts(average)

For the queuing delay to be equal to 2 × Ts(average), we see that the utilization
is equal to 66%:

Q = [0.66 / (1 − 0.66)] × Ts(average) = 2 × Ts(average)

This is consistent with our reading of the delay versus load curve shown in
Figure 4.1.

A more general queuing model discussed in Appendix A is the M/G/1
model. This model incorporates the variability of the packet sizes in its expres-
sion for the queuing delay. The queuing delay expression from the M/G/1
model is:

Q = [(U × V) / (1 − U)] × Ts(average)

where V is a measure of the variability of the packet transmission time, that is,
V = (1 + CV ∗∗2) / 2, and CV is the ratio of the standard deviation of the packet

Techniques for Performance Engineering 103

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

Qu
eu

in
g

tim
e

5

6

7

8

9

Load

Threshold

Figure 4.1 The expected queuing time as a function of load for the M/M/1 queuing.

transmission time to the average packet transmission time. As we discuss in
Appendix A, V = 1 for the M/M/1 queuing model. The M/G/1 expression sim-
ply states that the greater the variability in the packet sizes, the greater the queu-
ing delay experienced on the transmission facility. So, the higher the variability
in packet sizes, the more conservative one must be about loading the connec-
tion. To make this a little more quantitative, say we choose to try to maintain
queuing delays to be no more than twice the average packet insertion time on
the transmission facilities. Then the M/G/1 queuing model yields:

Q = 2 × Ts(average) = [(U × V) / (1 − U)] × Ts(average)

Eliminating Ts(average) on both sides of this equation yields

2 = [(U × V) / (1 − U)]

Rearranging this expression and solving for U we get:

U = 2 / (2 + V)

If V = 1, as it is assumed to be in the M/M/1 model, we get that U = 66% as
a target threshold (which is roughly our 70% threshold in the previous para-
graph). However, if the variability in the packet sizes is higher, say, V = 2, then
we get U = 50% as a target threshold. This validates our claim that the higher
the variability in packet sizes, the more conservative one must be about loading
the connection.

One last consideration in defining thresholds is the period of time over
which the loads are measured. Or, in other words, should the thresholds (and
their corresponding averaging) apply to 1-, 5-, or 15-min intervals? And should
the engineer focus on the average results over a number of sampling intervals
or the peak result? Further, at what point should the engineer decide to make
capacity management decisions to increase the necessary bandwidth? If the cho-
sen threshold is exceeded once a day for one month, does this constitute the
point at which more capacity is ordered? Or should more capacity be ordered
only when 20% of all measurements during the 8-hour work day exceed the
chosen threshold?

Unfortunately there are no clear and definitive answers to these questions.
Much depends on the nature and the time sensitivity of the applications run-
ning over the network and on the amount of data the engineer wishes to store
and analyze. For example:

104 Wide-Area Data Network Performance Engineering

• Fifteen-minute averages. In most situations it is probably reasonable to
tract 15-min intervals and monitor the average utilization threshold
over this period. Fifteen-minute intervals are short enough to catch the
hourly variations in the daily behavior of corporate employee activities.
However, it is not so short as to cause the data collection and monitor-
ing systems to have to store large amounts of data.

• Five-minute averages. In some situations, for example, reservation sys-
tems where end customers of the corporation are immediately affected
by the system delays, network engineers should consider shorter time
periods over which to tract thresholds. This would give the engineer
greater visibility into the nature of the variations in the network load-
ing, while not requiring the collection and storage of too much data.

• Five-minute averages with hourly peaks. In some situations it is more
important to keep track of the extremes in the variation of the utiliza-
tion. In these cases, taking relatively short averaging periods, for
example, 5-min, and monitoring the hourly peak 5-min period is
appropriate. Here, the thresholds are set for these 5-min, hourly peaks
and capacity management decisions are based on these peak values.

Of course, there are an infinite number of possibilities and combinations.
Note that the shorter the time interval over which the component values are
averaged, the greater the amount of data to be collected and the greater the
storage requirement on the data collection system.

Further, for a fixed threshold, for example, 70% utilization on a private
line facility, the shorter the time measurement interval, the greater the band-
width requirement to maintain the chosen component levels. This is due to the
fact that short measurement intervals will show a greater variation in the aver-
aged values and in turn increase the likelihood of seeing component thresholds
exceeded.

At one level it would be nice to be able to answer all of these questions by
relating all of this back to end-to-end performance objectives. But this is rarely
feasible. At another level, just by going through the thought process of setting
thresholds and measurement periods (and collecting and analyzing them), the
network engineer has accomplished the majority of the work discussed in this
section, independent of the specific periods, peaks, thresholds, and so on.

Once the component thresholds are identified and the measurement
intervals chosen, then methods to monitor the component metrics must be
determined. Monitoring tools is one of the topics discussed in Section 4.5.
However, before moving on, let us first mention several ways to modify the

Techniques for Performance Engineering 105

load on a queuing system in the event that it is determined through monitoring
that the component threshold is consistently being exceeded. These include:

• Changing the number of servers in the system; for example, we can
add servers in a client/server environment when the server is being
overloaded, or we can add parallel communications facilities between
two locations in the event that the transmission line is being over-
loaded.

• Changing the rate at which the servers operate; for example, we can
increase the speed of the transmission facility that is being overloaded.

• Providing preferential treatment to the more important applications,
hence reducing their effective utilization (see Section 4.4).

To summarize, the keys to successful load engineering are:

• To clearly define thresholds for each component that is critical to the
end-to-end performance of the network;

• To ensure that the load on the particular components in question is
constantly monitored; and

• To develop a strategy to actively adjust the load in the event that the
specified threshold is either being exceeded or the load is too small in
comparison to the threshold.

To accomplish these tasks, measurement and monitoring equipment need to be
utilized. These are discussed in Section 4.5. But first we wish to discuss some
techniques to characterize applications and to discriminate between application
types in network deployments.

4.3 Latency-Sensitive and Bandwidth-Sensitive Applications

The first section of this chapter outlined a methodology for load engineering
components within a data network. The methodology consisted of component
level thresholds from load engineering models and monitoring of the compo-
nents to maintain loads less than or equal to the desired thresholds. Measure-
ment systems are deployed in order to maintain the component level thresholds
and to support capacity management tools and methods. But how do these
component thresholds relate to the end-to-end performance desired by the end
user or application running over the data network? To answer this question, it

106 Wide-Area Data Network Performance Engineering

is necessary to understand the applications running over the data network and
their characteristics.

This section discusses various application types or profiles. We use these
profiles to better understand how to engineer the underlying network com-
ponents in order to achieve desirable end-to-end performance. We identify
two categories of applications, latency-sensitive and bandwidth-sensitive applica-
tions.1 In this section we identify and define these application types. In the next
section, we discuss issues associated with supporting both application types
within a common packet network infrastructure.

Latency-sensitive applications are those whose performance critically
depends on the delay of the underlying network. In Chapter 3, we distin-
guished between latency and delay as a way to reinforce the notion that some
delays are immutable, that is, cannot be changed by modifying the underlying
network infrastructure. For instance, propagation delay is ultimately bounded
by a fundamental law of physics, that is, the finite speed of light.

Latency-sensitive applications do not perform well over a network with
significant delays. These applications are often very “chatty” in nature. A single
user transaction, for example, a request for a piece of information, may be com-
posed of numerous, elemental exchanges between the requesting client and the
responding server. This is illustrated in Figure 4.2. Here a user makes a request
for some information from the remote server. The application invokes numer-
ous elemental exchanges (for example, multiple SQL queries to a database
server) of information between the client and the server before sending the user
the specific information requested. In this instance, the user-perceived delay
between the issuance of the request and the receipt of information is propor-
tional to ∼N × (Network round-trip delay). Therefore, the network round-trip
delay is magnified by a factor of N in the eyes of the end user. The factor of N
can be as large as several hundred for some applications (see Chapters 9 and 11
for examples of such applications).

This tends not to be a problem if the underlying network is a LAN with
round-trip delays on the order of a few milliseconds. However, if the applica-
tion runs over a WAN where the round-trip delays are typically in the
hundreds of milliseconds, the impact on the end user performance would be
devastating.

Applications such as these abound in corporate data networks. Often,
the application developers do not give WAN performance issues adequate
attention until after full-scale deployment. When deployed over the WAN, the

Techniques for Performance Engineering 107

1. Many applications have the combined characteristics of latency and bandwidth sensitivity.
These are treated in more detail in Chapter 9.

frailties of these latency-sensitive applications are exposed. Several approaches
can be taken to alleviate this situation, including migrating to three-tier archi-
tectures or relying on the use of thin-client solutions. This topic is discussed in
Chapter 9.

In contrast to latency-sensitive applications are bandwidth-sensitive
applications. Bandwidth-sensitive applications typically involve the transfer
of high volumes of data with relatively few elemental exchanges between the
client and the remote server machines. This is illustrated in Figure 4.3. Here
the user perception of application delay is dominated by the connection band-
width, and is proportional to ∼(Volume of data) / (Connection throughput).
Bandwidth-sensitive applications show little to no dependence on the round-
trip delay. These applications are written to require few elemental exchanges, in
contrast to latency-sensitive applications.

4.4 Methods to Discriminate Traffic in a Multiprotocol
Network

Some latency-sensitive applications tend to exchange a high number of rela-
tively small packet transactions, such as many client/server applications. Other
latency-sensitive applications, such as Winframe and telnet, rely on the net-
work to essentially echoplex packets off of remote servers before presenting the

108 Wide-Area Data Network Performance Engineering

User request
for data

Exchange 1

Client Server

User data

Exchange 2

Exchange n

Figure 4.2 An example trace of a latency-sensitive application.

typed characters or the mouse actions at the user’s terminal screen. For good
user performance, these packet exchanges must not encounter excessive delays.

In contrast, bandwidth-sensitive applications tend to transmit large vol-
umes of traffic within a short period of time. If care is not taken in engineering,
these applications may cause temporary network congestion. If the network
is simultaneously carrying both types of applications, then the presence of the
bandwidth-sensitive applications may adversely degrade the user perceived per-
formance of the latency-sensitive applications. The several techniques available
to mitigate these cross-application effects are the topic of this section. In the
following chapter, we revisit this discussion within the context of frame relay
networking.

Consider the case where we are mixing the two types of applications
simultaneously carried over the reference connection in Figure 4.4. We first
consider the impact the underlying window size associated with the
bandwidth-sensitive application has on the performance of the latency-sensitive
application. The result of this inspection will lead us to the conclusion that we
should not rely on network buffers to store our end system’s data. We follow
this analysis with a discussion of the techniques available to network designers
and engineers to discriminate between traffic types within the network.

4.4.1 Window Size Tuning

In this section, we analyze the effect the bandwidth-sensitive application win-
dow size has on latency-sensitive applications. The result of this analysis is that

Techniques for Performance Engineering 109

User request
for data

Exchange 1

Client Server

User dataVolume/throughput

Figure 4.3 An example trace of a bandwidth-sensitive application.

windows should be tuned large enough that the file transfers can reasonably fill
the facilities along the data path, but not be so large that they cause a large
amount of queuing within the data buffers of the intermediate network routers
and switches.

Although we find this statement to be true, it is often the case that the
engineer has little control over the specifics of the transport window sizes. We
discuss this in more detail later.

Now that we know the conclusion, let’s see how this conclusion comes
about. Consider the performance of reference connection #1 (RC#1, shown in
Figure 4.4), when the transaction and the file transfer servers are simulta-
neously active. What is the impact of the file transfer traffic on the observed
performance of the database transaction application? Assume for the moment
that the file transfer has been ongoing for some time and look at the timing
diagrams in Figure 4.5.

Figure 4.5 shows the timing diagrams for the file transfer traffic in “steady
state” for two different window sizes, windows of size three and seven. These
timing diagrams are similar to those we have shown earlier with respect to file
transfers, only they are somewhat more cluttered. However, this clutter is
necessary to observe the effect we want to analyze.

Notice that for the case of the smaller window size (that is, the timing dia-
gram on the left-hand side of the figure), the private line facility is fairly highly
utilized yet there is little or no queuing delay experienced by the file transfer
data in the WAN router. The upper part of this timing diagram roughly rep-
resents a steady-state behavior of the file traffic over RC#1. The window is
smoothly rotating and the WAN facility shows a fairly high utilization. Then,
about halfway down the timing diagram, the transaction application kicks
off and transmits a transaction packet onto the LAN segment. This transaction

110 Wide-Area Data Network Performance Engineering

Router A

Minicomputer A

Transaction server A

Router B

Minicomputer B

Workstation B

Source

Figure 4.4 Reference connection #1.

T
echniquesfor

Perform
ance

Engineering
111

Random
transaction

3n 1+

3(n 1) 1+ +

3n 2+

3n 3+

3(n 1) 2+ +

3(n 1) 3+ +

Random
transaction

7n 2+

7(n 1) 1+ +

7n 3+

7n 4+

7(n 1) 2+ +

7n 5+

7n 6+

7n 1+

7n 7+

Packet (7n 6)+
Packet (3n 2)+

Packet (3n 3)+

Packet (3(n 1) 2)+ +

3(n 2) 1+ +

Packet (3(n 1) 3)+ +

Packet (3(n 2) 1)+ +

Packet (7n 5)+

Packet (7(n 1) 2)+ +

Packet (7(n 1) 3)+ +

Router A Router B Router BRouter A
Transaction

server

Minicomputer B

Workstation B
Minicomputer A

Transaction
server

Minicomputer A
Minicomputer B

Workstation B

Figure 4.5 Timing diagrams showing cross-application effects.

packet gets interleaved between packets of the ongoing file transfer. Due to the
relatively high speed of the LAN segment, gaps exist between the ongoing file
transfer packets, and the transaction packet has little effect on the file packets.
Once the transaction packet enters the router, the interesting question is how
long does the transaction packet have to wait before it gets transmitted onto the
relatively slower WAN private line segment. In the case of the timing diagram
on the left-hand side of the figure for the case of the smaller file transfer win-
dow size, the wait for the transaction packet is small. The window is tuned to
keep the WAN facility at a little less than 100% utilization (as is evident by
the existence of small idle periods between file transfer packet transmissions).
Hence, the transaction packet has a queuing delay of (on average) one-half the
insertion delay of a file transfer packet (onto the private line facility).

As an example, for a WAN private line facility running at 56 Kbps
and a file transfer packet size of 560 bytes (roughly the size of an off-LAN IP
packet carrying FTP data), one-half the insertion delay is roughly 40 msec
(560 × 8/56,000 sec divided by 2). This would not be noticeable to the end
user of the transaction application.

The timing diagram on the right-hand side of Figure 4.5 shows compara-
ble behavior for the case in which the window size of the file transfer appli-
cation is larger, that is, seven packets. As we now know, the main effect of
increasing the window size in these example reference connections is to place
more of a burden on the buffers in the intermediate routers to queue the file
traffic packets. Increasing the window beyond a given size does not improve
the performance of the file transfer application.

This point is again evident in Figure 4.5. In this example, the router is
roughly buffering from two to three file transfer data packets while queuing for
transmission onto the relatively slow WAN facility. So now what do we expect
to happen when the transaction application packet is transmitted? As before, it
is interleaved with the file transfer packets on the LAN segment to the router. It
must now wait its turn for transmission onto the WAN facility and hence it is
queued. But instead of only having to wait on average for half a packet insertion
time, it has to wait for roughly two and a half file transfer packet insertion delays.

Using the same example conditions as in the previous paragraphs, the
transaction packet will experience a queuing delay of roughly 200 msec. This is
within the perception of an end user and can be exacerbated by larger window
sizes or a greater number of simultaneous file transfers or a greater number of
transaction packets.

For the conditions assumed in drawing the timing diagram in Figure 4.5,
anything larger than roughly a window size of three will cause larger and larger
delays for the transaction applications. Further, increasing the window from
one to two to three will improve the end-to-end performance of the file transfer

112 Wide-Area Data Network Performance Engineering

traffic. But increasing the window size greater than three will not improve the
end-to-end performance of the file application and it will only degrade the
performance of the transaction application. From this example, we can then
conclude that the “optimal” window size for the file transfer is three. This
example demonstrates the necessity of choosing a window size large enough to
support sufficient file transfer throughput but not so large as to degrade the
performance of other applications sharing the same network resources.
However, while it is important to understand the dynamics of this situation,
window size tuning may be appropriate only on special occasions. It cannot be
recommended as a general method for traffic discrimination because (1) dis-
similar TCP stacks deployed within an enterprise will have different configura-
tion capabilities and characteristics, (2) it is hard to implement/configure
options on all clients in an enterprise, and (3) it is not always clear what to con-
figure the options to because of the heterogeneous nature of the enterprise net-
work. Therefore, other methods of traffic discrimination are usually relied on.

We are not quite ready to leave the example in Figure 4.5. We now want
to ask another question: What can be tuned or implemented in this example to
improve the relative performance of the file and transaction traffic when mixed
on a common network segment? We have already discussed in some detail one
way to improve the relative performance of these interacting applications, that is,
optimal tuning of the file transfer window size. A number of other techniques
have been discussed in the industry and have been implemented in various data
products, in networking protocols, and in data services, including the following:

• Type of service routing;

• Priority queuing;

• Bandwidth or processor sharing (also referred to as weighted fair
queuing);

• Adaptive controls; and

• Selective discards.

We now discuss each of these other techniques in turn as they apply to our first
example of mixing various types of applications onto a common multiprotocol
data network.

4.4.2 Type of Service Routing

Within most data networks, there are often several different routes to a given
destination. This is by design, usually to provide a high level of reliability

Techniques for Performance Engineering 113

within the overall network. These different paths to the same destination
may ride over similar types of facilities, but these facilities may have different
engineering rules applied to their capacity management or have different band-
widths associated with each, or they may ride over different types of facilities.
For example, one route may travel over satellite facilities while another route
over terrestrial facilities.

In any event, these different routes may have different performance
characteristics associated with them. The path utilizing satellite facilities may be
characterized as a high-throughput yet high-delay route. The path utilizing ter-
restrial facilities may be characterized as a low-throughput, low-delay route. In
this case, our transaction traffic would be perceived to perform better by the
end user if it were carried over the path utilizing the terrestrial facilities. The file
transfer application would be perceived to perform better by the end user if it
were carried (or routed) over the path utilizing the satellite facilities. This is the
essence of type of service (TOS) routing.

Because different applications impose different performance require-
ments on the underlying network, it seems reasonable to route the various
applications over the “optimal path” within the network for the particular
application in question. In practice, this capability is described by first defining
the set of performance metrics necessary to specify all reasonable application
requirements. The metrics typically include delay, delay variation, throughput,
reliability, and cost. The requested values for each of the metrics and allowable
groupings are defined. Then their encoding is specified. Often only a rather
crude set of values is specified: high, medium, or low delay; high, medium, and
low throughput; and so on. Typical groupings may be high throughput with
high-delay service or low throughput with low-delay service. These groupings
are termed the type of service.

To implement TOS routing, several capabilities are necessary. For virtual
circuit networks the requested TOS values for the connection are indicated in
the call setup message. In datagram networks, the requested TOS values must
be carried in every datagram header. For TOS routing, separate routing tables
must be maintained for each possible TOS supported within the given net-
work. Also, the network should have developed separate capacity management
capabilities and guidelines for each TOS supported in the given network.
When strict TOS routing is desired, some negotiation capabilities should be
supported. In practice, all of these are extremely complex to develop, imple-
ment, and maintain.

The most common implementations of TOS routing support through-
put metrics (often referred to as throughput classes). These implementations are
found in X.25 (referred to as throughput class), frame relay (referred to as com-
mitted information rate), and ATM (referred to as sustainable cell rate) networks

114 Wide-Area Data Network Performance Engineering

supporting SVC signaling capabilities or PVC manual provisioning capabili-
ties. All of these technologies support the routing of a VC, which can sustain
the throughput defined by these terms, for example, throughput class, CIR,
and SCR.

Finally, to be truly useful in our examples, the end applications need
some capability of communicating the necessary TOS to the routing entity in
the network. This is rarely available in layered networks due to the lack of con-
sistent standards in this area.

So how would TOS routing improve the relative performance of our file
transfer and transaction-based application traffic in our reference network?
Figure 4.6 shows an expansion of RC#1 with multiple routes providing differ-
ent TOS paths. The satellite path provides a high-throughput and high-delay
TOS, and the terrestrial path provides a low-throughput and low-delay TOS.
One strategy would be to route the file transfer traffic over the satellite path and
the transaction traffic over the terrestrial path; this essentially isolates the cross-
application effects. Specifically, the transaction traffic does not get caught in a
large queue behind the file transfer packets, while queuing for insertion onto
the same communications facility.

4.4.3 Priority Queuing

In the examples given in the last section, the file transfer and transaction
application data essentially collide at the gateway buffer onto the WAN facility.

Techniques for Performance Engineering 115

Low bandwidth,
low delay

Workstation B

Satellite

Satellite
dish

Satellite
dish

High bandwidth,
high delay

Router A

Minicomputer A

Transaction
server A

Minicomputer B

Router B

Figure 4.6 Reference connection showing multiple paths with different TOS.

Window size tuning minimizes to some extent the impact of the collision.
TOS routing avoids the collision altogether by routing the different applica-
tions’ data onto different buffers and WAN facilities out of the LAN gateway.
As discussed, the TOS routing capability requires the routers to identify
the different TOS requests and routes these requests appropriately. Another
mechanism, which has the potential to greatly minimize the collision of the
various applications traffic, is priority queuing.

Like TOS routing, suppose that a mechanism exists for communicating
to the gateway the type of application data being carried within a given data
packet. It would then be possible for the router to favor one application’s data
over the other by moving it “to the head of the line” so to speak. If the trans-
action application data were placed at the front of the queue holding the file
transfer traffic, then the transaction data would only have to wait for the inser-
tion of the current file transfer packet onto the facility to complete before it was
transmitted onto the same WAN facility.

In this case (that of a single transaction packet), the maximum queuing
delay would be a single file transfer packet insertion delay. And the average
queuing delay would be one-half the file transfer packet insertion delay.2 This
mechanism is termed priority queuing.

As an example, for a WAN facility running at 56 Kbps and a file transfer
packet size of 560 bytes, one-half the insertion delay of the file transfer packet is
roughly 40 msec. This would not be noticeable to the end user of the transac-
tion application.

Strictly speaking, it is not necessary to communicate the nature or type of
application data being carried within the data packet. It is only necessary to
communicate the priority level of the data. One could easily imagine a need
for several priority levels. One example would be to have high-, medium-, and
low-delay TOS priority levels. Packet level headers would then only be required
to indicate the priority level of the packet.

A typical implementation would allocate separate data buffers for each
interface on a gateway, router, or switch; there would be one queue per priority
level. When the router has to insert the next data packet onto the facility, it
takes the first packet from the highest priority queue containing data. This type

116 Wide-Area Data Network Performance Engineering

2. If the transaction packet arrives to the router buffer just prior to the completion of the cur-
rent file transfer packet insertion onto the facility, its queuing time will be essentially zero. If
it arrives just following the start of the current file transfer insertion onto the facility, its
queuing time will be essentially a full file transfer packet insertion time. Then, assuming
that the transaction packet arrives independently of the state of the file transfer packet inser-
tion, its average queuing time will be one-half the file transfer packet insertion time.

of priority queuing mechanism is referred to as nonpreemptive priority queuing.
This is shown in Figure 4.7.

Conversely, a preemptive priority queuing implementation allows for
the server to halt (or suspend) the insertion of the lower priority packet on the
arrival of a higher priority packet. Once the higher priority packet (and all
other subsequent higher priority packets) is serviced, then the service of the
preempted packet can start over (or resume).

In practice, the majority of the priority queuing implementations are
of the nonpreemptive priority case. However, there are cases, especially on
low-speed serial links where routers will support a form of preemptive priority,
based on a packet fragmentation scheme. This is necessary when the high-
priority traffic has very stringent delays and/or delay variation requirements
and is being run over relatively slow links. One such example would be when
attempting to carry packet voice over an enterprise data network.

As for the case of implementing a TOS routing capability, priority
queuing schemes require that information on the nature (e.g., the priority level)
of the application be passed down to the entity building the packet level data
header. It is the packet header that must carry the indication of the priority
level of the application. In a single, end-to-end, networking protocol

Techniques for Performance Engineering 117

Output pattern

High

Medium

Low

Figure 4.7 A three-level priority queuing system.

environment this could be indicated through an application programming
interface (API) and then down to the appropriate protocol level.

However, in most of the implementations of priority queuing in multi-
protocol networks, the priority level of the data packets is usually inferred based
on some higher level indication of the application. This is usually satisfactory,
but it sometimes may not be granular enough for the needs of the application
and end users.

The priority queuing schemes generally base the decision of the priority
level of the data packets on one of the indicators discussed next (the spe-
cific implementation depends on the particular type and manufacturer of the
networking equipment).

Priority Level ID
Some packet level protocol headers carry explicit priority level bits. For exam-
ple, the IPv4 packet headers carry a TOS field indicating special packet han-
dling. The first three bits were designated as precedence bits and the next five
indicated the type of service requested by the hosts (low delay, high through-
put, and so on).

Until recently, this field has usually been ignored, however its use is
beginning to gain popularity within the differential services architecture being
proposed within the IETF. In this architecture, the TOS field is referred to as
the DS octet and the first five bits are used to indicate priority packet handling
at the network edge, with the sixth bit indicating whether this packet is
conforming to a traffic contract or not. The rest of the bits are not used at
this time. This, however, still requires that an entity (in this case the IP packet
header processing entity) infer or be told the priority level to set. This can be
done by other methods discussed later or could have been indicated through
an API.

This method, where the priority level is directly indicated in the packet
header, offers simplicity of protocol processing for the intermediate routers
along the data path. Some of the schemes identified later require that the queu-
ing entity search far into the higher level protocol headers to infer a priority
level, and this can have a detrimental impact on the protocol processing entity
(increase the processing delays at this location in the network).

Protocol ID
Packet level headers contain a field to indicate the higher level protocol carried
within it. For example, in an IP header this is the protocol ID indicating TCP,
UDP, ICMP, and so on. This works for our purpose in some situations, but it
relies on a rather low-level protocol type in order to base priority queuing deci-
sions for particular applications. For example, if it is desirable to give telnet

118 Wide-Area Data Network Performance Engineering

terminal traffic a higher priority than file transfer protocol (FTP) traffic, then
this scheme will not work because both of these higher level protocols are
carried over a TCP transport-level connection. Hence, both telnet and FTP
would receive the same priority level treatment under this method.

High-Level Protocol Identifier
Switches and routers can be programmed to look deeper into the protocol
headers within the packet. One popular approach is to configure a router view
the TCP or UDP port numbers, which identify the protocols riding over these
transport-level protocols. Recently, this has been referred to as level 4 switch-
ing, to indicate the protocol level at which the routers are required to process in
order to make switching or filtering decisions.

TCP port numbers indicate whether the data are from a telnet application
or an FTP application. The router can then rely on the port numbers as an
indication of the type of priority to be given to the data packet. This is valuable
in that the higher level protocol indications are “closer” in some sense to the
application and thus they give a better capability to discriminate file applica-
tions from transaction applications.

The price for this type of approach is that it is relatively more difficult for
most high-speed switches or routers to search this deep into the protocol head-
ers. This consumes more processing capabilities in the router and will, in turn,
negatively impact the overall packet throughput on the router.

Protocol Encapsulation Type
Devices that operate at the link level, for example, FRADs or ATM switches,
could conceivably rely on the protocol encapsulation type indication within the
link level encapsulation protocols. An example is the encapsulation for frame
relay networks defined in RFC 1490 (and discussed in Chapter 2). This would
base the prioritization on the NLPID. Basing priority levels on the protocol
encapsulation type would allow switches to prioritize based on the type of pro-
tocol. This is useful when, for example, you want to give all of your Novell
NetWare Inter-Packet eXchange (IPX) traffic priority over TCP/IP applica-
tions (primarily carrying e-mail). The downside of this method is that you
cannot prioritize, for example, telnet traffic over FTP transfers. Although this
technique is occasionally discussed, it is not implemented in practice. One
strong criticism of this approach is that it would violate the requirement that
virtual circuits do not reorder the packets on the individual circuits.

Incoming Port or Interface
Suppose a router has two LAN interfaces, such as an Ethernet and a token ring.
The token ring LAN carries primarily SNA traffic, and the Ethernet carries
primarily native, non-real-time TCP/IP applications such as e-mail. Then, it

Techniques for Performance Engineering 119

would be useful for the router to give all packets incoming from the token ring
LAN a high priority level and all packets incoming from the Ethernet LAN a
low priority level.

However, like the case of basing priority levels on encapsulation types,
this is a relatively nondiscriminating method for assigning priority levels. Also,
unless there is some method of indicating the priority level on the packet, this
method provides only local priority service; this does not extend across to the
rest of the network.

Source/Destination Address Pair
Often traffic from a given source or traffic between a given source/destination
pair is to be given priority handling. This can be accomplished in the routers
by examining, for example, the IP addresses of the source and the destination
indicated on the IP packet header. This is a fairly flexible form of identifying
high-priority traffic in router networks.

Circuit ID
Virtual circuit switches base switching decisions on a circuit ID. They could
just as well base a priority-level decision on a circuit ID. If the access device
(for example, a FRAD) applied one of the other methods for assigning priority
levels to packets and ran multiple virtual circuits to all other end points, then
it could place the higher priority packets on one virtual circuit and the lower
priority packets on another virtual circuit. This would extend the priority treat-
ment of the data packet beyond the access facility and across the entire virtual
circuit network.

Packet Length
Some systems have been known to assign priority levels based on packet size.
The theory here is that terminal traffic is comprised of generally small packets
while file transfer traffic is comprised of larger packets. This is not always true.
Further, extreme care must be taken to ensure that the wrong packets are not
reordered along the network connection. This could cause high levels of end-
to-end retransmissions and greatly degrade the perceived performance of the
network. In general, avoid these techniques for “guessing” at the priority level
of the traffic.

The methods discussed for determining priority can be categorized by the
type of discrimination, that is, explicit versus implicit, and the level in the pro-
tocol stack at which the discrimination occurs, for example, layer 2, layer 3, and
so on. We summarize these in the Table 4.1.

As a rule of thumb, priority queuing methods are useful when access-
ing relatively low-speed facilities, for example, analog lines or 56-Kbps to
fractional-T1 digital lines. At high speeds the relative benefits of priority

120 Wide-Area Data Network Performance Engineering

queuing are diminished (and sometimes are detrimental if the processing over-
head incurred by enabling priority queuing greatly reduces the overall through-
put of the networking device). Also, attempts should be made to ensure that
the total amount of high-priority traffic is small relative to the amount of low-
priority traffic. A good rule is to keep the high-priority traffic to less than 10%
of the low-priority traffic. After all, if all the traffic were treated as high priority
then the system would degenerate to a simple, single queue system.

Low-priority queue “starvation” can also occur if the higher priority traf-
fic load becomes too great. This may cause retransmit timers associated
with low-priority traffic to expire and greatly degrade the performance of these
applications.

4.4.4 Processor Sharing

Suppose that routers were to put packets into different buckets (depending on
some criteria), and then transmit one packet at a time from each bucket onto
the transmission facility. If a given bucket were empty, then it would simply
jump to the next bucket containing a data packet. We refer to this type of
packet transmission system as a processor sharing system. (A related system is

Techniques for Performance Engineering 121

Table 4.1
Categories of the Priority Discrimination Schemes

Priority
Determination

Discrimination
Type

Discrimination
Layer Comments

Packet length Implicit Not applicable Rarely implemented (thank goodness)

Port or interface Implicit Layer 1 Can prioritize one token ring versus
Ethernet, or one department versus
another

Source/destination
address pair

Explicit Layer 1 Prioritize all traffic from a given source
or between a source/destination pair

Encapsulation
indicator

Explicit Layer 2 Can prioritize, for example, SNA over IP,
however causes packet reordering on a
VC, not implemented (thank
goodness)

Protocol ID Explicit Layer 3 Can prioritize, for example, IPX over IP

High-level protocol
ID

Explicit Layer 4 (plus) Can prioritize, for example, telnet over
FTP

referred to as a weighted fair queuing algorithm; see the discussion in the follow-
ing paragraphs.)

A processor sharing system is fundamentally different from a priority
queuing system in that a processor sharing system treats all types of packets (or
traffic) equally in some sense. A priority queuing system, however, explicitly
favors one type of packet (or traffic) over other, lower priority traffic type.3 This
is shown in Figure 4.8. Notice the predicted output pattern for this processor
sharing system and compare it to the predicted output pattern in Figure 4.7 for
the priority queuing system.

Here, the processor sharing server effectively interleaves the packets from
the various packet buffers. In this sense it behaves differently from a priority
queuing system. The processor sharing system treats all queues equally by
transmitting a packet from each occupied queue in a round-robin fashion. The

122 Wide-Area Data Network Performance Engineering

Output pattern

Buffer 1

Buffer 2

Buffer 3

Figure 4.8 A three-bucket, packet-level processor sharing system.

3. Other types of processor sharing systems exist where the data from each bucket are essen-
tially transmitted a byte at a time. These are referred to as byte-interleaving, processor shar-
ing schemes, as opposed to the packet-interleaving, processor sharing schemes discussed
earlier.

priority queuing system explicitly favors those packets in the queue designated
high priority.

Some processor sharing schemes allow for a weight to be assigned to spe-
cific flows. This gives a larger proportion of the bandwidth to some flows over
others. For example, flow A can be assigned twice the bandwidth as the other
flows by serving two packets from flow A’s queue versus one packet for each
visit to the other queues. Various schemes like these exist, for example, pro-
portional round-robin, weighted processor sharing, or weighted fair queuing
algorithms, which are variations on the processor sharing algorithm.

Assume that a single transaction packet arrives at a processor sharing
system and is placed into an empty bucket.4 In this case (that of a single transac-
tion packet), the maximum queuing delay would be a file transfer packet inser-
tion delay of N − 1 packets, where N is the number of active, separate queues in
the processor system.

In contrast, the maximal delay in the priority queuing system would be a
single file transfer packet insertion delay. The factor of N – 1 arises because the
processor sharing system treats all queues equally. This maximal delay for active
queues would occur if all the other queues were occupied and the transaction
packet is queued just following its “turn” in the processor cycle. If the transac-
tion packet arrived to its queue just prior to its turn, then its delay would be
roughly zero. Hence, the average delay would be one-half the maximum delay:
(N − 1) × (Insertion delay) / 2.

As an example, for a WAN facility running at 56 Kbps and a single active
file transfer with a packet size of 560 bytes, the average delay, under processor
sharing, for a packet belonging to an interactive traffic stream that is queued
separately is roughly 40 msec (that is, half of 80 msec, the insertion delay of a
560-byte packet on a 56-Kbps link). This would not be noticeable to the end
user of the transaction application. For two simultaneously active file transfers
this delay would double; for three, it would triple; and so on. On the other
hand, if interactive traffic is explicitly given highest priority, then the maxi-
mum queuing delay (due to packets from other traffic streams) for an interac-
tive packet will be half the full insertion delay, no matter how many queues are
maintained and active.

Although processor sharing is not as effective at reducing the transaction
delays as a priority queuing scheme, it does have several advantages. Like prior-
ity queuing schemes, a processor sharing scheme can be implemented based on
very low-level indications, for example, virtual circuit identifiers, packet level

Techniques for Performance Engineering 123

4. In the case where the transaction arrives at a nonempty queue, the delay bounds discussed
in this paragraph are increased by the number of transaction packets in queue ahead of the
transaction in question times (N – 1) packet insertion delays.

flow identifiers, or packet destination or source/destination pairs. Processor
sharing is effective at sharing bandwidth across all active circuits or flows, and
avoids “starvation” effects, which can occur in priority queuing systems. Also,
by assigning unequal weights to the different buffers, a form of favoritism can
be assigned to “higher priority” traffic.

4.4.5 Adaptive Controls

Adaptive controls attempt to minimize the length of the queues at the resource
in contention by monitoring, either implicitly or explicitly, the state of the
buffers. In our example, where a large file transfer and a small transaction
are contending for a common communication facility, a large queue develops
when the file source is sending too much data into the network at any given
time. These data end up sitting in the buffers for access to the common
network facility, which causes an excessive delay for a small, delay-sensitive
transaction. By minimizing the length of this queue, an adaptive control
scheme can improve the transaction delays.

There are basically two mechanisms that adaptive controls can apply
to manage queue buildup: dynamically adjusting the rate at which the source
transmits into the network (commonly referred to as traffic shaping) or dynami-
cally adjusting the transmission window size of the source. When the queue is
determined to be building up too large, then the rate or the window can be
decreased. In the event that the queue is determined to be extremely small, then
the rate or the window of the transmitter can be increased. By constantly moni-
toring and adjusting the rate or window size, the system can achieve a reason-
able trade-off between high throughputs and low delays.

The adaptive source requires some form of feedback on the state of the
network path in order to make the appropriate changes to the transmitter. The
form of the feedback can vary, being either explicit or implicit. This is shown in
Figure 4.9.

The lower path shows an explicit congestion indication being sent to the
source. Receipt of this message would then allow the transmitter to either
decrease its transmission rate (either by spacing out its packets or decreasing its
transport window) or increase it depending on the nature of the message.

Several methods exist to implement this explicit notification. One
method would have the congested resource generate a signaling message and
transmit it to the source of the traffic. Another method would have the con-
gested resource setting a bit (or bits) in the protocol header of the data packets
as they traverse the congested resource. The receiver would then pass this back
to the transmitter through a similar indication on the packet headers.

124 Wide-Area Data Network Performance Engineering

The upper loop refers to an implicit method of sensing network conges-
tion. One example of this method is to base adaptive decisions on a round-trip
time measurement. Here the “probe” could be a single data packet in the
forward direction and the acknowledgment in the reverse direction. Then, the
onset of congestion in the data path would cause delays in queuing and increase
the measured round-trip time. The transmitter could then slow down its trans-
mission rate or decrease the size of its transport window. This would help to
alleviate the congested resource. Another method of implicitly sensing network
problems is to rely on packet loss to indicate congestion.

An example is the TCP slow start adaptive algorithm (see the discussion
in [1]). Here, the transmitter would sense a lost packet through the windowing
acknowledgments (or lack thereof) and would infer that the packet was
dropped due to congestion. The transmitter would then decrease its trans-
mission rate (through one of several methods already discussed). This is not a
direct measure of network congestion because packet loss can occur in net-
works due to other reasons, for example, bit errors on transmission facilities or
misrouted packets.

By adapting the transmission rate based on some form of feedback from
the network on its congestion state, transmitters attempt to keep packet buffers
from growing too large. As we have discussed, this will help in reducing the net-
work delays for all data including transaction-oriented application data. This
will help to reduce the negative, cross impact of file transfer traffic on transac-
tion data. We have already discussed similar algorithms in Chapter 2 on frame
relay congestion control methods.

Techniques for Performance Engineering 125

Congestion
notification

Workstation B

Router A

Minicomputer A

Transaction
server A

Minicomputer B

Router BRouter HRouter G

Probe

Congested resource

Figure 4.9 Implicit and explicit feedback on network congestion.

4.4.6 Selective Discards

Selective discard mechanisms discriminate among various sources of traffic dur-
ing periods of extreme resource congestion by discarding packets from select
sources while not discarding from other sources. It is argued that this is a
method of reserving critical network resources during congestion periods for
time-sensitive or high-priority applications.

This reservation mechanism implicitly reserves resources for critical appli-
cations by explicitly denying access to noncritical applications. This scheme
relies on the same methods to identify those applications deemed noncritical as
the other schemes discussed in the previous sections. Often noncritical applica-
tions are considered to be those utilizing certain TCP port numbers, for exam-
ple, FTP is deemed noncritical, while telnet is deemed critical.

Some implementations of selective discard rely on the specific switching
equipment to look deep into the packet headers to determine the nature of the
applications and to determine which packets to discard during resource over-
load. Other schemes have end systems tagging the packets as discard eligible
through some network protocol-specific indication. Others tag packets based
on a bandwidth contract as measured at the access control point into a net-
work. One such implementation, known as discard eligibility, is found within
the frame relay network standards as discussed in Chapter 2.

The selective discard strategy is fundamentally different than the other
methods discussed within this chapter. The trigger for the selective discard
action to begin is usually a buffer congestion threshold. These thresholds
are usually set to a significant fraction of the total buffer space allocated
to the resource. Otherwise, the majority of this buffer space is wasted. Once
the threshold is reached, the selective discard mechanism is initiated until the
buffer utilization drops below a lower level congestion threshold (in order
to prevent thrashing). What is different with this scheme is that it is responding
to large buffer utilization, instead of responding to delay and bandwidth
considerations. Long before the time the buffers have reached their threshold,
the delays for the time-sensitive applications have exceeded reasonable limits.
Therefore, this should not be considered a useful mechanism to ensure good
transaction application performance in multiprotocol networks.

Often heard in discussions of packet discard techniques is the random
early detection (RED) strategy implemented in many IP-based router net-
works. This is a technique in which routers attempt to mitigate the onset of
router congestion by initiating a limited level of random packet discards based
on buffer threshold settings. By performing a low level of packet discards, the
router is relying on throttling back TCP slow start implementations and damp-
ing the load somewhat on the router. This has been shown to be a very effective

126 Wide-Area Data Network Performance Engineering

technique in maintaining high network utilization while mitigating the effects
of congestion. From an Internet provider perspective, RED provides signifi-
cant benefits to their overall customer base. However, from a critical end-
applications perspective (which is the focus of this section and, in fact, this
book), RED does not significantly benefit particular applications by providing
significant differentiated service. These are fundamentally different goals.

4.5 Data Collection

We have discussed application characteristics, load engineering and capacity
management, and methods to give preferential treatment of one application
type over another when designing and implementing data networks. However,
to deliver on a capacity management plan and to maintain the desired perform-
ance engineering, one needs to collect data on various aspects of the network.
Data collection techniques are discussed in this section. Here we identify vari-
ous types of data collection tools.

To help accomplish the tasks that arise only occasionally, specialized
monitoring equipment, such as LAN/WAN analyzers or protocol traces, can be
utilized. However, for ongoing tasks, such as capacity management, one needs
to rely primarily on the existing measurement capabilities of the networking
equipment and network management systems employed. We briefly discuss
three types of collection tools: LAN/WAN analyzers, SNMP management
tools, and RMON2 probes. We end this section with a brief classification of
commercially available tools that are useful in this context.

4.5.1 LAN/WAN Analyzers

LAN/WAN analyzers are devices that can tap into the LAN/WAN and capture
the data being transmitted over the LAN/WAN segment. These devices store
some aspects of the data onto disk to be retrieved at a later date. Sniffers capture
all the data, but usually one applies filters to look at some particular aspect of
the information of use in characterizing the traffic load and in developing
an understanding of the protocol models required for trouble shooting.
LAN/WAN analyzers typically store the link level (and can be configured
to capture higher level protocol information such as the IP or IPX) packet
formats, the byte count of the data fields, whether the packets were received
in error, and time stamps showing the time at which the packet data were
captured.

From this, the analyst can compute the interesting statistics associated
with the data traffic, for example, average and standard deviation of the packet

Techniques for Performance Engineering 127

sizes, the traffic loads, and even the point-to-point requirements by mapping
end-system addresses in the packet headers to the destination locations.

Another important use of LAN/WAN analyzers is traffic characterization
of specific applications, particularly client/server applications. This is of great
utility as discussed in Section 4.3.

This equipment tends to be rather specialized and therefore relatively
expensive. However, it is not necessary to widely deploy this equipment, and it
is mostly used on an individual case basis for specific reasons. These are typi-
cally used to help resolve problems, to help build an understanding of traffic
load over a given, finite period of time, or to characterize specific applications
prior to generally deploying the application on the enterprise network.

4.5.2 Network Management Systems and RMON Probes

Here we focus on those aspects of management systems that capture and store
traffic data in networks on an ongoing basis. This is a distributed functionality,
in that individual network components are required to collect local informa-
tion, then periodically transmit this information to a centralized network man-
agement system that can process this information into quantities of utility to
the network analysts and administrators.

Local information typically collected on the individual network compo-
nents includes the following:

• Serial trunk interfaces: the number of bytes and frames transmitted and
received, the number of errored frames transmitted and received, the
number of frames discarded due to buffer overflows, and so on;

• Multiplexed interfaces (such as frame relay or ATM): the number of
bytes and frames transmitted and received, the number of errored
frames transmitted and received, the number of frames discarded
due to buffer overflow on an individual virtual connection basis, the
number of established switched connections on an interface basis, and
so on;

• Switch processors: the number of frames or cells forwarded over the
switch fabric, the utilization of call processors, the size of the run queue
in the processor, and so on;

• Routers: the number of packets forwarded as a function of the protocol
type, for example, IP, IPX, AppleTalk, the utilization of the routing
processor, the size of the routing tables, and so on; and

• Network servers: the utilization of the processor and disk, the number
of simultaneous sessions established, and so on.

128 Wide-Area Data Network Performance Engineering

These parameters are stored locally and are periodically (in periods ranging
from 5 min to 1 h) transmitted to a centralized management system when
prompted by the management station. The management system will process
and summarize the information and archive the results for trend analyses by the
network analysts. Useful trend analyses might include the weekly variations in
the utilization of a trunk interface into the WAN or the monthly increase on
the peak utilization or the variation in the utilization of a network server, as dis-
cussed in Section 4.2. Useful troubleshooting information includes the number
of frames or packets received in error or the number of frames discarded due to
buffer overflows on a particular hour of a given day.

The trend today is to try to standardize the type of information to be col-
lected and stored by the network management systems. The type of informa-
tion to be collected is found in an SNMP management information base (MIB)
for the particular device or technology in question. Many of the MIB defi-
nitions are standard, but many vendors have developed proprietary extensions
that are specific to their particular equipment.

The types of information identified in the preceding list are local to par-
ticular devices comprising the network. As mentioned in the preceding para-
graph, this type of information is captured within the MIB for the device. A
standard MIB common across all SNMP manageable devices is defined and
referred to as MIB II [2]. Because this type of information is local to a specific
device, it is up to a central management system to correlate these individual
pictures into a view across a specific subnet or LAN segment.

To eliminate this burden on a central management system, and to pro-
vide a richer set of subnet-based statistics, the RMON MIB was developed. The
IETF has developed a set of recommendations for a standard remote monitor-
ing capability. Hardware devices that implement these recommendations for a
standard set of subnetwork monitors are referred to as RMON probes. RMON2
extends the monitoring capabilities of the RMON above the MAC layer.

We prefer to think of these additional RMON2 capabilities in terms of
three different levels of traffic analysis. Level 1 of the traffic analysis is overall
byte count and average packet sizes. Level 2 of the traffic analysis is a break-
down via layer 3 protocols, for example, IP versus IPX, DECnet, AppleTalk.
Level 3 of the traffic analysis is a detailed analysis of IP traffic into TCP
and UDP components along with further breakdown of TCP traffic according
to port numbers and so on. This information, collected from networks and
stored within the probes can be communicated to a central management system
through the SNMP [3].

For these reasons, RMON2 probes offer a rich set of collection capabili-
ties, which are extremely useful in capacity engineering. For more information
on RMON2 probes see [2].

Techniques for Performance Engineering 129

It is the job of the analyst to develop a capacity management strategy that
relies primarily on the information types and statistics collected as identified in
the MIBs available in the components deployed within their data network. As
such, the MIBs must necessarily contain the required local information that the
analyst uses to develop an understanding of the important end-to-end perform-
ance requirements of the applications riding over the multiprotocol network.

The capabilities provided by these activities in the IETF and afforded to a
network management tool by RMON2 (or similar function) probes have led to
the development of a host of monitoring, trending, and performance manage-
ment tools. These tools can help the analyst by delivering much of the capabili-
ties required in their capacity management needs. These are discussed next.

For an excellent discussion of IP management standards and MIBs, refer
to [3], and [2] for RMON.

4.5.3 A Taxonomy of Commercially Available Tools for Performance
Engineering Data Networks

As mentioned in this section on data collection, several commercially available
tools cover all aspects of data networking: configuration management, equip-
ment inventory, capacity planning, application analysis, performance model-
ing, troubleshooting, and traffic generation.

Although all of these tools are important in their own right, we focus
below on a set of tools that we think is indispensable in performance engineer-
ing data networks, especially WANs. The objective is to provide the reader
with a high-level view of the tool’s capabilities and strengths. In this process, it
is likely that some important aspects of the tools may not be mentioned. For
more details, the reader is referred to vendors’ Web sites.

We classify tools for performance engineering as follows:

• Sniffers;

• Capacity management tools;

• Application analysis tools;

• Predictive modeling tools.

We discuss each type separately next and give some examples of each.

Sniffers
Sniffers are passive devices that can be placed on a LAN or WAN segment
to collect traffic statistics and packet-level information on the segment. They
can be set up with various filters to selectively collect data. For instance, one

130 Wide-Area Data Network Performance Engineering

can isolate specific conversations between a client and a server by filtering on
their MAC or IP addresses.

Sniffers are indispensable for performance engineering for two reasons:
troubleshooting and application characterization. Many examples in the later
chapters of this book contain descriptions of how sniffer protocol traces were
used to troubleshoot performance problems and to characterize application
behavior over WANs. Some tools even have the capability of directly reading
sniffer protocol traces for performance modeling purposes.

The flagship tools in this category are the Network Associates Sniffer

and Wandel & Goltermann’s Domino.

Capacity Management Tools
Tools in this category are primarily software based. They rely on network
components (routers, bridges, hubs, CSU/DSUs, servers, and so on) to collect
measurement data in accordance with the IETF’s SNMP/RMON/RMON2
standards and MIBs. Centralized network management stations poll the net-
work components for information on the MIB variables and report on all
aspects of network capacity, network congestion, application usage, and so on.

Examples of such tools are Concord Communications’ Network/Router
Health/Traffic Accountant, INS’s E-Pro, Cabletron’s Spectrum, and Net-
Scout Systems RMON2 probes and NetScout Manager.

Some tools from vendors such as Visual Networks and Paradyne can be
used for capacity planning and troubleshooting. However, they are hardware
and software based. The hardware is in the form of a “smart” DSU interfacing
with the WAN.

Application Analysis Tools
These tools use self-generated measurements and probes to estimate
application-level performance. They rely on various application profiles that
capture the essence of the application-level traffic flows to measure expected
application performance.

These tools require a centralized management server as well as the deploy-
ment of distributed software clients at the remote locations from which
performance measurements are desired. Examples of this type of tool include
Ganymede’s Pegasus tool.

Predictive Modeling Tools
These tools are either simulation tools or analytical modeling tools. Simulation
tools build a logical model of the network and the applications in question,
and run a simulation collecting the performance metrics of interest. Examples
of these tools include MIL 3’s OPNET and IT Decision Guru. Analytical
modeling builds reference connections in the network and, along with an

Techniques for Performance Engineering 131

application profile input, provides answers to “what if ” scenarios such as
increased bandwidth and protocol tuning. A prime example of analytical tools
is the Application Expert from Optimal Networks.

Other predictive tools have or build application profiles and deploy these
profiles on remote software clients. These profiles are then run from the remote
client over the existing network and performance metrics of interest are
collected. Ganymede’s Chariot tool is a good example of such a tool.

4.6 An Example: Deploying New Applications

We end this chapter by providing a high-level discussion of the necessary steps
that one should take before deploying a new critical application over an existing
WAN. This discussion ties together all of the techniques presented within this
chapter.

The analysis and design of data networks and their performance evalua-
tions are only as good as the inputs to the design and the ongoing monitoring
of the implemented network. Similarly, when developing the engineering rules
for the data network to support the rollout of a new application, the effective-
ness of the engineering rules is only as good as the input to the engineering
models.

We recommend the following four steps in the context of deploying new
applications over a WAN.

Application Characterization
Characterize the new application to be carried over the network and its per-
formance requirements, for example, delay and throughputs. When entering
into the process of redesigning a network to support a new application, it is
important to have first built up an understanding of the nature of the specific
application in question.

We are strong proponents of a top-down approach, as far as possible, to
design, engineer, and maintain data networks. This begins with time spent in
defining the performance requirements of this application. Networks are built
to support a variety of applications and application types.

Applications range from highly transactional, or latency-sensitive,
applications where delay is critical, to bulk data transfer, or bandwidth-
sensitive, applications where throughput is critical, or hybrid applications,
which share the characteristics of sensitivity to latency and bandwidth. Various
tools are available to the engineer to help in characterizing the behavior of the
application. These include sniffers, product literature, and vendor support.

132 Wide-Area Data Network Performance Engineering

Ideally, at the conclusion of this first phase, the network engineer should
be able to draw a timing diagram for the important network applications. This
level of detail will aid in (1) the redesign phase in determining if the design
will meet the application-level performance requirements and (2) the capacity
management phase in developing a component-level performance allocation.
However, it is not always possible to develop this level of detail, depending on
the specific application in question.

Traffic Matrix
Identify the traffic loads and develop a point-to-point traffic matrix related
to the new application. Once the application characterization is complete, the
next stage is the characterization of the traffic, including its arrival patterns, its
point-to-point flows, and its offered load.

This information should be presented in terms of the point-to-point traf-
fic loads between the data sources and the data sinks. This is best built up from
the volume of traffic a given application transaction or file transfer produces
and the frequency of the transmissions of these transactions between all sources
and destinations during the busiest period of the day. Often these traffic
volumes must be estimated based on issues such as (1) assumptions regarding
number of users at a given location, (2) assumptions regarding usage concur-
rence, and (3) best case and worst case bounds.

The sum total of this information is the traffic matrix. The traffic matrix
is used to determine the additional network connectivity and bandwidth
requirements during the network redesign phase.

Network Redesign
Redesign the network and identify the affected network components to support
the new application characteristics and traffic. The first step in the network
redesign phase is to determine the specific network components that will
be affected by the deployment of the new application. At a minimum, the
engineer must identify the components whose capacity must be increased
to support the bandwidth and connectivity requirements specified in the new
traffic matrix.

At this point, the engineer should have a network layout, including the
expected loads on each of the network components, for example, links and
PVCs. The engineer can now develop the expected delays and throughputs for
the dominant applications to be carried over the design. This is accomplished
by developing the appropriate timing diagrams for these applications over
typical reference connections within the network layout. From the timing
diagrams, one can determine the realizable end-to-end delays and throughputs.
If these realizable delay and throughput estimates meet the initial set of

Techniques for Performance Engineering 133

performance requirements for the applications, then the initial design is final-
ized. If the realizable performance estimates do not meet the initial require-
ments, then the design must be modified until the performance objectives
are met.

If the new applications are characterized as latency sensitive, and must
compete for network resources with various bandwidth-sensitive applications,
then the engineer should consider the various methods of traffic discrimina-
tion, which were discussed in Section 4.4.

Capacity Management
Modify the existing capacity management tactics to maintain acceptable
network performance for the existing and new applications. Redesigning a net-
work in this a priori fashion is useful but is never sufficient. New users and serv-
ers are constantly added to existing networks. This has the effect of changing
the nature of the traffic flows over the network and hence changing the
network performance characteristics. Also often it is impossible to fully charac-
terize the new application being deployed to the level of detail suggested earlier.
Therefore the network analyst/network administrator must design a strategy to
continuously monitor the network and plan its growth in order to maintain the
desired level of performance as changes to traffic occur or as an understanding
of the nature of the traffic improves.

Ideally, the capacity management strategy is devised by reverse engineer-
ing the desired end-to-end delays or throughputs into the individual network
component metrics that can be monitored effectively. This is accomplished in
two parts.

First, the end-to-end delays must be mapped into the individual com-
ponent delays. We refer to this as component allocation. Next, the component
delays must be mapped to component metrics, which are measurable. It is gen-
erally not possible to directly measure component delays. Therefore, these must
be mapped to directly measurable quantities, such as the component utiliza-
tion. This relies on load engineering and associated load engineering models.

Consider these four steps as a recipe for performance engineering when
deploying a new application. Each step is as important as the next and none
should be skipped when designing an enterprise network from scratch or when
deploying a new application onto an existing network. However, it must be
remembered that these guidelines cannot be fully realized for all applications
being deployed. Consider the rollout of a company-wide Microsoft Exchange

e-mail platform, or an IBM/Lotus Notes deployment, or an Intranet Web-
based application. For these applications, it will be very hard, if not impossible,
to obtain traffic matrices, usage patterns, and performance requirements prior

134 Wide-Area Data Network Performance Engineering

to their deployment. For other applications, for example, the deployment of
client/server applications, this approach may be more fully realized.

4.7 Summary

In this chapter, we covered several topics regarding general performance engi-
neering techniques. The first topic was load engineering where we discussed the
definition of directly measurable component thresholds and their relationship
to maintaining acceptable network performance. We next discussed latency-
and bandwidth-sensitive applications and the problems of simultaneously sup-
porting both on a common enterprise network. This led us to list the various
traffic discrimination techniques available to minimize negative cross-
application effects. Following this we presented a section on tools for maintain-
ing data networks. This touched on tools for monitoring, capacity manage-
ment, network planning, and troubleshooting. We ended this section with a
brief discussion of a method to follow for the deployment of a new application
over an existing data network.

References

[1] Stevens, W. R., TCP/IP Illustrated, Volume 1: The Protocols, Reading, MA: Addison-
Wesley, 1994.

[2] Stallings, W., SNMP, SNMPv2 and RMON, Reading, MA: Addison-Wesley, 1996.

[3] Rose, M. T., The Simple Book: An Introduction to Management of TCP/IP-Based Internets,
Englewood Cliffs, NJ: Prentice Hall, 1989.

Techniques for Performance Engineering 135

5
Frame Relay Performance Issues

5.1 Introduction

In this chapter, we discuss the performance impact of carrying data applications
over frame relay networks. This extends the discussion of WAN performance
characteristics in the previous chapters. While we use frame relay as the specific
packet technology to illustrate design and performance engineering considera-
tions, much of the discussion in this chapter applies to other packet technolo-
gies as well, for example, ATM.

Frame relay is the technology example we chose to illustrate the design
and performance engineering considerations because of its dominant growth
during the late 1990s. More and more enterprise networks are moving from
a private line environment to a frame relay environment. We will present
the advantages and the perils in making this migration from a performance
perspective.

Our focus in this chapter, and in fact in the majority of this book, is
public frame relay networking. The majority of frame relay-based enterprise
networks are implemented over public frame relay services. In rare instances,
the frame relay network infrastructure is privately held by the enterprise.

Although the technologies and vendor products may be similar, there are
differences between these two alternatives, primarily in the amount of control
and information over the internals of the frame relay network implementa-
tions. With private implementations of frame relay, corporations have com-
plete control and a view into their frame relay implementations. With public
frame relay implementations, the internals of the frame relay network are under

137

the control of the frame relay service provider. These service providers may not
choose to disclose to end users all of the internals of their network service.

Corporate data networks are often migrated from private line environ-
ments to frame relay with the expectation that end user response times will
improve. However, results are not so predictable and depend on a variety of
factors, including bandwidth, traffic volumes, message sizes, traffic mix, and
network design. Frame relay has different latency and throughput characteris-
tics when compared to private lines. Therefore, a successful frame relay net-
work implementation must take into consideration these various factors.

The material in this chapter will guide the network engineer though
the various performance engineering considerations when planning, imple-
menting, performance troubleshooting, or redesigning a frame relay network.
The material herein is kept at an end protocol generic level, in that we do not
discuss the specifics of TCP/IP, Novell’s NetWare, and IBM’s SNA protocols.

We first compare and contrast private line and frame relay performance
for the simplest of reference connections. We then examine global frame relay
network internals and issues. We follow this with a section on bandwidth
engineering and traffic/application discrimination methods. We conclude this
chapter with a brief discussion of various topological considerations in frame
relay network designs.

5.2 Private Line Versus Frame Relay

Let us begin by considering the results of a straightforward private line replace-
ment. Consider the private line reference connection shown in Figure 5.1. This
was reference connection #1 (RC#1) in the previous chapter. Here two routers
are interconnected with a direct private line facility. Private line connections are

138 Wide-Area Data Network Performance Engineering

Router A

Minicomputer A

Transaction
server A

Router B

Minicomputer B

Workstation B

Source

Figure 5.1 A simple private line reference connection.

characterized by a constant propagation delay and fixed bandwidth. The timing
diagram associated with this reference connection was discussed in Chapter 4,
and we repeat it here for convenience (see Figure 5.2).

To begin our discussion on the impact of relying on a shared virtual
private network such as frame relay, we introduce a second reference connec-
tion (RC #2) for our analysis. In Figure 5.3, the same premises configurations
as in Figure 5.1 are maintained, but the direct private line facility between the
two routers is replaced with a shared frame relay network. This figure shows
some of the internals of the frame relay connection, that is, three frame relay
switches in the path. In general, the specifics of the frame relay connection,
such as the number of hops and the specific route a VC takes, are hidden from
the end user.

Frame Relay Performance Issues 139

Transaction
server A Workstation BRouter BRouter A

LAN A
insertion

delay

Private line
insertion delay

LAN B
insertion

delay

Propagation
delay

Overhead

Data

Key:

Figure 5.2 Timing diagram associated with the reference connection in Figure 5.1.

5.2.1 Dual Insertion Delay

What are the performance characteristics of this frame relay reference connec-
tion in relation to the comparable private line connection? Although it is
true that frame relay can provide significant performance gains, there are many
instances when performance will degrade when migrating from a private line
environment if proper care in engineering is not taken.

For the moment, let us assume that the capacity of the internal frame
relay switches and the facilities are infinitely fast; that is, they contribute zero
delay to the path other than the usual wire propagation delay. Then the timing
diagram for this fictional frame relay reference connection—to be compared
with the timing diagram in Figure 5.2—is shown in Figure 5.4.

By now, we have worked enough with the concept of timing diagrams
to interpret the diagram shown in Figure 5.4. Because we have assumed that
the frame relay network is infinitely fast in all aspects, the packet width is
infinitesimal while traversing the frame relay network. Even so, it appears that
the presence of the frame relay network in this path has essentially doubled the
insertion delay of the packet over the WAN (assuming the insertion delay
dominates the router-to-router propagation delay). This is because the access
frame relay switch—that is, frame relay switch G in Figure 5.4—must accumu-
late the entire packet from router A before it can encapsulate it into the internal
networking protocol and transmit it to the next frame relay switch in the path.

This holds true across the frame relay network. Frame relay switch H
must accumulate the entire packet prior to transmitting it onto frame relay
switch I, and so on. This assumes that the frame relay network is not perform-
ing any type of pipelining, that is, packet segmentation. Later on in this section
we will discuss the impact of network pipelining.

140 Wide-Area Data Network Performance Engineering

FR switch G

FR switch H

FR switch K
Router A

Minicomputer A

Transaction
server A

Router B

Minicomputer B

Workstation B

Source

Figure 5.3 A comparable frame relay reference connection.

Finally, the last frame relay switch in the path must receive the entire
packet before it can begin transmission of the packet onto the slower egress
facility to router B. So, we observe that even for an infinitely fast frame relay
network, the “router-to-router” delay a packet experiences traveling from
router A to router B will roughly double in comparison to the comparable
private line case.

As an example, assume a packet size of 1500 bytes, a private line speed of
56 Kbps, and a propagation delay of 10 msec. In this case, the time to move the
packet from router A to router B is simply the insertion time of the packet, for
example, 1500 bytes × 8/56,000 bps = 214 msec, plus the propagation delay of
10 msec, for a total delay of 224 msec. If we simply assume that the cor-
responding frame relay configuration has an egress and access port speed of
56 Kbps and the frame relay network internals are infinitely fast, then the time

Frame Relay Performance Issues 141

Transaction
server A

Workstation BRouter BRouter A Frame relay
G H I J K

LAN A
insertion

delay

LAN B
insertion

delay

Private line
insertion delay Beginning

of packet
arrival without
frame relay

Overhead

Data

Key:

Figure 5.4 Impact of an infinitely fast frame relay network.

to move the packet from router A to router B is the sum of inserting the packet
onto the access line plus the propagation delay plus the time to insert the packet
onto the egress line. Because both the access and egress is 56 Kbps, we estimate
the total delay is 214 msec + 10 msec + 214 msec, or 438 msec. This is roughly
twice as large as the corresponding private line delay.

In reality, rarely is the corresponding frame relay connection imple-
mented in this fashion. In fact, several methods are available to improve the
relative performance of the frame relay connection in comparison to private
line scenarios. We now discuss these options.

It is hard to imagine how to improve on an “infinitely fast” frame relay
network. However, in the preceding example, we have implicitly assumed that
a given packet is carried within a single frame relay network internal packet.
This is not always the case. Could performance improvements be achieved by
using several smaller network internal packets and pipelining the data across the
frame relay cloud? (Refer back to Section 3.4 where we discussed the advan-
tages of pipelining packets over multihop data networks.)

Consider the case where access frame relay switch G encapsulates the
packet into three separate internal frames. Then after about one-third of
the packet is accumulated into switch G, it can transmit this portion of the
data packet onto network switch H, thereby speeding along the data across
the frame relay cloud. This is illustrated in Figure 5.5.

In this case, network pipelining has done nothing to speed the delivery of
the packet to router B. The reason for this is apparent in Figure 5.5. While net-
work pipelining was able to deliver the first two internal frames to the far end
frame relay switch K, this switch still had to wait for the last internal frame
to arrive prior to transmission of the beginning of the full packet onto the
router B.

You might ask why the last frame relay switch had to wait for the
arrival of the last internal frame to arrive prior to transmission. Why could
it not have begun the transmission of the first frame of the packet onto the
egress line?

We refer to this capability as egress pipelining, when the egress frame relay
switch, for example, switch K in Figure 5.6, begins transmission onto the egress
facility prior to fully receiving the entire frame from the internal network.
When the internal network uses multiple internal frames to carry a single data
packet and these small internal packets travel separately across the internal
network, we refer to this as internal pipelining. As shown in Figure 5.6, egress
pipelining can improve the end-to-end performance of the data packet when
traveling from router A to router B. However, this performance improvement
is an illusion due to our assumption of an infinitely fast frame relay network, as
we see next.

142 Wide-Area Data Network Performance Engineering

5.2.2 Delay Variation

In order for the egress pipelining strategy we have just described to work, the
spacing between the arrival of the internal protocol packets to the last frame
relay switch in the path must be constant and equal to the transmission time of
the data portion of the internal protocol packets onto the egress facility. This is
illustrated in Figure 5.7.

The left-hand side of Figure 5.7 shows a timing diagram for the case
where no delay variation exists in the frame relay network. This is evident in the
figure because each internal frame experiences exactly the same delay through
the frame relay network. The right-hand side of the figure shows an identical
timing diagram except for the fact that the internal frame relay network is
assumed to be finite in speed. This will result in a different delay experienced by
each of the internal network frames when traversing the frame relay network.

Frame Relay Performance Issues 143

Transaction
server A

Workstation BRouter BRouter A Frame relay
G H I J K

LAN A
insertion

delay

LAN B
insertion

delay

Overhead

Data

Key:

Private line
insertion delay

The data packet must
still be accumulated
prior to transmission

Figure 5.5 Timing diagram showing the impact of network pipelining on end-to-end packet
delay.

In our example, the third internal frame experiences a greater delay than
the first two frames. This causes a gap to occur in the transmission of the overall
frame relay packet onto the egress line. Router B would see a bad frame error
check on that frame and would then discard the packet.

To ensure that gaps like this do not occur in the delivery of frame relay
packets to end systems, frame relay networks do not perform egress pipelining.1

Hence, the mere presence of a frame relay network will increase the apparent

144 Wide-Area Data Network Performance Engineering

Transaction
server A

Workstation BRouter BRouter A Frame relay
G H I J K

LAN A
insertion

delay

Overhead

Data

Key:

Private line
insertion delay

Notice that the next
packet arrives just
in time

Figure 5.6 Timing diagram showing the effect of egress pipelining.

1. It is possible for the egress frame relay switch to delay the initial insertion of the frame onto
the egress line for a period of time, and then begin the insertion. Hopefully, the initial delay
will compensate for the greatest delay experienced by the remaining packets traversing the
frame relay network. Then the apparent gap in the frame would not occur on the egress
line. However, this is a statistical game that is not implemented in current frame relay
switches. So we ignore this possibility in the remainder of this book.

insertion delay of a packet when compared to a comparable private line
connection.

In addition to the store-and-forward delays in frame relay, additional
delay is incurred due to the finite speed of their components, for example,
switches, trunks, and routing. The delays associated with switching are typically
small, on the order of 1 msec or less. The delays associated with insertion delays
on internal trunks are also typically small, for example, on the order of 1 msec
or less. This is due to (1) frame relay networks performing internal pipelining
that results in the frame relay network carrying small internal packets, and (2)
internal trunks that are typically 1.5 Mbps or higher.

Finally, an additional consideration in comparing frame relay network
delays to private line delays is that the physical paths over which the connec-
tions travel will be different. Remember that propagation delays are dependent
primarily on the length of the physical path followed by the connection. There-
fore, different routing in the frame relay and the private line cases will cause
different delays. Given that the network infrastructure supporting private line
services in most common carriers is more extensive than the corresponding
frame relay infrastructure, this will cause further increases in the realized delay
in the frame relay case.

Frame Relay Performance Issues 145

Router BRouter A Frame relay

Private line
insertion

delay Notice that
the next
network
packet arrives
just in time

Router BRouter A Frame relay

The resultant
gap will cause a
bad CRC check
and the frame
will be discarded

Notice what
happens when
the next network
packet arrives
just a little late

Overhead

Data

Key:

Figure 5.7 Impact of network delay variation on egress pipelining.

Delays within the frame relay networks are often small, around tens of
milliseconds total under most operating conditions. (We discuss the effects
of network congestion in Section 5.4.) However, the additional store-and-
forward delay caused by the frame relay network can be on the order of 100 to
200 msec. For example, the insertion time of a 1500-octet frame relay packet
onto a 56-Kbps serial line is 214 msec. This assumes that a separate 56-Kbps
port is introduced when moving to frame relay. Typically, the extra port
added is higher speed, say, 256 Kbps or higher. So, one option to reduce the
apparent store-and-forward delays is to increase the speed of one or both
the serial access/egress lines into the frame relay network. This is illustrated
in Figure 5.8.

By increasing the serial line speed on the left side of the frame relay net-
work from 56 to 256 Kbps, these diagrams illustrate the improvement in delay.
Further improvements can obviously be accomplished by increasing the serial
access line speeds on both sides of the network. Although these options do
improve the end-to-end performance, they do so at an additional cost.

146 Wide-Area Data Network Performance Engineering

56 Kbps

Router A Router B

56 Kbps 56 Kbps

Router A Router B

256 Kbps

Additional delay due to
the frame relay network

Additional delay due to
the frame relay network

Figure 5.8 Timing diagrams illustrating the effect of increased serial line speed.

5.2.3 Application Impact of Migration to Frame Relay

For some applications, this additional cost is well worth the expense. For chatty
applications—some client/server applications—or “non-WAN friendly” proto-
cols, it is important to minimize the additional delays incurred by migrating
from a private line environment to frame relay. Because these applications tend
to be highly interactive or conversant, the additional delays incurred due to
the frame relay network are magnified from the end user/application perspec-
tive. We have referred to these applications as latency-sensitive applications (see
Section 4.4 in the previous chapter). In contrast, those applications, which
we characterized as bandwidth sensitive, show few effects when migrating from
private line to frame relay circuits.

We provide Figure 5.9 to aid in the identification of those applications
that require careful attention when migrating from private line to frame relay
networks. This figure outlines tolerance zones for various application types
within the context of a delay versus bandwidth plot. Applications found at the
bottom of the plot require low delay connections to perform adequately. Those
found at the far right-hand side of the plot require high bandwidth connections

Frame Relay Performance Issues 147

Low bit rate,
remote
telemetry
- alarms
- monitoring
- keep alives

De
la

y

Audio broadcast, e.g.,
- music
- program feeds

Video broadcast,
e.g.,
- video training
- program feeds

Medical
imaging

Video
teleconferencing

Terminal, e.g.,
- Telnet Database transactions, e.g.,

- client/server,
two tier

Audio
conferencing

Transaction
processing, e.g.,
- point of sale
- reservation
- order entry

Engineering, e.g.,
- CAD/CAM

Bandwidth

Figure 5.9 Application profiles within the delay versus bandwidth plot.

to perform adequately. Those applications that tend to be highly interactive,
for example, telnet, transaction processing, teleconferencing, videoconferenc-
ing, are those that require low delay and require some care in their migration to
frame relay.

5.3 Global Frame Relay Connections

It is often the case that the corporate data network is required to support inter-
national locations. This presents additional considerations for the network
engineer when relying on international frame relay circuits. Specifically, con-
sider the global frame relay reference connection shown in Figure 5.10.

This figure shows the path from the client—located in one country—to
server—located in another country—to be a concatenation of multiple autono-
mous frame relay networks. In particular, this figure shows a larger backbone
frame relay network, denoted as network 2, surrounded by two in-country
frame relay networks, denoted networks 1 and 3.

Typically the networks are built on different frame relay products, for
example, Cisco IPX switches, Northern Telecom’s DPN switches, or Lucent’s
BNS-2000 switches. Further, these networks may be managed, engineered,
and provisioned by different frame relay service providers, for example, AT&T
(United States), Stentor (Canada), Embratel (Brazil), Telintar (Argentina), and
IDC (Japan). These various frame relay services are physically interconnected
via frame relay network-to-network interfaces (NNIs).2 Like the frame relay
user-to-network interface (UNI) definitions, the NNI defines how two frame
relay networks interwork to support end-to-end user virtual circuits. Beyond
the capabilities defined within the NNI standards, the various service providers
must develop bilateral agreements to address issues related to provisioning and
maintenance coordination, interface points, the nature of the interconnect,

148 Wide-Area Data Network Performance Engineering

Network 1
Router A Router B

NNIUNIClient ServerNetwork 3 UNINetwork 2 NNI

Figure 5.10 A typical global frame relay reference connection.

2. Depending on the equipment in use, some interconnects between frame relay providers may
not be standard NNI based.

sales, and pricing. However, because the products and methods differ between
the parties involved in the bilateral agreements, the end-to-end management
capabilities afforded to the customer are often less than that received from
a single service provider. In this case, it is difficult to establish service level
agreements for the end-to-end connections.

Given that the typical global frame relay connection is a concatenation of
multiple frame relay networks interconnected over NNIs, the capabilities of the
NNI are critical. Several NNI issues are worth consideration:

Store-and-Forward Delays
The NNI is a frame relay interface, not an internal trunk protocol. For data
frames to be transmitted over the NNI, the frame relay packets must be recon-
stituted prior to transmission over the NNI links. This adds additional delay
due to store-and-forward insertion and additional protocol processing. For
a 1500-byte frame, the additional round-trip delay per NNI is approximately
20 msec, assuming T1 rate NNIs. Some NNIs run at higher rates, and hence
the added delay will be proportionally less.

Link Status and Failure Recovery
Some link level management capabilities extend across the interface through
the NNI link management protocols. One NNI interface, of an NNI interface
pair, will periodically poll the other interface with status_enquiry messages.
Asynchronous link management interface (LMI) messages are also supported to
indicate the status of, for instance, far-end equipment.

The LMI helps to determine the status of the NNI and the status of the
separate VC segments carried over the NNI on the multiple autonomous frame
relay networks. However, in the event of an NNI failure, no automatic rerout-
ing is defined. For this reason, it is typical to find that the frame relay switches
on either side of the NNI are colocated in order to minimize the probability of
NNI link failure, although this is not always the case.

Congestion/Bandwidth Management Mismatch
There is a possible “impedance” mismatch between the two frame relay net-
works on either side of the NNI in the way they handle bandwidth manage-
ment and congestion control. For example, network 1 may provide an
open-loop congestion management scheme, whereas network 2 may provide a
closed-loop scheme. Also, the separate service providers may implement differ-
ent capacity management algorithms and internal overbooking factors. In these
cases, it is difficult to predict the performance of the concatenated connection.
In cases where the two service providers use the switches from the same frame
relay equipment provider, it is possible that the equipment vendor provides
a proprietary enhancement to the NNI. This enhancement may provide an

Frame Relay Performance Issues 149

extended, end-to-end bandwidth management over the NNI.3 To exacerbate
the concern over congestion management, global frame relay networks often
rely on less than T1.5 trunks. Hence, congestion management becomes rela-
tively more important in global frame relay implementations.

Performance Objectives and Measurement Capabilities
The end-to-end performance objectives are a function of the multiple serv-
ice providers’ engineering and capacity management and other operations,
administration, maintenance, and provisioning (OAM&P) processes. These, of
course, will differ across multiple service providers. When performance prob-
lems do arise, it is more difficult for customers to determine the root cause.
When excessive delays are a concern, the individual providers can send
test_delay messages over their portion of the customer VC to directly measure
the round-trip delays. However, as shown in Figure 5.11, these do not provide
complete coverage across the end-to-end VC.

Missing are the delays across the UNIs and, more problematic for compa-
nies, the delays across the various NNIs. Furthermore, the providers may run
the test_delay measurements at different times and hence the results may not be
useful to the problem at hand. A simpler approach is for the customer to send
a “ping” packet across the VC and then subtract the ingress and egress delays,
taking into account expected load on the access and egress ports. The result will
be an estimate of the round-trip delay on the multiprovider frame relay network.

5.4 Bandwidth Sizing

We now focus on the issues associated with designing frame relay networks
to support desired performance levels. The overall process of network design

150 Wide-Area Data Network Performance Engineering

Network 1
Router A Router B

NNIUNIClient ServerNetwork 3 UNI

End-to-end delay

test_delay test_delay

Network 2 NNI

test_delay

Figure 5.11 End-to-end delay versus individual network test-delay measurements.

3. One example of this is the Cisco Foresight enhancements to the IPX frame relay NNI. In
this case Cisco relies on consolidated link layer management (CLLM) messages to pass
closed-loop congestion notifications over the NNI.

involves numerous steps beginning with building an understanding of band-
width allocation to the various network-based applications. The process ends
with details of statistically multiplexing traffic onto a common frame relay
infrastructure. Bandwidth allocation requires network managers to understand
the volume of traffic associated with each instance of a network application and
their concurrency.

Although some application traffic may be easily obtained, other applica-
tions may not be fully deployed. It is difficult to predict concurrency among
users. This forces the network designer to make an educated guess at the traffic
volumes associated with these applications, very often using worst case condi-
tions. The traffic estimates are used to build a traffic matrix, which character-
izes the point-to-point traffic flows between the various end points comprising
the enterprise network. The network designer then uses the traffic matrix to
create a frame relay design. This frame relay design will identify the access
points into the frame relay network, the size of the access ports and the
number, size of point-to-point topologies of the various virtual circuits between
the end systems connecting to the frame relay network, and an estimate of the
expected performance for the known applications. As new applications become
widely deployed, it is imperative to actively monitor the port/VC utilization to
trend expected application performance.

Due to the statistical multiplexing inherent in frame relay technology,
several critical areas exist where overbooking of traffic can occur. The network
analyst has little control over the nature of the engineering of the internal frame
relay service; this is under the control of the frame relay service provider. How-
ever, it is up to the network analyst to design and engineer the frame relay
access and egress facilities and the VCs that interconnect these ports and to
determine the CIR values for each VC in the network. This is the primary topic
of the next section on sizing ports and PVCs. Following this section, we address
the issues associated with network congestion in frame relay networks. Here
we identify methods to provide differential service to diverse applications in
situations where congestion would potentially occur in frame relay network
deployments.

5.4.1 Sizing Ports and PVCs

We take the following approach to sizing frame relay ports and PVCs. We first
lay out an initial frame relay design, taking into consideration both topology
and bandwidth issues. When these considerations are addressed, the result is an
initial frame relay design. This initial design is essentially an equivalent private
line replacement, giving little or no consideration to frame relay specific
concerns other than simple overbooking rules. We then consider methods to

Frame Relay Performance Issues 151

fine-tune the initial frame relay designs. Three considerations are discussed:
load engineering to a reasonable traffic load, interactive traffic performance,
and file application throughputs.

5.4.1.1 Initial Frame Relay Design Consideration
Network design and performance engineering go hand in hand. Network
design is extremely important in maintaining and supporting multiprotocol
environments. It is generally the first step in laying out the network and in
building up a conceptual model of the network and its traffic flows. Once
developed, this model should be continuously updated and refined through the
appropriate network monitoring.

A frame relay design is characterized by the topology of the network and
the configurations of the attached CPE, for example, routers. This section deals
with the rationale to be followed when developing an initial frame relay net-
work topology.

The frame relay network topology is characterized by the number and
location of the frame relay ports, the size of the individual ports, the intercon-
nection of those ports, and the size of the interconnections between the ports.
At a minimum, the frame relay topology must be capable of carrying the traffic
load, which is described in the traffic matrix. The traffic matrix defines the
point-to-point traffic flow between all locations attached to the network.
Figure 5.12, and its associated table, Table 5.1, give an example traffic matrix
for a four-site network.

Table 5.1 gives the traffic flows from the location in the first column to
the location in the top row. This traffic flow is often taken to be the peak traf-
fic flow averaged over a small period of time. For example, sample traffic over
a month and average the samples into 15-min periods. Then take the busiest
15-min period over the month, or take the average of the busiest 15-min period
for each business day during the month, or some similar averaging
methodology.

152 Wide-Area Data Network Performance Engineering

Table 5.1
Traffic Matrix for a Four-Location Design (in Kbps)

City A City B City C City D

City A — 128 96 128

City B 48 — 8 8

City C 48 8 — 6

City D 56 16 8 —

Use this information to build up a traffic matrix such as the one shown in
Table 5.1. Typical of most networks, one location appears to have the majority
of the traffic into and out of its location. This location is city A according to
this traffic matrix. The other locations have a lesser amount of traffic between
themselves. This location is typically the corporate data center and has Internet
connectivity and the majority of the business partner connectivity as well.

An initial pass at a frame relay design would have full mesh topology
where each city pair has a virtual circuit between them. The size of the individ-
ual virtual circuits (VCs) is equal to the peak traffic flows between the city pairs.
This is shown in Figure 5.13.

The access ports must be sized as well. An initial estimate is to size the
access ports to either no less than one-half of the sum of the CIRs of the indi-
vidual VCs configured on that port, or the single largest CIR on that port. This
represents an overbooking factor of no more than 2-to-1. A quick look at the
traffic matrix shows that 352 Kbps flows out from city A (total), 152 Kbps

Frame Relay Performance Issues 153

City A

City B

City C City D
6 Kbps 8 Kbps

48
Kb

ps

96
Kbps

128 Kbps

128 Kbps

48 Kbps

8 Kbps

8
Kb

ps

16 Kbps

56 Kbps8 Kbp
s

Figure 5.12 A traffic matrix for a four-location design.

flows into city B (total), 112 Kbps flows into city C (total) and 142 Kbps
flows into city D (total). Going with an overbooking factor not to exceed
2-to-1 and taking into consideration that port speeds are limited to increments
of n × 64 Kbps, we get the following port speeds for the various cities: City A’s
port speed is 192 Kbps, city B’s port speed is 128 Kbps, city C’s port speed is
128 Kbps (because the CIR of the VC from A to C is 96 Kbps) and city D’s
port speed is 128 Kbps.

For small network designs this is a reasonable approach. However, prob-
lems quickly develop when trying to apply this methodology onto larger frame
relay designs. For one thing, whenever a new location is added, the number of
VCs that must be added to the network is proportional to the total number
of sites on the network. This soon becomes unmanageable. Full mesh designs

154 Wide-Area Data Network Performance Engineering

6 Kbps 8 Kbps

City D
City C

City A

City B

48
Kb

ps

96
Kbps

128 Kbps

128 Kbps
48 Kbps

8 Kbps
8

Kb
ps

16 Kbps

56 Kbps

192 Kbps

128 Kbps

12
8 Kbps

12
8 Kbps

8 Kbp
s

Figure 5.13 Full mesh VC topology frame relay design.

soon exhaust the VC capacity of routers and of the frame relay switches in the
network (see the discussion in Section 5.7). Therefore, as the total number of
locations grows, a more sparse VC topology must be adopted.

As an example, given that the traffic flow in our four-location network is
primarily into and out of city A, perhaps a star topology can be adopted. In this
case only three VCs totals are required, one from each of the smaller locations
(that is, cities B, C, and D) to the larger location, city A. This topology scales
linearly with the number of locations; that is, the number of VCs is propor-
tional to the number of locations, whereas the full mesh topology scales as
the square of the number of locations, that is, the number of VCs required is
proportional to the number of locations squared.

In this sparse VC topology, the traffic between any of the satellite loca-
tions, for example, cities B, C, or D, must travel two hops in order to reach
their destination. For example, traffic between cities B and C must flow
through city A. To account for this, the size of the VCs between city A and the
satellite cities must be increased to account for this additional flow. The total
traffic flowing over the VC from city A to city B is now 128 Kbps + 8 Kbps (for
C to B traffic) + 16 Kbps (for D to B traffic) = 152 Kbps. In order to accom-
modate this traffic a CIR of 192 Kbps must be used. Similarly, for the total
traffic flowing on the A-to-C circuit we get 112 Kbps, which must be accom-
modated on a CIR of 128 Kbps. For the traffic flowing on the A-to-D circuit
we get 142 Kbps, which must be accommodated on a CIR of 192 Kbps. Given
the additional flow of traffic into and out of the city A hub location, we must
readjust the port speed for this location. Using the not to exceed a 2-to-1 over-
booking rule for port A, we get for the sum of the CIRs a total of 512 Kbps.
Dividing this by two we get a frame relay port speed of 256 Kbps. Similiar con-
siderations may warrant increasing the speeds of ports B and D. This sparse VC
topology design is shown in Figure 5.14.

We have taken this design about as far as possible without modeling,
in more detail, the nature of the applications running over the network and
the nature of the frame relay admission control and congestion management
schemes. We discuss these issues next.

Finally, when choosing the specific VC topology in the frame relay
design, consideration of the interaction between higher level addressing and
subnet architectures must be made. This was discussed in the section on IP
technology in Chapter 2.

5.4.1.2 Port and VC Load Engineering
The rules we discussed previously were simple. They stated (1) the total traffic
on a VC should be less than the CIR and (2) the port should not be overbooked
by more than 2-to-1. Let us elaborate further on these issues.

Frame Relay Performance Issues 155

Regarding the sizing of the CIR, it is generally true that public frame relay
networks support average throughputs on VCs in excess of the CIR. Therefore,
sizing CIRs can be done in a fashion somewhat more aggressive than the corre-
sponding sizing of private line facilities. The CIR should generally be larger
than the total traffic flow of the mission critical applications on the circuit. This
is independent of the nature of the congestion avoidance mechanism in place in
the frame relay network—whether it relies on an open-loop or a closed-loop
mechanism. In either case, traffic that is sent onto the VC in excess of the CIR
may be subject to potential performance degradation. In the open-loop case,
this CIR excess traffic will be subject to higher discards during periods of net-
work congestion. In the closed-loop case, the traffic sent in above the CIR may
cause excessive network delays; this is due to its being buffered in the frame
relay access module. If this is a concern, then a more conservative approach
may be warranted. One approach is to keep the CIR utilization below 70%.

However, you may want to implement different sizing rules for non-
mission-critical applications. Some applications run well over “best effort”
delivery networks. Examples of such applications may be e-mail running over
SMTP on TCP. (SMTP, the Simple Mail Transfer Protocol, is discussed in

156 Wide-Area Data Network Performance Engineering

City B

City D

City A

City C

192 Kbps

192 Kbps

192 Kbps

12
8 Kbps

256 Kbps

128
Kbps

192 Kbps

Figure 5.14 A sparse VC topology frame relay design.

[1].) For these applications, it is reasonable to consider sizing the CIR such that
their utilization exceeds 100%. In fact, some frame relay service providers sup-
port “best effort” or 0 K CIR PVCs for these types of applications.

In general, we recommend a sizing approach that tries to find a middle
ground in these two different philosophies. To take advantage of the excess
bursting capabilities afforded in frame relay services while maintaining good
performance for mission-critical applications, the following approach to sizing
CIRs might be considered: Our guidelines have been to carefully monitor the
PVCs if their utilization exceeds 70%, but actually UPGRADE only if the utiliza-
tion exceeds 100% for, say, 10% to 20% of the time.

Regarding the port overbooking factor, a standard recommendation is
that the overbooking factor on a port should not exceed 2-to-1. However, this
makes some assumptions regarding the noncoincident behavior of the data
traffic on the separate VCs. For instance, if all of the VCs on a port, which is
engineered to the 2-to-1 rule, were simultaneously running at 100% utilization
relative to their CIRs, then the port would be attempting to run at 200%. This
would clearly lead to problems if this were a frequent and persistent occurrence.
On the other extreme, if it were known that the traffic on the various VCs com-
prising the port was noncoincident, then a higher overbooking factor could be
supported, for example, 3-to-1 or even 4-to-1. Also, the appropriate overbook-
ing factor will depend on the number of VCs and the relative speed mismatch
between the individual CIRs and the port speed. In fact, a larger overbooking
factor can be used if all the CIRs are small relative to the port speed. A smaller
overbooking factor should be used in the event that the CIRs are larger. This is
due to the law of large numbers [2]. This theorem basically states that the total
traffic flow is smoother, that is, shows relatively less variation about its mean, if
it is composed of a large number of lower volume flows, than if it is composed
of a small number of higher volume flows. The smoother the total traffic flows,
the larger the overbooking factor.

5.4.1.3 File Application Throughputs
We now take our design considerations to a finer level of analysis by consider-
ing the impact of our design decisions on the performance of file transfer of size
F, a packet size of S, and a window size of W. We focus on the case where the
access controls are based on a leaky bucket algorithm with access buffering. This sys-
tem, as discussed earlier in Chapter 2, is characterized by the size of the token buffer
K, the replenishment rate of the tokens or CIR C, and the port speed P. The
leaky bucket algorithm allows a data packet entry to the frame relay network
only if the token buffer contains enough tokens to match the size of the data
packet. For this reason, K should always be set larger than the maximum data
packet size on the frame relay access line.

Frame Relay Performance Issues 157

The CIR places an upper bound on the system throughput assuming no
bursting. Here, we study the case where the CIR is not the limitation to the sys-
tem throughput, but the end-to-end window is the limit to the system through-
put. In this case, the file transfer packets arrive at the access control filter at
a rate less than the arrival rate for the tokens. Therefore, it is reasonable to
assume that whenever a file transfer packet arrives from the frame relay access
line into the access control filter, there is an ample supply of tokens in the token
buffer to immediately allow the data packet access to the frame relay network.
In other words, we argue that in this limit the contribution of the access control
filter to the data packet delay is negligible.

So our approach is as follows: We compute the round-trip packet delay,
ignoring the access control filter and the limitation to the VC throughput as
determined by the CIR. Once we have computed the round-trip packet delay
(Rd), we then estimate system throughput (X) by using the formula X = W /Rd,
where W is the number of bits in the end-to-end window. Our throughput esti-
mate is then the lesser of the CIR, the slowest link in the path, or X.

Let us work through an example. Assume that the system window size is
two packets, and each packet is 512 bytes in length. We will ignore all higher
level and frame relay protocol overhead in this example. Assume the frame relay
access and egress lines are running at 56 Kbps, the total wire propagation delay
is 20 msec (roughly equivalent to 2000 miles), the subnets behind the routers
are 10-Mbps Ethernets, and the packet acknowledgment is 50 bytes in length.

Further assume the frame relay network trunks are running at 1.5 Mbps,
there are four trunks as indicated in Figure 5.3, and the internal frame relay
packet sizes are 53 bytes. The various delays associated with this reference con-
nection are given in Table 5.2. Also refer to Figure 5.15 for the corresponding
timing diagram.

158 Wide-Area Data Network Performance Engineering

Table 5.2
Delay Worksheet for the Reference Connection in Figure 5.15

Delay Component Computation Value (msec) Multiplier Total (msec)

Packet insertion delay on
the Ethernets

512 × 8/10 Mbps 0.4 2 0.8

ACK insertion delay on
the Ethernets

50 × 8/10 Mbps 0.04 2 0.08

Packet insertion delay on
the 56-Kbps lines

512 × 8/56 Kbps 73.0 2 146.0

ACK insertion delay 50 × 8/56 Kbps 0.7 2 1.4

Frame Relay Performance Issues 159

56 Kbps

Router A Router B

56 Kbps

Round trip
packet delay

over the frame
relay network

Additional delay
due to the frame

relay network

Figure 5.15 A timing diagram for the frame relay reference connection.

Table 5.2 (continued)

Delay Component Computation Value (msec) Multiplier Total (msec)

Insertion delay on the FR
internal trunks

53 × 8/1.5 Mbps 0.3 4 1.2

ACK insertion delay 50 × 8/1.5 Mbps 0.3 4 1.2

Wire propagation delay 10 msec/1000 mi 20.0 2 40.0

Processing delay through
each router

Assumed 1.0 4 4.0

Processing delay through
a FR switch

Assumed 1.0 10 10.0

ACK processing delay in
the receiver

Assumed 1.0 1 1.0

Round-trip 205.7

As an example of how this worksheet shown in Table 5.2 was developed,
let us take a look at the row for the delay component labeled “Processing delay
through a FR switch.” The second column associated with this row indicates
the method of computing this value. In this case, the quantity is either assumed
or derived. The third column gives the value associated with a single instance
of this delay, that is, 1.0-msec delay per each FR switch. The fourth col-
umn—labeled “Multiplier”—indicates the number of FR switch processing
delays that contribute to the round-trip delay. (Remember that the round-trip
includes both the packet transit and the return of the ack.) In this case the
multiplier is 10. There are five FR switches in the reference connection and,
therefore, a total of 10 FR switches are encountered in the round-trip path. The
final column is the total contribution of this delay contributor to the round-
trip delay. Finally, all of these delay contributors are summed to yield the total
round-trip delay of 205.7 msec. Note, this is best case. That is, we assume there
are no other traffic sources contending for the network.

Given a round-trip delay of Rd = 205.7 msec and W = (2 × 512 bytes)
(8 bits/bytes) or 8192 bits, our estimate for the system throughput is

T = W /RT = 8192 bits / 0.2057 sec = 40 Kbps

Referring to the connection in Figure 5.3, we find that the slowest link in the
path is the 56-Kbps frame relay access and egress lines. Thus the maximum
throughput obtainable in this example is 56 Kbps, as determined by the slowest
facility. We just computed the impact of the end-to-end window on the system
throughput and found it will limit the throughput to no more than 40 Kbps.
The one determinant we have yet to consider is the effect of the access control
filter. If the CIR of the connection is less than 40 Kbps, then it will be the bot-
tleneck to system throughput. For example, if the C = 32 Kbps, then the system
will not be able to obtain a throughput higher than 32 Kbps. However, if the
CIR is between 40 and 56 Kbps, then the end-to-end window will be the deter-
minant of the system throughput. Therefore, to achieve maximum throughput
for this reference connection, the CIR should be set to a minimum of 40 Kbps;
otherwise, the CIR will be the throughput-limiting factor.

In short, our recommended approach to determining the throughput for
a reference connection over a frame relay network is as follows. First determine
the reference connection and its relevant parameters—link speeds, number
of routers and switches, and path length. Compute the round-trip delay for a
packet and its corresponding acknowledgment. This ignores the frame relay
access control parameters and impact. Compute the end-to-end throughput,
taking into account the system window using the formula X = W /Rd. Now,

160 Wide-Area Data Network Performance Engineering

compare the window-limited throughput that is obtained from the previous
formula with the slowest link speed and with the throughput limit as deter-
mined by the CIR. The realized system throughput is the lesser of the win-
dow limit, the slowest link limit, and the CIR limit. In Chapters 7 and 8, we
will discuss in greater detail file transfer and delay performance of TCP/IP and
Novell applications, respectively.

5.4.1.4 Interactive Traffic Performance
We now consider the impact of our design decisions on the performance of
isolated interactive traffic. Unlike the throughput analysis just discussed, this
analysis will depend on the specific details of the access control mechanism
implemented in the frame relay access modules. We focus on the same case as
before, where the access controls are based on a leaky bucket algorithm with
access buffering. Whereas, in the case of computing the throughput the rele-
vant access control parameter is the CIR, for estimating interactive delay
performance the relevant ACF parameters are both the size of the token buffer
and the CIR.

Consider the example reference connection discussed in the previous sec-
tion. Let us estimate the transaction delay for a single transaction consisting of
106 octets of input data that generates 1024 octets of output data, similar to an
SNA 3270 or an SAP R3 application. We will ignore the protocol overhead for
this exercise. Assume this represents a single isolated transaction; that is, the
frame relay access and egress lines have been idle for a period of time.4 During
this idle period, the token buffer has been fully replenished. Finally, assume the
token pool size is 2048 octets.

Given that we have chosen the token pool size to exceed both the input
and the output transaction sizes, it will have no impact on delaying the data at
the access control filters. This also implies that the CIR will have no bearing on
the result of our transaction delay computation, given these transaction sizes,
transaction loads, and token buffer pools. We will rely on a delay worksheet
shown in Table 5.3. In this table, we identify the delay components for the
106-octet input traveling from the client to the server across the reference con-
nection and the delay components for the 1024-octet output traveling in the
opposite direction. Then the sum of all the delay components yields the final
transaction delay. Again, this is best case.

Table 5.3 shows an input delay of 58.9 msec, an output delay of
248.4 msec, and a total transaction delay of 307.3 msec. It is not intuitively

Frame Relay Performance Issues 161

4. In cases where this assumption is not true, we presented a formula in Section 3.5.1, (3.5),
that captures the load/queuing behavior of the leaky bucket access control filter.

obvious how these delay estimates were generated from looking at the table.
Remember that this level of detail must be extracted from the corresponding
timing diagram, which is shown in Figure 5.16.

The simplest way to map the information in the timing diagram to the
corresponding worksheet is to follow the last byte of the input and output
messages across the timing diagram. For example, the entire packet must be
inserted onto the LAN segment—not shown in the timing diagram—prior to
the last byte being received at the WAN attached router. This time is simply
the insertion time of the packets onto the 10-Mbps Ethernet LAN segment.
This is the first entry in Table 5.3.

162 Wide-Area Data Network Performance Engineering

Table 5.3
Delay Worksheet for the Isolated Transaction Delay

Delay Component Computation
Value
(msec) Multiplier

Total
(msec)

Insertion delay on the Ethernets 106 × 8/10 Mbps 0.08 2 0.16

Insertion delay on the 56-Kbps lines 106 × 8/56 Kbps 15.1 2 30.2

Insertion delay on the FR internal trunks 106 × 8/1.5 Mbps 0.6 1 0.6

Pipelining delay on the FR internal trunks 53 × 8/1.5 Mbps 0.3 3 0.9

Wire propagation delay 10 msec/1000 mi 20.0 1 20.0

Processing delay through each router Assumed 1.0 2 2.0

Processing delay through a FR switch Assumed 1.0 5 5.0

Input delay 58.9

Insertion delay on the Ethernets 512 × 8/10 Mbps 0.4 2 0.8

Insertion delay on the 56-Kbps lines 1024 × 8/56 Kbps 146.3 1 146.3

Pipelining delay on FR egress line 512 × 8/56 Kbps 73.1 1 73.1

Insertion delay on the FR internal trunks 53 × 8/1.5 Mbps 0.3 1 0.3

Pipelining delay on the FR internal trunks 53 × 8/1.5 Mbps 0.3 3 0.9

Wire propagation delay 10 msec/1000 mi 20.0 1 20.0

Processing delay through each router Assumed 1.0 2 2.0

Processing delay through a FR switch Assumed 1.0 5 5.0

Output delay 248.4

Round-trip 307.3

Next the message experiences a processing delay in transit through the
router; we assumed 1 msec for this processing delay. Next, the last byte must
wait for the message to be inserted onto the 56-Kbps WAN facility prior to
it being received at the frame relay access module. This is the insertion delay
shown in the second row of Table 5.3. The last byte traverses the frame relay
network in the last 53-byte cell, which experiences four insertion delays on the
frame relay 1.5-Mbps trunks and five switching delays through the five frame
relay switches in the reference connection. The last byte must then wait for
the entire (original) message to be transmitted out onto the egress frame relay
line to the other WAN attached router. The message is forwarded through the
router and then inserted onto the other Ethernet LAN segment. Finally, we
must account for the propagation delay due to the geographic separation
between the two end systems. This succession of delay components is listed in
the first set of rows in Table 5.3.

A similar reasoning applies to the output message. The difference here is
due to the fact that this message is larger and is carried in two separate packets.
Therefore pipelining considerations must be taken into account. This is the
reason that the table shows one insertion delay of 1024 byte onto the frame
relay access line and another 512 byte delay onto the frame relay egress line
(referred to as a pipelining delay in the table).

Frame Relay Performance Issues 163

56 Kbps

Router A Router B

56 Kbps

Round trip packet
delay over the frame

relay network

Additional delay
due to server
processing

Figure 5.16 Timing diagram for the isolated transaction.

This single transaction estimate relies on the assumption that the access
lines were idle for a period of time sufficient to totally replenish the access con-
trol filter’s token pools. Given this assumption, then the access control filter
will not delay the messages. Therefore, our estimate above represents a best case
estimate for this reference connection. Because the value of the CIR does not
come into play in evaluating the delay components in Table 5.3, changing the
CIR in this reference connection will not have any impact on the transaction
delay. The main way to improve the delay performance for this transaction is to
increase the speed of the frame relay access and/or egress facilities. Therefore,
if this best case transaction delay is not good enough, the frame relay design
should change by increasing either of these two frame relay access facilities.
Increasing the CIR will have no effect on improving the transaction delay
performance.

Finally, it is worth remembering that our analysis in this section
depended on the token pool being set to a value greater than the message size of
both the input and the output messages. If this were not true, then the access
control filter would always buffer part of the message for a period of time
before the last piece of the message gains access to the frame relay network.
The amount of delay is dependent on the difference between the message size
and the token pool and the value of the CIR. If the message is significantly
larger than the token pool, then computation of the transaction delay is best
accomplished by treating the message as if it were a file transfer and estimat-
ing the throughput achieved over the reference connection. Then from
this throughput value, estimate the period of time required to send the entire
transaction.

5.4.1.5 Bandwidth Sizing Summary
We have suggested a methodology to develop an initial frame relay network
design. First, the ports and VCs are sized to carry—at a minimum—the neces-
sary traffic as specified in a traffic matrix. This results in the minimum port and
VC sizes to support this traffic. Then, we estimate the throughput achievable
for a given transport protocol over this initial design. If the throughput esti-
mates are too small, then the CIRs associated with the VCs will need to be
increased if the CIR is determined to be the throughput bottleneck. Otherwise,
the port speeds may have to be increased. Finally, the interactive delay perform-
ance for various transactions should be considered. If the interactive delays are
too large, port speeds may be further increased in speed in order to satisfy delay
targets. This level of analysis results in an initial frame relay design that has
been fine-tuned based on a relatively simple set of throughput and interactive
delay estimates. In the following sections, we discuss more intricate considera-
tions in engineering frame relay networks.

164 Wide-Area Data Network Performance Engineering

5.5 Traffic Discrimination

5.5.1 Congestion Shift From Routers Into the Network

The speed mismatch between ports and PVCs is a unique characteristic of
frame relay, especially in many-to-few connectivity scenarios. This has the con-
sequence of sometimes “shifting congestion from the routers into the network
buffers.” Consider a many-to-one frame relay network with a T1 frame relay
port at the central site and a 56-Kbps port at the remote sites. Typically, the
PVC CIR speeds will be less than the remote port speed of 56 Kbps—say,
16 Kbps or 32 Kbps. See Figure 5.17. The central site router, router A, sends
data into the network at T1 speeds. However, the maximum rate at which
the network accepts data from the router is 56 Kbps.5 For traffic moving from
the central site to a remote location, it is useful to think of central site router

Frame Relay Performance Issues 165

Data transfer

Router A Router B
56 KbpsT1 Workstation

WorkstationPotential congestion
point

Potential congestion
point

IBM
mainframe

IBM
mainframe

Data transfer

Router A Router B
56 Kbps Workstation

Workstation

32 Kpbs CIR

Figure 5.17 Congestion shift in frame relay networks.

5. In the open-loop implementation, the network accepts data at T1 speed, but data egresses
the network at 56 Kbps. In both cases (open loop and closed loop) the maximum data rate
cannot exceed 56 Kbps.

“filling” the ingress PVC buffer at T1 speeds. Correspondingly, the PVC will
“drain” the PVC buffer at a rate between the minimum rate (the CIR) and
maximum rate of 56 Kbps, the remote site’s port speed. Again, in the open-
loop implementation, the maximum “drain” rate is also 56 Kbps, except the
drain occurs at the egress buffer.

The speed mismatch between fill rate at T1 speeds and drain rate at
56 Kbps may result in buffering of data at the ingress PVC buffers. (In an
open-loop implementation, the buffering of data will occur at the egress
buffer.) Thus, if the PVC is carrying latency-sensitive traffic (say, interactive
SNA or TCP telnet) and file transfer traffic (say, TCP FTP or Web down-
loads), it is possible for latency-sensitive traffic to be “trapped” behind file
transfer traffic at the network buffers. This will occur in spite of routers being
able to giving interactive traffic higher priority. This is not the case in the corre-
sponding private line connections where potential congestion points are only
within the routers.

The following perspective will help clarify the issue further. Assume
the frame relay connection is replaced by a private line connection between the
routers at 56 Kbps, and assume the link is carrying interactive and file transfer
traffic. The accumulation of file transfer traffic is likely to be at the router serial
port. See the lower reference connection in Figure 5.17. This gives router pri-
orities a better chance to be effective. Congestion can shift from the router to
the network buffers, when a private line network is replaced by a frame relay
network. Whether or not this congestion shift occurs depends on the nature of
the background traffic (say, TCP FTP, Web downloads, and so on). It also
depends on file transfer window sizes and number of simultaneously active file
transfers.

5.5.2 Response to the Congestion Shift

Separating latency-sensitive traffic, or another traffic stream that needs higher
priority, on its own PVC can help address the congestion shift just discussed.
There are also a few related options listed next that are somewhat restricted in
their applicability but which may be useful:

• Giving latency-sensitive traffic a separate PVC;

• Limiting application/protocol window size;

• Prioritizing PVCs in the frame relay network;

• FECN/BECN and DE bit marking support; and

• Traffic shaping and bandwidth management.

166 Wide-Area Data Network Performance Engineering

The separate PVC option and the other approaches are described in the follow-
ing paragraphs.

5.5.2.1 Giving Latency-Sensitive Traffic a Separate PVC
Separating latency-sensitive and bandwidth-sensitive traffic streams on dif-
ferent PVCs is one way of addressing the congestion shift problem. It has
the highest probability of success in a closed-loop implementation, where the
switch buffers data at the ingress on a per-PVC basis. This places a burden on
the routers to map different traffic classes on application-specific PVCs. Ordi-
narily, it is not a problem to have a router try to distinguish TCP/IP, Novell
IPX, AppleTalk, or DECnet protocols. However, it is somewhat more complex
to separate TCP/IP encapsulated SNA and other IP traffic on separate PVCs,
and it is router vendor dependent. There are many occasions where telnet,
HTTP, or FTP traffic, when mixed together on a speed-mismatched frame
relay network, produces unacceptable echoplex response times for telnet.

The previous discussion raises an interesting issue. Under what condi-
tions, if any, should latency-sensitive traffic be on its own PVC when mixing
with bandwidth intensive traffic? There are some guiding factors to consider:

• Interactive traffic is typically light and requires consistent response
times. Therefore, the interactive traffic is more vulnerable than file
transfers to large variations in PVC loading.

• The applications and protocols that constitute noninteractive traffic
typically present large volumes of data sent in the direction from the
fast port to the slow port. Typically, these are file transfers or Web
downloads. In some cases, these can be produced by periodic broad-
casts, such as NetBEUI and Novell SAPs. As we have discussed, large
volumes of data are determined by window size, not the size of the
files. In this context, the window size is more important to consider
than the actual file transfer size. Window size represents the simulta-
neous amount of data that a single session can send. Therefore, the
window size is the maximum amount of data per session that can be
resident in any frame relay network buffer at any given time. Corre-
spondingly, the larger the window size of the file transfers, the more
contention the interactive traffic is likely to experience. In general,
whenever interactive traffic is mixed with FTP, HTTP file transfers,
and Novell file transfers, caution must be exercised.

• The smaller the CIR and egress port speeds, the slower the potential
drain rate from the VC buffers. This increases the possibility of con-
gestion from file transfer traffic and may require a separate VC for

Frame Relay Performance Issues 167

interactive traffic. In other words, for higher CIRs, significant conges-
tion can only occur when there are a large number of simultaneous file
transfers. For example, if the port speed/CIR is 1.544 Mbps/256 Kbps,
separate VCs may not be as necessary, compared with a 256 Kbps/
16 Kbps port speed/CIR combination.

• Strict guidelines relative to the level of speed mismatch or central site
frame relay port oversubscription that justify a separate VC for interac-
tive traffic are nonexistent.

• Cost considerations surround the use of a second PVC. If PVCs are
priced by CIRs, splitting a “large” PVC into two “smaller” PVCs
should result in minimal additional cost. It is certainly not true that
separating protocols on different PVCs “doubles the PVC cost,” as
has been suggested in some trade publications. However, pricing can
always change. At the time of this writing, the cost penalty of multiple
PVCs is minimal. The more important factor to consider—especially
for large many-to-one frame relay networks—is the impact on
router/FRAD capacity. Consider a 300-location many-to-one frame
relay network carrying interactive and file transfer traffic. Assume for
a moment 300 PVCs can terminate on a single router—although on
several interfaces. The strategy of mapping interactive and file transfer
traffic on different PVCs will double the number of PVCs that the
router terminates. This may stretch router resources to a point where
performance and capacity could be impacted.

5.5.2.2 Limiting Protocol Window Sizes
As discussed earlier, window size plays a key role in this issue. It is natural, then,
to inquire whether limiting window sizes for file transfers will reduce potential
congestion experienced by interactive traffic sharing the same PVC. Although
the answer to this question is yes, this solution is hard to implement and,
hence, not recommended. Nevertheless, this approach is worth elaborating on,
because it leads to a more complete understanding of the underlying dynamics.

Consider, for example, a 300-node network with classical transaction-
oriented applications supported on a centrally located mainframe. These are
the lifeblood of the company’s business. Good, consistent response times for
these applications are critical. Now assume TCP/IP is supported on the main-
frame to allow remote workstations to download files from the mainframe
using FTP. Ordinarily, file transfers are scheduled during off-hours when there
is very little interactive traffic activity. However, there are no guarantees that
file transfers and interactive traffic will not mix. What should the network
manager do to guarantee acceptable interactive response times at all times?

168 Wide-Area Data Network Performance Engineering

One option would be to limit the window size for the TCP/IP file trans-
fers. Where should this window size reduction take place? On the mainframe or
the remote clients? Note that the files are being transmitted from the main-
frame to the clients. To reduce the outstanding data from TCP/IP file transfers,
the receive window size advertised by the clients should be reduced. Realisti-
cally, in a large network, one is likely to find many different varieties of PCs,
laptops, and workstations that need to be supported. Typically, TCP imple-
mentations on these devices are often not the same. Some TCP packages allow
window size tuning, but many others do not. Even if the window size can be
tuned, it may be hard to do. Besides, what should the window size be? Too
small a window size will limit throughput. Too large a window size will affect
other traffic on the network without improving file transfer performance. For
these reasons, this approach has limited applicability and is not recommended.

5.5.2.3 Priority PVCs in the Frame Relay Network
Consider a frame relay network with three hub sites, as shown in Figure 5.18.
Here, one hub site has a mainframe, one provides e-mail and intranet/Internet
access, and the last provides external data feeds, such as financial market data. A
remote location would typically need access to all three hub sites. Suppose the
remote location port speed is 64 Kbps, and all three PVC speeds are 32 Kbps.
The confluence of these PVCs at a remote location is likely to congest that
frame relay port, especially considering the fact that remote frame relay port is
oversubscribed by a factor of 3 to 2 (3 × 32 = 96 Kbps > 64 Kbps). Hence, if
there is enough traffic on all three PVCs, in the direction from the hub sites to
the remote location, to exceed the overall drain rate of 64 Kbps, congestion at
that frame relay port is inevitable.

One can try to minimize the possibility of egress port overload through
an appropriate choice of port oversubscription. Relative to oversubscription,
there are no hard and fast rules, although utilization levels, time-of-day, and
time zone characteristics determine the oversubscription level to choose. How-
ever, do not be overly conservative in this approach, because there exists an eco-
nomic advantage to considering a higher value of the overbooking factor. This
represents a classic trade-off between performance and price.

No matter how conservative one is in designing the egress port oversub-
scription factor, periods of temporary traffic overload will occur at the egress
port. If these periods are significant (as determined through actual measure-
ments), then one should look to take advantage of tools within the frame relay
network technology to address the traffic contention at the egress port. One
possibility is to use priority queuing or bandwidth-sharing at the outbound
transmit queue in the egress frame relay port. The most effective way to address
this congestion issue is to designate some PVCs in the network as high priority

Frame Relay Performance Issues 169

compared to the others. In the previous example, the mainframe PVC and the
financial market data feed PVC need to be prioritized over the intranet/Inter-
net/e-mail PVC. Most frame relay carriers support PVC priorities in the net-
work. Some implementations offer minimum bandwidth guarantees for lower
priority PVCs.

5.5.2.4 FECN/BECN and DE Bit Marking Support

FECN/BECN bits are set on a per-PVC basis by the frame relay carrier when
the PVC experiences congestion in its path. In a frame relay network carry-
ing transaction-oriented applications, FECN/BECN congestion notification is
usually caused by nontransaction protocols carried on the same PVC. Routers
can optionally tag a protocol discard eligible (DE) when encapsulating the
respective protocols within a frame relay packet. For instance, all frames on a
PVC belonging to FTP can be set DE.

It has been claimed that responding to FECN/BECN indications from
the network will address the congestion issue when transaction-oriented traffic

170 Wide-Area Data Network Performance Engineering

Router A Router B

Mail
source

Mail
source

Router A

Router A

Market data
source

Market data
source

Mainframe
source

Mainframe
source

Hubs
Remote site

FR switch GRouter A Router B
FR switch H

FR switch G

FR switch G

Router A

Router A

Hubs

Remote site

Congestion
buildup at

egress port

Figure 5.18 Traffic convergence at the frame relay egress port.

is mixed with file transfer traffic on the same PVC. Another suggestion that has
been put forth is that the non-SNA traffic can be tagged as DE by the router.
Both of these techniques can have limited effect. The effect depends on the
frame relay carrier’s implementation of FECN and BECN and DE thresholds.
In reality, they tend to address frame discards rather than delays. In other
words, responding to FECN/BECN or setting DE bits for file transfer traffic
will likely protect against frame discards rather than guarantee that delay
spikes—and perhaps time-outs—do not occur in the transaction-oriented
protocol.

Most FRADs and many routers respond to congestion notification on
a PVC from the frame relay service provider and take corrective action for
that PVC. For example, one popular implementation is to send “receiver not
ready” frames to SNA devices configured on the router/FRAD on receipt of
a frame with the BECN bit set. The devices are notified about congestion
in the forward directiThistects SNA frames from poy being discarded when
the frame relay network becomes congested, and thereby prevents potential
session loss.

The reason frame discards are protected—but not delayed—is that frame
relay implementations typically send FECN/BECN information only when a
significant amount of frames have been accumulated in network buffers. When
such accumulation occurs, draining these buffers takes a relatively long time.
For example, if an egress frame relay port is 56 Kbps, then draining 35 Kbytes
of data accumulated at that port takes 5 sec.

Responding to FECN/BECN and setting DE bits are ineffective
responses to this problem. The more important question that must be asked is
the reason for an inordinate amount of data accumulating in network buffers.
This could be due to several reasons—unfiltered router broadcasts, undercon-
figured CIRs, or excessively large transport layer windows.

5.5.2.5 Traffic Shaping and Bandwidth Management
Traffic shaping is a very broad term that is applicable in many contexts. This
term is also used interchangeably with bandwidth management. There are some
differences between the two approaches that we will attempt to distinguish.

There are essentially two approaches in the context of frame relay:
router-based traffic shaping and bandwidth management using external
devices. In router-based traffic shaping, more appropriately called rate throt-
tling, the router can be configured not to transmit traffic on a PVC at greater
than a specified rate, say, CIR. This eliminates or reduces the congestion
in PVC buffers due to speed mismatches, and gives router priorities a better
chance to be effective. Hence, traffic shaping is most applicable at hub sites
rather than at remote sites. Bandwidth management, on the other hand, is

Frame Relay Performance Issues 171

accomplished through external devices, colocated with routers, that are capable
of very granular schemes for allocating bandwidth and provide some schemes to
support rate throttling.

Router-Based Traffic Shaping
In its simplest form, traffic shaping can be implemented on a per-PVC basis
at the frame relay layer. Some routers have the capability of rate throttling to
specified levels. Rate throttling can be accomplished by setting the excess burst
size Be (see Chapter 2) appropriately. For instance, setting

Be = Tc × [min(Ingress port speed, Egress port speed) − CIR]

where the Tc is the measurement interval, would enable the router to take
advantage of full bursting to port speed in the connection. The same approach
can be used to limit the bursting to a fraction of the CIR. Setting Be = 0 implies
a complete rate throttle to CIR on a connection.

In some situations it may be necessary to throttle the rate on a PVC to a
rate lower than the CIR. Imagine two separate frame relay ports of 128 Kbps
with PVEs of 48 Kbps and 16 Kbps. Assume that the two PVCs terminate on
a remote 64 Kbps frame relay port in a triangle configuration. Although the
sum of the CIRs is equal to 64 Kbps, congestion will occur at the remote port
because both PVCs will attempt to burst to 64 Kbps. If the 16 Kbps PVC is
carrying time-sensitive traffic, then it makes sense to throttle the rate of the
other PVC to a value less than 48 Kbps.

Router-based rate throttling should be used in conjunction with prioriti-
zation because rate throttling pushes the congestion back to the routers. The
method of prioritization varies between router vendors.

Some routers allow for rate throttling to occur in response to receipt of
FECNs and BECNs. While this approach might seem reasonable, it may not
be very useful depending on how long the network buffers wait before signaling
congestion. For time-sensitive traffic like TCP telnet, even the slightest conges-
tion will be noticeable.

Note also that BECNs are, in a sense, more important than FECNs. Because
BECNs notify congestion in the direction opposite to the direction of data transfer,
rate throttling will be effective because it will reduce the data transmitted into the
network. Rate throttling in response to receipt of FECNs will not be effective.

Bandwidth Management Techniques That Use External Devices
In this subsection, we present a brief overview of bandwidth management
techniques as implemented in devices by Xedia, Packeteer, and others. The

172 Wide-Area Data Network Performance Engineering

approach to bandwidth management and traffic shaping adopted in these
devices appears to have promise in providing an overall QoS strategy for appli-
cations over a WAN.

Bandwidth management provides a flexible approach to first classifying
user traffic and then assigning bandwidth characteristics to each traffic class.
The classification can be quite granular in that applications can be sorted
according to well-known TCP port numbers, UDP, source/destination
addresses, and so on. Although similar bandwidth allocation techniques are
available in routers today, the classification is usually not very granular. For
instance, different classes of Internet or intranet traffic cannot be treated differ-
ently. More important, unlike router implementations, bandwidth manage-
ment combines this granular prioritization with rate throttling, that is, these
devices can be configured to limit bandwidth allocated to different classes.
To illustrate this point, routers cannot be configured to allocate a maximum
bandwidth of 4 Kbps for each Internet user at a given location; this is, however,
feasible using external bandwidth devices.

Thus the distinction between bandwidth management and traffic shaping
is that the former allows an explicit bandwidth allocation scheme at a granular
level, whereas traffic shaping implies rate throttling. The two schemes should
be combined to truly achieve differential services between classes of appli-
cations. Bandwidth management devices implement these features more effi-
ciently than routers.

Bandwidth management devices are active devices in that packets from
end systems flow through them before they are processed at the router.
Conceptually, the easiest way to think of them is that they implement the
bandwidth management and traffic shaping function outside the router.

Queuing Versus TCP Rate Control

A variety of external bandwidth management devices are available in the
marketplace, and all of them have one primary purpose: to effectively allocate
and manage bandwidth for each traffic class. However, they use vastly different
approaches to achieve that objective. Broadly speaking, there are two
approaches: queuing and TCP rate control.

Let us consider the case of a device that implements queuing. When
a packet comes into the device, it is first classified. If the traffic class has not
yet used all of its bandwidth, the packet flows immediately onto the outbound
link. If a packet comes in and the class is attempting to use more than its com-
mitted rate, there are two possibilities: either the packet is placed in a queue and
it is rate shaped or it is allowed to “borrow” from the currently idle bandwidth
of any other traffic class (if the class is specified to be “borrowable”).

Frame Relay Performance Issues 173

In a TCP rate control scheme used by Packeteer’s PacketShaper, the
granularity of bandwidth management is at the level of a specific TCP flow
between a client and a server. For traffic exceeding the specified level, TCP rate
control uses two methods to control TCP transmission rates: delaying acknowl-
edgments and reducing advertised TCP window sizes. The PacketShaper “sits
in the middle” of a TCP flow and intercepts the TCP packet and literally
changes the header information that contains acknowledgment numbers,
sequence numbers, and window advertisements. Thus, in a real sense, the
delayed acknowledgments and reduced window advertisements provide a rate
throttling mechanism by informing the sending TCP stations to slow down.

This issue of device placement in the network is important. Devices using
the queuing approach are usually placed behind WAN routers at specific loca-
tions in the network, such as data centers, hub locations, or other potential
points of congestion. For devices relying on TCP rate control, it does not
matter where the device is placed—at the hub site or at the remote loca-
tions—because it manages traffic at a TCP level. However, in this case, it might
make more sense to place the device at the remote locations because individual
TCP sessions are better managed at the end user level rather than at the
hub site.

Note also that it is likely that multiple devices would need to be placed at
a single campus location, and that these devices typically work independently.
For instance, consider two devices placed in the campus with one configured to
manage Internet traffic and the other to manage client/server traffic. As far as
the WAN is concerned, both traffic streams could share the PVC to the remote
location. Because the two devices act independently of each other, one would
necessarily have to bandwidth manage the Internet traffic stream to ensure
good client/server performance. Over frame relay, this implies that the inherent
burst capability of the network may not be fully utilized.

5.6 Global Versus Local DLCI

We have discussed how to design frame relay networks to ensure good delay
and throughput performance. We have discussed traffic considerations, traffic
discrimination issues, and considerations related to mapping IP subnets onto
underlying PVC topologies. Here, we consider frame relay PVC addressing and
CPE limiting design issues. We first introduce the concept of global versus local
data link connection identifiers (DLCIs) and the impact on customer provi-
sioning and maintenance processes. In the following section, we finish with a
consideration of various scaling issues in designing large frame relay networks.

174 Wide-Area Data Network Performance Engineering

Typically, specific frame relay DLCIs only have local significance. That
is, a given PVC on a port is randomly assigned a DLCI number at provisioning
time. In this case, there is no relationship between the local DLCI number and
the remote site. Therefore, each router on the frame relay network will have a
unique table mapping the DLCIs to the IP address of the remote site. This
complicates customer provisioning and troubleshooting. This is illustrated in
Figure 5.19.

Given the random relationship between DLCI numbers and remote IP
addresses, it becomes confusing to the network designers and engineers when
laying out the design for new locations or when troubleshooting connectivity
issues on existing locations.

To simplify the network design, frame relay providers often support
global DLCIs within their service. When implementing global DLCIs, there
is a strict relationship between the DLCI number and the far-end site.
Figure 5.20 shows the network from Figure 5.19, except that now global
DLCIs are in use.

In Figure 5.20, a simple algorithm is used to determine the far-end IP
address from the global DLCI number; that is, the DLCI number is equal to
the last digit of the far-end site IP address, which is written in dot-decimal
notation. The exact algorithm is not important, just the fact that there exists

Frame Relay Performance Issues 175

Router A
UNI

UNI

Router C

UNI

IP addr 172.16.2.5=

IP addr 172.16.2.3=

IP addr 172.16.2.4=

DLCI 5=

DLCI 16=

DLCI 15=

DLCI 23=

DLCI 17=
DLCI 16=

Router A:
16 - 172.16.2.4
15 - 172.16.2.3

Router B:
5 - 172.16.2.5

23 - 172.16.2.3
Router C:

16 - 172.16.2.5
17 - 172.16.2.4

Router B

Figure 5.19 DLCI to remote IP address mapping for local DLCIs.

a strict relationship. This simplifies the router configuration. Because there is
essentially one master table, it is easier to build the router configurations. All
table mappings will be the same for all routers, less their own entry. This is not
an obvious advantage with a three-node network; however, when addressing
25 to 100 nodes, this scheme provides for simple DLCI-to-IP address configu-
ration management.

5.7 Virtual Circuit Scaling Issues

Several issues arise when the size of the frame relay deployment exceeds several
hundred sites. Although most implementations are much smaller than this, it is
useful to understand various limitations to large-scale deployments. We discuss
two such limitations, one related to the size of the DLCI field in the frame relay
header and its impact on global DLCI use, and the other is due to the maxi-
mum number of PVCs that a typical router can support.

Figure 2.7 in Chapter 2 shows the header format for a frame relay packet.
This shows that the field for the DLCI numbers is 10 bits in length. This
means that there are at most 210 = 1024 DLCI numbers supported on a given
frame relay interface. In fact, there are less. DLCI numbers 0 and 1023 are

176 Wide-Area Data Network Performance Engineering

Router A
UNI

UNI

Router C

UNI

IP addr 172.16.2.5=

IP addr 172.16.2.3=

IP addr 172.16.2.4=

DLCI 5=

DLCI 4=

DLCI 3=

DLCI 3=

DLCI 4=
DLCI 5=

Router A:
3 - 172.16.2.3
4 - 172.16.2.4

Router B:
3 - 172.16.2.3
5 - 172.16.2.5

Router C:
4 - 172.16.2.4
5 - 172.16.2.5

Router B

Figure 5.20 DLCI to remote IP address mapping table for global DLCIs.

used by the LMI protocols, while DLCIs 1–15 and 1008–1022 are reserved for
frame relay multicasting applications. This leaves 1024 − 32 = 992 point-to-
point DLCIs for a given frame relay port. For large frame relay deployments,
this limit has implications on the use of global addressing schemes.

Most frame relay deployments are roughly star topologies, with one or
two data centers to which the remaining remote locations connect. The data
center locations must terminate one or two PVCs per remote location. The
total number is dependent on potential connectivity, redundancy, and per-
formance considerations. Therefore, straightforward applications of global
DLCI schemes will scale to hundreds of remote locations. In the event that the
number of remote locations is a thousand or more, the DLCI limit of 992 will
be exceeded, and the global addressing scheme will fall apart. In these cases, it is
necessary to divide the network into “logical” subnetworks, such that a global
addressing scheme can be implemented within each of the logical subnetworks.
To interconnect subnetworks, a smaller set of DLCIs is reserved for this
purpose.

Another limit encountered when scaling to large frame relay deployments
is due to the limit in routers to terminate large numbers of VCs. Routers resi-
dent within these corporate data centers are expected to terminate large num-
bers of frame relay circuits. Typically, routers view these individual circuits as
separate point-to-point links. Routers were not originally developed to termi-
nate hundreds of point-to-point links. High-end routers from vendors can typi-
cally support several hundred or less links per router and tens to a hundred
links per interface card. In data center architectures supporting thousands of
remote frame relay locations, this requires 10 or more frame relay ports coming
into the data center and would require five or more routers due to these PVC
limits. When dealing with networks of this size, other considerations come into
play as well (e.g., throughput limits or routing protocol design issues). Both
of these issues may force more routers within a given data center architecture.
When planning router deployments of this size, it would be wise to engage
the specific router vendor to aid in the design and planning phase of your
implementation to ensure that proper consideration has been given to all router
limitations.

5.8 Summary

Carrier pricing for public frame relay services is attractive. While distance,
speed, and configuration variables make one-for-one cost comparisons between
private lines and frame relay difficult, experience suggests that customers realize
savings when migrating from leased lines to public frame relay services. This is

Frame Relay Performance Issues 177

particularly true when multiple networks are consolidated. This is not always
the case in one-for-one mappings, especially when additional equipment and
management costs are considered. However, for a large number of networks
frame relay is an economically attractive technology.

There are several issues to remember when planning a migration from
a private line based WAN to a frame relay based WAN. This chapter touched
on many issues to consider when making this migration. We first discussed a
straightforward comparison of frame relay and private line environments. The
list of considerations discussed when comparing these two WAN designs were:

• Delay and delay variation differences;

• Open-loop versus closed-loop congestion control strategies;

• Speed mismatch between frame relay ports and VCs;

• Overbooking;

• Egress port buffer traffic convergence.

We next discussed several issues unique to global frame relay deploy-
ments. These issues included (1) additional delays due to the existence of NNI
to interconnect the frame relay carrier networks, and (2) end-to-end manage-
ment and monitoring difficulties resulting from the concatenation of multiple
frame relay services.

Following this, we focused on network congestion, congestion points,
and design considerations to mitigate congestion-induced delays in frame relay
designs. These design considerations included:

• Separating delay-sensitive applications onto their own PVC;

• Limiting application/protocol window size;

• Prioritizing VCs in the frame relay network;

• FECN/BECN and DE bit marking schemes;

• Traffic shaping and bandwidth management at the router.

Finally, we addressed several PVC topology considerations within frame
relay networks. These centered around global DLCIs versus local DLCIs and
scaling issues with respect to DLCI limits on frame relay ports and on routers
terminating the frame relay connections on customer premises.

178 Wide-Area Data Network Performance Engineering

References

[1] Stevens, W. R., TCP/IP Illustrated, Volume 1: The Protocols, Reading, MA: Addison-
Wesley, 1994.

[2] Feller, W., An Introduction to Probability Theory and Its Applications, Volume 1, 3rd ed.,
New York: John Wiley & Sons, 1968.

Frame Relay Performance Issues 179

6
Using Pings for Performance Analysis

6.1 Introduction

Network managers and technicians usually resort to pings to measure latency,
and FTP to measure throughput on a network connection, in order to draw
conclusions about network performance. The network managers may be trouble-
shooting a specific performance problem or performing a network validation test.

To be able to draw the right conclusions about network performance
from pings, one should compare the measured performance against expected
performance based on calculations and some reasonable assumptions. In this
chapter, we discuss how to calculate expected ping delays and how these calcula-
tions can be used to estimate WAN latency. We will also demonstrate how large
pings can be used for rudimentary measurements of bursting available for PVCs
in a frame relay network. We will discuss leased lines and frame relay WANs.

The calculation of expected throughput for a network connection using
FTP is discussed in Chapter 7.

This chapter is organized as follows. In Section 6.2 we describe the
ping program and discuss important aspects such as protocol overhead. In
Section 6.3 we discuss ping delay calculation for leased line and frame relay
connections. In Section 6.4, we will demonstrate how small pings can be used
to highlight network latency issues. Section 6.5 discusses general issues and
caveats in using pings for estimating network latency. In Section 6.6 we show
how large pings can be used to demonstrate whether or not PVCs can burst
above their CIR for a frame relay connection, and some overall issues in the use
of large pings for calculating throughput.

181

6.2 Pings

We start with the ping program. (For an excellent and detailed discussion of
ping and FTP and, in fact, of TCP/IP networking in general, see Stevens [1].)
The ping program (named in analogy to a sonar ping) sends a number of Inter-
net Control Message Protocol (ICMP) echo_request packets to a given destina-
tion. The destination is required by the ICMP protocol to reply with an ICMP
echo_reply message. Pings can be sent between any two hosts and are often used
to test network reachability.

In addition to reachability, the ping program returns the round-trip time,
which, along with information such as ping size, line speeds, and distance, can
be used to measure performance of the connection. The round-trip time is
measured by the ping program at the source that clocks the time between when
echo_request is initiated to the time when the echo_reply is received.

Figure 6.1 shows the output from the execution of the ping program. The
first line shows the command line options when executing the program. The
following lines show the program output. The program, in this case, continues
until the packet count, indicated with the “–c 10” command line option,1 is

182 Wide-Area Data Network Performance Engineering

>ping 10.10.10.10 -c 10 -s 56 -i 2
PING enskog (10.10.10.10): 56 data bytes
64 bytes from 10.10.10.10: icmp_seq=0 ttl=32 time=0.9 ms
64 bytes from 10.10.10.10: icmp_seq=1 ttl=32 time=0.8 ms
64 bytes from 10.10.10.10: icmp_seq=2 ttl=32 time=0.7 ms
64 bytes from 10.10.10.10: icmp_seq=3 ttl=32 time=0.8 ms
64 bytes from 10.10.10.10: icmp_seq=4 ttl=32 time=0.8 ms
64 bytes from 10.10.10.10: icmp_seq=5 ttl=32 time=0.8 ms
64 bytes from 10.10.10.10: icmp_seq=6 ttl=32 time=0.8 ms
64 bytes from 10.10.10.10: icmp_seq=7 ttl=32 time=0.7 ms
64 bytes from 10.10.10.10: icmp_seq=8 ttl=32 time=0.8 ms
64 bytes from 10.10.10.10: icmp_seq=9 ttl=32 time=0.8 ms
--- enskog ping statistics ---
10 packets transmitted, 10 packets received, 0% packet loss
round-trip min/avg/max = 0.7/0.7/0.9 ms
>

Figure 6.1 Typical output from the ping program.

1. The example ping program discussed in this section is specific to the LINUX operating sys-
tem. Other operating systems may have different command line options.

met. This is shown on the last line. The output lines list the destination
address, whether the destination returns the ping, and, if it does return the
ping, the measured value of the round-trip delay. The program provides
the minimum/average/maximum round-trip delays of the successful pings
at the conclusion of the program output.

The ping program is standard in all TCP/IP host implementations. One
can use many options with the program. As an example, the ping program
distributed with LINUX has command line options that allow the user to
specify a number of variables when executing the program. These typically
include:

• The number of echo_request messages sent (this is specified through the
–c option in the command line);

• The interval between sending the ping messages (this is specified
through the –i option in the command line and generally defaults to
once a second);

• The size of the ICMP echo_request data field (this is specified through
the –s option in the command line and generally defaults to 56 bytes of
ICMP data); and

• Whether to allow for packet fragmentation or not (the default is usu-
ally not to allow for packet fragmentation).

These capabilities make the ping program a simple and extremely useful diag-
nostic tool.

One final piece of information regarding the ping program is required
before we can put it to use in building a delay model of a network reference
connection: message format and protocol overheads. This discussion is neces-
sary in order to calculate insertion delays of the echo_request and echo_reply
messages.

ICMP messages are carried directly inside IP packets. The ICMP echo
message consists of an 8-byte header and is followed by the ICMP data. Within
the ping program, the size of the ICMP data field is specified on the command
line. Figure 6.2 shows an example of an ICMP echo message, which is
fragmented. Link layer technologies, for example, Ethernet, token ring, and
frame relay, have maximum frame sizes associated with them. The IP protocol
addresses this fact through the implementation of IP datagram fragmentation.
If a router or host wants to transmit a datagram onto a subnet having a
maximum frame size smaller than the datagram, then the router or host may
fragment the datagram into smaller multiple datagrams.

Using Pings for Performance Analysis 183

6.3 Calculating Ping Delays

We first consider a leased line connection and then a frame relay connection.

6.3.1 Leased Line Connection

Consider reference connection RC#1 shown in Figure 6.3. It shows a leased
line connection between location A and B at 56 Kbps.

We will make the following assumptions for the ping calculation:

• The distance between the routers is roughly 1000 (airline) miles.

• Host A pings host B with a ping size of 100 bytes (i.e., ICMP echo
packets are 100 bytes).

• The WAN connection is lightly loaded.

• LAN, router, and host delays are negligible.

184 Wide-Area Data Network Performance Engineering

IP header ICMP
header

ICMP data (1473 octets)

IP header ICMP ICMP data (1472 octets) IP header ICMP data (1 octet)

20 octets 8 octets 1472 octets 1 octet

Figure 6.2 Message format for a fragmented ICMP echo message.

Router A

Host A

Router B

Host B

Source

Figure 6.3 Reference connection RC#1 for calculating ping delay.

We now have enough information to calculate the expected ping delay. The
following computations apply:

• Frame size = 100 + 20 (IP) + 8 (ICMP) + 8 (PPP) = 136 bytes.

• Insertion delay on the 56 Kbps link = 136 × 8/56,000 sec = 19 msec.

• One-way propagation delay (10 msec for every 1000 airline miles) =
10 msec.

Hence expected ping delay for this connection is 2 × (19 + 10) = 58 msec. The
factor 2 accounts for the fact that the ICMP packets are echoed.

The total path traveled by the ping message, along with the associated
delay estimates, is shown in Figure 6.4.

Using Pings for Performance Analysis 185

Transaction
server A Workstation BRouter BRouter A

Issue echo_request

Private line
insertion delay

(19 ms)

Network
latency

Router switching
delay (small)

Router switching
delay (small)

Router switching
delay (small)

LAN A insertion
delay (small)

Host response
delay (small)

Ro
un

d
tri

p
es

tim
at

e
of

58
m

s

Private line
insertion delay

(19 ms)

Network
latency

Figure 6.4 Calculation of the minimum ping delay for RC#1.

6.3.2 Frame Relay Connection

Consider a frame relay connection RC#2, as shown in Figure 6.5. Calculating
ping delays for the frame relay case is a little more involved. One has to take
into account issues such as pipelining, store-and-forward delays at the network
edges, switch delays, and burst levels in the PVC.

For the sake of illustration, we will make the following assumptions:

• The frame relay connection is lightly loaded.

• Host A pings host B with a ping size of 100 bytes (excluding headers).

• The distance between the routers is roughly 1000 (airline) miles.

• The PVC is carried via four hops (five switches) and each switch adds
1 msec of latency.

• The carrier provides full bursting to the port speed without frame
drops in both directions.

• LAN, router, and host delays are negligible.

The following computations apply for frame relay:

• Frame size = same as for leased line = 136 bytes.

• Insertion delay on 512 Kbps port = 136 × 8/512,000 sec = 2 msec.

• One-way network latency = 10 msec (1000 miles) + 5 msec (switch
latency) = 15 msec.

• Insertion delay on 128 Kbps port = 136 × 8/128,000 sec = 8.5 msec.

• Expected ping delay = (2 + 15 + 8.5) × 2 = 51 msec.

186 Wide-Area Data Network Performance Engineering

128 Kbps
Router A

Host A

Router B

Host B

Source

512 Kbps 56 Kpbs

Figure 6.5 Reference connection RC#2 for calculating ping delay.

The calculation for the minimum ping for RC#2 is shown in Figure 6.6.

6.3.3 Observations

Note that propagation delay is a major contributor to the overall ping delay. For
larger ping sizes, the relative contribution of the propagation delay will decrease.

The service provider (leased line or frame relay) should be able to provide
the network latency (which includes propagation delay) number—in our case,
10 msec for leased line and 15 msec for frame relay. It is important to under-
stand how the carrier measures latency—switch to switch or point of presence

Using Pings for Performance Analysis 187

Router A Router BFrame switchFrame switch

Issue echo_request
Port insertion
delay (2 ms)

Network
latency

Port insertion
delay (8.5 ms)

Host response
delay (small)

Ro
un

d
tri

p
es

tim
at

e
of

51
m

s

Network
latency

Figure 6.6 Calculation of the minimum ping delay for RC#2.

(POP) to POP. Most carriers advertise POP-to-POP delay objectives for frame
relay, but cannot track these delays because not all POPs have frame relay
switches. In other words, frame relay connections may have to be back-hauled
to the nearest available POP.

Comparing the ping delay for the leased line and frame relay connections,
we find that the leased line connection delay is actually longer. This is because we
assumed full bursting to port speed. This offsets the extra delays over frame relay.

If, for some reason, the carrier limits the bursting to CIR in both direc-
tions, then the ping delay calculation needs to be changed slightly, as follows
(assuming that frames are pipelined into the network using ATM cells):

• Insertion delay for a 136-byte frame in the A to B direction =
136 × 8/56,000 + 0.015 + 136 × 8/128,000 = 42.5 msec;

• Insertion delay for a 136-byte frame in the B to A direction =
136 × 8/56,000 + 0.015 + 136 × 8/512,000 = 36 msec; and

• Total ping delay = 80 msec (approximately).

If the underlying network is more complex (e.g., a hierarchical backbone
of routers), then one must account for the fact that the forward and return
paths may vary depending on what routes are chosen. In particular, the return
path may not be the same as the forward path.

We have assumed that host and router delays are negligible, but they may
not always be. One can use pings to estimate the additional latency due to these
components. We show a simple method using the connection in Figure 6.3.

Suppose we send a ping from router A to host B. The ping delay compo-
nents are (1) router processing delay at router A, (2) network delay, (3) router
processing delay at router B, (4) LAN delay between router B and host B, and
(5) host B processing delay.

To isolate the network delay component, one can first get independent
measurements of router processing delay at router A and router B by sending
pings between the local interfaces of the routers. These numbers can be sub-
tracted from the ping delay between the two routers A and B. The remainder
should be a reasonable estimate of the network delay. Next, if we were to
subtract the router to router ping number from the router A to host B ping
number, this gives an estimate of the host and LAN delays at the location B.
Alternatively, one can ping router B from host B and subtract the processing
delay on router B to get another estimate of the same metric.

One should perform these measurements a number of times to get an
idea of the average and variability. Also note that the router processing times
obtained thus are not representative of the overall processing delays in the

188 Wide-Area Data Network Performance Engineering

router. For instance, an SNA packet requiring TCP/IP encapsulation may
require more CPU cycles than pings. In addition, pings may be treated as lower
priority packets for processing.

For the leased line case mentioned earlier, a simple way to account
for background load would be to double the insertion delay. This implicitly
assumes a 50% load on the WAN link in both directions and an M/M/1 queu-
ing model [see (3.5) in Chapter 3]. If more accurate utilization numbers are
available, then the following formula can be used to estimate the delay in any
one direction:

Insertion + Queuing delay = Insertion delay on the 56-Kbps link / (1 − U)

where U is the utilization of the link in the direction in question.
For the reference connection in question, the assumption of 50% load in

both directions will mean an increase in the ping delay estimate from 58 to
96 msec.

For the frame relay case, the calculation of ping delay under load is more
complex and will not be discussed here.

6.4 Using Pings to Verify Network Latency

One useful application of the ping program is to ping between various loca-
tion pairs within a data network and to compare the measured results to the
expected delays. If the expected and measured delays differ significantly (say,
more than 20%), then two possibilities arise—either the network is not per-
forming as designed, or the assumptions underlying the calculations (for exam-
ple, the link is assumed to have low load) are inaccurate. In both cases,
investigations into the discrepancy should take place.

We first need to show how network latency can be estimated from the
results of a ping.

In Section 6.3, we showed how ping delays can be calculated using some
assumptions about distances and switch delays for an unloaded leased line or
frame relay connection. Conversely, one can estimate the network latency given
information about the ping delay, the ping size, and line speeds for the connec-
tion. Again, one would have to make some assumptions regarding LAN and
router delays, and background load.

We will illustrate with two actual examples. These examples are taken
from a real network with headquarters in Pittsburgh, Pennsylvania. Please also
see Case Study 1 in Chapter 11.

Using Pings for Performance Analysis 189

Example 1: Pings Reveal That the Network Connection Is Healthy

The first example is a 512-Kbps leased line circuit between Pittsburgh, Penn-
sylvania, and Anaheim, California. The observed ping delay between the WAN
routers at these locations for a 100-byte ping is 56/59/60 (min/avg/max). The
connection is lightly loaded (peak utilization under 20%).

Let us use the minimum ping delay number, 56 msec, to calculate the
best possible network latency. The average and maximum delays can be used to
estimate representative numbers as well as a measure of delay variability.

The estimated network latency in this case is:

= Observed ping delay − 2 × Insertion delay
= 56 − 2 × (136 × 8/512,000) = 52 msec (approximately), or about
26-msec one-way delay.

Is this consistent with the fact that the connection is a leased line between Pitts-
burgh and Anaheim? The distance between Pittsburgh and Anaheim is about
2300 miles. Hence the propagation delay is expected to be about 23 msec one
way. This is fairly close to the measured number and hence the conclusion is
that there are no unusual latency issues in this connection, other than delays
that could occur due to overutilized physical connections.

Example 2: Global Frame Relay Connection

The second example is an international frame relay connection between Pitts-
burgh and Australia. The frame relay ports at the two locations are 256 Kbps
with a 128-Kbps PVC between them. As before, the connection is lightly
loaded. For a 100-byte ping between the two WAN routers, the ping delay is
measured as 384/390/404 msec (min/avg/max).

As in Example 1, the round-trip network latency between Pittsburgh and
Australia can be estimated as

0.384 − (136 × 8/256,000 + 136 × 8/256,000) × 2 sec = 367 msec

Is this reasonable? Rationalizing the latency using distances is very hard for
global frame relay connections. For instance, even if we use a conservative
distance estimate of 10,000 miles from Pittsburgh to Australia, the round-trip
latency estimate is only 200 msec. The reason for the discrepancy is that global
frame relay connections between the United States and other countries usually
traverse three “clouds”—a U.S. domestic frame relay network, a global

190 Wide-Area Data Network Performance Engineering

backbone, and a third frame relay network in that country. These clouds are
connected via NNIs that typically clock at T1 or higher speeds. Hence there
are several store-and-forward delays along with switch delays in the clouds.

Rather than attempting to validate the 367 msec, the best approach
would be to repeat the ping tests multiple times and arrive at the network
latency (which, for Australia, could well be in the vicinity of 350 msec).

6.5 General Comments Regarding the Use of Pings to Estimate
Network Latency

While it is easy to use pings to estimate network latency, one should keep some
key issues in mind.

Should We Use the Minimum, Average, or Maximum Ping Delay?
As we have seen, the min/avg/max delays are reported when a ping is success-
fully executed. If the ping delay exceeds a time-out value, then it is discarded
from the min/avg/max delay reporting. The question is which numbers should
be used for estimating network latency?

The minimum round-trip delay is well defined. In fact, it is the sum of all
the fixed delays in the connection for the packet (as shown, for example, in the
timing diagram in Figure 6.4). It is the best delay possible on the connection
during the period of observation. Thus to obtain an estimate of network
latency (i.e., delay on an unloaded circuit), one can use the minimum ping
delay. In addition, if a large number of ping measurements result in a signifi-
cant number of the round-trip measurements close to the minimum delay, then
one can be fairly certain about the accuracy of the measurement of the mini-
mum delay.

The other fixed delays include the switching delays in the routers, which
tend to be relatively small in general, and the host response delay. One way to
estimate (or back out) some of these delays is to run pings on intermediate points
along the reference connection, for example, ping the routers along the path.

Finally, the maximum ping delay measurement, while giving some indi-
cation of the variation in the round-trip delays, is not very meaningful and will
likely vary significantly with each separate run of ping measurements.

Effect of Background Load
The inference of network latency from ping delays are most accurate when the
underlying connection is lightly loaded. By network latency, we mean switch
delays (for frame relay) and propagation delay. Hence, as such, using ping
to estimate network latency will assist in uncovering unusual problems in the

Using Pings for Performance Analysis 191

connection (such as excessive backhaul for the carrier’s POP to the nearest
frame relay switch). Drawing inferences about network latency using ping
delays under load is very difficult and subject to error.

Using Ping Delays to Represent Application Delays
This is quite obvious, but it must be stated: Ping delays cannot be automatically
used to infer how applications will perform over the connection. One would
have to understand application transactions, message sizes, frequency, and so
on, to quantify response times. However, ping delays (as mentioned before)
gives an estimate of network latency, which can then be used to characterize
application performance.

Pings May Be Treated as Low-Priority Packets
Some hosts, including routers, may treat ICMP echoes as lower priority pack-
ets, thereby potentially misrepresenting the delays. Allocating lower priority on
a slow-speed WAN interface on a router can impact the delays more than if
ICMP echoes are treated as lower priority packets in the processor. Some rout-
ers allow for explicitly treating ICMP echoes as high-priority packets.

Using Pings to Estimate Delays for Global Connections
Pings are especially useful when trying to estimate latency for global frame relay
connections. Please see discussion in Chapter 5, Section 5.3.

6.6 Calculating Delays for Large Pings

Default ping sizes on most systems are small (less than 100 bytes). However,
pings can be quite large, sometimes as large as 65 Kbytes. Small and large pings
may be generated in response to performance problems, while the network
manager is attempting to validate delays in the underlying WAN. Large pings
can also be used quite effectively over frame relay connections to verify whether
or not the carrier is allowing PVCs to burst, as we will demonstrate in this
section.

If the ping size is less than the serial line MTU (maximum transfer unit)
on the routers, then the ping delay calculation proceeds exactly as shown in
the last section. For instance, if the ping size is 1000 bytes, then one would
use a frame size of 1036 bytes and perform the calculations, since the serial
line MTU on most routers defaults to 1500 bytes. If the ping size exceeds
1500 bytes, then the router will have to fragment the IP packet. The calculation
of ping delays then becomes a little more involved, especially for frame relay, as
shown in the following examples.

192 Wide-Area Data Network Performance Engineering

6.6.1 Example 1: Leased Lines

Assume the reference connection RC#1, a leased line connection with 56 Kbps
of WAN bandwidth between locations A and B. Suppose an 11,832-byte ping
is sent from A to B. Figure 6.7 shows the timing diagram for this ping packet.
Due to the fact that the ping message is now larger than the MTU size on the
Ethernet LAN segment, that is, 1500 bytes, the message must be fragmented
into eight IP packets. The maximum data field of an Ethernet frame is
1500 bytes. From this we must subtract 20 bytes for IP header information
within each Ethernet frame. This yields 1480 bytes per frame for higher level
data. Finally, given that the ping message is fragmented, only the first fragment
carries the ICMP header of 8 bytes. Therefore, our ping message should frag-
ment into eight separate frames, the first with 1472 bytes of ping data and the
last seven with 1480 bytes of data (or a total of 11,832 bytes).

Using Pings for Performance Analysis 193

Router A Router BFrame switchFrame switch

issue echo_request

Router switching delay

Network latency
of 10 ms

Private line insertion
delay of 1,721 ms

Host response
delay (small)

Network
latency

IP packet
fragmentation

IP packet
fragmentation

LAN insertion
delay (small)

Ro
un

d
tri

p
es

tim
at

e
of

3.4
6s

Figure 6.7 Timing diagram of a ping with IP packet fragmentation.

For large ping messages, the transmitting workstation performs the frag-
mentation necessary for the message to be transmitted over the local Ethernet
segment. The eight separate IP packets pipeline their way across the reference
connection. The destination host must accumulate all eight packets in order to
reconstruct the entire ping message prior to issuing the ICMP echo_reply mes-
sage. Because this reply is equal in size to the ICMP echo_request message, it
must also be fragmented by the destination host. Again, these eight IP packets
pipeline their way back to the original sender, are accumulated, and the mes-
sage is fully reconstructed prior to stopping the ping round-trip timer.

Adding up all of these delays, we get a total round-trip delay of roughly
3.46 sec. Here are the details for the calculation:

Insertion delay for large packet = 8 × [(1472 + 8 + 20 + 8) +
7 × (1480 + 20 + 8)] / 56,000 sec = 1.721 sec

Propagation delay = 10 msec

Total delay = 1.731 msec × 2 = 3.46 sec

6.6.2 Example 2: Calculating Large Ping Delays Over Frame Relay

This example is the same as Example 2 in Section 6.4.2 of this chapter. The
frame relay connection is between Pittsburgh, Pennsylvania, and Australia
with a 256-Kbps port at both ends and a PVC with 128-Kbps CIR connect-
ing them. The connection is lightly loaded. The frame relay connection
goes through two NNI links at T1 speeds (three frame relay networks). An
18,024-byte ping was issued from the Pittsburgh router to the router in Austra-
lia. The observed delay was 1688/1810/2052 msec. How does it compare with
the target (i.e. calculated) delay?

The 18,024-byte payload will be broken up into 13 fragments—the first
being 1472 bytes, the next 11 being 1480 bytes, and the last being 272 bytes.
Each will be sent as an IP datagram with 20 bytes of header and 8 bytes for
frame relay, with the first packet having an extra 8 bytes of header for ICMP
echo. Hence the individual frame sizes over the WAN are 12 × 1508 plus
300 bytes for a total of 18,396 bytes.

The next step is to assume a number for network latency. We can use the
same numbers from Example 2 in the previous section—367 msec. However,
this number slightly underestimates the latency because the 1508-byte frame
has to traverse the NNI links in a store-and-forward manner. Thus the increase
should be 4 × 1508 × 8/1,536,000 sec (four hops through a T1 for a 1508-byte

194 Wide-Area Data Network Performance Engineering

frame at T1 speeds), which is equal to 31 msec. Hence the total network
latency will be about 400 msec.

To calculate the expected ping delay, let us first assume that the connec-
tion is bursting to the full port speed (best case). For this case,

Delay from Pittsburgh to Australia = 8 × 1508/256,000 + 0.2
(one-way latency) + 8 × 18,396/256,000 sec = 822 msec

Ping delay = 2 × 0.822 = 1.64 sec

Notice how close the calculated ping delay is to the minimum observed ping
delay—1.64 sec versus 1.69 sec, a 3% error. This is remarkable considering the
fact that a number of assumptions have been made regarding the network and
the latency.

What conclusions can be drawn from this observation? It is clear that
the PVC is bursting to the full port speed in both directions (at least during the
time the ping test was done). If it were not, the observed ping delay should be
much larger. For instance, if there was no bursting at all on the 128-Kbps PVC,
then the calculated ping delay will be

Delay from Pittsburgh to Australia = 8 × 18,396/128,000 + 0.2 +
8 × 300/256,000 (last frame) sec = 1.36 sec

Ping delay = 2 × 1.36 = 2.72 sec

Clearly, the maximum observed ping delay is larger because of some intermit-
tent background traffic skewing the average delay number. As stated before, the
minimum delay number provides some insight into whether or not the PVC is
bursting to port speed.

6.6.3 Some Comments Regarding the Use of Large Pings to Calculate
Throughput

It is sometimes useful to perform a large ping test and use the results to make
some low-level estimates of connection throughput. In the first example
(Example 1) of this section, we were able to transfer 11,832 bytes in one direc-
tion in 1.73 sec (one-half of the ping delay). This assumes symmetry in the ref-
erence connection. (This is true in our analysis because we have assumed that
there are no queuing delays along the path that would generate an asymmetry.)

Using Pings for Performance Analysis 195

Hence the calculated throughput is about 55 Kbps out of a maximum of
56 Kbps.

In Example 2 for the global frame relay connection, we found that a ping
message with 18,024 bytes of data had a round-trip time of roughly 1.7 sec.
Hence the connection transferred 18,024 bytes in one direction in roughly half
the round-trip time, or 0.85 sec. Equivalently, the throughput is 18,024 bytes
per 0.85 sec or 170 Kbps, out of a maximum of 256 Kbps.

Is this the best possible throughput for this connection? No. Throughput
should really be measured by sending a continuous stream of packets in any one
direction, as in a TCP bulk data transfer with a large enough window size. A
large ping, no matter how large, is window limited (as in Novell burst mode),
and therefore inappropriate for throughput calculations.

One other comment regarding determining burst levels in PVCs is in
order. In Example 2, we were able to demonstrate that the PVC was indeed
capable of bursting at port speed rate. We required that the connection be
lightly loaded to facilitate the analysis. However, what is the guarantee that the
service provider can sustain burst levels to port speeds when their backbone net-
work is busy? This is an important question for most network managers. The
only way to ascertain this is to continue to perform large ping tests at all repre-
sentative periods of the day, and verify that the calculated ping delay is close to
the observed minimum delay.

6.7 Summary

We discussed how pings work, how ping delays can be calculated, and how
these pings can be used to estimate network latency and throughput. We
showed that small pings can be used to estimate network latency and that large
pings can be used to estimate throughput over a WAN connection, especially
bursting over the CIR for frame relay. We also discussed some caveats for using
pings to estimate network latency and throughput.

Reference

[1] Stevens, W. R., TCP/IP Illustrated, Volume 1: The Protocols, Reading, MA: Addison-
Wesley, 1994.

196 Wide-Area Data Network Performance Engineering

Part II
Specific Application/Protocol Suites

WAN Performance Analysis of TCP/IP Applications

7
WAN Performance Analysis of TCP/IP
Applications: FTP, HTTP, and Telnet

7.1 Introduction

Applications using TCP/IP services vary greatly in traffic characteristics—from
bulk data transfers1 like FTP, that predominantly send packets in one direction,
to Telnet, that sends single-byte keystrokes across the WAN. Within that spec-
trum lie a plethora of TCP/IP applications that dominate data networking
today—from SNA tn3270, Web transactions, to complex multitiered cli-
ent/server applications.

Clearly, WAN performance issues depends on the traffic characteristic of
the TCP application in question. For example, TCP Telnet and FTP present
contrasting performance issues—Telnet performance is more sensitive to
latency than bandwidth, whereas FTP performance is more often dictated by
available bandwidth and not by latency. Some client/server applications exhibit
a hybrid behavior, in which small packet exchanges between the client and the
server may be interspersed with a one-way bulk data transfer from the server
to the client. Web-based applications exhibit a bursty behavior with multiple
image files being downloaded with multiple parallel TCP sessions.

In this chapter we study three representative TCP/IP applications—FTP,
HyperText Transfer Protocol (HTTP), and Telnet—to demonstrate the
performance analysis methodology. FTP represents a bulk data transfer

199

1. Bulk data transfers can be loosely thought of as file transfers, except that file transfers refer
specifically to files being sent across a network. Bulk data transfer is a more general term that
refers to a one-way transfer of user data, usually from the server to the client.

application, Telnet is an echoplex, and HTTP represents an application that
exhibits an interactive nature as well bulk data transfer. Thus the three applica-
tions represent a continuum, from an extremely latency-sensitive application
(Telnet) to an extremely bandwidth-sensitive application (FTP), with HTTP
being somewhere in the middle. The focus is more on WAN and TCP/IP
parameters that affect application performance,2 rather than special characteris-
tics of FTP, HTTP, and Telnet (such as, for example, the fact that FTP is a
stateful protocol whereas HTTP is not).

There are two other important classes of TCP/IP applications not
discussed in this chapter: client/server applications and SNA (using TCP/IP
encapsulation or using gateways). Chapter 9 discusses the performance issues
for client/server applications in more detail.

Chapter 10 discusses SNA performance issues.
We begin in Section 7.2 with a brief description of the essential aspects

of TCP windowing and retransmission algorithms. We will use a sniffer trace
to illustrate the description. The concepts presented here will be used exten-
sively in subsequent chapters to discuss the impact of TCP parameters on
performance.

In Section 7.3, we consider the performance of TCP bulk data transfers
over private lines and frame relay. Specifically we address the question “What is
the best possible throughput a TCP bulk data transfer can achieve on a given
WAN connection?” In the process of developing formulas for calculating
throughput and file transfer times, we discuss the impact of network parame-
ters such as latency, bandwidth, protocol overhead, and background load,
and TCP/IP parameters such as window size and segment size. Private line and
frame relay are treated separately in this section. The concepts are illustrated
with specific examples. This is then followed by general formulas that can
be used for arbitrary WAN configurations and TCP/IP parameter settings. For
simplicity of presentation, we assume unloaded WAN connections in this
section.

In Section 7.4, we relax the assumption of unloaded serial lines and ports
and PVCs. Calculating TCP throughput and delay under network load, and
to capture the dependencies on all the variables involved, is a complex

200 Wide-Area Data Network Performance Engineering

2. Although we focus on TCP applications (FTP, HTTP, Telnet) in this chapter and on
TCP-based client/server applications in Chapter 9, similar techniques can be employed to
quantify UDP applications. Clearly, one has to account for the important differences
between TCP and UDP, such as the “best effort” aspect of UDP. We mention TFTP
briefly in a footnote and discuss the performance impact of SNMP (a UDP application)
polling in Chapter 11.

mathematical exercise and beyond the scope of this book. We present a simple
and intuitive approach that can be used for most practical situations.

In Section 7.5, we provide an approximate analysis for calculating per-
formance for HTTP. This is an important area because applications using the
Intranet model, where the end user accesses a set of applications using a Web
browser, are becoming more prevalent in the industry. The objective in this
section is to give the reader some information about the sequence of events that
occurs when a Web page is accessed, and how one might calculate the perform-
ance impact of the WAN connection. Web performance, in general, is a com-
plex topic, and the reader is referred to an excellent book [1].

In Section 7.6, we provide guidelines for calculating echoplex delays for
TCP Telnet sessions over a WAN. We demonstrate that echoplex delays are
reasonable over most terrestrial connections, and that the real issue for TCP
Telnet performance arises when echoplex traffic mixes with bulk data transfers.
This leads to a general discussion of traffic discrimination when supporting
heterogeneous traffic streams over a WAN. This issue is discussed at some
length in Chapters 4 and 5. In Section 7.7, we will summarize the issues and
methods available for traffic discrimination in the context of TCP applications.

7.2 Some Essential Aspects of TCP Operation

We will start by summarizing how TCP window, time-out, and retransmission
algorithms work, and how TCP segment sizes3 are chosen. Please refer to
Stevens [2] for an excellent discussion of various aspects of TCP.

TCP adds 20 bytes of protocol overhead (in addition to 20 bytes for IP).
TCP hosts use a three-way handshake to establish a session between themselves.
As part of this session establishment, window sizes are advertised (not really
negotiated). Both hosts inform their partners about the maximum number of
bytes that they can receive. This window advertisement can changed during the
course of a transaction.

Figure 7.1(a) shows a sample sniffer trace of a TCP session establishment.
In this trace, “140.x.x.x” is the client and the “139.x.x.x” is the server [see
Figure 7.1(b)]. The server is on the U.S. West Coast and the client is in West-
ern Europe.

The first three packets show the session establishment (SYN—SYN
ACK—ACK). Note that the server is advertising an 8-Kbyte window size, and
the client is advertising a 2880-byte window size. Although this trace does not

WAN Performance Analysis of TCP/IP Applications 201

3. We will use the terminology segment size to refer to a transport layer protocol data unit
(PDU), packet to a network layer PDU, and frame to a link layer PDU.

show a change in these advertised window sizes, it can change during the course
of the transaction.

If the client or server explicitly wished to use segment sizes larger than
512 bytes, this will be displayed in the three-way handshake. Its absence in this
trace indicates that the maximum segment size used here is 512 bytes (see the
LEN field in frames 4–6).

Notice the SEQ and ACK fields. These fields are comparable for packets
going in opposite directions. They indicate bytes in a byte stream (starting at a
number chosen, one for each direction, according to a preset pseudo-random
algorithm when the session starts) in the send or receive direction. For instance,
packet 4 is a request from the client to the server consisting of 512 bytes of
payload starting at byte number 396,167. In this frame, the client also informs
the server that it has successfully received from the server all bytes up to
186,688,000, and is expecting byte number 186,688,001.

Finally, the delta times (intervals of time between successive frames that
the sniffer observed that was sent to and from the two stations for this TCP ses-
sion) provide a rough estimate of WAN round-trip delays. The delta time for
packet 2 is a mere 4 msec (because the sniffer is on the same LAN as the server),
while the delta time for packet 3 is 318 msec. This is a good estimate of the
round-trip latency through frame relay between the United States and Europe.

202 Wide-Area Data Network Performance Engineering

Frame Delta T Dest Source Summary

1 [139.x.x.x] [140.x.x.x] TCP D=2001 S=1025 SYN SEQ=396166 LEN=0 WIN=0
2 0.0044 [140.x.x.x] [139.x.x.x] TCP D=1025 S=2001 SYN ACK=396167 SEQ=186688000 LEN=0 WIN=8192
3 0.3184 [139.x.x.x] [140.x.x.x] TCP D=2001 S=1025 ACK=186688001 WIN=2880
4 0.1174 [139.x.x.x] [140.x.x.x] TCP D=2001 S=1025 ACK=186688001 SEQ=396167 LEN=512 WIN=2880
5 .0020 [139.x.x.x] [140.x.x.x] TCP D=2001 S=1025 ACK=186688001 SEQ=396679 LEN=32 WIN=2880
6 0.0950 [140.x.x.x] [139.x.x.x] TCP D=1025 S=2001 ACK=396711 SEQ=186688001 LEN=53 WIN=8192

Frame relayRouter Router

Server

Client
Sniffer

(a)

(b)

Figure 7.1 (a) Sample trace of a TCP session establishment. (b) Frame relay connection for
the TCP session establishment trace.

This is the time for a small packet to be sent out to the client from the server
and another small packet to be received back at the server.

The maximum TCP window size is 65,535 bytes. The protocol allows
larger window sizes via the use of specific TCP options.

TCP uses a sliding window algorithm. In a nutshell, sliding window
means that each time an ack is received for a segment, the sending host can
send one or more additional segments, ensuring that, at any time, the receiver-
advertised window size is not exceeded. For instance, if four segments are sent
out in a window and the sender receives an ack for segments 1 and 2, then two
more segments can be sent. Thus the window of segments 1–4 slides to 3–6.
Note that TCP does not explicitly send acks for segments, rather for the last
byte in the byte stream successfully received; TCP is a byte-stream protocol.
TCP also does not have to ack every segment. Some TCP implementations
use delayed ack, whereby a receiving host waits for a period of time (typically
200 msec) before sending an explicit ack. If, however, user data is to be sent to
the sending host, then an ack is piggybacked.

No discussion of the TCP windowing algorithm is complete without a
reference to the slow start/congestion avoidance algorithm. In a sense, this algo-
rithm makes the end-to-end TCP session “network aware.” The receiver adver-
tised window size is the maximum amount of data that a transmitter station can
send to the receiver. Rather than sending the entire window, and risk packet
drops and time-outs on the connection (especially, in the case of a WAN), the
sending station uses a congestion window to regulate how many segments are
sent at once. Initially, the congestion window is set to one (sometimes two, in
some TCP implementations), and then increased exponentially when ACKs are
received: 2, 4, 8, and so on. If time-outs occur, then the window size at which
the congestion occurred is marked. The congestion window is again dropped to
one, and slow start is employed until the congestion window increases to half of
the point at which time-outs occurred (an exponential increase), at which point
the increase in the window size is more linear. Please see Stevens [2] for a very
detailed discussion of this topic.

Slow start/congestion avoidance is well suited for bulk data transfers
across congested WAN links. For frequent and short-lived transactions like
HTTP over a WAN connection, there is a penalty to be paid for using slow
start in terms of network latency, as we will demonstrate in Section 7.5.

Figure 7.2 shows a portion of a trace of a bulk data transfer occurring
from a server (port # 1527) to a client (port # 1040). Note that the server
is advertising a 32-Kbyte window size, but since the server is transmitting the
bulk data to the client, the operational window size is that advertised by the cli-
ent, 8760 bytes. Because acks are being delivered in time, one can observe the
window sliding one at a time, keeping the window movement smooth.

WAN Performance Analysis of TCP/IP Applications 203

Note also that the segment size is larger than 512 bytes. Segment sizes of
512, 1024, and 1460 bytes are popular in many TCP implementations.

7.3 Calculating TCP Bulk Data Transfer Times and Throughput

In this section we explain how one can employ simple techniques to calculate
TCP bulk data transfer times. TCP FTP is a classic example of a bulk data
transfer occurring between a client and a server. Client/server applications,
e-mail, and Web browsing are other examples of instances where bulk data
transfers under TCP/IP occur. As we show in Chapter 9, some client/server
applications have interactive traffic as well as bulk data transfer traffic embed-
ded within a single transaction, such as requesting a screen update.

First, we consider a simple point-to-point WAN connection to illustrate
how one can compute the best possible file transfer time, and hence the best
throughput, for the connection. We then discuss the effect of TCP window
size, segment size, WAN bandwidth, and latency on performance. This will

204 Wide-Area Data Network Performance Engineering

Frame Rel Time Bytes Summary

8 2.91647 1514 TCP D=1040 S=1527 ACK=1973292 SEQ=657541770 LEN=1460 WIN=32768
9 2.99540 642 TCP D=1040 S=1527 ACK=1973292 SEQ=657543230 LEN=588 WIN=32768

10 2.99589 60 TCP D=1527 S=1040 ACK=657543818 WIN=8760
11 3.18485 1514 TCP D=1040 S=1527 ACK=1973292 SEQ=657543818 LEN=1460 WIN=32768
12 3.37353 1514 TCP D=1040 S=1527 ACK=1973292 SEQ=657545278 LEN=1460 WIN=32768
13 3.37428 60 TCP D=1527 S=1040 ACK=657546738 WIN=8760
14 3.56219 1514 TCP D=1040 S=1527 ACK=1973292 SEQ=657546738 LEN=1460 WIN=32768
15 3.56304 60 TCP D=1527 S=1040 ACK=657548198 WIN=8760
16 3.77217 1514 TCP D=1040 S=1527 ACK=1973292 SEQ=657548198 LEN=1460 WIN=32768
17 3.88290 60 TCP D=1527 S=1040 ACK=657549658 WIN=8760
18 3.96095 1514 TCP D=1040 S=1527 ACK=1973292 SEQ=657549658 LEN=1460 WIN=32768
19 4.08356 60 TCP D=1527 S=1040 ACK=657551118 WIN=8760
20 4.14966 1514 TCP D=1040 S=1527 ACK=1973292 SEQ=657551118 LEN=1460 WIN=32768

Figure 7.2 Trace of a bulk data transfer. The columns, from left to right, refer to the frame
number, incremental time since the last frame on this conversation (Delta T), the
protocol decode (TCP), and source and destination port numbers. SYN packets
denote the establishment of a TCP connection (three-way handshake). SEQ is
the sequence number in the byte stream for the packet currently being transmit-
ted. ACK is an indication of the last successfully received byte. Notice the rela-
tionship between SEQ and ACK numbers in the to and from directions. LEN is
the packet size, not including any protocol overhead. WIN is the window size
advertisement.

help us derive a general formula for computing throughput for this type of a
WAN connection.

Following that, we discuss the case of frame relay. Although many of the
concepts and methods to calculate TCP performance carry over without sig-
nificant change from private lines to frame relay, some important differences
exist.

7.3.1 Variables Affecting TCP File Transfer Performance

Two classes of parameters have a direct bearing on file transfer performance:
TCP parameters and WAN parameters.

Important TCP-related parameters are window size and segment size.
One also needs to consider TCP time-out and retransmission algorithms.
However, time-outs and retransmissions come into play when considering
issues such as packet drops due to bit errors and network congestion. Bit error
occurs relatively infrequently and therefore can be ignored. Packet drops due
to network congestion (e.g., packets dropped in routers, WAN switches) can
be accounted for in the calculation of TCP file transfer times. However, the
analysis required is beyond the scope of this book. Therefore we will ignore this
aspect as well. The interested reader is referred to [3] and [4] and references
therein. We provide a heuristic argument for computing TCP throughput
under background load in Section 7.4.

In what follows, we will not explicitly account for the effect of slow
start/congestion avoidance described in the previous subsection. For a large file
transfer (that is, many windows’ worth of data) and relatively small probability
of packet drops due to bit errors and/or congestion, the congestion window will
reach the receiver advertised window size within a few round-trip delays. Thus
the initial effect of slow start will be negligible. Correspondingly, the analysis
we present below can be construed as “the best possible throughput” that TCP
can achieve for the WAN in question.

As far as the WAN is concerned, the important parameters are band-
width, latency, and background load (or WAN link utilization).

7.3.2 Computing File Transfer Times for a Simple Point-to-Point
Connection

Consider the two point-to-point connections between a remote branch office
and a data center/hub site shown in Figures 7.3(a) and (b). Figure 7.3(a) shows
a 56-Kbps private line connection and (b) shows a frame relay connection with
a T1 port at the hub site and 56-Kbps frame relay port for the branch office
with a 32-Kbps CIR (committed information rate) between them.

WAN Performance Analysis of TCP/IP Applications 205

Suppose that a client at the remote office requests a 1-Mbyte file from the
file server at the data center. How long will the file take to get to the client over
the private line connection and over the frame relay connection? To simplify
the discussion and to illustrate the concepts involved, let’s assume that the
WAN connection is unloaded. We will deal with the case of loaded connec-
tions in Section 7.4.

We also need to make an assumption regarding network latency from
router to router. Suppose that the one-way network latency is 30 msec.4 This
represents a 3000-mile leased line connection across the United States. For the
frame relay connection, assume that the network latency is about 40 msec.

206 Wide-Area Data Network Performance Engineering

56 Kbps
Router Router

Server

Client

Frame relay
T1

Router Router
56 Kbps

Server

Client 32 Kbps

(a)

(b)

Figure 7.3 (a) Private line 56-Kbps connection. (b) Frame relay connection with T1/56-Kbps
ports and 32-Kbps CIR.

4. How does one arrive at a specific number for network latency? Here’s a simple approxima-
tion—estimate the distance in miles between the two locations. Multiply this by 0.01 (msec
per mile) to estimate the propagation delay between the locations. If the underlying WAN is
packet switched, like frame relay, then some additional delay is added due to packet
switches (about 1–2 msec per switch). For a 3000-mile connection over frame relay, the
PVC may traverse four or five switches. Hence about 10-msec extra delay might need to be
added. Please see Chapter 3.

Another important assumption is that the router delays, LAN delays, and
client/server delays are negligible. This is true in most cases, although a busy
server may add significant delay in processing packets.

Assume that the receiver (client) advertises a window size of 4096 bytes
and assume that the TCP segment size is 512 bytes. This means that the server
will send the client eight segments of 512 bytes each. Also assume that the
receiving TCP host sends an ack packet that does not contain actual data (this
assumption simplifies the round-trip delay calculation).

To sum up, here are the major assumptions so far:

• WAN connections (private line, ports/PVCs) are unloaded;

• End-to-end network latency is 30 msec for private line, 40 msec for
frame relay;

• Router, LAN, and client/server delays are negligible;

• TCP segment size is 512 bytes, TCP receive window size is 4096 bytes;
and

• TCP acks (46 bytes) are sent separately—not piggybacked with actual
data traffic.

Now we compute the WAN protocol overhead factor. For the network
connection in question, three types of protocol overhead are carried over the
WAN—TCP (20 bytes), IP (20 bytes), and link layer (8 bytes).5 The link layer
is either PPP (point-to-point protocol) or some HDLC variant in the private
line case, or frame relay. In the latter case, RFC 1490 might be employed
to encapsulate IP datagrams with frame relay headers. The total overhead per
packet is 48 bytes. Hence each full TCP data packet of 512 bytes will be trans-
mitted on the WAN link as a 512 + 48 = 560-byte frame.

Hence protocol overhead factor is 560/512 = 1.09, or about 9%.
A general formula for calculating protocol overhead factor is given here:

Let S be the PDU size under consideration.

Let O be the overall protocol overhead.

Protocol overhead factor F is 1 + O/S.

WAN Performance Analysis of TCP/IP Applications 207

5. Eight bytes for link layer is an approximation. It is not usually necessary to be very precise
about this aspect (e.g., should you include starting and ending flags?) because a difference of
a few extra bytes can be ignored in calculating response times.

As another example, consider the case of character-mode TCP telnet
where every keystroke from the client is echoed from the remote telnet server.
In this case S = 1 byte and O = 48 bytes. The protocol overhead factor is

1 + 48 / 1 = 49, or 4900 % !!!!

Protocol overhead factors depend on what protocol is being carried over
the WAN. In Chapter 10, where we discuss SNA performance issues, we will
encounter protocol overhead factors in a different setting.

7.3.3 Private Line Analysis

We will analyze the 56-Kbps private line case first. The timing diagram in
Figure 7.4 illustrates the data transfer sequence. From the timing diagram,6 it is
clear that the time to send the entire window is

= [(8 frames × (560 bytes/frame) × 8 bits/byte)] / 56,000 sec = 640 msec

and that the round-trip time for a TCP segment to be sent and ack to be
received, including network latency, is

= (8 × 560/56,000 + 0.030) + (8 × 48/56,000 + 0.030) sec = 147 msec

Hence it is clear that the window will not close, that is, the window is
large enough so that the sender always has packets to send to keep the 56-Kbps
WAN link busy 100% of the time. Since any resource in the network that
is busy 100% of the time determines the throughput (that is, the bottleneck
resource), the maximum data throughput for this connection is

(56,000 bps) / Protocol overhead factor = 56,000/1.09 = 51,376 bps =
6422 bytes/sec

Hence the best possible file transfer time is

File size / Maximum throughput = 1,024,000 bytes / 6422 bytes/sec =
159.5 sec = 2 min 40 sec (approximately)

208 Wide-Area Data Network Performance Engineering

6. Henceforth, we will not consider LAN delays in timing diagrams.

7.3.3.1 Impact of Window Size and Optimal Window Sizes
One critical assumption we made in the previous analysis was that the window
is large enough to “fill the pipe.” To assess the impact of changing window sizes
on file transfer performance, first consider the following. If the window size is
too small (say, 1 TCP segment of 512 bytes), then we would be wasting WAN
resources because there is not enough data to send across. On the other hand, if
the window size is too large, then no improvement in throughput will result
because the slowest resource (that is the WAN link) would already be saturated.

WAN Performance Analysis of TCP/IP Applications 209

Segment 1

Segment 3

Segment 2

Segment 8

LAN LANWAN
Server Router ClientRouter

Ack 1

Ack 2

Figure 7.4 Timing diagram for TCP file transfer for 56-Kbps private line.

Thus, making the TCP window size very large might result in excess buffering
in network buffers—a “hurry up and wait” scenario. Indeed, this buffering may
sometimes cause TCP time-outs and retransmits for those TCP implementa-
tions that use fixed timers.7 Thus, there is an optimal window size for maximiz-
ing the throughput while at the same time avoiding an oversaturation of the
slowest WAN link. However, before we actually compute this optimal window
size, let us calculate the throughput as a function of the window size.

Window Size = 18

Assume that the window size is fixed at one TCP segment of 512 bytes. Using
the timing diagram in Figure 7.5, it is easy to see that the throughput in bits per
second is given by

Throughput = 512 × 8/R

where R, the round-trip delay, is given by

R = [(512 + 48) × 8/56,000 + 0.03] + (48 × 8/56,000 + 0.03) sec = 147 msec

Hence, the best possible throughput is

T = 512 × 8 bits / 0.147 sec = 28,055 bps or 28 Kbps (approximately)

Correspondingly, the best possible file transfer time is

File size / Throughput = 1,024,000 × 8/(28,055 bps) = 292 sec = 4 min 52 sec

Window Size = 2
What would happen if we increased the window size to 2 (or two TCP seg-
ments of 512 bytes)?

210 Wide-Area Data Network Performance Engineering

7. The authors experienced this issue while troubleshooting a client/server application per-
formance problem. The client was running Novell LAN Workplace for DOS, and the
TCP timer was fixed at 1 sec.

8. This discussion can be used almost verbatim (except for protocol overhead) for computing
transfer times for Trivial File Transfer Protocol (TFTP). TFTP uses UDP services instead of
TCP, with an overhead of 8 bytes for UDP, all other overhead characters remaining the
same. TFTP restricts segment size to 512 bytes.

Time to send the window = (2 × 560 × 8/56,000) = 160 msec

R = Round-trip delay = 147 msec (same as for the window = 1 case)

Therefore an ack will be received by the time the TCP window closes. Thus it is
clear that a window size of 2 is sufficient to fill the pipe, but a window size of 1
is not sufficient. The throughput with window size of 2 will be exactly the same
as that obtained earlier with a window size of 8, that is, 51.4 Kbps, approxi-
mately.

Thus it appears that the optimal window is two TCP segments or
1024 bytes. However, as mentioned earlier, TCP window sizes are adjusted in
bytes, not in segments. A more refined number for the optimal window can be
derived if we consider window size from the “number of bytes” point of view.
The formula for the optimal window size is

W ∗ = (Slowest link speed in the connection) × (Round-trip delay for a
segment)

WAN Performance Analysis of TCP/IP Applications 211

Segment 1

Segment 2

LAN LANWAN
Server Router ClientRouter

Ack

Ack

R

Figure 7.5 Timing diagram for window size = 1 data transfer.

This is called the bandwidth-delay product. For the 56-Kbps private line net-
work under consideration,

W ∗ = 7000 bytes/sec × 0.146 sec = 1022 bytes

This is consistent with using a TCP window size of two segments of 512 bytes
each.

Note that the optimal window size is always greater than the TCP seg-
ment size. A window of one TCP segment can never be optimal.

W ∗ > TCP segment size

Impact of Segment Size

The impact of segment sizes is easier to analyze. Basically, increasing segment
size results in lower protocol overhead and hence better throughput. In the pre-
vious example, suppose we change the segment size from 512 to 1024 bytes.
The protocol overhead factor becomes

(1024 + 48) / 1024 = 1.047 or 4.7%

Hence the best throughput (for a large enough window size) is 56,000/1.047 =
53486 Kbps.

What is the impact on the optimal window size? The bandwidth delay
product changes somewhat:

W ∗ = Round-trip delay × Link speed = [(1024 + 48) × 8/56,000 + 0.03) +
(48 × 8/56,000 + 0.03)] sec × 7000 (bytes/sec) = 0.220 sec × 7000 bytes/sec =

1540 bytes

Again, the optimal window size turns out to be two TCP segments.

7.3.3.2 A Comment About Window Size Adjustments
The previous discussion clearly shows that TCP window sizes have an impor-
tant bearing on the maximum achievable throughput for the connection.
Indeed, in certain situations, window size tuning (upwards or downwards) may
be the only recourse to address WAN performance issues. At the same time, it
must be noted that it is not always easy, and sometimes impossible, to adjust

212 Wide-Area Data Network Performance Engineering

TCP window sizes on clients and servers. This is because TCP implementa-
tions are many and it may not be possible to configure TCP windows. How-
ever, certain popular platforms such as Windows NT (default window size of
8 Kbytes) allow the window size advertisements to be changed. The same issue
holds for Novell and SNA protocols as well.

7.3.3.3 Impact of Network Latency on TCP Throughput
Many companies have a need to send or receive files across global connections.
Occasionally, access to corporate data networks may be via satellite connec-
tions, especially in countries where high-speed and high-quality digital terres-
trial links are not available. In these situations, understanding the impact of
longer network latencies on file transfer throughput is very important. Equally
important is the realization that TCP window sizes need to be increased to get
the maximum possible throughput.

It is fairly easy to perform the calculations using the simple formulas
established in the previous sections of this chapter.

Assume the same private line 56-Kbps connection as in Figure 7.3(a),
except that the client and server are separated by a 10,000-mile connection
(e.g., from the United States to the Pacific Rim). Let us also assume that
the window size is 1024 bytes (2 × 512-byte segment size). To calculate the
throughput, compare the window insertion time and the round-trip acknowl-
edgment delay.

Without even performing a detailed analysis, it is easy to show that the
window size is too small. The window insertion time is 2 × 560 × 8/56,000 =
0.16 sec. However, the round-trip propagation delay alone is likely to be 200 msec
(20,000 miles for the round-trip; 10 msec for every 1000 miles). Therefore, the
window will definitely close, that is, the window size will be too small.

The optimal window size is easily calculated, as discussed earlier:

W ∗ = Round-trip delay × Slowest WAN link speed = (560 × 8/56,000 +
0.1 + 48 × 8/56,000 + 0.1) sec × 56,000 bps = 0.286 sec × 56,000 bps =

2000 bytes (approximately)

Hence, the recommended window size is four TCP segments of 512 bytes or
two TCP segments of 1024 bytes.

It is clear from the preceding discussion that the lower bound for the
optimal window size is

W ∗ > Round-trip propagation delay × Slowest WAN link speed

WAN Performance Analysis of TCP/IP Applications 213

For the WAN connection under question, this lower bound is 56,000 bps ×
0.2 sec = 1400 bytes.

For WAN connections over long distances (global or satellite), this lower
bound provides a quick estimate for the minimum window size. Indeed, the
optimal window can then be obtained by adding the segment size and acknowl-
edgment packet size to this minimum window size.

Satellite Links
Assume that the 56 Kbps connection between the two routers in Figure 7.3(a)
is a satellite link (see Figure 7.6). Satellites are situated approximately
26,400 miles above the Earth in a geostationary orbit. However, it is incorrect
to calculate propagation delay for satellite links at the rate of 10 msec for every
1000 msec. The correct number is 5.35 msec for every 1000 msec resulting in
approximately 280 msec of propagation delay (see Chapter 3 for details). Note
that this is the one-way delay from the end user point of view—the signal needs
to propagate on the satellite uplink and then down to the earth station. The
round-trip network latency (for a segment to be sent and an ack to be received)
is 560 msec.

A quick estimate of the minimum window size for a 56-Kbps satellite
link is

214 Wide-Area Data Network Performance Engineering

Satellite

Satellite
dish

Satellite
dish

Router Router

Server

Client
56 Kbps

Figure 7.6 56-Kbps satellite connection.

0.56 sec × 56,000 bps = 3920 bytes

The optimal window size for this case is

3920 bytes + Segment size + Ack packet size = 3920 + 604 = 4524 bytes

Hence the recommended window size for a 56-Kbps satellite link is nine TCP
segments of 512 bytes or five TCP segments of 1024 bytes each.

7.3.4 Frame Relay Analysis

In the last section, we discussed the various aspects of calculating TCP file
transfer throughput for an unloaded private line point-to-point connection. In
this section, we demonstrate how these techniques can be applied to point-to-
point frame relay connections, and also point out some special aspects of frame
relay that need to be taken into account.

Consider the point-to-point frame relay connection of Figure 7.3(b).
The server is situated in the data center where the frame relay port speed is T1
(1536 Kbps). The client is at a remote branch office where the frame relay port
speed is 56 Kbps. The two locations are connected via a 32-Kbps CIR.

There are some important characteristics of frame relay that differentiate
it from private line as related to TCP throughput.

• Bandwidth entities. There are three WAN bandwidth entities for frame
relay (two port speeds and a CIR) versus a single WAN bandwidth
entity for private line. As far as throughput calculations are concerned,
the slowest link in the connection must be the focus of attention. For
frame relay, this can be either the CIR or minimum of the two port
speeds, depending on burst capabilities.

• Bursting. Perhaps the biggest difference is the fact that frame relay
allows bursting above the CIR. No such concept exists in private line.
The CIR is the minimum guaranteed bandwidth9 for the connection
and bandwidth in excess of the CIR allocated to the PVC is “best

WAN Performance Analysis of TCP/IP Applications 215

9. Frame relay service providers can oversubscribe bandwidth in the network. For example, a
2-to-1 oversubscription means that all PVCs are provisioned with half of their CIRs.
Because not all PVCs are likely to be active at the same time at full throttle, it is reasonable
to expect that a specific PVC at any given time will get the full CIR bandwidth, and more.
We will assume that the minimum CIR is always available to the PVC.

effort.” Indeed, there are “zero CIR” implementations in which deliv-
ery of packets is totally best effort.

• Best and worst case conditions. We will account for this best effort deliv-
ery by considering the best and worst case conditions. The best case is
“full bursting” when the PVC is consistently bursting to port speed.
The worst case is “no bursting” when the PVC bandwidth is limited to
its provisioned CIR and no more.10 It is almost impossible to consider
anything intermediate between best case and worst case, because frame
relay service providers typically do not engineer their backbone net-
work for a specific bursting level on PVCs (say, bursting at twice the
CIR during off-hours). In addition, it is theoretically possible that
the frame relay PVC is bursting to port speed in one direction, but not
in the reverse direction. We will ignore this possibility. In a sense, we
are considering the absolute best case and the absolute worst case.

Note that the worst case analysis is really only applicable to closed-
loop implementations. For open-loop implementations of frame relay,
the worst case analysis is hard to do because one is required to compute
TCP throughput assuming a random number of packet discards.

• Extra insertion delay. There is an extra serial line insertion delay for
frame relay. For instance, in the direction of server to client, a TCP
segment has to be inserted (serialized) twice, once at the T1 port
and next at the 56-Kbps remote port. This adds to network latency.
Clearly, the T1 port insertion delay is small, but there are many frame
relay networks with much lower speed ports. In addition, network
switches in the backbone (e.g., ATM switches) add some latency,
perhaps a millisecond or two. Hence, overall network latency may
increase somewhat over frame relay. However, we will demonstrate
that this has no impact on TCP throughput as long as the window
sizes are set appropriately.

We now discuss TCP file transfer throughput for frame relay, optimal
window size issues, and impact of network latency on throughput. It will be
helpful to think of the frame relay connection in Figure 7.3(b) as a replacement
to the private line connection in Figure 7.3(a).

Assume the following:

216 Wide-Area Data Network Performance Engineering

10. Note that if the PVC is unloaded, it does not necessarily mean that the PVC can burst to
port speed. No bursting above CIR really means that the service provider is metering traffic
into network at CIR rate. This has nothing to do with whether or not the PVC is loaded.

• Server sends a 1-Mbyte file to the client.

• TCP segment size is 512 bytes and window size is 2 × 512 =
1024 bytes (recall that this was found to be optimal for 56-Kbps pri-
vate line).

• Frame relay network latency is 40 msec—a typical frame relay connec-
tion across the United States (compare with 30 msec for private line).

• The connection is unloaded, that is, there is no background traffic.

The protocol overhead is the same as for private line.11 For example, a
512-byte TCP segment has overhead given by

512 + 20 (TCP) + 20 (IP) + 8 (FR) = 560 bytes

As mentioned earlier, frame relay allows bursting above the CIR. We will con-
sider the best case (consistent bursting to port speed) and the worst case (no
bursting above the CIR).

Best Case Analysis
The timing diagram12 in Figure 7.7(a) illustrates the sequence of events.

The round-trip time to send a segment and receive an ack is13

(560 × 8/56,000 + 0.04 + 560 × 8/56,000) + (48 × 8/56,000 + 0.04 + 48 ×
8/1,536,000) = 0.247 sec

The time to insert the window on the slowest link (56 Kbps in this case) is

2 × 560 × 8/56,000 = 0.16 sec

WAN Performance Analysis of TCP/IP Applications 217

11. It is not necessary to be very accurate with the overhead calculation if the difference is a
matter of a couple of bytes. The insertion delays and protocol overhead will not change
significantly.

12. The timing diagrams are not drawn to scale. So, for instance, the insertion delay on a T1
line is more than 24 times faster than on a 56 Kbps. This difference is not shown in the
timing diagrams.

13. An implicit assumption in this calculation is that the maximum data rate out of the ingress
switch buffer is 56 Kbps, not T1. Closed-loop frame relay implementations are built in this
way.

218 Wide-Area Data Network Performance Engineering

Segment 1

Segment 2

Access AccessBackbone
Router Switch RouterSwitch

Ack 1

Ack 2

Segment 3

Segments 1 and 2

Segment 3

Segment 4

Segment 1

Segment 2

Segment 3

Server-side Client-side

Segment 1

Segment 2

Access AccessBackbone
Router Switch RouterSwitch

Ack 1

Ack 2

Segment 4

Segments 1–4

Segment 5

Segment 6

Segment 1

Segment 2

Segment 3

Server-side Client-side

Segment 3

(a)

(b)

Figure 7.7 Timing diagram for frame relay with full bursting and (a) window size of 2 or (b)
window size of 4.

Thus, it is clear that the window size of 2 segments of 512 bytes each is not
large enough. The throughput for this case is

2 × 512 × 8 bits/0.12 sec = 48.2 Kbps

Note that we can improve on this throughput by increasing the window size.
If the window size is 4 × 512 bytes = 2048 bytes, then the time to insert the
window on the slowest link is

4 × 560 × 8/56,000 = 0.32 sec

See the timing diagram in Figure 7.7(b). Hence the 56-Kbps link will limit the
throughput. That is,

Throughput = 56,000/Protocol overhead = 56,000/1.09 = 51.4 Kbps

This is consistent with the following optimal window size calculation:

Optimal window size = Round-trip delay × Slowest WAN link = 0.247 sec ×
56,000 bps = 1729 bytes

or rounded off to four TCP segments of 512 bytes. Equivalently, the window
can be two TCP segments of 1024 bytes.

Observe that frame relay needed a slightly larger TCP window size com-
pared to private line. This is consistent with the longer network latency that we
assumed for frame relay.

Worst Case Analysis
If the assumption is that the network limits the PVC bandwidth to the CIR
(32 Kbps, in this case), then one needs to make some changes to the through-
put and window size calculations. The trick is to consider the PVC as a private
line with link speed equal to CIR. The additional factor that needs to be taken
into account is pipelining. In the direction from the server to client, frames
containing TCP segments are sent at T1 speed into the network, but the receiv-
ing frame relay switch does not store-and-forward the frame on the PVC—it
pipelines the frame by sending partial packets of data on the PVC. For exam-
ple, if the underlying transport network is ATM, then the receiving frame relay
switch will pipeline on ATM cells.

WAN Performance Analysis of TCP/IP Applications 219

To start off, consider the timing diagram shown in Figure 7.8. Assume
that the window size is 4 × 512 byte segments = 2048 bytes. It is easy to see that
the round-trip delay for sending a TCP segment and receiving an ack is

(560 × 8/32,000 + 0.04 + 560 × 8/56,000) + (48 × 8/32,000 + 0.04 + 48 ×
8/1,536,000) = 0.312 sec

Note that in the forward direction (server to client) the T1 link speed is ignored
because of pipelining. Similarly the 56-Kbps port is ignored in the reverse
direction. Actually, one needs to account for the delay until a pipelining
packet (such as an ATM cell) has been accumulated. This delay is negligible
(53 bytes / 7 = 7.5 msec on a 56-Kbps link). For higher speed links, this delay
will be even smaller.

The time to insert the window on the slowest link (32 Kbps in this case) is

4 × 560 × 8/32,000 = 0.56 sec

220 Wide-Area Data Network Performance Engineering

Segment 1

Segment 2

Access AccessBackbone
Router Switch RouterSwitch

Ack 1

Ack 2

Segments 1–4

Segment 5

Segment 6

Segment 1

Segment 2

Segment 3

Server-side Client-side

Segment 3

Figure 7.8 Timing diagram for frame relay with no bursting above CIR.

Hence the window will not close. The throughput is therefore determined by
the slowest link, that is, 32 Kbps:

Throughput = 32,000 bps / 1.09 = 29.4 Kbps

The optimal window size is given by

0.312 sec × 32 Kbps = 1248 bytes

or three TCP segments of 512 bytes each or two TCP segments of 1024 bytes
each.

Satellite Access to Frame Relay
Satellite access to frame relay is a likely option for companies with far-flung
branches (e.g., manufacturing sites in Eastern Europe or Latin America) that
need to connect via frame relay to a data center (see Figure 7.9).

The impact of latency on application performance is usually severe. How-
ever, for bulk data transfer applications, that is, applications that are more
bandwidth sensitive than latency sensitive, this issue can be addressed by having
the receiver advertise a larger window size.

Let us address TCP throughput issues here. The formulas developed in
this section for best case and worst case situations can be applied to this case
by simply adding in the extra delay due to satellite propagation. Essentially,
the access delay can be transferred to the network delay and the calculations
proceed from there.

WAN Performance Analysis of TCP/IP Applications 221

Router Router

Server

Client
56 Kbps

Frame relay

T1

Satellite

32 Kbps

Figure 7.9 Satellite access to frame relay.

We now perform the calculations for the best case scenario. If, as in
Figure 7.6, we assume that the 56-Kbps access link is via a satellite connection,
and the underlying frame relay backbone latency is 40 msec, then the round-
trip time to send a segment and receive an ack is

(560 × 8/1,536,000 + 0.28 + 0.04 + 560 × 8/56,000) + (48 × 8/56,000 +
0.28 + 0.04 + 48 × 8/1,536,000) = 0.73 sec

Hence the optimal window size is

0.73 sec × 56 Kbps = 5110 bytes

or 10 TCP segments of 512 bytes or 5 TCP segments of 1024 bytes each. With
at least this window size, the throughput will be the same as for cases discussed
earlier, that is,

Throughput = 56,000 bps / 1.09 = 51.4 Kbps

7.3.5 General Formulas for Calculating TCP Throughput for Private Lines
and Frame Relay

In the previous sections, we showed how to calculate TCP throughput and
optimal window sizes for a specific point-to-point connection under private
line (56-Kbps) and frame relay (T1/56-Kbps port speeds, 32-Kbps CIR).

Clearly, these techniques can be applied in general for arbitrary link
speeds and CIRs. They can also be applied to a wide variety of WANs besides
private line and frame relay, including ATM, X.25, ISDN, and low-speed
dial-up connections. We next present some general formulas for TCP through-
put computations for private line and frame relay. The reference connections
we will use are shown in Figures 7.10(a) and (b).

We need to establish some notation and state assumptions. For the basic
input parameters, let

S = TCP segment size in bytes

A = TCP-level ack = 48 bytes (no data)

O = protocol overhead bytes (TCP + IP + Link layer) = 48 bytes

W = window size (Advertised by the receiver)

Dp = one-way network latency for private line in seconds

Df = one-way network latency for frame relay in seconds

222 Wide-Area Data Network Performance Engineering

L = link speed for private line in bytes/sec

Pa = port speed at frame relay location A in bytes/sec

Pb = port speed at frame relay location B in bytes/sec

CIR = PVC rate between locations A and B in bytes/sec

F = file size

For the computed performance metrics, let

Tw = time to insert the window W on the slowest WAN link

Rd = Round-trip delay to send a TCP segment and receive an ack

W ∗ = optimal window size

WAN Performance Analysis of TCP/IP Applications 223

L bps
Router Router

Server

Client

Dp = 1-way latency

Frame relay

Pa

Router Router

Pb

Server

Client

Egress buffer Ingress buffer

Router
prioritization

Telnet echoes

Bulk data transfer

CIR

(a)

(b)

Figure 7.10 Reference connection for (a) a private line and (b) frame relay.

Of = overhead factor

X = throughput for the connection

We make the following assumptions in decreasing order of importance:

• WAN connections (private line, ports/PVCs) are unloaded. This is usually
not the case, but we will discuss how to deal with loaded connections
in the next section of this chapter.

• Router, LAN, client/server delays are negligible. Router and LAN delays
are usually negligible. Sometimes server delays can be significant—
100 to 200 msec processing delays for servers are not unusual. One can
get a rough estimate of these delays using pings or by examining proto-
col traces.

• TCP acks (48 bytes) are sent separately—not piggybacked with actual data
traffic. This is not a very serious assumption. If acks are piggybacked,
then the round-trip delay will be slightly longer.

• Assume that Pa > Pb > CIR. That is that port speed at location A is
larger than at location B.

• Assume that the window size W = NW × S, an integer multiple of the seg-
ment size S. This is just for convenience. The formulas become cum-
bersome to write if, for example, the window size is 1000 bytes and the
segment size is 512 bytes.

With these notations and assumptions, here are some general formulas:

Time to insert window W on a link of speed L = NW × (S + O) /L sec

The optimal window size W ∗ is that value of W that just saturates the slowest
WAN link. If W <W ∗ then increasing W will increase throughput. If W > W ∗

then any increase in W will not result in increase in throughput.

Optimal window size W ∗ = Rd × Slowest WAN link /Of

Protocol overhead factor Of = 1 + O/S

Throughput: X = Slowest WAN link/Of , if W is greater than or equal
to W ∗

Throughput: X = W /Rd, if W is less than or equal to W ∗

File transfer time = F /X

224 Wide-Area Data Network Performance Engineering

Table 7.1 separates the specific formulas for private line and frame relay.

7.4 Calculating TCP Throughput for Loaded WAN Links

The calculation of TCP file transfer throughput in Section 7.3 assumed an
unloaded connection for the private line and frame relay cases. This assump-
tion is clearly unrealistic. In reality, WAN serial links (private line and frame
relay ports) have moderate utilization levels, say, in the range of 20% to 40%.
In some instances, utilization levels can be as high as 70% to 80%. Utilization
beyond 80% is relatively uncommon, especially in private networks carrying
mission-critical traffic. Very often, when the utilization levels exceed 80%, the
links are upgraded. In the case of frame relay, however, CIR utilization can be
in excess of 150%, say, in the range of 200% to 300%. This indicates bursting
on the PVCs and the level of bursting depends on the carrier’s admittance poli-
cies and also on frame relay port speeds. For instance, in a case where the mini-
mum frame relay port speed is 56 Kbps and the CIR is 32 Kbps, the maximum
bursting one can achieve on the PVC is 56/32 = 175%.

It is a relatively complex mathematical exercise to provide exact formulas
for computing TCP throughput under load. There are many dependen-
cies—link utilization in the inbound and outbound direction (two variables for
private line and six variables for frame relay), segment size, window size, propa-
gation delay, and so on. Instead of attempting to capture the complexities, we
will make some reasonable assumptions and provide formulas based on intui-
tive reasoning. For most practical cases where the utilization levels are moderate
(20% to 70%), the formulas in this section can be used as a good starting point.

WAN Performance Analysis of TCP/IP Applications 225

Table 7.1
Specific Frame Relay and Private Line Formulas

Private Line Frame Relay

Best Case Worst Case

Time to insert
window

Tw = NW × (S + O)/L Tw = NW × (S + O)/Pb Tw = NW × (S + O)/CIR

Round-trip
delay for a
segment + ack

Rd = (S + O)/L + 2 Dp +
A/L

Rd = (S + O)/Pa + 2 Df +
(S + O)/Pb + A/Pb + A/Pa

Rd = (S + O)/CIR + 2 Df +
(S + O)/Pb + A/CIR + A/Pa

Optimal
window size

W ∗ = Rd × L/Of W ∗ = Rd × Pb/Of W ∗ = Rd × CIR/Of

The most important assumption we will make is that the window size is
set at the optimal level or larger for the connection in question. This is the win-
dow size that can “fill the slowest pipe” in the connection. The rationale here
is to exclude from consideration cases where the window size is too small to
even fill the available bandwidth in a loaded connection. The following exam-
ple illustrates this concept more clearly.

Consider the private line and frame relay connections in Figures 7.3(a)
and (b).

7.4.1 Private Line Case

Let us first consider the case of the private line connection. Assume that the file
transfer occurs between the server and remote client over the 56-Kbps WAN
link, which has 40% utilization in the direction of server to client14 as shown in
Figure 7.11(a). Assuming that the network latency is 30 msec, we calculated
the optimal window size as 1022 bytes (see Section 2.3.1), or two TCP seg-
ments of 512 bytes or 1024 bytes.

The available bandwidth on a 56-Kbps link that is 40% utilized is
Available bandwidth = 56 × 0.6 = 33.6 Kbps

If the window size is sufficient to fill the 56-Kbps link when it is unloaded, it
will be sufficient to fill the available bandwidth.

Hence the throughput for the TCP file transfer for a loaded connection
will be

Available bandwidth on the slowest link / Overhead factor =
Slowest link × (1 − U) / Overhead factor

Thus for the specific example being discussed, the throughput and file transfer
time for a 1-Mbyte file are

33.6 Kbps / 1.09 = 30.8 Kbps (1,024,000 bytes × 8 bits/byte) / 30,800 =
266 sec

It is not surprising that

226 Wide-Area Data Network Performance Engineering

14. This can be average or peak utilization. Please refer to Chapter 4, Section 4.2, for a discus-
sion about the use of average and peak bandwidth utilization for performance and capacity
management.

266 sec = 159.5 sec / (1 − 0.4)

because 159.5 sec is the file transfer time for an unloaded 56-Kbps connection
as derived in Section 7.3.3. Hence, the file transfer time for a loaded connec-
tion with utilization U is

(File transfer time without load) / (1 − U)

7.4.2 Frame Relay Case

Let us now consider the case of frame relay. This is somewhat more complex
because of three different links that make up the WAN connection. Each of the
three links may have different utilization levels.

However, the overall guideline remains the same, that is, we need to iso-
late the slowest link in the connection. In addition we have to account for the

WAN Performance Analysis of TCP/IP Applications 227

56 Kbps
Router Router

Server

Client

File transfer

40% load

Frame relay

T1
Router Router

56 Kbps
Server

Client

File transfer
70% load40% load

32 Kbps

(a)

(b)

Figure 7.11 TCP throughput for (a) a loaded private line connection and (b) a loaded frame
relay connection.

fact that the PVC can burst above the CIR. Let us consider a specific case first
and then attempt to derive some general formulas.

Consider the frame relay connection of Figure 7.11(b). Assume that the
file transfer occurs in the direction of server to client, and that the 56-Kbps
remote frame relay port has 40% utilization (in that direction). Assume also
that the 32-Kbps CIR has 70% utilization15,16 in the same direction.

Assuming that the PVC can burst fully up to port speed, the slowest link
is 56 Kbps, of which 60% is available for the TCP file transfer. If we assume
that the PVC cannot burst up to the port speed, then the slowest link speed is
32 Kbps, of which 30% is available. Hence the best case throughput is a func-
tion of

max(0.3 × 32 Kbps, 0.6 × 56 Kbps) = 0.6 × 56 Kbps = 33.6 Kbps

The worst case throughput is a function of

min(0.3 × 32 Kbps, 0.6 × 56 Kbps) = 0.3 × 32 Kbps = 9.6 Kbps

In most practical situations, the worst case is likely to be extreme. In the
preceding example, 70% utilization of the PVC corresponds to 22.4 Kbps of
traffic offered on the PVC. If the average burst rate on the PVC is 150%, then
the available bandwidth is

CIR × Burst rate − 0.7 × CIR = 25.6 Kbps

Therefore if the burst rate were known, it would be possible to narrow the
range of the available bandwidth. However, burst rates are hard to measure. It
is also not advisable to use loosely stated burst rates when designing frame relay
networks to meet specific performance criteria.

In the preceding example, then, the throughput and file transfer time can
be calculated as

228 Wide-Area Data Network Performance Engineering

15. If there is a single PVC between the client and server locations, then the bandwidth con-
sumption at the PVC should match that at the remote port. If the remote port has PVCs to
other locations, then clearly this is not true.

16. Just because the PVC utilization does not exceed 100% does not mean that PVC is not
bursting above the CIR. It is possible that not enough traffic is being sent on the connec-
tion.

Best throughput = 33.6 Kbps/Protocol overhead = 30.8 Kbps

Best file transfer time = File size / Throughput = 1,024,000 × 8/30,800 =
266 sec

and

Worst case throughput = 9.6 Kbps / Protocol overhead = 8.8 Kbps

Worst case file transfer time = File size / Throughput =
1,024,000 × 8/8800 = 931 sec

The foregoing ideas and calculations can be captured in succinct formulas
in the case of frame relay. Assume a fixed direction for the file transfer (say,
central/hub site to client site). Let

Pa = frame relay port speed at client site

Pb = frame relay port speed at hub site

C = CIR

Ua,Ub = utilization of the frame relay ports at the client and server
side, respectively

U = utilization in the given direction for the PVC

Of = protocol overhead factor

F = file size being transferred

Xmax = maximum throughput achievable on this connection

Xmin = minimum throughput achievable on this connection

Tmax = maximum file transfer time in the given direction

Tmin = minimum file transfer time in the given direction

Then one has, for throughput and file transfer times, the following
equations:

X max = min([1 − Ua] × Pa, [1 − Ub] × Pb] /Of

X min = (1 − U) × C /Of

WAN Performance Analysis of TCP/IP Applications 229

Tmin = File size / Maximum throughput = F /X max

Tmax = File size / Minimum throughput = F /X min

7.5 WAN Performance Issues for HTTP

The explosion of Internet technologies in recent years has made HTTP an
important member of the family of applications supported by TCP/IP. Just
as FTP is used to transfer files and telnet is used for remote terminal access,
HTTP is used for exchanging hypertext documents between clients and servers.
This section briefly discusses HTTP performance over WANs. We also provide
some approximations for calculating how long it would take to download a
HyperText Markup Language (HTML) document with multiple embedded
images/documents (henceforth, we will use the term embedded images) from a
Web site (such as a home page) over a private line or frame relay network.

Our focus is strictly the wide-area network. The issue of HTTP perform-
ance is complex and has been the subject of extensive study, analyzing HTTP
performance from various points of view: client/server implementations, cach-
ing, proxy server issues, WAN characteristics, Internet performance, and so on.
Please see [1].

Some background information about HTTP is relevant to the discussion
here. Please see [1] for more details. Unlike, telnet and FTP,17 whose perform-
ance characteristics are discussed in this chapter, the data transfer characteristics
of HTTP are somewhat more complex. Two versions of HTTP are in use
today: HTTP/1.0 and HTTP/1.1. The original version, HTTP/1.0, is a fairly
straightforward protocol. When a client requests an HTML document from a
server, a TCP connection is first established. The client then issues a HTTP
Get Request to retrieve the HTML document, and then issues separate TCP
connections for each image embedded in the HTML document.

HTTP/1.0 suffers from two primary WAN-related performance prob-
lems. First, the use of a separate TCP connection for retrieving the embedded
images is clearly inefficient, especially considering that HTML documents
can contain multiple small embedded images—HTML documents with 20 or
30 images, of average size of less than 5 Kbytes, are not uncommon. Second, a

230 Wide-Area Data Network Performance Engineering

17. Although the WAN characteristics of an FTP file transfer are relatively straightforward,
some complexities are not immediately apparent. For instance, since FTP is stateful proto-
col, two or three TCP sessions need to be opened before an FTP file transfer takes place (see
[2]). For a high-speed link and/or a relatively small file, the network latency will be a major
contributor to FTP performance.

penalty is paid in the use of TCP slow start, even when the images are relatively
small (a 5-Kbyte image will contain about 9 or 10 segments of size 512 bytes).
This is because slow start is most efficient for relatively long data transfers. For
short data transfers the penalty is paid in terms of round-trip latency.

To address these concerns, three approaches have emerged. The first two
are enhancements to HTTP/1.0 and the third is a full extension to HTTP/1.1.

• Use multiple TCP connections (three or four) between the client and the
server. This approach is adopted by some common browsers. Although
this solves the issue of having to retrieve images sequentially by open-
ing and closing several TCP sessions, the trade-off is bursty traffic on
the WAN (the effective window size is now increased three- or four-
fold per HTTP session), not to mention the severe penalties on server
resources.

• Use a persistent TCP connection. Rather than open a separate TCP con-
nection to retrieve each embedded image in an HTML document, the
client (browser) sends a Connection Keep-Alive along with the HTTP
request, requesting the server to “keep the TCP connection alive” for a
specified amount of time.

• Use HTTP/1.1. HTTP/1.1 provides other performance benefits in
addition to persistent TCP connections. It supports pipelining; that
is, multiple HTTP requests can be submitted simultaneously, unlike
HTTP/1.0, which requires that the requests be submitted sequentially.
HTTP/1.1 also supports byte range downloads, that is, the entire
image does not have to be downloaded. This also helps in resuming
data transfers following failures. HTTP/1.1 needs to be supported by
both the client and the server to be effective.

A note of caution regarding HTTP/1.1. The protocol implies that all
data transfers take place on a single TCP session. In reality, the implementation
of HTTP/1.1 in clients and servers may be different from the standard.
For starters, at the time of this writing, many servers and browsers still sup-
port HTTP/1.0 with multiple TCP connections. Microsoft IE4.0 appears to
support HTTP/1.1. However, HTTP/1.1 support on servers appears to be
not very wide spread. This observation is based on a small study of packets
flowing between an IE4.0 browser and www.whitehouse.gov, www.cisco.com,
www.sun.com, and www.bloomberg.com. For the one site (www.apache.com)
that appears to support HTTP/1.1, IE 4.0 uses two parallel TCP sessions to
retrieve the HTML document and for the embedded images. For HTTP/1.1, it
may actually be beneficial to use two TCP sessions rather than one if there is

WAN Performance Analysis of TCP/IP Applications 231

sufficient bandwidth in the connection and the window size is less than the
optimal size for that connection.

7.5.1 Summary of HTTP WAN Performance Issues

The preceding discussion can be summarized as follows:

• Multiple images can be embedded in the HTML document, each of
which needs to be retrieved.

• Each data transfer could require a separate TCP session.

• Bursty traffic can result from the use of multiple parallel TCP sessions.

• TCP slow start results in extra delay in the context of HTTP.

• HTTP/1.1 uses persistent TCP connections and pipelining HTTP
requests to improve performance.

7.5.2 A Sample Trace of an HTTP Transaction

Figure 7.12 shows a sample protocol trace of an HTTP transaction.18 The
action captured was to load an HTML document on the client PC. The ACK,
SEQ, and WIN numbers are omitted after a few packets. The memory and the
disk cache in the client PC were cleared prior to the protocol trace. Subsequent
to the download of the Web page, the cache revealed about 20 images (.gif files)
with an average size of about 5 Kbps. The HTML document itself was about
12 Kbps. This was discovered by saving the HTML page onto a disk. The snif-
fer was at the client side.

We make the following observations:

• The entire process, performed at an off-peak hour, consists of
153 packets.

• The HTTP requests appear to be about 400 bytes long (obtained from
the TCP-level information of the HTTP requests—the size field
includes overhead).

• The maximum segment size appears to be 1460 bytes and the adver-
tised window about 8 Kbytes.

232 Wide-Area Data Network Performance Engineering

18. The protocol trace was collected from the authors’ client PC using Netscape Navigator 4.5
to the URL www.att.com/data. The server appears to be Netscape as well, although the ver-
sion is unknown.

W
A

N
Perform

ance
A

nalysisofT
C

P/IP
A

pplications
233

Source Dest Layer Size Delta Time Summary

1 Client Server TCP 64 0 ms D=80 S=1214 SYN SEQ=1657881 LEN=0 WIN=8192
2 Server Client TCP 64 59 ms D=1214 S=80 SYN ACK=1657882 SEQ=179941713 LEN=0 WIN=8760
3 Client Server TCP 64 0 D=80 S=1214 ACK
4 Client Server HTTP 430 3 C Port=1214 GET /data/ HTTP/1.0
5 Server Client TCP 64 87 D=1214 S=80 ACK
6 Server Client HTTP 1518 276 R Port=1214 HTML Data
7 Client Server TCP 64 109 D=80 S=1214 ACK
8 Server Client HTTP 1518 97 R Port=1214 HTML Data

. . .

. . .
14 Server Client HTTP 1518 8 R Port=1214 HTML Data
15 Client Server TCP 64 41 D=80 S=1215 SYN SEQ=1658680 LEN=0 WIN=8192
16 Client Server TCP 64 48 D=80 S=1216 SYN SEQ=1658729 LEN=0 WIN=8192
17 Server Client HTTP 1280 2 R Port=1214 HTML Data
…
…
21 Client Server TCP 64 19 D=80 S=1217 SYN SEQ=1658680 LEN=0 WIN=8192
22 Client Server HTTP 478 6 C Port=1215 GET /images/attlogo_n9050.gif HTTP/1.0
…
25 Client Server HTTP 479 3 C Port=1216 GET /data/images/title_dns.gif HTTP/1.0
…
32 Client Server TCP 64 390 D=80 S=1214 FIN
…
45 Client Server TCP 64 54 D=80 S=1215 FIN
…
60 Client Server TCP 64 21 D=80 S=1216 FIN
…

153 Last packet

Figure 7.12 A sniffer trace of an HTTP download.

• Client and server processing delays appear to be significant in some
instances. This is to be expected because the HTTP clients are
“fatter” than HTTP servers—they are responsible for parsing the
HTML information returned from the server and presentation to
the end user.

• Notice how one TCP session is used for retrieving the HTML docu-
ment (port 1214) and, prior to a complete receipt of this document,
three other TCP sessions are opened on ports 1215, 1216, and 1217.
These are used to retrieve specific .gif files and are closed immediately
after they are retrieved. The total number of TCP ports open at any
given time appears to be four.

• It appears that (not shown in the traces given) the server does not
support Connection Keep-Alive. The client requested a Connection
Keep-Alive in the first HTTP Get request. The server response does
not contain a Connection Keep-Alive in the HTTP response. Thus the
client proceeded to open three additional TCP sessions.

7.5.3 Estimating HTTP Performance Over a WAN Connection

In this section, we provide some approximate guidelines for estimating how
long it would take to retrieve an HTML document from a Web server, under
some assumptions. An exhaustive treatment of this topic is beyond the scope of
this book.

The reference connection for the calculations is always useful. Assume
that a client browser is connected to an intranet Web server via a frame relay
connection with speeds as shown in Figure 7.13, and that the client is request-
ing an HTML document from the Web server.

234 Wide-Area Data Network Performance Engineering

Frame relay

T1
Router Router

64 Kbps
Web server

Client 32 Kbps

Figure 7.13 Reference connection for an intranet between a client and a Web server.

It is impossible to provide quantitative estimates of WAN performance
without making assumptions. The assumptions are discussed next.

First, an intranet model is assumed. We do not model the Web download
process through a corporate network and a proxy server to the Internet,
although this is an important aspect of end user use of Web technologies.

Unlike the calculation of file transfer times using FTP where the size of
the file is easily available, the information regarding HTTP transactions is
harder to obtain. Three sets of variables are needed to characterize an HTTP
transaction: size of the HTTP request, size of the HTML document, and
the number and size of the embedded images. The size of the HTTP request
can only be obtained via a protocol trace, as shown earlier. If unavailable,
an assumption of a few hundred bytes should suffice. The size of the HTML
document can be obtained by saving the document to disk. Typical
HTML documents are less than 10 Kbytes, although larger documents (fan-
cier) can exist. As for the number and size of the embedded images, one way to
obtain this information is to make sure the cache is cleared prior to loading the
document and observing the cache contents after the download.

For the calculations that follow, we assume that the HTTP requests are
approximately 400 bytes (without headers), that the HTML document is about
six TCP segments of 1460 bytes each (or about 8 Kbytes), and that there are
20 images with an average size of about three TCP segments of 1460 bytes each
(or about 4 Kbytes).

We also made some network-related assumptions. Assume that the
round-trip latency is 60 msec and that there is minimal background load
(always the first assumption in baselining performance). Assume also that
all other network components (routers, LANs, DNS) do not add significant
delays.

As shown in the trace in Figure 7.12, the client and server contributions
to overall delays can be significant. However, we ignore this delay in this calcu-
lation and focus on the WAN contribution.

Our TCP-related assumptions include that the maximum frame size for a
frame carrying a TCP packet is 1500 bytes (roughly equivalent to assuming
that the TCP maximum segment size is 1460 bytes), the ACK, SYN, and FIN
frames are 48 bytes (at the frame relay layer), and the window size advertised by
clients and servers is 8 Kbytes.

In addition, the effect of slow start needs to be factored in. For this, we
assume that slow start begins with one TCP segment, then two, four, eight seg-
ments, and so on, after each ACK. Some implementations of slow start begin
with two segments, but we ignore this.

Here is our “cheat sheet” for delay calculations:

WAN Performance Analysis of TCP/IP Applications 235

Insertion delay for a 1500-byte frame on a T1 link = 1500 ×
8/1,536,000 = 8 msec;

Insertion delay for a 1500-byte frame on a 64-Kbps link = 1500 ×
8/64,000 = 187 msec;

Insertion delay for a 48-byte frame on a T1 link = 0.25 msec;

Insertion delay for a 48-byte frame on a 64-Kbps link = 6 msec;

Insertion delay for a 448-byte HTTP request on a T1 link = 2.3 msec;

Insertion delay for a 448-byte HTTP request on a 64-Kbps link =
56 msec; and

One-way latency = 30 msec.

We now estimate the performance of the Web download for the three
cases mentioned above: HTTP/1.0, HTTP/1.0 with multiple TCP connec-
tions, and HTTP/1.1.

7.5.3.1 Estimating HTTP/1.0 Performance

Although this case may not be encountered in practice, it is nevertheless useful
for comparison purposes. The sequence of events that occurs in the process of
retrieving an HTML document and the embedded images is as follows (refer to
Figure 7.14):

• Get the HTML document (all times and bit rates are expressed in
msec, for the sake of clarity)

• Establish a TCP session with the server

Delay = SYN + SYN ACK = (6 + 30 + 0.25) + (0.25 + 30 + 6) = 72.5 msec

• HTTP Get Request

Delay = ACK from client (from the 3-way handshake) + 448 bytes request
from client = [6 + 30 + (448 + 48) × 8/64] = 98 msec (Note that the ack and

request are pipelined.)

• Get HTML Document

236 Wide-Area Data Network Performance Engineering

Delay = ACK from server + 6 TCP segments of 1500 bytes each from server
(taking into account slow start) = 0.25 + 30 + [{(1500 + 48) × 8/64} +
ACK(from client) + (8 + 30 + 2 × 187) + ACK(from client) + (8 + 30 +

3 × 187)] = 1307.25 msec

• Close the TCP connection

Delay = FIN (from client) + [ACK(from server) + FIN(from server)] +
ACK(from client) = (6 + 30 + 0.25) + (0.25 + 30 + 12) + (6 + 30 + 0.25) =

114.75 msec

Total delay = 1.59 seconds

WAN Performance Analysis of TCP/IP Applications 237

Server

3-way TCP
handshake

HTTP Get_Req

ACK
TCP slow start—1st segment

Client

ACK

TCP slow start—2 segments

ACK

TCP slow start—3 segments
ACK and HTML
doc complete

TCP FIN
ACK
TCP FIN

ACK

Repeat the above
sequence for each

image to be retrieved

Get HTML document

Figure 7.14 A timing diagram for HTTP/1.0.

• Get the embedded images (see previous discussion for calculations)

Establish a TCP session with the server

Delay = 72.5 msec

• HTTP Get Request

Delay = 98 msec

• Get image from server

Delay = ACK from server (to HTTP Get request) + 3 TCP segments of
1500 bytes each from server using slow start = [0.25 + 30 + (1500 + 48) ×

8/64] + ACK(from client) + (8 + 30 + 2 × 187) + ACK(from client) =
708.25 msec

• Close the TCP connection

Delay = 114.75

Total delay for 1 image = 993 msec

Total delay for 20 images = 0.993 × 20 = 19.86 sec

• Total WAN contribution to the delay = 1.59 + 19.86 = 21.5 sec
(approximately)

7.5.3.2 Estimating HTTP/1.0 Performance with Multiple TCP Sessions
Clearly, using multiple TCP sessions will improve performance compared to
the previous case. The interactions between the multiple TCP sessions and slow
start mechanisms superimposed on a single WAN link are hard to capture in a
simple formula. Therefore, we provide some intuitive estimates under the fol-
lowing additional assumptions. A more accurate model would require a more
careful analysis, empirical observations, and a simulation model.

• A TCP session is set up to retrieve the HTML document. The image
transfers are initiated only after the HTML document is completely

238 Wide-Area Data Network Performance Engineering

received (this may not be true in some cases, where a TCP session for
retrieving an image may be set up earlier).

• Four parallel TCP sessions are then set up for image retrieval. Each ses-
sion issues a separate HTTP request for an image. After the images
have been received, additional TCP sessions are set up to retrieve the
next batch of the images, and so on until all the images have been
received.

• The effect of slow start for a single image retrieval may be significant,
but when parallel TCP sessions are established, we will assume that the
server has enough data to send to the client to saturate the WAN link.

Under these assumptions, here is a method to quickly estimate the Web page
download time for the example we are studying. First, estimate the time to get
the HTML document. Second, estimate the time to download the first batch of
four images using four TCP sessions. Third, estimate the total time to down-
load the Web page by multiplying this time by the number of iterations needed
to retrieve all images. Refer to Figure 7.15.

• Get the HTML document using a single TCP session: Delay =
1.59 sec (from previous example);

• Time for four images: Delay = Time to establish the first TCP session
+ time to send HTTP request + time to transfer the four images from
the server = 72.5 + 98 + (1500 × 8/1536 + 30 + 4 × 3 × 1500 8/64) =
2.46 sec;

• Time to get all the 20 images: Delay = 5 × 2.46 = 12.3 sec; and

• Time for Web download: 1.59 + 12.3 = 14 sec (approximately).

7.5.3.3 Estimating HTTP/1.1 Performance
To estimate the performance of the Web page download, we proceed in a
method similar to the case of HTTP/1.0 with multiple TCP sessions. First,
the HTML needs to be downloaded and then the HTTP requests have to be
sent to the server in a pipelined fashion. When the server receives the first
HTTP request, it starts to download the first image, and from then on,
the HTTP responses are streamed one after another, filling the WAN connec-
tion. Hence (refer to Figure 7.16):

• Time for the HTML document = 1.59 sec;

• Time for the first HTTP request = 448 × 8/64 + 30 = 86 msec;

WAN Performance Analysis of TCP/IP Applications 239

• Time to download all the images on a single TCP session = 1500 ×
8/1536 + 30 + 20 × 3 × 1500 × 8/64 = 11.29 sec; and

• Total time for the Web page download = 13 sec (approximately).

240 Wide-Area Data Network Performance Engineering

Server

3-way TCP
handshake

HTTP Get_Req

ACK
TCP slow start—1st segment

Client

ACK

TCP slow start—2 segments

ACK

TCP slow start—3 segments
ACK and HTML
doc complete

TCP FIN
ACK
TCP FIN

ACK

Repeat for the next
set of 4 images

Get HTML document

Get 4 images

3-way TCP
handshake

HTTP Get_Req

Multiple segments
from server

Open 4 TCP sessions

Figure 7.15 A timing diagram for HTTP/1.0 with multiple TCP sessions.

7.5.3.4 Some Comments on the Performance Estimates
Clearly, the performance estimates for HTTP transfers are harder to compute
than for FTP. The complexity arises as a result of many factors—multiple

WAN Performance Analysis of TCP/IP Applications 241

Server

3-way TCP
handshake

HTTP Get_Req

ACK
TCP slow start—1st segment

Client

ACK

TCP slow start—2 segments

ACK

TCP slow start—3 segments

ACK and HTML
doc complete

TCP FIN
ACK
TCP FIN

ACK

Get HTML document

Get images

3-way TCP
handshake

HTTP Get_Req

FTP-like transfer
for all 20 images

Figure 7.16 A timing diagram for HTTP/1.1.

images within an HTML document, multiple TCP sessions, slow start, and so
on. Of these, the case of the multiple TCP sessions appears to be most complex.

Using HTTP/1.0 with a single TCP session is clearly the worst per-
former. However, the fact is that HTTP/1.1 appears to give only slightly
better performance than HTTP/1.0 with multiple TCP sessions. In reality,
it is likely that both methods have comparable performance on the WAN,
from a purely data transfer perspective. The key is the fact that both methods
do a reasonable job of keeping the slowest link busy, which then determines
the transfer time.

HTTP/1.0 with multiple TCP sessions is nonoptimal from a broader per-
spective of WAN performance, especially when the window size advertised by
the client is large enough so that a single TCP session can saturate the WAN
connection (as is the case in our example). In this case, using multiple TCP ses-
sions will, in fact, be detrimental to other application traffic sharing the same
WAN connection.

HTTP/1.1 with a single TCP session may be nonoptimal for the converse
reason. If the WAN connection is high speed (think of a T1 connection
between the client and the server), and if the window size advertised by the cli-
ent is less than the optimal (as would be the case in our example), then it would
make sense to use two or three parallel TCP sessions to “fill the pipe.”

7.6 TCP Telnet Performance Issues

Telnet (and Rlogin for Unix) uses TCP/IP services to allow remote hosts to log
in to servers as though they are locally attached. Mission-critical applications
based on telnet are not very common, but they do exist. The performance issues
for telnet discussed later are also applicable in the context of remote presen-
tation techniques, such as Citrix Winframe/Metaframe, which is a commonly
used method to improve response times for many client/server applications.
Client/server applications are discussed in Chapter 9.

The single most important characteristic of telnet is the fact that it is
“echoplex” in nature, that is, every character typed at the remote host is sent to
the server, which echoes the character back to the host.19 Thus if delays on the
WAN are long, either due to long latency or due to load, the end user is likely
to type “ahead.” In other words, there will be a marked delay between the time
the character is typed at the keyboard to the time that character appears on the
screen. Needless to say, this can be a frustrating experience for the end user.

242 Wide-Area Data Network Performance Engineering

19. Telnet can also operate in line mode, but this is not as prevalent as character mode (or
echoplex).

In this section we discuss how to calculate echoplex delays for private
line and frame relay networks and demonstrate how telnet performance can be
adversely affected by background traffic. Consider Figures 7.3(a) and (b),
which show private line and frame relay point-to-point connections. In both
cases, assume that the remote PC is a telnet client attached to a telnet server at
the central site. Assume also that the network is unloaded and let us calculate
the echoplex delay. Because each character (1 byte) is sent across the WAN as a
TCP/IP packet, the frame size for this packet is

1 + 20 (TCP) + 20 (IP) + 8 (PL or FR) = 49 bytes

Hence to compute the echoplex delay all we need to do is calculate the round-
trip delay to send and receive a 49-byte frame. This is no different from calcu-
lating ping delays.

For private line (using the same assumptions about network latency as in
Sections 7.3), the estimated echoplex delay is

49 × 8/56,000 + 2 × 0.03 + 49 × 8/56,000 = 74 msec

ignoring, of course, additional delays introduced by routers, LANs, and cli-
ents/servers.

For frame relay, the corresponding number is

2 × (49 × 8/56,000 + 0.04 + 49 × 8/1,536,000) = 94 msec

Note that these delays are more a function of network latency than bandwidth.
Increasing bandwidth will have little effect on end user telnet performance.

Are these numbers—74 sec for private line and 94 msec for frame
relay—tolerable for character-mode telnet users? To answer this question, con-
sider a typical telnet user. Users are likely to type at the average rate of two to
three characters per second, with a peak rate of four to five characters per sec-
ond. Thus the interval between successive character entries is 300 to 500 msec
in the average case, and 200 to 250 msec at the peak rate. Hence, for telnet per-
formance to be acceptable, echoplex delay should be in the 200- to 500-msec
range allowing the user to type at a rate of two to five characters per second.
Clearly both the private line and frame relay numbers are acceptable.

How about the case of a global or satellite connection in which a remote
telnet client has logged on to a telnet host across continents? For a 10,000-mile
terrestrial connection, the echoplex delay will be at least 200 msec (2 × 10 msec

WAN Performance Analysis of TCP/IP Applications 243

for every 1000 miles), perhaps in the 200- to 250-msec range for unloaded con-
nections. As demonstrated, this is acceptable. However, for an unloaded satel-
lite connection, the echoplex delay will be at least 560 msec (2 × 280 msec for a
signal to propagate to the satellite and back). This is clearly unacceptable even
without considering the impact of load and other delays on the connection.

We now turn to a discussion of the impact of background traffic on telnet
response times. While telnet response time over terrestrial WAN connections
may be satisfactory, it is severely impacted by background load as demonstrated
next, using the example of TCP FTP and telnet sharing the same PVC over a
frame relay network.

Figure 7.17 shows two clients at a remote site both connected via TCP/IP
sessions over frame relay to a server at a central site. The port speeds and CIR
for the connection are as indicated. Assume that client A has a telnet connec-
tion to the server, and that client B has an FTP session with the same server. Let
us try to calculate echoplex delays when there is background TCP file transfer
in the direction of server to client.

Assume that the receiver advertised window size is 4 Kbytes with a seg-
ment size of 512 bytes (i.e., window size of eight segments of 512 bytes each). A
4-Kbyte window size is more than sufficient for achieving maximum through-
put. Assume also that a single file transfer is in progress and that telnet has
the same priority as FTP on this connection. What is the maximum additional
delay that the telnet user will experience?

Look at the timing diagram in Figure 7.18. Assume that a telnet echo
from the server to the client is sent at a random instant of time while an FTP
file transfer is in progress. Because of the speed mismatch between the T1 line
and the PVC CIR and remote port speed (32 and 56 Kbps, respectively),

244 Wide-Area Data Network Performance Engineering

Frame relay

T132 Kbps
Router Router

56 Kbps
Server

Telnet
client

File transfer70% load40% load
FTP client

FTP session

Telnet session

Figure 7.17 Mixing telnet and FTP over a frame relay connection.

buffering of the FTP data will occur at the ingress buffers and/or egress buffers
at the network edges.

We need to calculate how much FTP data can be resident in network
switch buffers at the ingress or egress at any given time, under the assumption
of a single file transfer with a window size of 4 Kbytes. Note that the maximum
amount of FTP data in the network switch buffers at any given time is the

WAN Performance Analysis of TCP/IP Applications 245

Segment 1

Segment 2

Access AccessBackbone
Router Switch RouterSwitch

Ack 1

Ack 2

Segment 8

Segments 1–8

Segment 9

Segment 10

Segment 1

Segment 2

Segment 3

Server-side Client-side

Segment 3

Ack 8

Telnet response

FTP packets
buffered here

Figure 7.18 Timing diagram showing telnet echoes mixing with FTP.

window size (plus overhead), that is, 8 × (512 + 48) = 4480 bytes. Hence, the
maximum amount of time that the telnet echo will be delayed is equal to
the time it takes to empty a window’s worth of data on the slowest link. This is
equal to

4480 × 8/56,000 = 640 msec

Actually, we can refine this analysis further. Note that the time between
successive acks received is equal to the time required to insert a frame at the
slowest link. Hence, the sender is allowed to send one segment every time an
ack is received; the net input rate to network buffers is 0. Because the sender
starts with a window of 8 Kbytes,20 and the switch can empty W ∗ = Round-trip
delay × Slowest link (optimal window) while waiting for an acknowledgment,
and one segment is injected for every acknowledgment, the switch buffer will
have

Advertised window size (plus overhead) − W ∗

For this example, the optimal window size is approximately two segments
of 512 bytes. Hence, the switch buffer contains approximately six segments of
512 bytes each. The time to drain these data from the buffers at the slowest link
speed is

(512 + 48) × 6 × 8/56,000 sec = 482 msec

This is an approximation for the additional delay that a telnet echo response
will experience.

Clearly, these are unacceptable response times for the telnet end user.
Note that this is the impact due to single TCP FTP in the background. When
there are multiple parallel bulk data transfers in the background, the impact
will be far greater.

This analysis also shows the impact of using a window size larger than the
optimal window size for TCP applications. If the window size is set at or near

246 Wide-Area Data Network Performance Engineering

20. This is not strictly true—the sender will not send the entire window size advertised by the
receiver. Rather, it will implement slow start, whereby the sending station will send one seg-
ment, receive an ack, send two more, four more, and so on. With a relatively small adver-
tised window size, it will take only a few round-trip delays for the sender to send the full
window of 8 Kbytes advertised by the receiver.

its optimal value W ∗, then telnet echo will experience no additional delay, and
yet TCP FTP will receive the best throughput possible. That is the beauty of
the optimal window size setting!

To summarize, for bulk data transfers, using a window size W > W ∗, the
optimal window size, results in no additional gain in throughput. On the other
hand, it increases the possibility of negatively impacting interactive application
response time!

7.7 Review of Methods to Provide Traffic Discrimination for
TCP/IP Applications

The preceding discussion shows the need to provide preferential treatment
for certain applications over a WAN via traffic discrimination. The problem is
most apparent when mixing response-time-sensitive TCP interactive applica-
tions (like telnet, Citrix Winframe/Metaframe, client/server applications, TCP
encapsulated SNA traffic) and bulk data transfer applications (like TCP FTP
and HTTP) on the same connection. In Chapter 5, Section 5.5, we discussed
this issue in the context of frame relay networks and the congestion shift from
routers to the frame relay cloud. In that section we also discussed several meth-
ods to ensure good performance for higher priority traffic. In this section, we
review some of those methods, using TCP telnet and TCP bulk data traffic
over frame relay as the example. Clearly, the same logic can be applied to other
applications as well.

We review the following methods:

• Prioritize telnet over bulk data transfer traffic at the router;

• Separate telnet on its own PVC—priority PVCs;

• Traffic shape at the router; and

• Deploy more general bandwidth management techniques.

7.7.1 Prioritize Telnet Over Bulk Data Transfers at the Router

One can prioritize telnet over other traffic streams at the router WAN serial
interface on the basis of TCP port numbers. Thus, for instance, telnet (port 23)
can be prioritized over FTP (port 21), or telnet can be prioritized over Web
(HTTP) traffic on port 80.

What is the maximum gain in delay for telnet echoplex under such a pri-
oritization scheme? Given the direction of telnet and bulk data transfer traffic,
prioritization needs to take place at the WAN router closest to the server (see

WAN Performance Analysis of TCP/IP Applications 247

Figure 7.19). Again, due to the speed mismatch between the T1 frame relay
port and the CIR/remote port speed (32/56 Kbps), there can be at most one
TCP segment at the T1 port on the router that the telnet echo gets priority
over. This is due to our assumption of a single background TCP FTP. Hence,
the gain in delay is likely not to exceed the insertion delay of a TCP segment on
the T1 line, that is,

(512 + 48) × 8/1,536,000 = 3 msec

Note that the specific implementation of router prioritization, whether
strict priorities or bandwidth allocation with minimum guarantees for lower
priority traffic, is irrelevant. Even weighted fair queuing (WFQ) will be ineffec-
tive because WFQ works well to allocate bandwidth for time-sensitive traffic
only under congestion. Bandwidth allocation schemes appear to be attractive
candidates to resolve the prioritization issue. For example, bulk data transfer
can be allocated limited bandwidth at the router (say, 90% for telnet and 10%
for FTP). Even this scheme will fail because routers will not limit the band-
width for lower priority traffic when higher priority traffic is absent. Thus bulk
data transfers will receive 100% of the available bandwidth during times when
telnet is not present. Limiting the bandwidth allocated to a particular traffic
stream is the function of traffic shaping, not router prioritization.

Therefore it is clear that router prioritization schemes, no matter how
sophisticated, will not address the problem as stated above. This is because pri-
oritization needs to take place at congestion points—the T1 port is hardly the
congestion point. The congestion is more likely to take place at the network
edges.

248 Wide-Area Data Network Performance Engineering

Frame relay

T132 Kbps
Router Router

56 Kbps
Server

Telnet
client

Egress buffer Ingress buffer

Router
prioritization

FTP client

Telnet echoes

Bulk data transfer

Figure 7.19 Prioritizing telnet over bulk data traffic.

This, however, does not mean that router prioritization should never be
used. In reality, the WAN serial port may support several PVCs, each of which
may be supporting bursty TCP traffic (like Web downloads). In such cases, the
router should definitely be configured to prioritize telnet traffic. The point
of the preceding discussion is that router prioritization alone is insufficient to
guarantee good performance for telnet.

7.7.2 Separate Telnet on Its Own PVC

If telnet were to be separated on its own PVCs (some routers, if not all, can be
configured to do this), then the “packet train” effect will be minimized. To see
this, consider a closed-loop frame relay network (see Chapter 2, Section 2.4, for
a discussion on closed- and open-loop implementations of frame relay). In such
an implementation, the ingress buffer (see Figure 7.19) will carry bulk data and
telnet packets. The effect of allocating a separate PVC for telnet will be to form
two separate queues, served in round-robin format, for telnet and other traffic.
Hence a telnet packet will not have to wait behind a packet train of non-telnet
packets. However, if there is enough background traffic, a queue will build up
at the egress buffer (see Figure 7.19). Hence, in addition to allocating a separate
PVC for telnet, this PVC must also be prioritized in the network at the egress.
Typical implementations of priority PVCs at egress frame relay ports use a sin-
gle queue and assign a higher transmission priority to specific PVCs with band-
width guarantees for lower priority PVCs.

In the open-loop implementation, the queue buildup will occur at the
egress buffers. To be able to distinguish between telnet packets and non-telnet
packets, telnet will have to be on a separate PVC and will have to be prioritized.
In other words, the solution is exactly the same for both open- and closed-loop
systems.

Although the separate PVC approach provides a reasonable solution, it
can only be recommended for resolving specific situations in a small network
(that is, a “band-aid” approach). It is not a universal solution for providing traf-
fic discrimination over frame relay. It is limited by the capability of the router
to separate traffic classes into different PVCs, requires PVC prioritization in
the network, and increases the administrative overhead in the network, and is
therefore not a scalable solution.

7.7.3 Traffic Shaping at the Router

In the previous example, if the router can be configured to throttle the transmit
rate on the PVC carrying telnet and bulk data transfer traffic to 56 Kbps, then
the speed mismatch between the frame relay port speeds (T1 versus 56 Kbps)

WAN Performance Analysis of TCP/IP Applications 249

will be eliminated. Thus the queue buildup will more likely happen at the router
buffers rather than the network buffers. Because routers can distinguish between
telnet and non-telnet traffic, router prioritization will become effective and telnet
response times will improve. At the same time, bulk data transfer throughput will
not be affected because the maximum throughput is capped at 56 Kbps.

Of course, depending the bursting capabilities of the PVC, there is still a
chance for network buffers to accumulate packets. In this case, the router can
be configured to rate throttle the PVC to the CIR (assuming, of course, that the
carrier guarantees the CIR). The downside of this approach is that the PVC will
never be allowed to burst.

In general, however, router-based traffic shaping also cannot be recom-
mended as a universal solution for traffic discrimination. This approach is only
applicable for frame relay, and traffic shaping is not commonly implemented in
all routers. It is also not scalable because of its impact on router resources.

7.7.4 More General Bandwidth Management Techniques

Suppose in addition to telnet, the network has to support Web-based intranet
applications, client/server applications, e-mail, and Internet access. Combine this
with the fact that different users in the different parts of the organization require
different service levels for the same applications. For instance, Internet access may
be more important for R&D users than people in accounting. Conversely, SAP
R3® is likely to be more important to accounting users compared to R&D.

Clearly, none of the techniques already mentioned—router prioritization,
separate PVCs, and router-based traffic shaping—will be adequate. These
are relatively straightforward layer 2 and layer 3 approaches. One needs a more
sophisticated bandwidth allocation and traffic shaping scheme. At the time of
this writing, a few vendors offer products that address this need. We mention
three—Packeteer, Xedia Corporation, and CheckPoint Software Technologies
Ltd. Packeteer uses a TCP rate control approach where individual TCP sessions
are monitored and management occurs from the bandwidth point of view.
Xedia and CheckPoint, on the other hand, use queuing techniques—class-
based queuing and weighted fair queuing—to achieve the same goals. These
products are placed at strategic locations in the network, typically at congestion
points, and allow bandwidth allocation at a very granular level.

7.8 Summary

This chapter provides ways to quantify TCP/IP application performance over
a wide-area network. Consistent with the rest of the book, the WAN

250 Wide-Area Data Network Performance Engineering

technologies analyzed are leased lines and frame relay. The focus is on the tech-
niques used to arrive at performance metrics, rather than on the underlying
WAN technology itself, although the two are sometimes related. These tech-
niques can be used in other contexts as well, such as dial-up connections,
VPNs, and ATM WANs.

We first discuss TCP windowing characteristics and demonstrate how
throughput for a TCP bulk data transfer can be calculated, for unloaded WAN
connections, as a function of window size, network latency, and other parame-
ters. The importance of optimal window size for a WAN connection is then
discussed. We provide general formulas for throughput computation for pri-
vate line and frame relay networks. We then discuss the impact of background
load on TCP throughput. This is followed by a discussion of performance
issues for HTTP and telnet applications. Finally, we briefly discuss the issue of
traffic discrimination and the various approaches one can take to ensure satis-
factory performance for a class of critical applications in the presence of less
critical applications.

References

[1] Killelea, P., Web Performance Tuning, Cambridge, MA: O’Reilly & Associates, 1998.

[2] Stevens, W. R., TCP/IP Illustrated, Volume 1: The Protocols, Reading, MA: Addison-
Wesley, 1994.

[3] Padhye, J., et al., “Modeling TCP Throughput: A Simple Model and Its Empirical
Validation,” Proc. SIGCOMM ’98, Vancouver, British Columbia, August 1998.

[4] Madhavi, J., and S. Floyd, TCP-Friendly Unicast Rate-Based Flow Control,
http://www.psc.edu/networking/papers/tcp_friendly.html, January 1997.

WAN Performance Analysis of TCP/IP Applications 251

8
WAN Performance Considerations for
Novell NetWare Networks

8.1 Introduction

Novell networking was the dominant LAN networking protocol suite in the
early 1990s. With the deployment of LAN interconnections over wide-area
networks, it became one of the dominant protocol suites to run over enterprise
networks. The Novell protocol suite has its roots in the development of the
Internet protocols, but is primarily a Novell proprietary networking protocol.
With the emergence of the Internet and its protocols as the networking stan-
dard, Novell is in the process of embracing the TCP/IP protocols where
appropriate.

In this chapter, we discuss the aspects of the Novell networking protocols
that are relevant to performance engineering of WANs. In the next section, we
present a brief overview of Novell NetWare protocol suite. We follow this with
a presentation of packet formats and protocol specifics that affect the amount
of bandwidth necessary to support NetWare. In the following section, we
describe the evolution of the NetWare transport protocols through the various
releases of NetWare from release 3.11 to 4.x. The final section of this chapter
contains some simple formula for throughput and delay of NetWare applica-
tions in private line and frame relay environments, in the spirit of the formulas
of the previous chapter on TCP/IP performance.

At the time of the writing of this book, NetWare 5.0 was just being
released by Novell. With this release, NetWare can be configured to run over
the TCP/IP transport protocols. In this situation, the formulas we presented in

253

Chapter 7 on TCP/IP are more appropriate. In the following material, we con-
centrate only on NetWare releases 3.11 to 4.x and on those release 5.0 imple-
mentations that rely on the older NCP transport capabilities, for example,
non-burst-mode and burst-mode transport protocols.

8.2 Overview

The Novell NetWare protocols draw heavily on the Xerox Networking System
(XNS). Figure 8.1 shows the dominant layers and their corresponding proto-
cols, which comprise the NetWare protocol suite. (For a thorough discussion
of Novell’s NetWare protocols, see [1] and [2].) This figure shows the data
link, packet, transport, and file handling layers of NetWare. NetWare supports
numerous data link protocols, including Ethernet, token ring, and X.25. The
packet layer is the internetwork packet exchange (IPX) protocol. It is a data-
gram protocol like IP and has its origins in the XNS internetwork datagram
protocol (IDP). NetWare protocols, which rely on the services of IPX, include
the routing information protocol (RIP), the service advertisement protocol
(SAP), the sequenced packet exchange (SPX) protocol, and the network core
protocol (NCP).

The NetWare protocol defines the interaction between Novell clients and
servers. On the server side, the server runs the NetWare operating system
and the networking protocols, which extend the operating system services to
the clients over the network. The NetWare operating system consists of a ker-
nel providing core services. Additionally, capabilities can be added to the server
through additional software referred to as network loadable modules (NLMs)
in NetWare 3.x or virtual loadable modules (VLMs) in NetWare 4.x. These
loadable modules are software programs that are dynamically loaded when
necessary and act as part of the operating system kernel. We will discuss some
specific NLMs and VLMs that enhance the NCP transport protocols.

254 Wide-Area Data Network Performance Engineering

IPX

Data link

NCP
SPX RIP and SAP

File system handling

Transport protocols

Packet layer

Figure 8.1 Novell NetWare release 3.x and 4.x protocol stack.

On the client side, the NetWare software extends the client operating sys-
tem onto the network. This software is referred to as the NetWare shell. This is
illustrated in Figure 8.2.

The protocol stack, as shown in Figure 8.1, is indicative of the NetWare
release 3.x and 4.x versions. With the next release of NetWare, release 5.X,
Novell more fully embraces the now-dominant TCP/IP protocol stack (see
Figure 8.3). In this release, the Novell user can replace IPX with IP at the
packet layer and rely on TCP as the primary transport protocol. Release 5.0 was
due out near the end of 1998. With this release, much of our earlier discussions
on TCP/IP performance will apply to NetWare. For more information on Net-
Ware integration onto TCP/IP, refer to [3]. However, it will take some time
for extensive deployment of 5.0 to occur. In the meantime, we expect earlier
releases of NetWare to be commonplace in many enterprise networks.

WAN Performance Considerations for Novell NetWare Networks 255

Client Server

NetWare shell
(NCP)

Client OS

(IPX)
Common protocols

(IPX)
Common protocols

NetWare OS
and NLM/VLMs

(NCP)

Figure 8.2 NetWare operating system client/server architecture.

IP

Data link

NCP

TCP RIP, NLSP, NDS, SLP

File system handling

Transport protocols

Packet layer

Figure 8.3 NetWare support for the TCP/IP protocol stack in release 5.X.

In this chapter we discuss some of the performance-affecting characteris-
tics of the earlier releases, primarily NetWare releases 3.x and 4.x. We first dis-
cuss these protocols, packet formats, and bandwidth considerations on WANs
in the next section of this chapter. We then discuss the evolution of the Net-
Ware transport and windowing strategies and discuss the performance motiva-
tions for this evolution. We end this chapter with a brief discussion of some
formulas to estimate the performance of these transport protocols over repre-
sentative private line and frame relay environments.

Throughout this chapter, we will focus on NCP as the dominant
NetWare transport protocol and RIP and SAP as the routing and discovery
protocols. By doing so, we implicitly claim that the majority of the WAN per-
formance and engineering issues with NetWare 3.x and 4.x are related to these
three protocols.

8.3 Overhead and Bandwidth Considerations

In this section we present several aspects of the NetWare protocols and packet
formats that affect bandwidth considerations over WANs. We concentrate on
the NetWare NCP transport and RIP and SAP routing and service discovery
protocols for NetWare releases 3.x and 4.x.

The network core protocol (NCP) provides basic communication, file
access, print access, and queue management services within the NetWare net-
working environment. For example, the NCP handles read and write requests
issued over the LAN/WAN. The NCP relies on the IPX protocol for its
datagram-based networking. The IPX protocol is similar to IP in the services it
supplies to the upper protocol layers. Figure 8.4 shows the format of the IPX
packet header. The IPX header is 30 bytes in length and contains the source
and destination network and node addresses. The NCP includes the transport
protocol capabilities within it. These transport capabilities have evolved much

256 Wide-Area Data Network Performance Engineering

1 122 6 4 2 6 4 2 Data

Null c
heck

Le
ngth

Tra
nsp

ort contro
l

Packe
t typ

e

Dest.
node abbr.

Source node abbr.

Source net abbr.

Dest.
net abbr.

Source so
cke

t

Dest.
so

cke
t

Figure 8.4 IPX packet header fields and lengths.

from NetWare release 3.x to 4.x and 5.x. We discuss this evolution and per-
formance in the following section.

Most implementations of NetWare rely on the routing information
protocol (RIP) as their routing discovery protocol. The RIP also runs over the
IPX protocol. The RIP is a distance vector protocol (like the RIP within
the TCP/IP protocol suite). Systems maintaining RIP routing databases will
periodically (typically once each 60 sec) broadcast their routing table entries to
all of their nearest neighbors. For each reachable network address, a routing
table entry consists of the network address, the hop count to that network, and
the time estimate to the network.

The RIP message format is shown in Figure 8.5. Here we see that the
RIP message header is 4 bytes in length. This is followed by up to 50 network
addresses, hop counts, and time estimate entries. Each of these entries is 8 bytes
in length: 4 bytes for network address, 2 bytes for hop count and 2 bytes for
time estimate. When these messages are transmitted over a typical WAN inter-
face, they are encapsulated in an IPX packet, which is further encapsulated
within the data link packet.

Assuming that the typical data link packet adds 8 bytes (that is, 6 bytes
for link headers and trailers and 2 bytes for higher level protocol identifiers)
to the packet and that we know that the IPX header is 30 bytes, we get for
the best case scenario the following estimate for bytes transmitted per network
advertised:

WAN Performance Considerations for Novell NetWare Networks 257

Network 0 address

RIP header 4 bytes

Hop count to 0
Time estimate to 0

8 bytes

Network 49 address

Hop count to 49
Time estimate to 49

8 bytes

Maximum of
404 bytes

Figure 8.5 The NetWare RIP message format.

50 networks = (8 bytes for data link) + (30 bytes for IPX) +
(50 × 8 + 4 bytes) = 442 bytes

or

E (RIP) = 9 bytes / NetWare RIP network entry

Let us now estimate the bandwidth requirements to support NetWare’s
RIP. The bandwidth requirement will reflect the amount of traffic to be trans-
mitted per network entry (just derived) and frequency that this information is
to be transmitted over the WAN facilities, that is,

RIP bandwidth requirement = N (RIP) × F (RIP) × E (RIP) × 8 bits/byte

RIP bandwidth requirement = 72 × N × F (in bps)

where N (RIP) is the number of routing entries to be advertised, F (RIP) is the
frequency of the routing advertisements, and E (RIP) is the number of bytes to
be transmitted per routing table entry. We have used the just derived value of
E (RIP) = 9 bytes/entry to obtain the second expression.

As an example, for a routing table of 1000 entries that is broadcast once
every 60 sec, we get

72 × 1000 × 1/60 = 1.2 Kbps

In many situations this does not appear to be an excessive bandwidth require-
ment. Most serial lines are 56 Kbps or higher, so this represents a fairly small
percentage of these links. However, the instantaneous demand for bandwidth
caused by the broadcast of RIP packets each 60 sec may be problematic.
In cases where a single frame relay port supports multiple PVCs with a high
overbooking factor, the RIP packets are replicated onto each of the PVCs on
the frame relay port. For a port supporting 20 PVCs, this would represent an
instantaneous demand for bandwidth due to the transmission of 9000 × 20 =
180 Kbytes. This may be enough to cause packet drops, FECN/BECN, and so
on. In situations like this, it is probably wise to either increase the port speed of
the frame relay interface if it is necessary to run dynamic updates over these
VCs, or use static and default routes if not. For a discussion of routing design
and its relationship to network topology, see [4].

258 Wide-Area Data Network Performance Engineering

The next NetWare protocol we discuss is the service advertisement proto-
col (SAP). The SAP is the NetWare protocol that advertises the various Net-
Ware services and servers. Any server or service can be advertised, but common
service advertisements include routers, gateways, and file and print servers. The
SAP allows programs to register their services and clients to request the location
of those services. Requests are broadcast to all nodes on the network.

Servers on a LAN segment typically send a SAP broadcast every 60 sec
on that LAN. Routers use these broadcasts to populate SAP information tables
(SIT). Routers then exchange SIT information over the WAN each 60 sec. The
SAP packets containing these router exchanges are shown in Figure 8.6 and can
contain multiple (up to seven) service advertisements.

Here we see that the message header is 2 bytes in length. This is followed
by up to seven service advertisement entries. Each of these entries is 64 bytes
in length. When these messages are transmitted over a typical WAN interface,
they are encapsulated in an IPX packet, which is further encapsulated within
the data link packet. As before, assuming that the typical data link packet adds
8 bytes to the packet and that we know that the IPX header is 30 bytes, we get
for the best case scenario the following estimate for bytes transmitted per serv-
ice advertised as:

7 SAP entries = (8 bytes for data link) + (30 bytes for IPX) +
(450 bytes for SAP) = 488 bytes

WAN Performance Considerations for Novell NetWare Networks 259

Service 1 advertisement

SAP header 2 bytes

Service 7 advertisement

64 bytes

Maximum of
450 bytes

Figure 8.6 NetWare SAP message formats.

or

E (SAP) = 70 bytes / NetWare SAP entry

Given that it is not uncommon to find 500 SAP entries in a SIT on a large Net-
Ware network, updating a SIT can impose a high traffic load on WAN links. In
this example, the background traffic is roughly

SAP bandwidth requirement = N (SAP) × F (SAP) × E (SAP) × 8 bits/byte

SAP bandwidth requirement = 560 × N (SAP) × F (SAP) (in bps)

where N (SAP) is the number of SAP entries to be advertised, F (SAP) is the fre-
quency of the SIT updates, and E (SAP) is the number of bytes to be trans-
mitted per SIT table entry. We have used the just derived value of E (SAP) =
70 bytes/entry to obtain the second expression.

As an example, for a SAP information table of 500 entries that is broad-
cast once every 60 sec, we get

560 × 500 × 1/60 = 4.7 Kbps

Like the case of estimating the average load introduced by RIP broadcasts
on the network, the average load cause by SAP broadcasts in most situations is
not large either. However, in some situations the instantaneous transmission of
(4.7 Kbps × 60 sec / 8 bits per byte =) 35 Kbytes per link can be problematic.

To lessen the burden of RIP and SAP broadcasts over WAN facilities,
Novell introduced the NetWare link services protocol (NLSP). NLSP is akin to
a link state routing protocol in that it only transmits changes in routing or serv-
ices information tables. This is in contrast to RIP and SAP, which periodically
broadcast their entire information tables. When implemented, NLSP replaces
both the RIP and SAP protocols. Therefore, NLSP implementations do not
suffer from the periodic and instantaneous transmission of large volumes of
routing and service advertisement data.

8.4 Novell Windowing Schemes

In this section we discuss the evolution of the NetWare transport windowing
capabilities. We begin with a discussion of NetWare 3.0, and then discuss the

260 Wide-Area Data Network Performance Engineering

modifications Novell implemented in releases 3.11, 3.12, and 4.0. The major-
ity of the NetWare services are handled through NCP. The NCP sits directly
on top of the IPX protocol. NCP incorporates the services associated with the
transport protocol, including flow control and error recovery on an end-to-end
basis. As such, we focus on the transport capabilities implemented in the vari-
ous releases of NCP.

8.4.1 NetWare Pre-Release 3.11

Prior to release 3.11, the NCP imposed a simple request/response dialog
between a client and a NetWare server. When the client issued a read request
for a file of 1024 Kbytes, NCP would divide the read request into individual
NCP requests/responses based on the maximum packet size allowed in the Net-
Ware router, for example, typically 512 bytes of data in a packet of 576 bytes
total (see Figure 8.7). In this example then, the single client/server service
transaction would require 1024 Kbytes / 512 bytes = 2000 separate NCP
request/response exchanges. The performance implications of this ping-pong
effect imposed by the pre-release 3.11 NCP are obvious. We discuss the per-
formance impact in Section 8.5.

The NCP packet format is shown in Figure 8.7. This shows that the NCP
overhead is 34 bytes and that the data portion of the packet supports up to
512 bytes of data, assuming a negotiated packet size of 576 bytes. Of course,
larger packet sizes can be negotiated, resulting in larger data fields.

WAN Performance Considerations for Novell NetWare Networks 261

Data link
header

IPX
header

NCP
(no burst mode)

Fragment of data Data link
trailer

64 bytes

34 bytes30 bytes Up to 512 bytes

Maximum of
576 bytes

Figure 8.7 NCP packet format for pre-release 3.11 of NetWare.

8.4.2 NetWare Release 3.11

With NetWare release 3.11, Novell introduced its burst-mode technology, some-
times referred to as packet burst. This first introduction of a new NCP transport
capability required the client to install the burst-mode version of the NetWare
shell (BNET.EXE) and required the server to install the packet burst NLM
(PBURST.NLM). This first burst-mode implementation added the following
transport capabilities to NCP: an adjustable windowing protocol and a rate-
based packet metering scheme.

Burst-mode technology introduced a nonsliding selective repeat window-
ing scheme to NCP. A theoretical maximum window size of 64 Kbytes (or
128 × 512-byte packets) was available. The initial, or minimum, window size
was determined by the product of the BNETX shell’s buffers (as determined
in the NET.CFG) and the maximum data link packet size. The actual window
size was bound from below by the minimum and from above by the win-
dow maximum. Based on the performance of the previous burst, the current
window was adjusted either up or down for the next burst. The algorithm was:

• A successful burst transaction which causes the window to increase
by 100 bytes. (A successful burst transaction is one with no dropped
packets.)

• A burst with one or more dropped packets which causes the window to
decrease to 7/8 of its current size.

The windowing scheme is not sliding. That is, the entire window (or
burst) is transmitted and then the transmitter waits until the ack of the entire
burst is received prior to adjusting the current window and then transmitting
the next burst. In the event that the current burst experienced some packet loss,
the response from the receiver would indicate the packets that were lost within
the missing fragment list (see burst-mode packet formats in Figure 8.8). The
transmitter will then selectively retransmit only those packets that were lost.
This continues until all packets are successfully received, completing the burst.
The network time-out value is dynamically adjusted based on a moving average
and variance of the network delays.

In addition to the dynamic window scheme, NetWare 3.11 implemented
an interpacket gap (IPG) to rate control the flow of packets. The IPG is the
time between the end of one packet transmission to the time beginning
the transmission of the next packet within the same packet burst. The client
requests that a server use a given IPG to keep fast servers from overrunning
slower clients. This IPG remains constant once it is established by the client.
The initial IPG is determined by the median time between packet arrivals.

262 Wide-Area Data Network Performance Engineering

Figure 8.8 shows the NCP packet overhead for the burst-mode imple-
mentation of release 3.11 and later. The figure shows overhead factors similar
to those shown in Figure 8.7 for the non-burst-mode implementations. How-
ever, the note in Figure 8.8 shows that there are additional overheads in the
event that the packet is associated with read/write requests/replies. However,
for simplicity in the following calculations, we will ignore these additional
overhead items. This is because a single read_reply may generate hundreds of
IPX packets, only the first of which carries the read_reply overhead. Figure 8.9
shows the relationship between the read/write request/reply transaction, termed
a service transaction, and the underlying burst and packet structures. A service

WAN Performance Considerations for Novell NetWare Networks 263

Data link
header

* Additional bytes are included if burst header is associated with
1) read_req: 24 bytes,
2) read_reply: 8 bytes,
3) write_req: 24 bytes, or
4) write_reply: from 4 to 24 additional bytes.

IPX
header

NCP
burst header

Fragment of data or
missing fragment list

Data link
trailer

30 bytes 36 bytes* Up to 512 bytes

Figure 8.8 NCP packet format for release 3.11 of NetWare burst mode implementation.

Read_req

EOB EOB

1st
fragment

Last
fragment

Bursts

Service
transaction

Figure 8.9 Relationship of the read/write request/reply transaction to the burst structure.

transaction would consist, for example, of a read_request and read_reply. The
read_reply could consist of many megabytes of data being transmitted down to
the client that initiated the read_request. The read_reply is segmented up into
multiple bursts. The end of each burst is delimited by an end-of-burst (EOB)
indicator. The individual bursts must be further segmented into smaller frag-
ments based on the negotiated maximum packet size.

For more information on burst-mode packet formats refer to [5] and [6].
In summary, release 3.11 of NetWare implemented the following new

features:

• A fixed IPG;

• A dynamic, nonsliding window with selective repeats for error
recovery;

• Current window size adjustment for each burst based on a specific suc-
cess criteria; and

• Initial window size determined by the product of the maximum data
link packet size and the number of BNETX shell buffers.

8.4.3 NetWare Releases 3.12 and 4.0

NetWare releases 3.12 and 4.0 have integrated the burst-mode technology
into the operating system of the servers. Burst mode is automatic, enabled on
the client through the file input/output (FIO) virtual load module. With these
releases, Novell also modified and enhanced the burst-mode capabilities. These
enhancements included modifications to workstation buffering and windowing
and IPG adjustments.

Unlike the BNETX shell (of release 3.11), the VLM dynamically con-
figures buffering at the clients. This implies that there are no window size
limitations as there were with the BNETX shell.

The first implementations of VLM (1.02) fixed the window size at
16 packets for reads and 10 packets for writes. Instead of adjusting the window
size, VLMs earlier than 1.02 adjusted the IPG; the client sends a series of ping
messages to the destination and back. Then the maximum IPG is set to one-
half the fastest round-trip time. The initial IPG is set to 0. If a threshold of
packet drops occurs, for example, two of six packets, the IPG is increased until
either no more packets are dropped or until the maximum IPG is reached.

VLM 1.02 and greater changed this algorithm. Now both the IPG and
the window size are dynamically changed during transmission. Here, the IPG is
first adjusted eventually to its maximum value. Only then does the window
adjustment occur. The initial IPG is set to one-half the maximum IPG. The

264 Wide-Area Data Network Performance Engineering

algorithm then essentially halves or doubles the IPG if the transmission suc-
ceeded or failed, respectively. In the event that the IPG reaches the maximum,
then further modifications would cause the window size to be adjusted. In this
case, the maximum window for reads and writes is specified by the client in
the NET.CFG file. The default is 16 for reads and 10 for writes. These values
can be overridden by the NET.CFG file. The maximum window for reads and
writes, in this case, can range from a low of 3 to a high of 255 packets. In the
event that the IPG is maximized and the window is being adjusted, the follow-
ing algorithm is followed:

If the window is decreasing: Wi + 1 = Wi − (Wi − 3 × Max_Pack_Size) / 4

If the window is increasing: Wi + 1 = Wi + 100 bytes

Finally, let us briefly mention the sequenced packet exchange (SPX)
transport protocol and its successor, SPX II. The SPX protocol sees limited use
by Novell applications; it is used primarily in Novell printer applications. SPX
sits on top of the IPX protocol and provides a guaranteed packet delivery serv-
ice. SPX permits only a single outstanding packet to be in transit at a time. The
maximum SPX packet size is 576 bytes. In this sense, the SPX transport proto-
col behaves similar to the NCP non-burst-mode transport protocol implemen-
tations. An enhanced version of SPX, SPX II, was introduced in NetWare 4.x
releases. The primary performance enhancements with SPX II are (1) support
for a larger maximum packet size and packet size negotiations, and (2) support
for multiple outstanding packets in a single SPX II window. In this sense, SPX
II behaves similar to NCP burst-mode implementations.

8.5 Private Line and Frame Relay Formulas

In this section we present some simple formulas to characterize performance of
Novell file transfer applications. Our methodology draws heavily on the mate-
rial in Chapter 7 on computing similar metrics for TCP/IP applications. We
address here only those aspects unique to Novell applications and protocols.

In developing the formulas in this section, we make several assumptions
in line with the assumptions made in Chapter 7. We list these assumptions up
front so that this is clear:

• Negligible packet loss. This has been a common assumption throughout
this book. If this assumption is not valid, then the root cause of the

WAN Performance Considerations for Novell NetWare Networks 265

high packet loss should be addresses through capacity upgrades or
other means.

• End-to-end latency. We assume, for simplicity, the private line latency
to be 30 msec and the frame relay latency to be 40 msec. These are
typical of U.S. domestic networks. For international networks, much
higher rates are assumed.

• Router, LAN, and client/server delays. We assume these delays to be
negligible.

• IPG is negligible. This assumption is a consequence of the “no packet
loss” assumption. For VLM implementation of versions 1.02 and
higher, the IPG is adjusted based on packet loss. In the absence of
packet loss, the IPG will eventually be adjusted down to zero.

• Burst-mode VLM version 1.02 and later. We present formulas for non-
burst-mode and for burst-mode VLM version 1.02 and later.

• Private line reference connection. The private line formulas are specific
to the private line reference connection shown in Figure 8.10.

• Frame relay reference connection. The frame relay formulas are specific
to the frame relay connection shown in Figure 8.11.

• Non-burst-mode and burst-mode performance differ only in window size.
Given that the IPG is assumed to be zero in the burst-mode imple-
mentation, then burst-mode transfers consist of transmitting a win-
dow’s worth of data and then waiting for an acknowledgment. This is

266 Wide-Area Data Network Performance Engineering

Server Client

Router 0 Router NLRouter 1
L bps L bps L bps

Figure 8.10 Private line reference connection for simple formula development.

Server Client

Router 0 Router 1
Pb bps Pa bpsCIR

Figure 8.11 Frame relay reference connection for simple formula development.

the same for the non-burst-mode implementation except that the win-
dow is restricted to one packet.

Finally, before proceeding to our discussion of formula development, let
us spend a few moments talking about the notion of optimal window size in
relation to the windowing scheme implemented in NetWare pre-release 5.0.
We spent some time in Chapter 7 discussing the optimal window size for
TCP/IP and on how to estimate the optimal window size. Unlike NetWare
NCP implementations, TCP/IP employs a sliding window scheme. Net-
Ware NCP employs a nonsliding, simplex windowing protocol where the size
of the window varies from one for pre-release 3.11 and greater than one for
release 3.11 and later. However, because the window is nonsliding, the concept
of an optimal window does not apply. For simplex windowing protocols, the
larger the window the higher the throughput, up to the point that buffers begin
to overflow and packet loss becomes an issue. For sliding window protocols, for
example, TCP/IP, we argued that an optimal window size exists and is equal to
the minimum window that maintains 100% utilization of the slowest link in
the path. For simplex windowing schemes, no matter how large the window
is, there will exist idle periods on the slowest link in the path. In this sense,
simplex windowing protocols are always window limited. Therefore, we will
not attempt to identify an optimal window size for NetWare NCP windowing
schemes.

We next derive our formulas for private line environments. We follow
this with a discussion of frame relay environments. We conclude this section
by furthering our understanding of cross-application effects by analyzing the
case of FTP TCP/IP applications competing for bandwidth with a Novell
non-burst-mode file transfer.

8.5.1 Private Line Formulas

The formulas for the performance of NetWare file transfers are derived in con-
junction with the reference connection shown in Figure 8.10 and the associated
timing diagram shown in Figure 8.12.

This timing diagram assumes that the number of private line links, NL, is
three and that the window size is NW. To the left-hand side of each of the tim-
ing diagrams in Figure 8.12 we indicate the size of the various quantities of
interest, for example, Rd, TW, and TS. Referring to this figure, we can write the
round-trip delay, Rd, as

Rd = TW + (NL − 1) × TS + NL × TA + 2 × Dp

WAN Performance Considerations for Novell NetWare Networks 267

where 2 × Dp covers the latency for the data traveling to the client and NL × TA

covers for the time to transmit the ack returning to the server. We see that TW

is essentially

TW = NW × TS

268 Wide-Area Data Network Performance Engineering

1

2

3

Nw

1

2

3

1

2

3

Tw

Rd

Overhead

Segment

Server Router 0 Router 1 Router 2 Router 3 Client

(NL S− 1)T

Y*

Y D∗ 2= × p L A+ ×N T

Nw

Nw

Figure 8.12 Timing diagram for the reference connection shown in Figure 8.10.

We now need expressions for TA and TS to complete our formulation. As in
Chapter 7, we rely on an available bandwidth argument to derive these expres-
sions and to account in a crude way for the background link utilization. There-
fore, we write

TS = S /Available bandwidth = S × Of /L × (1 − U)

TA = A/Available bandwidth = A × Of /L × (1 − U)

where we have written the available bandwidth as L (1 − U) /Of . So, we get

Rd = [(NL − 1) + NW] × S × Of /L × (1 − U) + (NL × A × Of) /L(1 − U) + 2 × Dp

and

X = W /Rd

X = NW × S / [{(NL − 1) + NW} × S × Of /L (1 − U) +
(NL × A × Of) /L(1 − U) + 2 × Dp]

where for non-burst-mode we set NW = 1 and for burst-mode we set NW to the
appropriate window size. Remember, also, that there may be maximum packet
size differences between non-burst-mode and burst-mode situations. This is
reflected in the value of S in this expression.

As an example of the use of this formula, let us assume burst-mode with
the following parameters:

S = 1024 bytes

O = (36 + 30 + 8) = 74

Of = 1 + O/S = 1 + 74 / 1024 = 1.07

A = 74 bytes

NL = 1

NW = 16

F = 1.0 Mbytes × 8 bits/byte = 8.0 Mbits

L = 56 Kbps

U = 0.40

Dp = 0.030 sec

WAN Performance Considerations for Novell NetWare Networks 269

Inserting these values into our formula for throughput, we get

R d = 4.3 sec

X = 30 Kbps

T = F /X = 4.4 min

Thus, we see that it will take approximately 4.4 min to transfer the entire file
over the reference connection found in Figure 8.10.

What if we assume that a similar file transfer occurs in a non-burst-mode
scenario? We can assume the same parameters as given earlier, except that the
window size is one and we will set the maximum negotiated packet size to 512.
Therefore, we get for our parameter set:

S = 512 bytes

O = (34 + 30 + 8) = 72

Of = 1 + O /S = 1 + 72 / 512 = 1.14

A = 72 bytes

NL = 1

NW = 1

F = 1.0 Mbytes × 8 bits/byte = 8.0 Mbits

L = 56 Kbps

U = 0.40

Dp = 0.030 sec

Inserting these values into our formula for throughput, we get

Rd = 0.22 sec

X = W /Rd = 512 × 8 bits / 0.22 sec = 19 Kbps

T = F /X = 7.0 min

270 Wide-Area Data Network Performance Engineering

Thus, we see that it will take approximately 7.0 min to transfer the entire file
over the reference connection found in Figure 8.10. Defining the improvement
in performance as

% improvement = 100 × (TNBM − TBM) /TBM

and comparing the two results for burst-mode versus non-burst-mode imple-
mentations, we see an approximately 60% improvement in file transfer
performance. Of course, this estimate is a result of our specific assumptions
regarding file size, packet and window size, and reference connection.

8.5.2 Frame Relay Formulas

We now concentrate on estimates for file transfer performance in frame relay
environments. This section and associated assumptions and arguments rely
heavily on the previous discussion found in Section 7.3.4. Again we will
rely on the assumptions discussed at the beginning of this section. Further, our
formulas will be specific to the reference connection shown in Figure 8.11. In
Figures 8.13 and 8.14 we give two timing diagrams for two different reali-
zations of the reference connection shown in Figure 8.11. The diagram in
Figure 8.13 is for a reference connection where the VC CIR rate is equal to the
speed of the frame relay port on the client side of the connection. The diagram
in Figure 8.14 is for a connection where the VC CIR is the slowest link in the
data path, that is, the frame relay ports are faster than the CIR of the VC.

To the left-hand side of each of the timing diagrams in Figure 8.13 we
indicate the size of the various quantities of interest, for example, Rd , TW , and
TS. Assuming that the CIR of the VC is always less than or equal to the frame
relay port speeds on the client and sever side of the connections, we can write
the expression for the round-trip delay as

Rd = TW(CIR) + TS(Pa) + 2 × Df + TA(Pa) + TA(Pb)

where TW(CIR) is the time to transmit the entire window over the VC of rate
CIR, TS(Pa) is the time to transmit a single segment over the link of rate Pa ,
and TA(P) is the time to transmit the ack over the frame relay port. We can
write TW(CIR), TS(X), and TA(x) as

TW(CIR) = NW × TS(CIR)

WAN Performance Considerations for Novell NetWare Networks 271

TS(CIR) = S / Available bandwidth = S × Of / CIR × (1 − U CIR)

TS(Pa) = S × Of /Pa × (1 − Ua)

TA(Pa) = A × Of /Pa × (1 − Ua)

272 Wide-Area Data Network Performance Engineering

1

2

Tw

Rd

Overhead

Segment

Server Router 0 FR switch FR switch Router 3 Client

3

4

1
2
3
4 Segment 1

Y ∗

Y D∗ 2= × f e a(/) (/)+ +A X A X

Ts

Figure 8.13 Round-trip delay timing diagram for a frame relay connection with a CIR equal
to the client-side frame relay port speed.

Finally, inserting the above expressions into the formula for throughput,
that is, X = W /Rd , we get

X = W /Rd = (NW × S) / [NW × S × Of / CIR × (1 − UCIR) + S × Of /Pa ×
(1 − Ua) + 2 Df + A × Of /Pa × (1 − Ua) + A × Of /Pb × (1 − Ub)]

WAN Performance Considerations for Novell NetWare Networks 273

Tw

Rd

Overhead

Server Router 0 FR switch FR switch Router 3 Client

1
2
3
4

Segment

Segment 1

Y ∗

Ts

1

2

3

4

Y D∗ = ×2 f e a(/) (/)+ +A X A X

Figure 8.14 Round-trip delay timing diagram for a frame relay connection where the CIR is
the slowest link on the data path.

As in the case of the formulas for the private line scenarios given earlier, for
the non-burst-mode case, set NW = 1, and for the burst-mode case, set NW

to the appropriate window size based on the discussion of burst-mode imple-
mentations in Section 8.4.

Let us run through an example computation to illustrate the use of our
throughput estimate for frame relay reference connections. We will follow the
example from Section 8.5.2 and compare the burst-mode case to non-burst-
mode. For the burst-mode case, we assume the following parameters:

S = 1024 bytes

O = (36 + 30 + 8) = 74

Of = 1 + O /S = 1 + 74 / 1024 = 1.07

A = 74 bytes

NW = 16

F = 1.0 Mbytes × 8 bits/byte = 8.0 Mbits

Pa = 56 Kbps

Pb = 1.536 Mbps

CIR = 32 Kbps

Ua = 0.40

UCIR = 0.40

DF = 0.040 sec

Inserting these values into our formula, we get

Rd = 7.7 sec

XMIN = 17 Kbps

TMAX = F /XMIN = 7.8 min

where we have used the label XMIN for the throughput because we have assumed
that the throughput of the VC is strictly limited to 32 Kbps. However, as
discussed in Section 7.3.4, it is common to find that the throughput of a VC
will exceed the CIR due to the bursting capabilities afforded by the frame relay
service provider. Therefore, a best case analysis is provided by assuming that
the rate of the VC is equal to the slowest frame relay port speed on the ends of

274 Wide-Area Data Network Performance Engineering

the VC, for example, 56 Kbps in our example. If we assume a VC rate of
56 Kbps and make an adjustment for the relative change in the VC utilization
to 0.23 (instead of 0.4) in order to account for the higher rate, we get the
following best case estimates for file transfer throughput and time:

Rd = 3.6 sec

XMAX = 36 Kbps

TMIN = F /XMAX = 3.7 min

Due to the variability in the VC rate caused by the bursting capabilities
provided by the various frame relay providers, we have to bound the estimates
for transfer times between 3.7 and 7.8 min.

For the non-burst-mode case, we assume the following parameters
(following our example for the private line case from earlier):

S = 512 bytes

O = (36 + 30 + 8) = 74

Of = 1 + O /S = 1 + 74 / 512 = 1.14

A = 74 bytes

NW = 16

F = 1.0 Mbytes × 8 bits/byte = 8.0 Mbits

Pa = 56 Kbps

Pb = 1.536 Mbps

CIR = 32 Kbps

Ua = 0.40

UCIR = 0.40

DF = 0.040 sec

Inserting these values into our formula, we get

Rd = 0.48 sec

XMIN = 9 Kbps

TMAX = F /XMIN = 15 min

WAN Performance Considerations for Novell NetWare Networks 275

for the worst case analysis. For the best case analysis, we get

Rd = 0.35 sec

X MAX = 12 Kbps

TMIN = F /X MAX = 11 min

For the preceding examples of file transfer times for burst-mode and
non-burst-mode implementations over frame relay networks, we see an
improvement of roughly 90% in the transfer times within the worst case analy-
sis. Again, this estimate of performance improvement is highly dependent on
the reference connections, parameter settings, and our assumption set listed at
the beginning of Section 8.5.1. For a more detailed estimate of performance
improvements in various situations refer to [5].

8.5.3 Cross-Application Effects: Mixing Novell and TCP/IP

Section 7.6 discussed the impact of an FTP file transfer on a telnet session
sharing the same data path on the reference connection shown in Figure 7.12.
There, we argued that the additional delay caused by the file transfer traffic
on the telnet session was roughly equal to the time to drain the additional file
transfer data from the queue on the slowest link in the path. And the additional
file transfer traffic in queue is given by

Advertised window size (plus overhead) − W ∗ = Burden

where W ∗ is the optimal window size for the file transfer over the given refer-
ence connection. We will call this the burden that the FTP file transfer places
on the buffer at the slowest link. Then the burden divided by the rate of the
slowest link is the additional delay caused by the FTP traffic.

A similar effect will occur when mixing Novell and FTP traffic over com-
mon links. This is especially a concern for non-burst-mode implementations,
where the NCP simplex window is one segment. In this case, the FTP traffic
will increase the round-trip delay experienced by the Novell traffic, causing a
diminished throughput for the Novell traffic. Following our earlier discussion,
we can estimate the impact that the additional FTP traffic will have on the

276 Wide-Area Data Network Performance Engineering

Novell file transfer by incorporating the additional burden placed on the
round-trip delay experienced by the Novell packets, that is,

Rd(FTP) = Rd(no FTP) + Burden /L

where Rd(no FTP) is the round-trip delay for the Novell traffic when not com-
peting with an FTP file transfer and Rd(FTP) is the round-trip delay for the
Novell traffic when it is competing with the FTP traffic. We then obtain a
revised estimate for the expected throughput:

X = W / [Rd(no FTP) + Burden /L]

We can now use this formula to estimate the impact on the Novell file
transfer performance. Assuming the same non-burst-mode parameters and pri-
vate line reference connections as in Section 8.5.1 and using the FTP assump-
tions from Section 7.6 for a window size of eight segments of 512 bytes and
optimal window size of two segments of 512 bytes, we get

X = 512 × 8 / [0.22 + 6 × (512 + 48) × 8 / 56 Kbps] = 5.9 Kbps

This is opposed to 19 Kbps throughput without the competition from the FTP
file transfer. As one can see, Novell non-burst-mode traffic does not fare well in
competition with sliding window protocols like TCP.

8.6 Summary

Novell NetWare is a networking protocol that saw a large deployment in the
1990s, first in LAN environments and then extending into WAN environ-
ments. NetWare is a proprietary networking protocol that has been evolving
and incorporating open standards over the years. We overviewed the protocols
that make up the NetWare suite. We discussed the specifics of the NetWare
protocols that have an impact on the bandwidth utilization in WAN imple-
mentations. We then outlined the evolution of the NetWare NCP transport
protocol. We finished this chapter with an analysis of the throughput perform-
ance of the NetWare NCP transport protocols, specifically the burst-mode
implementations’ improvements over the non-burst-mode implementation for
private line and frame relay environments.

WAN Performance Considerations for Novell NetWare Networks 277

References

[1] Chappell, L., and D. Hakes, Novell’s Guide to NetWare LAN Analysis, 2nd ed., San Jose,
CA: Novell Press, 1994.

[2] Malamud, C., Analyzing Novell Networks, New York: Van Nostrand Reinhold, 1992.

[3] Kimball, K., R. Holm, and E. Liebing, “NetWare Over TCP/IP: Integrating NetWare
Services Into the TCP/IP Environment,” Novell AppNotes, Vol. 8, No. 3, March 1997.

[4] Ballew, S., Managing IP Networks with Cisco Routers, Cambridge, MA: O’Reilly &
Associates, 1997.

[5] Stevenson, D., and S. Duncan, “An Introduction to Novell’s Burst-Mode Protocol,” Net-
Ware Application Notes, March 1992, p. 45.

[6] Mosbarger, M., and D. Dixon, “Packet Burst Update: BNETX versus VLM Implementa-
tions,” Novell Research Reports, November 1994.

278 Wide-Area Data Network Performance Engineering

9
WAN Performance Issues for
Client/Server Applications

9.1 Introduction

Client/server applications constitute the most important class of TCP/IP appli-
cations to impact the corporate WAN in recent years. Several companies
have implemented or are in the process of implementing enterprise resource
planning (ERP) applications from well-known companies such as SAP AG,
PeopleSoft, and Oracle. Other companies have chosen to implement applica-
tions from others such as Baan, J. D. Edwards, Hyperion, Lawson Software,
QAD, and Seibel Systems. In addition, companies usually deploy “home-
grown” client/server applications developed to address their specific needs.
Some companies have completely replaced mainframe-based applications with
ERP applications, the rationale being cost reduction and year 2000 issues. Mil-
lions of dollars have been spent on customizing these applications, redundant
hardware, and on end user platform support and training. Focusing on business
process automation, these applications have been deemed mission-critical by
the companies adopting them.

However, for all the importance of these applications to the enterprise
and the associated deployment costs, not enough attention has been paid
to how these applications actually perform over a WAN, and setting end user
expectations. This is particularly troublesome to the network manager, because
the network is usually blamed when end users complain of dropped sessions or
slow screen response times. Therefore, it is important that a WAN traffic study

279

be undertaken first before full application deployment. This traffic study
should consist of controlled testing and analysis of application behavior in a
laboratory followed by a pilot test in the production network. Only recently
have tools begun to be available that address the main concerns of the network
manager supporting client/server applications: bandwidth per user, expected
end user response times, and so on. However, tools are not a substitute for a
basic understanding of the essential traffic and performance characteristics of
client/server applications. As we will demonstrate in this chapter, it is possible
to perform “back-of-the-envelope” calculations to estimate overall bandwidth
requirements and expected response times, based on transaction-level informa-
tion about the application.

We begin in Section 9.2 with an overview of client/server applications
and tiered architectures. This section will clarify some terminology that is
frequently used in the context of client/server WAN performance issues. In
Section 9.3 we discuss traffic characteristics of client/server applications. This
will be done using protocol traces of some client/server applications from SAP
R3, PeopleSoft, Oracle, and a few others. Section 9.4 contains a discussion on
data collection for client/server applications that is necessary for performance
analysis. In Section 9.5 we provide some guidelines for computing band-
width requirements for client/server applications. This is particularly useful for
network managers facing the challenge of planning for network upgrades (and
budgeting) before the applications are fully deployed. Estimating bandwidth
requirements is relatively easy compared to estimating end user response times.
However, response time is an important issue, and we provide some guidance
in Section 9.5.

No treatment of client/server application performance is complete with-
out a discussion of thin client technology. Thin clients have been receiving
enormous attention lately because the cost of supporting full function PCs
and workstations — loaded with word processing, spreadsheets, e-mail, termi-
nal emulation, and client/server software — in an enterprise is expensive. Thin
client architecture promises to remedy this situation by reducing support costs
by as much as 80%, according to some estimates.

There are two popular thin client approaches: remote presentation, as
exemplified by Citrix Winframe/Metaframe and variants, and web-based net-
work computing (NC), as implemented in Oracle’s Network Computing Archi-
tecture (NCA). The thin client approach introduces yet another aspect of
concern regarding WAN performance for client/server applications. Remote
presentation can add traffic to the network while making end user performance
more vulnerable to network delay variations. Network computing, based on the

280 Wide-Area Data Network Performance Engineering

Java computing paradigm, relies on HTTP, which has performance issues
over the WAN, as we discussed in Chapter 7.

Thin client WAN performance issues are discussed in Section 9.6.

9.2 Client/Server Overview

Client/server computing refers to a division of tasks between clients and servers
[1]. When one refers to a client/server application, the usual frame of reference
is that of one or more PCs and workstations connected across a LAN or WAN
to a central site database server, typically via TCP/IP (see Figure 9.1).

The application logic resides in the client and the server is the repository
for the data (usually a relational database management system, RDBMS, like
Oracle) from which the client periodically requests data to process the applica-
tion request from the end user. This approach is in contrast to the mainframe-
centric computing approach in the old IBM/SNA world, where the mainframes
were responsible for all aspects of computing: data services, application process-
ing, and data presentation. This gave rise to the term “dumb” terminal, as in
the classic 3270 terminal.

The three tasks in client/server computing mentioned earlier are split
between clients and servers. Data services are performed by database servers.
The other two functions, namely, application processing and data presentation,
are performed by the client. The term “fat client” is self-explanatory in this
context, because the primary aspects of the application—logic and presenta-
tion—now reside in the client.

Tiered architecture is a term that is often used in discussing client/server
performance. A two-tier client/server model is one in which a client requests
and receives information from a database server using SQL (Structured Query

WAN Performance Issues for Client/Server Applications 281

WAN cloud
Router Router

Client

ServerClient

Figure 9.1 Reference connection for a client/server application.

Language) calls, and then processes and presents the information locally on a
PC or workstation to an end user. For completeness, one may think of a one-
tier model as the 3270 terminal-to-mainframe model, where all intelligence lies
in the server. Another, perhaps more relevant model for client/server applica-
tions is one where a remote client accesses a server via a telnet connection.
Applications from some vendors are built on this architecture.

There are many ways to describe a three-tier client/server architecture
model. We use this term to refer to a client/server architecture in which the
application processing is performed by an intermediate process called the appli-
cation server (see Figure 9.2).

The client is relieved of the responsibility for the application logic, but
it performs the data presentation and user interface functions. Indeed, one
can think of extending the tiered concept to include more than three tiers by
visualizing multiple application servers, each responsible for a different set of
application processing tasks. Note that the application server and the database
server functions can be performed in a single “box.” A (usually) proprietary
GUI (graphical user interface) runs on the client side.

The advantage of a two-tier architecture is that applications can be writ-
ten to work with many different database engines such as Oracle, Sybase,
and Informix, because the server does not perform application processing.
However, a severe penalty is paid in storing application logic in the client: End
user support becomes tedious, expensive, and complex. Furthermore, as we will
demonstrate, these applications are not WAN friendly because of the chatty
SQL calls that are exchanged between the database server and the client for
each transaction. Three-tier architectures address this issue by centralizing the
application processing function. Because no SQL calls traverse the WAN,
three-tier applications are very WAN friendly.

282 Wide-Area Data Network Performance Engineering

WAN cloud
Router Router

Client

Database
server

Application
server

Client

Figure 9.2 Three-tier architecture.

From the networking perspective, a three-tier approach is preferable.
From an end user support perspective, a thin client approach (Web or remote
presentation) is a major advantage because it implies minimal end user support.
A popular thin client approach is to use terminal servers, such as in the Citrix
Winframe/Metaframe model. The overall WAN implications of the terminal
server approach are discussed later in this chapter. Briefly, this approach uses a
remote presentation technology in which the client processes are actually exe-
cuted in a centrally located server, while keystrokes and mouse movements are
transmitted across the network (LAN or WAN or dial-up) via some proprietary
protocol (Citrix calls this ICA or Independent Computing Architecture).
Thus each client need not be equipped with application logic. It is a compelling
way to reduce end user support complexity. It also has the potential to improve
client/server application performance over a WAN by providing “LAN-like”
performance. However, this approach does introduce additional performance
issues, such as added bandwidth and sensitivity to latency, especially over
packet networks like frame relay. We will discuss these issues in detail in
Section 9.6. For an interesting dissertation on this issue, see Edlund [5].

The other approach to thin client is made possible by the proliferation
and maturation of Web technology and Java. This approach combines the
functionality of the application server found in 3-tier client/server architecture
and the thin client model. The classic example of this architecture is Oracle
NCA. The application software resides in middle-tier application servers that
communicate on a LAN with the back-end database servers. End users with
Java enabled web browsers download an applet from a central web server to
obtain the user interface to the application.

Currently, SAP R3 is a widely deployed three-tier client/server applica-
tion. There appear to be little or no WAN-related performance issues in SAP
R3 implementations. PeopleSoft and Oracle implementations have been two-
tier until recently, with somewhat mixed performance results over the WAN.
Both of these vendors currently support three-tier architectures.

9.3 Client/Server Application WAN Traffic Characterization

Client/server application traffic is generated from end user transactions. A
transaction can be defined as the process in which an end user submits a request
and receives a screen update from the server. In the classical 3270 world, this
transaction is simple; typically, it consists of two packets, one small packet sent
to the host (say, 100 to 300 bytes), and one large packet received from the host
(say, 700 to 1000 bytes). In the client/server world, the traffic characteristic of a

WAN Performance Issues for Client/Server Applications 283

transaction can be complex. Some transactions in a two-tier environment can
consist of several hundred “ping-pong” packets between the client and server
processes. Other transactions may be a one-way bulk data transfer from the
server to the client. Transactions can be hybrid as well: a series of “ping-pong”
packets, followed by one-way bulk data transfer, then followed by some more
ping-pong packets, and so on.

Traffic in a three-tier implementation, as in SAP R3, is very much like
3270—small in, large out.

Thus some types of transactions (i.e., ping-pong) are latency sensitive,
whereas others may be bandwidth sensitive, or a combination of both. The per-
formance of latency-sensitive applications is relatively difficult to tune over the
WAN because traditional tuning methods, such as bandwidth upgrades and
prioritization, will not improve performance. In addition, in a geographically
dispersed enterprise network, end users are likely to experience vastly dissimilar
performance for the same application depending on where they are located.

9.3.1 Examples of Two-Tier Application Traffic Patterns

We provide some examples of transactions from some applications using a
two-tier mode. These examples cover the following three cases: ping-pong,
bulk data transfer, and hybrid.

9.3.1.1 Ping-Pong Transactions
Figure 9.3 is a sniffer protocol trace of an end user in Europe logging on to a
sales-aid application residing in San Jose, California, over the global frame relay
connection shown in Figure 9.4. The sniffer is attached to the same LAN seg-
ment as the server. The source and destination IP addresses have been deleted.

The client process has TCP port 1026, and the server has TCP port 2001.
Notice the following:

• It takes 550+ transactions for the client to log on to the application.

• The round-trip latency over frame relay between Europe and San Jose
is slightly greater than 300 msec (look at frames 14, 18, and 21).

• There is a one-way transfer from the server to the client mixed in with
some ping-pong packets.

Clearly, the login time across a global connection for applications with
this type of traffic pattern will be significant (in minutes rather than seconds).

284 Wide-Area Data Network Performance Engineering

WAN Performance Issues for Client/Server Applications 285

Frame Delta T Destination Source Summary

12 0.0405 TCP D=2001 S=1026 SYN SEQ=68497 LEN=0 WIN=0
13 0.0041 TCP D=1026 S=2001 SYN ACK=68498 SEQ=186752000 LEN=0 WIN=8192
14 0.3140 TCP D=2001 S=1026 ACK=186752001 WIN=2880
15 0.0552 TCP D=2001 S=1026 ACK=186752001 SEQ=68498 LEN=512 WIN=2880
16 0.0020 TCP D=2001 S=1026 ACK=186752001 SEQ=69010 LEN=32 WIN=2880
17 0.0278 TCP D=1026 S=2001 ACK=69042 SEQ=186752001 LEN=198 WIN=8192
18 0.3271 TCP D=2001 S=1026 ACK=186752199 WIN=2880
19 0.0142 TCP D=2001 S=1026 ACK=186752199 SEQ=69042 LEN=26 WIN=2880
20 0.0085 TCP D=1026 S=2001 ACK=69068 SEQ=186752199 LEN=17 WIN=8192
21 0.3171 TCP D=2001 S=1026 ACK=186752216 WIN=2880
22 0.0066 TCP D=2001 S=1026 ACK=186752216 SEQ=69068 LEN=24 WIN=2880
.
220 0.0161 TCP D=1026 S=2001 ACK=74735 SEQ=186784047 LEN=512 WIN=8192
221 0.0323 TCP D=2001 S=1026 ACK=186782511 WIN=2880
222 0.0184 TCP D=1026 S=2001 ACK=74735 SEQ=186784559 LEN=512 WIN=8192
223 0.1143 TCP D=2001 S=1026 ACK=186783023 WIN=2880
224 0.0172 TCP D=1026 S=2001 ACK=74735 SEQ=186785071 LEN=512 WIN=8192

.
582 0.0085 TCP D=1026 S=2001 ACK=75511 SEQ=186873819 LEN=296 WIN=8192
583 0.2423 TCP D=2001 S=1026 ACK=186871771 WIN=2880
584 0.0488 TCP D=2001 S=1026 ACK=186872283 WIN=2880
585 0.0268 TCP D=2001 S=1026 ACK=186872795 WIN=2880
586 0.0287 TCP D=2001 S=1026 ACK=186873307 WIN=2880
587 0.0271 TCP D=2001 S=1026 ACK=186873819 WIN=2880
588 0.0171 TCP D=2001 S=1026 ACK=186874115 WIN=2880

Figure 9.3 Login trace of the sales-aid application.

WAN cloud
Router Router

Server

Client

Sniffer

Europe San Jose, CA

Figure 9.4 Reference connection for protocol trace of a sales-aid application.

In Figure 9.5, we present a trace of a sample application task that a user
might invoke after logging into the application. Note the following characteris-
tics of this application task:

• The transaction consists of 343 individual subtransactions.

• The application has a ping-pong characteristic. The sequence is a mix-
ture of client-to-server packets, or server-to-client packets, and TCP
acks, almost one at a time.

• The packet sizes (LEN) are fairly small—less than 300 bytes.

286 Wide-Area Data Network Performance Engineering

Frame Delta T Destination Source Summary

1 TCP D=2001 S=1026 ACK=186875550 SEQ=76457 LEN=235 WIN=2880
2 0.0891 TCP D=1026 S=2001 ACK=76692 SEQ=186875550 LEN=479 WIN=8192
3 0.3758 TCP D=2001 S=1026 ACK=186876029 WIN=2880
4 0.0413 TCP D=2001 S=1026 ACK=186876029 SEQ=76692 LEN=240 WIN=2880
5 0.0406 TCP D=1026 S=2001 ACK=76932 SEQ=186876029 LEN=120 WIN=8192
6 0.3470 TCP D=2001 S=1026 ACK=186876149 WIN=2880
7 0.0362 TCP D=2001 S=1026 ACK=186876149 SEQ=76932 LEN=248 WIN=2880
8 0.0336 TCP D=1026 S=2001 ACK=77180 SEQ=186876149 LEN=168 WIN=8192
9 0.3241 TCP D=2001 S=1026 ACK=186876317 WIN=2880
10 0.0372 TCP D=2001 S=1026 ACK=186876317 SEQ=77180 LEN=248 WIN=2880
11 0.0749 TCP D=1026 S=2001 ACK=77428 SEQ=186876317 LEN=237 WIN=8192
12 0.3465 TCP D=2001 S=1026 ACK=186876554 WIN=2880
13 0.0383 TCP D=2001 S=1026 ACK=186876554 SEQ=77428 LEN=230 WIN=2880
14 0.0661 TCP D=1026 S=2001 ACK=77658 WIN=7962
15 0.4114 TCP D=1026 S=2001 ACK=77658 SEQ=186876554 LEN=512 WIN=8192
16 0.3087 TCP D=1026 S=2001 ACK=77658 SEQ=186877066 LEN=60 WIN=8192
17 0.0401 TCP D=2001 S=1026 ACK=186877066 WIN=2880
18 0.3066 TCP D=2001 S=1026 ACK=186877126 WIN=2880
19 0.0724 TCP D=2001 S=1026 ACK=186877126 SEQ=77658 LEN=512 WIN=2880
20 0.0035 TCP D=2001 S=1026 ACK=186877126 SEQ=78170 LEN=93 WIN=2880
.
339 0.0019 TCP D=1026 S=2001 ACK=91866 SEQ=186933092 LEN=29 WIN=8192
340 0.3605 TCP D=2001 S=1026 ACK=186932580 WIN=2880
341 0.0302 TCP D=2001 S=1026 ACK=186933092 WIN=2880
342 0.0018 TCP D=2001 S=1026 ACK=186933121 WIN=2880
343 0.0081 TCP D=2001 S=1026 ACK=186933121 SEQ=91866 LEN=20 WIN=2880

Figure 9.5 Transaction using multiple packet exchanges.

It is very clear that performance over the WAN for applications such as these
that exchange numerous packets between the client and the server will be
unsatisfactory.

9.3.1.2 Bulk Data Transfer Transactions
In Figure 9.6 we show an example of another client/server transaction that con-
trasts with the transaction shown earlier. In this example the client TCP port is

WAN Performance Issues for Client/Server Applications 287

Frame Rel T Destination Source Summary

1 0.00000 TCP D=1527 S=1040 ACK=657541464 SEQ=1971777 LEN=1357 WIN=7767
2 0.19754 TCP D=1040 S=1527 ACK=1973134 SEQ=657541464 LEN=45 WIN=32768
3 0.19941 TCP D=1527 S=1040 ACK=657541509 SEQ=1973134 LEN=27 WIN=7722
4 0.26702 TCP D=1040 S=1527 ACK=1973161 SEQ=657541509 LEN=261 WIN=32768
5 0.37145 TCP D=1527 S=1040 ACK=657541770 WIN=7461
6 0.79395 TCP D=1527 S=1040 ACK=657541770 SEQ=1973161 LEN=131 WIN=7461
7 1.00494 TCP D=1040 S=1527 ACK=1973292 WIN=32768
8 2.91647 TCP D=1040 S=1527 ACK=1973292 SEQ=657541770 LEN=1460 WIN=32768
9 2.99540 TCP D=1040 S=1527 ACK=1973292 SEQ=657543230 LEN=588 WIN=32768
10 2.99589 TCP D=1527 S=1040 ACK=657543818 WIN=8760
11 3.18485 TCP D=1040 S=1527 ACK=1973292 SEQ=657543818 LEN=1460 WIN=32768
12 3.37353 TCP D=1040 S=1527 ACK=1973292 SEQ=657545278 LEN=1460 WIN=32768
13 3.37428 TCP D=1527 S=1040 ACK=657546738 WIN=8760
14 3.56219 TCP D=1040 S=1527 ACK=1973292 SEQ=657546738 LEN=1460 WIN=32768
15 3.56304 TCP D=1527 S=1040 ACK=657548198 WIN=8760
16 3.77217 TCP D=1040 S=1527 ACK=1973292 SEQ=657548198 LEN=1460 WIN=32768
17 3.88290 TCP D=1527 S=1040 ACK=657549658 WIN=8760
18 3.96095 TCP D=1040 S=1527 ACK=1973292 SEQ=657549658 LEN=1460 WIN=32768
19 4.08356 TCP D=1527 S=1040 ACK=657551118 WIN=8760
20 4.14966 TCP D=1040 S=1527 ACK=1973292 SEQ=657551118 LEN=1460 WIN=32768
21 4.15046 TCP D=1527 S=1040 ACK=657552578 WIN=8760
.
250 27.34931 TCP D=1040 S=1527 ACK=1973292 SEQ=657723398 LEN=1460 WIN=32768
251 27.45981 TCP D=1527 S=1040 ACK=657724858 WIN=8760
252 27.55929 TCP D=1040 S=1527 ACK=1973292 SEQ=657724858 LEN=1460 WIN=32768
253 27.66045 TCP D=1527 S=1040 ACK=657726318 WIN=8760
254 27.74793 TCP D=1040 S=1527 ACK=1973292 SEQ=657726318 LEN=1460 WIN=32768
255 27.74879 TCP D=1527 S=1040 ACK=657727778 WIN=8760
256 27.79640 TCP D=1040 S=1527 ACK=1973292 SEQ=657727778 LEN=3 WIN=32768
257 27.96150 TCP D=1527 S=1040 ACK=657727781 WIN=8757

Figure 9.6 Transaction using bulk data transfers, where Rel T is the relative time.

1040 and the server TCP port is 1527. Note the following characteristics of
this transaction:

• Only TCP acknowledgment packets are sent in the client-to-server
direction; there are no data packets.

• The TCP window size that one needs to consider for throughput
calculations is that advertised by the client, which is approximately
8 Kbytes.

• The maximum segment size option in TCP is used; the server is able to
send TCP segment sizes larger than 512 bytes.

9.3.1.3 Hybrid Transactions
The trace shown in Figure 9.7 shows a transaction with a hybrid nature from
an application different from the ones just described. Note the following
characteristics:

• There are three distinct phases for this transaction: an initial exchange
of data between client (TCP port 1213) and server (TCP port 1521), a
transfer of data from server to client (approximately 25,000 bytes), and
a final exchange between the client and server.

• The are some significant delays in the midst of the transaction (frames
85 and 100) totaling about 4.5 sec. This is commonly referred to as cli-
ent build delay where the client processes the data received. One should
collect several samples to determine the variability of the client build
delay.

9.3.2 Example of a Three-Tier Transaction

Figure 9.8 shows an example of three SAP R3 transactions. Note the following
important characteristics of these transactions:

• This is a single transaction of a few packet exchanges between the
client and server. This makes the application more WAN friendly.

• The inquiry is small and the response is large.

• The delta time between transactions is relatively long. This is the user
think time between transactions. Think times are important because
they directly affect the amount of traffic each user contributes to the
WAN.

288 Wide-Area Data Network Performance Engineering

WAN Performance Issues for Client/Server Applications 289

Frame Delta T Destination Source Summary

Ping-Pong
1 0 D=1521 S=1213 SYN SEQ=6901576 LEN=0 WIN=8192
2 0.081 D=1213 S=1521 SYN ACK=6901577 SEQ=507022000 LEN=0 WIN=49152
3 0 D=1521 S=1213 ACK=507022001 WIN=8760
4 0.009 D=1521 S=1213 ACK=507022001 SEQ=6901577 LEN=50 WIN=8760
5 0.18 D=1213 S=1521 ACK=6901627 WIN=49152
6 0.001 D=1521 S=1213 ACK=507022001 SEQ=6901627 LEN=260 WIN=8760
7 0.12 D=1213 S=1521 ACK=6901887 SEQ=507022001 LEN=8 WIN=49152
8 0.001 D=1521 S=1213 ACK=507022009 SEQ=6901887 LEN=50 WIN=8752
9 0.28 D=1213 S=1521 ACK=6901937 WIN=49152
10 0.001 D=1521 S=1213 ACK=507022009 SEQ=6901937 LEN=260 WIN=8752
11 0.08 D=1213 S=1521 ACK=6902197 SEQ=507022009 LEN=24 WIN=49152
12 0.002 D=1521 S=1213 ACK=507022033 SEQ=6902197 LEN=167 WIN=8728
13 0.089 D=1213 S=1521 ACK=6902364 SEQ=507022033 LEN=127 WIN=49152
14 0.009 D=1521 S=1213 ACK=507022160 SEQ=6902364 LEN=35 WIN=8601
15 0.08 D=1213 S=1521 ACK=6902399 SEQ=507022160 LEN=33 WIN=49152
. . . .
Bulk Data
57 0.099 D=1213 S=1521 ACK=6905207 SEQ=507023728 LEN=1460 WIN=49152
58 0.002 D=1213 S=1521 ACK=6905207 SEQ=507025188 LEN=587 WIN=49152
59 0 D=1521 S=1213 ACK=507025775 WIN=8760
60 0.012 D=1213 S=1521 ACK=6905207 SEQ=507025775 LEN=1460 WIN=49152
61 0.008 D=1213 S=1521 ACK=6905207 SEQ=507027235 LEN=1460 WIN=49152
62 0 D=1521 S=1213 ACK=507028695 WIN=8760
63 0.008 D=1213 S=1521 ACK=6905207 SEQ=507028695 LEN=1460 WIN=49152
64 0.008 D=1213 S=1521 ACK=6905207 SEQ=507030155 LEN=1460 WIN=49152
65 0 D=1521 S=1213 ACK=507031615 WIN=8760
66 0.062 D=1213 S=1521 ACK=6905207 SEQ=507031615 LEN=1460 WIN=49152
67 0.01 D=1213 S=1521 ACK=6905207 SEQ=507033075 LEN=1460 WIN=49152
68 0 D=1521 S=1213 ACK=507034535 WIN=8760
. . . .

81 0.007 D=1213 S=1521 ACK=6905207 SEQ=507046215 LEN=1460 WIN=49152
82 0.168 D=1521 S=1213 ACK=507047675 WIN=8760
83 0.08 D=1213 S=1521 ACK=6905207 SEQ=507047675 LEN=85 WIN=49152
84 0.14 D=1521 S=1213 ACK=507047760 WIN=8675

Ping-Pong
85 0.417 D=1521 S=1213 ACK=507047760 SEQ=6905207 LEN=18 WIN=8675
86 0.079 D=1213 S=1521 ACK=6905225 SEQ=507047760 LEN=14 WIN=49152
87 0.002 D=1521 S=1213 ACK=507047774 SEQ=6905225 LEN=136 WIN=8661
.
117 0.079 D=1213 S=1521 ACK=6906565 SEQ=507049045 LEN=11 WIN=49152
118 0.179 D=1521 S=1213 ACK=507049056 WIN=7379

Figure 9.7 A hybrid transaction.

• TCP port number 3200 is a common SAP port. In fact, SAP uses the
range of TCP ports from 3200 to 3399.

Note that three-tier applications can also exhibit bulk data characteristics,
such as the case when remote printing occurs over a WAN.

9.4 Data Collection

Network managers need to plan for bandwidth in the network in anticipation
of a full-scale deployment of client/server applications. These applications may
be in a test mode in a LAN environment or perhaps deployed over the WAN at
a few sites. It is important to be able to estimate bandwidth requirements with-
out having to resort to detailed tests and tools.

STEP 1: Collect Transaction Data Using Protocol Traces
This is an important first step. Protocol traces are absolutely necessary for
bandwidth estimation and response time calculations. Sniffers can be deployed
at the server location or client location or both. In most situations, a single
LAN/WAN sniffer at the server side is used. The advantage of using two

290 Wide-Area Data Network Performance Engineering

Frame Delta T Bytes Destination Source Summary

1 244 TCP D=3200 S=1104 ACK=1998545017 SEQ=20365418 LEN=172
2 0.050 1096 TCP D=1104 S=3200 ACK=20365590 SEQ=1998545017 LEN=1024
3 0.122 72 TCP D=3200 S=1104 ACK=1998546041 WIN=8712

4 2.748 139 TCP D=3200 S=1104 ACK=1998546041 SEQ=20365590 LEN=67
5 0.019 113 TCP D=1104 S=3200 ACK=20365657 SEQ=1998546041 LEN=41

ACK=1998546082 WIN=86716 0.138 72 TCP D=3200 S=1104
7 0.566 1280 TCP D=1104 S=3200 ACK=20365657 SEQ=1998546082 LEN=1208

ACK=1998547290 WIN=74638 0.135 72 TCP D=3200 S=1104

9 1.860 133 TCP D=3200 S=1104 ACK=1998547290 SEQ=20365657 LEN=61
10 0.051 72 TCP D=1104 S=3200 ACK=20365718 WIN=65340
11 0.087 772 TCP D=1104 S=3200 ACK=20365718 SEQ=1998547290 LEN=700
12 0.106 72 TCP D=3200 S=1104 ACK=1998547990 WIN=8712

Server = TCP port number 3200, Client = TCP port number 1104.

Figure 9.8 SAP R3 transactions.

sniffers at both ends of the connection is that they can be used to isolate client
and server delays and also typical think times between transactions. A set of
transactions from a single user, preferably separated by pings to differentiate
individual transactions, should be traced.

STEP 2: Summary Traffic Characteristics
Based on the data collected in step 1, the transaction should be classified as
ping-pong, bulk data, hybrid, or three-tier inquiry-response. Additional infor-
mation needed includes the following:

• Number of packets exchanged per transaction in the inbound and out-
bound directions;

• Number of bytes sent in any one direction (actually, the maximum of
the inbound and outbound direction), if the transaction is predomi-
nantly bulk data transfer;

• Rough estimate for the average packet size for both directions;

• Receiver TCP window size advertisements, especially for bulk data
transfer and hybrid transactions; and

• Client build delays and/or server delays, as discussed in the previous
section.

A word of caution: If the traces are not collected properly, one can easily
mistake user think time for client build delays. One way to avoid this situation
is to use pings to separate individual transactions.

STEP 3: Other Relevant Information
Additional information needed for bandwidth estimation includes the number
of users per location using this specific application, and the peak hour transac-
tion rate.

If this information is not available, then an educated guess will suffice.
For example, business processes may suggest that not more than 50% of
all users are likely to be using this application at any given time, and perhaps
10 transactions/per user/per hour. Alternatively, if think time information
is available for individual transactions (as for SAP R3), then one can estimate
the transaction rate as follows: If TH is the think time (in seconds), then
the number of transactions per hour per user cannot exceed 3600/TH. If N
is the number of active users in the peak hour, then the transaction rate is
approximately N × 3600/TH.

WAN Performance Issues for Client/Server Applications 291

9.5 Bandwidth Estimation Guidelines

We will provide some guidelines for bandwidth estimation for the four types of
transactions just discussed.

9.5.1 Applications With a Ping-Pong Traffic Characteristic

These applications, as mentioned before, are two tier and exhibit a traffic
characteristic similar to Figure 9.5. For such applications, one can adopt the
approach described here. Let

NT = number of packets per transaction in a given direction

S = bytes per packet in the given direction (including WAN over-
head)

D = one-way network latency (essentially propagation delay)

TH = user think time for the transaction + client build delay + server
delay (in seconds)

NU = number of active users

We need to estimate bandwidth for the application in the inbound and
outbound directions, for which the values of NT and S can be different. How-
ever, the variables D, TH, and NU remain the same. The estimated bandwidth
will then be

max(Inbound estimate, Outbound estimate)

In any given direction, the bandwidth estimate is given by

B = 8 × NU × NT × S /(NT × D + TH) bps

The rationale for this formula is as follows. The time between successive trans-
actions generated by a single active user is NT × D + TH, since NT × D is
the total network latency for the NT packets (implicitly assumes a one-to-one
ping-pong exchange), and TH is the time between transactions. During this
time, that is, NT × D + TH, the user will have submitted, in the specified
direction, NT × S × 8 bits of data. The factor NU is then used because it is the
number of active users.

292 Wide-Area Data Network Performance Engineering

Example
As an illustration, assume that an application, with a server in the United States
and clients in Europe, has the following characteristics:

NT = 100 packets inbound, 120 packets outbound

S = 60 bytes/inbound packet, 200 bytes/outbound packet (+ 48 bytes
WAN overhead)1

TH = 1 min (think time)

D = 150 msec (one-way latency)

NU = 25 active users at a branch office

Then the estimated inbound bandwidth is

[25 × 100 packets × 108 bytes/packet × 8 bits/byte] / (0.15 × 100 + 60) =
28 Kbps (approximately)

The estimated outbound bandwidth is

[25 × 120 × 248 × 8] / (0.15 × 120 + 60) = 76 Kbps (approximately)

Hence 76 Kbps would be the peak bandwidth usage between Europe and the
United States for this application. However, if one were to engineer physical
and logical links in the network to, say, 70% utilization, then the bandwidth
required should be 76 Kbps/0.7 = 108 Kbps, or 128 Kbps (to use the next
highest multiple of 64 Kbps).

9.5.2 What Happens When Think Times Are Not Available?

The preceding formula relies on a good estimate for think time between succes-
sive transactions. For instance, if the think time is 2 min instead of 1 min, the
bandwidth required would essentially be halved, to 64 Kbps.

If think times are not easily available, then an estimate of L, the number
of transactions per user during a peak hour, is needed. Assuming a uniform rate
during the hour, the number of transactions per user per second can be calcu-
lated as L / 3600. Call this L ∗. Then the estimated bandwidth will be

WAN Performance Issues for Client/Server Applications 293

1. 48 bytes = 20 (TCP) + 20 (IP) + 8 (Link layer, approximately).

(8 bits/byte) × (NT packets/transaction) × (S bytes/transaction) × (NU users)
× L ∗ transactions per user per second

9.5.3 Bandwidth Estimation for Bulk Data Transfers

Bandwidth estimation for bulk data transfers needs a somewhat different
approach. The reason is that one needs additional information: the end user
tolerance for the transaction time. Without this information, bandwidth may
be underestimated (slow transaction time) or overestimated. In addition,
adding bandwidth beyond an upper threshold will not improve the transaction
time. This threshold depends on the window size and the latency in the net-
work. If latency in the network is large, or window size advertisement is small,
then the desired transfer time will not be achieved.

If no information is available regarding the end user tolerance time, one can
assume a “human factors” delay number, such as 2 to 3 sec for a screen update.

We will first provide a general formula, and then illustrate using an exam-
ple. Let

F = total number of bytes transferred in any one direction

S = segment size

W = receiver advertised window size

W ∗ = optimal window size for the connection

T = preferred end user response time (in seconds)

D = one-way propagation delay

Of = protocol overhead factor = (S + Overhead bytes) /S

Using this notation, the following steps can be used to estimate bandwidth:

B = [F × Of × 8 bits/byte] /T

Tune, if necessary, W to exceed W ∗, where W ∗ = (S + Overhead bytes) +
2 × D × B.

Example
Assume that a client/server application sends image files from the server to the
client. The client and server are separated by about 1000 miles. Images can
be requested in blocks of 1 Mbyte. The protocol is TCP/IP with a client-
advertised window size of 4096 bytes and segment size of 1024 bytes. End users
would like the images to appear on the screen in 10 sec or less.

294 Wide-Area Data Network Performance Engineering

Note that the overhead factor Of is 1.05 [(1024 + 48) / 1024], or 5%.
Propagation delay is likely to be 10 to 20 msec (depending on the WAN
type—frame relay or private line—and issues such as routing).

Using the approach given earlier, the initial bandwidth estimate is

B = 1,024,000 bytes × 8 bits/byte × 1.05 / 10 sec = 860 Kbps

For the sake of simplicity, let us assume that the decision is made to use a full
T1 (1536 Kbps) for this application, given the large file size and tight con-
straints on transfer time. The next step is to ensure that the window size W
advertised by the client is at least as large as the optimal window size, W ∗.

The optimal window size is calculated as

W ∗ = 1024 + 48 + 2 × 0.02 sec × 1,536,000 bps / (8 bits/byte) = 8750 bytes

It is clear that the current window size of 4 Kbytes will be too small to “fill the
pipe.” Thus, in addition to recommending a T1 line for this application, one
also has to ensure that the window size W is increased to at least 8 Kbytes.

9.5.4 Bandwidth Estimation for Hybrid Transactions

If the transaction exhibits a hybrid traffic pattern consisting of packet
exchanges interspersed with one-way data transfers, then the only approach
would be to use a combination of the two methods suggested earlier. The first
step would be to isolate portions of the transaction that exchange packets
between the client and the server, from those that involve a one-way data transfer.

Next, aggregate the ping-pong portions and apply the formula from
Section 9.5.1. One can then aggregate the one-way data transfer portions to
determine the overall amount of data exchanged in any one direction and pro-
ceed exactly as in Section 9.5.3.

Example
Let us analyze the transaction shown in Figure 9.7. The first step would be to
combine the two ping-pong phases—frames 4 to 56, and frames 85 to 118.
Notice the one-for-one exchange in these phases. There are approximately
43 transactions from client to the server and the same number in the reverse
direction. Let us assume that the average packet size is 130 bytes in the client-
to-server direction and about 70 bytes in the reverse direction.2 Let us also

WAN Performance Issues for Client/Server Applications 295

2. This is based on a quick analysis (using a spreadsheet) of the original data.

assume the following parameters: NU = 50 active users, NT = 43 packets,
TH = 60 sec (think time plus client and server delays), and D = 0.04 (40-msec
one-way latency). Then the estimated bandwidth in the inbound direction for
the ping-pong portion of the transaction is

B = 8 × 50 × 43 × (130 + 48) / (43 × 0.04 + 60) = 49 Kbps

Conservatively engineered, this would translate to a bandwidth of 64 Kbps.
We still have to account for the bulk data transfer portion of the transaction,
which is approximately 25,000 bytes of actual data (not accounting for proto-
col overhead). Notice that the segment size is 1460 bytes. This implies that the
protocol overhead is about 3%. Hence the actual amount of bulk data sent is
likely to be 25,000 × 1.03 = 25,750 bytes. To transfer these data over a con-
nection with 64-Kbps bandwidth, the estimated time is 25,750 bytes/(8000
bytes/sec) > 3 sec. Thus, 64 Kbps is likely to be insufficient bandwidth for
this application with the given usage characteristics. A better choice would be
128 Kbps.

Readers should note the following:

• The preceding analysis demonstrates an approach to estimate band-
width for hybrid applications. Real-life situations may require fine-
tuning of the approach. For instance, some transactions may not be an
exact ping-pong exchange. There may be a few instances where two
or three packets flow in one direction, but there may not be a large
enough numbers of packets to classify the transaction as bulk data. In
this case, the previous formula will slightly overestimate the bandwidth
required.

• The transaction studied here refers to “loading a form.” If users typi-
cally load the form once in a business day, then it may not be appropri-
ate to use this transaction to estimate bandwidth. It may be better to
use transactions in which users input data using these forms.

• Note that if many users were to load reports simultaneously, then the
response time will suffer because there are likely to be several bulk data
transfers occurring at once.

9.5.5 Example of an SAP R3 Application

Look at the transaction shown in Figure 9.8. The following traffic assumptions
can be made:

296 Wide-Area Data Network Performance Engineering

NT = three inbound packets, two outbound packets (characteristic of
a three-tier application)

S = 70 bytes/packet inbound, 672 bytes/packet outbound (including
48 bytes overhead)3

D = 30 msec one-way

NU = 50 active users

TH = 60 sec of think time

Clearly, the outbound bandwidth will be bigger than the inbound bandwidth.
Hence, let us estimate bandwidth in the outbound direction:

50 users × 2 packets × 672 bytes × 8 bits/byte / (2 × 0.03 sec + 60 sec) =
9 Kbps, approximately

Again, based on engineering the link at 70% utilization, the actual bandwidth
estimate will be 9 Kbps/0.7 = 13 Kbps, approximately.

If a separate PVC for a frame relay connection is being considered, then a
16-Kbps CIR would be sufficient for this application.

Let us study the bandwidth formulas in a little more detail. The following
observations can be made:

• Notice how the think time dominates the denominator, especially
in the case of SAP R3. This is consistent with the observation that if
a user has a long think time (say, a complex screen data input),4 the
number of transactions submitted by the user per unit time will be
relatively small.

• For a two-tier application that exchanges several packets, the formula
assumes a one-for-one exchange of packets between the client and
server. Protocol traces may show instances where many packets are sent
in one direction. As long as the number of such packets is small (say,
two or three) and the number of such instances in a transaction is small
(say, less than five), then the bandwidth formula can be used. Other-
wise, the transaction needs to be classified as hybrid. The approach in
Section 9.5.4 can be used.

WAN Performance Issues for Client/Server Applications 297

3. In this example, the second transaction, which appears to be “worst case”, is considered. In
reality, one would have to scan individual transactions and build best case and worst case
scenarios.

4. For instance, consider human resource applications where the user has to input name,
address, social security number, emergency contact numbers, and so on.

• Just as think times and propagation delays inversely affect bandwidth
requirements, so do client and server processing delays. These can
be significant. For a two-tier application, the delay can be at the cli-
ent—sometimes called “client build delay”—and at the server. The for-
mula given ignores client and server delays. To that extent, the bandwidth
requirements forecasted by the formula would be conservative.

9.5.6 An Approach to Computing Response Times

Computing application-level response times is usually a complex task, espe-
cially if it involves background load. The task is especially complex in the case
of two-tier client/server applications. However, it is useful and relatively easy to
calculate baseline end user response times under the assumption of unloaded
network resources. These baseline response times are useful in troubleshooting
WAN performance problems for client/server applications.

The same parameters used for estimating bandwidth requirements (see
Section 9.5.3) can be used for computing response times.

Instead of providing general formulas, we illustrate the concept using
the examples from the previous section. Consider the example in Section 9.5.1.
Assume that the connection between the United States and Europe is frame
relay with the line speeds given in Figure 9.9.

Under a no-load scenario, and assuming full bursting on the PVC, one
can use the following approach to estimate response time:

Inbound = [8 × 108 bytes / 64 Kbps] + 0.15 + [8 × 108 bytes / 256 Kbps] =
0.166 sec

Outbound = [8 × 248 bytes / 256 Kbps] + 0.15 + [8 × 248 bytes / 64 Kbps]
= 0.188 sec

Approximate total response time = 100 × 0.166 sec + 120 × 0.188 sec = 39 sec

298 Wide-Area Data Network Performance Engineering

Frame relay

256 Kbps
Router Router

64 Kbps
Client

Server

32 Kbps

Figure 9.9 Reference connection for a client/server application.

The following issues are important and impact the applicability of this
approach for some cases:

• We assumed a one-for-one exchange. However, note that there were
120 transactions outbound for every 100 transactions inbound.
Hence, on an average, there are 20% more transactions outbound than
inbound. The assumption of a one-for-one exchange overestimates
the response time because if several packets are sent together in the
outbound direction, then the total transfer time for these packets is
affected only once by propagation delay. One way to address this issue
is to increase the outbound packet size by 20%, while reducing the
outbound packet count to 100.

• To calculate the transfer time in this new model, use the following
approach outbound response per packet:

= [8 × 248 / 256,000 + 0.150 + 8 × 248 × 1.2 / 64,000] =
0.195 sec

Note that the first packet size is 248 bytes, not 248×1.2 bytes, because of
the pipelining effect. Hence the new response time is

100 × 0.166 sec + 100 × 0.195 sec = 36 sec

• The fine-tuning approach given above should be used cautiously. The
basic assumption is that the transaction is ping-pong in nature, albeit a
few packets being sent together in one direction, typically two or three
packets. If a large number of packets are sent in one direction, then the
transaction needs to be classified as hybrid.

• The effect of 25 active users and potential other background load has
been ignored. As mentioned before, this is a complex exercise in queu-
ing theory and beyond the scope of the book.

9.5.7 Response Times for Bulk Data Transfer Transactions

The approach in Section 9.5.3 for estimating bandwidth requirements can be
used without any change for estimating response times.

Consider the example in that section: Clients request 1-Mbyte images
over a frame relay connection. The one-way latency through the connection
is 20 msec. Assume the frame relay connection has port speeds of 512 and
128 Kbps and a PVC at 64-Kbps CIR at the two locations, respectively. The

WAN Performance Issues for Client/Server Applications 299

TCP segment size is 1024 bytes and the protocol overhead is 48 bytes, a proto-
col overhead of approximately 5%. The optimal window size that should be
advertised by clients in New York is given by

W ∗ = Round-trip delay for a packet × Slowest link = {[8 × 1072 / 512,000 +
0.02 + 8 × 1072 / 128,000] + [8 × 48 / 128,000 + 0.02 + 8 × 48 / 512,000]}

× 128,000 bps = 2040 bytes

Under this assumption, the response time will be

File size / Throughput = 1,024,000 bytes / [(16,000 bytes/sec) / 1.05] =
67 sec

9.5.8 Response Times for Hybrid Transactions

As indicated in Section 9.5.4, the transaction needs to be broken down into
its ping-pong and bulk data transfer components. Then the approach in
Sections 9.5.1 and 9.5.3 can be applied. The overall response time is the sum of
the response times for the two components.

9.6 The Thin Client Solution

The attraction of thin client technology is that it can dramatically reduce end
user hardware, software, and ongoing support requirements. This is because
applications are deployed, managed, and executed completely on the centrally
or regionally deployed servers, and not on the client PCs. As mentioned in the
introduction, there are two approaches to thin client technology in the context
of client/server networking: a remote presentation approach as implemented
in Citrix Winframe/Metaframe, and the Java-based network computing (NC)
approach. We will discuss these approaches in some detail in this section. We
will show that, although the thin client approach is compelling, it does intro-
duce a new set of performance issues that needs to be considered.

9.6.1 The Remote Presentation Approach

In this approach, terminal servers are typically deployed on the same LAN as the
database server (see Figure 9.10). The terminal server runs the client software
and communicates with the database server on the local LAN. Communication
between the remote client and the terminal server occurs in a manner similar

300 Wide-Area Data Network Performance Engineering

to X-Windows: Clients only send mouse movements and keystrokes across the
WAN. Thus remote presentation promises to deliver “LAN-like” performance.

It is important to note that the communication between the end user and
the terminal server approach is echoplex in nature in that keystrokes from
the client are echoed back from the terminal server. Mouse movements are
acknowledged by the server, but not echoed. Thus, the user experience is highly
sensitive to round-trip delay. As round-trip delay increases, a larger percentage
of users may be dissatisfied with performance due to slow terminal and mouse
movement response.5 Additionally, low delay variability is an important factor
for end user perception of good performance. We will discuss these issues in
more detail later in this section.

9.6.1.1 “LAN-Like” Performance: A Quantitative Perspective
Let us study this issue in a little more detail. For the sake of illustration, we will
consider two applications. Application A is a two-tier client/server application
with a ping-pong characteristic, and application B is a bulk data transfer from a
server to the client. We will also consider two WAN scenarios: a 56-Kbps link
and a T1 WAN link.6

WAN Performance Issues for Client/Server Applications 301

WANRouter Router

Client 2

Database

Winframe server

Client 1

Client 1

Client 2

Figure 9.10 Remote presentation architecture for two-tier applications.

5. Human factors issues are important here. Users accustomed to “local” performance may be
dissatisfied with slow keyboard response and mouse movements. Irate users will then tend
to retype, hit Enter keys several times, or move the mouse rapidly in frustration. This will
only make the situation worse because more data will be sent into the network.

6. For the sake of simplicity, we will consider only private lines here. The conclusions are valid
for frame relay as well.

We make the following assumptions:

• Application A: 50 packets outbound with 250 bytes average, 50 pack-
ets inbound with 100 bytes average, one-for-one exchange. Packet size
includes protocol overhead.

• Application B: User views a 1-Mbyte document remotely.

• One-way propagation delay is 30 msec.

• WAN links: 56 Kbps, T1 (1536 Kbps).

• Unloaded WAN links.

• A screen update is 2000 bytes (actually, in many situations, screen
updates may involve much smaller packets).

• TCP segment size is 512 bytes (about 10% overhead) and the window
size is large enough to get the maximum throughput possible.

We will estimate the performance for these applications in native mode
and using the terminal server approach.

Application A: Native Mode
Estimated screen response on a 56-Kbps unloaded WAN link:

[(8 × 250 bytes / 56,000 + 0.03) + (8 × 100 bytes / 56,000 + 0.03)] × 50 =
5.5 sec

Estimated screen response on a T1 link (192 bytes/msec) unloaded WAN link:

[(8 × 250 bytes / 1,536,000 + 0.03) + (8 × 100 bytes / 1,536,000 + 0.03)] ×
50 = 3.1 sec

Terminal Server
Estimated screen response on a 56-Kbps unloaded WAN link:

8 × 2000 × 1.1 / 56,000 + 0.06 = 0.38 sec7

Estimated screen response on a T1 unloaded WAN link:

302 Wide-Area Data Network Performance Engineering

7. One needs to be a little more careful here, because the inquiry from the client will take some
time to reach the server on a 56 Kbps link. However, this delay is likely to be small and it is
very hard to make any assumptions about packet sizes in a terminal server environment.

8 × 2000 × 1.1 / 1,536,000 + 0.06 = 0.07 sec

Thus it is clear why the terminal server approach will provide “LAN-like”
performance over the WAN. The most significant component of the delay in
the native form is propagation delay, which is totally eliminated with terminal
servers.

Application B: Native Mode
Note that the entire file first needs to be downloaded before it is viewed.
Hence, the estimated screen response on a 56-Kbps unloaded WAN link is

8 × 1,024,000 bytes × 1.1(Protocol overhead) / (56,000 bps) = 2 min 41 sec

Estimated screen response on a T1 link unloaded WAN link:

8 × 1,024,000 bytes × 1.1(Protocol overhead) / 1,536,000 = 6 sec

Terminal Server
Assuming a 2000-byte screen update, the numbers are the same as before, that
is, 380 and 70 msec, respectively, for a 56-Kbps and a T1 link.

Thus, even in the case of bulk data transfers, a terminal server will pro-
vide better screen response times. Of course, as the user scrolls through the
document, additional data will be sent from the server to the client. Never-
theless, some important performance issues over WAN exist that need to be
discussed.

9.6.1.2 WAN Bandwidth Issues
It is not surprising that additional bandwidth is required with terminal servers
because keystrokes and mouse movements are sent across the network on
TCP/IP connection. However, it not straightforward to estimate the additional
bandwidth requirements (compared to using applications in the native mode)
because of two factors:

• “Administrative” work, such as number of colors used, screen resolu-
tion, and mouse movements, impacts bandwidth.

• The nature of the application itself impacts bandwidth. For instance, a
graphics-intensive application is likely to be more bandwidth intensive
compared to a word-processing application where the user merely
types with very little scrolling. These two scenarios can be considered

WAN Performance Issues for Client/Server Applications 303

as extremes. Within this range, there are many situations that have to
be considered.

As such, it is impossible to provide applicable guidelines for bandwidth.8

However, it is useful to list some of the factors that influence bandwidth
consumption.

Number of Colors Used
For some graphics-intensive applications, using a smaller number of colors
(16 colors instead of 256 colors) can make a significant difference in the band-
width.

Compression
It is hard to predict the exact compression ratios achievable, but compression of
data between the client and the terminal server is definitely recommended.

Screen Resolution
An 800 × 600 screen resolution should provide reasonable resolution. Higher
resolutions will impact bandwidth negatively, although its effect may be some-
what less when compared to using a larger number of colors and/or disabling
compression.

Blinking Cursors
Blinking cursors will add bandwidth to the network. One study, conducted by
the authors, estimates that approximately 800 bps of traffic per user is gener-
ated via a blinking cursor. Much of the bandwidth consumption is due to the
protocol overhead that TCP/IP and the WAN imposes on small packets (e.g.,
48 bytes of overhead for about 5 bytes of data for a blinking cursor).

While 800 bps per user may not seem significant, consider a 100-person
remote office, 50 of whom leave for lunch during midday with their PCs on-
line. This would mean 50 × 800 bps = 40 Kbps of precious WAN bandwidth!

Mouse Movements
Typically, mouse movement generates more traffic in the client-to-server direc-
tion than in the reverse direction, the latter traffic in this case being TCP level
acknowledgments. This is in keeping with the observation that mouse move-
ments are not echoed by the terminal server, but are acknowledged. With

304 Wide-Area Data Network Performance Engineering

8. It has been mentioned several times in journals and white papers that one should plan to
add 20 Kbps per user while deploying new applications with Citrix Winframe/Metaframe
access. From the authors’ experience with laboratory testing and real-life experience, this
appears to be an overestimate in many cases.

compression turned on, mouse movements are expected to contribute about
4 to 5 Kbps per user.

Keyboard Data Entry
Data entry from remote users also adds bandwidth to the network. At a mini-
mum, each character results in 49 bytes of data sent to the server and back from
the server over a WAN: 1 + 40 (TCP/IP) + 8 (WAN). On a LAN the overhead
is likely to be more. If a user types at the rate of five characters per second (an
experienced typist), the bandwidth added in both directions is

5 packets/sec × 49 bytes × 8 bits/byte = 1960 bps per user!

To refine this analysis, one needs to better understand the number of bytes
transferred with each keystroke between the client and the server. It is possible
that more than 1 byte is exchanged per packet.

Application Characteristics
Application characteristics contribute significantly to network bandwidth in
a terminal server environment. While simple typing of characters, mouse
movements, and so on, contribute perhaps 5 Kbps per user with compression,
graphic-intensive applications can contribute more than 50 Kbps in the server-
to-client direction per user, especially with 256 colors. Compression is abso-
lutely essential in such cases, as well as a lower number of colors (16).

Studies conducted by the authors in using Winframe for two-tier versions
of client/server applications from Oracle and PeopleSoft show that these appli-
cations will require 5 to 10 Kbps of bandwidth per user. However, we hasten
to add that these are overall estimates and each situation should be analyzed
separately.

9.6.1.3 Other WAN Performance Issues
We also need to discuss other performance-related issues such as the impact of
network latency and background load on end user response times, and differ-
ences between private lines and frame relay in the context of terminal servers.

Impact of Network Latency
Network latency is primarily a function of propagation delay, backbone net-
work loading (in the case of public data networks like frame relay), and packet
processing delays. Network latency is a very important consideration because of
the echoplex nature of the interaction between the remote users and the termi-
nal server. Since each character is echoed from the server, the round-trip latency
in the network needs to be consistently small. To see what this delay should be,

WAN Performance Issues for Client/Server Applications 305

consider an end user typing at a rate of three or four characters per second.
Since the interval between keyboard entries is 250 to 350 msec (approxi-
mately), the round-trip network latency should also be within that range. Oth-
erwise, characters will not appear on the screen as fast as they are entered.

Round-trip network latencies of 250 to 350 msec are achievable in many
public data networks. For example, the round-trip delay on a domestic U.S.
frame relay network is usually less than 100 msec in the worst case. However,
for international connections, it is not uncommon for latencies to exceed
350 msec.

Note that delays9 due to background load in the network have not been
considered in the previous discussion. Thus one can restate the WAN delay
requirement for keyboard entries as follows:

Overall network delay, as measured by a small ping (say, 100 bytes)
between a client and server, should be consistently below 350 msec for sat-
isfactory echoplex response times.

An immediate corollary from this guideline is that the terminal server
approach may not be suitable for some global connections, and definitely
unsuitable for satellite connections.

Impact of Background Load
As discussed before, background load has the potential to increase delays in
the network beyond a point at which keyboard entries and mouse movements
will appear to be slow to the end user. Routers can potentially prioritize termi-
nal server traffic using the specific TCP port number used between the terminal
server and the client (ICA uses port number 1494). Note, however, that this
prioritization only protects terminal server sessions against nonterminal server
sessions. It will not address prioritization within applications using the terminal
server, because all of these sessions may use a common TCP port number.
For instance, a user accessing a graphics-intensive application could overwhelm
other users accessing data entry applications.

Suitability of Frame Relay for the Terminal Server Solution
The following issues should be kept in mind when supporting applications
using remote presentation over frame relay:

306 Wide-Area Data Network Performance Engineering

9. We differentiate between latency and delay in a network. Loosely, latency is the sum of
propagation delay and switch processing delays in the backbone network. As such latency is
independent of factors such as packet size, line speeds, line utilization, and router delays.
Overall end-to-end delay is the sum of network latency and delays due the factors just
mentioned.

• As a general rule, private line networks have lower latency and more
consistent delay characteristics than frame relay, which is a packet net-
work. Therefore, delay and loading in frame relay networks need to
be monitored carefully. It is also advisable to overengineer frame relay
ports and PVCs.

• Frame relay traffic discrimination methods should be used to ensure
good performance for terminal server users. One method is router pri-
oritization. As previously discussed in the book, router prioritization is
not always effective in frame relay. A separate PVC for the terminal
server traffic may be needed.

• Global frame relay connections may not be appropriate for terminal
server traffic.

9.6.2 The Network Computing Approach

The network computing architecture combines the functionality of the appli-
cation server found in three-tier client/server architecture and the thin client
model. The classic example of this architecture is Oracle NCA. The application
software resides in middle-tier application servers that communicate on a LAN
with the back-end database servers. End users with Java enabled Web browsers
download an applet from a central Web server to obtain the user interface to
the application.

There are a number of WAN performance issues with the network com-
puting approach.

• Java applets for the user interface can be fairly large. A few megabytes
of data transfer is not unusual. This will add traffic to the WAN each
time a new version of the application is released.

• In the initial stages of software deployment, incremental changes to the
graphical user interface is most likely a rule than an exception. These
incremental changes will add bandwidth. This issue can be overcome
somewhat by maintaining a local forms server.

• Field validation may actually require the transmission of packets to
the central server. This has implications regarding network bandwidth
and latency sensitivity, somewhat similar to the echoplex delay phe-
nomenon of remote presentation.

• HTML documents (forms, etc.) are downloaded using the HyperText
Transfer Protocol (HTTP). Unlike Telnet and FTP, whose WAN per-
formance characteristics are relatively straightforward, HTTP’s data

WAN Performance Issues for Client/Server Applications 307

transfer characteristic is somewhat more complex, as discussed in
Chapter 7. There are two versions of HTTP in use today—HTTP/1.0
and HTTP/1.1. HTTP/1.0 has some inefficiencies over the WAN.
It relies on a separate TCP connection to download each image in
the HTML document. The performance overhead of establishing
and tearing down TCP sessions can be quite significant. In addition, a
penalty is paid in the use of TCP slow start in terms of round trip
delays. To address these issues, browsers usually open multiple (typi-
cally four) parallel TCP sessions with HTTP/1.0 servers to download
images. While this addresses the latency issues, it does introduce
bursty traffic. HTTP/1.1 supports a persistent TCP session, although
some browsers appear to prefer multiple TCP sessions even while
communicating with HTTP/1.1 servers. In addition, few web servers
appear to support HTTP/1.1.

9.7 Summary

This chapter presents a detailed discussion of the performance issues in
supporting client/server applications over a WAN. We discuss the differences
between two-tier and three-tier applications. We demonstrate that two-tier
applications are generally not “WAN-friendly,” whereas three-tier applications
tend to perform better over a WAN. Because planning for bandwidth upgrades
is an important task prior to full deployment of client/server applications in an
enterprise network, we provide guidelines for data collection and simple for-
mulas for estimating bandwidth. Finally, we discuss the thin client approach
to supporting client/server applications, and highlight the advantages and per-
formance potential pitfalls in using this approach over wide-area networks.

References

Several articles in trade journals discuss the issue of client/server application
performance. We mention five below. The authors are not aware of any books
that specifically deal with this topic.

[1] Comer, D. E., Computer Networks and Internets, 2nd ed., Englewood Cliffs, NJ:
Prentice-Hall, 1999.

[2] Jessup, T., “WAN Design with Client-Server in Mind,” Data Commun. Mag.,
August 1996.

308 Wide-Area Data Network Performance Engineering

[3] Bruno, L., “Tools that Troubleshoot Database Transactions,” Data Commun. Mag.,
August 1996.

[4] Robertson, B., “Those Application Networking Nightmares,” Network Computing,
August 1996.

[5] Edlund, A., “How Thin Clients Lead to Fat Networks,” Business Communications Review,
Vol. 28, Number 7, 1998.

WAN Performance Issues for Client/Server Applications 309

10
WAN Design and Performance
Considerations for SNA Networks

10.1 Introduction

It seems like a long time ago, but in the early to mid-1980s there were few
WAN architectures to choose from other than IBM’s SNA (Systems Network
Architecture). Today, just over a decade later, the buzzwords in the networking
industry are not SNA, but TCP/IP, Internet, intranets, frame relay, VPNs, and
so on. From the early skepticism of “SNA and IP—Oil and Water” to “My
users need web access to 3270 applications,” the facelift from SNA networking
to TCP/IP appears to be more or less complete. However, there is one impor-
tant difference: mainframes and AS/400s are still the anchors of many large
corporations and legacy SNA applications1 have a significant presence in the
financial, retail, insurance, and government markets. It is the access to SNA
applications that has undergone a massive facelift, not the applications them-
selves. Thus the issue of supporting these applications in a TCP/IP environ-
ment is very important.

SNA applications are typically transaction oriented and therefore require
high availability and fast and consistent response times. These requirements
have not changed in the migration from traditional SNA networking to
TCP/IP. It has, however, given rise to a different set of issues that are, in many
ways, more challenging. Perhaps the biggest concern is that mixing SNA

311

1. Although SNA and legacy applications have different connotations, SNA being an access
method to legacy applications, we will refer to mainframe and AS/400 applications as “SNA
applications.”

applications and multiprotocol LAN-oriented traffic will compromise per-
formance. Although these concerns apply for other applications (e.g., SAP R3),
there are some SNA-specific design and performance issues, such as the migra-
tion from multidrop SNA networks to router networks, the role of routers in
connecting Front-end Processor (FEP)-to-FEP links, and the design of the data
center, at which all the SNA traffic in a large network typically converge.

Our objective in this chapter is twofold. First, we want to review the ways
in which traditional SNA networks have migrated to TCP/IP networks and,
second, we want to discuss the issue of SNA performance in a multiprotocol
network. As in the rest of the book, we will discuss these issues in the context
of leased line and frame relay WANs. In Section 10.2, we briefly review the
various transport methods for SNA applications—encapsulation, using IP gate-
ways, TN3270, native frame relay support using RFC 1490, and Web access.
In Section 10.3, we discuss the data center architecture from a WAN perspec-
tive, which is an important issue for large SNA networks. In Section 10.4,
we discuss overall performance issues in supporting SNA applications in an IP
network. Specific topics include the migration of traditional SNA multidrop
networks to router networks, SNA over frame relay, and traffic discrimination.

The reader is referred to Guruge [1] for an excellent in-depth treatment
of these and related topics.

10.2 SNA Transport Methods: A Review

Broadly speaking, there are five different ways to transport SNA applications
over a WAN2:

• Encapsulate SNA in TCP/IP (data link switching);

• Use centralized SNA gateways (emulation);

• SNA directly over frame relay (RFC 1490);

• Translate SNA into TCP/IP (TN3270); and

• Web access to SNA applications.

10.2.1 TCP/IP Encapsulation: Data Link Switching

Data link switching (DLSw) is a standard method for transporting SNA and
NetBIOS across IP internets using TCP/IP encapsulation (see Figure 10.1).

312 Wide-Area Data Network Performance Engineering

2. Strictly speaking, all of these options except frame relay can be used over a campus network
as well.

Prior to DLSw several proprietary TCP/IP encapsulation schemes were fol-
lowed by router vendors. The term DLSw was coined by IBM to refer to their
implementation in the IBM 6611 router. The specifications were submitted
to the IETF and DLSw became an informational RFC 1434. However, RFC
1434 did not address some key issues like interoperability between vendors,
flow control, prioritization, and other aspects of SNA and NetBIOS support.
Later versions of DLSw address these issues. The current version of the stan-
dard is RFC 2166.

DLSw terminates the SNA link layer (SDLC or LLC2) locally at the rout-
ers, encapsulates the SNA data in TCP/IP, and transports it over an IP back-
bone (leased lines, frame relay, ATM) to the destination router (its peer). The
destination router “decapsulates” the TCP/IP headers and adds SNA link layer
overhead (SDLC, LLC2) and sends the frame to the destination SNA devices.

DLSw describes a switch-to-switch protocol (SSP). Some of its main
functions are:

• Interoperability between vendors through a function known as capa-
bilities exchange.

• Establishment of an end-to-end connection between end devices, for
example, between a 3174 controller and a 3745 FEP.

• Protocols to locate resources in the network, analogous to explorer
frames in source route bridging. DLSw uses a protocol called
“canureach/icanreach” to locate resources in the network.

WAN Design and Performance Considerations for SNA Networks 313

Token-
ring

WAN

Router

RouterIBM 3x74

SNA gateway
IBM FEP

Router

Mainframe

Router
SDLC

IBM 3x74

IBM 3x74

SDLC

PC

SDLC

TCP / IP

Figure 10.1 Data link switching.

• End-to-end sessions are broken up into three parts: two separate data
link connections between the DLSw switch and the local SNA device,
and a TCP session between the DLSw switches. Circuit IDs are used
to identify an end-to-end session.

• In addition to providing local LLC2 acks, and preventing LLC2
administrative messages from going across the WAN, DLSw also ter-
minates the routing information field (RIF) in the token ring MAC
layer header. This addresses some hop count limitation with source
route bridging.

• DLSw has a somewhat large overhead—16 bytes for DLSw and 40 bytes
for TCP, plus link layer overhead (PPP, frame relay), which is usually
8 bytes. To minimize TCP overhead, DLSw allows multiple DLSw
packets to be encapsulated in a single TCP segment.

DLSw has become popular in recent years and is supported by most
major router vendors. The link layer termination and broadcast control features
of DLSw make it an attractive alternative for SNA to IP migration, although,
strictly speaking, SNA is not eliminated over the WAN. DLSw does not distin-
guish between leased lines, frame relay or ATM; it is IP traffic and therefore can
use any transport medium.

10.2.2 Emulation Using SNA Gateways

SNA gateways have been in use for many years. These gateway servers are
placed either at the branch offices or at the central site. Client PCs with 3270
emulation connect to these gateways using LAN protocols such as Novell IPX
or TCP/IP. SNA gateways look exactly like controllers to the SNA host, and
as such, DLSw is used when the gateways are deployed at the branch locations
(see Figure 10.1). The SNA gateways can also be centralized, eliminating SNA
from the WAN and limiting it to communications between the gateway server
and the host/FEP [see Figure 10.2(a)].

There are many SNA gateway vendors—Microsoft, Novell, and others—and
3270 emulation vendors for client PCs—Attachmate, WRQ, and others.

The advantage of using SNA gateways with 3270 emulation for the cli-
ent/PCs is that they provide a full range of 3270 functions, unlike TN3270,
which we discuss later.

Some of SNA gateways can also be channel attached to the mainframe.
The IBM 3172 and the Cisco Channel Interface Processor (CIP), are exam-
ples of SNA gateways that can be channel attached to the mainframe. See
Figure 10.2(b).

314 Wide-Area Data Network Performance Engineering

10.2.3 Direct Encapsulation Over Frame Relay: RFC1490

RFC 1490 specifies a standard way to encapsulate multiple protocols over a
frame relay PVC. The objective is to enable interoperability of different ven-
dors’ equipment over frame relay. RFC 1490 has taken on a life of its own in
the context of SNA. Although RFC 1490 specifies a multiprotocol encapsula-
tion standard, there is no mention of SNA, APPN, or NetBIOS/NetBEUI in
the RFC. The use of RFC 1490 in the SNA context is specified in the Frame
Relay Forum FRF.3 document, which was authored by IBM.

In the context of SNA, RFC 1490 specifies how SNA traffic is carried
directly over frame relay without TCP/IP encapsulation. Without TCP to
guarantee end-to-end delivery, one needs a reliable protocol to carry SNA. In
RFC 1490 this is accomplished by LLC2 (logical link layer type 2), since frame
relay is an unreliable link layer protocol.

WAN Design and Performance Considerations for SNA Networks 315

Token-
ringWAN

Router
IBM FEP

Mainframe

Router

SNA gateway

3270 emulation
client

3270 emulation
client

Token-
ring

WAN
Router MainframeRouter

TN3270

SNA
gateway

3270 Emulation

Channel

TCP / IP

(a)

(b)

Figure 10.2 (a) Centralized SNA gateway with FEP and (b) centralized SNA gateway chan-
nel attached to the host.

To support frame relay within the context of an SNA network, IBM
incrementally introduced frame relay features into its product lines. With NCP
6.13 or higher, two 3745 FEPs are able to communicate directly over a frame
relay network. With NCP 7.1 or higher, one can attach a 3174, a FRAD, or
a similar device with a frame relay interface directly into a 3745 FEP using
RFC 1490 encapsulation. There are two ways in which this can be achieved:
boundary network node (BNN) and boundary access node (BAN), the latter
requiring NCP 7.3. In a nutshell, BNN describes connectivity between seri-
ally attached SNA devices (such as a 3174) and a FEP over frame relay [see
Figure 10.3(a)]. BAN specifies this connectivity for LAN attached devices such
as controllers behind a router/FRAD [see Figure 10.3(b)]. BAN can also be
used when the FEP is token ring attached to a central site router. In a very
real sense, RFC 1490 for SNA specifies a standard way to support source route
bridging over frame relay.

10.2.4 SNA Translation: TN3270

TN3270 is an alternate way to transport SNA over TCP/IP. TN3270 is avail-
able on almost all client platforms supporting TCP/IP. It uses the standard tel-
net operations under TCP/IP to provide a basic set of functions for carrying
3270 traffic. These functions are a subset of the functions provided by a full-
featured 3270 emulation device.

TN3270 operates on a client/server paradigm of computing, with the
TN3270 server being resident in the host or on in a separate device having
a gateway into the mainframe (see Figure 10.4). If the mainframe is used as
the telnet server, then clearly the mainframe must be TCP/IP enabled. Thus
the host becomes an TCP/IP host, with clients using TN3270 to access host
applications.

TN3270 has had some limitations arising from the fact that it is not a full
function 3270 protocol. For instance, host-based printing is not supported, nor
are certain keys important in the 3270 world supported. These have been more
or less addressed in TN3270E, which is still referred to at times as TN3270.

10.2.5 Web Access to Mainframe Applications

With the proliferation of Web browsers, it is not surprising that Web access to
mainframe applications has become an important issue (see Figure 10.5). In a
sense, this is similar to the TN3270 approach in that the goal is to use the “thin

316 Wide-Area Data Network Performance Engineering

3. NCP (Network Control Program) is the software that runs the FEP.

client” approach—TCP/IP and Web browsers have become mainstays in client
PCs. There are two ways to enable end users with Web browsers to access 3270
applications: HTML conversion and by downloading 3270 Java applets for
a “green screen.” With HTML conversion, the 3270 screen coming from

WAN Design and Performance Considerations for SNA Networks 317

Frame relay

IBM FEP Mainframe

IBM 3174
controller

IBM 3174
controller

LLC2 (one per SNA device, PU)

Frame relay

Router

SNA gateway

IBM FEP

Router

Mainframe

IBM 3x74

IBM 3x74

PC

SDLC

LLC2 (one per SNA device, PU)

(a)

(b)

Figure 10.3 RFC 1490 direct frame relay connection to FEP (a) in BNN format and (b) in
BAN format.

the mainframe is converted to standard HTML format. With Java, an end user
wishing to access the mainframe first downloads a 3270 Java applet from a cen-
tral Web server. From that point on, the governing protocol across the WAN is
TN3270(E).

In summary, these are fundamental architectural decisions that must be
made when migrating SNA networks to a multiprotocol environment. Very
often, a single solution will not fit the bill. For instance, a network manager
migrating from a multidrop SNA network to an IP-based WAN (via PCs
at the remote locations and SNA gateways at the data center) may still need
to support FEP-to-FEP links, either on SDLC links, directly via frame relay,
LLC2 connections via source route bridging, or SDLC tunneling via routers.

The DLSw and centralized gateway options are popular choices. RFC
1490 does not appear to have the same popularity as DLSw. To a somewhat

318 Wide-Area Data Network Performance Engineering

WAN
Router

Mainframe
Router

TN3270
server

TN3270
client

TN3270
client

Figure 10.4 SNA Translation; TN3270 via an external TN3270 server.

Token-
ring

WAN
Router MainframeRouter

PC with
browser

SNA
gateway

Channel

Web server

PC with
browser

TCP / IP

Figure 10.5 Web access to mainframe via an SNA gateway.

lesser extent, network managers have replaced central FEPs with channel
attached gateways with or without TCP/IP on the mainframe. Web access
technology is being used to a somewhat limited extent, and is still evolving.

10.3 Data Center Architecture Issues for Large SNA Networks

For large SNA networks (typically ranging from hundreds of locations to thou-
sands of locations, all connected to a few central sites), the data center architec-
ture is an important issue. We briefly discuss some of these issues next.

Discard or Retain the Data Center FEP?
Technology exists today that enables the data center FEP to be replaced by
routers that are channel attached to the mainframe. It is not clear that channel
attached routers are the right alternative for large SNA networks. Many small
SNA networks (say, a 100 sites) have successfully replaced the FEP by channel
attached routers.

How Many Parallel Routers Are Needed at the Central Site?
Routers have some hard limits in terms of PVCs per port and per box, the
number of DLSw peers, the number of sessions, and so on. The limits depend
on many factors, chief among them being port densities, router memory
and utilization, broadcast traffic, overall user traffic, specific DLSw implemen-
tations, and so on. As an example, a 1000-node SNA network migrating to a
router-based network with DLSw is likely to require 4 or 5 high-end routers
to terminate DLSw peers. This assumes that a single router can support 200 to
250 DLSw peers. (Some router vendors claim to be able to support upwards of
300 peers.) If router redundancy or protection from single points of failure is
required, then 8 to 10 routers may be required.

This does not include the consideration of the number of PVCs that can
be terminated on a serial port on a router. Some large SNA networks are archi-
tected with DLSw peer routers positioned behind frame relay WAN routers,
that is, the WAN routers do not terminate the TCP/IP sessions on which
DLSw rides.

How Much Bandwidth Should Be Allocated at the Central Site?
This is also a somewhat complex issue. One needs to make some assumptions
regarding volume of SNA and non-SNA traffic, concurrency (how many
sessions from remote locations will be active simultaneously?), and CIR to port
oversubscription. While SNA traffic volumes are easy to obtain, often non-
SNA applications may not be fully deployed. Therefore, educated guesses or

WAN Design and Performance Considerations for SNA Networks 319

overengineering may be the only alternatives. It is imperative in such cases
to actively monitor port/PVC utilization as the applications become widely
deployed. Utilization must be maintained at a reasonable level, say, less than
70%. As for oversubscription in frame relay, there are no absolute rules, except
that utilization levels, time-of-day, and time zone characteristics may allow a
2-to-1 oversubscription.

Redundancy Issues
What is the backup strategy for WAN links, frame relay switches, routers, and
SNA gateways? How about ISDN dial backup? Are SONET rings at the central
site locations viable?

The fundamental issue with redundancy and backup strategies is
cost—the level of redundancy desired in the network versus the cost to provide
it. Redundancy levels are strongly dependent on business drivers; a securities
trading company is likely to need more levels of redundancy than, say, a manu-
facturing company. Most network managers are concerned about routers and
WAN links into the central site supporting many remote locations (especially
for frame relay), because these are single points of failure. One possible backup
strategy for data center frame relay links and routers is to set up dual routers
with diversely routed access links into the frame relay ports. One router can
be designated as the “SNA router” (primary) and the other as the “non-SNA
router” (secondary). The second router can back up the first4 (see Figure 10.6).
Frame relay networks can be configured so that PVCs to the secondary router
carry actual traffic, as opposed to backup PVCs which are inactive until a fail-
ure occurs. Backup PVCs are more relevant in the context of disaster recovery,
which is discussed next. Access at the remote locations can also be protected via
dial backup.

Most large networks with multiple data centers/hub locations have self-
healing SONET rings at the these locations.

Disaster Recovery and Data Center Backup Strategy
Many SNA networks have data center disaster recovery support from
Comdisco, Sunguard, or IBM Sterling Forest. When disaster strikes—such as a
fire in the building—the connections will need to “swing” from primary to the
backup data center within a relatively short time. Frame relay is particularly
attractive in this context because the connections are logical, and moving the
PVCs from one location to another is easily accomplished (see Figure 10.7). It
is also important to test this capability periodically.

320 Wide-Area Data Network Performance Engineering

4. The ability to accomplish this without manual intervention depends on the router.

When Does ATM at the Central Site Make Sense?
There are two reasons for considering ATM at the hub sites: (1) A collection of
hub sites requires high-bandwidth connectivity among themselves, in addition
to bandwidth required for connecting remote sites. (2) In a many-to-one net-
work, aggregate bandwidth required at the central site may require several T1s.
In this case, it may be beneficial to use DS-3 ATM for access consolidation [see
Figures 10.8(a) and (b)].

If ATM is used to connect existing hub sites, it makes sense to use the
same ATM ports to support remote frame relay sites as well [Figure 10.8(a)]. In
the latter case [Figure 10.8(b)] where ATM is used purely for access consolida-
tion, one needs to consider whether or not there is sufficient traffic to keep a
45-Mbps ATM facility sufficiently utilized. One must also balance the cost sav-
ings due to access consolidation with the cost of ATM interfaces on routers.
Other factors are important such as the operations expense and complexity of

WAN Design and Performance Considerations for SNA Networks 321

Token-
ring

WAN

Router

Primary
router

IBM FEP

Router

Mainframe

Secondary
router

Server

Figure 10.6 Data center redundancy.

supporting an additional technology. Hence, the cost/performance/functional-
ity trade-offs must clearly favor an ATM solution at the data center.

10.4 Quality of Service Issues for SNA

Although the term “mission critical” is overused, SNA applications truly fall
into that category. Many businesses depend on mainframe and AS/400-based
transactions for some of their basic needs: reservations, order entry, and so on.
Hence there is very little tolerance for network downtimes and poor response
times.

Traditional SNA networks, whether they are multidrop, FEP-to-FEP or
LAN-based, can be tuned to provide consistent response times for end users.
When these networks migrate to router-based multiprotocol networks, SNA

322 Wide-Area Data Network Performance Engineering

IBM FEP

Mainframe

Token-
ring

Token-
ring

WAN

Router

Router

IBM FEP

Router

Mainframe

Primary data center Backup data center

Router

Figure 10.7 Disaster recovery.

W
A

N
D

esign
and

Perform
ance

C
onsiderationsfor

SN
A

N
etw

orks
323

Server farm

Router

HUB center 1

Server farm
Token-

ring

Router

IBM FEP

Router

Mainframe

HUB center 2

Router

ATM switch

HUB center 3

Frame relay

ATM

ATM switch ATM switch

Router

Token-
ring

Router

IBM FEP

Router

Mainframe

Data center

Frame relay

ATM

ATM switch

Router

(a) (b)

Figure 10.8 ATM at the data center (a) with frame relay at the remotes and (b) for access consolidation.

performance can be compromised. We discuss some of these issues below and
provide some guidelines to help minimize the impact that a multiprotocol net-
work may have on SNA applications.

10.4.1 Delay Trade-Offs in SNA Migration to IP

Consider a 56-Kbps multidrop SNA connection with five geographically sepa-
rate 3174 controllers attached to a 3745 FEP5 [see Figure 10.9(a)]. Consider
now the connection in Figure 10.9(b) where DLSw is used over frame relay
with 56-Kbps remote port speed and T1 port at the data center.

The following trade-offs affect SNA response times over the WAN. The
factors that contribute to an increase in SNA response times include these:

• Store-and-forward delays. Since the router is a store-and-forward
device, the insertion delay for an SDLC frame on the 56-Kbps link
between the controller and the router in Figure 10.9(b) will be the
same as that for the frame between the controller and the FEP in
Figure 10.9(a). However, in the DLSw scenario, there is an additional
56-Kbps insertion delay. If the controller was token ring attached
instead of SDLC attached, then the 56-Kbps insertion delay is elimi-
nated. There is also an additional delay on the T1 port, but this is
negligible.

• Protocol overhead. In traditional SNA networks, such as multidrop, the
protocol overhead is relatively small. For example, a 100-byte SNA
inquiry requires about 15 bytes of overhead.6 When this SNA inquiry
is transported using DLSw, the overhead is 73 bytes.7 Thus the over-
head is significantly higher.

Factors that contribute to a decrease in SNA response times include:

• Reduced polling overhead. Because the router polls the controller behind
it, rather the remote FEP in the multidrop case, the polling delay will
be significantly reduced. In addition, the router only polls one device

324 Wide-Area Data Network Performance Engineering

5. These arguments can be applied to multidrop AS/400 networks with 5 × 94 controllers.

6. 15 bytes = 3 bytes (Request/response header or RH) + 6 bytes (Format identifier type 2 or
FID2) + 6 bytes (SDLC).

7. 3 bytes (RH) + 6 bytes (FID2) + 40 bytes (TCP/IP) + 16 bytes (DLSw) + 8 bytes (FR) =
173 bytes.

in Figure 10.9(b), as opposed to the FEP polling five controllers in
Figure 10.9(a).

• Reduced load. Instead of five controllers contributing traffic to a
56-Kbps link in Figure 10.9(a), each controller has a dedicated
56-Kbps link.

WAN Design and Performance Considerations for SNA Networks 325

56 Kbps

IBM FEP Mainframe

Cluster
controller

Cluster
controller

Cluster
controller

Cluster
controller

Cluster
controller

Token-
ring

Router
56 Kbps

IBM FEP

Mainframe

Router
T1

Cluster
controller

Cluster
controller

Cluster
controller

Cluster
controller

Cluster
controller

56 Kbps 32 Kbps

Router
56 Kbps

Router
56 Kbps

Router
56 Kbps

56 Kbps

56 Kbps

56 Kbps

56 Kbps

56 Kbps

Router

(a)

(b)

Figure 10.9 (a) A multidrop 56-Kbps SNA connection with five drops. (b) Migration of multi-
drop to DLSw.

In reality the nature of 3270 transaction traffic is that inquiries are small
(say, less than 100 bytes) and responses from the host are large (say, 700 to
1000 bytes), and SDLC links are rarely utilized more than 40%. Hence, SNA
response time usually improves when migrating from a multidrop with many
controllers (say, more than 4). For a point-to-point connection between a
single controller to the FEP, the migration to DLSw will always result in
increased response times.

If an SNA gateway is used instead of the controller, then the same argu-
ments hold if the SNA gateway is local to the remote locations. If the SNA
gateway is centrally located, then the protocol overhead would be somewhat
smaller because of the fact that DLSw is not needed.

10.4.2 FEP-to-FEP Issues

Many SNA networks use remote FEPs for concentration of low-speed multi-
drop links into one or more high-speed links (transmission groups, or TGs).
With all end locations needing multiprotocol support, it is debatable whether
these remote FEPs have a role to play in the new network paradigm. Indeed,
many network managers have replaced these FEPs with routers and realized
cost savings.

However, this replacement needs to be done with care. In some situations
replacing FEPs is not an option. This is because there are many types of FEP-
to-FEP links, used for different purposes. Some remote FEPs actually concen-
trate traffic from large regional offices to the data center. Others connect data
centers on high-speed links. Still others connect different SNA networks via
SNI (SNA network interconnection) links. SNI links are FEP-to-FEP links
between disparate SNA networks.

In general, high-speed FEP-to-FEP links (say, 256 Kbps and higher)
between data centers and major network hubs are better left alone—replacing
FEPs by routers or private line by frame relay is not advisable! This is because
FEP-to-FEP links support many features that are near and dear to SNA net-
work managers: TGs, class of service priorities, and so on. In addition, one can
utilize these links at very high levels and yet provide good response times for
interactive traffic. A multiprotocol router/FRAD really adds very little value to
a SNA traffic when used to tunnel FEP-to-FEP traffic. Indeed, class of service
(COS) priorities and transmission group support will be lost, not to mention a
definite degradation in response times—two store-and-forward delay boxes are
introduced where there were none before.

For SNI links, replacing the FEP or in any way altering configurations on the
FEP may be out of the question because these FEPs are typically owned by the cli-
ents of the customers (such as a credit reporting agency interfacing with banks).

326 Wide-Area Data Network Performance Engineering

10.4.3 Traffic Discrimination

Chapters 4 and 5 discussed the different options for traffic discrimination when
supporting a mixture of time-sensitive and bulk data transfer applications on
the same WAN connection. We briefly review these methods in the context of
SNA applications.

Router Prioritization for SNA

Routers provide different ways to prioritize one class of traffic over others going
into a WAN link. For example, TCP/IP can be prioritized over Novell IPX,
or SNA can be prioritized over TCP/IP FTP traffic. These prioritization
schemes have essentially two flavors: strict queuing and bandwidth allocation.
With strict queuing, there are no bandwidth guarantees for the lower priority
traffic. Bandwidth allocation schemes ensure that lower priority traffic gets a
specified minimum share of the total bandwidth.

Router prioritization schemes are useful, and sometimes indispensable,
tools to ensure that SNA will “stay ahead” of the non-SNA traffic. However,
the need to prioritize traffic at routers decreases as the line speed increases.
Typically, router priorities provide the maximum benefit at relatively lower
link speeds (say, 56/64 to 128 Kbps).

In the context of frame relay, router prioritization of SNA is not always
effective. This is because of the “congestion shift” phenomenon, where the
speed mismatch between frame relay port speed and the CIR on a connection
causes congestion to occur at the network switch buffers. This is discussed in
detail in Chapter 5.

Giving SNA Its Own PVC

By assigning SNA its own logical path in a frame relay network, one can
address the congestion shift issue. Whether the congestion occurs at the net-
work ingress or egress, a separate PVC will enable preferential treatment for
SNA in the network. Explicit prioritization of the SNA PVC may be needed
at the network egress, if the port speed there is relatively slow speed (say,
128 Kbps or lower).

However, this approach cannot be recommended as a general enterprise-
wide QoS solution for SNA applications (or, indeed, for any other class of
applications). This is not a scalable solution. For large SNA networks with hun-
dreds of remote locations connected to a few central sites, doubling the number
of PVCs makes the design, engineering, and ongoing network management
more complex. While it might resolve specific SNA performance issues, it does
not address the QoS needs for other applications. It should be limited to small
networks (say, less than 25 sites).

WAN Design and Performance Considerations for SNA Networks 327

Router-Based Traffic Shaping for Frame Relay
The congestion shift is caused by the router being “unaware” of the PVC’s
CIR. It seems reasonable to build intelligence in the router about this speed
mismatch. Traffic shaping does precisely this. Consider a router at an SNA data
center with a T1 frame relay port speed serving a remote branch office with a
64-Kbps port speed and a 32-Kbps CIR. If the router can be configured so as to
not exceed a transmission rate of 64 Kbps on that PVC, and buffer the excess
traffic, the congestion shifts back to the router, making the router prioritization
schemes more effective. In a very real sense, traffic shaping makes the frame
relay connection look like a private line connection with a 64-Kbps line speed.
The difference is that each individual frame is transmitted at T1 rates, but the
overall transmission rate over a period of time cannot exceed 64 Kbps.

This is an interesting perspective for SNA networks, but one has to con-
sider the scalability of this solution, especially as it relates to the burden traffic
shaping places on the central site router. Conservative engineering rules would
be required regarding the number of PVCs that can be traffic shaped simulta-
neously on a router. For this reason, it cannot be recommended as a general
QoS solution for SNA networks over frame relay.

Bandwidth Management via External Devices
At the time of this writing, bandwidth management devices (such as Xedia,
Packeteer, and others) appear to hold promise in being able to provide QoS for
a broad set of applications in a network in a relatively more scalable manner
than routers. They offload the prioritization and traffic shaping function from
the routers. In the context of SNA applications, these devices can be used to
allocate desired levels of bandwidth to SNA traffic, and minimum and maxi-
mum bandwidth to background traffic. They use queuing or TCP rate control
to manage the bandwidth allocated to each traffic class. In an SNA network,
they can be placed at the data center or hub sites, or even at the branch offices,
as in the case of the devices that use TCP rate control.

Bandwidth management and traffic shaping are discussed in more detail
in Chapter 5.

10.5 Summary

In this chapter, we discussed the various performance issues that arise in sup-
porting SNA applications over a wide-area network. Traditionally, SNA has
been used to access mainframe or AS/400 resident applications. While corpora-
tions around the world still depend on these applications for their businesses,

328 Wide-Area Data Network Performance Engineering

TCP/IP is increasingly the preferred transport method over WANs for access to
mainframes and AS/400s. Some methods, such as DLSw, rely on encapsulation
of SNA within TCP/IP. This does not eliminate SNA over the wide area—
it merely hides SNA protocols. RFC 1490 is a similar transport method that
retains SNA over the WAN but uses LLC2 encapsulation rather than TCP/IP.
Centralized SNA gateways, TN3270, and Web access to mainframes are meth-
ods that use TCP/IP but also eliminate SNA from the WAN. We also discussed
the challenges in designing SNA networks, especially as related to the data cen-
ter design. Finally, we presented a qualitative overview of performance issues
for SNA over WANs, including the trade-offs in migrating from multidrop
networks to router networks and methods to guarantee consistent performance
for SNA applications.

Reference

[1] Guruge, A., Reengineering IBM Networks, New York: John Wiley & Sons, 1996.

WAN Design and Performance Considerations for SNA Networks 329

Part III
Case Studies

11
Case Studies

11.1 Introduction

This chapter contains some case studies that illustrate how the principles and
methods described in the rest of the book can be applied to addressing real-
world networking issues. All case studies are related to actual situations. The
authors were personally involved in every one of these case studies, most of
which are performance related. Needless to say, not all wide-area networking
problems lend themselves to the type of analysis described in the case studies in
this chapter. Many problems have little to do with application or protocol char-
acteristics and everything to do with LAN broadcast issues, improper router
hardware and software configurations, routing instability, bugs in router code,
faulty TCP/IP stacks, carrier problems (such as faulty repeaters, access line
problems, improperly configured WAN switches, less than optimal routing
within the “cloud”), and so on. The approach and methods illustrated here are
most relevant in situations where performance issues persist in spite of the fact
that underlying LAN/WAN components are healthy, that is, low to moderate
utilization of WAN connections, reasonable WAN latency, no packet drops,
and so on.

The case studies are arranged by protocol/application as follows:

• TCP/IP case studies: validating frame relay network latency and
throughput via pings; FTP throughput; sizing bandwidth for an intra-
net application;

• Client/server applications case studies: troubleshooting WAN response
time for a sales-aid application; troubleshooting WAN response time

333

for a custom client/server application; troubleshooting WAN per-
formance issues for an Oracle Financials application using Citrix
Winframe;

• Novell NetWare case studies: how Novell SAPs can impact performance;
impact of packet burst; does more bandwidth mean worse perform-
ance?;

• SNA-related case studies: frame relay network design for SNA migra-
tion; mixing SNA and TCP/IP on a frame relay network; and

• Estimating WAN bandwidth impact of network management via SNMP.

11.2 TCP/IP Case Studies

The case studies presented in this section deal primarily with TCP/IP-based
application performance issues over WANs. Bandwidth sizing, response time,
and throughput are common themes in these case studies. Recommendations
for tuning TCP/IP parameters for optimal performance are also discussed.
Although Section 11.3 also deals with TCP/IP-based applications, the empha-
sis there is more on the nature of client/server applications.

The reader is referred to Chapters 6 and 7 for detailed information on
TCP/IP performance issues.

The first case study in this section is somewhat different; it illustrates how
a simple ping calculation revealed serious routing problems in a carrier’s frame
relay network.

11.2.1 Validating Network Latency and Throughput

This case study illustrates how simple “back-of-the-envelope” calculations
can uncover serious latency issues in the network. Faced with end user
complaints about poor response times, the first call that a network manager
makes is usually to the carrier’s NOC (network operations center) to trouble-
shoot the circuit(s) in question. These simple calculations give the network
manager a tool to verify claims made by the carriers about circuit delays in
their networks.

11.2.1.1 Background and Context
A network health check was conducted for a large multinational corporation
based in Pittsburgh, Pennsylvania. The network is a mixture of private lines
and frame relay with Cisco routers. Several aspects of the WAN, such as peak
and average resource utilization (links, ports/PVCs, router CPU, memory,

334 Wide-Area Data Network Performance Engineering

buffers, and so on) using Concord Network and Router Health tools, router
configurations, bandwidth impact of new applications, latency and throughput
characteristics, were studied.

A few key frame relay locations were isolated for the latency and through-
put study. The approach, as discussed in Chapter 6, was to use small and large
router-to-router pings across the WAN, and to compare the observed ping
delays against calculated ping delays.

One connection chosen for study was between Pittsburgh and Sidney,
Ohio, which are a few hundred miles apart (see Figure 11.1). Concord reports
showed that the traffic between these locations is fairly light, and that the rout-
ers are healthy as well.

11.2.1.2 Issue
The observed delay for a 100-byte ping between the two WAN routers was
observed to be 76 msec. For a large ping (18,024 bytes1) between the two rout-
ers, the observed delay was 728 msec. The issue is whether or not these delays
reflect any unusual latency and throughput problems in the connection.

11.2.1.3 Analysis
Let us first compare the observed ping delay (76 msec) for a 100-byte ping with
the expected delay for that connection. Please refer to Chapter 6 for details on
calculation of ping delays.

Assume that Pittsburgh, Pennsylvania, and Sidney, Ohio, are separated
by about 300 miles (airline). If we further assume a two-hop connection
(three WAN switches in the cloud), and that switch latency is about 2 to
3 msec (usually is) we can estimate the expected ping delay for a 100-byte
packet as follows:

Case Studies 335

Frame relay

512 Kbps128 Kbps

Router Router
512 Kbps

Server

Client

Sidney, OH Pittsburgh, PA

Figure 11.1 A test connection.

1. This is the largest ping size configurable on Cisco routers.

Frame size = 100 + 20 + 8 + 8 = 136 bytes

Network latency = Propagation delay + switch latency = 2 × 300 miles
× 0.01 msec/mile + 2 × 3 switches × 3 msec = 24 msec

Expected ping delay = 2 × 136 × 8 / 512,000 + 0.024 sec = 28 msec
(approximately)

Observed ping delay = 76 msec!

Why the difference? Before we answer the question, let us calculate the
expected ping delay for the large ping packet.

The default serial line MTU on a router is usually 1500 bytes. When an
18,024-byte ping is sent to the far-end router, the near-end router will frag-
ment the ping into 1500-byte IP datagrams, with the first packet containing
the ICMP header. Thus the ping will be fragmented as follows:

18,024 = (1500 + 20 + 8 + 8) + (1500 + 20 + 8) + … + (1500 + 20 + 8) +
(24 + 20 + 8) = 18,396 bytes

with 13 datagrams in all. Hence the ping delay, using the network latency
calculated above, is given by

(1536 × 8 / 512,000 + 0.012 + 18,396 × 8 / 512,000) × 2 = 0.647 sec
(best case, that is full bursting)

(18,396 × 8 / 128,000 + 0.012 + 52 × 8 / 512,000) × 2 = 2325 msec
(worst case, that is no bursting at all)

Compare this with the observed ping delay for the large ping of 728 msec!
Hence the large ping delays match much more closely than the small ping

delays. Indeed, if we were to use the observed ping delay of 76 msec in the cal-
culation for the large ping delay (to reflect the actual latency in the network),
then the expected ping delay should be increased by 52 msec (76 − 24). Hence
the revised expected large ping delay will be 647 + 52 = 699 msec, which is
much closer to observed ping delay (728 msec).

The immediate conclusion, therefore, is that the PVC is able to burst to
full port speed, while the latency in the network is too high. The reason that
high latency does not affect the large ping delay is because of the bulk data
transfer nature of the large ping (which is precisely the reason for choosing the
largest ping allowable on the router).

336 Wide-Area Data Network Performance Engineering

In trying to analyze the reason for the long latency, the carrier’s frame
relay network operations center claimed that the network latency is 23 msec
(compare with the 28 msec that we calculated with just basic information about
the connection!). Further investigation revealed that the carrier measures
network latency between the frame relay switches at the ends of the PVC
connection.

Given that the connection is lightly loaded, the only explanation for the
long latency in the network is excessive backhaul.

Frame relay carriers advertise frame relay points of presence, but may
not have physical frame relay access switches at all points of presence. Thus the
carriers sometimes need to backhaul circuits to the nearest frame relay switch.
Backhaul can also occur when the nearest switch is congested.

As it turned out, the frame relay carrier performed a rather long backhaul
of access circuits at both Pittsburgh and Sidney. Pittsburgh was back-
hauled approximately 600 miles and Sidney was back-hauled approximately
1400 miles. Hence the total unaccounted miles in the preceding calculation is
2000 miles. Thus the unaccounted delay is 2 × 2000 × 10 msec/1000 miles =
40 msec, a significant amount!

Note that the unaccounted delay resolves the discrepancy in the latency
almost perfectly: 28 msec + 40 msec = 78 msec (versus 76 msec observed)!

The complex issue is that a 76-msec round-trip delay between two frame
relay points of presence is within what the carrier would call “delay objectives.”
However, “objective” delays may not be the same as “reasonable” delays as this
example shows.

11.2.2 TCP Bulk Data Transfer

A manufacturing company based in Dallas, Texas, has a requirement to peri-
odically send a 640-Mbyte file to clients in the United Kingdom. The file needs
to reach the clients within a 3-hour window. A frame relay connection exists
between Dallas and the United Kingdom. The network manager wants to know
how much bandwidth over the WAN should be allocated for this application.

There are several ways to answer this question. Perhaps the easiest way
(and perhaps the most common approach) is

Bandwidth required = File size / Required transfer time = (640 ×
1,024,000 bytes × 8 bits/byte) / (3 × 3600 sec) = 485 Kbps

This is a perfectly reasonable approach. However, there are three issues with the
formula:

Case Studies 337

• It ignores protocol overhead.

• The TCP segment size for this application should be larger than the
default 512 bytes in order to maximize throughput. In particular, this
means that the MSS option should be invoked when the TCP session
is set up. This issue is also related to protocol overhead.

• Perhaps most important of all, the formula assumes that window size is
large enough so that the bottleneck is the WAN connection and not
the window size. One needs to estimate the optimal window size and
ensure that the window size advertised by the client is at least as big as
the optimal window size.

Let us study these issues a little more carefully. The protocol overhead
is a function of the segment size. The recommended TCP segment size for
this transaction is 1460 bytes.2 The protocol overhead is therefore (1460 +
48) / 460 = 1.03 or 3%. The file size needs to be multiplied by this factor in the
preceding formula.

The more critical factor is the window size advertised by the client in the
United Kingdom. If the window size is less than optimal for the connection,
then the throughput (transfer time) will actually be lower (longer). The optimal
window size can be estimated as follows. Assuming that a 512-Kbps WAN con-
nection (CIR for frame relay or fractional T1 connection for private line) is
used, the optimal window size is given

W ∗ = Bandwidth × Round-trip delay

A simple estimate for the round-trip delay in this case is the latency between
Dallas and the United Kingdom. Assuming a frame relay connection between
the two locations, the latency is likely is to be about 300-msec round-trip.3

Hence the estimated optimal window size is

338 Wide-Area Data Network Performance Engineering

2. Assume an Ethernet attached client and server.

3. For frame relay networks, the latency estimate using the 10 msec/1000 mile rule will be
optimistic. For instance, the airline distance between Dallas, Texas, and the United King-
dom would be about 6000 miles. Hence the round-trip latency will be 120 msec. This will
definitely be an underestimate because it ignores the fact that potentially three different
frame relay networks, strung together seamlessly via NNIs would be needed for this connec-
tion: a domestic U.S. network, an international backbone network, and a local network in
the host country. See discussion on international frame relay circuits in Chapter 5.

W ∗ = 64,000 bytes/sec × 0.3 sec = 19 Kbytes

If one considers the fact that most TCP implementations (including
Windows NT) use default window sizes of 4 or 8 Kbytes, it is immediately clear
that the throughput will be smaller.

Hence the final recommendation to the network manager ought to be

Bandwidth required = 485 Kbps × 1.03 = 499 Kbps or 512 Kbps

TCP Maximum segment size = 1460 bytes

and the window size advertised by client should be greater than 19,200 bytes.
Other “what if” questions can be easily answered using these estimates.

For instance, what if the window of transfer time is relaxed to 5 h instead of
3 h? How much less bandwidth is needed?

Note the linear relationships in the formula. If the transfer time require-
ment is 5 h, then the bandwidth required would be 60% less (512 Kbps × 3 / 5),
or 307 Kbps, which, when rounded to the next highest multiple of 64 Kbps,
is 320 Kbps. Correspondingly, the window requirement can be lowered to
11,520 bytes, or about 12 Kbytes.

11.2.3 Sizing Bandwidth for a TCP/IP Application

A financial services company would like to provide a web-based intranet service
for their users. The web servers are centrally located with a few remote loca-
tions. Their current network is frame relay with predominantly 56-Kbps
remote ports and 32-Kbps CIR. The network is fairly lightly loaded. The net-
work manager is looking for some guidance on the number of users that can be
supported on the existing network for this application.

Detailed usage statistics on the application is available primarily because
of business requirements and educated guesses:

• Average bytes from client to host: 490 bytes; host to client:
98,000 bytes;

• Peak hour number of simultaneous users = 1/3 of total user
population;

• Peak users send requests every 2 min;

• Among nonpeak users, 50% access the application four times a day,
25% two times a day, and 25% once a day.

Case Studies 339

11.2.3.1 Methodology
We need to estimate the number NU of end users that can be supported at
a remote location. The number of active users at the peak hour is 0.33 NU.
Assuming all requests occur in a peak hour, the total number of requests during
the peak hour is

0.33 × NU × 30 + 0.67 × NU × [0.5 × 4 + 0.25 × 2 + 0.25 × 1] = 12.65 × NU

(Note that 1 request every 2 min implies 30 requests in an hour for peak users.)
The bandwidth issue is clearly more important in the server-to-client

direction than in the reverse direction. Therefore we will only size the applica-
tion in the server-to-client direction. We also need to make some critical
assumptions regarding the nature of the 98,000-byte data transfer. This
data can be sent as a single bulk data transfer or could be sent in multiple trans-
actions (as in a client/server application). Clearly, a sniffer trace is needed to
characterize the transaction. In the absence of a sniffer trace, and given that
a “quick-and-dirty” method is needed, let us assume that the entire response
from the server occurs in a single bulk.4

Assume that the TCP segment size is 1460 bytes. The 98,000-byte bulk
data transfer will consist of about 67 segments of size 1506 bytes. Hence the
outbound data in a peak hour is

12.65 × NU × 67 × 1506 bytes × 8 bits/byte = NU × 12,211,282 bits = NU ×
2.8 Kbps

How many users can be supported on a 56-Kbps connection? If engineer-
ing rules call for loading the WAN link at no more than 70% utilization, then
the number of users that can be supported is

NU × 2.8 Kbps / 56 Kbps = 0.7, or NU = 14 users

11.2.3.2 Further Analysis
Very often, usage patterns are not available in as much detail as provided in the
previous case study. The only available information is likely to be the number

340 Wide-Area Data Network Performance Engineering

4. Another important difference is whether or not the end-to-end protocol is HTTP, as is
likely the case for Web-based applications. Although HTTP uses TCP for transport, there
may be multiple parallel TCP sessions involved in the data transfer. As mentioned, only a
protocol trace will enable one to perform a detailed analysis.

of users at a remote location, the frequency with which users request infor-
mation from the server, and the expected response time. This information,
together with some assumptions, can be used to estimate bandwidth require-
ments and response times. This approach is discussed next.

Let us assume that there are NU users at a remote location, and that a typi-
cal user will access the information from the server once every 10 min during a
peak hour. The expected response time is 5 sec. Again, assume that the data
transfer occurs in a single chunk of 98,000 bytes. These assumptions can be
verified by a sniffer trace.

An initial estimate for bandwidth can be obtained from the size of the
data transfer and the expected response time. Assuming that the client window
size is large enough, the approximate bandwidth required is

Data transfer size / Response time = [98,000 bytes × 8 × 1.1(overhead) /
(5 sec)] = 173 Kbps (approximately)

Rounding off to the nearest multiple of 64 Kbps, the estimated bandwidth will
be 192 Kbps.

With multiple users accessing the server, the 5-sec response time cannot
be guaranteed. For instance, if two users were simultaneously downloading
the 98,000-byte chunk of data, then each user will get approximately half the
available throughput, or experience twice the response time, that is, 10 sec. But
what are the chances of two or more users simultaneously accessing the system?
If this is sufficiently small, say, less than 5%, then it may be of less concern.
Given the number of users NU, and the frequency with which they access the
server, we can estimate the probability of multiple users.

From a single-user point of view, for this application, there are ON and
OFF periods. The ON period is when the user is being sent the 98,000-byte
data. The sum of the ON and OFF periods is 10 min. The fraction of the ON
period is equal to

[98,000 bytes × 1.1/24,000] / 600 sec = 4.5 / 600 = 0.0075

To estimate the probability of simultaneous users, one can use the follow-
ing approach: Let Z be the random variable denoting the number of simulta-
neous users. The maximum value of Z is NU and the minimum is 0. Z has a
binomial distribution with parameters NU and p = 0.0075.5 It is known that Z

Case Studies 341

5. Think of Z as the number of heads in a coin tossing experiment where the coin has 0.007 as
the probability of turning up a head, and there are N tosses.

can be approximated, for large values of NU, by a normal distribution6 (call
it variable Z ∗) with mean NU × p and variance NU × p × (1 − p). Specifically
the variable (Z − mean)/standard deviation has a standard normal distribution
(mean 0, variance 1).

The objective of the exercise is to choose that value of NU so that P [Z > 1]
= 0.05. If the total number of users is less than NU, then the chance of more
than one simultaneous user (and thereby causing unacceptable response times)
will be less than 5%. Now

P [Z > 1] = P [Z ∗ > (1 − NU 0.0075) / SQRT(NU × 0.0075 × 0.9925] = 0.05

From standard normal distribution tables, it is seen that

(1 − NU 0.007) / SQRT(NU × 0.0075 × 0.9925) = 1.645

Solving this quadratic equation, it is seen that NU is approximately 30 users.
With this many users, the chance of more than two simultaneous users is

P [Z > 2] = P [Z ∗ > {(2 – 30 × 0.0075) / SQRT(30 × 0.0075 × 0.9925)}] =
P [Z > 3.756] < 0.001

Hence the conclusion is that, for this application, up to 30 clients can be
supported for this application on a 192-Kbps connection, and that 95% of
the time the response time will be within 5 sec, and between 5 and 10 sec
about 5%. The chance of the response time exceeding 10 sec is less than one-
tenth of 1%.7

11.3 Client/Server Application Case Studies

In this section we present three case studies involving two-tier fat client applica-
tions. The first two applications involve troubleshooting response time prob-
lems over a frame relay network. The third case study discusses how bandwidth

342 Wide-Area Data Network Performance Engineering

6. The approximation is valid for large values of N and small values of p.

7. Note that this analysis relates only to this application. Additional bandwidth considerations
should be taken into account for other traffic. The value of this analysis lies in describing
how the methodology can be applied to make quantitative judgments.

can be estimated for an application that contains dissimilar transactions and
usage patterns.

The reader is referred to Chapter 9 for details on client/server perform-
ance issues. A case study of sorts for estimating bandwidth and response time
for an SAP R3 application was presented in that chapter.

11.3.1 Troubleshooting Response Times for a Sales-Aid Application Over a
Global Frame Relay Network

Case studies usually have “happy endings,” especially in the context of trouble-
shooting, where a fundamental issue is uncovered. The case study presented
here did not have a “happy ending.” It involved troubleshooting response times
for a sales-aid application over a global frame relay network. The network man-
agers involved were adamant that the problem was caused by frame relay, and
that private line was really the answer to resolving WAN response time issues,
all evidence to the contrary notwithstanding.

11.3.1.1 Context
The company in question is based in the Silicon Valley and manufactures prod-
ucts for communication networks. Their frame relay network spans the globe
with headquarters in San Jose, California, and locations in Europe, Asia, and
Australia. The company had deployed the sales-aid application at all of their
major locations around the globe. This application was crucial to the compa-
ny’s business. End users in the Europe, Asia/Pacific, and Australian locations
were complaining about poor response times—screen update times of up to
2 min. End users use the application to load customer cases, check customer
order status, and so on. The frame relay network was recently installed and it
was felt that this application was unsuitable for frame relay, and that it would
perform much better on leased lines.

11.3.1.2 Analysis
The first step was to isolate a few locations and collect sniffer traces of the appli-
cation, isolating a single end user and the server. Given the logistics, it was
decided that a sniffer could not be placed at the remote locations, and that a
single sniffer at the San Jose location would be used. Figure 11.2 shows a refer-
ence connection between San Jose and The Netherlands.

The first step was to capture the login transaction shown in Figure 11.3.
From the sniffer point of view, “Frame” refers to the frame numbers seen on
the LAN, and “Delta” is the time differential between successive instances
of the frames. The IP addresses are suppressed and replaced by “Server” and
“Client.”

Case Studies 343

The following conclusions can be immediately drawn:

• There are approximately 600 packet exchanges in a more or less ping-
pong fashion to log on to the application.

• A rough estimate of latency in the network is 300 msec (look at delta
times for frames 14 and 18).

• To estimate round-trip latency from frame 14, look at frames 13 and
14. Frame 13 sends a SYN packet and frame 14 is the acknowledg-
ment. This is like a ping of 48 bytes from the server to the client. To
calculate network latency, we need to subtract the insertion delay,
which is equal to 2 × (48 × 8 / 64,000 + 48 × 8 / 512,000) = 13 msec.
Hence the network latency estimate is 314 − 13 msec, or about
300 msec.

• Of course, this includes the client processing delay (not the server
delay—because the sniffer is next to the server), but we can assume
that this is minimal. The 300-msec latency for a United States to

344 Wide-Area Data Network Performance Engineering

Frame relay

512 Kbps32 Kbps

Router Router

64 Kbps

Server

Client

Sniffer

Figure 11.2 A reference connection.

Frame Delta Dest Source Summary

12 0.0405 Server Client TCP D=2001 S=1026 SYN SEQ=68497 LEN=0 WIN=0
13 0.0041 Client Server TCP D=1026 S=2001 SYN ACK=68498 SEQ=186752000 LEN=0 WIN=8192
14 0.3140 Server Client TCP D=2001 S=1026 ACK=186752001 WIN=2880
15 0.0552 Server Client TCP D=2001 S=1026 ACK=186752001 SEQ=68498 LEN=512 WIN=2880
16 0.0020 Server Client TCP D=2001 S=1026 ACK=186752001 SEQ=69010 LEN=32 WIN=2880
17 0.0278 Client Server TCP D=1026 S=2001 ACK=69042 SEQ=186752001 LEN=198 WIN=8192
18 0.3271 Server Client TCP D=2001 S=1026 ACK=186752199 WIN=2880
.
588 0.0171 Server Client TCP D=2001 S=1026 ACK=186874115 WIN=2880

Figure 11.3 Sniffer trace of a login transaction.

Europe frame relay connection is not unusual. In a similar way, we
can calculate the round-trip latency from frame 18. Frame 18 is an
acknowledgment from the client for a 198-byte (data) packet from
the server. We need to add 48 bytes overhead. As in the previous
calculation, we need to subtract the insertion delay, which is (246 × 8 /
512,000 + 246 × 8 / 64,000 + 48 × 8 / 64,000 + 48 × 8 / 512,000) sec
= 41 msec.

• Hence, the estimated latency is 327 − 41 msec = 286 msec.

• The time to log on to the application will be at least 300 exchanges ×
300-msec round-trip delay = 90 sec or 1.5 min.

Once the user has logged on to the application, he/she is ready to “load a
small customer case.” The protocol trace captured for this application task is
shown in Figure 11.4.

Note the following immediate aspects of this application task:

• Total number of packet exchanges for the task is about 350.

• Total transaction time is about 76 sec (look at frame 349).

Case Studies 345

Frame DeltaT Rel T Dest Source Summary

1 0.0000 Server Client TCP D=2001 S=1026 ACK=186875550 SEQ=76457 LEN=235 WIN=2880

2 0.0891 0.0891 Client Server TCP D=1026 S=2001 ACK=76692 SEQ=186875550 LEN=479 WIN=8192

3 0.3758 0.4649 Server Client TCP D=2001 S=1026 ACK=186876029 WIN=2880

4 0.0413 0.5062 Server Client TCP D=2001 S=1026 ACK=186876029 SEQ=76692 LEN=240 WIN=2880

5 0.0406 0.5468 Client

Client

Server TCP D=1026 S=2001 ACK=76932 SEQ=186876029 LEN=120 WIN=8192

. . . .

122 0.3793 10.1881 Client TCP D=2001 S=1026 ACK=186896007 WIN=2880

123 Server

Server

Server

Client TCP D=2001 S=1026 ACK=186896007 SEQ=83867 LEN=125 WIN=2880

124 0.2886

27.85 38.03

38.3266 Server

Server

TCP D=1026 S=2001 ACK=83992 WIN=8192

. . .

208 0.0275
16.03 61.52

75.86

45.4920 Client TCP D=2001 S=1026 ACK=186911917 WIN=2880

209 Server Client TCP

TCP

D=2001 S=1026 ACK=186911917 SEQ=87293 LEN=143 WIN=2880

. . .

349 0.3198 Client D=2001 S=1026 ACK=186933203 WIN=2880

Figure 11.4 Sniffer trace of user application.

• Although the entire trace is not shown, the transaction consists, for the
most part, of ping-pong exchanges.

• The network latency can be calculated from frames 2 and 3; insertion
delay is (527 × 8 / 512,000 + 527 × 8 / 64,000 + 48 × 8 / 64,000 +
48 × 8 / 512,000) = 81 msec, and 376 − 81 = 295 msec.

• Note the spikes in the delta T numbers in frames 123 and 209. This
holds the answer to the response time problem. The spike in delays
shown in these frames appears to be “client build delays”—the client
acknowledges the previous segments from the server (frames 122 and
208), then waits for 28 and 16 sec, respectively, before submitting the
next request. One could construe these spikes as user think times.
However, there is no end user interaction with the application. (If this
was indeed the case, then there is an error in the characterization of the
application.)

• The two spikes (44 sec) contribute more than half of the application
response times.

• There is no evidence of frame drops in the network (which would be
indicated by TCP retransmissions).

• The spikes may not be application related, but caused by the particular
TCP/IP stack used by the clients.

Further investigation showed that these delay spikes occurred for other
application tasks and at every other location in Europe and Asia/Pacific. In all
cases, the delay spikes were at the client side; the client would send back a TCP
acknowledge for the previous segment from the server, and essentially go to
“sleep” for several seconds.

While the analysis is not conclusive, it clearly shows that there is no evi-
dence of any sort that frame relay is unsuitable for this application, and that
private lines would yield significantly better performance. The network man-
ager must first understand the reason for the delay spikes. As mentioned earlier,
there may be several reasons for the delay spikes: a local LAN issue, TCP/IP
stack problems, client build delays, and so on.

However, it is abundantly clear that this application is not “WAN-
friendly,” especially over global connections. For the application task named
“loading small customer case,” the response time can be as large as 175 ×
0.3 sec = 52 sec (assuming a complete one-for-one packet exchange with net-
work latency of 300 msec). In reality, the packet exchanges are likely to be less
than completely one for one. However, packet size, line speed, and background
load will affect the response times.

346 Wide-Area Data Network Performance Engineering

11.3.2 Troubleshooting Response Times for Custom Client/Server
Application Over a Frame Relay Network

This case study is in the context of a company in the entertainment industry.
A custom application was developed to provide some essential functions such
as contractual issues, artist profiles, and production schedules. Remote access
to these functions was a prime consideration when the application was being
developed. Unfortunately, many months of effort were put in to the develop-
ment of the application with absolutely no consideration for how the applica-
tion would perform over the WAN, until a few months before the application
was to be deployed in production mode.

The company had a corporate frame relay network over which end users
in New York City (NYC) accessed the servers in Los Angeles (LA). End
users were complaining about long response times making the application
almost unusable; the acceptable response time is about 2 to 3 sec versus average
response times of 20 to 30 sec experienced by users. The application had
many subtasks, of which a few are mentioned here. A sniffer trace shown in
Figure 11.5 (with a WAN sniffer at the New York City location) revealed the
following characteristics of the subtasks.

Case Studies 347

Frame Delta Dest Source Summary

1 0 Server Client TCP D=1521 S=1213 SYN SEQ=6901576 LEN=0 WIN=8192
2 0.081 Client Server TCP D=1213 S=1521 SYN ACK=6901577 SEQ=507022000 LEN=0 WIN=49152
3 0 Server Client TCP D=1521 S=1213 ACK=507022001 WIN=8760
4 0.009 Server Client TCP D=1521 S=1213 ACK=507022001 SEQ=6901577 LEN=50 WIN=8760
5 0.18 Client Server TCP D=1213 S=1521 ACK=6901627 WIN=49152
6 0.001 Server Client TCP D=1521 S=1213 ACK=507022001 SEQ=6901627 LEN=260 WIN=8760
7 0.12 Client Server TCP D=1213 S=1521 ACK=6901887 SEQ=507022001 LEN=8 WIN=49152
8 0.001 Server Client TCP D=1521 S=1213 ACK=507022009 SEQ=6901887 LEN=50 WIN=8752
9 0.28 Client Server TCP D=1213 S=1521 ACK=6901937 WIN=49152
10 0.001 Server Client TCP D=1521 S=1213 ACK=507022009 SEQ=6901937 LEN=260 WIN=8752
. . .
83 0.08 Client Server TCP D=1213 S=1521 ACK=6905207 SEQ=507047675 LEN=85 WIN=49152
84 0.14 Server Client TCP D=1521 S=1213 ACK=507047760 WIN=8675
85 0.417 Server Client TCP D=1521 S=1213 ACK=507047760 SEQ=6905207 LEN=18 WIN=8675
86 0.079 Client Server TCP D=1213 S=1521 ACK=6905225 SEQ=507047760 LEN=14 WIN=49152
. . . .
115 0.085 Client Server TCP D=1213 S=1521 ACK=6906550 SEQ=507048982 LEN=63 WIN=49152
116 0.001 Server Client TCP D=1521 S=1213 ACK=507049045 SEQ=6906550 LEN=15 WIN=7390
117 0.079 Client Server TCP D=1213 S=1521 ACK=6906565 SEQ=507049045 LEN=11 WIN=49152
118 0.179 Server Client TCP D=1521 S=1213 ACK=507049056 WIN=7379

Figure 11.5 Sniffer trace of the Load Application.

11.3.2.1 Load Application
Note the perfectly ping-pong nature of the application task. There appears to
be spikes of about 420 msec and 180 msec at frames 85 and 118. These can be
attributed to client delay (recall that the sniffer is physically colocated with the
client). Note also that the round-trip latency in the WAN is about 80 msec
(consistent with a frame relay connection between NYC and LA). Thus overall
performance of this application can be estimated roughly as

60 round-trips × 80 msec + 420 msec + 180 msec = 5.4 sec

In reality, the response time will be more because of packet insertion delays and
background load. In addition, one needs to use more samples, spread through
the business day, to correctly estimate the client delay. However, this is a
good start. Even if client delays are eliminated, the time to load the application
remotely will be at least 4.8 sec.

All other application tasks show the same behavior. For instance, look at
the trace of another function shown in Figure 11.6. Notice the perfect ping-
pong characteristic of the application. If we assume 400 packets make up the
transaction, then the minimum response time for the application task will be
200 × 0.08 = 16 sec, again not including background load and packet insertion
delays. (The spike of 23 sec in the first frame, 1084, is really the time that this
user took between the application tasks.) Thus a response time of a half-minute
or more for this important task, during periods of peak load, is to be expected.

348 Wide-Area Data Network Performance Engineering

Frame Delta Dest Source Summary

1084 23.161 Client Server TCP D=1521 S=1213 ACK=507118428 SEQ=6998993 LEN=15 WIN=7748
1085 0.081 Server Client TCP D=1213 S=1521 ACK=6999008 SEQ=507118428 LEN=11 WIN=49152
1086 0.006 Client Server TCP D=1521 S=1213 ACK=507118439 SEQ=6999008 LEN=18 WIN=7737
1087 0.08 Server Client TCP D=1213 S=1521 ACK=6999026 SEQ=507118439 LEN=14 WIN=49152
1088 0.001 Client Server TCP D=1521 S=1213 ACK=507118453 SEQ=6999026 LEN=132 WIN=7723
1089 0.079 Server Client TCP D=1213 S=1521 ACK=6999158 SEQ=507118453 LEN=35 WIN=49152
. . .
1458 0.002 Client Server TCP D=1521 S=1213 ACK=507155995 SEQ=7051194 LEN=151 WIN=8489
1459 0.083 Server Client TCP D=1213 S=1521 ACK=7051345 SEQ=507155995 LEN=42 WIN=49152
1460 0.001 Client Server TCP D=1521 S=1213 ACK=507156037 SEQ=7051345 LEN=17 WIN=8447
1461 0.084 Server Client TCP D=1213 S=1521 ACK=7051362 SEQ=507156037 LEN=63 WIN=49152
1462 0.137 Client Server TCP D=1521 S=1213 ACK=507156100 WIN=8384

Figure 11.6 Sniffer trace of another client/server application.

11.3.2.2 Resolution
What is the resolution to the problem of poor response times? Clearly, it is
fruitless to change any network parameters—increase bandwidth, prioritize the
application, and so on. It may be possible to make some changes to the applica-
tion itself, but time and resource constraints may be significant enough to make
this option not viable. The best option, it appears, is to support this application
via Citrix Winframe/Metaframe or a similar thin client solution. Citrix Win-
frame/Metaframe is typically used to minimize end user support requirements
(as discussed in Chapter 9), but can also be used solely for the purpose of
improving WAN performance of client/server applications.

It is clear that if the performance of the application over the WAN was
a priority item during application development, many of the subsequent
problems just prior to full deployment could have been overcome. Perhaps an
application rewrite would have been feasible, or even the possibility of using a
different application platform.

11.3.3 Troubleshooting Performance Problems for an Oracle Financials
Application Using Citrix Winframe Over a Global Frame Relay
Network

In Chapter 9 we discussed the performance advantages and disadvantages in
using the remote presentation thin client approach to client/server applications.
One of the important issues in this regard is the latency factor and how it affects
the screen response time of end users. Since remote presentation uses echoplex
(that is, keystrokes are echoed from the central server), the end user’s percep-
tion of application performance is closely tied to network latency and to back-
ground traffic load. Therefore, networks with inherently long latencies, such as
global frame relay networks, pose some serious issues for data-entry applica-
tions using the remote presentation approach. The case study discussed next
illustrates this point.

The context of the case study is a global frame relay network with several
locations in Europe and other countries and a central hub site in the United
States (see Figure 11.7). As seen in the figure, there are three hub locations
in Europe. End users in Scandinavian countries access the server farm in the
United States through multiple hops through frame relay and leased lines. In
particular, a section of the user population use an Oracle Financials application
(two-tier) using a Citrix Winframe thin client approach. The Citrix Winframe
approach was adopted, among other things, to make transaction response time
for native-mode Oracle Financials application over the global connection per-
form better.

Case Studies 349

As the company quickly discovered, the Citrix Winframe approach solved
some issues with respect to poor response times for Oracle applications, but
raised a few others as well. End users in Scandinavia, using the Oracle applica-
tion for data-entry purposes (think of time and expense entry), were quite
unsatisfied with the response times and there was a significant impact on
productivity. Sometimes the performance became so bad as to require session
reinitiation.

The challenge was to uncover the source of the problem and recommend
ways to resolve the performance issues for the Oracle Financials application.

11.3.3.1 Analysis
An in-depth analysis of the performance problem revealed the following:

350 Wide-Area Data Network Performance Engineering

Bay router

Bay router

Frame relay 1024 Kbps

Bay router

Bay router

WinFrame server

Internet

Complex server farm

2 T1×

E1

Scandinavia hub

German hub

US hub

256 Kbps

Oslo

Figure 11.7 Reference connection connectivity between Scandinavia and the U.S. hub.

• The performance problem persisted in spite of routers at the United
States and European hub prioritizing Winframe traffic (via the appro-
priate TCP port number).

• Round-trip delays from the U.S. hub to Scandinavia were consistently
higher than 300 msec. Recall that echoplex applications require
response times lower than 300 msec for satisfactory end user percep-
tion of performance.

• Sniffer protocol traces of packets between the European hub and Scan-
dinavian hub demonstrated that the congestion was due to Internet
and intranet web traffic (emanating from the United States), Lotus
Notes, and Novell SAP broadcasts. These traces also revealed that the
back-end Oracle database server, Winframe server, and the remote cli-
ents were not adding significant delay.

• As further confirmation of the preceding point, it was noticed that a
significant number of frames on the PVC between the European hub
and the Scandinavian hub were marked with the FECN/BECN bit.

• In particular, the European hub router received frames with BECN
and the Scandinavian hub router received frames with FECN. The
frame relay switch terminating the connection from the European hub
router showed a significant amount of data in its PVC buffer. This
clearly shows that there is excessive traffic coming from the United
States destined toward the Scandinavian hub.

Based on this analysis, one can immediately come to the conclusion that
the performance problem is caused by two factors: (1) excessive bursty traffic
in the direction from the United States to Scandinavia and (2) Winframe’s
echoplex nature and the need to provide a consistently low round-trip delay.

11.3.3.2 Recommendations

There are several approaches to addressing this performance issue, from a
“band-aid” solution to a longer term strategy that addresses quality of service
for applications in general. Some of these recommendations are as follows:

Provide Local Internet Access
Because Internet traffic appears to be contributing to the performance issue, it
makes sense to provide Internet access at the European and Scandinavian hub
sites instead of back-hauling all the European users to the firewall in the United
States. This will relieve the congestion caused by Internet traffic on the PVC

Case Studies 351

between the European hub and the Scandinavian hub, and thereby improve
Winframe response times.

Separate PVC for Winframe Traffic
Another option, which can be used in conjunction with the recommendation
above, is to separate the Winframe traffic between the two European hubs on a
separate PVC. Since the congestion is in the direction of the European hub to
the Scandinavian hub, occurring specifically on the PVC buffers at the ingress
frame relay switch, a separate PVC for Winframe will insure that Winframe
traffic does not get “stuck behind” Lotus Notes, Internet, and Novell SAP
broadcasts in the same buffer (a separate PVC buffer would be required). This
PVC should also be prioritized in the network to address potential congestion
issues at the frame relay port on the egress switch.

Rearchitect the Network for Winframe Traffic
The current network architecture, consisting of hybrid private lines and frame
relay with multiple hubbing locations, may be cost effective, but the perform-
ance penalty is clear. For instance, look at a packet traveling from Oslo to the
U.S. hub. On a round-trip, this packet will go through 10 insertions on serial
lines, four network latencies over the frame relay network in Europe, and
potentially four delays through two PVCs. This is certainly not optimal for
latency-sensitive traffic, especially in the context of a global connection. While
Internet and Lotus Notes may tolerate this latency, Winframe cannot.

If Winframe is the only latency-sensitive traffic between Scandinavia and
the U.S. hub, it makes sense to provide separate PVCs between individual loca-
tions in Scandinavia directly to the U.S. hub on a separate frame relay port.
This will eliminate the latency due to multiple hops and the impact of back-
ground traffic. Of course, this comes at an extra cost. As for sizing these PVCs,
one can use an estimate of 7 to 10 Kbps per user for Winframe traffic (this is
usually the case for applications like Oracle Financials; graphics-intensive appli-
cations need significantly more bandwidth with Winframe).

Traffic Shaping
A longer term strategy, which will address the Winframe performance issues
as well lay the groundwork for an overall QoS framework in the network, is
to deploy bandwidth management/traffic shaping devices at selected locations.
These devices are typically placed behind WAN routers and manage the user-
defined allocation of bandwidth to individual traffic streams using a combina-
tion of techniques such as class-based queuing, weighted fair queuing, TCP rate
control, and rate throttling. Bandwidth can be allocated at a very granular level,
such as traffic to and from an individual URL, individual users, specific servers,
and so on.

352 Wide-Area Data Network Performance Engineering

In its simplest form, the router at the European hub can be configured to
shape traffic on the PVC to the Scandinavian hub to a specific rate, say, the
CIR. This will address the Winframe performance issue because all the queuing
due to background traffic will take place at the router buffers making the router
prioritization schemes more effective. Of course, this will also mean that the
PVCs cannot burst.

A more complex but effective implementation would be to place band-
width management devices at strategic locations in the network (essentially
locations that are congestion points) and allocate bandwidth granularly to spe-
cific traffic classes. At the time of this writing, products from vendors such as
Xedia, CheckPoint, and Packeteer appear to be capable of performing this task.

11.4 Novell Networking Case Studies

The following case studies deal with two main issues regarding Novell Net-
Ware performance over WANs: SAP broadcasts and packet burst. The authors
have not investigated the performance issues with respect to NetWare 5 where
TCP/IP is the dominant protocol. However, preliminary indications are that
these issues will not arise.

The reader is referred to Chapter 8 for details on Novell performance issues.

11.4.1 How Novell SAPs Can Impact Performance

This case study deals with how SAP broadcasts and improper router configu-
rations can lead to disastrous results. More importantly, it demonstrates how
numerical methods discussed in this book can be applied effectively to trouble-
shoot and explain WAN problems.

The company in question had an SNA multidrop network and a Novell/
IP network in parallel on leased lines. The Novell/IP network was based on Bay
routers and limited to a handful of locations in the network. The rest of the
locations (about 50 in all) only had SNA presence. With the coming of pub-
lic frame relay services and router support for SNA using DLSw, the company
decided to consolidate its SNA and LAN networks into a frame relay network.
Clearly, the SNA applications were the most important, with a 2- to 3-sec end
user requirement being an absolute requirement.

When the network was migrated to frame relay, SNA response times
were unacceptably large—spikes of 10- to 15-sec delays for SNA transactions
were not uncommon. There was FECN and BECN indications in the network,
as seen by the routers.

The company’s worst fears about SNA over frame relay were realized.

Case Studies 353

11.4.1.1 Resolution
The frame relay network is as shown in Figure 11.8. As mentioned before, most
of the locations are SNA only, with a few controllers attached to the router
via SDLC; DLSw was used to support SNA over the WAN. Clearly, SNA
response times will increase in the migration from multidrop to frame relay,
due to increased overhead, store-and-forward delays, and more latency through
frame relay, in spite of local polling. However, these factors cannot explain the
fact that the response times have increased more than fivefold, from 2 to 3 sec
to 15 sec or more. The initial conclusion was that there must be something
unusual happening in the network—due to the service provider’s network
(dropped packets), router issues, or other traffic in the network. The FECN
and BECN indication was further proof that the network was unstable. In par-
ticular, the router at the head end was receiving BECN frames and the router at
the far end was receiving FECNs. This was a clear indication that there was
excessive traffic in the direction from the data center to the remote locations.
This could not be due to SNA alone, since SNA 3270 traffic is usually low
volume. However, since the PVC carried only SNA traffic—the SNA-only
locations were not even configured for LANs—it could not be occurring due
to other protocol traffic. Hence, it would appear that either the frame relay
network was severely congested and dropping packets, forcing frequent retrans-
missions, or the routers were causing the problem. Or so it seemed.

354 Wide-Area Data Network Performance Engineering

Token-
ringFrame relay

640 Kbps16 Kbps
Bay router Bay router

56 Kbps

Novell server farm

IBM 3174

IBM 3174

IBM 3745 Mainframe

Bay router

Figure 11.8 A frame relay network showing SNA-only and LAN attached locations.

The first step in troubleshooting is to capture a protocol trace of the
packets traversing the specific SNA-only PVC in question. This is shown in
Figure 11.9. This is a trace of the packets traversing on the PVC between an
SNA-only location and the data center. The sniffer trace is an output from the
packet capture facility of the Bay router at the data center.

The DLSw packets are readily seen—TCP port numbers 2067 and 2065.
But why send IPX RIP packets and IPX SAP packets to a location that does not
even have a LAN?

It turned out that the routers were configured in a mode that essentially
assumed that the frame relay network was a LAN, using group-mode PVCs.
When the router was reconfigured to direct-mode PVCs, that is, recognizing
that each individual connection constitutes a network in its own right, the SNA
response time problem disappeared!

11.4.1.2 Rationale
Why did the change from group-mode to direct-mode PVCs resolve the prob-
lem so dramatically? The Bay router at the head end essentially assumed that
all routers in the group needed to hear SAP and RIP broadcasts every 60 sec,
including the SNA-only routers.

We can do more—we can explain exactly why SNA response times were
large and why FECNs and BECNs were being sent by the network.

Recall that Novell RIP and SAP broadcasts are sent out every 60 sec by
default. The trace revealed 87 SAP broadcasts and 7 RIP broadcasts. To calcu-
late the amount of data sent by the head end router every 60 sec, recall from
Chapter 8 that a full SAP packet is approximately 500 bytes (7 services of
64 bytes each plus overhead), and that a RIP broadcast is approximately
450 bytes (50 networks, 8 bytes per network plus overhead). Hence every
60 sec the head-end router will send 87 × 500 + 7 × 450 = 46,650 bytes.
Now this amount of data will take 46,650 × 8 / 640,000 = 0.58 sec to be sent
over the 640-Kbps frame relay port. But, since the maximum throughput of the
connection is 56 Kbps, only 7000 bytes/sec × 0.58 sec = 4060 bytes can be
cleared from network buffers. Hence the remaining amount, 46,650 − 4060 =
42,590 bytes (approximately) will be in the network buffers, a definite reason
for FECN and BECN indication. Furthermore, a SNA response frame sitting
behind this amount of RIP/SAP broadcast packets will have to wait at least
42,590 × 8 / 56,000 = 6 additional seconds. In addition, there may be delays
on the router serial port, which has to empty out large amounts of data
(RIP/SAP broadcasts to all 50 locations).

Thus it is clear why SNA response times are large and also spiked—corre-
sponding to the 60-sec broadcast pattern.

Case Studies 355

356
W

ide-Area
Data

N
etw

ork
Perform

ance
Engineering

Flags # Delta T Bytes CumByt Destination Source Summary

M 1 490 490 9C414E02.FFFF.. 9C414E02.Wllf.. SAP R AS0037558US0AIC1, AS0119877AND001F, AS0243781HNAFCDE7, ...
2 0.0612 490 980 9C414E02.FFFF.. 9C414E02.Wllf.. SAP R ASHP02082MTRFCDE1, ASHP02100FTWFCDE2, ASHP03488GR...
3 0.0678 490 1470 9C414E02.FFFF.. 9C414E02.Wllf.. SAP R ASHP05995HNAFCDE3, ASHP06515US05FS3, ASQ449649UG04IS, ...
4 0.0556 490 1960 9C414E02.FFFF.. 9C414E02.Wllf.. SAP R DSAWATCH_2FA79C2200000000000184EA_GREISM01, KIT1, KIT1, ...
5 0.1342 490 2450 9C414E02.FFFF.. 9C414E02.Wllf.. SAP R SMM1600DD0122848B, SMM1600DD012284A1, SMM1600DD01228 ...
6 0.0748 490 2940 9C414E02.FFFF.. 9C414E02.Wllf.. SAP R SMM1600DD012286FB, UB00DD01229EFC, AND001F, ...
7 0.0208 56 2996 [156.65.79.1] [156.65.78.13] TCP D=2067 S=2065 ACK=1002478020 WIN=16000
8 0.0460 362 3358 9C414E02.FFFF.. 9C414E02.Wllf.. SAP R AND001F, 9C418014_, EDAGATE, ...
9 0.0516 442 3800 9C414E02.FFFF.. 9C414E02.Wllf.. IPX RIP response: 26 networks, 00000002 at 3 hops, 0000000C at 4 hops, ...

11 0.0770 442 4684 9C414E02.FFFF.. 9C414E02.Wllf.. IPX RIP response: 26 networks, 8DC21200 at 4 hops, 8DC2120F at 5 hops, ...
12 0.0744 442 5126 9C414E02.FFFF.. 9C414E02.Wllf.. IPX RIP response: 26 networks, 9C413000 at 3 hops, 9C413001 at 3 hops, ...
13 0.0456 442 5568 9C414E02.FFFF.. 9C414E02.Wllf.. IPX RIP response: 26 networks, 9C41E029 at 3 hops, 9C41E21F at 3 hops, ...
14 0.0505 56 5624 [156.65.78.13] [156.65.79.1] TCP D=2067 S=2065 ACK=176804132 WIN=16000
15 0.0018 114 5738 9C414E02.FFFF.. 9C414E02.Wllf.. IPX RIP response: 9 networks, CA157B00 at 7 hops, CA157B01 at 7 hops, ...
16 0.0213 514 6252 [156.65.78.13] [156.65.79.1] TCP D=2065 S=2067 ACK=111030989 SEQ=1002482374 LEN=458 WIN=128
17 0.0061 558 6810 [156.65.78.13] [156.65.79.1] TCP D=2065 S=2067 ACK=111030989 SEQ=1002482832 LEN=502 WIN=128
18 0.0021 174 6984 [156.65.78.13] [156.65.79.1] TCP D=2065 S=2067 ACK=111030989 SEQ=1002483334 LEN=118 WIN=128

Figure 11.9 Protocol trace of SNA-only PVC traffic.

11.4.2 Comparing Leased Line and Frame Relay Performance for Novell
File Transfers

While trying to establish frame relay performance benchmarks for their appli-
cations, one company encountered the following problem: Novell file trans-
fers over frame relay were showing consistently worse performance compared to
an “equivalent” private line. This case study explains why such a performance
difference is to be expected and, in doing so, illustrates the power of “back-of-
the-envelope” calculations in trying to establish performance benchmarks
where several assumptions have to be made.

11.4.2.1 Description of the Issue
The frame relay connection in question has a 256-Kbps frame relay port on
both ends with ACC routers and a zero CIR in between (see Figure 11.10).
Novell NCOPY (server-to-server) file transfers were used to measure perform-
ance. The performance benchmarks compared this frame relay connection with
a 56-Kbps private line. The NCOPY file size is 7,026,040 bytes. Payload com-
pression on the routers on private lines could not be turned off. Frame relay
round-trip latency was measured at about 80 msec.

Here are the performance benchmarks: (1) frame relay (without router
payload compression): 5 min 40 sec; and (2) private line (56 Kbps) (with router
payload compression): 4 min 45 sec.

Prior experience with router payload compression over private line has led
the company to expect a 4:1 compression ratio.

The question is why private line performance with 56 Kbps is better than
frame relay performance, although frame relay bandwidth (256 Kbps) is more
than four times that of private line. Since the company wanted to replace their
private line infrastructure with frame relay, the related question was whether or
not tuning parameters are available to make frame relay performance equal to
that of private line.

Other relevant information includes the fact that the frame relay network
is carrying very little background traffic and is healthy.

Case Studies 357

Frame relay

256 KbpsZero CIR
ACC router ACC router

256 Kbps

Server

Server

Figure 11.10 Reference connection for Novell file transfer issues.

11.4.2.2 Resolution
A protocol trace of the Novell file transfer revealed that packet burst was being
used and that 10 frames were being sent in a single burst. See Chapter 8 for
details on Novell packet burst. The frame size was 1024 bytes.

First let us try to validate the frame relay performance number. Because
packet burst uses bursts of 10 frames with a payload of 1024 bytes, it is clear
that approximately 686 bursts would be required to complete the file transfer of
7,026,040 bytes (file size/burst size). The frame size is 1024 + 36 (Pburst) +
30 (IPX) + 8 (FR) = 1026 + 72 = 1098 bytes.

Packet burst delays the transmission of successive frames within a burst
by the IPG. Let us assume that the IPG is zero for this exercise (it is usually a
few milliseconds). The following calculation shows how the file transfer can be
calculated:

Transfer time for a single burst = (10 × 1098 × 8 / 256,000 + 0.04 + 1098 ×
8 / 256,000) + (0.04 + small ack delay) = 0.457 sec

Total transfer time = 686 × 0.457 = 5 min and 13 sec.

Compare this with actual observed value of 5 min and 40 sec!
Projected performance over a 256-Kbps private line (assume latency is

equal to 50-msec round-trip) can be calculated as follows:

Transfer time per burst = 10 × 1098 × 8 / 256,000 + 0.05 = 0.393 sec

Transfer time for the file = 0.393 × 686 = 4 min 30 sec

Hence frame relay performance is about 1 min slower than private line. Why?
This is because of the way packet burst sends multiple data packets in a burst
and waits for an acknowledgment, and the fact that frame relay has a second
insertion delay and a somewhat higher latency is larger than private line. The
extra insertion delay over frame relay “costs” about 686 × 1098 × 8/256,000 sec
= 24 sec. The additional latency over frame relay “costs” an additional 686 ×
0.03 sec = 21 sec—a total of about 45 sec. If this were a TCP/IP bulk data
transfer with sufficiently large windows, one should expect the same file trans-
fer times between the frame relay connection above and a 256-Kbps lease line.

How can one optimize frame relay performance for this Novell applica-
tion? There is not much one can do; perhaps using a larger frame size and/or

358 Wide-Area Data Network Performance Engineering

increased burst size would minimize the difference somewhat, but the differ-
ence between private line and frame relay will still remain.

One can even validate the leased line performance numbers with payload
compression, using some reasonable assumptions. File transfer time over a
56-Kbps leased line can be calculated as follows:

Transfer time for a burst = 1098 × 8 × 10 / 56,000 + 0.05 msec = 1.62 sec

Total transfer time = 686 × 1.62 = 1111 sec = 18 min 31 sec

One can compare this to the observed leased line numbers with compression
(assuming a 4-to-1 compression ratio):

Observed leased line 56-Kbps file transfer time with compression = 4 min
45 sec = 285 sec

Observed (expected) file transfer time over a 56-Kbps leased line without
compression = 285 sec × 4 = 1140 sec!

Compare this with the calculated value of 1111 sec!

11.4.3 A Paradox: Increasing Bandwidth Results in Worse Performance

Another company testing frame relay performance characteristics found that
when they bought additional bandwidth from the carrier, the performance
of their Novell applications actually degraded! The frame relay connection in
question has a 56-Kbps port in Denver and a 384-Kbps port in Detroit with a
16-Kbps CIR. Again, NCOPY was used with a file size of 295,000 bytes. The
frame relay file transfer time was 105 sec. In an effort to improve this perform-
ance, the company ordered an increase of the CIR to 56 Kbps. The file transfer
time actually increased to 136 sec! Why?

It was not clear if packet burst was being used. However, the file transfer
times hold a clue. If packet burst is assumed to be not present, then the file
transfer time can be calculated as follows (assume a 30-msec one-way frame
relay latency between Denver and Detroit):

Number of packet transfers required = 295,000 bytes / (512 bytes/packet) =
577 (approximately)

Case Studies 359

Time for a packet transfer + ack time = (578 × 8 / 384,000 + 0.03 + 578 ×8 /
56,000) + (68 × 8 / 56,000 + 0.03 + 68 × 8 / 384,000) = 166 msec

where a 66-byte overhead and 2-byte acknowledgment are assumed. Hence file
transfer time is 0.166 × 577 = 96 sec.8 (Note that other delays, such as client,
server, and router, have not been accounted for.)

Comparing the file transfer time to the actual observed value of 105 sec, it
is clear that packet burst was not being used. If it were, then the file transfer
time would have been much shorter.

What should happen to file transfer times with no packet burst when
bandwidth is increased? Recall that without packet burst, Novell file transfers
will use a stop-and-wait protocol, sending one packet of a 512-byte payload at a
time. Such a file transfer method is bandwidth insensitive, and hence the file
transfer time should be unaffected by additional bandwidth. The reason why
the file transfer time increased has to do with how frame relay carriers deal with
requests for increased bandwidth for PVCs. Because PVCs are logical entities, it
is likely that the frame relay carrier chose a different path to be able to accom-
modate the request for additional bandwidth. If this path happens to be longer
than the original path, the network latency for that connection will increase
and this will have a pronounced effect on the file transfer performance.

The resolution of the issue is to use packet burst. With this method, addi-
tional bandwidth will result in better performance.

11.5 SNA-Related Case Studies

The following case studies relate to concerns about supporting SNA over frame
relay in a multiprotocol environment. The first case study shows how one can
design a frame relay network to replace a multidrop SNA network. Although
multidrop SNA networks are becoming less prevalent with the advent of multi-
protocol networking and frame relay, the case study can be used as an example
to demonstrate how bandwidth for a frame relay network can be estimated.
The second case study deals with a company’s concerns about the adverse effects
of supporting mission-critical SNA and native TCP/IP traffic (e.g., FTP) on the
same connection over frame relay, and how these concerns can be addressed.

360 Wide-Area Data Network Performance Engineering

8. The approach to calculate file transfer times is slightly different here. Instead of calculating
round-trip delays, throughput, and then the file transfers, we have opted to calculate the
round-trip delay to send a single packet and receive an ack, and then multiply by the
number of packets in the file. This approach is valid here because of the stop-and-go nature
of the file transfer.

11.5.1 Migration From SNA MultiDrop to DLSw

The multidrop network consisted of 12 major sites and other smaller sites. The
company (a financial services organization) wished to migrate the major sites to
frame relay, the primary motivation being cost reduction and the introduction
of new TCP/IP applications. The 12 major sites had several colocated control-
lers (3x74) and smaller sites multidropped through these major sites, as shown
in Figure 11.11.

The multiplexers concentrate two or three low-speed lines (9.6 or
19.2 Kbps) into a higher speed (56 Kbps) to the host (muxes at the host are not
shown). Each multidrop connection could carry several 3174 controllers. The
company wished to replace the multiplexers with Bay routers and upgrade the
3174 controllers with a token ring attachment. The multidrop network would

Case Studies 361

IBM 3174

IBM 3174

Mainframe

Multiplexer

Multiplexer

Multiplexer
Multiplexer

IBM 3745

56 Kbps

56 Kbps

56 Kbps

56 Kbps

Figure 11.11 SNA multidrop.

then be replaced by a public frame relay service. The main issues are to size the
frame relay ports and PVCs adequately and provide appropriate guidelines to
ensure that SNA response times will not suffer in the migration.

It might seem that a simple replacement of the time-division multiplexer
in the multidrop network with a statistical multiplexer is enough to guarantee
better response times for SNA. After all, isn’t it true that in the multidrop net-
work, the 9.6-Kbps link cannot use the 56-Kbps bandwidth even if the latter is
available, whereas with statistical multiplexing, the entire 56 Kbps is available
to the SNA traffic? Actually, this is not true. It ignores the fact that the sta-
tistical multiplexer, such as a router, is a store-and-forward device—it stores
and forwards SDLC frames, with some encapsulation. This store-and-forward
nature introduces additional delays so that, in fact, the overall delays may actu-
ally increase. (It really depends on related aspects such as local polling, encapsu-
lation overhead, and so on; see Chapter 10.)

However, since the decision was made to token-ring attach all the
controllers, the preceding discussion is irrelevant. The proposed frame relay
network would be as shown in Figure 11.12.

11.5.1.1 The Design Process
The company obtained transaction sizes and traffic volumes for their SNA
3270 applications. The transaction consisted of a 20-byte inquiry, followed
by a 700-byte response. The traffic volumes, in overall bytes per working day,
are broken down by location and in the inbound and outbound direction (to
and from the mainframe, respectively). Several assumptions have to be made to
make use of the information provided. First, we need peak hour traffic infor-
mation. Second, we need to know the degree of simultaneity of the traffic:
How many users in how many locations use the mainframe applications simul-
taneously? In reality, however, this type of information is very hard to obtain
unless a detailed traffic study is undertaken. Most companies have neither the
time nor the resources to expend on such studies. More importantly, exhaustive
traffic studies are often not needed to accomplish the goals at hand, that is,
design a robust frame relay network that will deliver good SNA response times.
Transaction sizes and overall traffic volumes, together with a reasonable set of
assumptions, usually suffice.

To obtain peak hour traffic volumes, one could make the 80–20 assump-
tion, that is, that 20% of all the day’s activities occur during a peak hour. From
this, the overall bandwidth requirements for each location in the inbound and
outbound direction can be obtained. We can also make the worst case assump-
tion that all locations are simultaneously active at their peak loads.

The next step is to account for additional protocol overhead due to DLSw
encapsulation.

362 Wide-Area Data Network Performance Engineering

Inbound message size = 20 + 16 (DLSw) + 40 (TCP/IP) + 8 (FR) = 84 bytes

Outbound message size = 700 + 16 (DLSw) + 40 (TCP/IP) + 8 (FR) =
764 bytes

(An implicit assumption of no chaining or segmentation is made here.) Thus
the peak hour inbound and outbound load will increase accordingly in the new
network. This is shown in Table 11.1.

Case Studies 363

Token-
ring

Token-
ring

Frame relay

Router

Router

IBM 3174IBM 3174

Router

Mainframe

Router

IBM 3745

Figure 11.12 Frame relay replacement for the SNA multidrop with routers.

The next step is size the PVC speeds for the remote locations. This will
give us an indication of the port speeds at these remote locations. Once the
remote port speeds and CIRs to the central site are specified, it is then easy to
size the port speed at the data center.

Look at Table 11.1. To size a CIR for a location, we merely look at the
outbound direction because the traffic in this direction is dominating. For
instance, for location 5, the outbound traffic volume is 40.7 Kbps. What
should be the CIR allocated for this PVC? There are several approaches. A
risk-averse approach would be to use a rule that PVCs should not be loaded at
higher than 60% utilization. A more reasonable approach would be to assume
some amount of bursting in the network and size the CIR at, say, 100%. The
former approach was used here, given the company’s concerns about SNA.
Hence the CIR allocated to this PVC is 128 Kbps (assuming that the carrier
allocated CIRs in 64-Kbps increments). Similarly other CIRs are calculated.
Port speeds are chosen to be the next higher DS-0 (64-Kbps) multiple value.
To calculate the port speed at the central site, add all of the CIRs and roughly
estimate the port speed. In this case, the sum of the CIRs is 848 Kbps. It seems
appropriate to allocate 768 Kbps, or half of a T1 connection, to the central site.
Table 11.1 shows these values in the first three columns.

364 Wide-Area Data Network Performance Engineering

Table 11.1
Location-Specific Traffic and Design Information

Location Load In/Out (Kbps) Port Speed/CIR
Average Expected
Response Time (sec)

Headquarters 10/352 768-Kbps port —

Location 1 1.3/43.8 256/128 0.32

Location 2 16.6/58.1 256/128 0.34

Location 3 1.4/48.3 256/128 0.33

Location 4 1/35.4 128/64 0.53

Location 5 1.2/40.7 256/128 0.32

Location 6 0.94/32.8 128/64 0.5

Location 7 0.73/25.5 56/48 0.75

Location 8 0.5/16.9 56/32 0.85

Location 9 0.6/20.5 56/48 0.64

Location 10 0.4/12.8 56/32 0.72

Location 11 0.3/10.6 56/32 0.67

Location 12 0.2/6.8 56/16 1.1

Now we have a frame relay design that incorporates core characteristics of
the company’s SNA traffic. We should next estimate end user response times in
the new network.

11.5.1.2 Response Time Calculation
We will illustrate the methodology for location 1. Assume that the network
latency is 60 msec one way. Notice that the inbound utilization on the links
(ports and PVCs) are almost zero. Hence inbound response time is

84 × 8 / 128,000 + 0.06 + 84 × 8 / 768,000 = 0.066 sec

Outbound response time for location 1 can be calculated as follows.9 Notice
that the central port (768 Kbps) will be approximately 50% utilized (add all
the outbound peak traffic volumes divided by 768 Kbps), and that the PVC
to location 1 is about 35% utilized (44 Kbps/128 Kbps). Assume the worst
case scenario that the PVC is not bursting above its CIR. Notice that, due to
the underlying assumption of a closed-loop system, there can be no queuing
occurring at the remote port. Hence, using an M/M/1 formula (see Chapter 3,
Section 3.2), the outbound response time is

[764 × 8 / 768,000] / (1 − 0.5) + [(764 × 8 / 128,000) / (1 − 0.35)] + 0.06 +
764 × 8 / 256,000 = 0.173 sec

Hence total response time (network portion) is 67 + 173 = 240 msec. Note
that this ignores router delays and FEP delays. Thus, it is likely that end user
response times are in the 300-msec range. When the network was actually
turned up and tested, SNA response times were actually averaging 320 msec!

11.5.2 Insuring SNA Performance in the Presence of TCP/IP Traffic

The following case study illustrates the issues pertaining to mixing mission-
critical SNA applications and “not-so-critical” TCP/IP applications on the
same WAN connection.

The network in question supports the data communication needs for a
large brokerage firm in New York City. There are 300 branch offices in the
United States connected to the headquarters office in New York via frame
relay. Large branches have a 256-Kbps/128-Kbps port speed and CIR

Case Studies 365

9. These calculations are approximate. It also assumes a closed-loop or leaky bucket implemen-
tation at the entrance to the frame relay cloud, essentially modeling the PVC as a serial line.

combination. Smaller branches have a 128-Kbps/64-Kbps port speed and
CIR combination. There are multiple T1s at the headquarters location. Cisco
routers are used in the network, which carries SNA (DLSw) traffic as well as
some native TCP/IP applications, such as IP-based market data feeds (approxi-
mately 12 Kbps to each branch) and large FTPs from the mainframe to the
branches, mostly during off hours.

Business requirements dictate that SNA traffic get consistent response
times in the 1- to 2-sec range. Off-hour TCP file transfers from the mainframes
(approximately 10 Mbytes to each branch) have a 3- to 5-h window of comple-
tion (to all locations). Although TCP file transfers occur mostly during
offhours, it cannot be guaranteed that end users will not access files from the
mainframe during the day. Hence the concern about mixing SNA and TCP/IP.
The questions to be answered are:

• Will router priorities be sufficient to ensure good response times for SNA?

• Is a second PVC for SNA an absolute requirement?

• What about traffic shaping options at the headquarters location?

11.5.2.1 Resolution
The first step is to investigate whether or not the SNA transactions can be sup-
ported when TCP traffic is not present. The next step is to ensure that the TCP
requirements (3- to 5-h window of completion for transfers) can be satisfied.
The final step is to investigate what is likely to happen to SNA response times
in the presence of TCP file transfers, and to recommend methods to address
any issues.

It is clear that the SNA response times will be less than 1 sec. This does
not require detailed analysis. Note that the SNA 3270 traffic is “small in, large
out”; say, a few hundred bytes in and a thousand or so bytes back from the
host. Given the relatively large ports and PVCs in the network to most loca-
tions, it is not unreasonable to expect that, in the absence of TCP traffic, SNA
transactions will have acceptable response times.10

366 Wide-Area Data Network Performance Engineering

10. A more exact analysis will require information on bytes in and bytes out per transaction and
number of users at a location, and user think times (or transaction rate). It is probably not
worth the effort. For instance, with a 10-sec think time (a very busy user) between submit-
ting successive inquiries, and a 1000-byte response time from the host, a single user will
account for 100 bytes/sec of bandwidth. On a connection with 64-Kbps CIR, one can sup-
port more than 50 simultaneous users and still keep the link from being more than 70%
utilized. Simple analyses of this nature can often be used to determine if there are likely to
be issues with meeting given response time objectives.

Let’s look at the TCP requirements now. Assume that a 10-Mbyte file
needs to be sent from the host to the remote branch. How long will it take and
what is the optimal window size? On a 128-Kbps connection (large branch),
the transfer time is likely to be at most

1,024,000 × 8 × 1.05 / 128,000 = 11 min (5% protocol overhead assuming
a 1024-byte segment size)

For a 64-Kbps connection, the transfer time will likely be double that for a
128 Kbps, or 22 min.

The optimal window size for the transfers to the large branch can be
calculated thus:

Maximum bandwidth = 256 Kbps (or 32 bytes/msec)

Expected round-trip latency Rd (U.S. connections) = 100 msec

Hence optimal window size W ∗ = 3200 bytes (or approximately three
1024-byte segments).

Optimal window size for the smaller branches (128 Kbps) equals approxi-
mately 1500 bytes. Hence a window size of 1500 bytes is likely to provide a
throughput of approximately 128 Kbps.

Because a T1 can hold about twelve 128-Kbps streams, one can achieve
about 12 parallel TCP file transfers on a single T1. Thus, in the extreme case of
all file transfers occurring on a single T1 link, the window of completion for
300 branches can be estimated as

(300/12) × 11 min = 300 min or 5 h

Because there are multiple T1s at the data center, it is clear that the TCP
requirements pose no problems from the WAN point of view. Indeed, it is an
open question whether or not the mainframe will be able to “pump” as much
TCP traffic as to be able to keep the WAN links busy.

What is the impact of TCP FTPs on SNA response times? Let us look at a
small branch location with a 64-Kbps CIR. We assume the worst case scenario
where the best throughput on the connection is 64 Kbps. How many parallel
TCP sessions can be supported on this PVC before SNA response times
become adversely affected? To answer this question, assume that the remote

Case Studies 367

servers advertise a 1500-byte window. Because of the speed mismatch between
a T1 frame relay port and a 64-Kbps PVC, buffering will occur at the network
buffers (usually at the ingress or egress). If TCP FTP and SNA are the only users
of this PVC, then the maximum data buffered will be N × 1500 bytes (N is the
number of parallel file transfers). These buffers can be emptied at a minimum
rate of 64 Kbps (CIR). Hence the time to empty the buffer is N × 1500/8000 =
N × 0.187 sec. If this has to be less than 1 sec, then the number of parallel trans-
fers should be limited to five (1/0.187 is approximately 5).

Thus, here are our overall conclusions:

• SNA applications by themselves will perform adequately over this
network.

• TCP FTP requirements of being able to transfer 10-Mbyte files to 300
locations within a 3- to 5-h window can be satisfied with one or more
T1 links at the data center.

• Optimal window size (receiver advertised) should be set to 1500 bytes.

• SNA response times, when mixed with TCP FTPs, will certainly
degrade. However, the response times may be acceptable provided pre-
cautions are taken to not have more than five parallel file transfers on a
connection to a remote branch office. We will not address the question
of whether or not this can actually be accomplished in mainframes (or
other platforms). The statement is a design goal.

• Setting the window size to the optimal value is absolutely critical,
because larger window sizes will not improve throughput, but will
degrade SNA response times.

• Priority queuing mechanisms at the router will have little or no effect
on SNA response times. Most of the queuing will occur in the net-
work, not at the routers.

• A separate PVC for SNA may address some of the congestion
problems in the network, but it would be too unwieldy to manage
600 PVCs in the network.

• One approach would be to use traffic shaping at the central site, either
invoking traffic shaping on the routers themselves or using an external
traffic shaping device. In its simplest form, the traffic shaping mecha-
nism can limit the traffic rate on a PVC to not exceed the CIR rate.
This will prevent congestion in the network buffers. More complex
traffic shaping schemes, such as allocating specific bandwidth to SNA
and FTPs, can also be invoked.

368 Wide-Area Data Network Performance Engineering

• The company should investigate externally deployed bandwidth man-
agement devices like Xedia and Packeteer.

11.6 Quantifying the WAN Bandwidth Impact of SNMP Polling

This case study deals with studying the bandwidth impact of multiple SNMP
stations managing a large corporate data network. The analysis is fairly straight-
forward. However, data collection regarding the number of bytes exchanged
during SNMP queries is an important component of the analysis. Several
assumptions also need to be made.

The corporate data network has four HP OpenView network manage-
ment stations that monitor all aspects of the Cisco router network, which is
partly frame relay and partly leased line. These management stations are cen-
trally located at a data center, which is served by multiple T1 facilities. The
question is this: What is the average load generated by the four network man-
agement stations?

We first list some assumptions made in the analysis and an assessment
of how critical these assumptions are. Next, we list the input parameters such
as polling frequencies and objects polled. We then discuss the bandwidth
impact analysis. The last section deals with observations, conclusions, and
recommendations.

Key Assumptions
Most of the assumptions are related to the polling data (SNMP Get requests
and responses) generated by management stations. Specific assumptions are:

• SNMP V2 is not used.

• SNMP V2 has many features that do not pertain to WAN band-
width, but one feature in particular is useful—bulk requests—where
a single SNMP Get request can collect a number of variables.

• Four network management stations are employed. They are all polling
the same objects at the same frequencies.

• This was the way it was set up in this particular customer network.

• The corporate WAN consists of 152 routers and 500 interfaces,
including serial lines, subinterfaces, and Ethernet interfaces.

• There are also 19 hub routers in the network with 192 interfaces.

• No data were available on the traffic generated due to polling Cisco
MIBs for IP, IPX, AppleTalk, and DECnet statistics. It is a safe

Case Studies 369

assumption that the data generated are less than that generated by poll-
ing full MIB2 interface statistics.

Objects Polled and Frequencies
The following objects are polled at the stated frequencies:

Output utilization All router ports every 5 min

Full MIB 2 interface data Only hub router ports every 15 min

Full MIB2 interface data All router ports every 1 h

Protocol data using Cisco MIBs All routers every 1 h

System data All routers every 90 sec

Traffic Generated by SNMP Polling
The following information was gathered from a sniffer analysis of traffic gener-
ated by Node Manager release 5.0.1 running on HP UX® Version 10.2, poll-
ing a Cisco 7513 router with 24 interfaces.

The SNMP request is transmitted from the HP OpenView Network
Node Manager 5.01 management station and receives a SNMP reply from the
Cisco 7513 router device with 24 interfaces (mgmt.mib-2.system.sysUpTime:
48-byte SNMP get and approximately 53-byte reply).

CPU utilization as formulated by CiscoWorks for “CPU Load” using
SNMP Get requests/replies as follows:

SNMP get of … cisco.2.1.57.0 (local.lsystem.avgBusy1) 51 bytes

SNMP reply (normally in 52–55 byte range) 52 bytes

SNMP get of … cisco.2.1.58.0 (local.lsystem.avgBusy5) 51 bytes

SNMP reply (normally in 52–55 byte range 52 bytes

SNMP get of … cisco.2.1.56.0 (local.lsystem.BusyPer) 51 bytes

SNMP reply (normally in 52–55 byte range) 52 bytes

Output utilization is measured using Node Manager’s installed SNMP
Data Collection routine, “i f%util,” which computes percent of available band-
width utilization on an interface.The variables requested to obtain the preced-
ing values were:

370 Wide-Area Data Network Performance Engineering

46 items requested (SNMP get) from sysUpTime … ifSpeed =
775 bytes

46 item response (SNMP reply) from sysUpTime … ifSpeed =
878 bytes

28 items requested (SNMP get) from sysUpTime … ifSpeed =
487 bytes

28 item response (SNMP reply) from sysUpTime … ifSpeed =
545 bytes

The 46 and 28 enumerated item totals were taken from the packet capture with
no additional description identifying the particular variables polled except for
the following: “sysUpTime … ifSpeed.”

The MIB-2 interface tree (mgmt.mib-2.interfaces.*) SNMP data request
consists of a single value for “ifNumber” and 22 “ifTable.ifEntry” variables for
each interface on the router.

SNMP get of “ifNumber” 50 bytes

SNMP reply (normally in 52–55 byte range) 49 bytes

All of the following “ifTable.ifEntry” SNMP Get-Nexts and replies
should be multiplied by the number of interfaces on the router (for example, if
there are 24 interfaces then you should multiply each of the SNMP MIB-object
packet Gets and replies by that number, 24):

SNMP getnext of “if Index” 51 bytes

SNMP reply 52 bytes

SNMP getnext of “ifDescrip” 51 bytes

SNMP reply (normally in 62–64 byte range) 64 bytes

SNMP getnext of “ifType” 51 bytes

SNMP reply 52 bytes

SNMP getnext of “ifMTU” 51 bytes

SNMP reply 53 bytes

SNMP getnext of “ifSpeed” 51 bytes

SNMP reply (normally in 53–55 byte range) 54 bytes

Case Studies 371

SNMP getnext of “ifPhysAddress” 51 bytes

SNMP reply 57 bytes

SNMP getnext of “ifAdminStatus” 51 bytes

SNMP reply 52 bytes

SNMP getnext of “ifOperStatus” 51 bytes

SNMP reply 52 bytes

SNMP getnext of “ifLastChange” 51 bytes

SNMP reply (normally in 52–55 byte range) 55 bytes

SNMP getnext of “if InOctets” 51 bytes

SNMP reply (normally in 52–55 byte range) 54 bytes

SNMP getnext of “if InUcastPkts” 51 bytes

SNMP reply (normally in 52–55 byte range) 54 bytes

SNMP getnext of “if InDiscards” 51 bytes

SNMP reply (normally in 52–55 byte range) 52 bytes

SNMP getnext of “if InErrors” 51 bytes

SNMP reply (normally in 52–55 byte range) 52 bytes

SNMP getnext of “if InUnknownProtos” 51 bytes

SNMP reply (normally in 52–55 byte range) 52 bytes

SNMP getnext of “ifOutOctets” 51 bytes

SNMP reply (normally in 52–55 byte range) 54 bytes

SNMP getnext of “ifOutNUcastPkts” 51 bytes

SNMP reply (normally in 52–55 byte range) 52 bytes

SNMP getnext of “ifOutDiscards” 51 bytes

SNMP reply (normally in 52–55 byte range) 52 bytes

SNMP getnext of “ifOutErrors” 51 bytes

SNMP reply (normally in 52–55 byte range) 52 bytes

SNMP getnext of “ifOutQLen” 51 bytes

SNMP reply (normally in 52–55 byte range) 52 bytes

SNMP getnext of “ifSpecific” 51 bytes

SNMP reply (normally in 52–55 byte range) 52 bytes

372 Wide-Area Data Network Performance Engineering

Bandwidth Impact Analysis
In general, for MIB-2 interface variables, it is reasonable to assume that
approximately 52 bytes are generated in a SNMP request (either Get or Get-
Next) and an SNMP response per variable. Protocol overhead characters for
SNMP requests and responses are approximately 40 bytes, including UDP/IP
overhead, SNMP overhead, and link overhead.

Based on the assumptions listed and the traffic profile shown above, the
bandwidth impact can be assessed as follows:

• Output utilization for all router ports every 5 min:

46 items requested 775 bytes

46 items responded 878 bytes

28 items requested 487 bytes

28 items responded 545 bytes

Bandwidth utilization = 500 interfaces (775 + 878 + 487 + 545 + 160) / 5 ×
60 = 37.9 Kbps

• Full MIB-2 interface polling on hub routers every 15 min. The first
poll for every hub router retrieves the number of interfaces, and then
every interface is polled. Every interface contains 21 variables. There
are 192 interfaces.

Bandwidth utilization = {19 × (100 + 40) + 192 interfaces ×
[21 × (52 + 40) × 2]} / 15 × 60 = 6.6 Kbps

• Full MIB-2 interface polling on all routers every 1 h. The first poll
for every router retrieves the number of interfaces, and then every
interface is polled. Every interface contains 21 variables. There are
500 interfaces.

Bandwidth utilization = {152 × (100 + 40) + 500 interfaces ×
[21 × (52 + 40) × 2]} / 60 60 = 4.3 Kbps

• Protocol statistics every 1 h on all routers. Because only one variable
per protocol is polled, it is safe to assume that the total amount of
traffic generated is significantly less than polling MIB interface data

Case Studies 373

on very router every hour (that is, bandwidth utilization is less than
4.3 Kbps!).

• System data for all routers on a 90-sec interval. Polling system data for
sysUpTime generates 50 bytes of request and response on an average.

Bandwidth Utilization = 152 routers × (50 + 40) × 2 = 2.4 Kbps

Hence the overall bandwidth utilization due to a single network management
station is

37.9 + 6.6 + 4.3 + 4.3 + 2.4 = 56 Kbps (approximately)

Therefore the overall bandwidth utilization due to four parallel network man-
agement stations is

4 × 56 Kbps = 224 Kbps!

The overall observation is that the bandwidth impact of SNMP polling is
minimal relative to the total bandwidth available at the data center.

374 Wide-Area Data Network Performance Engineering

Appendix A

Appendix A
Queuing: A Mathematical Digression

In this brief digression, we go into a little more of a mathematical discussion
of queuing than is generally required. We begin by separately discussing the
nature of the input and the service processes and then their combination to
determine the queuing delay estimation process.

Consider the times of arrivals (or arrival epochs) of the cars to the toll-
booth (refer to the discussion in Section 3.2.5 of the main text) taken as ran-
domly distributed points on a line (see Figure A.1).

We denote the arrival points as T0, T1, …, Tn and the interarrival times,
that is, the time intervals between the arrival points, as a0, a1, …, an−1. Each car
brings with it an amount of work, that is, the amount of time the toll taker
requires to service the car, which is denoted as s0, s1, …, sn−1. The total work in
the system at the time of an arrival is the waiting time for that arrival.

From Figure A.1, it is evident that the waiting time is both a function of
the arrival process and the service time process. A method to characterize the
arrival process is to define the distribution for the interarrival times. A method
to characterize the service process is to define the distribution of the service
times for the individual arrivals.

The various types of queuing systems can be categorized in terms of (1)
the input process, (2) the service process, and (3) the number of servers. Queu-
ing theory then strives to determine the properties of systems combining speci-
fied input processes with specified service time distributions. Queuing models
are categorized by specifying these processes in a shorthand notion. The short-
hand notation is summarized as

375

(Input process) / (Service distribution) / (Number of servers)

Prominent queuing models are:

• M/M/1: Poisson input, exponential service time distribution, single
server;

• M/G/1: Poisson input, general service time distribution, single server;

• M/D/1: Poisson input, deterministic service time distribution, single
server; and

• M/M/s: Poisson input, exponential service time distribution, s servers.

A Poisson input process is one in which the interarrival times between
incoming packets are distributed according to an exponential distribution [1].
In the preceding list, we just identified three types of service time distributions:
exponential, general, and deterministic. Exponential service times are distrib-
uted according to an exponential distribution. General services times are
unspecified. That is, the results for a system labeled as “general service time dis-
tribution” will apply to all systems independent of the service time statistics

376 Wide-Area Data Network Performance Engineering

Work in system at time T2
+

T0 T4T3T2T1

a0 a3a2a1

s0

s1

Time

W
or

k

Figure A.1 Time line showing the arrival epochs and the interarrival times for an arrival
process.

(assuming, however, that the specific service times of successive packets are not
correlated in any way). A deterministic service time implies that the service time
of every packet is identical.

Let us define some quantities characterizing queuing systems, then we
will summarize some interesting results for the queuing models identified
above. We define:

• τ = the average service time for a packet;

• σ2 = the variance of the service time for a packet;

• λ = the average arrival rate of packets;

• ρ = λτ = the average load on the system;

• E (Q) = expected number of packets in queue; and

• E (W)= expected queuing time for packets in queue.

Queuing theory has derived the following results for the M/G/1 queuing
system (Remember that this refers to a system where the packets arrive accord-
ing to a particular random arrival process referred to as a Poisson process; the
service time of a given packet is randomly distributed according to a general
distribution and there is a single server serving the queue.):

() ()E Q =
−

+








ρ

ρ

σ

τ

2 2

22 1
1 (A.1)

() ()E W =
−

+








ρτ

ρ

σ

τ2 1
1

2

2 (A.2)

With this relatively simple formula, we can demonstrate the behavior discussed
for our tollbooth example. First, the expected waiting times and number of cus-
tomers in queue approach infinity as p → 1. This simply states the fact that if
the traffic becomes too large, then the lines at the tollbooth grow too large.
(Just try commuting into Manhattan through the Lincoln Tunnel during
morning rush hour.) We say that queuing systems are stable, that is, queue
lengths and waiting times are finite, for loads in the range from 0 to 1 and
are unstable, that is, waiting times and queue lengths grow infinitely large,
for p ≥ 1. Second, we see that the queuing delays are directly proportional to
the service times. This is a simple reflection of the fact that the queuing delays

Appendix A 377

on slower communications links will be longer than on faster communications
links for a fixed load. Third, we see from the above formulas that

() ()E Q E W= λ (A.3)

This simple expression, relating the mean values of queue length, waiting time,
and arrival rate is known as Little’s theorem and is valid for all systems (having
finite means). A more general representation of Little’s law is

N D= ×λ (A.4)

where N is the number in the system, λ is the rate through the system, and D is
the delay in the system. This is a very general formula. We have already seen it
applied to queues.

Another application of Little’s law is the derivation of the relationship
between throughput, window size, and round-trip delay in windowing systems.
If we equate the window size W to N, the throughput X to λ, and the round-
trip delay Rd to D in (A.4), we get

X W R d= / (A.5)

This formula is derived in Section 3.5 of the main text.
Now consider the relatively simple exponential service time distribution,

that is, τ σ2 2= . This simplifies (A.1) and (A.2) to:

() ()E Q =
−
ρ

ρ

2

1 (A.6)

()E W =
−
ρ

ρ
τ

1 (A.7)

which are the queuing formulas for the M/M/1 queuing mode. Notice that
these are extremely simple formulas and therefore are extremely useful aids to
estimating ballpark queuing delays in network. One easy point to remember for
simple estimations is that the queuing time for a system at 50% load is simply
equal to the service time, that is, E (Wρ = 0.5)= τ. For example, if a com-
munications facility is running at 50% utilization and the average transmission
delay is 8 msec (e.g., the transmission delay for a 1500-byte packet on a

378 Wide-Area Data Network Performance Engineering

1.5-Mbps facility), then an estimate for the queuing delay is 8 msec. If you
remember nothing else from this section on queuing delays, remember this.

What happens if the packet sizes are uniform? For deterministic service
time distributions, σ 2 0= . Therefore, from the previous M/G/1 results, we
have the following results for the M/D/1 queuing model:

() ()E Q =
−

ρ

ρ

2

2 1 (A.8)

() ()E W =
−

ρτ

ρ2 1 (A.9)

These also are extremely simple expressions. Note, however, that the waiting
times and queue lengths for the M/D/1 are a factor of 2 less than the corre-
sponding times and queue lengths for the M/M/1 systems for the same system
loads. This is a dramatic demonstration of the effect that the service time distri-
bution has on the system waiting times, which we discussed earlier.

Let’s revisit the toll booth example in Section 3.2.5. If every car carried
tokens (and did not require change), then the service times for each car is rather
deterministic, and, from personal experience, the lines at the tollbooths are
relatively short. However, if every car carries only cash and some require a fair
amount of change (a lot of people carrying $20 bills for a 35-cent toll), then the
lines become relatively long at the tollbooths for the same average traffic load.
This is easy to see by comparing the M/D/1 formulas with the previous formu-
las for M/M/1 systems.

For exponential service times, Poisson arrival process, and s servers, the
expected waiting time takes a more complex form, but can still be represented
analytically [1]. Figure A.2 shows the effect of adding multiple servers on the
queuing delay. This figure demonstrates the advantage of adding multiple toll-
booths to our commuter model. The more servers the better, from the cus-
tomer perspective (however, there is an expense associated with adding more
servers). Notice the dramatic decrease in delay as the system goes from a single
server to two servers and then to four servers. The decrease in queuing delays
by doubling the number of servers clearly cuts the delays by significantly more
than half (while maintaining the average load per server the same).

Finally, we wish to briefly discuss a formula related to the multiple server
situation. This is the erlang loss model. This model is useful in estimating the
blocking probability in systems where there are multiple servers, s, but no buff-
ering. That is, if all s servers are busy, the new arrival is discarded, or blocked.
If a server is available, then the arrival is assigned to a server. The erlang loss

Appendix A 379

model states that the probability of a dial user finding all s modems busy is
given by:

()S s a
a s

a k

s

k

k

s
,

/ !

/ !
=

=
∑

0
(A.10)

This formula is extremely useful in determining the number of dial-in ports on
a modem pool (as just mentioned), estimating whether the trunk bandwidth
is sufficient to minimize the probability of being in an overload situation, or
determining whether a sufficient number of client tokens is available for a given
software package resident on a network server.

Reference

[1] Cooper, R. B., Introduction to Queuing Theory, New York: Elsevier, 1981.

380 Wide-Area Data Network Performance Engineering

Key: 1
2
4

0.1 0.3 0.5 0.7 0.9
1.0 10× −6

1.0 10× −5

1.0 10× −4

1.0 10× −3

1.0 10× −2

1.0 10× −1

1.0 10× −0

1.0 10× +1

Load

De
la

y

Figure A.2 The effect of adding servers to the expected waiting times in a queue.

Appendix B

Appendix B
Throughput in Lossy Environments

B.1 Introduction

In this appendix, we consider the effects of transmission errors and packet
losses on end-to-end throughput modeling. Transmission systems and data
networks are not perfect systems. As a result not all data packets transmitted are
received by the corresponding protocol layer in the receiver. Our discussion
of throughput modeling in the main text of the book ignores the effects of
packet losses on performance. In most enterprise networks, this is a reasonable
assumption. For this reason, we chose to address the topic of packet loss and its
impact on performance in this appendix.

Several factors contribute to packet losses:

• Transmission errors. When a transmitter sends a bit of information
down a transmission path, it is not always interpreted correctly by the
receiving entity on the transmission path. For this reason, protocol
suites include error detection or error correction capabilities. Predomi-
nantly, error detection methods are employed in most modern WAN
networking protocols, due to the relatively low bit error probabilities
on transmission systems. These protocols, when detecting an error in a
packet, discard the entire data packet. This appears to the higher layer
protocols as a packet loss.

• Buffer overflows. Data communications equipment that employ sta-
tistical packet multiplexing maintain finite data buffers. Due to the

381

statistical nature of the packet loads, there are occasions when the
amount of data to be buffered exceeds the size of the data buffers and
packet losses occur. To detect packet losses, protocol suites employ
packet sequencing by numbering the packets in the order in which
they are sent. A lost packet will result in the receiver seeing a packet
number or several numbers skipped over.

• Transmitter time-outs. When a transmitting host sends a packet, it sets
a timer. When the transmitter receives the acknowledgment for the
packet, it terminates the timer. If the value of the timer exceeds a
threshold, that is, the transmitter time-out value, the transmitter
assumes that the packet was lost in transmission, and the transmitter
enters into an error recovery state. Time-outs may occur due to packet
losses or due to excessively long queuing delays in transit.

• Out-of-sequence receptions. Some network technologies ensure that the
order of the packets sent to the network is the same as the order of
the packets delivered by the network. Some networks do not maintain
packet sequencing, most notably IP router networks. Some transport
protocol implementations may discard out-of-sequence packets
instead of storing them and reordering the incoming packet stream.
In this case, out-of-sequence packets will affect the performance of
throughput systems in a fashion similar to other packet loss
mechanisms.

We now discuss each of these mechanisms in order in more detail.

B.2 Transmission Errors

The simplest model of transmission errors is one that assumes random, uncor-
related bit errors. This random bit error model simply assumes that for each bit
of information transmitted, the probability of that bit being received in error is
be, and that this is independent of the reception quality of any of the previous
bits transmitted. The utility of this model is the simplicity of expressions attain-
able for quantities of interest. The quantity of most interest to us is the prob-
ability of a packet, M bits in length, being received in error; that is, at least one
of the M bits is in error. Assuming independent bit errors, then the probability
of a packet of length M bits having no bits received in error, P{good|Lp = M }, is

P{good|Lp = M } = (1 − be)
M (B.1)

382 Wide-Area Data Network Performance Engineering

Therefore the probability of a packet of length M bits having at least one bit
received in error, P{bad|Lp = M }, is

P{bad|Lp = M } = 1 − (1 − be)
M (B.2)

which is simply 1 − P{good|Lp = M }. This represents an extremely simple rela-
tionship between the bit error rate, the packet length, and the probability of a
packet in error. However, the simplicity of this relationship is also its downfall.

In reality, bit errors are highly correlated. That is, if a bit is in error, then
the probability that the following bit is also in error is much higher than if the
preceding bit was not in error. This positive correlation between successive bit
errors causes the preceding expression for the probability of a packet error to
overestimate this quantity for a fixed bit error rate. However, there is value in
engineering in having expressions that are conservative in nature.

E. N. Gilbert [1] proposed a model to describe and parameterize the error
statistics measured on transmission systems. This model captures the fact that
successive bit errors are highly correlated. This model, known as the Gilbert
model for transmission errors, is depicted in Figure B.1. Models of this type
are also referred to as burst error models, and they more accurately estimate the
behavior of transmission systems. This model makes the assumption that the
transmission system exists in two states: a good state where the probability of
bit errors is zero and a bad state where the probability of bit errors is relatively
large. The model further allows for transitions to occur between the two states.

The transmission system errors, which are characterized by the Gilbert
model, are as follows. The transmission system consists of a discrete stream of
bit transmissions. For a given bit transmission, the probability of that bit being
received in error is determined by the state the transmission system is in and the
corresponding probability of bit errors in that state.

Between each bit transmission, a state transition may occur as determined
by the various state transition probabilities, shown as P, 1 – P, Q, and 1 – Q in

Appendix B 383

1 − P Good
state,

0pg =

Bad
state,

1p hb = −

Q

P

1 − Q

Figure B.1 Gilbert Model for transmission error statistics.

the figure. For example, if the system is in the good state, then the probability
of a bit error is 0, the probability that the system will remain in the good state
for the next bit is 1 – P, and the probability that it changes to the bad state for
the next bit is P.

The utility of this model is that one can derive expressions for the prob-
ability of a packet in error as a function of the bit error rate on the transmission
system. The form of this expression is not as simple as that for the random bit
error model. We illustrate the difference between the predictions of the inde-
pendent bit error rate model and the Gilbert model in a plot. Figure B.2 shows
the predictions of the random bit error model and the Gilbert model for the
packet error probability as a function of the bit error rate on the transmission
system.

An important point to notice in the plot is the fact that, for a given bit
error rate, the burst models predict a much smaller packet error probability
than the random bit error model. Also notice that as the bit error rate on the
transmission facility increases, we see a rapid collapse of the ability of the facil-
ity to successfully transmit M bit packets in the neighborhood of bit error rates
of one in 10–4. For this reason, transmission systems aim to achieve error per-
formance several orders of magnitude better than this.

384 Wide-Area Data Network Performance Engineering

0

0.2

0.4

0.6

0.8

1.0 Random

Burst

Bit error rate

3.
3e

-0
6

3.
3e

-0
4

3.
3e

-0
5

3.
3e

-0
3

1.
4e

-0
1

2.
9e

-0
2

2.
3e

-0
1

Pa
ck

et
co

de
er

ro
r

Figure B.2 A plot showing the effects of random bit errors versus burst errors on the prob-
ability of packet loss.

Typically, transmission systems’ error statistics are characterized by the
bit error rate (as already discussed) and the severely errored seconds (SES).
Typical fiber transmission systems show a bit error rate of roughly 3 × 10–7,
which is much below the bit error rates at which the transmission systems show
the performance collapse seen in Figure B.2. The SES is essentially the number
of transitions to the bad error state per day. These states occur a few times a
day, and last roughly 4 to 5 sec each. We mention this because it is common
for long-haul transmission carriers to quote the SES value of their transmission
facilities, in addition to the bit error statistics. The SES value gives an indica-
tion of the burstiness of the errors. For a given bit error rate, the fewer the SES,
the greater the errors occur in bunches, and the better the throughput perform-
ance is of the transmission system.

To summarize the discussion of transmission errors, engineers have pro-
posed several models to characterize the nature of these errors. The simplest is
the random bit error model. It assumes that the bit errors are totally random.
The value of this model is that it yields simple expressions for the quantities of
interest, primarily the packet error rate. This model also tends to be very con-
servative. An improvement is found in burst error models, primarily the Gilbert
model. These models are more accurate in that they assume that the bit errors
occur in bunches. This is typically the case in today’s long-haul transmission
facilities. However, these models yield rather complex expressions for directly
measurable quantities, such as the packet error rates. For most real-life model-
ing, the bit error rate model is probably sufficient to get an idea of whether
the error rates on a given transmission system are the source of performance
troubles.

B.3 Buffer Overflows

In networks that perform statistical multiplexing, for example, frame relay,
ATM, and IP, packets are queued in data buffers until the resource in conten-
tion is available. This resource may be a transmission line, a switch backplane,
internal transmission bus, or a CPU performing packet forwarding. In any case,
a data buffer is used to hold the packet until the resource is available, and this
data buffer is finite in size. Occasionally, the contention for this resource is too
high, and the data buffer overflows, causing packets to be discarded.

In our discussion on queuing systems in the main text, we assumed that
the data buffers were infinite in size, and therefore, the only interesting ques-
tion was, what is the packet delay in the infinite queue? Given a finite buffer,
queuing analysis also addresses the question of estimating the probability of
packet loss. However, unlike asking the question of the mean queuing delay

Appendix B 385

of a system, determining the probability of packet loss is equivalent to deter-
mining a high percentile of a complicated distribution. Also, the predictions on
packet loss from queuing analysis are extremely sensitive to the detailed nature
of the packet arrival process. For these reasons, we do not suggest a reliance on
these queuing models for the purposes of engineering systems. However, we do
wish to discuss some of the principles with a discussion of an example system.
So let us digress for a minute into a bit of mathematical analysis.

Consider the M/M/1 queuing system with a finite buffer of m packets.
Then, the probability of packet loss is akin to determining the probability of m
packets in queue, given a Poisson arrival process and an exponential service dis-
tribution.1 Defining pm as the probability of m packets in queue, we have for the
probability of packet loss in a finite queued M/M/1 system [2] the following
expression:

pm = ρm(1 − ρ) / (1 − ρm + 1) (B.3)

where ρ = λ / µ is the system load. Figure B.3 shows a plot of the loss probabil-
ity as a function of the buffer size derived from this equation. Evident from the
plot is the fact that relatively small increases in the buffer size can have a dra-
matic effect on the loss probability at typical engineered loads, for example,
ρ = 0.7. For example, the loss probability at this engineered load is roughly
10−1 for a buffer size of 5 packets. However, by doubling the buffer size to
10 packets, the probability of packet loss drops by more than an order of mag-
nitude to less than 10−2. Tripling the buffer size improves the loss performance
by more than several orders of magnitude. Also, notice the strong dependence
on the traffic load. In data networks, it is impossible to accurately estimate the
load on given components in the network. For these reasons, it is impractical to
utilize expressions like (B.3) for engineering purposes.

This estimate of packet loss is based on an M/M/1 model, which assumes
that the packet arrivals are uncorrelated. In most instances, however, the packet
arrivals to a buffer in a data network are highly correlated. For example, file
transfers between end systems generate highly correlated packet arrivals. There-
fore, this estimate is probably not accurate in most network engineering appli-
cations, even if you had accurate estimates of the traffic loads.

The probability of buffer overflows in data networks is one of the hardest
measurables to predict a priori. The buffer overflow probability is extremely

386 Wide-Area Data Network Performance Engineering

1. The real question to be asked is what is the probability that a random packet arriving at the
system will find the buffer full, that is, m packets in queue? However, for Poisson arrival
processes, this is equivalent to the fraction of time the buffer is full, that is, pm.

sensitive to the nature and load of the arrival processes, the size of the buffer in
questions, and the details of the protocols and their interactions.

To demonstrate other complexities, a model that does not take into
account feedback mechanisms between the network buffers and the end sys-
tems will fail in its prediction of today’s packet networks’ loss performance. For
example, TCP relies on packet loss to dynamically adjust its running window.
For these reasons, we spend very little time in this book quantifying this meas-
ure. In practice, the network engineer should rely heavily on actual packet loss
measurements when engineering for buffer sizes and trunk speeds.

B.4 Transmitter Time-Outs

When a transmitter sends a data packet, it sets a timer if reliable communi-
cations are required. When the acknowledgment for the particular packet is
received, the transmitter clears the timer value. In the event the timer exceeds a
threshold, known as the transmit time-out, the transmitter assumes the packet
was lost. It then enters an error recovery state, and retransmits the data packet.

Appendix B 387

Load
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1.0e-05

1.0e-04

1.0e-03

1.0e-02

1.0e-01

1.0
m 5=
m 10=
m 20=
m 30=

Lo
ss

pr
ob

ab
ili

ty

Figure B.3 The loss probability as a function of load for the M/M/1 model with finite buffer
(here the buffer size, that is, m, is measured in terms of the number of data
packets it will hold).

However, packet losses are not the only reason for a time-out. Instead, the
packet could have experienced extraordinary delays due to high buffer occupan-
cies, for example, network congestion. Default transport level time-out thresh-
olds are typically 1 to 3 sec. Therefore, if buffer delays reach these levels, timers
will expire sending more traffic into the buffers due to retransmissions. This
only exacerbates the buffer congestion problem. Some protocols, for example,
TCP, implement congestion avoidance algorithms when time-outs occur to
mitigate these concerns, as well as to dynamically adjust the transmit time-out
value [3].

B.5 Out-of-Sequence Receptions

Some network protocols, for example, IP networks, do not guarantee packet
sequencing. Others do, for example, the virtual circuit-based technologies like
frame relay, X.25, and ATM. It is possible that a user of an IP network
will receive packets out of sequence due to transitory routing patterns in the
network. Under stable routing periods, the network generally develops single
routing paths between any pair of end systems (assuming no load balancing is
implemented2).

Single path routing will not result in out-of-sequence receptions. How-
ever, certain events in the network will trigger changes in the network routing
patterns. These events may be caused by an equipment failure, transmission
system failure, or planned network topology changes. A network relaxation
time occurs following these events, during which the new routing patterns have
not yet stabilized. During the relaxation period, routing loops or other routing
patterns may develop that result in out-of-sequence packet deliveries. Given
that these events are infrequent and that the network relaxation times are short,
the probability of receiving packets out-of-sequence is small.

B.6 Impact of Packet Losses on Throughputs

We have discussed several causes of lost packets in data networks. We now wish
to discuss the impact these packet losses have on the throughput of windowing
systems. Windowing systems must have mechanisms built into them in order
to detect packet losses. For the most part, two mechanisms are employed:

388 Wide-Area Data Network Performance Engineering

2. Some routing protocols, for example, Cisco System’s EIGRP, are capable of supporting load
sharing. However, they typically implement methods that prevent out-of-sequence
receptions.

• Packet sequence numbers. Windowing systems include a sequence
number on each transmitted packet. The receiver tracks the incoming
sequence numbers, and if one or several numbers are skipped, the
receiver assumes that packets were lost. The receiver then requests that
the sender retransmit the packets associated with the missing sequence
numbers.

• Transmit timers. The transmitter sets a timer on transmission of each
packet. If the transmitter does not receive a packet acknowledgment
before the timer expires, it will assume that the packet is lost and will
retransmit the packet. This is known as the transmit time-out (as dis-
cussed earlier).

Independent of the mechanisms employed, packet losses will have
a negative impact on the realized throughputs. The detailed relationship
between packet losses and windowing throughput does depend on the
nature of the windowing system and the recovery strategies it employs;
for example, go-back-n versus selective repeats. The relationship between
packet losses and system throughput also depends on the model for packet
losses (similar to the problem of relating bit errors to packet losses). Due to
the complexity of these issues and their relationships, we discuss only the
simplest of cases. The qualitative impact on more complicated windowing
systems is similar in nature.

One of the simplest systems to analyze is a simplex windowing system
that implements a transmit time-out mechanism for packet loss detection in
the presence of random, independent packet losses. Figure B.4 shows the
throughput behavior of this system for certain specific packet loss sequences. In
this figure, the first packet transmitted is not lost, and the transmitter receives
an acknowledgment prior to the transmit time-out. For this, the round-trip
delay is computed based on the delay components as discussed earlier. In this
appendix, we indicate this as Rd(0), where the 0 indicates no packet losses in the
process of delivering the packet across the network. In the next packet trans-
mission, the packet is lost, the transmit time-out expires, and the transmitter
retransmits the packet. The retransmitted packet is then successfully received.
Here, the round-trip delay, which we denote as Rd (1) (where the 1 indicates a
single packet loss), is Rd (1) = Rd (0) + t out, where t out is the value of the transmit
time-out. In general, the round-trip delay, given k successive retransmissions, is
Rd (k) = Rd (0) + kt out. Assuming independent packet losses, the probability of k
successive retransmissions is p loss

k × (1 − p loss), where p loss is the probability of a
single packet loss. We can now write the average delay to successfully transmit
a given packet as

Appendix B 389

() () ()()R p p R k R ktd
k

d d
k

= − × = +
=

∞

∑ 1 0
0

loss loss out

(B.4)

or, performing indicated the summation,

() ()R R p t pd d= + × −0 1loss out loss/ (B.5)

Therefore, the expected throughput is

() () ()[]X X p t R pd/ / /0 1 1 0 1= + × × −loss out loss (B.6)

390 Wide-Area Data Network Performance Engineering

Transmitter ReceiverNetwork delays

Window

Packet xmit

Packet xmit

Retransmit

Ack rec

Ack rec

1st window
rotation

2nd window
rotation

56 Kbps 56 Kbps

Packet
discard

Ti
m

eo
ut

Figure B.4 A timing diagram showing the effects of lost packets on windowing behavior.

where X (0) = 8 × Nw × W / Rd(0) is the windowing throughput in a lossless
environment, and the ratio of X / X (0) is the expected drop in throughput due
to packet losses.

In Figure B.5 we plot the expression given in (B.6) for throughput as a
function of packet loss.

It is clear from this model that the system performance degrades rapidly
for p loss > 0.01. Therefore, if network measurements indicate packet losses near
this threshold, the cause of the high losses should be investigated and resolved.
Also, we have shown the effect for several different values of t out. The time-out
threshold must be set such that t out > Rd (0) to prevent timing out prematurely.
But, t out should not be too large to prevent wasting time in the event of an
actual packet loss. Therefore, t out is usually chosen to be roughly 3 × Rd (0).
There is no strict rationale for the factor of 3; it is simply larger than a single
round-trip delay, but not a lot larger. Often, the estimate of the appropriate
time-out period is based on delays typically found within a strict LAN environ-
ment. In LAN environments, typical round-trip delays are measured in tens
or hundreds of milliseconds. If this is the case and you try to bridge multiple

Appendix B 391

t(out) 1=
t(out) 2=
t(out) 3=
t(out) 5=

1.0e-04 1.0e-03 1.0e-02 1.0e-01

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Probability of packet loss

Re
la

tiv
e

th
ro

ug
hp

ut

Figure B.5. Throughput degradation in the presence of packet losses for a simplex win-
dowing model.

LAN segments over a WAN segment where round-trip delays are measured in
seconds, the consequences can be disastrous. In these instances, the time-outs
would need to be set to a much larger value than the default setting.

The expressions for other windowing systems are more complicated, but
the behavior is similar to the preceding results.

References

[1] Gilbert, E. N., “Capacity of a Burst Noise Channel,” Bell Syst. Tech. J., Vol .39, 1990,
pp. 1253–1265.

[2] Cooper, R. B., Introduction to Queuing Theory, New York: Elsevier, 1981.

[3] Stevens, W. R., TCP/IP Illustrated, Volume 1: The Protocols, Reading, MA: Addison-
Wesley, 1994.

392 Wide-Area Data Network Performance Engineering

Appendix C

Appendix C
Definitions

Several chapters in the latter part of the book develop and discuss simple
formulas for estimating application performance. For the convenience of the
readers, we list here the various terms and definitions used throughout those
chapters.

Parameter Definition

A Size of the acknowledgment packet (bytes)

Ba Available bandwidth of a link (bps)

C Value of the CIR for the VC (bps)

CV Coefficient of packet variation

Dp One-way latency for private line reference connection, for example, 0.030 sec
(seconds)

Df One-way latency for frame relay reference connection, for example, 0.040 sec
(seconds)

F File size of data to be transferred (bytes)

K Effective size of the token buffer in the leaky bucket ACF

L Private line link speed (bps) (Note: Also used in Chapter 4 to represent the packet
arrival rate.)

NL Number of private line links in the path

NW Number of packets in the transport window

393

Parameter Definition

O Protocol overhead (bits)

Of Protocol overhead factor = 1 + O/S

Pa Port speed for the frame relay network on the client side of the connection (bps)

Pb Port speed for the frame relay network on the server side of the connection (bps)

Q Queuing delay (seconds)

Rd Round-trip delay for a packet transmission and the return of an ack (seconds)

S Segment (packet) size on the link (bytes)

T Time to transfer the entire file (seconds)

TA Time to transmit ack on slowest link in path (seconds)

TS Time to transmit packet (segment) on slowest link in path (seconds)

TS(average) Average time to transmit a packet (seconds)

TW Time to transmit entire window on slowest link in path (seconds)

U Utilization on the slowest link in the path

Ua Utilization on the frame relay port on the client side of the network

Ub Utilization on the frame relay port on the server side of the network

U CIR Utilization on the frame relay VC in the network

V Variability in the packet transmit times

W Window size in terms of the number of bytes

W ∗ Optimal window size for the path (bytes)

X Throughput for the reference connection (bps)

X max Maximum throughput for the reference connection (bps)

394 Wide-Area Data Network Performance Engineering

List of Acronyms

AAL ATM adaptation layer

ACF access control filter

API application programming interface

ARP address resolution protocol

ARPA Advanced Research Project Agency

AS autonomous system

ATM achronous transfer mode

BAN boundary access node

BECN backward explicit congestion notification

B-ISDN Broadband Integrated Digital Services Network

BNN boundary network node

CBR constant bit rate

CLLM consolidated link layer management

395

CIR committed information rate

CPE customer-premises equipment

CRC cyclic redundancy check

DDCMP digital data communications message protocol

DDS Digital Data Service

DE discard eligible

DLCI data link connection identifier

DLSw data link switching

DSP Data Stream Protocol

DTE data terminal equipment

EOB end of burst

ERP enterprise resource planning

FECN forward explicit congestion notification

FEP front-end processor

FIO file input/output

FR frame relay

FRAD frame relay access device

FTP file transfer protocol

GUI graphical user interface

HTM hybrid transfer mode

HTML HyperText Markup Language

396 Wide-Area Data Network Performance Engineering

HTTP HyperText Transfer Protocol

ICA independent computing architecture

ICMP Internet control message protocol

IDP internetwork datagram protocol

IETF Internet Engineering Task Force

ILMI interim link management interface

IP Internet Protocol

IPG interpacket gap

IPX internetwork packet exchange; Inter-Packet eXchange

ISDN Integrated Digital Services Network

ITU International Telecommunications Union

ITU-TS International Telecommunications Union–Telecommunications Sector

IWF interworking function

Kbps kilobits per second

LAN local-area network

LANE LAN emulation

LIS logical IP subnet

LLC logical link control

LLC/SNAP logical link control/subnetwork access point

LMI link management interface

Mbps megabits per second

List of Acronyms 397

MIB management information base

MIR minimum information rate

MTU maximum transfer unit

NBMA nonbroadcast multiple access

NCA Network Computing Architecture

NCP Network Control Program; network core protocol

NHRP next hop resolution protocol

NIC network interface card

NLM network loadable module

NLPID network layer protocol ID

NLSP NetWare link services protocol

NNI network-to-network interface

NOC network operations center

NSAP network services access point

OAM operations, administration, and maintenance

OAM&P operations, administration, maintenance, and provisioning

PAD packet assembler/disassembler

PCM pulse code modulation

PDU protocol data unit

PLCP physical layer convergence protocol

P-NNI private network-to-network interface

398 Wide-Area Data Network Performance Engineering

PPP point-to-point protocol

PTT post, telegraph, and telephone authorities

PVC permanent virtual circuit

QoS quality of service

RDBMS relational database management system

RED random early detection

RIF routing information field

RIP routing information protocol

RMON remote network monitoring

RSVP resource reservation protocol

RTP real-time transport protocol

SAP service advertisement protocol

SAR segementation and reassembly

SCR sustainable cell rate

SDLC synchronous data link control

SES severely errored seconds

SIT SAP information tables

SMTP Simple Mail Transfer Protocol

SNA System Network Architecture

SNAP subnetwork access point

SPXP sequenced packet exchange protocol

List of Acronyms 399

SQL Structure Query Language

SSP switch-to-switch protocol

STM synchronous transfer mode

SVC switched virtual circuit

TA terminal adapter

TCP Transmission Control Protocol

TDM time-division multiplexing

TFTP trivial file transfer protocol

TOS type of service

UNI user-to-network interface

VBR variable bit rate

VC virtual circuit

VCI virtual circuit identifier

VLM virtual loadable modules

VPN virtual private networks

WAN wide-area network

XNS Xerox Networking System

400 Wide-Area Data Network Performance Engineering

About the Authors

Robert G. Cole holds a Ph.D. in Theoretical Chemistry from Iowa State
University, and has held several post-doctoral positions at Yale, Boston, and
Brown Universities prior to joining AT&T Bell Laboratories in 1985. He
is currently a Technical Consultant in the Performance Analysis department,
AT&T Laboratories. He was previously a Technical Manager of the IP Con-
sulting Group within AT&T Solutions. His area of expertise is in performance
and protocol analysis in router, frame relay, and ATM networks. He was an
integral part of the AT&T development teams responsible for the rollout of the
InterSpan frame relay service, the InterSpan ATM service and the WorldNet
managed Internet service. He provided performance analysis and develop-
ment support for the Lucent DataKit and BNS-1000 fast-packet switches, the
BNS-2000 SMDS switch and the GlobeView 2000 ATM switch. He has pub-
lished numerous articles in professional journals and holds several patents in
the area of data communications and high-speed networking.

Ravi Ramaswamy holds a Ph.D. in Applied Probability from the University
of Rochester. He is a Principal Consultant with AT&T Solutions. He
joined AT&T Bell Laboratories in 1990, and prior to that he worked at
BGS Systems Inc. His principal areas of expertise are wide-area network
architecture, design, and performance engineering. He was responsible for
supporting AT&T Frame Relay Service customers. Through the experience
in supporting AT&T Frame Relay customers, he developed and delivered
a 3-day course entitled “Multi-Protocol WAN Design and Performance
Analysis” designed for AT&T’s technical marketing organization. This course

401

is now offered on a fee-basis for the industry at large. He delivered this course
many times in the U.S., U.K., and Asia Pacific. A performance modeling tool,
PerfTool, was developed based on the course material. Indeed, this book has its
origins in this course and in Bob Cole’s work on performance analysis. He has
written many white papers on the topics discussed in this book. He has worked
with many clients in designing and optimizing the performance of their
networks.

402 Wide-Area Data Network Performance Engineering

Index

Access control filter (ACF), 23
delaying, 25, 26
input/output process from, 25
output characteristics, 24
schematic, 24
strategy implementation, 23–24
tag-and-send, 25, 26

Adaptive controls, 124–25
explicit notification, 124
mechanisms, 124
See also Traffic discrimination methods

Address resolution protocol (ARP)
defined, 42
requests, 43

AppleTalk, 11, 81
Application analysis tools, 131
Application deployment, 132–35

capacity management, 134–35
characterization and, 132–33
network redesign, 133–34
traffic matrix, 133

Application programming interface
(API), 118

Applications
bandwidth sensitive, 101, 106–8
client/server, 279–308
ERP, 279
latency sensitive, 101, 106–8
sales-aid, 285, 343–46

time sensitivity, 104–5
two-tier, 282, 284–89

Application server, 282
Asynchronous transfer mode (ATM), 2, 3

adaptation layers (AALs), 34
advantages/disadvantages, 37
CBR support, 33
cell stream, 34
at hub sites, 321–22
impetus, 12
initial deployment of, 35
internet example, 36
IP on, 43–47
layers, 33–34
network deployment, 35
SVC capabilities, 35
switches, 32
technology, 32
trunking, 32
VBR support, 33
virtual connections, 35

ATM Forum, 36, 44

Background load, 306
“Back-of-the-envelope” calculations, 280
Backward explicit congestion notifications

(BECNs), 21, 354, 355
communication, 28
DE bit marking support and, 170–71

403

Bandwidth
allocation, 151
allocation (large SNA networks), 319–20
delay product, 212
impact of SNMP polling, 369–74
increasing results in worse

performance, 359–60
NetWare and, 256–60
RIP, requirement, 258
SAP, requirement, 260
sizing, 150–64
sizing case study, 339–42

Bandwidth estimation, 292–300
bulk data transfers, 294–95
hybrid transactions, 295–96
ping-pong transactions, 292–93

Bandwidth management, 171–74
external device techniques, 172–73, 328
flexible approach, 173
general techniques, 250
SNA, 328
traffic shaping vs., 173

Bandwidth sensitive
applications, 101, 106–8

defined, 108
example trace, 109
round-trip delay and, 108
traffic volume, 109

Baud rate, 62–63
bit rate relationship, 63
defined, 62

Blinking cursors, 304
BNETX shell, 262, 264
Boundary access node (BAN), 316, 317
Boundary network node (BNN), 316, 317
Broadband Integrated Services Digital

Network (B-ISDN) reference
model, 33

Broadcast networks, 39, 42–43
Buffer overflows, 385–87

defined, 381–82
M/M/1 model example, 386, 387
probability, 386–87
See also Packet losses

Bulk data transfer transactions, 287–88
bandwidth estimation, 294–95
example, 287

response times for, 299–300
Burst error models, 383

Capacity management, 134–35
strategy, 134
tools, 131

Case studies, 331–74
client/server

application, 333–34, 342–53
increasing bandwidth results in worse

performance, 359–60
introduction, 333–34
leased line/frame relay performance

comparison, 357–59
multidrop to DLSw migration, 361–65
NetWare, 334, 353–60
Novell SAPs performance

impact, 353–56
sizing bandwidth, 339–42
SNA performance in presence of TCP/IP

traffic, 365–69
SNA-related, 334, 360–69
SNMP polling, 334, 369–74
TCP bulk data transfer, 337–39
TCP/IP, 334–42
troubleshooting performance

problems, 349–53
troubleshooting response times (customer

client/server), 347–49
troubleshooting response times (sales-aid

application), 343–46
types of, 333–34
validating latency and

throughput, 334–37
CheckPoint, 250
Citrix Winframe/Metaframe

model, 283, 350
Class of service (COS) priorities, 326
Client build delay, 288
Client/server

application reference
connection, 281, 298

application server, 282
application WAN traffic

characterization, 283–90
bandwidth estimation

guidelines, 292–300

404 Wide-Area Data Network Performance Engineering

data collection, 291–92
overview, 281–83
thin client technology and, 280, 300–308
three-tier architecture, 282
three-tier transaction example, 288–90
tiered architecture, 281
two-tier architecture, 282
two-tier traffic patterns, 284–88
WAN performance issues, 279–308

Client/server application case
studies, 342–53

troubleshooting performance
problems, 349–53

troubleshooting response times (custom
client/server), 347–49

troubleshooting response times (sales-aid
application), 343–46

Committed information rate
(CIR), 21, 23, 114

bursting above, 217
excess traffic, 156
packets exceeding, 26
sizing of, 156, 364

Component allocation, 134
Congestion shift

illustrated, 165
response to, 166–74
from routers into network, 165–66

Constant bit rate (CBR) connection, 33
Conversion, 17
Credit management schemes, 23–25
Cyclic redundancy check (CRC), 17, 20

Data collection, 127–32
for client/server applications, 290–91
LAN/WAN analyzers, 127–28
network management systems, 128–30
tools for performance engineering data

networks, 130–32
Data link channel identifiers (DLCIs), 20

frame relay, 175
global vs. local, 174–76
number field length, 176
to remote IP address mapping, 175, 176

Data link switching (DLSw), 312–14, 318
defined, 312
illustrated, 313

packets, 355
popularity, 314
SSP, 313–14
See also System Network Architecture

(SNA)
Data terminal equipment (DTE)

devices, 21
frames, 21
interfaces, 15

Dedicated Digital Data Service (DDS), 64
Definitions, 393–94
Delay(s)

bandwidth product, 97
burst, 358
client build, 288
components, 58
defined, 57, 79
dual insertion, 140–43
end-to-end, 150
input, 70
insertion, 145, 163
latency vs., 57
ping, 181, 184–89, 192–96
processing, 58, 64–66, 69
propagation, 57, 59–61, 69, 187
queuing, 58, 66–69, 378
round-trip, 84, 89, 160, 202
store-and-forward, 145, 149, 324
synopsis, 69
total, 77, 84
trade-offs in SNA migration, 324–26
transmission, 57, 61–64, 69
variation, 143–46

Delay versus bandwidth plot, 147
Delay worksheets

for isolated transaction delay, 162
reference connection, 158–59

Discard eligible (DE) bit, 21
defined, 126
marking support, 170–71

Distance vector routing, 40, 41
Dual insertion delay, 140–43

Echoplex delay
calculating, 201
frame relay, 243
private line, 243

Index 405

Echoplex delay (continued)
for satellite connection, 243–44

Egress pipelining, 142, 143
defined, 142
network delay variation impact on, 145
timing diagram showing, 144

Encapsulation, 17
direct, over frame relay, 315–16
frame relay, on ATM, 51
identifier, 48
IP standard, 43
MAC format, 42
multiprotocol, 47–49
packet, inside protocol for transport, 48
scenario illustration, 47
standard examples, 49

End-to-end delay, 150
End-to-end throughput, 84, 98
Enterprise networking, 1–4, 60
Enterprise resource management (ERP)

applications, 279
Erlang loss model, 379

FEP-to-FEP links, 326
Forward error correction systems, 63
Forward explicit congestion notifications

(FECNs), 21, 354, 355
communication, 28
DE bit marking support and, 170–71

Frame relay, 2, 3
application impact of migration

to, 147–48
bandwidth entities, 215
basis, 20
BECNs, 21, 27–29
best/worst case conditions, 216
bulk data transfer analysis, 215–22
bursting, 215–16
closed-loop feedback scheme, 25–27
congestion control, 20–21
connection illustration, 20
credit management schemes, 23–25
delay variation, 143–46
DLCIs, 175
dual insertion delay, 140–43
echoplex delay estimation, 243
encapsulation on ATM, 51

enterprise networks and, 29–37
explicit congestion notifications, 29
FECNs, 21, 27–29
with full bursting, 218
global, connections, 148–50
infinitely fast, network, 141
insertion delay, 216
large ping delay calculation, 194–95
link management interface, 22–23
link management protocol, 21
NetWare formulas, 271–76
network architecture, 19–29
with no bursting, 220
open-loop feedback scheme, 25–27
packet format, 20
performance issues, 137–78
ping delay calculation, 186–87
priority PVCs and, 169–70
private line vs., 138–48
public, service, 25
reference connection, 22, 140, 223
reference connection for formula

development, 266
replacement for SNA multidrop with

routers, 363
satellite access to, 221–22
service pricing, 177
sparse VC topology design, 156
switch schematic, 28
TCP file throughput for, 216–17
TCP throughput for loaded

links, 227–30
TCP throughput formulas, 222–25
for terminal server solution, 306–7
traffic convergence, 170
See also WAN technologies

Front-end processor (FEP), 326
FTP, 200

mixing Novell traffic with, 276–77
mixing telnet with, 244
performance, 199
telnet priority over, 247
See also Transmission Control/Internet

Protocol (TCP/IP)
Gilbert model, 383, 384
Global frame relay connections, 148–50

illustrated, 148

406 Wide-Area Data Network Performance Engineering

ping use and, 190–91
See also Frame relay

Hybrid transactions, 288
bandwidth estimation, 295–96
examples, 289
phases, 288
response times for, 300

HyperText Markup Language (HTML)
documents, 230, 232, 234

HyperText Transfer Protocol (HTTP), 199
approaches, 231
download, sniffer trace, 233
HTTP/1.0 performance (with multiple

TCP sessions) estimation, 238–39
HTTP/1.0 performance

estimation, 236–38
HTTP/1.1 caution, 231–32
HTTP/1.1 performance

estimation, 239–41
interactive nature, 200
over WAN connection, 203
performance, estimating, 234–42
performance estimate comments, 241–42
request size, 235
transaction, sample trace, 232–34
versions, 230
WAN performance issues for, 230–42

Input delay, 70
Insertion delay, 145, 163

dual, 140–43
extra, 216

Integrated Services Digital Network
(ISDN), 64

Interactive traffic performance, 161–64
Internal pipelining, 142
Internet Control Message Protocol

(ICMP), 182, 183
echo message format, 184
header, 193
messages, 183, 194

Internets
addresses, 39
defined, 38, 39
QoS transport within, 42
topological design, 45

Internetwork datagram protocol (IDP), 254
Internetworking protocol (IP), 1, 37–47

architecture, 38–42
development, 37
header processing, 39
links, 39
model overview, 38
multicasting, 42
on ATM, 43–47
on broadcast networks, 42–43
packet format, 39
packet forwarding, 40
QoS capabilities, 41–42
routers, 39
routing, 40–41
transport entity, 38
See also IP on ATM; WAN technologies

Internetwork packet exchange (IPX), 254
defined, 256
header, 256, 257, 259
packets, 259
See also NetWare

Interpacket gap (IPG), 262
Interworking function (IWF), 50
Intranets

defined, 39
reference connection, 234

IP on ATM, 43–47
PVC-based (WANs), 43
SVC-based (LANs), 44
SVC-based (WANs), 45–47
See also Asynchronous transfer

mode (ATM)

Keyboard data entry, 305

LAN emulation (LANE)
802 MAC layer interface, 45
defined, 44

LAN/WAN analyzers, 127–28
defined, 127
use of, 128
See also Data collection

Latency
defined, 57
delay vs., 57

Index 407

Latency (continued)
impact on remote presentation

approach, 305–6
impact on TCP throughput, 213–15
validation case study, 334–37
verifying, with pings, 189–91

Latency sensitive applications, 101, 106–8
defined, 107
example trace, 108
performance, 107

Latency-sensitive traffic
separate PVC, 167–68
separating, 166

Leaky bucket algorithm, 23, 90, 91
components, 92
data packet entry and, 157

Leased line connections, ping
calculation, 184–85

Leased line/frame relay performance case
study, 357–59

issue, 357
resolution, 358–59
See also Case studies

Link management interface (LMI), 22–23
capabilities defined through, 22
defined, 22
See also Frame relay

Link management protocol, 21
Link state routing, 40, 41
Little’s law, 378
Loaded links

TCP throughput (frame relay), 227–30
TCP throughput (private line), 226–27

Load engineering, 102–6
goal, 102
port, 155–57
successful, 106
VC, 155–57

Local-area networks (LANs), 1
FDDI, 35
interfaces, 48
IP on SVC-based ATM, 44–45
protocols, 48
servers, 259

Lossless throughput systems, 93–94

MAC
address discovery, 42
format encapsulation, 42
LANE interface, 45

Maximum information rate (MIR), 26
M/D/1 model, 379
M/G/1 model, 103
M/M/1 model, 104, 378, 386, 387
Modems, 64
Mouse movements, 304–5
Multicasting, 42
Multidrop, 322, 325

defined, 361
frame relay replacement for, 363
illustrated, 361
migration to DLSw, 361–65
See also System Network

Architecture (SNA)
Multidrop to DLSw migration case

study, 361–65
defined, 361–62
design process, 362–65
response time calculation, 365
See also Case studies

Multiplexed interfaces
defined, 17
as part of information collected, 128

Multiprotocol integration layer, 2

NetWare, 11
bandwidth necessary to support, 253
case studies, 353–60
client/server architecture, 255
deployment, 277
frame relay formulas, 271–76
implementations, 257
interpacket gap (IPG), 82, 262
link services protocol (NLSP), 260
overhead/bandwidth

considerations, 256–60
overview, 254–56
pre-release 3.11, 261
protocols, 254
protocol stack, 254, 255
release 3.11, 262–64
releases 3.12 & 4.0, 264–65
releases, 254, 262–65

408 Wide-Area Data Network Performance Engineering

service transactions, 263–64
TCP/IP protocol stack support, 255
WAN performance

considerations, 253–77
windowing system, 81
See also Novell

Network
interworking, 50, 51
redesign, 133–34
servers, 128

Network computing (NC)
approach, 307–8
examples, 280
WAN performance issues, 307–8
See also Thin client

Network Computing Architecture
(NCA), 280, 283, 307

Network congestion, 124
explicit feedback, 125
implicit feedback, 125
packet loss and, 125

Network core protocol
(NCP), 254, 256, 261

functions, 256
packet format (pre-release 3.11), 261
packet format (release 3.11), 263
packet overhead, 263
transport capabilities, 256–57
See also NetWare

Network delay, 56–69
components, 58
defined, 84
latency vs., 57
processing, 58, 64–66, 69
propagation, 57, 59–61, 69
queuing, 58, 66–69
synopsis, 69
transmission, 57, 61–64, 69
See also Delay(s)

Network loadable modules (NLMs), 254
Network services access point (NSAP)

addressing, 35
Network-to-network interfaces (NNIs), 148

congestion/bandwidth management
mismatch, 149–50

delays, 178
issues, 149–50

link management, 149
link status and failure recovery and, 149
store-and-forward delays and, 149

Next hop resolution protocol (NHRP), 46
Node Manager, 370
Nonbroadcast multiple access (NBMA)

network design, 43
subnetworks, 39

Novell
burst-mode technology, 262
file transfer issues, 357
mixing TCP/IP and, 276–77
NCOPY, 357, 359
protocol suite, 253
windowing schemes, 260–65
See also NetWare

Novell networking case studies, 353–60
increasing bandwidth results in worse

performance, 359–60
leased line/frame relay performance

comparison, 357–59
SAPs performance impact, 353–56
See also Case studies

Novell SAPs performance impact case
study, 353–56

defined, 353
rationale, 355–56
resolution, 354–55
See also Case studies

Operations, administration, maintenance,
and provisioning (OAM&P), 150

Optimal window size
best case analysis, 219
latency impact and, 213
satellite access to frame relay, 222
satellite links, 215
segment size impact and, 212
TCP throughput formula, 224
worst case analysis, 221
See also Window size

Organization, this book, 5–7
Out-of-sequence receptions, 388

causes, 388
defined, 382
See also Packet losses

Index 409

Packet(s)
arrival rate, 67
burst, 262
length measurement, 62
pipelining, 77
sequence numbers, 389

Packet assemblers/dissemblers
(PADs), 12, 29

Packeteer, 250
Packet losses, 381–82

buffer overflows and, 381–82, 385–87
impact of, on throughputs, 388–92
out-of-sequence receptions and, 382, 388
throughput degradation in

presence of, 391
timing diagram, 390
transmission errors and, 381, 382–85
transmitter time-outs and, 382, 387–88

PacketShaper, 174
Performance analysis, 55–99

pings for, 181–96
of TCP/IP applications, 199–251

Performance engineering
approach to, 4–5
techniques, 135

Performance engineering tools, 130–32
application analysis, 131
capacity management, 131
predictive modeling, 131–32
sniffers, 130–31

Permanent virtual circuits (PVCs), 15, 16
allocating, for telnet, 249
backup, 320
burst levels in, 196
carrying latency-sensitive traffic, 166
priority, 169–70
sizing, 151–64
SNA, 327
splitting, 168

Ping delays
average, 191
calculating, 181, 184–89
comparison, 188
to estimate global connection delays, 192
frame relay connection, 186–87
for large pings, 192–96
leased line connection, 184–85

as low-priority packets, 192
maximum, 191, 195
minimum, 185, 187, 191
observations, 187–89
propagation delay and, 187
to represent application delays, 192
See also Delay(s)

Ping-pong transactions, 284–87
bandwidth estimation, 292–93
example, 285

Ping program
defined, 182
echo_request packets, 182
output, 182
in TCP/IP host implementations, 183
variables, 183

Pings, 181–96
drawing conclusion from, 181
large, delay calculation for, 192–96
size, 192
for throughput calculation, 195–96
timing diagram, 193
use of, 191–92
for verifying network latency, 189–91

Pipelining, 74–79, 142
defined, 56
delay reduction and, 77
egress, 142, 143
internal, 142
packet, 77
process, 66
timing diagram showing

advantages of, 76
tradeoff, 79
transit delay improvement, 78

Point of presence (POP), 187–88
Poisson process, 377
Ports

load engineering, 155–57
sizing, 151–64

Predictive modeling tools, 131–32
Priority queuing, 115–21

circuit ID, 120
defined, 116
high-level protocol identifier, 119
implementations, 116–18
incoming port/interface, 119–20

410 Wide-Area Data Network Performance Engineering

nonpreemptive, 117
packet length, 120–21
preemptive, 117
priority level ID, 118
protocol encapsulation type, 119
protocol ID, 118–19
schemes, 118, 121
source/destination address pair, 120
starvation, 121
three-level system, 117
See also Traffic discrimination methods

Private line
echoplex delay estimation, 243
frame relay vs., 138–48
reference connection, 138, 223
reference connection for formula

development, 266
TCP bulk data transfer analysis, 208–15
TCP throughput for loaded

links, 226–27
TCP throughput formulas, 222–25

Private network-to-network interface
(P-NNI)

architecture, 36
routing capability, 36

Processing delays, 64–66, 69
defined, 58, 64
improvement options, 95–96
summary, 66
See also Delay(s)

Processor sharing, 121–24
advantages, 123–24
defined, 121
maximal delay in, 123
packet-level system, 122
schemes, 123
server, 122
See also Traffic discrimination methods

Propagation delays, 59–61, 69
defined, 57, 59
field measurements, 59
handling, 61
in ping delay, 187
significance, 59
See also Delay(s)

Protocol overhead factor, 207–8, 212

Quality of Service (QoS)
IP, 41–42
parameters, 21
SNA issues, 322–28

Queuing
introduction to, 66–69
mathematical discussion of, 375–80
M/D/1 model, 379
M/G/1 model, 103
M/M/1 model, 104, 378, 386, 387
models, 103, 376, 378–79, 386–87
priority, 115–21
system characterization, 375
system components, 67
TCP rate control vs., 173–74
theory, 377
time, 102, 103
weighted fair, 122, 248

Queuing delays, 66–69, 102, 378
average, 69
defined, 58, 66
estimating, 68
expression from M/G/1 model, 103
as function of input process, 67
as function of utilization, 102
at low loads, 68
summary, 68
utilization and, 103
See also Delay(s)

Random bit error model, 382
Random early discard (RED), 126–27
Rate-based throughput systems, 90–93

defined, 90
overload and, 91
schematic, 90
summary, 94
variations, 91
See also Throughput

Rate throttling, 171
Real-time transport protocol (RTP), 42
Reference connection

background load and, 306
client/server application, 281, 298
delay worksheet for, 158–59
frame relay, 22, 140, 223, 266

Index 411

Reference connection (continued)
for intranet between client/Web

server, 234
network latency impact and, 305–6
number of slowest links in, 97
over frame relay WAN, 83
private line, 138, 223, 266
for protocol trace of sales-aid

application, 285
timing diagram, 70, 71

Remote presentation
application characteristics and, 305
approach, 300–307
architecture for two-tier applications, 301
blinking cursors and, 304
compression and, 304
examples, 280
keyboard data entry and, 305
LAN-like performance and, 301–3
mouse movements and, 304–5
number of colors used and, 304
screen resolution and, 304
WAN bandwidth issues, 303–5
WAN performance issues, 305–7

Reservation service protocol (RSVP), 41
Response times

approximate total, 298
bulk data transfer transactions, 299–300
computing, 298–99
hybrid transactions, 300
multidrop to DLSw migration

calculation, 365
SNA, 324–25, 366, 368
troubleshooting, 343–49

RFC 1490, 315–16, 317
RMON probes, 129–30

defined, 129
RMON2, 129–30

Round-trip delay, 84, 89, 160
bandwidth-sensitive

applications and, 108
computing, 160–61
estimate of, 202
See also Delay(s)

Route aggregation, 40
Routers, 128, 177

prioritization for SNA, 327

prioritize telnet over bulk data
transfers at, 247–49

SAP broadcasts and, 259
SNA, 320
traffic shaping at, 249–50

Routing
distance vector, 40, 41
interdomain, 40
intradomain, 40
IP, 40–41
link state, 40, 41
path vector, 41
protocol classification, 40, 41
TOS, 113–15

Routing information protocol (RIP), 254
bandwidth requirement, 258
defined, 257
message format, 257
packets, 258
See also NetWare

Sales-aid application, 285, 343–46
SAP R3

application example, 296–98
implementations, 283, 284
transactions, 290
See also Service advertisement

protocol (SAP)
Satellite links, 214–15

access to frame relay, 221–22
echoplex delay, 243–44
minimum window size for, 214–15
optimal window size for, 215

Screen resolution, 304
Selective discards, 126–27
Sequenced packet exchange (SPX)

protocol, 254
defined, 265
SPX II, 265
See also NetWare

Serial line speed, 146
Serial trunk interface, 128
Service advertisement protocol (SAP), 254

bandwidth requirement, 260
defined, 259
information tables (SITs), 259
message formats, 259

412 Wide-Area Data Network Performance Engineering

See also NetWare; SAP R3
Service interworking, 50, 51–52
Service transactions, 263–64
Simplex windowing systems, 82–88

behavior, 84
defined, 80
end-to-end throughput, 86–87
with multiple packets per window, 86
multiple rotations, 84, 85
summary, 93
timing diagram, 83
See also Windowing systems

Sizing bandwidth case study, 339–42
analysis, 340–42
methodology, 340
See also Case studies

Sliding window algorithm, 203
Sliding windowing systems, 88–89

defined, 80
summary, 93–94
timing diagram, 88
window size and, 89
See also Windowing systems

SNA performance in TCP/IP traffic case
study, 365–69

conclusions, 368–69
defined, 365–66
questions, 366
resolution, 366–69
See also Case studies

SNA-related case studies, 360–69
multidrop to DLSw migration, 361–65
SNA performance in presence of TCP/IP

traffic, 365–69
See also Case studies

Sniffers, 130–31
Sniffer trace, 233

of client/server application, 348
of load application, 347
of login transaction, 344
of user application, 345

SNMP polling
assumptions, 369–70
bandwidth impact analysis, 373–74
polled objects/frequencies, 370
traffic generated by, 370–72
WAN bandwidth impact of, 369–74

See also Case studies
Store-and-forward delays, 145

defined, 149
in SNA migration, 324

Sustainable cell rate, 114
Switched virtual circuits (SVCs), 15, 16

ATM capabilities, 35
signaling capabilities, 115

Switch processors, 128
System Network Architecture

(SNA), 1, 2, 11, 200
application mixing concern, 311–12
applications, 311
ATM at central site and, 321–22
bandwidth allocation and, 319–20
bandwidth management, 328
data center architecture issues, 319–22
design and performance issues, 311–29
disaster recovery, 320, 322
FEP-to-FEP issues, 326
gateways, 314–15, 318, 326
migrating, 312, 318
migration, delay trade-offs, 324–26
multidrop, 322, 325, 361
parallel routers and, 319
performance in presence of TCP/IP

traffic, 365–69
polling overhead, 324–25
protocol overhead, 324
PVCs, 327
QoS issues, 322–28
redundancy issues, 320, 321
response times, 324–25, 366, 368
router, 320, 327
router-based traffic shaping, 328
traffic discrimination, 327–28
translation, 316, 318
transport methods, 312–19
Web access, 316–19
windowing system, 81

Tag switching, 46–47
defined, 46
proposal, 47

TCP bulk data transfers, 196, 200
calculation assumptions, 207
case study, 337–39

Index 413

TCP bulk data transfers (continued)
file transfer time calculations, 205–8
frame relay analysis, 215–22
impact on window size, 209–12
performance, 200
performance, variables affecting, 205
prioritizing telnet over, 247–49
private line analysis, 208–15
throughput calculation formulas, 222–25
time/throughput calculation, 204–25
timing diagram, 209
trace of, 204

TCP/IP case studies, 334–42
sizing bandwidth, 339–42
TCP bulk data transfer, 337–39
validating network latency and

throughput, 334–37
See also Case studies

Telnet, 200
allocating separate PVC for, 249
echoplex characteristic, 242
echoplex delays, calculating, 201
mixing with FTP over frame relay, 244
packets, 249
performance, 199, 242–47
prioritize over bulk data

transfers, 247–49
prioritize over FTP, 247
remote PC as client, 243
response times, 246
separate, on its own PVC, 249
use of TCP/IP services, 242

Terminal adaptation (TA) devices, 17, 29
conversion, 17, 18, 29, 37
encapsulation, 17, 29, 37

Thin client, 300–308
approaches, 280, 300–308
network computing approach, 307–8
remote presentation approach, 300–307
See also Client/server

Three-tier transactions, 288–90
bulk data characteristics, 290
characteristics, 288–89
See also Client/server

Thresholds
defining, 104, 106
fixed, 105

Throughput, 56, 79–99
calculation with large pings, 195–96
classes, 114
complex systems, 79
defined, 79
degradation in presence of packet

losses, 391
end-to-end, 84, 98
estimate, 98, 158
file application, 157–61
limit, 98
lossless, systems, 93–94
in lossy environments, 381–92
maximum, 160
packet loss impact on, 388–92
rate-based, system, 90–93
simple systems, 79
summary, 98–99
TCP, 213–15
TCP bulk data transfer, 204–25
TCP calculation for loaded links, 225–30
TCP formula calculation, 222–25
validation case study, 334–37
windowing systems, 82–93
window limited, 88

Time-division multiplexing (TDM)
networks, 13–15

bandwidth sharing, 14–15
as baseline network configuration, 15
components, 14
illustrated, 14
static nature, 14
switches, 14
See also WAN technologies

Timing diagrams, 69–74
defined, 56
for file transfer traffic, 110, 111
for frame relay reference connection, 159
for frame relay with full bursting, 218
for frame relay with no bursting, 220
for HTTP/1.0, 237
for HTTP/1.0 with multiple TCP

sessions, 240
for HTTP/1.1, 241
illustrated, 73
input delay, 70
for isolated transaction, 163

414 Wide-Area Data Network Performance Engineering

packet flow and, 71–72
ping, 193
reference connection, 70, 71
round trip, for frame relay

connection, 272, 273
showing advantages of data pipelining, 76
showing cross-application effects, 111
showing effect of egress pipelining, 144
showing effects of lost packets, 390
showing impact of network

pipelining, 143
showing serial line speed effect, 146
showing telnet echoes mixing

with FTP, 245
simplex windowing system, 83
sliding windowing system, 88
TCP file transfer, 209
utility of, 74
for window size, 211

TN3270, 316, 318
Token buffer, 92

non-existence of, 92
size effect, 93
transaction waiting time, 93

Total delay, 77, 84
Traffic discrimination, 165–74

congestion shift, 165–74
SNA, 327–28

Traffic discrimination methods, 108–27
adaptive controls, 124–25
priority queuing, 115–21
processor sharing, 121–24
selective discards, 126–27
service routing, 113–15
for TCP/IP applications, 247–50
window size tuning, 109–13

Traffic matrix, 133
for four-location design, 153
point-to-point, 133

Traffic shaping, 124, 171–74
bandwidth management vs., 173
defined, 171
router-based, 172, 249–50, 328
troubleshooting performance problems

case study, 352–53
Transmission Control/Internet Protocol

(TCP/IP), 2

application performance
analysis, 199–251

bandwidth sizing, 339–42
encapsulation, 189
file transfer, 168–69
mixing Novell and, 276–77
See also TCP/IP case studies

Transmission Control Protocol (TCP)
delayed ack, 203
multiple sessions, HTTP/1.0

performance and, 238–39
operation, 201–4
protocol overhead, 201
rate control, 173–74
segment sizes, 201
session establishment, 201, 202
sliding window algorithm, 203
throughput calculation, 225–30
windowing system, 81
window size, 213
See also TCP bulk data transfers

Transmission delays, 62–64, 69
affecting, 63–64
defined, 57, 58, 61
packet length and, 62
summary, 64
See also Delay(s)

Transmission errors, 382–85
defined, 381
effects of, 384
Gilbert model, 383, 384
random bit, 382, 384
statistics, 385
summary, 385
system, 383
See also Packet losses

Transmitter time-outs, 387–88
causes, 388
defined, 382, 387
See also Packet losses

Transmit timers, 389
Troubleshooting performance problems case

study, 349–53
analysis, 350–51
context, 349
local Internet access and, 351–52
PVC for Winframe traffic, 352

Index 415

Troubleshooting performance problems case
study (continued)

rearchitect network and, 352
recommendations, 351–53
traffic reshaping, 352–53
See also Case studies

Troubleshooting response times
(client/server application) case
study, 347–49

load application, 348
resolution, 349
See also Case studies

Troubleshooting response times (sales-aid
application) case study, 343–46

analysis, 343–46
conclusion, 344–45
context, 343
See also Case studies

Two-tier applications, 282
bulk data transfer transactions, 287–88
hybrid transactions, 288, 289
ping-pong transactions, 284–87
remote presentation architecture for, 301
traffic patterns, 284–88

Type of service (TOS) routing, 113–15
implementing, 114
low-delay, 115
multiple paths and, 115
performance and, 115
values, requested, 114
See also Traffic discrimination methods

User-to-network interface (UNI), 148

Validating latency and throughput case
study, 334–37

analysis, 335–37
background and context, 334–35
issue, 335
See also Case studies

Variable bit rate (VBR) connection, 33
Virtual circuit identifier (VCI), 17
Virtual circuits (VCs)

capacity, 155
CIR rate, 271
full mesh topology, 154
load engineering, 155–57

scaling issues, 176–77
size of, 153
sparse topology design, 156

Virtual loadable modules (VLMs), 254, 264
Virtual Private Networks (VPNs), 3

WAN technologies, 11–53
frame relay, 19–37
internetworking protocol (IP), 37–47
introduction, 11–13
link level interworking

agreements, 49–52
multiprotocol encapsulation, 47–49
for multiprotocol integration, 13
TDM, 13–15
X.25, 15–19
See also Wide-area networks (WANs)

Web access (SNA), 316–19
Weighted fair queuing (WFQ), 122, 248
Wide-Area Data Network Performance

Engineering
approach, 4–5
organization, 5–7

Wide-area networks (WANs), 1
analytical understanding of, 5
bandwidth issues, 303–5
IP on PVC-based ATM, 43
IP on SVC-based ATM, 45–47
performance issues for client/server

applications, 279–308
performance issues for HTTP, 230–42
performance issues for NetWare

networks, 253–77
performance issues for SNA

networks, 311–29
private line facility, 96, 112, 178
X.25 networks, 12
See also WAN technologies

Windowing systems, 82–93
AppleTalk Data Stream Protocol

(DSP), 81
calculated throughput for, 87
dynamic, 80
feedback to, 80
fixed, 80
IBM SNA, 81
Novell NetWare, 81

416 Wide-Area Data Network Performance Engineering

packet loss impact on, 388–92
rate-based throughput, 90–93
simplex, 80, 82–88
sliding, 80, 88–89
TCP, 81

Window size, 80, 89
adjustments, 212–13
file transfer startup, 95
limiting, 168–69
optimal, 94–98, 113, 212, 213, 215,

219, 222, 224
TCP, 213
TCP bulk data transfer

impact on, 209–12
timing diagram, 211
tuning, 109–13, 116

X.25, 3, 11
configuration illustration, 18

connection illustration, 16
defined, 15
networking protocols, 17
network interconnection through X.75

interface gateways, 19
networks, 12, 15–19
network service providers, 18
packet format, 17
PADs, 29
QoS parameter support, 16
signaling protocol, 16
standards, 11
switches, 15, 16
TA devices, 18
technology, 15–16
virtual circuit, 16

X.75 gateway links, 19
Xedia Systems, 250
Xerox Networking System (XNS), 254

Index 417

	Contents vii
	Preface xv
	Acknowledgments xvii

	1 Introduction 1
	1.1 Enterprise Networking 1
	1.2 Our Approach to Performance Engineering 4
	1.3 Layout of the Book 5

	Part I: General Principles 9
	2 Wide-Area Networking Technologies 11
	2.1 Introduction 11
	2.2 Time-Division Multiplexing Networks 13
	2.3 X.25 Networks 15
	2.4 Frame Relay 19
	2.5 Asynchronous Transport Mode 30
	2.6 Internet Protocol 37
	2.7 Multiprotocol Encapsulation: Agreements for PPP, X.25, Frame Relay, ATM, and IP 47
	2.8 Link Level Interworking Agreements 49
	2.9 Summary 52
	References 53

	3 Performance Analysis: Some Basic Tools 55
	3.1 Introduction 55
	3.2 Network Delays 56
	3.3 Timing Diagrams: A Data Communications Score Card 69
	3.4 Pipelining 74
	3.5 Throughput 79
	3.6 Summary 99
	References 100

	4 Techniques for Performance Engineering 101
	4.1 Introduction 101
	4.2 Load Engineering 102
	4.3 Latency-Sensitive and Bandwidth-Sensitive Applications 106
	4.4 Methods to Discriminate Traffic in a Multiprotocol Network 108
	4.5 Data Collection 127
	4.6 An Example: Deploying New Applications 132
	4.7 Summary 135
	References 135

	5 Frame Relay Performance Issues 137
	5.1 Introduction 137
	5.2 Private Line Versus Frame Relay 138
	5.3 Global Frame Relay Connections 148
	5.4 Bandwidth Sizing 150
	5.5 Traffic Discrimination 165
	5.6 Global Versus Local DLCI 174
	5.7 Virtual Circuit Scaling Issues 176
	5.8 Summary 177
	References 179

	6 Using Pings for Performance Analysis 181
	6.1 Introduction 181
	6.2 Pings 182
	6.3 Calculating Ping Delays 184
	6.4 Using Pings to Verify Network Latency 189
	6.5 General Comments Regarding the Use of Pings to Estimate Network Latency 191
	6.6 Calculating Delays for Large Pings 192
	6.7 Summary 196
	Reference 196

	Part II: Specific Application/Protocol Suites 197
	7 WAN Performance Analysis of TCP/IP Applications: FTP, HTTP, and Telnet 199
	7.1 Introduction 199
	7.2 Some Essential Aspects of TCP Operation 201
	7.3 Calculating TCP Bulk Data Transfer Times and Throughput 204
	7.4 Calculating TCP Throughput for Loaded WAN Links 225
	7.5 WAN Performance Issues for HTTP 230
	7.6 TCP Telnet Performance Issues 242
	7.7 Review of Methods to Provide Traffic Discrimination for TCP/IP Applications 247
	7.8 Summary 250
	References 251

	8 WAN Performance Considerations for Novell NetWare Networks 253
	8.1 Introduction 253
	8.2 Overview 254
	8.3 Overhead and Bandwidth Considerations 256
	8.4 Novell Windowing Schemes 260
	8.5 Private Line and Frame Relay Formulas 265
	8.6 Summary 277
	References 278

	9 WAN Performance Issues for Client/Server Applications 279
	9.1 Introduction 279
	9.2 Client/Server Overview 281
	9.3 Client/Server Application WAN Traffic Characterization 283
	9.4 Data Collection 290
	9.5 Bandwidth Estimation Guidelines 292
	9.6 The Thin Client Solution 300
	9.7 Summary 308
	References 308

	10 WAN Design and Performance Considerations for SNA Networks 311
	10.1 Introduction 311
	10.2 SNA Transport Methods: A Review 312
	10.3 Data Center Architecture Issues for Large SNA Networks 319
	10.4 Quality of Service Issues for SNA 322
	10.5 Summary 328
	Reference 329

	Part III: Case Studies 331
	11 Case Studies 333
	11.1 Introduction 333
	11.2 TCP/IP Case Studies 334
	11.3 Client/Server Application Case Studies 342
	11.4 Novell Networking Case Studies 353
	11.5 SNA-Related Case Studies 360
	11.6 Quantifying the WAN Bandwidth Impact of SNMP Polling 369

	Appendix A: Queuing: A Mathematical Digression 375
	Reference 380

	Appendix B: Throughput in Lossy Environments 381
	B.1 Introduction 381
	B.2 Transmission Errors 382
	B.3 Buffer Overflows 385
	B.4 Transmitter Time-Outs 387
	B.5 Out-of-Sequence Receptions 388
	B.6 Impact of Packet Losses on Throughputs 388
	References 392

	Appendix C: Definitions 393
	List of Acronyms 396
	About the Authors 401
	Index 403

