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Foreword

Network consolidation has been an industry trend since the turn of the  century. 
 Reducing capital investment by converging data, voice, video, virtual private 
 networks (VPNs), and other services onto a single shared infrastructure is fi nan-
cially  attractive; but the larger benefi t is in not having to maintain and operate 
multiple, service-specifi c infrastructures. Fundamental to network consolidation—
 supporting a diverse set of services with a single infrastructure—is a common 
 encapsulating protocol that accommodates different service transport require-
ments. The Internet protocol (IP) is that protocol.

Everything over IP
Things move fast in the networking industry; technologies can go from cutting 
edge to obsolete in a decade or less (think ATM, frame relay, token ring, and FDDI 
among others). It is therefore amazing that TCP/IP is 35 years old and evolved from 
ideas originating in the early 1960s.

Yet while the protocol invented by Vint Cerf and Bob Kahn in 1973 has 
 undergone—and continues to undergo—hundreds of enhancements and one ver-
sion upgrade, its core functions are essentially the same as they were in the mid 
1980s. TCP/IP’s antiquity, in an industry that unceremoniously discards technolo-
gies when something better comes along, is a testament to the protocol’s elegance 
and fl exibility.

And there is no sign that IP is coming to the end of its useful life. To the contrary, 
so many new IP-capable applications, devices, and services are being added to net-
works every day that a newer version, IPv6, has become necessary to provide suf-
fi cient IP addresses into the foreseeable future. As this foreword is written, IPv6 is 
in the very early stages of deployment; readers will still be learning from this book 
when IPv6 is the only version most people know.

The story of how TCP/IP came to dominate the networking industry is well 
known. Cerf, Kahn, Jon Postel, and many others who contributed to the early 
 development of TCP/IP did so as a part of their involvement in creating  ARPANET, 
the predecessor of the modern Internet. The protocol stack became further 
 embedded in the infant industry when it was integrated into Unix, making it popu-
lar with developers.

But its acceptance was far from assured in those early years. Organizations such 
as national governments and telcos were uncomfortable with the informal “give 
it a try and see what works” process of the Working Groups—primarily made up 
of enthusiastic graduate students—that eventually became the Internet Engineer-
ing Task Force (IETF). Those cautious organizations wanted a networking protocol 
 developed under a rigorous standardization process. The International Organization 
for Standardization (ISO) was tapped to develop a “mature” networking  protocol 
suite, which was eventually to become the Open Systems Interconnection (OSI).



The ISO’s modus operandi of establishing dense, thorough standards and 
 releasing them only in complete, production-ready form took time. Even strong OSI 
advocates began using TCP/IP as a temporary but working solution while waiting 
for the ISO standards committees to fi nish their work. By the time OSI was ready, 
TCP/IP was so widely deployed, proven, and understood that few network opera-
tors could justify undertaking a migration to something different.

OSI survives today mainly in a few artifacts such as IS–IS and the ubiquitous OSI 
reference model. TCP/IP, in the meantime, is becoming an almost universal com-
munications transport protocol.

The Illustrated Network
I am a visual person. I admire the capability of my more verbally oriented  colleagues 
to easily discuss, in detail, a networking scenario, but I need to draw pictures to 
keep up.

When the fi rst volume of the late W. Richard Stevens’s TCP/IP Illustrated was 
released in 1994, it immediately became one of my favorite books, and continues to 
be at the top of my list of recommended books both for the student and for the ref-
erence shelf. Stevens’s use of diagrams, confi gurations, and data captures to teach 
the TCP/IP protocol suite makes the book not just a textbook but a comprehensive 
set of case studies. It’s about as visual as you can get without sitting in front of a 
protocol analyzer and watching packets fl y back and forth.

But while the Stevens book has always been excellent for illustrating the behav-
ior of individual TCP/IP components, it does not step back from that narrow focus 
to show you how these components interact at a large scale in a real network.

This is where Walt Goralski steps up. The book you are holding takes the same 
bottom-up approach (Stevens’ words) to teaching the protocol suite: Each chapter 
builds on the previous, and each chapter gives you an intimate look at the proto-
col in action. But through an unprecedented collaboration with Juniper Networks, 
Goralski shows you not just interactions between a few devices in a lab but a 
 production-scale view of a modern working network. The result is a practical, real-
life, highly visual exploration of TCP/IP in its natural state.

The Illustrated Network: How TCP/IP Works in a Modern Network is destined 
to become one of the classics on practical IP networking and a cornerstone of the 
required reading lists of students and professionals alike.

Jeff Doyle
Westminster, Colorado
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This is not a book on how to use the Internet. It is a book about how the  Internet 
is made useful for you.  The Internet is a public global network that runs on TCP/
IP, which is frequently called the Internet Protocol Suite.  A networking protocol 
is a set of rules that must be followed to accomplish something, and TCP/IP is 
actually a synthesis of the fi rst two protocols that launched the Internet in its 
infancy, the Transmission Control Protocol (TCP) and the Internet Protocol (IP), 
which of course, allowed the transmission of information across the then youthful 
Internet.  TCP/IP is the heart and soul of modern networks, and this book illustrates 
how that is accomplished. By using TCP/IP, we can observe how modern networks 
 operate by following the transmission of modern data across all sorts of Internet 
 connections.

Audience
This book is intended as a technical introduction into networking in general and 
the Internet in particular. I will not pretend that someone who has had no previous 
experience with either can easily plow through the entire book. But anyone who 
is experienced enough to check their email online, browse a Web site, download a 
movie or song, or chat with people around the world should have no trouble tack-
ling the content of this book.

There are questions at the end of each chapter, but this is not a textbook per 
se. It can be used as a textbook as a fi rst course in computer networking at the 
high school or undergraduate level. It will fi t in with the computer science and 
electrical engineering departments. It is also explicitly intended for those enter-
ing the telecommunications industry or working for a company where the Inter-
net is an essential part of the business plan (of which there are more and more 
each day).

Only one chapter uses C language code, and that only to provide information for 
the reader. Mathematical concepts that are not taught in high school are not used. 
There is no calculus, probability theory, and stochastic process concepts used in 
any chapter.  The “pocket calculator” examples of public key encryption and Diffi e-
Hellman key distribution were carefully designed to illustrate the concepts, and yet 
make the mathematics as simple as possible.

What Is Unique about This Book?
What’s in this book that you won’t fi nd in a half-dozen other books about TCP/IP? 
The list is not short.

1.  This book uses the same network topology and addresses for every example 
and chapter.

Preface



2. This book treats IPv4 and IPv6 as equals.
3. This book covers the routing protocols as well as TCP/IP applications.
4. This book discusses ISPs as well as corporate LANs.
5. This book covers services provided as well as the protocols that provide them.
6.  This book covers topics (MPLS, IPSec, etc.) not normally covered in other 

books on TCP/IP.

Why was the book written this way? Even in the Internet-conscious world we live 
in today, few study the entire network, the routers, TCP/IP, the Internet, and a host 
of related topics as part of their general education.  What they do learn might seem 
like a lot, but when considered in relation to the enormous complexity of each of 
these topics, what is covered in general computer “literacy” or basic  programming 
courses is really only a drop in the bucket.

As I was writing this book, and printing it out at my workplace, a silicon chip 
engineer-designer found a few chapters on top of the printer bin, and he began 
reading it.  When I came to retrieve the printout, he was fascinated by the sample 
chapters. He wanted the book then and there.  And as we talked, he made me real-
ize that thousands of people are entering the networking industry every day, many 
from other occupations and disciplines.  As the Internet grows, and society’s depen-
dence on the digital communication structure continues, more and more people 
need this overview of how modern networks operate.

The intellectually curious will not be satisfi ed with this smattering of and 
condensation of networking knowledge in a single volume. I’m hoping they 
will seek ways to increase their knowledge in specifi c areas of interest.  This 
book covers hundreds of networking topics, and volumes have been written 
devoted to the intricacies of each one. For example, there are 20 to 30 solid 
books  written on MPLS complexities and evolution, while the chapter here runs 
at about the same number of pages. My hope is that this book and this method 
of “illustrating” how a modern network works will contribute to more people 
seeking out those 20 to 30 books now that they know how the overall thing 
looks and works.

Like everyone else, I learned about networks, including routers and TCP/IP, 
 mostly from books and from listening to others tell me what they knew.  The miss-
ing piece, however, was being able to play with the network.  The books were great, 
the discussions led to illumination of how this or that operated, but often I never 
“saw” it working.  This book is a bit of a synthesis of the written and the seen. It 
attempts to give the reader the opportunity to see common tasks in a real, work-
ing, hands-on environment of the proper size and scale, and follow what happens 
behind the scenes. It’s one thing to read about what happens when a Web site is 
accessed, but another to see it in action.

The purpose of this book is to allow you to see what is happening on a modern 
network when you access a Web site, write an email, download a song, or talk on 
the phone over the Internet. From that observation you will learn how a modern 
network works.
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What You Won’t Find in This Book
It might seem odd to list things that the book does not cover. But rather than have 
readers slog through and then fi nd they didn’t fi nd what they were after, here’s 
what you will not fi nd in this edition of the book.

You will fi nd no mention of the exciting new peer-to-peer protocols that distrib-
ute the server function around the network.  There is no mention of the protocols 
used by chat rooms or services.  The book does not explore music or movie down-
load services. In other words, you won’t fi nd YouTube, IRC, iTunes, or even eBay 
mentioned in this book.

These topics are, of course, interesting and/or important. But the limitations of 
time and page count forced me to focus on essential topics.  The other topics could 
easily form the foundation for The Illustrated Network, Volume II: Beyond the 
Basics.

The Illustrated Network
Many people frustrated with simple lab setups and restricted “live” networks have 
wished for a more complex and realistic yet secure environment where they can 
feel free to explore the TCP/IP protocols, layers, and applications without worrying 
that what they are seeing is limited to a quiet lab, or what they do might bring the 
whole network to its knees.

The days are long gone when an interested party could take over the whole 
network, from clients to servers to routers, and play with them at night or over the 
weekend. Networks are run on a normal business-hour schedule, especially now 
that the Web makes “prime time” on one side of the world when the other half is 
trying to get some sleep.

Many times I have encountered a new feature or procedure and said to myself, 
“I wish I could play with this and see what happens.” But only after nearly 40 years 
of networking experience (I hooked up my fi rst modem, about the size of a micro-
wave oven, in 1966), have I fi nally arrived at the point where I could say, “I want to 
do this . . .,” and someone didn’t tell me it could not be done.

Juniper Networks Inc., my employer, was in a unique position to help me with 
my plans to not merely talk about TCP/IP, or show contrived examples of the proto-
cols in action, but to “illustrate” each piece with a series of clients, servers, routers, 
and connections (including the public Internet).  They had the routers and links, 
and employed all the Unix and Windows-based hosts that I could possibly need. 
(In retrospect, there was probably some overkill in the network, as most chapters 
used only a couple of routers.) We decided not to upgrade the XP hosts to Vista, 
which was relatively new at the time, and I kept Internet Explorer 6 active, more 
or less out of convenience.

In any case, with the blessings of Juniper Networks, I set about creating the 
kind of network I needed for this book. It took a while, but in the end it was well 
worth it.  We assembled a collection of fi ve routers connected with SONET links, 
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two  Ethernet LANs, two pairs of Windows XP clients and servers (Home and Pro 
editions), one pair of Red Hat Linux hosts (running the RH 9 kernel 2.4.20-8), and 
a pair of FreeBSD (release 4.10) hosts. 

Figure P.1 shows the network that we built and that is used in every chapter of 
this book to illustrate the networking concepts discussed.

Using This Book
This book is designed to be read from start to fi nish, chapter by chapter, 
 sequentially. It seems funny to say this, because a lot of technical books these 
days are not meant to be “read” in the same way as a novel or a biography. Readers 
tend to look things up in books like this, and then browse from the spot they land 
on, which you can certainly do with this book, but probably more on a chapter-
by-chapter level.

But I hope that the story in this book is as coherent as a mystery, if not as excit-
ing as an adventure tale. From the fi rst chapter, which offers readers a unique look 
at layered protocols, to the last, this book presents a story that proceeds in a logi-
cal fashion from the bottom of the Internet protocol suite to the top (and beyond, 
in some cases). So if you can, read from start to fi nish, as the chapters depend on 
previous ones. If you are new to networking concepts, or just beginning, I recom-
mend this consecutive approach. For those more experienced, bobbing in and out 
is just fi ne, but remember that all emphasis is equal in The Illustrated Network, 
and sometimes you may question a topic’s coverage, when the item questioned is 
covered in an earlier chapter.

As you’re reading, you’ll discover that generally, each chapter has the same 
structure.  The beginning chapters, however, diverge from this format more than 
the later chapters do, as they require general exploration of the protocol, applica-
tion, or concept.  After the fi rst few chapters, I begin the tasks of illustrating how it 
all works. In some cases, this involves not only the network built for this book, but 
the global Internet as well. Note that network confi guration specifi cs,  especially 
those involving the routers, vary somewhat, but these changes are completely 
 detailed as they occur.

The companion Web site for this book is www.elsevierdirect.com/companions/
9780123745415.  There you will fi nd many of the capture fi les to explore some of 
the protocols on your own. 

Source Code 
Chapter 3 on network technologies uses examples from wireless network captures 
supplied by Aeropeek. Chapter 12 on sockets uses listings from utility programs 
written by Michael J. Donahoo and Kenneth L. Calvert for their excellent book, 
TCP/IP Sockets in C (Morgan Kaufmann, 2001).  Thanks to both groups for letting 
me use their material in this book.
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PART

I
All networks, from the smallest LAN to the global Internet, consist of similar 
components. Layered protocols are the rule, and this part of the book examines 
protocol suites, network devices, and the frames used on links that connect the 
devices.

■ Chapter 1—Protocols and Layers

■ Chapter 2—TCP/IP Protocols and Devices

■ Chapter 3—Network Link Technologies

Networking 
Basics





CHAPTER

What You Will Learn
In this chapter, you will learn about the protocol stack used on the global  public 
Internet and how these protocols have been evolving in today’s world.  We’ll 
review some key basic defi nitions and see the network used to illustrate all of the 
examples in this book, as well as the packet content, the role that hosts and rout-
ers play on the network, and how graphic user and command line interfaces (GUI 
and CLI, respectively) both are used to interact with devices.

You will learn about standards organizations and the development of TCP/IP 
RFCs.  We’ll cover encapsulation and how TCP/IP layers interact on a network.

Protocols and Layers 1

This book is about what actually happens on a real network running the protocols and 
applications used on the Internet today.  We’ll be looking at the entire network—every-
thing from the application level down to where the bits emerge from the local device 
and race across the Internet.  A great deal of the discussion will revolve around the 
TCP/IP protocol suite, the protocols on which the Internet is built. The network that 
will run these protocols is shown in Figure 1.1.

Like most authors, I’ll use TCP/IP as shorthand for the entire Internet protocol stack, 
but you should always be aware that the suite consists of many protocols, not just 
TCP and IP.  The protocols in use are constantly growing and evolving as the Internet 
adapts to new challenges and applications. In the past few years, four trends have 
become clear in the protocol evolution: 

Increased use of multimedia —The original Internet was not designed with 
proper quality of service assurances to support digital voice and video. How-
ever, the Internet now carries this as well as bulk and interactive data. (In this 
book, “data” means non-voice and non-video applications.) In the future, all 
forms of information should be able to use the Internet as an interactive distri-
bution medium without major quality concerns.

Increasing bandwidth and mobility—The trend is toward higher bandwidth 
(capacity), even for mobile users. New wireless technologies seem to promise 
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FIGURE 1.1

The Illustrated Network, showing the routers, links, and hosts on the network. Many of the layer 
addresses used in this book appear in the fi gure as well.
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(Intel_3b:87:32)
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eth0: 10.10.12.166
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(Dell_45:34:64)
IPv6: fe80::2b0:
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LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c
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Office
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lo0: 192.168.7.1
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 lo0: 192.168.1.1
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lo0: 192.168.2.1

so-0/0/1
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so-0/0/1
24.1

so-0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

ge-0/0/3

16.2

ge-0/0/3

16.1

Best ISP

AS 65127

Global Public
Internet
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the “Internet everywhere.” Users are no longer as restricted to analog  telephone 
network modem bit rates, and new end-electronics, last-mile technologies, and 
improved wiring and backbones are the reason.

Security—Attacks have become much more sophisticated as well.  The use of 
 privacy tools such as encryption and digital signatures are no longer an option, 
but a necessity. E-commerce is a bigger and bigger business every year, and 
on-line banking, stock transactions, and other financial manipulations make 
strong security technologies essential. Identity verification is another place 
where new applications employ strong encryption for security purposes.

New protocols—Even the protocols that make up the TCP/IP protocol suite 
change and evolve. Protocols age and become obsolete, and make way for 
newer ways of doing things. IPv6, the eventual successor for IPv4, is  showing 
up on  networks around the world, especially in applications where the  supply 
of IPv4 addresses is inadequate (such as cell phones). In every case, each 
 chapter attempts to be as up-to-date and forward-looking as possible in its 
particular area.

We will talk about these trends and more in later chapters in this book. For now, let’s 
take a good look at the network that will be illustrated in the rest of this book.

Key Defi nitions
Any book about computers and networking uses terminology with few fi rm defi -
nitions and rules of usage. So here are some key terms that are used over and over 
throughout this book. Keep in mind that these terms may have varying interpreta-
tions, but are defi ned according to the conventions used in this book.

■ Host: For the purposes of this book, a host is any endpoint or end system 
device that runs TCP/IP. In most cases, these devices are ordinary desktop and 
laptop computers. However, in some cases hosts can be cell phones, handheld 
personal digital assistants (PDAs), and so on. In the past, TCP/IP has been made 
to run on toasters, coffee machines, and other exotic devices, mainly to prove 
a point.

■ Intermediate system: Hosts that do not communicate directly pass informa-
tion through one or more intermediate systems. Intermediate systems are 
often generically called “network nodes” or just “nodes.” Specifi c devices are 
labeled “routers,” “bridges,” or “switches,” depending on their precise roles in the 
network.  The intermediate nodes on the Illustrated Network are routers with 
some switching capabilities.

■ System:  This is just shorthand for saying the device can be a host, router, switch, 
node, or almost anything else on a network. Where clarity is important, we’ll 
always specify “end system” or “intermediate system.”
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THE ILLUSTRATED NETWORK
Each chapter in this book will begin with a look at how the protocol or chapter  contents 
function on a real network.  The Illustrated Network, built in the Tech Pubs department 
of Juniper Networks, Inc., in Sunnyvale, California, is shown in Figure 1.1.

The network consists of systems running three different operating systems (Windows 
XP, Linux, and FreeBSD Unix) connected to Ethernet local area networks (LANs).  These 
systems are deployed in pairs, as either clients (for now, defi ned as “systems with users 
doing work in front of them”) and servers (for now, defi ned as “systems with admin-
istrators, and usually intended only for remote use”).  When we defi ne the client and 
server terms more precisely, we’ll see that the host’s role at the protocol level depends 
on which host initiates the connection or interaction.  The hosts can be  considered to 
be part of a corporate network with offi ces in New York and Los  Angeles.

Addressing information is shown for each host, router, and link between devices.  We’ll 
talk about all of these addresses in detail later, and why the hosts in particular have 
several addresses in varying formats. (For example, the hosts only have link-local IPv6 
address, and not global ones.)

The LANs are attached to Juniper Networks’ routers (also called intermediate nodes, 
although some are technically gateways), which in turn are connected in our network 
to other routers by point-to-point synchronous optical network (SONET) links, a type 
of wide area network (WAN) link. Other types of links, such as asynchronous transfer 
mode (ATM) or Ethernet, can be used to connect widely separated routers, but SONET 
links are very common in a telecommunications context.  There is a link to the global 
Internet and to a home-based wireless LAN as well.  The home offi ce link uses digital 

Major Parts of the Illustrated Network
The Illustrated Network is composed of four major components. At the top are two 
Ethernet LANs with the hosts of our fi ctional organization, one in New York and 
one in Los Angeles. The offi ces have different ISPs (a common enough  situation), 
and the site routers link to Ace ISP on the West Coast and Best ISP on the East 
Coast with Gigabit Ethernet links (more on links in the next chapter). The two 
ISPs link to each other directly and also link to the “global public Internet.” Just 
what this is will be discussed once we start looking at the routers themselves.

One employee of this organization (the author) is shown linking a home 
 wireless network to the West Coast ISP with a high-speed (“broadband”) digital 
subscriber line (DSL) link. The rest of the links are high-speed WAN links and two 
Gigabit Ethernet (GE) links. (It’s becoming more common to use GE links across 
longer distances, but this network employs other WAN technologies.)

The Illustrated Network is representative of many LANs, ISPs, and users around 
the world.
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subscriber line (DSL), a form of dedicated broadband Internet access, and not dial-up 
modem connectivity.

This network will be used throughout this book to illustrate how the different 
TCP/IP protocols running on hosts and routed networks combine to form the  Internet. 
Some protocols will be examined from the perspective of the hosts and LAN (on the 
local “user edge”) and others will be explored from the perspective of the service 
 provider (on the global “network edge”).  Taken together, these viewpoints will allow 
us to see exactly how the network works, inside and out.

Let’s explore the Illustrated Network a little, from the user edge, just to demonstrate 
the conventions that will be used at the beginning of each chapter in this book.

Remote Access to Network Devices
We can use a host (client or server system running TCP/IP) to remotely access another 
device on the local network. In the context of this book, a host is a client or server 
system.  We can loosely (some would say very loosely) defi ne clients as typically the 
PCs on which users are doing work, and that’s how we’ll use the term for now. On the 
other hand, servers (again loosely) are devices that usually have administrators tending 
them. Servers are often gathered in special equipment racks in rooms with restricted 
access (the “server room”), although print servers are usually not.  We’ll be more pre-
cise about the differences between clients and servers as the “initiating protocol” later 
in this book.

Let’s use host lnxclient to remotely access the host bsdserver on one of the LANs. 
We’ll use the secure shell application, ssh, for remote access and log in (the –l option) 
as remote-user.  There are other remote access applications, but in this book we’ll use 
ssh.  We’ll use the command-line interface (CLI) on the Linux host to do so.

[root@lnxclient admin]# ssh -l remote-user@bsdserver
Password:
Last login: Sun Mar 17 16:12:54 2008 from securepptp086.s
Copyright (c) 1980, 1983, 1986, 1988, 1990, 1991, 1993, 1994
The Regents of the University of California. All rights reserved.
FreeBSD 4.10-RELEASE (GENERIC) #0: Tue May 25 22:47:12 GMT 2004
Welcome to FreeBSD!... 

We can also use a host to access a router on the network.  As mentioned earlier, a 
router is a type of intermediate system (or network node) that forwards IP data units 
along until they reach their destination.  A router that connects a LAN to an Internet 
link is technically a gateway.  We’ll be more precise about these terms and functions in 
later chapters dealing with routers and routing specifi cally.

Let’s use host bsdclient to remotely access the router on the network that is directly 
attached to the LAN, router CE0 (“Customer Edge router #10”). Usually, we’d do this to 
confi gure the router using the CLI.  As before, we’ll use the secure shell application, ssh, 
for remote access and log in as remote-user.  We’ll again use the CLI on the Unix host 
to do so.

8 PART I Networking Basics



bsdclient> ssh -l remote-user@CEO
remote-user@ce0’s password:
--- JUNOS 8.4R1.3 built 2007-08-06 06:58:15 UTC
remote-user@CEO>

These examples show the conventions that will appear in this book when com-
mand-line procedures are shown.  All prompts, output, and code listings appear like 
this.  Whenever a user types a command to produce some output, the command typed 
will appear like this.  We’ll see CLI examples from Windows hosts as well.

Illustrated Network Router Roles
The intermediate systems or network nodes used on the Illustrated Network are 
routers. Not all of the routers play the same role in the network, and some have 
switching capabilities. The router’s role depends on its position in the network. 
Generally, smaller routers populate the edge of the network near the LANs and 
hosts, while larger routers populate the ISP’s network core. The routers on our 
network have one of three network-centric designations; we have LAN switches 
also, but these are not routers.

■ Customer edge (CE):  These two routers belong to us, in our role as the  customer 
who owns and operates the hosts and LANs. These CE routers are smaller than 
the other routers in terms of size, number of ports, and capabilities. Technically, 
on this network, they perform a gateway role.

■ Provider edge (PE):  These two routers gather the traffi c from customers 
( typically there are many CE routers, of course). They are not usually accessible 
by customers.

■ Provider (P):  These six routers are arranged in what is often called a “quad.”  The 
two service providers on the Illustrated Network each manage two providers’ 
routers in their network core. Quads make sure traffi c fl ows smoothly even if 
any one router or one link fails on the provider’s core networks.

■ Ethernet LAN switches: The network also contains two Ethernet LAN 
switches.  We’ll spend a lot of time exploring switches later. For now,  consider that 
 switches operate on Layer 2 frames and routers operate on Layer 3  packets.

Now, what is this second example telling us? First of all, it tells us that routers, 
just like ordinary hosts, will allow a remote user to log in if they have the correct 
user ID and password. It would appear that routers aren’t all that much different from 
hosts. However, this can be a little misleading. Hosts generally have different roles in a 
 network than routers. For now, we’ll just note that for security reasons, you don’t want 
it to be easy for people to remotely access routers, because intruders can cause a lot 
of damage after compromising just a single router. In practice, a lot more security than 
just passwords is employed to restrict router access.
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Secure remote access to a router is usually necessary, so not running the process or 
entity that allows remote access isn’t an option.  An organization with a large network 
could have routers in hundreds of locations scattered all over the country (or even the 
world).  These devices need management, which includes tasks such as  changing the con-
fi guration of the routers. Router confi guration often includes details about the  protocols’ 
operation and other capabilities of the router, which can change as the  network evolves. 
Software upgrades need to be distributed as well.  Troubleshooting procedures often 
require direct entry of commands to be executed on the router. In short, remote access 
and fi le transfer can be very helpful for router and network management purposes.

File Transfer to a Router
Let’s look at the transfer of a new router confi guration fi le, for convenience called 
routerconfig.txt, from a client host (wincli2) to router CE0.  This time we’ll use a GUI 
for the fi le transfer protocol (FTP) application, which will be shown as a fi gure, as in 
Figure 1.2. First, we have to remotely access the router.

The main window section in the fi gure shows remote access and the fi le listing of 
the default directory on the router, which is /var/home/remote (the router uses the 
Unix fi le system).  The listing in the lower right section is the contents of the default 

FIGURE 1.2

Remote access for FTP using a GUI. Note how the different panes give different types of 
 information, yet bring it all together.
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directory, not part of the command/response dialog between host and router.  The 
lower left section shows the fi le system on the host, which is a Windows system. Note 
that the fi le transfer is not encrypted or secured in any way.

Most “traditional” Unix-derived TCP/IP applications have both CLI and GUI  interfaces 
available, and which one is used is usually a matter of choice. Older Unix systems, the 
kind most often used on the early Internet, didn’t typically have GUI interfaces, and 
a lot of users prefer the CLI versions, especially for book illustrations. GUI applica-
tions work just as well, and don’t require users to know the individual commands 
well.  When using the GUI version of FTP, all the user has to do is “drag and drop” the 
local routerconfig.txt fi le from the lower left pane to the lower right pane of the 
window to trigger the commands (which the application produces “automatically”) for 
the transfer to occur.  This is shown in Figure 1.3.

With the GUI, the user does not have to issue any FTP commands directly.

CLI and GUI
We’ll use both the CLI and GUI forms of TCP/IP applications in this book. In a nod to 
tradition, we’ll use the CLI on the Unix systems and the GUI versions when Windows 
systems are used in the examples. (CLI commands often capture details that are not 
easily seen in GUI-based applications.) Keep in mind that you can use GUI applications 

FIGURE 1.3

File transfer with a GUI. There are commands (user mouse clicks that trigger messages), responses 
(the server’s replies), and status lines (reports on the state of the interaction).
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on Unix and the CLI on Windows (you have to run cmd fi rst to access the Windows 
CLI).  This listing shows the router confi guration fi le transfer of newrouterconfig.txt 
from the Windows XP system to router CE6, but with the Windows CLI and using the 
IP address of the router.

C:\Documents and Settings\Owner> ftp 10.10.12.1
Connected to 10.10.12.1.
220 R6 FTP server (version 6.00LS) ready.
User (10.10.12.1:none)):walterg
331 Password required for walterg.
Password: ********
ftp> dir
200 PORT command successful.
150 Opening ASCII mode data connection for '/bin/ls'.
total 128
drwxr-xr-x 2 remote staff 512 Nov 20 2004 .ssh
-rw-r--r-- 1 remote staff 4316 Mar 25 2006 R6-base
-rw-r--r-- 1 remote staff 4469 May 11 20:08 R6-cspf
-rw-r--r-- 1 remote staff 4316 Jun 3 18:46 R6-rsvp
-rw-r--r-- 1 remote staff 4242 Jun 16 14:44 R6-rsvp-message
-rw-r----- 1 remote staff 559 Feb 3 2005 juniper.conf
-rw-r--r-- 1 remote staff 4081 Dec 2 2005 merisha-base
-rw-r--r-- 1 remote staff 2320 Dec 3 2005 richard-ASP-manual-SA
-rw-r--r-- 1 remote staff 2358 Dec 2 2005 richard-base
-rw-r--r-- 1 remote staff 7344 Sep 30 11:28 routerconfig.txt
-rw-r--r-- 1 remote staff 4830 Jul 13 17:04 snmp-forwarding
-rw-r--r-- 1 remote staff 3190 Jan 7 2006 tp6
-rw-r--r-- 1 remote staff 4315 May 5 12:49 wjg-ORA-base-TP6
-rw-r--r-- 1 remote staff 4500 May 6 09:47 wjg-tp6-with-ipv6
-rw-r--r-- 1 remote staff 4956 May 8 13:42 wjg-with-ipv6
226 transfer complete
ftp: 923 bytes received in 0.00Seconds 923000.00Kbytes/sec.
ftp> bin
200 Type set to I
ftp> put newrouterconfig.text
200 PORT command successful.
150 Opening ASCII mode data connection for "newrouterconfig.txt".
226 Transfer complete.
ftp: 7723 bytes received in 0.00Seconds 7344000.00Kbytes/sec.
ftp>_

In some cases, we’ll list CLI examples line by line, as here, and in other cases we will 
show them in a fi gure.

Ethereal and Packet Capture
Of course, showing a GUI or command line FTP session doesn’t reveal much about 
how the network functions.  We need to look at the bits that are fl owing through the 
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network.  Also, we need to look at applications, such as the fi le transfer protocol, from 
the network  perspective.

To do so, we’ll use a packet capture utility.  This book will use the Ethereal packet 
capture program in fact and by name throughout, although shortly after the project 
began, Ethereal became Wireshark.  The software is the same, but all development will 
now be done through the Wireshark organization.  Wireshark (Ethereal) is available free 
of charge at www.wireshark.org. It is notable that Wireshark, unlike a lot of similar 
applications, is available for Windows as well as most Unix/Linux variations.

Ethereal is a network protocol analyzer program that keeps a copy of every packet 
of information that emerges from or enters the system on a particular interface. Ethe-
real also parses the packet and shows not only the bit patterns, but what those bit 
groupings mean. Ethereal has a summary screen, a pane for more detailed informa-
tion, and a pane that shows the raw bits that Ethereal captured.  The nicest feature of 
Ethereal is that the packet capture stream can be saved in a standard libpcap format 
fi le (usually with a .cap or .pcap extension), which is common among most protocol 
analyzers.  These fi les can be read and parsed and replayed by tcpdump and other appli-
cations or Ethereal on other systems.

Figure 1.4 shows the same router confi guration fi le transfer as in Figure 1.2 and 1.3, 
and at the same time. However, this time the capture is not at the user level, but at the 
network level.

FIGURE 1.4

Ethereal FTP capture of the fi le transfer shown earlier from the user perspective.
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Each packet captured is numbered sequentially and given a time stamp, and its 
source and destination address is listed.  The protocol is in the next column, followed 
by the interpretation of the packet’s meaning and function.  The packet to request the 
router to STOR routerconfig.txt is packet number 26 in the sequence.

Already we’ve learned something important:  that with TCP/IP, the number of 
 packets exchanged to accomplish even something basic and simple can be surpris-
ingly large. For this reason, in some cases, we’ll only show a section of the panes of the 
full Ethereal screen, only to cut down on screen clutter.  The captured fi les are always 
there to consult later.

With these tools—CLI listings, GUI fi gures, and Ethereal captures—we are prepared 
to explore all aspects of modern network operation using TCP/IP.

First Explorations in Networking
We’ve already seen that an authorized user can access a router from a host.  We’ve 
seen that routers can run the ssh and ftp server applications sshd and ftpd, and the 
 suspicion is that they might be able to run even more (they can just as easily be ssh 
and ftp clients). However, the router application suite is fairly restrictive. You usually 
don’t, for example, send email to a router, or log in to a router and then browse Web 
sites.  There is a fundamental difference in the roles that hosts and routers play in a 
network.  A router doesn’t have all of the application software you would expect to 
fi nd on a client or server, and a router uses them mainly for management purposes. 
However, it does have all the layers of the protocol suite.

TCP/IP networks are a mix of hosts and routers. Hosts often talk to other devices 
on the network, or expose their applications to the network, but their basic  function 
is to run programs. However, network systems like routers exist to keep the network 
 running, which is their primary task. Router-based applications support this task, 
although in theory, routers only require a subset of the TCP/IP protocol suite layers to 
perform their operational role.  You also have to manage routers, and that requires some 
additional software in practice. However, don’t expect to fi nd chat or other common 
client applications on a router.

What is it about protocols and layers that is so important? That’s what the rest of 
this chapter is about. Let’s start with what protocols are and where they come from.

PROTOCOLS
Computers are systems or devices capable of running a number of processes.  These 
 processes are sometimes referred to as entities, but we’ll use the term processes. 
 Computer networks enable communication between processes on two different 
devices that are capable of sending and receiving information in the form of bits 
(0s and 1s).  What pattern should the exchange of bits follow? Processes that exchange 
bit streams must agree on a protocol.  A protocol is a set of rules that determines all 
aspects of data communication.
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A protocol is a standard or convention that enables and controls the connec-
tion, communication, and transfer of information between two communications 
endpoints, or hosts.  A protocol defi nes the rules governing the syntax (what can 
be  communicated), semantics (how it can be communicated), and synchroniza-
tion (when and at what speed it can be communicated) of the communications 
 procedure. Protocols can be implemented on hardware, software, or a combination 
of both.

Protocols are not the same as standards: some standards have never been imple-
mented as workable protocols, while some of the most useful protocols are only 
loosely defi ned (this sometimes makes interconnection an adventure).  The protocols 
discussed in this book vary greatly in degree of sophistication and purpose. However, 
most of the protocols specify one or more of the following:

Physical connection—The host typically uses different hardware depending on whether 
the connection is wired or wireless, and some other parameters might require man-
ual confi guration. However, protocols are used to supply details about the network 
connection (speed is part of this determination).  The host can usually detect the 
presence (or absence) of the other endpoint devices as well.

Handshaking—A protocol can define the rules for the initial exchange of infor-
mation across the network.

Negotiation of parameters—A protocol can define a series of actions to establish 
the rules and limits used for communicating across the network.

Message delimiters—A protocol can define what will constitute the start and end 
of a message on the network.

Message format—A protocol can define how the content of a message is struc-
tured, usually at the “field” level.

Error detection—A protocol can define how the receiver can detect corrupt mes-
sages, unexpected loss of connectivity, and what to do next. A protocol can 
simply fail or try to correct the error.

Error correction—A protocol can define what to do about these error situations. 
Note that error recovery usually consists of both error-detection and error-
 correction protocols.

Termination of communications—A protocol can define the rules for gracefully 
stopping communicating endpoints.

Protocols at various layers provided the abstraction necessary for Internet suc-
cess. Application developers did not have to concern themselves overly with the 
physical properties of the network.  The expanded use of communications protocols 
has been a major contributor to the Internet’s success, acceptance, fl exibility, and 
power.
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Standards and Organizations
Anyone can defi ne a protocol. Simply devise a set of rules for any or all of the phases 
of communication and convince others to make hardware or software that imple-
ments the new method. Of course, an implementer could try to be the only source 
of a given protocol, a purely proprietary situation, and this was once a popular way 
to develop protocols.  After all, who knew better how to network IBM computers 
than IBM? Today, most closed protocols have given way to open protocols based on 
published standards, especially since the Internet strives for connectivity between 
all types of computers and related devices and is not limited to equipment from 
a certain vendor.  Anyone who implements an open protocol correctly from public 
documents should in most cases be able to interoperate with other versions of the 
same protocol.

Standards promote and maintain an open and competitive market for network 
 hardware and software.  The overwhelming need for interoperability today, both 
nationally and internationally, has increased the set of choices in terms of vendor and 
capability for each aspect of data communications. However, proprietary protocols 
intended for a limited architecture or physical network are still around, of course. Pro-
prietary protocols might have some very good application-specifi c protocols, but could 
probably not support things like the Web as we know it. Making something a standard 
does not guarantee market acceptance, but it is very diffi cult for a protocol to succeed 
without a standard for everyone to follow. Standards provide essential guidelines to 
manufacturers, vendors, service providers, consultants, government agencies, and users 
to make sure the interconnectivity needed today is there.

Data communication standards fall into two major categories: de jure (“by rule or 
regulation”) and de facto (“by fact or convention”).

De jure—These standards have been approved by an officially recognized body 
whose job is to standardize protocols and other aspects of networking. De jure 
standards often have the force of law, even if they are called recommenda-
tions (for these basic standards, it is recommended that nations use their own 
enforcement methods, such as fines, to make sure they are followed).

De facto —Standards that have not been formally approved but are widely  followed 
fall into this category. If someone wants to do something different, such as 
a manufacturer of network equipment, this method can be used to quickly 
establish a new product or technology.  These types of standards can always be 
proposed for de jure approval.

When it comes to the Internet protocols, things are a bit more complicated.  There 
are very few offi cial standards, and there are no real penalties involved for not follow-
ing them (other than the application not working as promised). On the Internet, a 
“de facto standard” forms a reference implementation in this case. De facto standards 
are also often subportions or implementation details for formal standards, usually when 
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the formal standard falls short of providing all the information needed to create a work-
ing program. Internet standard proposals in many cases require running code at some 
stages of the process: at least the de facto code will cover the areas that the standard 
missed.

The standards for the TCP/IP protocol suite now come from the Internet Engineer-
ing Task Force (IETF), working in conjunction with other Internet organizations.  The 
IETF is neither strictly a de facto nor de jure standards organization:  There is no force 
of law behind Internet standards; they just don’t work the way they should if not done 
correctly.  We’ll look at the IETF in detail shortly.  The Internet uses more than protocol 
standards developed by the IETF.  The following organizations are the main ones that 
are the sources of these other standards.

Institute of Electrical and Electronics Engineers
This international organization is the largest society of professional engineers in the 
world. One of its jobs is to oversee the development and adaptation of international 
standards, often in the local area network (LAN) arena. Examples of IEEE standards are 
all aspects of wireless LANs (IEEE 802.11).

American National Standards Institute 
Although ANSI is actually a private nonprofi t organization, and has no affi liation with the 
federal government, its goals include serving as the national institution for  coordinating 
voluntary standardization in the United States as a way of advancing the U.S. economy 
and protecting the public interest.  ANSI’s members are consumer groups, government 
and regulatory bodies, industry associations, and professional societies. Other countries 
have similar organizations that closely track ANSI’s actions.  The indispensable American 
Standard Code for Information Interchange (ACSII) that determines what bits mean is 
an example of an ANSI standard.

Electronic Industries Association
This is a nonprofi t organization aligned with ANSI to promote electronic manufactur-
ing concerns.  The EIA has contributed to networking by defi ning physical connection 
interfaces and specifying electrical signaling methods.  The popular Recommended 
Jack #45 (RJ-45) connector for twisted pair LANs is an example of an EIA standard.

ISO, or International Standards Organization
Technically, this is the International Organization for Standardization in English, one of 
its offi cial languages, but is always called the ISO. “ISO” is not an acronym or  initialism 
for the organization’s full name in either English or French (its two offi cial languages). 
Rather, the organization adopted ISO based on the Greek word isos, meaning equal. 
Recognizing that the organization’s initials would vary according to language, its found-
ers chose ISO as the universal short form of its name.  This, in itself, refl ects the aim of 
the organization: to equalize and standardize across cultures.  This multinational body’s 
members are drawn from the standards committees of various governments.  They are 
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a voluntary organization dedicated to agreement on worldwide standards.  The ISO’s 
major contribution in the fi eld of networking is with the creation of a model of data 
networking, the Open Systems Interconnection Reference Model (ISO-RM), which also 
forms the basis for a working set of protocols.  The United States is represented by ANSI 
in the ISO.

International Telecommunications Union–Telecommunication Standards Sector
A global economy needs international standards not only for data networks, but for 
the global public switched telephone network (PSTN).  The United Nations formed a 
committee under the International Telecommunications Union (ITU), known as the 
Consultative Committee for International Telegraphy and Telephony (CCITT), that was 
eventually reabsorbed into the parent body as the ITU-T in 1993. All communications 
that cross national boundaries must follow ITU-T “recommendations,” which have 
the force of law. However, inside a nation, local standards can apply (and usually do). 
A  network architecture called asynchronous transfer mode (ATM) is an example of an 
ITU-T standard.

In addition to these standards organizations, networking relies on various forums to 
promote new technologies while the standardization process proceeds at the national 
and international levels. Forum members essentially pledge to follow the specifi ca-
tions of the forum when it comes to products, services, and so forth, although there 
is seldom any penalty for failing to do so.  The Metro Ethernet Forum (MEF) is a good 
example of the modern forum in action.

The role of regulatory agencies cannot be ignored in standard discussions. It makes 
no sense to develop a new service for wireless networking in the United States, for 
example, if the Federal Communications Commission (FCC) has forbidden the use of 
the frequencies used by the new service for that purpose. Regulated industries include 
radio, television, and wireless and cable systems.

Request for Comment and the Internet Engineering Task Force
What about the Internet itself? The Internet Engineering Task Force (IETF) is the 
 organization directly responsible for the development of Internet standards.  The 
IETF has its own system for standardizing network components. In particular, Inter-
net  standards cover many of the protocols used by devices attached to the Internet, 
 especially those closer to the user (applications) than to the physical network.

Internet standards are formalized regulations followed and used by those who 
work on the Internet.  They are specifi cations that have been tested and must be 
 followed.  There is a strict procedure that all Internet components follow to become 
standards.  A specifi cation starts out as an Internet draft, a working document that 
often is revised, has no offi cial status, and has a 6-month life span. Developers often 
work from these drafts, and much can be learned from the practical experience of 
 implementation of a draft. If recommended, the Internet authorities can publish the 
draft as a request for comment (RFC).  The term is historical, and does not imply that 
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feedback is required (most of the feedback is provided in the drafting process). Each 
RFC is edited, assigned a number, and available to all. Not all RFCs are standards, even 
those that defi ne  protocols.

This book will make heavy use of RFCs to explain all aspects of TCP/IP and the 
Internet, so a few details are in order. RFCs have various maturity levels that they go 
through in their lifetimes, according to their requirement levels.  The RFC life-cycle 
maturity levels are shown in Figure 1.5. Note that the timeline does not always apply, 
or is not applied in a uniform fashion.

A specifi cation can fall into one of six maturity levels, after which it passes to his-
torical status and is useful only for tracking a protocol’s development. Following intro-
duction as an Internet draft, the specifi cation can be a:

Proposed standard—The specification is now well understood, stable, and 
 sufficiently interesting to the Internet community.  The specification is now 
usually tested and implemented by several groups, if this has not already 
 happened at the draft level.

Draft standard—After at least two successful and independent implementations, 
the proposed standard is elevated to a draft standard. Without complications, 
and with modifications if specific problems are uncovered, draft standards nor-
mally become Internet standards.

Internet Draft 

Internet 
Standard 

Historic RFCs 

Informational 
RFCs 

Experimental 
RFCs 

Proposed 
Standard 

Draft Standard 

Six months 

Four months

FIGURE 1.5

The RFC life cycle. Many experimental RFCs never make it to the standards track.
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Internet standard—After demonstrations of successful implementation, a draft 
standard becomes an Internet standard.

Experimental RFCs—Not all drafts are intended for the “standards track” (and 
a huge number are not). Work related to an experimental situation that does 
affect Internet operation comprise experimental RFCs.  These RFCs should not 
be implemented as part of any functional Internet service.

Informational RFCs—Some RFCs contain general, historical, or tutorial informa-
tion rather than instructions.

RFCs are further classifi ed into one of fi ve requirement levels, as shown in Figure 1.6.

Required—These RFCs must be implemented by all Internet systems to ensure 
minimum conformance. For example, IPv4 and ICMP, both discussed in detail in 
this book, are required protocols. However, there are very few required RFCs.

Recommended—These RFCs are not required for minimum conformance, but are 
very useful. For example, FTP is a recommended protocol.

Elective—RFCs in this category are not required and not recommended.  However, 
systems can use them for their benefit if they like, so they form a kind of 
“option set” for Internet protocols.

Limited Use—These RFCs are only used in certain situations. Most experimental 
RFCs are in this category.

RFC Requirement Levels 

Required: All systems must implement

Recommended: All systems should implement

Elective: Not required nor recommended

Limited Use: Used in certain situations, such as experimental

Not Recommended: Systems should not implement

FIGURE 1.6

RFC requirement levels. There are very few RFCs that are required to implement an Internet 
protocol suite.
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Not Recommended—These RFCs are inappropriate for general use. Most historic 
(obsolete) RFCs are in this category.

RFCs can be found at www.rfc-editor.org/rfc.html. Current Internet drafts can be found 
at www.ietf.org/ID.html. Expired Internet drafts can be found at www.watersprings.
org/pub/id/index-all.html.

INTERNET ADMINISTRATION
As the Internet has evolved from an environment with a large student user population 
to a more commercialized network with a broad user base, the groups that have guided 
and coordinated Internet issues have evolved.  Figure 1.7 shows the general structure 
of the Internet administration entities.

Internet Society (ISOC)—This is an international nonprofit organization formed in 
1992 to support the Internet standards process. ISOC maintains and  supports 
the other administrative bodies described in this section. ISOC also supports 
research and scholarly activities relating to the Internet.

Internet Society

Internet Architecture Board

Internet Engineering Task Force

IESG

AreaArea

IRSG

Research
Group

Working
Group

Working
Group

Working
Group

Working
Group

Research
Group

Internet Research Task Force

FIGURE 1.7

Internet administration groups, showing the interactions between the major components.
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Internet Architecture Board (IAB)—This group is the technical advisor to 
ISOC.  The IAB oversees the continued development of the Internet protocol 
suite and plays a technical advisory role to members of the Internet commu-
nity involved in research.  The IAB does this primarily through the two organi-
zations under it. In addition, the RFC editor derives authority from the IAB, and 
the IAB represents the Internet to other standards organizations and forums.

Internet Engineering Task Force (IETF)—This a forum of working groups 
 managed by the Internet Engineering Steering Group (IESG).  The IETF identi-
fies operational problem areas and proposes solutions.  They also develop and 
review the specifications intended to become Internet standards.  The  working 
groups are organized into areas devoted to a particular topic. Nine areas have 
been defined, although this can change: applications, Internet protocols, 
 routing, operations, user services, network management, transport, IPv6, and 
security.  The IETF has taken on some of the roles that were invested in ISOC.

Internet Research Task Force (IRTF)—This is another forum of working groups, 
organized directly under the Internet Research Steering Group (IESG) for 
management purposes.  The IRTF is concerned with long-term research topics 
related to Internet protocols, applications, architecture, and technology.

Two other groups are important for Internet administration, although they do not 
appear in Figure 1.7.

Internet Corporation for Assigned Names and Numbers (ICANN)—This is a 
private nonprofit corporation that is responsible for the management of all 
Internet domain names (more on these later) and Internet addresses. Before 
1998, this role was played by the Internet Assigned Numbers Authority (IANA), 
which was supported by the U.S. government.

Internet Network Information Center (InterNIC)—The job of the InterNIC, run 
by the U.S. Department of Commerce, is to collect and distribute information 
about IP names and addresses.  They are at http://www.internic.net.

LAYERS
When it comes to communications, all of these standard organizations have one 
 primary function: the creation of standards that can be combined with others to create 
a working network. One concern is that these organizations be able to recommend 
solutions that are both fl exible and complete, even though no single standards entity 
has complete control over the entire process from top to bottom.  The way this is done 
is to divide the communications process up into a number of functional layers.

Data communication networks rely on layered protocols. In brief, processes run-
ning on a system and the communication ports that send and receive network bits are 
logically connected by a series of layers, each performing one major function of the 
networking task.
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The key concept is that each layer in the protocol stack has a distinct purpose and 
function.  There is a big difference between the application layer protocols we’ve seen, 
such as FTP and SSH, and a lower-level protocol such as Ethernet on a LAN. Each proto-
col layer handles part of the overall task.

For example, Ethernet cards format the bits sent out on a LAN at one layer, and 
FTP client software communicates with the FTP server at a higher layer. However, the 
Ethernet card does not tell the FTP application which bits to send out the interface. 
FTP addresses the higher-end part of the puzzle: sending commands and data to the 
FTP server. Other layers take care of things like formatting, and can vary in capability 
or form to address differences at every level. You don’t use different Web browsers 
depending on the type of links used on a network.  The whole point is that not all 
 networks are Ethernet (for example), so a layered protocol allows a “mix and match” of 
whatever protocols are needed for the network at each layer.

Simple Networking
Most programming languages include statements that allow the programmer to send 
bits out of a physical connector. For example, suppose a programming language allowed 
you to program a statement like write(port 20$, "test 1"). Sure enough, when com-
piled, linked, and run, the program would spit the bits representing the string “test 1” 
out the communications port of the computer.  A similar statement like read(port 20$, 
STUFF) would, when compiled, linked, and run, wait until something appeared in the 
buffer of the serial port and store the bits in the variable called STUFF.

A simple network using this technique is shown in Figure 1.8. (There is still some 
software in use that does networking this way.)

However, there are some things to consider. Is there anything attached to the port at 
all? Or are the bits just falling into the “bit bucket”? If there was a link attached, what if 
someone disconnected it while the bits are in fl ight? What about other types of errors? 
How would we know that the bits arrived safely?

Even assuming that the bits got there, and some listening process received them, 
does the content make sense? Some computers store bits differently than others, and 
“test 1” could be garbled on the other system. How many bits are sent to represent the 

System A
(sender)

System B
(receiver)

read (port 20$, STUFF)write (port 20$, “test 1”)

Bits

FIGURE 1.8

An extremely simple network with a distinctly non-layered approach to networking.
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number 1? How do we know that a “short integer” used by the sender is the same as 
the “short integer” used by another? (In fairness, TCP/IP does little to address this issue 
directly.)

We see that the networking task is not as simple as it seems. Now, each and every 
networked application program could conceivably include every line of code that is 
needed to solve all of these issues (and there are even others), but that introduces 
another factor into the networking equation. Most hosts attached to a network have 
only one communications port active at any one time (the “network interface”). If an 
“all-in-one” network application is using it, perhaps to download a music fi le, how can 
another application use the same port for email? It can’t.

Besides the need to multiplex in various ways, another factor infl uencing layers 
is that modern operating systems do not allow direct access to hardware.  The need to 
go through the operating system and multiplex the network interface leads to a cen-
tralization of the networking tasks in the end system.

Protocol layers make all of these issues easier to deal with, but they cannot be added 
haphazardly. (You can still create a huge and ugly “layer” that implements everything 
from hardware to transport to data representation, but it would work.) As important 
as the layers are, the tasks and responsibilities assigned to those layers are even more 
important.

Protocol Layers
Each layer has a separate function in the overall task of moving bits between 
processes.  These processes could be applications on separate systems, but on modern 
systems a lot of process-to-process communication is not host-to-host. For example, a 
lot of printer management software runs as a Web browser using a special loopback 
TCP/IP address to interface with the process that gathered status information from the 
printer.

As long as the boundary functions between adjacent layers are respected, layers 
can be changed or even completely rewritten without having to change the whole 
application. Layers can be combined for effi ciency, “mixed-and-matched” from different 
vendors, or customized for different circumstances, all without having to rework the 
entire stack from top to bottom.

Nearly every layer has some type of multiplexing fi eld to allow the receiver to 
determine the type of payload, or content of the data unit at a particular layer.  A key 
point in networking is that the payload and control information at one layer is just a 
“transparent” (meaningless) payload to the layer below.  Transparent bits, as the name 
implies, are passed unchanged to the next layer.

How can protocol layers work together? Introducing a bunch of new interfaces and 
protocols seems to have made the networking task harder, not easier.  There is a sim-
ple method called encapsulation that makes the entire architecture workable.  What 
is encapsulation? Think of the layers of the protocol suite in terms of writing a letter 
and the systems that are involved in letter delivery.  The letter goes inside an  envelope 
which is gathered with others inside a mailbag which is transported with others inside 
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a truck or plane. It sounds like a very complicated way to deliver one message, but 
this system makes the overall task of delivering many messages easier, not harder. For 
example, there now can be facilities that only deal with mailbags and do not worry 
about an individual letter’s language or the transportation details.

THE TCP/IP PROTOCOL SUITE
The protocol stack used on the Internet is the Internet Protocol Suite. It is usually 
called TCP/IP after two of its most prominent protocols, but there are other proto-
cols as well.  The TCP/IP model is based on a fi ve-layer model for networking. From 
bottom (the link) to top (the user application), these are the physical, data link, net-
work, transport, and application layers. Not all layers are completely defi ned by the 
model, so these layers are “fi lled in” by external standards and protocols.  The layers 
have names but no numbers, and although sometimes people speak of “Layer 2” or 
“Layer 3,” these are not TCP/IP terms.  Terms like these are actually from the OSI Refer-
ence Model.

The TCP/IP stack is open, which means that there are no “secrets” as to how it 
works. (There are “open systems” too, but with TCP/IP, the systems do not have to be 
“open” and often are not.) Two compatible end-system applications can communicate 
regardless of their underlying architectures, although the connections between layers 
are not defi ned.

The OSI Reference Model
The TCP/IP or Internet model is not the only standard way to build a protocol suite 
or stack. The Open Standard Interconnection (OSI ) reference model is a seven-
layer model that loosely maps into the fi ve layers of TCP/IP. Until the Web became 
widely popular in the 1990s, the OSI reference model, with distinctive names and 
numbers for its layers, was proposed as the standard model for all communication 
networks. Today, the OSI reference model (OSI-RM) is often used as a learning tool 
to introduce the functions of TCP/IP.

The TCP/IP stack is comprised of modules. Each module provides a specifi c 
 function, but the modules are fairly independent.  The TCP/IP layers contain relatively 
independent protocols that can be used depending on the needs of the system to 
provide whatever function is desired. In TCP/IP, each higher layer protocol is sup-
ported by lower layer protocols.  The whole collection of protocols forms a type of 
hourglass shape, with IP in the middle, and more and more protocols up or down 
from there.
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The TCP/IP Layers
The TCP/IP protocol stack models a series of protocol layers for networks and systems 
that allows communications between any types of devices.  The model consists of fi ve 
separate but related layers, as shown in Figure 1.9.  The Internet protocol suite is based 
on these fi ve layers.  TCP/IP says most about the network and transport layers, and a 
lot about the application layer.  TCP/IP also defi nes how to interface the network layer 
with the data link and physical layers, but is not directly concerned with these two 
layers themselves.

The Internet protocol suite assumes that a layer is there and available, so TCP/IP 
does not defi ne the layers themselves.  The stack consist of protocols, not implementa-
tions, so describing a layer or protocols says almost nothing about how these things 
should actually be built.

Not all systems on a network need to implement all fi ve layers of TCP/IP. Devices 
using the TCP/IP protocol stack fall into two general categories: a host or end system 
(ES) and an intermediate node (often a router) or an intermediate system (IS).  The 

User Application Programs

Application Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Network Link(s)

FIGURE 1.9

The fi ve layers of TCP/IP. Older models often show only four layers, combining the physical and 
data link layers.

Suite, Stack, and Model
The term “protocol stack” is often used synonymously with “protocol suite” as an 
implementation of a reference model. However, the term “protocol suite” properly 
refers to a collection of all the protocols that can make up a layer in the reference 
model.  The Internet protocol suite is an example of the Internet or TCP/IP refer-
ence model protocols, and a TCP/IP protocol stack implements one or more of 
these protocols at each layer.
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intermediate nodes usually only involve the fi rst three layers of  TCP/IP (although many 
of them still have all fi ve layers for other reasons, as we have seen).

In TCP/IP, as with most layered protocols, the most fundamental elements of the 
process of sending and receiving data are collected into the groups that become the 
layers. Each layer’s major functions are distinct from all the others, but layers can 
be combined for performance reasons. Each implemented layer has an interface with 
the layers above and below it (except for the application and physical layers, of course) 
and provides its defi ned service to the layer above and obtains services from the layer 
below. In other words, there is a service interface between each layer, but these are not 
standardized and vary widely by operating system.

TCP/IP is designed to be comprehensive and fl exible. It can be extended to meet 
new requirements, and has been. Individual layers can be combined for implementation 
purposes, as long as the service interfaces to the layers remain intact. Layers can even 
be split when necessary, and new service interfaces defi ned.  Services are provided to 
the layer above after the higher layer provides the lower layer with the command, data, 
and necessary parameters for the lower layer to carry out the task.

Layers on the same system provide and obtain services to and from adjacent layers. 
However, a peer-to-peer protocol process allows the same layers on different systems to 
communicate.  The term peer means every implementation of some layer is essentially 
equal to all others.  There is no “master” system at the protocol level. Communications 
between peer layers on different systems use the defi ned protocols appropriate to the 
given layer.

In other words, services refer to communications between layers within the same 
process, and protocols refer to communications between processes.  This can be con-
fusing, so more information about these points is a good idea.

Protocols and Interfaces
It is important to note that when the layers of TCP/IP are on different systems, they 
are only connected at the physical layer. Direct peer-to-peer communication between 
all other layers is impossible.  This means that all data from an application have to fl ow 
“down” through all fi ve layers at the sender, and “up” all fi ve layers at the receiver to 
reach the correct process on the other system.  These data are sometimes called a ser-
vice data unit (SDU).

Each layer on the sending system adds information to the data it receives from the 
layer above and passes it all to the layer below (except for the physical layer, which 
has no lower layers to rely on in the model and actually has to send the bits in a form 
appropriate for the communications link used).

Likewise, each layer on the receiving system unwraps the received message, often 
called a protocol data unit (PDU), with each layer examining, using, and stripping off 
the information it needs to complete its task, and passing the remainder up to the next 
layer (except for the application layer, which passes what’s left off to the application 
program itself). For example, the data link layer removes the wrapper meant for it, uses 
it to decide what it should do with this data unit, and then passes the remainder up to 
the network layer.
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The whole interface and protocol process is shown in Figure 1.10.  Although TCP/IP 
layers only have names, layer numbers are also used in the fi gure, but only for illustra-
tion. (The numbers come from the ISO-RM.)

As shown in the fi gure, there is a natural grouping of the fi ve-layer protocol stack 
at the network layer and the transport layer.  The lower three layers of TCP/IP, some-
times called the network support layers, must be present and functional on all systems, 
regardless of the end system or intermediate node role.  The transport layer links the 
upper and lower layers together.  This layer can be used to make sure that what was 
sent was received, and what was sent is useful to the receiver (and not, for example, 
a stray PDU misdirected to the host or unreasonably delayed).

The process of encapsulation makes the whole architecture workable. Encapsu-
lation of one layer’s information inside another layer is a key part of how TCP/IP 
works.

Encapsulation
Each layer uses encapsulation to add the information its peer needs on the receiving 
system.  The network layer adds a header to the information it receives from the trans-
port at the sender and passes the whole unit down to the data link layer.  At the receiver, 
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Protocols and interfaces, showing how devices are only physically connected at the lowest layer 
(Layer 1). Note that functionally, intermediate nodes only require the bottom three layers of the 
model.
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the network layer looks at the control information, usually in a header, in the data it 
receives from the data link layer and passes the remainder up to the transport layer for 
further processing.  This is called encapsulation because one layer has no idea what the 
structure or meaning of the PDU is at other layers.  The PDU has several more or less 
offi cial names for the structure at each layer.

The exception to this general rule is the data link layer, which adds both a header 
and a trailer to the data it receives from the network layer.  The general fl ow of encap-
sulation in TCP/IP is shown in Figure 1.11. Note that on the transmission media itself 
(or communications link), there are only bits, and that some “extra” bits are added by 
the communication link for its own purposes. Each PDU at the other layers is labeled 
as data for its layer, and the headers are abbreviated by layer name.  The exception is the 
second layer, the data link layer, which shows a header and trailer added at that level 
of encapsulation.

Although the intermediate nodes are not shown, these network devices will only 
process the data (at most) through the fi rst three layers. In other words, there is no 
transport layer to which to pass network-layer PDUs on these systems for data com-
munications (management is another issue).
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FIGURE 1.11

TCP/IP encapsulation and headers. The unstructured stream of bits represents frames with 
 distinct content.
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THE LAYERS OF TCP/IP
TCP/IP is mature and stable, and is the only protocol stack used on the Internet.  This 
book is all about networking with TCP/IP, but it is easy to get lost in the particulars of 
TCP/IP if some discussion of the general tasks that TCP/IP is intended to accomplish is 
not included.  This section takes a closer look at the TCP/IP layers, but only as a general 
guide to how the layers work.

TCP/IP Layers in Brief

■ Physical Layer:  Contains all the functions needed to carry the bit stream over a 
physical medium to another system.

■ Data Link Layer:  Organizes the bit stream into a data unit called a “frame” and 
delivers the frame to an adjacent system.

■ Network Layer:  Delivers data in the form of a packet from source to destina-
tion, across as many links as necessary, to non-adjacent systems.

■ Transport Layer:  Concerned with process-to-process delivery of information.

■ Application Layer:  Concerned with differences in internal representation, user 
interfaces, and anything else that the user requires.

The Physical Layer
The physical layer contains all the functions needed to carry the bit stream over a 
 physical medium to another system. Figure 1.12 shows the position of the physical layer 
to the data link layer and the transmission medium.  The transmission medium forms a 
pure “bit pipe” and should not change the bits sent in any way. Now, transmission “on 
the wire” might send bits through an extremely complex transform, but the goal is to 
enable the receiver to reconstruct the bit stream exactly as sent. Some information in 
the form of transmission framing can be added to the data link layer data, but this is 
only used by the physical layer and the transmission medium itself. In some cases, the 
transmission medium sends a constant idle bit pattern until interrupted by data.

Physical layer specifi cations have four parts: mechanical, electrical or optical, 
 functional, and procedural.  The mechanical part specifi es the physical size and shape of 
the connector itself so that components will plug into each other easily.  The  electrical/
optical specifi cation determines what value of voltage or line condition determines 
whether a pin is active or what exactly represents a 0 or 1 bit.  The functional specifi -
cation specifi es the function of each pin or lead on the connector (fi rst lead is send, 
second is receive, and so on).  The procedural specifi cation details the sequence of 
actions that must take place to send or receive bits on the interface. (For Ethernet, the 
send pair is activated, then a “preamble” is sent, and so forth.) The Ethernet twisted-
pair interfaces from the IEEE are common implementations of the physical layer that 
includes all these elements.

30 PART I Networking Basics



There are other things that the physical layer must determine, or be confi gured to 
expect.

Data rate—This transmission rate is the number of bits per second that can be 
sent. It also defines the duration of a symbol on the wire. Symbols usually 
represent one or more bits, although there are schemes in which one bit is 
represented by multiple symbols.

Bit synchronization—The sender and receiver must be synchronized at the sym-
bol level so that the number of bits expected per unit time is the same. In other 
words, the sender and receiver clocks must be synchronized (timing is in the 
millisecond or microsecond range). On modern links, the timing information is 
often “recovered” from the received data stream.

Configuration—So far we’ve assumed simple point-to-point links, but this is not 
the only way that systems are connected. In a multipoint configuration, a link 
connects more than two devices, and in a multisystem bus/broadcast topol-
ogy such as a LAN, the number of systems can be very high.

Topology—The devices can be arranged in a number of ways. In a full mesh topol-
ogy, all devices are directly connected and one hop away, but this requires a 
staggering amount of links for even a modest network. Systems can also be 
arranged as a star topology, with all systems reachable through a central system. 
There is also the bus (all devices are on a common link) and the ring (devices 
are chained together, and the last is linked to the first, forming a ring).

Mode—So far, we’ve only talked about one of the systems as the sender and the 
other as the receiver.  This is operation in simplex mode, where a device can 
only send or receive, such as with weather sensors reporting to a remote 
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The physical layer. The transmission framing bits are used for transmission media purposes only, 
such as low-level control.
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weather station. More realistic devices use duplex mode, where all systems 
can send or receive with equal facility.  This is often further distinguished as 
half-duplex (the system can send and receive, but not at the same time) and 
full-duplex (simultaneous sending and receiving).

The Data Link Layer
Bits are just bits.  With only a physical layer, System A has no way to tell System B, “Get 
ready some bits,” “Here are the bits,” and “Did you get those bits okay?” The data link 
layer solves this problem by organizing the bit stream into a data unit called a frame.

It is important to note that frames are the data link layer PDUs, and these are not the 
same as the physical layer transmission frames mentioned in the previous section. For 
example, network engineers often speak about T1 frames or SONET frames, but these 
are distinct from the data link layer frames that are carried inside the T1 or SONET 
frames.  Transmission frames have control information used to manage the physical link 
itself and has little to do directly with process-to-process communications.  This “dou-
ble-frame” arrangement might sound redundant, but many transmission frames origi-
nated with voice because digitized voice has no framing at the “data link” layer.

The data link layer moves bits across the link and can add reliability to the raw com-
munications link.  The data link layer can be very simple, or make the link appear error-
free to the layer above, the network layer.  The data link layer usually adds both a header 
and trailer to the data presented by the network layer.  This is shown in Figure 1.13.

The frame header typically contains a source and destination address (known as the 
“physical address” since it refers to the physical communication port) and some con-
trol information.  The control information is data passed from one data link layer to the 

From Network Layer

To Physical Layer From Physical Layer

To Network Layer

Frame
Trailer

Frame
Header

Trl HdrData Link Layer Data Trl HdrData Link Layer Data

Frame

FIGURE 1.13

The data link layer, showing that data link layer frames have both header and trailer.
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other data link layer, and not user data.  The body of the frame contains the sequence of 
bits being transferred across the network.  The trailer usually contains information used 
in detecting bit errors (such as cyclical redundancy check [CRC]).  A maximum size is 
associated with the frame that cannot be exceeded because all systems must allocate 
memory space (buffers) for the data. In a networking context, a buffer is just special 
memory allocated for communications.

The data link layer performs framing, physical addressing, and error detection 
(error correction is another matter entirely, and can be handled in many ways, such 
as by resending a copy of the frame that had the errors). However, when it comes to 
frame error detection and correction in the real world, error detection bits are some-
times ignored and frames that defy processing due to errors are simply discarded.  This 
does not mean that error detection and correction are not part of the data link layer 
 standards: It means that in these cases, ignoring and discarding are the chosen meth-
ods of implementation. In discard cases, the chore of handling the error condition is 
“pushed up the stack” to a higher layer protocol.

This layer also performs access control (this determines whose turn it is to send 
over or control the link, an issue that becomes more and more interesting as the 
number of devices sharing the link grows). In LANs, this media access control (MAC) 
forms a sublayer of the data link layer and has its own addressing scheme known (not 
surprisingly) as the MAC layer address or MAC address.  We’ll look at MAC addresses 
in the next chapter. For now, it is enough to note that LANs such as Ethernet do not 
have “real” physical layer addresses and that the MAC address performs this addressing 
function.

In addition, the data link layer can perform some type of fl ow control. Flow control 
makes sure senders do not overwhelm receivers: a receiver must have adequate time 
to process the data arriving in its buffers.  At this layer, the fl ow control, if provided, is 
link-by-link. (We’ll see shortly that end-to-end—host-to-host—fl ow control is provided 
by the transport layer.) LANs do not usually provide fl ow control at the data link layer, 
although they can.

Not all destination systems are directly reachable by the sender.  This means that 
when bits at the data link layer are sent from an originating system, the bits do not arrive 
at the destination system as the “next hop” along the way. Directly reachable  systems 
are called adjacent systems, and adjacent systems are always “one hop away” from the 
sender.  When the destination system is not directly reachable by the sender, one or 
more intermediate nodes are needed. Consider the network shown in  Figure 1.14.

Now the sender (System A) is not directly connected to the receiver (System B). 
Another system, System 3, receives the frame and must forward it toward the 
destination.  This system is usually called a switch or router (there are even other names), 
depending on internal architecture and network role. On a WAN (but not on a LAN), 
this second frame is a different frame because there is no guarantee that the  second 
link is identical to the fi rst. Different links need different frames. Identical frames are 
only delivered to systems that are directly reachable, or adjacent, to the sender, such as 
by an Ethernet switch on a LAN.
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FIGURE 1.15

Hop-by-hop forwarding of frames. The intermediate systems also have a Layer 3, but this is not 
shown in the fi gure for clarity.

Networking with intermediate systems is called hop-by-hop delivery.  A “hop” is the 
usual term used on the Internet or a router network to indicate the forwarding of a 
packet between one router or another (or between a host and router). Frames can “hop” 
between Layer 2 switches, but the term is most commonly used for Layer 3 router hops 
(which can consist of multiple switch-to-switch frame “hops”).  There can be more than 
one  intermediate system between the source and destination end systems, of course, 
as shown in Figure 1.15. Consider the case where End System A is sending a bit stream 
to End System C.

System A
(sender)

System 3
(switch/router)

System B
(receiver)

A Frame A Different
Frame

Send “STUFF”
to System B

Intermediate
System

I got “STUFF”
from System A

FIGURE 1.14

A more complex network. Note that the frames are technically different even if the same medium 
is used on both links.
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Note that the intermediate systems (routers) have two distinct physical and data link 
layers, refl ecting the fact that the systems have two (and often more) communication 
links, which can differ in many ways. (The fi gure shows a typical WAN  confi guration 
with point-to-point links, but routers on LANs, and on some types of public data service 
WANs, can be deployed in more complicated ways.)

However, there is something obviously missing from this fi gure.  There is no con-
nection between the data link layers on the intermediate systems! How does the 
router know to which output port and link to forward the data in order to ultimately 
reach the destination? (In the fi gure, note that Intermediate System 1 can send data to 
either Intermediate System 2 or Intermediate System 3, but only through Intermediate 
 System 3, which forwards the data, is the destination reachable.)

These forwarding decisions are made at the TCP/IP network layer.

The Network Layer
The network layer delivers data in the form of a packet from source to destination, 
across as many links as necessary.  The biggest difference between the network layer 
and the data link layer is that the data link layer is in charge of data delivery between 
adjacent systems (directly connected systems one hop away), while the network layer 
delivers data to systems that are not directly connected to the source.  There can be 
many different types of data link and physical layers on the network, depending on the 
variety of the link types, but the network layer is essentially the same on all systems, 
end systems, and intermediate systems alike.

Figure 1.16 shows the relationship between the network layer and the transport 
layer above and the data link layer below.  A packet header is put in place at the sender 
and interpreted by the receiver.  A router simply looks at the packet header and makes 
a forwarding decision based on this information.  The transport layer does not play a 
role in the forwarding decision.

From Transport Layer

To Data Link Layer From Data Link Layer

Network Layer Data Network Layer Data

Packet
Header

NH NH

Packet

To Transport Layer

FIGURE 1.16

The network layer. These data units are packets with their own destination and source address 
formats.
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How does the network layer know where the packet came from (so the sender can 
reply)? The key concept at the network layer is the network address, which provides 
this information. In TCP/IP, the network address is the IP address.

Every system in the network receives a network address, whether an end system 
or intermediate system. Systems require at least one network address (and sometimes 
many more). It is important to realize that this network address is different from, and 
independent of, the physical address used by the frames that carry the packets between 
adjacent systems.

Why should the systems need two addresses for the two layers? Why can’t they 
just both use either the data link (“physical”) address or the network address at 
both layers? There are actually several reasons. First, LAN addresses like those used 
in Ethernet come from one group (the IEEE), while those used in TCP/IP come 
from another group (ICANN).  Also, the IP address is universally used on the Inter-
net, while there are many types of physical addresses. Finally, there is no systematic 
assignment of physical addresses (and many addresses on WANs can be duplicates 
and so have “local signifi cance only”). On the other hand, IP network addresses are 
globally administered, unique, and have a portion under which many devices are 
grouped.  Therefore, many devices can be addressed concisely by this network por-
tion of the IP address.

A key issue is how the network addresses “map” to physical addresses, a process 
known generally as address resolution. In TCP/IP, a special family of address resolution 
protocols takes care of this process.

The network address is a logical address. Network addresses should be organized so 
that devices can be grouped under a part of that address. In other words, the network 
address should be organized in a fashion similar to a telephone number, for example, 
212-555-1212 in the North American public switched telephone network (PSTN).  The 
sender need only look at the area code or “network” portion of this address (212) to 
determine if the destination is local (area codes are the same) or needs to be sent to 
an intermediate system to reach the 212 area code (source and destination area codes 
differ).

For this scheme to work effectively, however, all telephones that share the 212 area 
code should be grouped together.  The whole telephone number beginning with 212 
therefore means “this telephone in the 212 area code.” In TCP/IP, the network address 
is the beginning of the device’s complete IP address.  A group of hosts is gathered under 
the network portion of the IP address. IP network addresses, like area codes, are glob-
ally administered to prevent duplication, while the rest of the IP address, like the rest 
of the telephone number, is locally administered, often  independently.

In some cases, the packet that arrives at an intermediate system inside a frame is too 
large to fi t inside the frame that must be sent out.  This is not uncommon: different link 
and LAN types have different maximum frame sizes.  The network layer must be able 
to fragment a data unit across multiple frames and reassemble the fragments at the 
destination.  We’ll say more about fragmentation in a later chapter.
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The network layer uses one or more routing tables to store information about 
reachable systems.  The routing tables must be created, maintained, and purged of old 
information as the network changes due to failures, the addition or deletion of systems 
and links, or other confi guration changes.  This whole process of building tables to pass 
data from source to destination is called routing, and the use of these tables for packet 
delivery is called forwarding.  The forwarding of packets inside frames always takes 
place hop by hop.  This is shown in Figure 1.17, which adds the network layer to the 
data link layers already present and distinguishes between hop-by-hop forwarding and 
end-to-end delivery.

On the Internet, the intermediate systems that act at the packet level (Layer 3) 
are called routers. Devices that act on frames (Layer 2) are called switches, and some 
older telephony-based WAN architectures use switches as intermediate network nodes. 
Whether a node is called a switch or router depends on how they function internally. 

FIGURE 1.17

Source-to-destination delivery at the network layer. The intermediate systems now have all three 
required layers.
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In a very real sense, the network layer is at the very heart of any protocol stack, and 
TCP/IP is no exception.  The protocol at this layer is IP, either IPv4 or IPv6 (some think 
that IPv6 is distinct enough to be known as TCPv6/IPv6).

The Transport Layer
Process-to-process delivery is the task of the transport layer. Getting a packet to the 
destination system is not quite the same thing as determining which process should 
receive the packet’s content.  A system can be running fi le transfer, email, and other 
network processes all at the same time, and all over a single physical interface. Natu-
rally, the destination process has to know on which process the sender originated the 
bits inside the packet in order to reply.  Also, systems cannot simply transfer a huge 
 multimegabit fi le all in one packet. Many data units exceed the maximum allowable 
size of a packet.

This process of dividing message content into packets is known as segmentation.  The 
network layer forwards each and every packet independently, and does not recognize 
any relationship between the packets. (Is this a fi le transfer or email packet? The net-
work layer does not care.) The transport layer, in contrast, can make sure the whole 
message, often strung out in a sequence of packets, arrives in order (packets can be 
delivered out of sequence) and intact (there are no errors in the entire message).  This 
function of the transport layer involves some method of fl ow control and error con-
trol (error detection and error correction) at the transport layer, functions which are 
absent at the network layer.  The transport-layer protocol that performs all of these 
functions is TCP.

The transport-layer protocol does not have to do any of this, of course. In many 
cases, the content of the packet forms a complete unit all by itself, called a datagram. 
(The term “datagram” is often used to refer to the whole IP packet, but not in this book.) 
Self-contained datagrams are not concerned with sequencing or fl ow control, and these 
functions are absent in the User Datagram Protocol (UDP) at the transport layer.

So there are two very popular protocol packages at the transport layer:

■  TCP—This is a connection-oriented, “reliable” service that provides ordered 
 delivery of packet contents.

■  UDP—This is a connectionless, “unreliable” service that does not provide 
ordered delivery of packet contents.

In addition to UDP and TCP, there are other transport-layer protocols that can be used 
in TCP/IP, all of which differ in terms of how they handle transport-layer tasks. Devel-
opers are not limited to the standard choices for applications. If neither TCP nor UDP 
nor any other defi ned transport-layer service is appropriate for your application, you 
can write your own transport-layer protocols and get others to adapt it (or use your 
application package exclusively).
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In TCP/IP, it is often said that the network layer (IP itself) offers an “unreliable” or 
“best effort” service, while the transport layer adds “reliability” in the form of fl ow and 
error control. Later in this book, we’ll see why these terms are unfortunate and what 
they really mean.

The network layer gets a single packet to the right system, and the transport 
 layer gets the entire message to the right process. Figure 1.18 shows the transport 
layer breaking up a message at the sender into three pieces (each labeled “TL data” for 
 transport-layer data and “TH” for transport-layer header).  The fi gure then shows the 
transport layer reassembling the message at the receiver from the various segments that 
make up a message. In TCP/IP, there are also data units known as datagrams, which are 
always handled as self-contained units.  There are profound differences between how 
the transport layer treats segments and datagrams, but this fi gure is just a general illus-
tration of segment handling.

The functions that the transport layer, which in some protocols is called the end-to-
end layer, might have to include follow:

Process addressing and multiplexing—Also known as “service-point addressing,” 
the transport layer has to decide which process originated the message and to 
which process the message must be delivered. These are also known as port 
addresses in TCP/IP. Port addresses are an important portion of the application 
socket in TCP/IP.

Segment handling—In cases where each message is divided into segments, each 
segment has a sequence number used to put the message back together at the 
destination. When datagrams are used, each data unit is handled independently 
and sequencing is not necessary.

From Application Layer To Application Layer

To Network Layer

TL data TH

Segments

TL data TL dataTH TH TL data

Chunk of Data

TH

2

From Network Layer

Chunk of Data

TL data TH

3
TL data TH

1

FIGURE 1.18

The transport layer, showing how data are broken up if necessary and reassembled at the 
 destination.
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Connection control—The transport layer can be connectionless or connec-
tion-oriented (in fact, several layers can operate in either one of these ways). 
 Connectionless (CL) layers treat every data unit as a self-contained,  independent 
unit. Connection-oriented (CO) layers go through a three-phase process every 
time there is data to send to a destination after an idle period (connection 
durations can vary). First, some control messages establish the connection, 
then the data are sent (and exchanged if replies are necessary), and finally the 
connection is closed. Many times, a comparison is made between a telephone 
conversation (“dial, talk, hang up”) with connections and an intercom (“push 
and talk any time”) for connectionless communications, but this is not precise. 
Generally, segments are connection-oriented data units, and datagrams are con-
nectionless data units.

Flow control—Just as with the data link layer, the transport layer can include flow 
control mechanisms to prevent senders from overwhelming receivers. In this 
case, however, the flow control is end-to-end rather than link-by-link. Data-
grams do not require this service.

Error control—This is another function that can be performed at the data link 
layer, but again end-to-end at the transport layer rather than link-by-link. Com-
munications links are not the only source of errors, which can occur inside a 
system as well.  Again, datagrams do not require this service.

Figure 1.19 shows the relationship between the network layer and transport layer 
more clearly.  The network layer operates from network interface to network interface, 
while the transport layer is more specifi c and operates from process to process.

Process on System A Process on System B

Internetwork
(for example, the Internet)

Network Layer
End-to-End Delivery

Transport Layer
 Process-to-Process Delivery

FIGURE 1.19

Reliable process-to-process delivery with the transport layer.
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The Application Layer
It might seem that once data are transferred from end-system process to end-system 
process, the networking task is pretty much complete.  There is a lot that still needs 
to be done at the application level itself. In models of protocol stacks, it is common 
to place another layer between the transport layer and the user, the application layer. 
However, the TCP/IP protocol stack really stops at the transport layer (where TCP and 
UDP are). It is up to the application programmer to decide what should happen at the 
client and server level at that point, although there are individual RFCs for guidance, 
such as for FTP.

Although it is common to gather these TCP/IP applications into their own layer, 
there really is no such thing in TCP/IP as an application layer to act as some kind of 
“glue” between the application’s user and the network.

In nearly all TCP/IP stacks, the application layer is part of the application process. 
In spite of the lack of a defi ned layer, a TCP/IP application might still have a lot to do, 
and in some ways the application layer is the most complex “layer” of all.

There are two major tasks that the application often needs to accomplish: session 
support and conversion of internal representation. Not all applications need both, of 
course, and some applications might not need either, but this overview includes both 
major functions.

Session Support
A session is a type of dialog controller between two processes that establishes, main-
tains, and synchronizes (controls) the interaction (dialog).  A session decides if the com-
munication can be half-duplex (both ends take turns sending) or full-duplex (both 
ends can send whenever they want). It also keeps a kind of “history” of the interaction 
between endpoints, so that when things go wrong or when the two communicate 
again, some information does not have to be resent.

In practical terms, the session consists of all “state variables” necessary to construct 
the history of the connection between the two devices. It is more diffi cult, but not 
impossible, to implement sessions in a connectionless environment because there is 
no easy way to associate the variables with a convenient label.

Internal Representation Conversion
The role of internal representation conversion is to make sure that the data exchange 
over the network is useful to the receivers. If the internal representation of data dif-
fers on the two systems (integer size, bit order in memory, etc.), the application layer 
translates between the formats so the application program does not have to.  This layer 
can also provide encryption and compression functions, although it is more common 
to implement these last two functions separately from the network.

Standard protocol specifi cations can use the Abstract Syntax Notation 1 (ASN.1) 
defi nitions for translation purposes. ASN.1 can be used in programming, network 
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 management, and other places.  ASN.1 defi nes various things such as which bit is “fi rst 
on the wire” regardless of how it is stored internally, how many bits are to be sent for 
the numbers 0 through 255 (8), and so on. Everything can be translated into ASN.1, sent 
across the network, and translated back to whatever internal format is required at the 
destination.

The role of internal representation conversion is shown in Figure 1.20.  The fi gure 
shows four sequential memory locations, each storing the letter “a” followed by the 
integer 259. Note that not only are there differences between the amount of memory 
addressed at once, but also in the order of the bits for numerics.

In some protocol stacks, the application program can rely on the services of a fully 
functional conversion for internal representation to perform these services. However, 
in TCP/IP, every network application program must do these things for itself.

Applications in TCP/IP
TCP/IP does not provide session or presentation services directly to an application. 
Programmers are on their own, but this does not mean they have to create everything 
from scratch. For example, applications can use a character-based presentation ser-
vice called the Network Virtual Terminal (NVT), part of the Internet’s telnet remote 
access specifi cation. Other applications can use Sun’s External Data Representation 
(XDR) or IBM’s (and Microsoft’s) NetBIOS programming libraries for presentation 
services. In this respect, there are many presentation layer services that TCP/IP can 
use, but there is no formal presentation service standard in TCP/IP that all applica-
tions must use.

Host TCP/IP implementations typically provide a range of applications that provide 
users with access to the data handled by the transport-layer protocols.  These appli-
cations use a number of protocols that are not part of TCP/IP proper, but are used 
with TCP/IP.  These protocols include the Hyper-Text Transfer Protocol (HTTP) used by 
Web browsers, the Simple Message Transfer Protocol (SMTP) used for email, and many 
 others.

Architecture A

a 

00000001 

00000011 

a 

00000001 

text “a” 

integer 259 
00000011 

Architecture B

FIGURE 1.20

Internal representation differences. Integers can have different bit lengths and can be stored 
 differently in memory.
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In TCP/IP, the application protocol, the application service, and the user application 
itself often share the same name.  The fi le transfer protocol in TCP/IP, called FTP, is at 
once an application protocol, an application service, and an application run by a user. 
It can sometimes be confusing as to just which aspect of FTP is under discussion.

The role of TCP/IP applications is shown in Figure 1.21. Note that this “layer” sits on 
top of the TCP/IP protocol stack and interfaces with programs or users directly.

Some protocols provide separate layers for sessions, internal representation 
 conversion, and application services. In practice, these are seldom implemented 
 independently. It just makes more sense to bundle them together by major application, 
as in TCP/IP.

THE TCP/IP PROTOCOL SUITE
To sum up, the fi ve layers of TCP/IP are physical, data link, network, transport, and 
application.  The TCP/IP stack is a hierarchical model made up of interactive mod-
ules. Each module provides a specifi c function. In TCP/IP, the layers contain rela-
tively independent protocols that can be “mixed and matched” depending on the 
needs of the system to provide whatever function is desired.  TCP/IP is hierarchical 
in the sense that each higher layer protocol is supported by one or more lower layer 
 protocols.

Figure 1.22 maps some of the protocols used in TCP/IP to the various layers of  TCP/IP. 
Every protocol in the fi gure will be discussed in this book, most in chapters all their own.
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Application Data
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To Transport Layer From Transport Layer

To User

Application Data

SMTPSMTP

FIGURE 1.21

TCP/IP applications, showing how multiple applications can all share the same network 
 connection.
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FIGURE 1.22

TCP/IP protocols and layers. Note the position of some protocols between layers.

With few exceptions, the TCP/IP protocol suite does not really defi ne any low-level 
protocols below the network layer.  TCP/IP usually specifi es how to put IP packets into 
frames and how to get them out again. Many RFCs defi ne IP mapping into these lower-
layer protocols.  We’ll talk more about this mapping process in Chapter 2.
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QUESTIONS FOR READERS
Refer to Figure 1.23 to help you answer the following questions.
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FIGURE 1.23

Summary of layered communications.

1.  What are the differences between network-layer delivery and transport-layer 
delivery?

2. What are the main characteristics of a peer-to-peer process?

3. What are port addresses, logical addresses, and physical addresses?

4. What are the functions of the data link layer in the Internet model?

5. Which two major types of services can be provided at the application “layer”?
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CHAPTER

What You Will Learn
In this chapter, you will learn more about the TCP/IP protocol stack and the tools 
used in this book to investigate the Illustrated Network.  We’ll look at more details of 
TCP/IP and explore how TCP/IP devices provide internetworking from LAN to LAN.

You will learn about the types of devices used to connect LANs (such as 
bridges and routers) and conclude with the concept of VLANs and Metro Ethernet 
 services.

TCP/IP Protocols 
and Devices 2

The LANs on the Illustrated Network, including the LAN in the home offi ce, are 
 connected using routers as the network nodes. Each LAN forms a discrete network by 
itself, with its own clients and servers.  When previously separate LANs are connected, 
or a previously complete LAN is segmented, the result is often called an internetwork.

Routers can be used to build an internetwork of LANs, but this is not the only way. 
Routers operate at the packet layer (Layer 3 of the TCP/IP model), and LANs can be 
linked or segmented at other layers of a protocol stack as well. Some routers can also 
function at these other layers, as the routers on the Illustrated Network can (i.e., rout-
ers often include functions other than pure routing). However, in many cases, different 
devices are used to link and segment LANs, devices that are not really routers at all.

This chapter will take a closer look at the Illustrated Network in several areas. First, 
we’ll take a closer look at the individual layers and protocols that make up the TCP/IP 
protocol stack.  Then, we’ll investigate how devices handle internetworking from LAN 
to LAN at each protocol layer. Finally, we’ll describe some other devices or methods 
that can be used between LANs, ending with a concept known as a virtual LAN or 
VLAN. VLANs are used by service providers to support a service known as Metropoli-
tan Ethernet or Metro Ethernet. 

Figure 2.1 shows the areas of the Illustrated Network we will be investigating in this 
chapter.  The protocol stacks and layers run mainly on the host clients and servers, so 
the devices on the two LANs are shaded, along with the customer edge routers.  We’ll 
also mention the Gigabit Ethernet links and a Metro Ethernet, so those are highlighted 
as well.



FIGURE 2.1

Internetworking on the Illustrated Network LAN. Note that there are two geographically
separate LANs in New York and Los Angeles that must communicate.
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Each host in Figure 2.1 has three types of addresses associated with the interface 
 connected to the LAN.  The fi rst is the IPv4 address. For example, the LAN interface on 
host lnxserver is eth0 and the IPv4 address is 10.10.11.66.  The next address is the 
hardware address, or MAC address on a LAN: 00:d0:b7:1f:fe:e6. Finally, each host 
lists the link-local IPv6 address based on this MAC address, or fe80::2d0:b7ff:fe1f:
fee6 for lnxserver.  We’ll talk more about IPv4 and IPv6 addressing and packets in 
Chapters 4 through 6.

PROTOCOL STACKS ON THE ILLUSTRATED NETWORK
LANs on the Illustrated Network send and receive frames, mainly Ethernet II frames. 
Inside the frames are the packets that fl ow from source to destination.  The packets, and 
the messages inside the packets, are formatted according to the individual protocols 
that make up the TCP/IP protocol stack.

What major TCP/IP protocols are used on the Illustrated Network? Ethereal has a 
convenient summary screen that displays whenever Ethereal is capturing packets. Let’s 

FIGURE 2.2

Ethereal capture summary, showing the number of packets used by different protocols. Often a 
very few types predominate.
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run Ethereal on wincli2 and see what kind of protocols we capture when we remotely 
access router CE6 and fi nd the IP address associated with winsrv1.  The summary screen 
is shown in Figure 2.2.

Most of the packets we have captured contain TCP.  There are a couple from the 
User Datagram Protocol (UDP) and Address Resolution Protocol (ARP).  The relation-
ship between Ethernet II frames, IP packets, and these protocols is clearer when we 
look at the Ethereal protocol hierarchy statistics screen, as shown in Figure 2.3.

It is easy to see in the fi gure that all of the frames are Ethernet (II) frames, and that 
all but 3 of the 73 packets captured are IP packets.  The 70 IP packets include 67 TCP 
packets and 3 UDP packets.  We’ll explore more about how all of these protocols fi t 
together in this chapter.

LAYERS, PROTOCOLS, PORTS, AND SOCKETS
We’ll take a closer look at frames in Chapter 3. For now, all we need to know is that 
layered protocols like TCP/IP function in a specifi c way. Frames are sent on LANs and 
inside the frame are packets.  The packets carry the information from device to device. 
This information can be application data, but there are also packets that perform con-
trol and administrative tasks as well as data transfer.

Layering is not a magical solution to network protocol implementation. There 
is  usually only one network interface on a host, so all applications must share this 
 common interface, which has the network (IP) address. But how are arriving packets 
distributed to the proper application? The packets are all for this IP address, but which 
application layer process gets the information inside the packet?

The transport-layer protocol that should process the information inside the packet 
is indicated by the value in the protocol fi eld of the IPv4 header. (We’ll talk about IPv4 
now, and detail the fi elds in the IPv4 and IPv6 headers in a later chapter.)

FIGURE 2.3

Ethereal protocol hierarchy statistics. We’ll be working almost exclusively with Ethernet frames 
on the Illustrated Network, but not always.
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Inside the transport layer data unit, the receiving application is indicated by the 
port number in the transport layer header (again, we’ll discuss these header fi elds in 
full in later chapters). By looking at the protocol and port fi elds, the TCP/IP stack at the 
destination knows which application gets the information. If two applications try to 
use the same port at the same time, this is an error condition.

Another important application layer concept in TCP/IP is the socket.  A socket is the 
combination of the IP address and port number.  We’ve already seen that this combina-
tion will uniquely identify an application.  The socket is also the way that programmers 
often write networking application, using the socket as a kind of entry point to the 
other layers of the protocol stack. Often, sockets are built into the application program-
ming interface (API).

An API is an important part of the application layer interface, but not all APIs are 
socket-based. Sockets are not even tied to the protocols themselves. Sockets and ports 
are important enough in TCP/IP to merit a detailed examination in a later chapter 
of this book. For now, we’ll just look where the port number is carried and how the 
socket identifi er is determined.

How can we fi nd the port and socket in an IP packet inside an Ethernet frame? Let’s 
use Ethereal to fi nd them.

First, we’ll use a little “echo” client and server utility on the Linux hosts to generate 
the frames for this exercise. (Note: This “echo” utility is not the same as the /bin/echo 
program on Linux systems.) We can invoke the server on the lnxserver host and use 
the client to send a simple string to be echoed back by the server process. We’ll use 
Tethereal (the text version of Ethereal) this time, just to show that the same  information 
is available in either the graphical or text-based version.

First, we’ll run the Echo server process, which normally runs on port 7, on port 55555. 
This will help us easily locate the data we are looking for in the Ethereal capture.

[root@lnxserver admin]# .  /echo 55555

We have to run Tethereal on each end as well, if we want to compare frames.  The 
command is the same on the client and server.  We’ll use the verbose (–V) switch to see 
the MAC layer information as packets arrive.

[root@lnxclient admin]# /usr/sbin/tethereal –V
Capturing on eth0

Now we can invoke the Echo client to bounce the string TESTING123 off the server 
process.

[root@lnxclient admin]# .  /echo 10.10.11.66 TESTING123 55555
Received: TESTING123
[root@lnxclient admin]#
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What did we get? Let’s look at the frames leaving the client.  We only need to  examine 
the information pertaining to the port and socket. Only one of the frames captured is 
shown.

[root@lnxclient admin]# /usr/sbin/tethereal –V
Capturing on eth0

. . .

Frame 4 (52 bytes on wire, 52 bytes captured)
 Arrival Time: May 16, 2008 13:32:59.702046000
 Time delta from previous packet: 57.243134000 seconds
 Time relative to first packet: 62.239970000 seconds
 Frame Number: 4
 Packet Length: 52 bytes
 Capture Length: 52 bytes
Ethernet II, Src: 00:b0:d0:45:34:64, Dst: 00:05:85:8b:bc:db
 Destination: 00:05:85:8b:bc:db (Juniper__8b:bc:db)
 Source: 00:b0:d0:45:34:64 (Dell_45:34:64)
 Type: IP (0x0800)
Internet Protocol, Src Addr: 10.10.12.166 (10.10.12.166), Dst Addr: 10.10.11.66 
(10.10.11.66)
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
 0000 00.. = Differentiated Services Codepoint: Default (0x00)
 .... ..0. = ECN-Capable Transport (ECT): 0
 .... ...0 = ECN-CE: 0
 Total Length: 38
 Identification: 0x0000
 Flags: 0x04
 .1.. = Don't fragment: Set
 ..0. = More fragments: Not set
 Fragment offset: 0
 Time to live: 64
 Protocol: UDP (0x11)
 Header checksum: 0x0ecc (correct)
 Source: 10.10.12.166 (10.10.12.166)
 Destination: 10.10.11.66 (10.10.11.66)
User Datagram Protocol, Src Port: 32825 (32825), Dst Port: 55555 (55555)
 Source port: 32825 (32825)
 Destination port: 55555 (55555)
 Length: 18
 Checksum: 0x1045 (correct)
Data (10 bytes)
0000 54 45 53 54 49 4e 47 31 32 33 TESTING123

CHAPTER 2 TCP/IP Protocols and Devices 53



Let’s look at the fi elds that are emphasized. First, we have captured an Ethernet II 
frame with an IPv4 packet inside.  The frame’s type fi eld value of 0x800 determines this. 
In the IP packet, the message from the client to the server, which starts on the next 
line, the source address is 10.10.12.166 (lnxclient) and the destination address is 
10.10.11.66 (lnxserver), as they should be.

We can ignore the rest of the IP header fi elds for now, and skip down to where the 
source and destination port are highlighted.  The source port chosen by the client is 
32825 and the port on the server that will receive the data is 55555.  We decided that 
55555 would be the server port, and the client chose a port number to use based on 
certain rules, which we will talk about in a later chapter.

Now that we know the IP addresses and ports used, we can determine the socket 
at each host.  This is shown in Table 2.1.

THE TCP/IP PROTOCOL STACK
The layering of TCP/IP is important if IP packets are to run on almost any type of 
 network.  The IP packet layer is only one layer, and from the TCP/IP perspective, the 
layer or layers below the IP layer are not as important as the overall fl ow of packets 
from one host (end system) to another across the network.

Layering means that you only have to adapt one type of packet to an underlying net-
work type to get the entire TCP/IP suite. Once the packet has been “framed,” you need 
not worry about TCP/UDP, or any other protocol: they come along for the ride with the 
layering. Only the IP layer has to deal with the underlying hardware.

All that really matters is that the device at the receiving end understands the type of 
IP packet encapsulation used at the sending end. If only one form of packet encapsula-
tion was used, the IP packets could remain inside the frame with a globally unique MAC 
address from source to destination. Network nodes could forward the frame without 
having to deal with the packet inside.  We’ll talk more about the differences between 
forwarding frames and forwarding packets later on in this book.

TCP/IP is considered to be a peer protocol stack, which means that every implemen-
tation of  TCP/IP is considered to have the same capabilities as every other.  There are 
no “restricted” or “master” versions of  TCP/IP that anyone need be concerned about. So, 
for example, there is no special server stack needed.

However, this does not mean that all protocol stacks function in precisely the same 
way.  TCP/IP, like many other protocol stacks, is implemented according to a model 
known as the client–server model.

Table 2.1 Port and Sockets

Value Inxclient lnxserver

IP address 10.10.12.166 10.10.11.66

Port 32825 55555

Socket 10.10.12.166:32825 10.10.11.66:55555
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THE CLIENT–SERVER MODEL
The hosts that run TCP/IP usually fall into one of two major categories:  The host 
could be client or the host could be a server. However, this is mostly an  application-
layer model issue because most computers are fully multitasking-capable today. It 
is possible that the same host could be running the client version of a program for 
one application (e.g., the Web browser) and the server version of another program 
(e.g., a fi le transfer server) at the same time. Dedicated servers are most common 
on the  Internet, but almost all client computers can act as servers for a variety of 
 applications. The details are not as important as the interplay among layers and 
 applications.

Peer-to-Peer Models
The client–server model is not the only way to implement a protocol stack. Many 
applications implement a peer-to-peer model. Peer applications have exactly the 
same capabilities whether used as a client or as a server. Distributed fi le-sharing 
systems on the Internet typically function as both client (fetching fi les for the 
user) and as a server (allowing user fi les to be shared by others).

The differences between client–server and peer-to-peer models are mainly appli-
cation layer differences.  A desktop computer that runs a Web browser and has fi le 
sharing turned on is both client and server, but is not now peer-to-peer.  As an aside, 
in X-windows, which is not discussed in this book, the terms “client” and “server” 
are actually reversed and users sit in front of “X-servers” and access “X-clients.”

TCP/IP LAYERS AND CLIENT–SERVER
TCP/IP has fi ve layers.  The bottom layers are the physical layer and underlying net-
work layer.  The underlying network technologies at the network layer are the topic of 
the next chapter.  Above the data link layer is the IP layer itself.  The IP layer forms and 
routes the IP packet (also called a datagram in a lot of documentation) and IP is the 
major protocol at this layer.

The transport layer of TCP/IP consists of two major protocols: the Transmission 
Control Protocol (TCP) and the User Datagram Protocol (UDP).  TCP is a reliable layer 
added on top of the best-effort IP layer to make sure that even if packets are lost in 
transit, the hosts will be able to detect and resend missing information.  TCP data units 
are called segments. UDP is as best-effort as IP itself, and UDP data units are called 
datagrams.  The messages that applications exchange are made up of strings of seg-
ments or datagrams. Segments and datagrams are used to chop up application content, 
such as huge, multimegabyte fi les, into more easily handled pieces.

TCP is reliable in the sense that TCP always resends corrupt or lost segments.  This 
strategy has many implications for delay-sensitive applications such as voice or video.
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TCP is a connection-oriented layer on top of the connectionless IP layer.  This means 
that before any TCP segment can be sent to another host, a TCP connection must be 
established to that host. Connectionless IP has no concept of a connection, and simply 
forwards packets without any understanding if the packets ever really got where they 
were going.

In contrast to TCP, UDP is a connectionless transport layer on top of  connectionless 
IP. UDP segments are simply forwarded to a destination under the assumption that 
sooner or later a response will come back from the remote host.  The response forms 
an implied or formal acknowledgment that the UDP segment arrived.

At the top of the TCP/IP stack is the application, or application services, layer.  This is 
where the client–server concept comes into play.  The applications themselves typically 
come in client or server versions, which is not true at other layers of  TCP/IP.  While a 
host computer might be able to run client processes and server processes at the same 
time, in the simplest case, these processes are two different applications.

Client–server application implementation can be extremely simple.  A server  process 
can start and basically sit and “listen” for clients to “talk” to the server. For example, a 
Web server is brought up on a host successfully whether there is a browser client 
pointed at it or not.  The Web server process issues a passive open to TCP/IP and essen-
tially remains idle on the network side until some client requests content. However, 
the Web browser (the client) process issues an active open to TCP/IP and attempts to 
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FIGURE 2.4

The TCP/IP protocol stack in detail. The many possible applications on top and many possible 
network links on the bottom all funnel through the IP “hourglass.”
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send packets to a Web site immediately. If the Web site is not reachable, that causes an 
error condition.

To sum up the simplest application cases: Clients talk and servers listen (and usu-
ally reply). It is very easy to program an application that either talks or listens, although 
TCP/IP specifi cations allow for the transition of passive and active open from one state 
to another.  We’ll talk more about client and server application and passive and active 
opens in the chapter on sockets.

A more detailed look at the TCP/IP protocol stack is shown in Figure 2.4.  The 
TCP/IP stack bridges the gap between interface connector on the network side (hard-
ware) and the memory address space of the application on the host (software).

The names of the protocol data units used at each layer are worth reviewing.  The 
unit of the network layer is the frame. Inside the frame is the data unit of the IP layer, 
the packet.  The unit of the transport layer is the segment in TCP and datagram in 
UDP.  The segment or datagram by defi nition is the content of the information-bear-
ing packet. Finally, applications exchange messages. Segments and datagrams taken 
together form the messages that the applications are sending to each other.

This is a good place to explore some of the operational aspects of the TCP/IP 
 protocol stack above the network access (or data link) layer.

THE IP LAYER
The connectionless IP layer routes the IP packets independently through the  collection 
of network nodes such as routers that make up the “internetwork” that connects the 
LANs. Packets at the IP layer do not follow “paths” or “virtual circuits” or anything else 
set up by signaled or manually defi ned connections for packet fl ow in other types of 
network layers. However, this also means that the packets’ content might arrive out of 
sequence, or even with gaps in the sequence due to lost packets, at the destination.

IP does not care to which application a packet belongs. IP delivers all packets with-
out a sense of priority or sensitivity to loss.  The whole point of IP is to get packets from 
one network interface to another. IP itself is not concerned with the lack of guaranteed 
quality of service (QoS) parameters such as bandwidth availability or minimal delay, 
and this is characteristic of all connectionless, best-effort networks. Even the basics, 
such as sequenced delivery of packet content, priorities, and guaranteed delivery in the 
form of acknowledgments (if these are needed by the application), must be provided 
by the higher layers of the TCP/IP protocol stack.  These reliable transport functions are 
not functions of the IP layer, and some are not even functions of  TCP.

Two other major protocols run at the IP layer besides IPv4 or IPv6 (or both).  The 
routers that form the network nodes in a TCP/IP network must be able to send error 
messages to the hosts if a router must discard a packet (e.g., due to lack of buffer 
space because of congestion).  This protocol is known as the Internet Control Message 
 Protocol (ICMP). ICMP messages are sent inside IP packets, but ICMP is still considered 
a different protocol and not a separate layer.
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The other major protocol placed at the IP layer has many different functions 
depending on the type of network that IP is running on.  This is the Address Resolu-
tion Protocol (ARP).  The main function of ARP is to provide a method for IPv4, which 
technically knows only about packets, to fi nd out the proper network layer address to 
place in the frame header destination fi eld. On LANs, this is the MAC address.  Without 
this address, the network beneath the IP layer could not deliver the frame containing 
the IP packet to the proper destination. (IPv6 does not use ARP: IPv6 uses multicast for 
this purpose.)

On a LAN, ARP is a way for IPv4 to send a broadcast message onto the LAN asking, 
in effect, “Who has IP address 192.168.13.84?” Each system, whether host or router, on 
the LAN will examine the ARP message (all systems must pay attention to a broadcast) 
and the system having the IP address in question will reply to the sender’s MAC address 
found in the source fi eld of the frame.  This target system will also cache the IP address 
information so that it knows the MAC address of the sender (this cuts down on ARP 
traffi c on the network).  The MAC layer address needed by the sending system is found 
in the source address fi eld of the frame carrying the ARP reply packet.

ARP messages are broadcast to every host in what is called the network layer broad-
cast domain.  The broadcast domain can be a single physical group (e.g., all hosts 
attached to a single group of hubs) or a logical grouping of hosts forming a virtual LAN 
(VLAN). More will be said about broadcast domains and VLANs later in this chapter.

THE TRANSPORT LAYER
The two main protocols that run above the IP layer at the transport layer are TCP and 
UDP. Lately, UDP has been assuming more and more prominence on the Internet, espe-
cially with applications such as voice and multicast traffi c such as video. One reason is 
that TCP, with its reliable resending, is not particularly well suited for real-time applica-
tions (real time just means that the network delays must be low and stable or else the 
application will not function properly). For these applications, late-arriving data are 
worse than data that do not arrive at all, especially if the late data cause all the data 
“behind” it to also arrive late. (Of course, in spite of these limitations, TCP is still widely 
used for audio streaming and similar applications.)

Transmission Control Protocol
TCP’s built-in reliability features include sequence numbering with resending, which 
is used to detect and resend missing or out-of-sequence segments.  TCP also includes 
a complete fl ow control mechanism (called windowing) to prevent any sender from 
overwhelming a receiver. Neither of these built-in TCP features is good for real-time 
audio and video on the Internet.  These applications cannot “pause” and wait for miss-
ing segments, nor should they slow down or speed up as traffi c loads vary on the 
Internet. (The fact that they do just points out the incomplete nature of TCP/IP when 
it comes to quality of service for these applications and services.)
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TCP contains all the functions and mechanisms needed to make up for the 
best-effort connectionless delivery provided by the IP layer. Packets could arrive at a 
host with errors, out of their correct sequence, duplicated, or with gaps in sequence 
due to lost (or discarded) packets.  TCP must guarantee that the data stream is delivered 
to the destination application error-free, with all data in sequence and complete. Fol-
lowing the practice used in connection-oriented networks, TCP uses acknowledgments 
that periodically fl ow from the destination to the source to assure the sender that all is 
well with the data received to that point in time.

On the sending side, TCP passes segments to the IP layer for encapsulation in 
 packets, which the IP layer in hosts and routers route connectionlessly to the destina-
tion host. On the receiving side, TCP accepts the incoming segments from the IP layer 
and delivers the data they represent to the proper application running above TCP in 
the exact order in which the data were sent.

User Datagram Protocol
The TCP/IP transport layer has another major protocol. UDP is as connectionless as IP. 
When applications use UDP instead of TCP, there is no need to establish, maintain, or 
tear down a connection between a source and destination before sending data. Connec-
tion management adds overhead and some initial delay to the network. UDP is a way to 
send data quickly and simply. However, UDP offers none of the reliability services that 
TCP does. UDP applications cannot rely on TCP to ensure error-free, guaranteed (via 
acknowledgments), in-sequence delivery of data to the destination.

For some simple applications, purely connectionless data delivery is good enough. 
Single request–response message pairs between applications are sent more effi ciently 
with UDP because there is no need to exchange a fl urry of initial TCP segments to 
establish a connection. Many applications will not be satisfi ed with this mode of opera-
tion, however, because it puts the burden of reliability on the application itself.

UDP is often used for short transactions that fi t into one datagram and packet. 
Real-time applications often use UDP with another header inside called the real-time 
transport protocol (RTP). RTP borrows what it needs from the TCP header, such as a 
sequence number to detect (but not to resend) missing packets of audio and video, and 
uses these desirable features in UDP.

THE APPLICATION LAYER
At the top of the TCP/IP protocol stack, at the application layer, are the basic applica-
tions and services of the TCP/IP architecture. Several basic applications are typically 
bundled with the TCP/IP software distributed from various sources and, fortunately, are 
generally interoperable.

The standard application services suite usually includes a fi le transfer method 
(File Transfer Protocol: FTP), a remote terminal access method (Telnet, which is not 
 commonly used today, and others, which are), an electronic mail system (Simple Mail 
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Transfer Protocol: SMTP), and a Domain Name System (DNS) resolver for domain name 
to IP address translation (and vice versa), and more. Many TCP/IP implementations also 
include a way of accessing fi les remotely (rather than transferring the whole fi le to the 
other host) known as the Network File System (NFS).  There is also the Simple Network 
Management Protocol (SNMP) for network operations. For the Web, the server and 
browser applications are based on the Hypertext Transfer Protocol (HTTP). Some of 
these applications are defi ned to run on TCP and others are defi ned to run on UDP, and 
in many cases can run on either.

BRIDGES, ROUTERS, AND SWITCHES
The TCP/IP protocol stack establishes an architecture for internetworking. These 
 protocols can be used to connect LANs in the same building, on a campus, or around 
the world. Not all internetworking devices are the same. Generally, network architects 
seeking to extend the reach of a LAN can choose from one of four major interconnec-
tion devices: repeaters, bridges, routers, and switches.

Not long ago, the network confi guration and the available devices determined 
which type of internetworking device should be used.  Today, network confi gurations 
are growing more and more complex, and the devices available often combine the fea-
tures of several of these devices. For example, the routers on the Illustrated Network 
have all the features of traditional routers, plus some switching capabilities.

In their simplest forms, repeaters, bridges, and routers operate at different layers of 
the TCP/IP protocol stack, as shown in Figure 2.5. Roughly, repeaters forward bits from 
one LAN segment to another, bridges forward frames, and routers forward  packets. 
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FIGURE 2.5

Repeater, bridge, and router. A repeater “spits bits,” while a bridge deals with complete frames. 
A router operates at the packet level and is the main mode of the Internet.
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Switches are important enough to deserve a separate discussion at the end of this 
 section.

This section will explore the major characteristics of internetworking with bridges, 
routers, and switches. It will show how the LAN collision and broadcast domains are 
defi ned.  This section will also show how the IP layer in particular and other protocols 
in TCP/IP interact in a routing environment.

Segmenting LANs
Network administrators and designers are often faced with a need to increase the 
amount of bandwidth available to users, increase the number of users supported, or 
extend the coverage of a LAN.  The good news is that this means that the network is 
popular and useful, but the bad news is that there are lots of ways that these goals can 
be accomplished, some better than others.

Sometimes the answer is relatively straightforward. If a 100-Mbps Fast Ethernet is 
congested, moving everyone to Gigabit Ethernet will provide an instant increase in 
bandwidth (close to the theoretical tenfold increase with lots of tuning). However, this 
also usually means replacing adapter cards and replacing the “hubs” to support the new 
bandwidth and frames.  This type of wholesale upgrade can be very expensive.

Hub
We avoid the use of the term “hub” in this book. Repeaters were called hubs when 
there were no others types of hubs.  When bridges and switches and other LAN 
devices came along, it was better to call a repeater a repeater.  Today the term “hub” 
can mean a repeater, bridge, switch, or a hybrid device like a multispeed repeater 
(which is really many single-speed repeaters connected by a bridge). The term 
“hub” never had a specifi c meaning.

Another way to give each user more bandwidth (and at the same time increase 
users and coverage) is to segment the LAN. Segmenting does not require replacing all 
of the user equipment.  As the name implies, segmenting breaks the LAN into smaller 
portions and then reconnects them with an internetworking device.

Another consequence of the different protocol layers at which the various inter-
networking devices function is the number of LAN collision and broadcast domains 
created. Ethernet’s CSMA/CD access method can result in collisions when stations on 
the LAN try to send at almost the same time. Collisions “waste” bandwidth because they 
destroy the frames, and the colliding stations must wait and try to send again. (Actually, 
unless they are oversubscribed, CSMA/CD systems offer better performance than token-
passing or other methods.) Even when Ethernets do not generate collisions, broadcast 
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frames must be examined by each receiver because the destination address cannot be 
used to determine interest in content. Bandwidth is wasted if broadcast frames are sent 
to systems that have no interest in the content of the broadcast message. (In TCP/IP, 
ARPs are the major type of broadcast frames that systems send and receive.)

It should be noted that although CSMA/CD is part of Gigabit Ethernet, it is essen-
tially nonexistent and not present at all in 10-Gigabit Ethernet.

Extending a LAN by forward bits still creates a single collision and broadcast domain. 
The number of collision and broadcast domains created by all the internetworking 
devices discussed is shown in Table 2.2.  We’ll look at why this is true of each device in 
detail shortly.

The use of these devices is not mutually exclusive. In other words, a router can be 
used to segment a LAN into two (or more) segments, and each resulting segment can 
be divided further with bridges. In an extreme case, each individual user or system has 
the full media bandwidth available.  This is what switches can do.

Repeaters are a type of special case in that they do not segment a LAN at all. Repeat-
ers do not furnish more bandwidth for users; they just extend the reach of the LAN. 
Repeaters are included in the table as a “baseline” for comparison. Repeaters forward 
bits from one segment to another and have no intelligence with regard to data format. 
If the frame contains errors, violates rules about minimum or maximum frame sizes, or 
anything else is wrong, the repeaters forward the frame anyway.

Note that wireless LAN devices connected to an attachment point share the same 
properties as a repeater network.  And repeaters, technically obsolete on wired net-
works, have renewed life on wireless networks, especially what are called “ad hoc” 
wireless networks.

A 100BaseT Ethernet LAN consists of at least one multiport repeater (often called 
a “hub”) with twisted-pair wires connected directly to each system.  All systems see all 
frames, for better or worse.  There are strict limits to the size to which a network made 
up of repeater-connected LAN segments can grow.  The more systems there are that 
can send, the less of the total shared bandwidth each system has. Ethernet limits the 
number of systems that each LAN segment can have (the number varies by specifi c 
Ethernet type). Finally, there are distance limits to the electrical signals that repeaters 
propagate.

Table 2.2 Collision and Broadcast Domains

Internetwork Device Collision Domains Broadcast Domains

Repeater One One

Bridge Many One

Router Many Many

Switch Many Depends on VLAN  confi guration
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Bridges
Ethernet specifi cations limit the number of systems on a LAN segment and the  overall 
distance spanned.  To add devices to a LAN that has reached the maximum in one or both 
of these categories, a bridge can be used to connect LAN segments. Bridged  networks 
normally fi lter frames and do not forward all frames onto all segments  connected to the 
bridge.  This is why bridges create more than one collision domain. However, the LAN 
segments linked by the bridge still normally form one broadcast domain.  Although the 
word “bridge” is often applied to products, pure bridges are at least as obsolete as hubs.

The fi ltering process employed by a bridge differs according to specifi c LAN 
 technology.  Ethernet uses transparent bridging to connect LAN segments.   A  transparent 
bridge looks at the destination MAC address to decide if the frames should be:

■ Forwarded—The frame is sent only onto the LAN segment where the destination is 
located.  The bridge examines the source MAC address fi elds to fi nd specifi c device 
locations.

■ Filtered—The frame is dropped by the bridge. No message is sent back to the 
source.

■ Flooded—The frame is sent to every LAN segment attached to the bridge.  This is 
done for broadcast and multicast traffi c.

When bridges are used to connect LAN segments, the media bandwidth is shared 
only by the devices on each segment. Because the broadcast domain is preserved, the 
bridged LANs still function as one big LAN. Bridges also discard frames with errors, as 
well as frames that violate LAN protocol length rules, and thus protect the other LAN 
segments when things go wrong.

Bridges are certainly an improvement over repeaters, but still have a number of 
issues.  The common ARPs used to associate IP addresses at Layer 3 with LAN MAC 
addresses at Layer 2 pass through all bridges, but broadcasts due to protocols are not 
usually the issue. However, multicast traffi c is also fl ooded, and multimedia applications 
such as videoconferences can easily overwhelm a bridged network. Some issues are 
more mundane: printers, which generate very little traffi c, sometimes remain invisible 
in a bridged network.

Ethernet bridges must also be spanning tree bridges.  These bridges can detect 
loops in the interconnected topology of LAN segments and bridges. Loops are a prob-
lem in bridged networks because some frames are always fl ooded onto all segments. 
Flooding multiplies the total number of frames on the network. Loops multiply frames 
over and over until a saturation point is reached.

Routers
Bridges add functions to an interconnected LAN because they operate at a higher layer 
of the protocol stack than repeaters. Bridges run at Layer 2, the frame layer, and can do 
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everything a repeater can do, and more, because bridges create more collision domains. 
In the same way, routers add functionality to bridges and operate at Layer 3, the packet 
layer. Routers not only create more collision domains, they create more LAN broadcast 
domains as well.

In a LAN with repeaters or bridges, all of the systems belong to the same subnet 
or subnetwork. Layer 3 addresses in their simplest form—and IP addresses are a good 
example of this—consist of a network and system (host) portion of the address. LANs 
connected by routers have multiple broadcast domains, and each LAN segment belongs 
to a different subnetwork.

Because of the presence of multiple subnets,  TCP/IP devices must behave  differently 
in the presence of a router. Bridges connecting TCP/IP hosts are transparent to the 
systems, but routers connecting hosts are not.  At the very least, the host must know 
the address of at least one router, the default router, to send packets beyond the local 
subnet.  As we’ll soon see, use of the default router requires the use of a default route, a 
route that matches all IPv4/IPv6 packets.

Bridges are sometimes called “protocol independent” devices, which really means 
that bridges can be used to connect LAN segments regardless of whether TCP/IP is 
used or not. However, routers must have Layer 3 software to handle whichever Layer 3 
protocols are in use on the LAN. Many routers, especially routers that connect to the 
Internet, can and do understand only the IP protocol. However, many routers can han-
dle multiple Layer 3 protocols, including protocols that are not usually employed with 
routed networks.

LAN Switches
The term “switch” in networking has threatened to become as overused as “hub.” When 
applied to LANs, a switch is still a device with a number of common characteristics that 
can be compared to bridges and routers.

The LAN switch is really a complex bridge with many interfaces. LAN switching 
is the ultimate extension of multiport bridging.  A LAN switch has every device on its 
own segment, giving each system the entire media bandwidth all for itself. Multiple 
systems can transmit simultaneously as long as there are no “port collisions” on the 
LAN switch. Port collisions occur when multiple source ports try to send a frame to the 
same  output port at the same time.

All of the ports on the switch establish their own broadcast domain. However, 
when broadcast frames containing ARPs or multicast traffi c arrive, the switch fl oods 
the frames to all other ports. Unfortunately, this makes LAN switching not much  better 
than a repeater or a bridge when it comes to dealing with broadcast and multicast 
 traffi c (but there is an improvement because broadcast traffi c cannot cause collisions 
that would force retransmissions).

To overcome this problem, a LAN switch can allow multiple ports to be assigned to 
a broadcast domain.  The broadcast domains on a LAN switch are confi gurable and each 
fl oods broadcast and multicast traffi c only within its own domain.  As a matter of fact, 

64 PART I Networking Basics



it is not possible for any frames to cross the boundary of a broadcast domain:  Another 
external device, such as a router, is always required to internetwork the domains.

When LAN switches defi ne multiple broadcast domains they are creating virtual 
LANs (VLANs). Not all LAN switches can defi ne VLANs, especially smaller ones, but 
many can.  A VLAN defi nes membership to a LAN logically, through confi guration, not 
physically by sharing media or devices.

On a WAN, the term “switch” means a class of network nodes that behave very differ-
ently than routers.  We’ll look more closely at how “fast packet network” devices, such as 
Frame Relay and ATM switches as network nodes, differ from routers in a later chapter.

Virtual LANs
A VLAN, according to the offi cial IEEE defi nition, defi nes broadcast domains at Layer 2.
VLANs, as a Layer 2 entity, really have little to do with the TCP/IP protocol stack, 
but VLANs make a huge difference in how switches and routers operate on a TCP/IP 
network.

Routers do not propagate broadcasts as bridges do, so a router automatically defi nes 
broadcast domains on each interface. Layer 2 LAN switches logically create broadcast 
domains based on confi guration of the switch.  The confi guration tells the LAN switch 
what to do with a broadcast received on a port in terms of what other ports should 
receive it (or if it should even be fl ooded to all other ports).

When LAN switches are used to connect LAN segments, the broadcast domains 
cannot be determined just by looking at the network diagram. Systems can belong to 
different, the same, or even multiple, broadcast domains.  The confi guration fi les in the 
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FIGURE 2.6

VLANs in a LAN switch. Broadcast domains are now logical entities connected by “virtual bridges” 
in the device.
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LAN switches determine the boundaries of these domains as well as their members. 
Each broadcast domain is a type of “virtual bridge” within the switch.  This is shown in 
Figure 2.6.

Each virtual bridge confi gured in the LAN switch establishes a distinct broadcast 
domain, or VLAN. Frames from one VLAN cannot pass directly to another VLAN on the 
LAN switch (or else you create one big VLAN or broadcast domain). Layer 3 internet-
working devices such as routers must be used to connect the VLANs, allowing inter-
networking and at the same time keeping the VLAN broadcast domains distinct.  All 
devices that can communicate directly without a router (or other Layer 3 or higher 
device) share the same broadcast domain.

VLAN Frame Tagging
VLAN devices can come in all shapes and sizes, and confi guration of the broadcast 
domains can be just as variable. Interoperability of LAN switches is compromised when 
there are multiple ways for a device to recognize the boundaries of broadcast domains. 
To promote interoperability, the IEEE established IEEE 802.1Q to standardize the cre-
ation of  VLANs through the use of frame tagging.

Some care is needed with this aspect of VLANs. VLANs are not really a formal net-
working concept, but they are a nice feature that devices can support. One key VLAN 
feature is the ability to place switch ports in virtual broadcast domains.  The other key 
feature is the ability to tag Ethernet frames with a VLAN identifi er so that devices can 
easily distinguish the boundaries of the broadcast domains.  These devices and tags are 
not codependent, but you have to use both features to establish a useful VLAN.

Multiple tags can be placed inside Ethernet frames.  There is also a way to assign 
priorities to the tagged frames, often called IEEE 802.1p, but offi cially known as 
IEEE 802.1D-1998. Internetworking devices, not just LAN switches, can read the tags 
and establish VLAN boundaries based on the tag information.

VLAN tags add 4 bytes of information between the Source Address and Type/Length 
fi elds of Ethernet frames.  The maximum size of the modifi ed Ethernet frame is increased 
from 1518 to 1522 bytes, so the frame check sequence must be recalculated when the 
VLAN tag is added. VLAN identifi ers can range from 0 to 4095.

The use of VLAN “q in q” tags increases the available VLAN space (ISPs often assign 
each customer a VLAN identifi er, and customers often have their own VLANs as well). 
In this case, multiple tags are placed in an Ethernet frame.  The format and position of 
VLAN tags according to IEEE 802.3ac are shown in Figure 2.7.

VLANs are built for a variety of reasons.  Among them are:

Security—Frames on an Ethernet segment are delivered everywhere, and devices 
only process (look inside) MAC frames that are addressed to them. Nothing 
stops a device from monitoring everything that arrives on the interface (that’s 
essentially how Ethereal works). Sensitive information, or departmental traffic, 
can be isolated with virtual LANs.
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Cutting down on broadcasts—Some network protocols are much worse than 
others when it comes to broadcasts.  These broadcast frames can be an issue 
because they rarely carry user data and each and every system on the segment 
must process the content of a broadcast frame. VLANs can isolate protocol 
broadcasts so that they arrive only at the systems that need to hear them.  Also, 
a number of hosts that might otherwise make up a very large logical network 
(e.g., Page 19 what we will call later a “/19-sized wireless subnet”) could use 
VLANs because they can be just plain noisy.

Router delay—Older routers can be much slower than LAN switches. VLANs can 
be used to establish logical boundaries that do not need to employ a router to 
get traffic from one LAN segment to another. (In fairness, many routers today 
route at “wire speed” and do not introduce much latency into a network.)

The Illustrated Network uses Gigabit Ethernet links to connect the customer-edge 
routers to the ISP networks. Many ISPs would assign the frame arriving from LAN1 and 
LAN2 a VLAN ID and tag the frames at the provider-edge routers. If the sites are close 

Ethernet Frame Structure 

Destination 
Address 
6 bytes 

Source 
Address 
6 bytes 

Tag 
4 bytes

Type
2 bytes

Information
46–1500 bytes

FCS
4 bytes

Tag Protocol ID 
16 bits 

Priority 
3 bits 

CFI 
1 bit 

VLAN ID 
12 bits 

VID (unique):
0 to 4095

Ethernet q-in-q VLAN tags

Original Ethernet Frame

802.1q Tagged Frame

Doubly-Tagged Frame

802.1p
priority levels
(027)

(Canonical Format Indicator: 0 5 canonical MAC, 1 5 noncanonical MAC)

TPID:
038100 (defaut),
039100,
039200

DA SA Type

Type

Type

Data FCS

DA SA Tag Data FCS

DA SA Tag Tag Data FCS

FIGURE 2.7

VLAN tags and frames. Note that frames can contain more than one tag, and often do. 
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enough, some form of Metro Ethernet could be confi gured using the tag information. 
However, the sites are far enough apart that we would have to use some other method 
to create a single LAN out of LAN1 and LAN2.

In a later chapter, we’ll use VLAN tagging, along with some other router switching 
features, to create a “virtual private LAN” between LAN1 and LAN2 on the Illustrated 
Network, mainly for security purposes.
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QUESTIONS FOR READERS
Figure 2.8 shows some of the concepts discussed in this chapter and can be used to 
help you answer the following questions.
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LAN Switch
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FIGURE 2.8

Hubs, bridges, and routers can connect LAN segments to form an internetwork.

1. What is the main function of the ARP message on a LAN?

2. What is the difference between TCP and UDP terms of connection overhead and 
reliability?

3. What is a transparent bridge?

4. What is the difference between a bridge and a router in terms of broadcast 
domains?

5. What is the relationship between a broadcast domain and a VLAN?
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CHAPTER

What You Will Learn
In this chapter, you will learn more about the links used to connect the nodes of 
the Illustrated Network.  We’ll investigate the frame types used in various technolo-
gies and how they carry packets.  We’ll take a long look at Ethernet, and mention 
many other link types used primarily in private networks.

You will learn about SONET/SDH, DSL, and wireless technologies as well as 
Ethernet.  All four link types are used on the Illustrated Network.

Network Link Technologies 3

This chapter explores the physical and data link layer technologies used in the Illus-
trated Network.  We investigate the methods used to link hosts and intermediate nodes 
together over shorter LAN distances and longer WAN distances to make a complete 
network.

For most of the rest of the book, we’ll deal with packets and their contents.  This is 
our only chance to take a detailed look at the frames employed on our network, and 
even peer inside them. Because the Illustrated Network is a real network, we’ll empha-
size the link types used on the network and take a more cursory look at link types that 
might be very important in the TCP/IP protocol suite, but are not used on our network. 
We’ll look at Ethernet and the Synchronous Optical Network/Synchronous Digital Hier-
archy (SONET/SDH) link technologies, and explore the variations on the access theme 
that digital subscriber line (DSL) and wireless technologies represent.

We’ll look at public network services like frame relay and Asynchronous Transfer 
Mode (ATM) in a later chapter. In this book, the term private network is used to char-
acterize network links that are owned or directly leased by the user organization, while 
a public network is characterized by shared user access to facilities controlled by a 
service provider.  The question of Who owns the intermediate nodes? is often used as 
a rough distinguisher between private and public network elements.  

Because of the way the TCP/IP protocol stack is specifi ed, as seen in Chapter 1, we 
won’t talk much about physical layer elements such as modems, network  interface 
cards (NICs), and connectors.  As important as these aspects of networking are, they 
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have little to do directly with how  TCP/IP protocols or the Internet operates. For exam-
ple, a full exploration of all the connector types used with fi ber-optic cable would take 
many pages, and yet add little to anyone’s understanding of TCP/IP or the Internet. 
Instead, we will concentrate on the structure of the frames sent on these link types, 
which are often important to TCP/IP, and present some operational details as well.

ILLUSTRATED NETWORK CONNECTIONS
We will start by using Ethereal (Wireshark), the network protocol analyzer introduced 
in the last chapter, to investigate the connections between systems on the Illustrated 
Network. It runs on a variety of platforms, including all three used in the Illustrated 
Network: FreeBSD Unix, Linux, and Windows XP. Ethereal can display real-time packet 
interpretations and, if desired, also save traffi c to fi les (with a variety of formats) for 
later analysis or transfer to another system. Ethereal is most helpful when examining all 
types of Ethernet links.  The Ethernet links are shown as dashed lines in Figure 3.1.

The service provider networks’ SONET links are shown as heavy solid lines, and the 
DSL link to the home offi ce is shown as a dotted line.  The wireless network inside the 
home is not given a distinctive representation in the fi gure. Note that ISPs today typi-
cally employ more variety in WAN link types.

Displaying Ethernet Traffi c
On the Illustrated Network, all of the clients and servers with detailed information 
listed are attached to LANs. Let’s start our exploration of the links used on the Illus-
trated Network by using Ethereal both ways to see what kind of frames are used on 
these LANs.

Here is a capture of a small frame to show what the output looks like using tethe-
real, the text-based version of Ethereal.  The example uses the verbose mode (–V) to 
force tethereal to display all packet and frame details.  The example shows, highlighted 
in bold, that Ethernet II frames are used on LAN1.

 [root@lnxserver admin]# /usr/sbin/tethereal –V
 Frame 2 (60 bytes on wire, 60 bytes captured)
 Arrival Time: Mar 25, 2008 12:14:36.383610000
 Time delta from previous packet: 0.000443000 seconds
 Time relative to first packet: 0.000591000 seconds
 Frame Number: 2
 Packet Length: 60 bytes
 Capture Length: 60 bytes
Ethernet II, Src: 00:05:85:88:cc:db, Dst: 00:d0:b7:1f:fe:e6
 Destination: 00:d0:b7:1f:fe:e6 (Intel_1f:fe:e6)
 Source: 00:05:85:88:cc:db (Juniper__88:cc:db)
 Type: ARP (0x0806)
 Trailer: 00000000000000000000000000000000...
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Address Resolution Protocol (reply)
 Hardware type: Ethernet (0x0001)
 Protocol type: IP (0x0800)
 Hardware size: 6
 Protocol size: 4
 Opcode: reply (0x0002)
 Sender MAC address: 00:05:85:88:cc:db (Juniper__88:cc:db)
 Sender IP address: 10.10.11.1 (10.10.11.1)
 Target MAC address: 00:d0:b7:1f:fe:e6 (Intel_1f:fe:e6)
 Target IP address: 10.10.11.66 (10.10.11.66)

Many details of the packet and frame structure and content will be discussed in 
later chapters. However, we can see that the source and destination MAC addresses 
are present in the frame.  The source address is 00:05:85:88:cc:db (the router), and 
the destination (the Linux server) is 00:d0:b7:1f:fe:e6. Ethereal even knows which 
organizations have been assigned the fi rst 24 bits of the 48-bit MAC address (Intel and 
Juniper Networks).  We’ll say more about MAC addresses later in this chapter.

Figure 3.2 shows the same packet, and the same information, but in graphical for-
mat. Only a small section of the entire window is included. Note how the presence of 
Ethernet II frames is indicated, parsed on the second line in the middle pane of the 
window.

Why use text-based output when a graphical version is available? The graphical out-
put shows the raw frame in hex, something the text-based version does not do, and the 
interpretation of the frame’s fi elds is more concise.

However, the graphical output is not always clearer. In most cases, the graphical rep-
resentation can be more cluttered, especially when groups of packets are involved.  The 
graphical output only parses one packet at a time on the screen, while a whole string 
of packets can be parsed with tethereal (but printouts of graphical information can be 
formatted like tethereal).

FIGURE 3.2

Graphical interface for Ethereal. There are three main panes. Top to bottom: (1) a digest of the 
packets header and information, (2) parsed details about frame and packet contents, and (3) the 
raw frame captured in hexadecimal notation and interpreted in ASCII.
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In addition, many network administrators of Internet servers do not install or use 
a graphical interface, and perform their tasks from a command prompt. If you’re not 
sitting in front of the device, it’s more expedient to run the non-GUI version.  Tethereal 
is the only realistic option in these cases.  We will use both types of Ethereal in the 
examples in this book.

In our example network, what about LAN2? Is it also using Ethernet II frames? Let’s 
capture some packets on bsdserver to fi nd out.

bsdserver# tethereal –V
Capturing on em0
Frame 1 (98 bytes on wire, 98 bytes captured)
 Arrival Time: Mar 25, 2008 13:05:00.263240000
 Time delta from previous packet: 0.000000000 seconds
 Time since reference or first frame: 0.000000000 seconds
 Frame Number: 1
 Packet Length: 98 bytes
 Capture Length: 98 bytes
Ethernet II, Src: 00:0e:0c:3b:87:32, Dst: 00:05:85:8b:bc:db
 Destination: 00:05:85:8b:bc:db (Juniper__8b:bc:db)
 Source: 00:0e:0c:3b:87:32 (Intel_3b:87:32)
 Type: IP (0x0800)
Internet Protocol, Src Addr: 10.10.12.77 (10.10.12.77), Dst Addr: 10.10.12.1 
(10.10.12.1)
 Version: 4
 Header length: 20 bytes
 ....

Yes, an Ethernet II frame is in use here as well. Even though we’re running Ethereal 
(tethereal) on a different operating system (FreeBSD) instead of on Linux, the output is 
nearly identical (the differences are due to a slightly different version of Ethereal on the 
servers). However, LANs are not the only type of connections used on the Illustrated 
Network.

Displaying SONET Links
What about link types other than Ethernet? ISPs in the United States often use SONET 
fi ber links between routers separated by long distance. In most other parts of the world, 
SDH is used. SONET was defi ned initially in the United States, and the specifi cation was 
adapted, with some changes, for international use by the ITU-T as SDH.

The Illustrated Network uses SONET, not SDH.  There are small but important differ-
ences between SONET and SDH, but this book will only reference SONET. Line moni-
toring equipment that allows you to look directly at SONET/SDH frames is expensive 
and exotic, and not available to most network administrators. So we’ll take a different 
approach: We’ll show you the information that’s available on a router with a SONET 
interface.  This will show the considerable bandwidth available even in the slowest of 
SONET links, which runs at 155 Mbps and is the same as the basic SDH speed.
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Admin>ssh ce0
adminCE6’s password: *********
--- JUNOS 8.4R1.3 built 2007-08-06 06:58:15 UTC
admin@ce0> monitor interface so-0/0/1
R2 Seconds: 59 Time: 13:36:05
  Delay: 2/0/3
Interface: so-0/0/1, Enabled, Link is Up
Encapsulation: PPP, Keepalives, Speed: OC3
Traffic statistics:  Current delta
 Input bytes: 166207481 (576 bps) [2498]
 Output bytes: 171979817 (48 bps) [2713]
 Input packets: 2868777 (0 pps) [39]
 Output packets: 2869671 (0 pps) [39]
Encapsulation statistics:
 Input keepalives: 477607 [6]
 Output keepalives: 477717 [7]
 LCP state: Opened
Error statistics:
 Input errors: 0 [0]
 Input drops: 0 [0]
 Input framing errors: 0 [0]

SONET and SDH
The SONET fi ber-optic link standard was developed in the United States and is 
mainly used in places that follow the digital telephony system used in the United 
States, such as Canada and the Philippines. SDH, on the other hand, is used in 
places that follow the international standards developed for the digital telephony 
system in the rest of the world. SDH must be used for all international links, even 
those that link to SONET networks in the United States.

The differences between SONET and SDH transmission frame structures, 
nomenclature, alarms, and other details are relatively minor. In most cases, equip-
ment can handle SONET/SDH with equal facility.

Routers and Users
Usually, network administrators don’t let ordinary users casually log in to routers, 
even edge routers, and poke around. Even if they were allowed to, the ISP’s core 
routers would still remain off limits. But this is our network, and we can do as we 
please, wherever we please.

We can log in to router CE0 and monitor a SONET interface for a minute or so and 
see what’s going on.
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 Input runts: 0 [0]
 Input giants: 0 [0]
 Policed discards: 0 [0]
 L3 incompletes: 0 [0]
 L2 channel errors: 0 [0]
 L2 mismatch timeouts: 0 [0]
 Carrier transitions: 1 [0]
 Output errors: 0 [0]
 Output drops: 0 [0]
 Aged packets: 0 [0]
Active alarms : None
Active defects: None
SONET error counts/seconds:
 LOS count 1 [0]
 LOF count 1 [0]
 SEF count 3 [0]
 ES-S 1 [0]
 SES-S 1 [0]
SONET statistics:
 BIP-B1 0 [0]
 BIP-B2 0 [0]
 REI-L 0  BIP-B3 Z [0]

Not much is happening yet on our network in terms of traffi c, but the output is 
still informative.  The fi rst column shows cumulative values and the second column 
shows the change since the last monitor “snapshot” on the link. “Live” traffi c during 
these 59 seconds, in this case mostly a series of keepalive packets, is shown in paren-
theses, both in bytes per second and in packets per second (the example rounds the 
39 packets in 59 seconds, or 0.66 packets per second, down to 0 packets per second). 
The frames carried on the link, listed as encapsulation, belong to a protocol called 
Point-to-Point Protocol (PPP). Six PPP keepalives have been sent in the 59-second 
window, and seven have been received (they are exchanged every 10 seconds), add-
ing to the total of more than 477,000 since the link was initialized.  The cumulative 
errors also occurred as the link was initializing itself, and it is reassuring that there are 
no new errors.

Displaying DSL Links
The Illustrated Network also has a broadband DSL link from an ISP that is used to allow 
a home offi ce to attach to the router network.  This link is shown in red in Figure 3.1. 
If the permissions are set up correctly, the home user will be able to access network 
resources on LAN1 and LAN2. DSL links are much faster than ordinary dial-up lines and 
are always available, just like a leased access line.  The DSL link terminates at home in a 
DSL router (more properly, a residential gateway), and the distribution of information 
to devices in the home can be by wired or wireless LAN.
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FIGURE 3.3

Ethernet frames on a wired LAN at the end of a DSL link. Capturing raw DSL frame “on the wire” 
is not frequently done, and is diffi cult without very expensive and specialized equipment.

On the network end of the DSL link, the link terminates at a DSL access multiplexer 
(DSLAM), typically using IP or ATM technology.

At the user end of the DSL link on the Illustrated Network, the offi ce in the home 
uses both a wired and a wireless network.  This is a common arrangement today: Peo-
ple with laptops can wander, but desktop PCs usually stay put.  The wireless network 
encapsulates packets and sends them to a special device in the home (a wireless access 
point, often built into a DSL router).

What kind of frames does the DSL link use? That’s hard to determine, because the 
DSL modem is upstream of the DSL router in most cases (sometimes on the side of the 
house, sometimes closer to the service provider).  The wired LAN between DSL router 
and computer uses the same type of Ethernet frames we saw on LAN1 and LAN2. On a 
wired LAN, Ethereal will always capture Ethernet II frames, as shown in Figure 3.3.

What can we learn about DSL itself? Well, we can access the DSL router using a Web 
browser and see what kinds of information are available. Figure 3.4 shows the basic 
setup screen of the Linksys DSL router (although it’s really not doing any real routing, 
just functioning as a simple gateway between ISP and home LAN).

Because this is a working LAN, I’ve restored the default names and addresses for 
this example.  The router itself is WRT54G (a product designation), and the ISP does not 
expect only one host to use the DSL link, so no host or domain name is required.  We’ll 
talk about the maximum transmission unit (MTU) size later in this chapter.  This is set 
automatically on the link.

The DSL router itself uses IPv4 address 192.168.1.1.  We’ll talk about what the sub-
net mask does in Chapter 4.  The router hands out IP addresses as needed to devices on 
the home network, starting with 192.168.1.100, and it uses the Dynamic Host Confi gu-
ration Protocol (DHCP) to do this.  We’ll talk about DHCP in Chapter 18.
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FIGURE 3.4

Basic setup screen for a DSL link. We’ll talk about all of these confi guration parameters and 
 protocols, such as subnet masks and DHCP, in later chapters.

What kinds of statistics are available on the DSL router? Not much on this model. 
There are simple incoming and outgoing logs, but these capture only the most basic 
information about addresses and ports.  A small section of the outgoing log is shown in 
Table 3.1.

These are all Web browser entries that were run with names, not IP addresses (Yahoo 
is one of them).  The table lists the addresses because the residential gateway does not 
bother to look the names up. However, instead of presenting the port numbers, the log 
interprets them as a service name (www is port 80 on most servers).

We’ll take a more detailed look at DSL later in this chapter. Now, let’s take a look at 
the fourth and last link type used on the Illustrated Network: the four available wireless 
links used to hook a laptop and printer up to the home offi ce DSL router.

The wireless implementation is a fairly straightforward bridging exercise.  A single 
wireless interface is bridged in software with the Ethernets in the box.  The wireless 
network is a single broadcast/collision domain.
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Displaying Wireless Links
The physical arrangement of the home offi ce equipment used on the Illustrated Net-
work is shown in Figure 3.5. In addition to the three wired PCs (used for various 
equipment confi gurations), there are two wireless links. One is used by the laptop for 
mobility, and the other is used to share a color laser printer.  The DSL router does not 
have “ports” in the same sense as wired network devices, but it only supports up to four 
wireless devices.

The wireless link from the laptop to the DSL router, which uses something called 
IEEE 802.11g (sometimes called Wireless-G), is a distinct Layer 2 network technology 
and should not use Ethernet II frames. Let’s make sure.

Capturing traffi c at the wireless frame level requires special software and special 
drivers for the wireless network adapter card.  The examples in this chapter use infor-
mation from a wireless packet sniffer called Airopeek NX from Wildpackets.

Table 3.1 Outgoing Log Table from DSL Router

LAN IP Destination URL/IP Service/Port Number

192.168.1.101 202.43.195.13 www

192.168.1.101 64.86.142.99 www

192.168.1.101 202.43.195.52 www

192.168.1.101 64.86.142.120 www

DSL Link to ISP
(4 Ethernet ports)

PC 1

PC 2

PC 3

DSL
Router

(4 wireless ports)

Laptop Color Laser
Printer

FIGURE 3.5

The home offi ce network for the Illustrated Network. Devices must have either Ethernet ports or 
wireless interfaces (some have both). Not all printers are network-capable or wireless.
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A sample capture of a data packet and frame from a wireless link is shown in 
Figure 3.6.

Wireless LANs based on IEEE 802.11 use a distinct frame structure and a complex 
data link layer protocol.  We’ll talk about 802.11 shortly, but for now we should just note 
that the Illustrated Network uses USB-attached wireless NICs, and few wireless sniffers 
support these types of adapters.

The frame addressing and encapsulation on wireless LANs is much more compli-
cated than Ethernet. Note that the 802.11 MAC frame has three distinct MAC addresses, 
labeled Destination, BSSID, and Source.  The wireless LAN has to keep track of source, 
destination, and wireless access point (Base Station System ID, or BSSID) addresses.  Also 
note that these are not really Ethernet II frames.  The frames on the wireless link are 
structured according to the IEEE 802.2 LLC header.  These have “SNAP SAP, ” indicated 
by 0xAA, in the frame, in contrast to Ethernet II frames, which are indicated by 0x01.

FIGURE 3.6

Data frame and packet on a wireless link. Note that the IEEE 802.11 MAC header is different 
from the Ethernet in many ways and uses the IEEE 802.2 LLC inside.
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The address fi elds in 802.11 also “shift” their meaning, as shown in Figure 3.7.  The 
fi elds are now BSSID, Source, and Destination.  This is another capture from Airopeek 
NX, showing the next data frame sent in the captured exchange.  The address fi elds 
have different meanings based on whether they are sent to the wireless router or are 
received from the wireless router.

Frames and the Link Layer
In summary, we have seen that the connections on the Illustrated Network consist of 
several types of links.  There are wired Ethernet LANs and Gigabit Ethernet links, SONET 
links and DSL links, and even a wired LAN in the home network.  We’ve looked at some 
of the frame types that carry information back and forth on the network connections.

FIGURE 3.7

The next data frame in the sequence, showing how the contents of the address fi elds shift based 
on direction and type of wireless frame.
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RFCs and Physical Layers
Internet RFCs usually describe not how the physical (or data link) layers in a 
TCP/IP network should function, but how to place packets inside data link frames 
and get them out again at the other end of the link to the adjacent system. It is 
always good to remember that frames fl ow between adjacent (directly connected 
or reachable) systems on a network.

THE DATA LINK LAYER
Putting the world of connectors, modems, and electrical digital signal levels of the 
physical layer aside, let’s go right to the data link layer of the TCP/IP protocol stack. It’s 
not that these things are not important to networking; it’s just that these things have 
nothing directly to do with TCP/IP.

The data link layer of TCP/IP takes an IP packet at the source and puts it inside 
whichever frame structure is used between systems (e.g., an Ethernet frame).  The data 
link layer then passes the frame to the physical layer, which sends the frame as a series 
of bits over the link itself.  At the receiver, the physical and data link layers recover the 
frame from the arriving sequence of bits and extract the packet.  The packet is then 
passed to the receiving network (IP) layer.

Interfaces for IP packets have been defi ned for all of the following network types, 
for both LAN and WAN:

Ethernet—Originally from Digital Equipment Corporation, Intel, and Xerox (some-
times called DIX  Ethernet).

IEEE (Institute of Electrical and Electronics Engineers) 802.3—Ethernet-based 
LANs, including all its variations, such as Gigabit Ethernet.

Synchronous Optical Network, Synchronous Digital Hierarchy (SONET/SDH)—
A high-speed, optical WAN transport.

IEEE 802.11 Wireless LANs—Includes any technology, such as WiFi, based on vari-
ations of this.

Token Ring—LANs from IBM, the same as IEEE 802.5.

Point-to-Point Protocol (PPP)—This protocol is from the IP developers them-
selves, and is not limited to carrying IP packets.

X.25—An international standard, public, switched, connection-oriented network 
protocol.

There are many more types of frames that can carry IP packets between systems 
at the data link layer.  The rest of this chapter will explore the data link layer in a little 
more depth.
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Frame Relay—An international standard, public, switched, connection-oriented 
network protocol based on X.25.

Asynchronous Transfer Mode (ATM)—An international standard, public, switched, 
connection-oriented network protocol based on cells instead of frames.

Fiber Distributed Data Interface (FDDI)—A LAN-like network ring running at 
100 Mbps.

Switched Multimegabit Data Services (SMDS)—A high-speed, connectionless, 
LAN-like, public network service.

Integrated Services Digital Network (ISDN)—A public switched network similar 
to X.25.

Digital Subscriber Line (DSL)—Based on some older Integrated Services Dig-
ital Network (ISDN)–related technologies and used for high-speed Internet 
access.

Serial Line Interface Protocol (SLIP) and Compressed SLIP (CSLI)—An older 
way of sending IP packets over a dial-up, asynchronous modem arrangement 
(also from the IP developers).

Cable Modems (CMODEMs)—A method of sending IP packets over a cable TV 
infrastructure.

IPoFW IP over Firewire (IEEE 1394)—A popular PC interface for peripheral 
devices.  There are other interfaces as well, such as ARCnet and IEEE 802.4 
LANs, but the point is that TCP/IP is not tied to any specific type of network 
at the lower layers.  The TCP/IP protocol stack is very flexible and encompass-
ing, much more so than almost anything else that could be used on a global 
network.

In the future, this list will get even longer as newer transports for IP packets are 
standardized and older ones remain (in spite of diminishing interest, standards like 
these tend to stay in place because no one cares enough to move them to “historic” 
RFCs). Some of the newer network types that might fi nd their way onto many networks 
in the future follow:

VDSL—VDSL is a “very-high-speed” form of DSL that uses fiber feeders to reach 
less than a mile from the home (often called fiber to the neighborhood, or 
FTTN). Most VDSL service offerings deliver television, telephone, and high-
speed Internet access over a unified residential cabling system through a spe-
cial residential gateway box. On the Illustrated Network, the home office DSL 
link is actually VDSL, but this service is not as widely available as other forms 
of DSL.

GE-PONS—These Gigabit Ethernet Passive Optical Network (GE-PONS) nodes are 
part of a global push toward Fiber to the Home (FTTH), an approach that has 
been—somewhat ironically—slowed by the popularity of DSL over copper 
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wires. Based on IEEE 802.3ah standards, this technology can support gigabit 
speeds in both directions and might take advantage of the popularity of voice 
over IP (VoIP).

BPL—In some places, high-speed Internet access is provided by the electric 
 utility as part of broadband power line (BPL) technology. Delivered over the 
same socket as power, BPL services might form a nice adjunct to wireless ser-
vices, which are hard to cost-justify in sparsely populated areas and over rough 
 terrain.

The advantage of not tying the network layer to any specifi c type of links at the 
lower layers is fl exibility (IP can run on anything).  A new type of network interface can 
be added without great effort.  Also, it makes linking these various network types into 
an internetwork that much easier.

All TCP/IP implementations must be able to support at least one of the defi ned 
interface types. Most implementations of TCP/IP will do fi ne today with only a handful 
of interface types, and, as we have seen, Ethernet frames are perhaps the most common 
of all data-link frame formats for IP packets, especially at the endpoints of the network.

The rest of this chapter provides a closer look at the four link types used on the 
Illustrated Network, as well as PPP, the major IEFT data-link protocol that we saw used 
on SONET.  The coverage is not intended to be exhaustive, but will be enough to intro-
duce the technologies.

Although all four link types are covered, the coverage is not equal.  There is much 
more information about Ethernet and wireless than SONET or DSL.  The main reason 
is that expensive and exotic line monitoring equipment is needed in order to burrow 
deep enough in the lower layers of the protocol stacks used in SONET and DSL to show 
the transmission frames. End users, and even many smaller ISPs, do just fi ne diagnosing 
problems on SONET and DSL links with basic Ethernet and IP monitoring tools.  Then 
again, point-to-point links are a bit easier to diagnose than shared media networks. (Is 
the line protocol up in both directions? Is the distance okay? Is the bit error rate accept-
able? Okay, it’s not the link layer . . .)

SONET and DSL are distinguished from Ethernet and wireless LANs with regard to 
addressing. SONET and DSL are point-to-point technologies and use much simpler link-
level addressing schemes than LAN technologies.  There are only two ends in a point-
to-point connection, and you always know which end you are.  Anything you send is 
intended for the other end of the link, and anything you receive comes from the other 
end as well.

THE EVOLUTION OF ETHERNET
The original Ethernet was developed at the Xerox Palo Alto Research Center (PARC) 
in the mid-1970s to link the various mainframes and minicomputers that Xerox used 
in their offi ce park campus environment of close-proximity buildings.  The use of WAN 
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protocols to link all of these buildings did not appeal to Xerox for two reasons. First, an 
effi cient WAN infrastructure would have demanded a mesh of leased telephone lines, 
which would have been enormously expensive given the number of computers. Sec-
ond, leased telephone lines did not have the bandwidth (usually these carried only up 
to 9600 bps, and at most 56 Kbps, in the late 1970s) needed to link the computers.

Their solution was to invent the local area network, the LAN. However, Xerox was 
not interested in actually building hardware and chipsets for their new invention, 
which was named Ethernet. Instead, Bob Metcalf, the Ethernet inventor, left Xerox and 
recruited two other companies, one to make chipsets for Ethernet and the other to 
make the hardware components to employ these chipsets.  The two companies were 
chip-maker Intel and computer-maker Digital Equipment Corporation (DEC). Ethernet 
v1.0 was rolled out in 1980, followed by Ethernet v2.0 in 1982, which fi xed some 
annoying problems in v1.0.  This is why, in our examples, Ethereal keeps showing that 
IP packets are inside Ethernet II frames when they leave and arrive at hosts.

DIX Ethernet, the proprietary version, ran over a single, thick coaxial cable “bus” that 
snaked through a building or campus.  Transmitting and receiving devices (transceivers) 
were physically clamped to the coaxial cable (with “vampire taps”) at predetermined 
intervals.  Transceivers usually had multiple ports for attaching the transceiver cables 
that led to the actual PC or minicomputer linked by the Ethernet LAN.  The whole LAN 
ran at an aggregate speed of 10 Mbps, an unbelievable rate for the time. But Ethernet 
had to be fast, because up to 1024 computers could share this single coaxial cable bus 
to communicate using a media access method known as carrier-sense multiple access 
with collision detection (CSMA/CD). DIX Ethernet had to be distinguished from all 
other forms of Ethernet, which were standardized by the IEEE starting in 1984.

The IEEE fi rst standardized a slightly different arrangement for 10-Mbps CSMA/CD 
LANs (IEEE 802.3) in 1984.  Why the IEEE felt compelled to change the proprietary Ether -
net technology during the standardization process is somewhat of a puzzle. Some said 
the IEEE always did this, but around the same time the IEEE essentially rubberstamped 
IBM’s proprietary Token Ring LAN specifi cation as IEEE 802.5.  The changes to the hard-
ware of DIX Ethernet were minor.  There was no v1.0 support at all (i.e., all IEEE 802.3 
LANs were DIX Ethernet v2.0) and the terminology was changed slightly.  The DIX 
transceiver became the IEEE 802.3 “media attachment unit” (MAU), and so on.

However, throughout the 1980s and into the 1990s, as research into network 
 capabilities matured, the IEEE added a number of variations to the original IEEE 802.3 
CSMA/CD hardware specifi cation.  The original specifi cation became 10Base5 (which 
meant 10-Mbps transport, using baseband signaling, with a 500-meter LAN segment).  This 
was joined by a number of other variants designed to make LAN implementation more 
fl exible and—especially—less expensive. New IEEE 802.3 variations included 10Base2 
(with 200-meter segments over thin coaxial cable), the wildly popular 10BaseT (with 
hubs instead of segments linked to PCs by up to 100 meters of unshielded twisted-
pair copper wire), and versions that ran on fi ber-optic cable. Eventually, all of these 
technologies except those on coaxial cable went fi rst to 100 Mbps (100BaseT), then 
1000 Mbps (Gigabit Ethernet), which run over twisted pair for short spans and can use 
fi ber for increasingly long hauls, now in the SONET/SDH ranges.
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Today, IEEE 802.3ae 10G-base-er (extended range) LAN physical layer links can span 
40 km.  Another, “zr,” is not standardized, but can stretch the span to 80 km.  And interest-
ingly, 10-Gbps Ethernet is back on coaxial cable as “10Gbps cx4.”

Ethernet II and IEEE 802.3 Frames
Today, of course, the term “Ethernet” essentially means the same as “IEEE 802.3 LAN.” In 
addition to changing the hardware component names and creating IEEE 802.3 10BaseT, 
the IEEE also changed the Ethernet frame structure for reasons that remain obscure. It 
was this development that had the most important implication for those implementing 
the TCP/IP protocol stack on top of Ethernet LANs.

The DIX Ethernet II frame structure was extremely simple.  There were fi elds in the 
frame header for the source and destination MAC (the upper part of the data link layer, 
used on LANs) address, a type fi eld to defi ne content (packet) structure, a variable-
length data fi eld, and an error-detecting trailer.  The source and destination addresses 
were required for the mutually adjacent systems on a LAN (a point-to-point-oriented 
data link layer with just a “destination” address would not work on LANs: Who sent this 
frame?).  The type fi eld was required so the recipient software would know the struc-
ture of the data inside the frame.  That is, the destination NIC could examine the type 
fi eld and determine if the frame contents were an IP packet, some other type of packet, 
a control frame, or almost anything else.  The destination NIC card could then pass the 
frame contents to the proper software module (the network layer) for further process-
ing on the frame data contents.  The type fi eld value for IP packets was set as 0x0800, 
the bit string 00001000 00000000.

However, the IEEE 802 committee changed the simple DIX Ethernet II frame struc-
ture to produce the IEEE 802.3 CSMA/CD frame structure. Gone was the DIX Ethernet II 
type (often called “Ethertype”) fi eld, and in its place was a same-sized length fi eld.  This 
action somewhat puzzled observers of LAN technology. DIX Ethernet II frames worked 
just fi ne without an explicit length fi eld.  The total frame length was determined by the 
positions of the starting and ending frame delimiters.  The data were always after the 
header and before the trailer. Simple enough for software to fi gure out.

Now, with IEEE 802.3 it was even easier to fi gure out the length of a received frame 
(the software just had to look at the length fi eld value). However, it was now impos-
sible for the receiving software to fi gure out just what the structure of the frame data 
was by looking only at the frame header. Clearly, a place in the IEEE 802.3 CSMA/CD 
frame had to be found to put the DIX Ethernet II type fi eld, since receivers had to have 
a way to fi gure out which software process understood the frame content’s data struc-
ture. Other protocols did not understand IP packet structures, and vice versa.

The IEEE 802.3 committee “robbed” some bytes from the payload area, bytes which 
in DIX Ethernet were data bytes. Since the overall length of the frame was already fi xed, 
and this set the length of the frame data to 1500 bytes (the same as in DIX Ethernet), 
the outcome was to reduce the allowed length of the data contents of an IEEE 802.3 
frame.  A simplifi ed picture of the two frame types indicating the location of the 0x0800 
type fi eld and the length of the data fi eld is shown in Figure 3.8.
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MAC Addresses
The MAC addresses used in 802 LAN frames are all 48 bits (6 bytes) long.  The fi rst 
24 bits (3 bytes) are assigned by the IEEE to the manufacturer of the NIC (manufactur-
ers pay for them).  This is the Organizationally Unique Identifi er (OUI).  The last 24 bits 
(3 bytes) are the NIC manufacturer’s serial number for that NIC. Some protocol ana-
lyzers know the manufacturer’s ID (which is not public but seldom suppressed) and 
display this along with the address.  This is how Ethereal displays MAC addresses not 
only in hex but starting with “Intel_” or “Juniper_.”

Note that both frame types use the same, familiar source and destination MAC 
address, and use a 32-bit (4-byte) frame check sequence (FCS) for frame-level error 
detection.  The FCS used in both cases is a standard, 32-bit cyclical redundancy check 
(CRC-32).  The important difference is that the DIX Ethernet frame indicates informa-
tion type (frame content) with a 2-byte type fi eld (0x0800 means there is an IPv4 packet 
inside and 0x86DD means there is an IPv6 packet inside) and the IEEE 802.3. CSMA/CD 
frame places this Ethertype fi eld at the end of an additional 8 bytes of overhead called 
the Subnetwork Access Protocol (SNAP) header.  Another 3 bytes are the OUI given to 
the NIC vendor when they registered with the IEEE, but this fi eld is not always used 
for that purpose.

The 802.3 frame must subtract these 8 bytes from the IP packet length so that the 
overall frame length is still the same as for DIX Ethernet II.  This is because the  max-
imum length of the frame is universal in almost all forms of Ethernet.  The maximum 
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Types of Ethernet frames. The frames for Gigabit and 10 Gigabit Ethernet differ in detail, but 
follow the same general structure.
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IEEE 802.3 frame data is 1492 due to the 8 extra bytes needed to represent the 
type fi eld.  Any IP packet larger than this will not fi t in a single frame, and must frag-
ment its payload into more than one frame and have the payload reassembled at the 
receiver.

That’s not all there is to it. LAN implementers and vendors quickly saw that the 
IEEE 802.3 hardware arrangement was more fl exible (and less expensive) than DIX 
Ethernet.  They also saw that the DIX Ethernet II frame structure was simpler and could 
carry slightly more user data than the complex IEEE 802.3 frame structure. Being prac-
tical people, the vendors simply used the fl exible IEEE 802.3 hardware with the simple 
DIX Ethernet II frame structure, creating the mixture that is commonly seen today on 
most LANs.

Today, just because the hardware is IEEE 802.3 compliant (e.g., 100BaseT), does not 
mean that the frame structure used to carry IP packets is also IEEE 802.3 compliant.  The 
frame structure is most likely Ethernet II, as we have seen. (It’s worth pointing out that 
Ethernet frame content other than IP usually uses the 802.3 frame format. However, the 
Illustrated Network is basically an IP-only network.)

THE EVOLUTION OF DSL
IP packet interfaces have been defi ned for many LAN and WAN network technologies. 
As soon as a new transport technology reaches the commercial-deployment stage, IP 
is part of the scheme, if for no other reason than regardless of what is in the middle, 
TCP/IP in Ethernet frames is at both ends. DSL technologies are a case in point. Origi-
nally designed for the “national networks” that would offer everything that the Internet 
does today, but from the telephone company as part of the Integrated Services Digital 
Network (ISDN) initiatives of the 1980s, DSL was adapted for “broadband” Internet 
access when the grand visions of the telephone companies as content providers were 
reduced to the reality of a restricted role as ISPs and little more. (Even the term “broad-
band” is a topic of much debate: A working defi nition is “speeds fast enough to allow 
users to watch video without getting a headache or becoming disgusted,” speeds that 
keep dropping as video coding and compression techniques become better.)

DSL once included a complete ATM architecture, with little or no TCP/IP. Practical 
considerations forced service providers to adapt DSLs once again, this time for the real 
consumer world of Ethernet LANs running TCP/IP.  And a tortured adaptation it proved 
to be.  The problem was deeper than just taking an Ethernet frame and mapping it to a 
DSL frame (even DSL bits are organized into a distinctive transport frame). Users had to 
be assigned unique IP addresses (not necessary on an isolated LAN), and the issues of 
bridging versus routing versus switching had to be addressed all over again.  This was 
because linking two LANs (the home user client LAN, even if it had but one PC, and the 
server LAN) over a WAN link (DSL) was not a trivial task.  The server LAN could be the 
service provider’s “home server” or anyplace else the user chose to go on the Internet.

Also, ATM logical links (called permanent virtual circuits, or PVCs) are normally 
provisioned between the usual local exchange carrier’s DSLAM and the Internet access 
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provider’s aggregation router.  This can be very costly because IP generally has much 
better statistical multiplexing properties and there can be long hauls through the ATM 
networks before the ATM link is terminated.

The solution was to scrap any useful role for ATM (and any non-TCP/IP infrastruc-
ture) except as a passive transport for IP packets.  This left ATM without any rationale 
for existence, because most of the work was done by running PPP over the DSL link 
between a user LAN and a service provider LAN.

PPP and DSL
Why is PPP used with DSL (and SONET)? The core of the issue is that ISPs needed some 
kind of tunneling protocol.  Tunneling occurs when the normal message-packet-frame 
encapsulation sequence of the layers of a networking protocol suite are violated.  When 
a message is placed inside a packet, then inside a frame, and this frame is placed inside 
another type of frame, this is a tunneling situation.  Although many tunneling methods 
have been standardized at several different TCP/IP layers, tunneling works as long as 
the tunnel endpoints understand the correct sequence of headers and content (which 
can also be encrypted for secure tunnels).

In DSL, the tunneling protocol had to carry the point-to-point “circuits” from the 
central networking location to the customer’s premises and across the shared media 

Networking Visions Today and Yesterday
Today, when anyone can start a Web site with a simple server and provide a service 
to one and all over the Internet, it is good to remember that things were not always 
supposed to be this way. Not so long ago, the control of services on a public global 
network was supposed to be fi rmly under the control of the service provider. 
Many of these “fast-packet” networking schemes were promoted by the national 
telephone companies, from broadband ISDN to ATM to DSL.  They all envisioned a 
network much like the Internet is today, but one with all the servers “in the cloud” 
owned and operated by the service providers. Anyone wanting to provide a ser-
vice (such as a video Web site) would have to go to the service provider to make 
arrangements, and average citizens would probably be unable to break into that 
tightly controlled and expensive market.

This scheme avoided the risk of controversial Web site content (such as copy-
righted material available for download), but with the addition of restrictions and 
surveillance.  Also, the economics for service providers are much different when 
they control content from when they do not.

Today, ISPs most often provide transport and connectivity between Web 
sites and servers owned and operated by almost anyone. ISP servers are usually 
restricted to a small set of services directly related to the ISP, such as email or 
account management.
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LAN to the end user device (host).  There are many ways to do this, such as using IP-in-
IP tunneling, a virtual private network (VPN), or lower level tunneling. ISPs chose PPP 
as the solution for this role in DSL.

Using PPP made perfect sense. For years, ISPs had used PPP to manage their WAN 
dial-in users. PPP could easily assign and manage the ISP’s IP address space, compart-
mentalize users for billing purposes, and so on.  As a LAN technology, Ethernet had none 
of those features. PPP also allowed user authentication methods such as RADIUS to be 
used, methods completely absent on most LAN technologies (if you’re on the LAN, it’s 
assumed you belong there).

Of course, keeping PPP meant putting the PPP frame inside the Ethernet frame, a 
scheme called Point-to-Point Protocol over Ethernet (PPPoE), described in RFC 2516. 
Since tunneling is just another form of encapsulation, all was well.

PPP is not the only data link layer framing and negotiation procedure (PPP is not a 
full data link layer specifi cation) from the IETF. Before PPP became popular, the Serial 
Line Internet Protocol (SLIP) and a closely related protocol using compression (CSLIP, 
or Compressed SLIP) were used to link individual PCs and workstations not connected 
by a LAN, but still running TCP/IP, to the Internet over a dial-up, asynchronous analog 
telephone line with modems. SLIP/CSLIP was also once used to link routers on widely 
separated TCP/IP networks over asynchronous analog leased telephone lines, again 
using modems. SLIP/CSLIP is specifi ed in RFC 1055/STD 47.

PPP Framing for Packets
PPP addresses many of the limitations of SLIP, and can run over both asynchronous 
links (as does SLIP) and synchronous links. PPP provides for more than just a simple 
frame structure for IP packets.  The PPP standard defi nes management and testing func-
tions for line quality, option negotiation, and so on. PPP is described in RFC 1661, is 
protocol independent, and is not limited to IP packet transport.

The PPP control signals, known as the PPP Link Control Protocol (LCP), need not 
be supported, but are strongly recommended to improve performance. Other control 
information is included by means of a Network Control Protocol (NCP), which defi nes 
management procedures for frame content protocols.  The NCP even allows protocols 
other than IP to use the serial link at the same time.  The LCP and NCP subprotocols are 
a distinguishing feature of PPP.

The use of LCP and NCP on a PPP link on a TCP/IP network follows:

■  The source PPP system (user) sends a series of LCP messages to confi gure and 
test the serial link.

■ Both ends exchange LCP messages to establish the link options to be used.
■  The source PPP system sends a series of NCP messages to establish the Network 

Layer protocol (e.g., IP, IPX, etc.).
■  IP packets and frames for any other confi gured protocols are sent across the 

link.
■  NCP and LCP messages are used to close the link down in a graceful and 

structured manner.
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The benefi ts are to create a more effi cient WAN transport for IP packets.  The structure 
of a PPP frame is shown in Figure 3.9.

The Flag fi eld is 0x7E (0111 1110), as in many other data link layer protocols.  The 
Address fi eld is set to 0xFF (1111 1111), which, by convention, is the “all-stations” or 
broadcast address. Note that none of the other fi elds in the Point-to-Point Protocol header 
have a source address for the frame. Point-to-point links only care about the destination, 
which is always 0xFF in PPP and essentially means “any device at the other end of this 
link that sees this frame.” This is one reason why serial interfaces on routers sometimes 
do not have IP addresses (but many serial interfaces, especially to other routers, have 
them anyway—this is the only way to make the serial links “visible” to the IP layer and 
network operations).

The Control fi eld is set to 0x03 (0000 0011), which is the Unnumbered Information 
(UI) format, meaning that there is no sequence numbering in these frames.  The UI for-
mat is used to indicate that the connectionless IP protocol is in use.  The Protocol fi eld 
identifi es the format and use of the content of the PPP frame itself. For LCP messages, 
the Protocol fi eld has the value 0xC021 (1100 0000 0010 0001), for NCP the fi eld has the 
value 0x8021 (1000 0000 0010 0001), and for IP packets the fi eld has the value 0x0021 
(0000 0000 0010 0001).

Following the header is a variable-length Information fi eld (the IP packet), followed 
by a PPP frame trailer with a 16-bit, frame check sequence (FCS) for error control, and 
fi nally an end-of-frame Flag fi eld.

PPP frames may be compressed, fi eld sizes reduced, and used for many specifi c 
tasks, as long as the endpoints agree.

DSL Encapsulation
How are IP packets encapsulated on DSL links? DSL specifi cations establish a basic DSL 
frame as the physical level, but IP packets are not placed directly into these frames. IP 
packets are placed inside PPP frames, and then the PPP frames are encapsulated inside 
Ethernet frames (this is PPP over Ethernet, or PPPoE). Finally, the Ethernet frames are 

FIGURE 3.9

The PPP frame. The fl ag bytes (037E) essentially form an “idle pattern” on the link that is 
 “interrupted” by frames carrying information.
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placed inside the DSL frames and sent to the DSL Access Module (DSLAM) at the tele-
phone switching offi ce.

Once at the switching offi ce, it might seem straightforward to extract the Ethernet 
frame and send it on into the “router cloud.” But it turns out that almost all DSLAMs are 
networked together by ATM, a technology once championed by the telephone compa-
nies. (Some very old DSLAMs use another telephone company technology known as 
frame relay.) ATM uses cells instead of frames to carry information.

So the network/data-link/physical layer protocol stack used between DSLAMs and 
service provider routers linked to the Internet usually looks like fi ve layers instead of 
the expected three:

■ IP packet containing user data, which is inside a PPP frame, which is inside an
■ Ethernet frame running to the DSL router (PPPoE), which is inside a series of
■ ATM cells, which are sent over the physical medium as a series of bits.

We’ll take a closer look at frame relay and ATM in a later chapter on public network 
technologies that can be used to link routers together.

Forms of DSL
Entire books are devoted to the variations of DSL and the DSL protocol stacks used by 
service providers today. Instead of focusing on all the details of these variations, this 
section will take a brief look at the variation of DSL that can be used when IP packets 
make their way from a home PC onto the Internet.

DSL often appears as “xDSL” where the “x” can stand for many different letters. DSL 
is a modern technology for providing broadband data services over the same twisted-
pair (TP), copper telephone lines that provide voice service. DSL services are often 
called “last-mile” (and sometimes “fi rst-mile”) technologies because they are used only 
for short connections between a telephone switching station and a home or offi ce. DSL 
is not used between switching stations (SONET is often used there).

DSL is an extension of the Integrated Services Digital Network (ISDN) technology 
developed by the telephone companies for their own set of combined voice and data 
services.  They operate over short ranges (less than 18 kilofeet) of 24 American Wire 
Gauge (AWG) voice wire to a telephone central offi ce. DSLs offer much higher speeds 
than traditional dial-up modems, up to 52 mbps for traffi c sent “downstream” to the 
user and usually from 32 kbps to 1 Mbps from traffi c sent “upstream” to the central 
offi ce.  The actual speed is distance limited, dropping off at longer distances.

At the line level, DSLs use one of several sophisticated modulation techniques run-
ning in premises DSL router chipsets and DSLAMs at the telephone switching offi ce. 
These include the following:

■ Carrierless Amplitude Modulation (CAP)
■ Discrete Multitone Technology (DMT)
■ Discrete Wavelet Multitone (DWM)
■ Simple Line Code (SLC)
■ Multiple Virtual Line (MVL)
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DSL can operate in a duplex (symmetrical) fashion, offering the same speeds 
upstream and downstream. Others, mainly targeted for residential Internet browsing 
customers, offer higher downstream speeds to handle relatively large server replies to 
upstream mouse clicks or keystrokes. However, standard VDSL and VDSL2 have much 
less asymmetry than other methods. For example, 100-Mbps symmetric operation is 
possible at 0.3 km, and 50 Mbps symmetric at 1 km.

The DSLAMs connect to a high-speed service provider backbone, and then the 
Internet. DSLAMs aggregate traffi c, typically for an ATM network, and then connect to a 
router network. On the interface to the premises, the DSLAM demultiplexes traffi c for 
individual users and forwards it to the appropriate users.

In order to support traditional voice services, most DSL technologies require a sig-
nal fi lter or “splitter” to be installed on the customer premises to share the twisted-pair 
wiring.  The DSLAM splits the signal off at the central offi ce. Splitterless DSL is very 
popular, however, in the form of “DSL Lite” or several other names.

In Table 3.2, various types of DSL are compared.  The speeds listed are typical, as 
are the distance (there are many other factors that can limit DSL reach) and services 
offered.

VDSL requires a fi ber-optic feeder system to the immediate neighborhood, but VDSL 
can provide a full suite of voice, video, and data services.  These services include the 
highest Internet access rates available for residential services, and integration between 
voice and data services (voice mail alerts, caller ID history, and so on, all on the TV 

Table 3.2 Types of DSL

Type Meaning Typical Data Rate Mode Distance Applications

IDSL ISDN DSL 128 Kbps Duplex 18k ft on 24 
AWG TP

ISDN services: voice and 
data; Internet access

HDSL High-speed 
DSL

1.544 to 
42.048 Mbps

Duplex 12k ft on 24 
AWG TP

T1/E1 service, feeder, 
WAN access, LAN con-
nections, Internet access

SDSL Symmetric 
DSL

1.544 to 
2.048 Mbps

Duplex 12k ft on 24 
AWG TP

Same as HDSL

ADSL Asymmetric 
DSL

1.5 to 6 Mbps
16 to 640 kbps

Down

Up

18k ft on 24 
AWG TP

Internet access, remote 
LAN access, some video 
applications.

DSL Lite 
(G.Lite)

“Splitterless” 
ADSL

1.5 to 6 Mbps
16 to 640 kbps

Down

Up

18k ft on 24 
AWG TP

Same as ADSL, but does 
not require a premises 
“splitter” for voice services

VDSL Very-high-
speed DSL

13 to 52 Mbps
1.5 to 2.3 Mbps

Down

Up

1k to 4.5k ft 
depending 
on speed

Same as ADSL plus full 
voice and video services,  
including HDTV
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screen). VDSL is used on the Illustrated Network to get packets from the home offi ce’s 
PCs to the ISP’s router network (the overall architecture is not very different from DSL 
in general). From router to router over WAN distances, the Illustrated Network uses a 
common form of transport for the Internet in the United States: SONET.

THE EVOLUTION OF SONET
SONET is the North American version of the international SDH standard and defi nes 
a hierarchy of fast transports delivered on fi ber-optic cable. One of the most exciting 
aspects of SONET when it fi rst appeared around 1990 was the ability to deploy SONET 
links in self-healing rings, which nearly made outages a thing of the past. (The vast 
majority of link failures today involve signal “backhoe fade,” a euphemism for accidental 
cable dig-ups.)

Before networks composed almost entirely of fi ber-optic cables came along, net-
work errors were a high-priority problem. Protocols such as IP and TCP had extensive 
error-detection and error-correction (the two are distinct) methods built into their 
operation, methods that are now quietly considered almost a hindrance in modern 
networks.

Now, SONET rings do not inherently protect against the common problem of a lack 
of equipment or route diversity, but at least it’s possible. Not all SONET links are on 
rings, of course.  The links on the Illustrated Network are strictly point-to-point.

A Note about Network Errors
Before SONET, almost all WAN links used to link routers were supplied by a telephone 
company that subscribed to the Bell System standards and practices, even if the phone 
company was not part of the sprawling AT&T Bell System. In 1984, the Bell System 
engineering manual named a bit error rate (BER) of 10–5 (one error in 100,000 bits 
sent) as the target for dial-up connections, and put leased lines (because they could be 
“tuned” through predictable equipment) at 10 times better, or 10–6 (one error in every 
1,000,000 bits).

SONET/SDH fi ber links typically have BERs of 1000 (103) to 1 million (106) times 
better than those common in 1984. Since 1000 days is about 3 years, converting a cop-
per link to fi ber meant that all the errors seen yesterday are now spread out over the 
next 3 years (a BER of 10–9) to 3000 years (10–12). LAN error rates, always much lower 
than those of WANs due to shorter spans and less environmental damage, are in about 
the same range. Most errors today occur on the modest-length (a kilometer or mile) 
access links between LAN and WAN to ISP points of presence, and most of those errors 
are due to intermittently failing or faulty connectors.

The only real alternatives for SONET/SDH high-speed WAN links are newer ver-
sions of Ethernet, especially in a metropolitan Ethernet context.  The megabit-speed 
T1 (1.544 Mbps) or E1 (2.048 Mbps) links are used for the local loop. However, even 
those copper-based circuits are usually serviced by newer technologies and carried 
over SONET/SDH fi ber on the backbone.
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How are IP packets carried inside SONET frames? The standard method is called 
Packet over SONET/SDH (POS).  The procedures used in POS are defi ned in three RFCs:

■ RFC1619, PPP over SONET/SDH
■ RFC1661, the PPP
■ RFC1662, PPP in HDLC-like framing

Packet over SONET/SDH
SONET/SDH frames are not just a substitute for Ethernet or PPP frames. SONET/SDH 
frames, like T1 and E1 frames, carry unstructured bit information, such as digitized 
voice telephone calls, and are not usually suitable for direct packet encapsulation. In 
the case of IP, the packets are placed inside a PPP frame (technically, a type of High-
Level Data Link Control [“HDLC-like”] PPP frame with some header fi elds allowed to 
vary in HDLC fi xed for IP packet payloads).  The PPP frame, delimited by a stream of 
special 0x7E interframe fi ll (or “idle” pattern) bits, is then placed into the payload area 
of the SONET/SDH frame.

Figure 3.10 shows a series of PPP frames inside a SONET frame running at 51.84 
Mbps.  Although SONET (and SDH) frames are always shown as two-dimensional arrays 
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FIGURE 3.10

Packet over SONET, showing how the idle pattern of 0x7E surrounds the PPP frames with IP 
packets inside.
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of bits, the fi gure is not very accurate. It doesn’t show any of the SONET framing bytes, 
and IP packets are routinely set to around 1500 bytes long, so they would easily fi ll an 
entire 774-byte, basic SONET transmission-frame payload area. Even the typical network 
default maximum IP packet size of 576 bytes is quite large compared to the SONET 
payload area. However, many packets are not that large, especially acknowledgments.

One other form of transport used on the Illustrated Network is common on IP net-
works today.  Wireless links might some day be more common than anything else.

WIRELESS LANS AND IEEE 802.11
Wireless technologies are the fastest-growing form of link layer for IP packets, whether 
for cell phones or home offi ce LANs. Cell phone packets are a bit of a challenge, and 
wireless LANs are evolving rapidly, but this section will focus on wireless LANs, if only 
because wireless LANs are such a good fi t with Ethernet.  This section will be a little 
longer than the others, only because the latest wireless LANs are newer than the previ-
ous methods discussed.

The basic components of the IEEE 802.11 wireless LAN architecture are the wire-
less stations, such as a laptop, and the access point (AP).  The AP is not strictly necessary, 
and a cluster of wireless stations can communicate directly with each other without 
an AP.  This is called an IEEE 802.11 independent, basic service set (IBSS) or ad hoc 
network. One or more wireless stations form a basic service set (BSS), but if there is 
only one wireless station in the BSS, an AP is necessary to allow the wireless station to 
communicate.  An AP has both wired and wireless connections, allowing it to be the 
access “point” between the wireless station and the world. In a typical home wireless 
network (an arbitrarily low limit), one BSS supports up to four wireless devices, and 
the AP is bundled with the DSL router or cable modem with the high-speed link for 
Internet access. (The DSL router or cable modem can have multiple wired connections 
as well.) In practice, the number of systems you can connect to a given type of AP 
depends on your performance needs and the traffi c mix.

A wireless LAN can have multiple APs, and this arrangement is sometimes called 
an infrastructure wireless LAN.  This type of LAN has more than one BSS, because each 
AP establishes its own BSS.  This is called an extended service set (ESS), and the APs are 
often wired together with an Ethernet LAN or an Ethernet hub or switch.  The three 
major types of IEEE 802.11 wireless LANs—ad hoc (IBSS), BSS, and ESS—are shown in 
Figure 3.11.

Wi-Fi
An intended interoperable version of the IEEE 802.11 architecture is known as Wi-Fi, 
a trademark and brand of the Wi-Fi Alliance. It allows users with properly equipped 
wireless laptops to attach to APs maintained by a service provider in restaurants, book-
stores, libraries, and other locations, usually to access the Internet. In some places, espe-
cially downtown urban areas, a wireless station can receive a strong signal from two or 
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more APs.  While a wireless station can belong to more than one BSS through its AP at 
the same time, this is not helpful when the APs are offering different network addresses 
(and perhaps prices for attachment).  This collection of Wi-Fi networks is sometimes 
called the “Wi-Fi jungle,” and will only become worse as wireless services turn up more 
and more often in parks, apartment buildings, offi ces, and so on. How do APs and wire-
less stations sort themselves out in the Wi-Fi jungle?

If there are APs present, each wireless station in IEEE 802.11 needs to associate 
with an AP before it can send or receive frames. For Internet access, the 802.11 frames 
contain IP packets, of course.  The network administrator for every AP assigns a Service 
Set Identifi er (SSID) to the AP, as well as the channels (frequency ranges) that are associ-
ated with the AP.  The AP has a MAC layer address as well, often called the BSSID.

The AP is required to periodically send out beacon frames, each including the 
AP’s SSID and MAC layer address (BSSID), on its wireless channels.  These channels are 
scanned by the wireless station. Some channels might overlap between multiple APs, 
because the “jungle” has no central control, but (hopefully) there are other channels 
that do not. In practice, interference between overlapping APs is not a huge  problem 

FIGURE 3.11

Wireless LAN architectures. Most home networks are built around an access point built into a 
DSL router/gateway.
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in the absence of a high volume of traffi c.  When you “view available networks” in 
 Windows XP, the display is a list of the SSIDs of all APs in range.  To get Internet access, 
you need to associate your wireless station with one of these APs.

After selecting an AP by SSID, the wireless host uses the 802.11 association protocol 
to join the AP’s subnet.  The wireless station then uses DHCP to get an IP address, and 
becomes part of the Internet through the AP.

If the wireless Internet access is not free, or the wireless LAN is intended for 
restricted use (e.g., tenants in a particular building), the wireless station might have 
to authenticate itself to the AP. If the pool of users is small and known, the host’s MAC 
address can be used for this purpose, and only certain MAC addresses will receive IP 
addresses.

Once the user is on the wireless network, many hotels use the captive portal form of 
authentication.  The captive portal technique makes the user with a Web browser (HTTP 
client) to see a special Web page before being granted normal Internet access.  The 
captive portal intercepts all packets regardless of address or port, until the browser is 
used as a form of authentication device. Once the acceptable use terms are viewed or 
the payment rates are accepted and arranged, “normal” Internet access is granted for 
a fi xed period of time. It should be noted that captive portals can be used to control 
wired access as well, and many places (hotel rooms, business centers) use them in this 
fashion. In many cases, the normal device “fi rewall” capabilities must be turned off or 
confi gured to allow the captive portal Web page to appear.

Another post-access approach employs usernames and passwords—these are popu-
lar at coffee shops and other retail establishments. In both cases, there is usually a central 
authentication server used by many APs, and the wireless host communicates with this 
server using either RADIUS (RFC 2138) or DIAMETER (RFC 3588). Once authenticated, 
the users’ traffi c is commonly encrypted to preserve privacy over the airwaves, where 
signals can usually be picked up easily and without the knowledge of end users.

When accessing the offi ce remotely, even if captive portal or some other method is 
used, most organizations add something to secure tunneling based on PPTP (Microsoft’s 
Point-to-Point Tunneling Protocol) or PPPoE to run proprietary VPN client software.  We’ve 
already mentioned PPPoE, and PPTP with VPNs will be explored later in this book.

IEEE 802.11 MAC Layer Protocol
IEEE 802.11 defi nes two MAC sublayers: the distributed coordination function (DCF) 
and the point coordination function (PCF).  The PCF MAC is optional and runs on top 
of the DCF MAC, which is mandatory. PCF is used with APs and is very complex, while 
DCF is simpler and uses a venerable access method known as carrier sense multiple 
access with collision avoidance (CSMA/CA). Note that while Ethernet LANs detect 
collisions between stations sending at the same time with CSMA/CD, wireless LANs 
avoid collisions. Collision detection is not appropriate for wireless LANs for a number 
of reasons, the most important being the hidden terminal problem.

To understand the hidden terminal problem, consider the two wireless laptops and 
AP shown in Figure 3.12. (The problem does not only occur with an AP, but the fi gure 
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shows this situation.) Both laptops are within range of the AP, but not of each other 
(there are many reasons for this, from distance to signal fading). Obviously, if L1 is send-
ing a frame to the AP, L2 could also start sending a frame, because the carrier sensing 
shows the network as “clear.” However, a collision occurs at the AP and both frames 
have errors, although both L1 and L2 think their frames were sent just fi ne.

Now, the AP clearly knows what’s going on. It just needs a way to tell the wireless 
stations when it’s okay to send (or not). CSMA/CD can use an optional method known 
as request to send (RTS) and clear to send (CTS) to avoid these types of undetected 
collisions.  When a sender wants to send a data frame, it must fi rst reserve the channel 
by sending a short RTS frame to the AP, telling the AP how long it will take to send the 
data, and receive an acknowledgement frame (ACK) that all went well. If the sender 
receives a short CTS control frame back, then it can send. Other stations hear the CTS 
as well, and refrain from sending during this time period.

The way that RTS/CTS works for sending data to an access point is shown in 
 Fig ure 3.13.

There are two time notations in the fi gure: DIFS and SIFS.  The distributed inter-
frame space (DIFS) is the amount of time a wireless station waits to send after sensing 
that the channel is clear.  The station waits a bit “just in case” because wireless LANs, 
unlike Ethernet, do not detect collisions and cease sending, so collisions are very debili-
tating and must be avoided at all costs.  The short inter-frame spacing (SIFS) is also 
used between frames for collision avoidance.  There is also a duration timer in all 802.11 
frames, measured in microseconds, that tells the other stations how long it will take to 
send the frame and receive a reply. Stations avoid link access during this time period.

While RTS/CTS does reduce collisions, it also adds delay and reduces the available 
bandwidth on a channel. In practice, each wireless station sets an RTS threshold so that 
CTS/RTS is used only when the frame is longer than this value. Many wireless stations 
set the threshold so high that the value is larger than the maximum frame length, and 
the RTS/CTS is skipped for all data.

Wireless Laptop 
L2 

Access Point 
Wireless Laptop 

L1 

FIGURE 3.12

Hidden terminals on wireless LANs. This can be a problem in larger home networks, and special 
“LAN extender” devices can be used to prevent the problem.
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FIGURE 3.13

RTS and CTS in wireless LANs showing how all other nodes must defer access to the medium. 
The CTS is heard by all other nodes, although this is not detailed in the fi gure.

The IEEE 802.11 Frame
Although the IEEE 802.11 frame shares a lot with the Ethernet frame (which is one rea-
son some packet sniffers can parse wireless frames as if they were Ethernet), there are 
a number of unique fi elds in 802.11.  There are nine main fi elds, and the frame control 
(FC) fi eld has 10 fi elds.  The nine major fi elds of the IEEE 802.11 MAC frame are shown 
in Figure 3.14.  The only fi elds in the two FC bytes that we will talk about are the From 
DS and To DS fi elds. (In some cases, the fi rst three fi elds of the 802.11 MAC frame, the 
version, type, and subtype, are presented separately from the frame control fl ags, which 
are all bits.)

FIGURE 3.14

IEEE 802.11 frame structure. Note the potential number of address fi elds (four) in contrast to the 
two used in Ethernet II frames.
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Frame control (FC)—This field is 2 bytes long and contains, among other things, 
two important flag bits:  To DS (distribution system) and From DS.

Duration—This byte gives the duration of the transmission in all frame types 
except one. In one control frame, this “D” byte gives the ID of the frame.

Addresses—There are four possible address fields, each 6 bytes long and struc-
tured the same as Ethernet MAC addresses. The fourth field is only present 
when multiple APs are in use in an ESS. The meaning of each address field 
depends on the value of the DS flags in the FC field, discussed later.

Sequence control—This 2-byte field gives the sequence number of the frame and 
is used in flow control.

Payload—This field can be from 0 to 2312 bytes long. Usually it is fewer than 
1500 bytes and holds an IP packet, but there are other types of payloads. The 
precise type and subtype of the content is determined by the content of the 
FC field.

CRC—The frame cyclical redundancy check is a 4-byte CRC-32, used to determine 
the nature of the acknowledgement sent.

Why does the wireless frame need to defi ne four address fi elds? Mainly because the 
arrangements of wireless stations can be complicated. Is there an AP in the BSS? Is there 
more than one AP? What type of frame is being sent? Data? Control? Management? The 
number of address fi elds present, and what they represent, depend on the answers to 
these questions.

How do receivers know exactly how many addresses are used and what they repre-
sent? That’s where the two DS fl ags in the FC fi eld come in.  The meaning of the address 
fi elds (and possible presence of the Address 4 fi eld) depends on the values of these two 
bits.  Actually, there are fi ve types of MAC addresses used in wireless LANs:

BSSID—This is usually the MAC address of the AP, but it is generated randomly in 
an IBSS or ad hoc network.

Transmitter Address (TA)—The TA is the MAC address of the individual station 
that has just sent the frame.

Receiver Address (RA)—The RA is the MAC address of the immediate receiver of 
the frame. This can be a group or broadcast address.

Source Address (SA)—The SA is the MAC address of the individual station that 
originated the frame. Due to the possible role played by the AP, the SA is not 
necessarily the same as the TA.

Destination Address (DA)—The DA is the MAC address of the final destination of 
the frame, and can also be a group or broadcast as well as an individual station. 
Again, due to the AP(s), this address might not match the RA.
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The interplay among these address types and the meaning of the two DS fl ags for 
data frames is shown in Table 3.3.

A look back at Figures 3.6 and 3.7 will show that these address patterns are refl ected 
in the screen captures.  The last two bits of the frame control fl ags are the DS bits, 
which are 01 (To AP) and 10 (From AP), respectively.  The Proxima AP is passing the 
frame between the Cisco and Farallon wireless stations.

The Address 4 fi eld appears only when there are multiple APs. Usually, data frames 
in a simple BSS with AP use DS bit combinations 01 and 10 to make their way through 
the AP from one wireless station to another.

Table 3.3 DS Bits and Wireless LAN Data Frame Address Fields

Type of Network From DS To DS Address 1 Address 2 Address 3 Address 4

Ad hoc (IBSS) 0 0 DA (5 RA) SA BSSID N/A

To AP 0 1 RA (5 BSSID) SA DA N/A

From AP 1 0 DA (5 RA) BSSID SA N/A

ESS (multiple 
APs)

1 1 RA TA DA SA
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QUESTIONS FOR READERS
Figure 3.15 shows some of the concepts discussed in this chapter and can be used to 
help you answer the following questions.

Hub 

Client 

Hub 

Ethernet || Frames 
Carrying IP Packets 

Client Server 

LAN 1

LAN 2

Router 

IP Packet over
SONET (POS) on
SONET/SDH (with

added frame
overhead)

Client 

Home FTTN

Home

Router

Wireless
AP

Wireless Network Carrying
IP Packets inside
802.11 Frames

Client Server Router 

Fiber Carrying IP Packets
inside DSL Frames

FIGURE 3.15

IP packets are carried in many different types of frames, and some of those frames are tucked 
inside lower level transmission frames.

1.  Both LAN1 and LAN2 use Ethernet II frames.  What would happen if frame types 
on the two LANs were different?

2. SONET/SDH still has its own overhead bytes when IP packets are carried inside 
the SONET/SDH frames.  Why is the SONET/SDH overhead still necessary?

3. What is the captive portal method of wireless access permission and how does 
it work?

4. Ethernet LANs can extend to metropolitan area distances and perhaps beyond. 
If Metro Ethernet evolved to remove all distance limits, what are the advantages 
and disadvantages of always using Ethernet frames for IP packets?

5. Why are more than two addresses used in wireless frames in some cases? Which 
cases require more than two addresses?
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All hosts attached to the Internet run certain core protocols to enable their 
 applications to function properly.  This part of the book examines these 
 protocols and shows how the router forms the glue that holds the Internet 
together.
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CHAPTER

What You Will Learn
In this chapter, you will learn about the addressing used in IPv4 and IPv6.  We’ll 
assign addresses of both types to various interfaces on the hosts and routers of the 
Illustrated Network.  We’ll mention older classful IPv4 addressing and the current 
classless system.  We will start to explore the differences between IPv4 and IPv6 
addressing and why both exist.

You will learn about the important concept of subnetting and supernetting 
and other aspects of IP addressing.  We’ll detail the IP subnet mask as well.

IPv4 and IPv6 
Addressing 4

In many ways, IPv4 and IPv6 are distinct protocols with important differences. Never-
theless, both IPv4 and IPv6 are valid IP layer addresses, some networks use both IPv4 
and IPv6, and the packet data content is the same in both. Network engineers often 
deal with both every day, and we will too. In the future, the importance of IPv6 will 
only grow.

IPv4 addressing was fairly straightforward to understand before the Internet 
exploded all over the world.  Then the original (“classful”) rules for assigning networks 
IPv4 addresses didn’t work as well, and routers were getting overwhelmed by the size 
and resources needed to maintain routing and forwarding tables.

This chapter investigates both IPv4 and IPv6 addressing, and the host and router 
interfaces on the Illustrated Network have both IPv4 and IPv6 addresses (see 
 Figure 4.1).  We’ll assign these addresses manually in this chapter.  

We’ll start the discussion by describing the classless Internet routing (CIDR) rules 
created so that we did not run out of IPv4 addresses in 1994, shortly after the Web 
exploded onto the scene.  Then we’ll describe the older classful system, and, fi nally, 
we’ll talk about IPv6 addressing.  This chapter also explores important aspects of IP 
addressing subnetting and supernetting.
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FIGURE 4.1

The Illustrated Network IP addressing, showing the interfaces on the LANs and customer-edge
routers that we will be working with. Note that in most cases, all of the network interfaces will
have both IPv4 and IPv6 addresses.
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IP ADDRESSING
In Chapter 2 we worked a lot with the Linux and Windows clients and servers. Let’s 
start with our FreeBSD hosts and routers to look at IPv4 and IPv6 addresses on the 
device’s interfaces.

Figure 4.1 shows through shading the portion of the network we’ll be working 
with in this chapter.  All of the ISP routers have IP addresses, of course, both IPv4 and 
IPv6, but we’ll only look at the addressing of the customer routers.  Although it can be 
important, we won’t worry about the addressing used internally by service providers. 
The things that can go wrong there are far beyond this introductory discussion.

When the Illustrated Network was fi rst confi gured, we manually assigned an IPv4 
address to the bsdserver Ethernet interface (em0) with ifconfig.  The only tricky part 
was translating the prefi x length used on our network (/24) to a decimal network mask 
for this host (this was done only to show this common method).  We could have used 
10.10.12.77/24 as well, or even hex (0xffffff00).  We’ll talk about prefi x lengths and 
network masks later on in this chapter.  The ifconfig command generates no output, 
but we can look at the result using ifconfig without any parameters.

bsdserver# ifconfig em0 inet 10.10.12.77 netmask 255.255.255.0
bsdserver# ifconfig
em0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 options=3<RXCSUM,TXCSUM>
 inet6 fe80::20e:cff:fe3b:8732%em0 prefixlen 64 scopeid 0x1
 inet 10.10.12.77 netmask 0xffffff00 broadcast 10.10.12.255
 ether 00:0e:0c:3b:87:32
 media: Ethernet autoselect (100baseTX <full-duplex>)
 status: active

Automatic IP Addressing
This chapter assigns IPv4 and IPv6 addresses manually on each device.  This is still 
done, but it is more common by far to assign IP addresses automatically with the 
Dynamic Host Confi guration Protocol, or DHCP. Routers can use DHCP as well. 
We’ll look at DHCP in a later chapter.

The interface fl ags are interpreted on the fi rst line of the output. Interface em0 is up 
and running, and can send or receive, but not at the same time (simplex). It can send 
and receive broadcasts and multicast, and has a Maximum Transmission Unit (MTU) 
of 1500 bytes (a normal Ethernet frame). If a packet is queued for output and is too 
large for this 1500-byte frame, then the packet content must be fragmented into mul-
tiple frames, each in its own packet.  We’ll talk about fragmentation in detail in a later 
chapter.  The option line says that the frame check sequence is generated when trans-
mitting and checked when receiving.
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Note that we got an IPv6 address (the inet6 line) as well.  This is called the link-
local (0xfe80) IPv6 address. It is based on the MAC address and generated automati-
cally, with a prefi x length (prefixlen) of /64. Newer versions of FreeBSD function 
this way, as long as the local router is properly confi gured to run IPv6. You can use 
the ifconfig command with the inet6 option to assign a specifi c IPv6 address to the 
interface.  (There’s a lot more to IPv6 addressing, such as router-assigned prefi xes, but 
we’re keeping it very basic here.)

The next line lists the IPv4 address, netmask, and the address used as an IP broad-
cast address to send packets to every device on the network.  The MAC address has a 
line all its own,  followed by the type of media: 100-Mbps, twisted-pair Ethernet, capable 
of sending and receiving (full-duplex) at the same time (but em0 will not do that).  The 
interface is active as well as up, which means that it is sending and receiving bits.

Linux uses slightly different syntax to assign IPv4 addresses to interfaces. Let’s assign 
an IPv4 address to the lnxclient Ethernet interface (eth0) using ifconfig.  In this case, 
the network mask format is easier to read.  We’ll look at the interface before the address 
is assigned, and then after, and fi nd something very different from FreeBSD with regard 
to the network broadcast address.

[root@lnxclient admin]# ifconfig
eth0 Link encap:Ethernet  HWaddr 00:B0:D0:45:34:64 
 UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
 RX packets:43993 errors:0 dropped:0 overruns:1 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:100
 RX bytes:7491082 (7.1 Mb)  TX bytes:0 (0.0 b)
 Interrupt:5 Base address:0xec00
[root@lnxclient admin]# ifconfig eth0 10.10.12.166 netmask 255.255.255.0
[root@lnxclient admin]# ifconfig
eth0 Link encap:Ethernet  HWaddr 00:B0:D0:45:34:64 
  inet addr:10.10.12.166  Bcast:10.255.255.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
 RX packets:44000 errors:0 dropped:0 overruns:1 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:100
 RX bytes:7492614 (7.1 Mb)  TX bytes:0 (0.0 b)
 Interrupt:5 Base address:0xec00

This output gives much the same information as FreeBSD, but provides more details 
for traffi c statistics and error conditions.  The last line of output gives details about how 
the interface card communicates with the operating system and has nothing directly 
to do with the network. Note that no automatic IPv6 addresses are generated.  All ver-
sions of the Linux kernel newer than 2.2, regardless of distribution, now support ways 
to give an interface an IPv6 address, but we will not do that.

However, Linux has also done something very odd with the broadcast address.  We’ll 
talk more about broadcast address formats later in this chapter, but it is supposed to be 
formed by setting all of the host bits that follow the network bits in the IP address to 1. 

CHAPTER 4 IPv4 and IPv6 Addressing 113



Now, we set a network mask for 24 bits (255.255.255.0), but Linux has set all the bits in 
the fi eld to a string of 1 bits in the broadcast mask to the last 24 bits of the IPv4 address, 
or 10.255.255.255.  As we saw with FreeBSD, the correct broadcast address for this net-
work mask should be 10.10.12.255.

This means, as we’ll soon discover, that this older version of Linux expects classful 
IPv4 addresses, and today we mostly use classless IPv4 addresses. (There was some 
debate as to whether this was a “broken” version or install, but the behavior is consis-
tent and all else seems well.)

To fi x the broadcast address so that the network functions properly (yes, it mat-
ters), we’ll have to specify a broadcast address for lnxclient (and do the same for 
lnxserver).

[root@lnxclient admin]# ifconfig eth0 broadcast 10.10.12.255
[root@lnxclient admin]# ifconfig
eth0 Link encap:Ethernet  HWaddr 00:B0:D0:45:34:64 
  inet addr:10.10.12.166  Bcast:10.10.12.255  Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
 RX packets:44000 errors:0 dropped:0 overruns:1 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:100
 RX bytes:7492614 (7.1 Mb)  TX bytes:0 (0.0 b)
 Interrupt:5 Base address:0xec00

Let’s move on to the Windows devices. In Windows, IPv4 and IPv6 address assign-
ment can be awkward. In Windows XP,  you typically use the graphical interface to assign 
IPv4 addresses, subnet masks, and default gateways.  The method is well-documented 
in many places and need not be detailed here.  You can easily view the current IP  
addresses by running the  Windows ipconfig command. Here’s the result on wincli2.

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.
C:\Documents and Settings\Owner>ipconfig
Windows IP Configuration
Ethernet adapter Local Area Connection:
 Connection-specific DNS Suffix  .  :
 IP Address  .   .   .  .  .  .  .  : 10.10.12.222
 Subnet Mask .   .   .  .  .  .  .  : 255.255.255.0
 Default Gateway .   .  .  .  .  .  : 10.10.12.1

Unlike the Unix-based output, Windows XP associates a default gateway with the 
interface.  This information is properly part of the host routing and forwarding routing 
table, and we’ll talk more about default gateways in a later chapter on routing.

How can we give the LAN interface an IPv6 address? In XP, the graphical version 
depends on the service packs installed.  The easiest way is to use the command prompt 
to fi rst install the IPv6 protocol stack as a dual stack on the host. XP can generate 
a series of IPv6 addresses automatically as well (you can also set them manually). It 
should be noted that in Vista, IPv6 is typically turned on by default.
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C:\Documents and Settings\Owner>ipv6 install
Installing. . .
Succeeded.
C:\Documents and Settings\Owner>

Once IPv6 support is available, the output of the ipconfig command shows some 
very interesting things.

C:\Documents and Settings\Owner>ipconfig
Windows IP Configuration
Ethernet adapter Local Area Connection:
 Connection-specific DNS Suffix  .  :
 IP Address  .   .   .  .  .  .  .  : 10.10.12.222
 Subnet Mask .   .   .  .  .  .  .  : 255.255.255.0
  IP Address  .   .   .  .  .  .  .  : fe80::202:b3ff:fe27:fa8c%4
 Default Gateway .   .  .  .  .  .  : 10.10.12.1

Tunnel adapter Automatic Tunneling Pseudo-Interface:

 Connection-specific DNS Suffix  .  :
 IP Address  .   .   .  .  .  .  .  : fe80::5efe:10.10.12.222%2
 Default Gateway .   .  .  .  .  .  :

Not only has the IPv6 installation created an IPv6 address for the LAN interface, it is a 
site-local address based on the MAC address of the interface (see Chapter 3).  The “%” 
number is just an index for the order in which certain types of IPv6 addresses were 
generated by the IPv6 installation.

On working networks, more than just the automatic tunnel IPv6 address is usually 
created. It is not unusual to see a Tunnel adapter Teredo Tunneling Pseudo-Interface.   
Teredo is a Microsoft initiative, defi ned in RFC 3904, that allows devices to reach the 
IPv6 Internet from behind a network address translation (NAT) device.  There is often 
a Tunnel adapter 6to4 Tunneling Pseudo-Interface as well, depending on how the 
routers are confi gured.  A full discussion of these Windows IPv6 interfaces is beyond the 
scope of this book, but we’ll discuss IPv6 tunneling in more detail in Chapter 9.

The customer edge routers are Juniper Networks routers.  The confi guration fi les on 
these routers look very different from those on a Cisco router. Juniper Networks router 
confi gurations are more like C language programs and are organized with braces in 
indented stanzas. However, Juniper Networks router confi gurations can be rendered 
in “set” language that looks more like Cisco’s style. For example, on router CE0, the 
addressing on interface fe-1/3/0 is more complex than on a host:

admin@CE0> show interface fe-1/3/0
unit 0 {
 family inet {
 address 10.10.11.1/24;
 }
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 family inet6 {
 address FC00:ffb3:d5:b:205:85ff:fe88:ccdb/64;
 }
}
user@CE0>

In this format, all statements confi gured under another statement (indented) apply 
to that higher level statement.  Thus, both family inet and family inet6 apply to 
unit 0, but only the address 10.10.11.1/24 applies to family inet.  The form is used 
often in this book, and becomes more familiar with repetition.

This form can also be shown in the following more compact format, which is the 
style we will use in this book:

admin@CE0> set interface fe-1/3/0 unit 0 family inet address 10.10.11.1/24;
admin@CE0> set interface fe-1/3/0 unit 0 family inet6 address
 FC00:ffb3:d5:b:205:85ff:fe88:ccdb/64;

This output is for logical unit 0, the simplest case. Juniper Networks router interfaces 
can have logical units numbered from 0 to 65535, and each can have more than one 
IPv4 or IPv6 address.  The LAN interface on CE6 looks very much the same, except for 
the address specifi cs.

We’ll talk about the specifi cs of the IPv4 and IPv6 address formats, network marks, 
and prefi x lengths, and other topics, in the rest of this chapter.  At the end, we’ll see just 
what the complex IPv6 address format is telling us about the Illustrated Network.

One type of address we won’t be exploring in this chapter is the anycast address. 
To understand anycast addresses, consider that there are three major types of IP 
addresses.

Unicast—This type of IP address is used to identify a single network interface. 
It establishes a one-to-one relationship between the network address and 
 network endpoint (interface). So each unicast address uniquely identifies a 
network source or destination.

Broadcast/Multicast—This type of IP address is used to identify a changeable 
group of interfaces. Broadcast addresses are used to send a message to every 
reachable interface, and broadcast domains are typically defined physically. 
Multicast addresses are not limited to a single domain and multicast groups 
are established logically. IPv6 relies on multicast addresses for many of the 
 discovery features of IPv6 and things that are done with broadcasts in IPv4. 
In both multicast and broadcast, there is a many-to-one association between 
 network address and network endpoints. Consequently, one address  identifies 
a group of network endpoints, and information is replicated by routers to 
reach them all.

Anycast—This type of IP address, formally defined in IPv6, is used to identify a 
defined set of interfaces, usually on different devices.  Anycast addresses are 
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used to deliver packets to the “nearest” interface, where nearness is defined 
as a routing parameter.  The same can be done in IPv4, but not as elegantly. 
However, multicasts deliver to many interface destinations, while anycasts 
deliver to only one, although many might be reachable.  Anycasts are useful for 
redundancy purposes, so servers can exist around the world, all with the same 
address, but traffic is only sent to the one that is the “closest” to the source.

This book uses mainly unicast IP addresses. Multicast and anycast addresses will be 
introduced and used as necessary.

THE NETWORK/HOST BOUNDARY
We just saw that the mask determines where the boundary between the network 
and host portions of the IP address lies.  This boundary is important: If it is set too far 
to the right, there are lots of networks, but none of them can have many hosts. If it 
is set too far to the left, then there are plenty of hosts allowed, but fewer networks 
overall.

In IP, the address boundary is moveable, and always has been. But in the past, right 
through the big Internet explosion in the mid-1990s, the network/host boundary in 
IPv4 could only be in one of three places.  This produced lots of networks that were too 
small in terms of hosts, and many that were far too large, capable of holding millions 
of hosts. Not only that, but there were so many small networks, each of which needing 
a separate routing table entry in each and every core Internet router, that the Internet 
threatened to drown under its own weight.

In a nutshell, the inability to aggregate Class C blocks drove routing table pressure 
and the unsustainable rate of allocation of Class A and Class B addresses.  This would 
have caused IPv4 exhaustion by 1994 to 1995, as projected in 1990.

So the rules were changed to allow the network/host boundary in IPv4 and IPv6 
addresses to be set almost anywhere (there are still some basic rules).  When applied 
to the former, fi xed, IPv4 octet boundaries, if you moved the “natural” boundary 
of the mask to the right of its normal position, this was called subnetting and 
the address space gets smaller. (Actually, even the older “natural” IPv4 addresses 
could always be subnetted.) And if you moved the “natural” boundary of the mask 
to the left of its normal position, this was called supernetting and the address space 
became larger.

In this chapter, we will talk about subnetting and supernetting in detail. Supernet-
ting is more commonly called “aggregation” today, but we’ll call it supernetting in this 
chapter just to make the contrast with subnetting explicit.  We will also talk about the 
current system of rules for hosts and routers concerning the positioning of the bound-
ary between the network and host portion of the IP address, variable-length subnet 
masking (VLSM), and classless interdomain routing (CIDR). But fi rst, let’s look at the 
IPv4 address in detail.
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THE IPV4 ADDRESS
The IPv4 address is a network layer concept and has nothing to do with the addresses 
that the data link layer uses, often called the hardware address on LANs. IPv4 addresses 
must be mapped to LAN hardware addresses and WAN serial link addresses. However, 
there is no real relationship between LAN media access control (MAC) or WAN serial 
link addresses in the frame header and the IPv4 addresses used in the packet header, 
with the special exception of multicast addresses.

The original IPv4 addressing scheme established in RFC 791 is known as classful 
addressing.  The 32 bits of the IPv4 address fall into one of several classes based on 
the value of the initial bits in the IPv4 address.  The major classes used for addresses 
were A, B, and C. Class D was (and is) used for IPv4 multicast traffi c, and Class E was 
“reserved” for experimental purposes. Each class differs in the number of IPv4 address 
bits assigned to the network and the host portion of the IP address.  This scheme is 
shown in Figure 4.2.

Note that with Class A, B, and C, we are referring to the size of the blocks being allo-
cated as well as the region from which they were allocated by IANA. However, Classes 
D and E refer to the whole respective region. Multicast addresses, when they were 
assigned for applications, for example, were assigned one at a time like (for instance) 
port numbers. (We’ll talk about port numbers in a later chapter.) In the rest of this 
chapter, references to Classes A, B, and C are concerned with address space sizes and 
not locations.

The 4 billion (actually 4,294,967,296) possible IPv4 addresses are split up into fi ve 
classes.  The fi ve classes are not equal in size, and Class A covers a full half of the whole 

32-bit Address Starts with:

Class A

Class B

Class C

Class D

Class E

0 (0–127)

10 (128–191)

110 (192–223)

1110 (224–239)

1111 (240–255)

First
byte

Second
byte

Third
byte

Fourth
byte

Number of
Addresses:

% of
Address Space

23152,147,483,648

23051,073,741,824

2295536,870,912

2285268,435,456

2285268,435,456

50

25

12.5

6.25

6.25

FIGURE 4.2

Classful IPv4 addressing, showing the number of addresses possible and percentage of the total 
address space for each class. Class D is still the valid IPv4 address range used for multicasting.
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IPv4 address space. Class E addresses are “experimental” and some of them have been 
used for that purpose, but they are seldom seen today.

In practice, only the Class D addresses are still used on the Internet in a classful man-
ner. Class D addresses are the IPv4 multicast addresses (224.0.0.0 to 239.255.255.255), 
and we’ll talk about those as needed.  We will nonetheless talk about classful IPv4 
addressing in this book, especially later on in this chapter when subnetting is consid-
ered and when mentioning the routing protocol RIPv1. However, the signifi cance of 
classful IPv4 addressing is strictly historical. Classful addressing comes up occasionally, 
and at least some introduction is necessary.

This chapter, and this book, emphasizes classless IP addresses, the current way of 
interpreting the 32-bit IPv4 address space.  This scheme assumes that no classes exist 
and is how routers on the Internet interpret IPv4 addresses. In classless addressing, 
the IPv4 network mask or prefi x determines the boundary between the network and 
host portion of the IP address instead of the initial IP address bits. On a host, it is still 
often called a network mask, because hosts don’t care about classful or classless, but it 
is called a prefi x on a router.

Hosts really don’t deal with the differences between classful and classless IP 
addresses. Routers, on the other hand, must. Because this book deals with networks 
as a whole, including routers, some understanding of both classful and classless IPv4 
addressing is benefi cial.

Dotted Decimal
IPv4 addresses are most often written in dotted decimal notation. In this format, 
each 8-bit byte in the 32-bit IPv4 address is converted from binary or hexadeci-
mal to a decimal number between 0 (0000 0000 or 0x00) and 255 (1111 1111 or 
0xFF).  The numbers are then written as four decimal numbers with dots between 
them: W.X.Y.Z.

For example, 1010 1100 0001 0000 1100 1000 0000 0010 (0xAC 10 C8 02) 
becomes 172.16.200.2.  And 1011 1111 1111 1111 0000 1110 0010 1100 (0xBF FF 
0E 2C) becomes 191.255.14.44, and so on.

Hosts on the same network (essentially a LAN) must have the prefi x (network por-
tion) of their IP addresses (IPv4 or IPv6) be the same.  This is how routers route packets 
between networks that form the Internet: by the network portion of the IP address. 
The whole IP address specifi es the host on the network, and the network  portion 
 identifi es the LAN.  The boundary between network and host IP address bits is move-
able for either classful or classless IP addresses.  An IP address can be expressed in 
dotted decimal, binary, octal, or hexadecimal.  While all are correct and mean the same 
thing, it’s most common to use dotted decimal notation for IPv4 and hexadecimal 
(hex) for IPv6. (In fact, some RFCs, such as those for HTTP [covered in Chapter 22], 
require  dotted decimal for IPv4 addresses.)
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The basic concepts of classful IPv4 addressing are shown in Figure 4.3 for the three 
most common classes—A, B, and C.  The fi gure shows the Internet name assigned to the 
IPv4 address, the default network mask and prefi x length for each of the three com-
mon classes, and the IPv4 address in dotted decimal.

Note that when no network mask is given, the class of the address is determined by 
the value of the initial bits of the address, as already described.  The network mask can 
move this boundary, but in practice only to the right in classful addressing.

Classless IPv4 addressing, on the other hand, as used on routers, does not derive a 
default subnet mask or prefi x length.  The prefi x length for classless IPv4 addressing 
must be given (by the netmask) to properly place the boundary between NetID and 
HostID portions of the IPv4 address.

IP addresses, both IPv4 and IPv6, can be public or private. Public network address 
spaces are assigned by a central authority and should be unique. Private network 
addresses are very useful, but are not guaranteed to be unique.  Therefore, the use of 
private network address spaces has to be carefully managed, because routers on the 
Internet would not work properly if a LAN showed up in two places at the same time. 
Nevertheless, the use of private address spaces in IP is popular for perceived security 
reasons.  The security aspects are often overemphasized: The expansion of the locally 
available address space is the key reason for private address use. (If you have one 
IP address and three hosts, you have a problem without private addressing.) But private 
address spaces must be translated to public addresses whenever a packet makes it way 
onto the global public Internet.

Class A

Class B

Class C

First
byte

Second
byte

Third
byte

Fourth
byte

NetID HostID

NetID HostID

NetID HostID

8 bits for NetID, 24 bits for HostID

16 bits for NetID, 16 bits for HostID

24 bits for NetID, 8 bits for HostID

FIGURE 4.3

The classful IPv4 address for classes A, B, and C. Note how the boundary between network 
 identifi er and host identifi er moves to the right, allowing more networks and fewer hosts in each 
class.
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Moreover, private IP addresses are not routable outside a local network, so a router 
is not allowed to advertise a route to a private address space onto the public Inter-
net. Note that private addresses are just as routable as public ones within your own 
 network (as on the Illustrated Network), or by mutual consent with another party.  They 
are not generally routable on the global public Internet due to their lack of uniqueness 
and usual practices.

Almost all networks today rely on private network addresses to prevent public IPv4 
address exhaustion, so these addresses are not just to test networks and labs any longer. 
Customer-edge routers often translate between a large pool of private (internal) and a 
smaller pool of public (external) addresses and insulate the local LAN from the outside 
world.  We’ll talk more about private IPv4 address in the next section of this chapter.

When obtaining a public IP address, a user or organization receives an address 
space that should be globally unique on the Internet. (Sadly, you often fi nd yourself 
“blackholed” to nowhere for some ISP to route your packets because someone else 
used your address space internally for some private network without permission!) This 
fi rst piece is the network portion (prefi x) of an IP address space, such as 191.255.0.0. 
This example uses a so-called “Martian” IPv4 address, which is a valid IP address, but not 
used on the Internet.  Technically, the address space beginning with 191.255 is reserved, 
but could be assigned in the future.  The 0.0 ending means an IP network is referenced, 
and not a host (in this case, but hosts sometimes have IPv4 addresses that end with 
0). Some TCP/IP protocol stacks struggle with IPv4 addresses ending in 0 or 255, so it 
is best to avoid them.  The host portion of the IPv4 address is assigned locally, usually 
by the LAN network administrator. For example, a host could be assigned IPv4 address 
191.255.14.44.

The examples in this chapter use the manual, static IP address assignment method. 
When this method is used with public IP addresses, the organization still either obtains 
the IP network address range on its own, or uses the range of IP addresses assigned to 
the organization by its ISP.  The Dynamic Host Confi guration Protocol (DHCP) makes it 
possible to assign IP addresses to devices in a dynamic fashion. DHCP is the method 
many organizations use either for security reasons (to make it harder to fi nd device IP 
addresses) or to assign a unique IP address to a device only when it actually needs to 
access the Internet.  There are many more uses for dynamic IP address allocations on 
the Internet, and much more to discuss, and DHCP will be explored in a later chapter.

When the topic is routers, IP addresses are often written in the <netid, hostid/
prefix> form to determine the netid/hostid boundary.  To completely identify a par-
ticular host on a particular network, the whole address is needed.  When all 32 bits 
of the IPv4 address are given, and the prefi x is not, this is called a host address on a 
router. In classless routing, there is no fi xed separation point between the network and 
host portion of the IP address: It is completely determined by the prefi x, which must 
be known. In dotted decimal notation, the full range of possible IP addresses can run 
from 0.0.0.0 to 255.255.255.255. Prefi xes can run from /0 (a special, but useful, case) 
to /31. Until recently, the /31 prefi x was often useless to routers, as we will see in a later 
chapter, and the /32 prefi x is the same as the host address.

CHAPTER 4 IPv4 and IPv6 Addressing 121



Private IPv4 Addresses
RFC 1918 established private address spaces for Classes A, B, and C to be used on pri-
vate IP networks, and these are still respected in classless IP addressing. Books such as 
this one, where it is not desirable to use public IP addresses for examples, use RFC 1918 
addresses throughout, much like using “555” telephone numbers in movies and on TV. 
The private IP address ranges follow:

■ Class A: 10.0.0.0 through 10.255.255.255 (10.0.0.0/8, or just 10/8)
■  Class B: 172.16.0.0 through 172.31.255.255 (172.16.0.0/12, or just 

172.16/12)
■  Class C: 192.168.0.0 through 192.168.255.255 (192.168.0.0/16, or just 

192.168/16)

There are three very important points that should always be kept in mind regarding 
private addresses. First, these addresses should never be announced by a routing pro-
tocol on a local router to the public Internet. However, these addresses are frequently 
assigned and used when they are isolated or translated.  We’ll look at network address 
translation (NAT) in a later chapter. In summary,

■  Private IP addresses are not routable outside the local network (they cannot be 
advertised to the public Internet).

■  They are widely used on almost all networks today (even our small home 
network with DSL uses private IP addresses).

■  Private addresses are usually translated with NAT at an edge router to map the 
private addresses used on a LAN to the public address space used by the ISP.

Understanding IPv4 Addresses
IP addresses and their prefi xes are read in a certain way and have special meanings 
depending on how they are written and used. For example, the classful IPv4 address 
192.168.19.48 is read as “host 48 on IP network 192.168.19.0.” In a classless envi-
ronment, as on a router, the prefi x length, in this case /24, must be known. Routers 
often drop trailing zeros, 192.168.19.0/24 is the same as 192.168.19/24.  All IP network 
addresses must have the bits in the host address fi eld set to 0 and this address cannot 
be assigned to any host. (Typically, nothing on a host prevents this address assignment. 
It just won’t work properly.) Note that while the table is describing a particular /24 
address in the examples, it’s not the address itself but its location in the fi eld specifi ed 
by the mask that is critical.

Table 4.1 lists some specifi c forms of IPv4 addresses, what they look like, and whether 
they can be used as a source or destination address or have some other special use.

IPv4 addresses in example formats such as 0.0.0.46 and 192.168.14.0 are never 
actually seen as packet header addresses. Loopback addresses are used on hosts and 
routers for testing and aren’t even numbered on the interface.  All systems “know” that 
packets sent to the loopback addresses (any IPv4 address starting with 127) are not 
sent out the network interface.
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When these forms are not used in their defi ned roles (e.g., when something like 
172.16.255.255 is used as a packet source address instead of a destination), the result 
is usually an error.

THE IPv6 ADDRESS
In addition to IPv4 (often written as just IP), there is IP version 6 (IPv6). IPv6 was devel-
oped as IPng (“IP: The Next Generation” because the developers were supposedly fans 
of the TV show “Star Trek: The Next Generation”). (IPv5 existed and is defi ned in RFC 
1819 as the Streams 2 [ST2] protocol.)

This section is not intended to be an exhaustive investigation of IPv6.  The empha-
sis here is on the IPv6 header and address, and how IPv6 will affect router operation. 
IPv6 has been around since about 1995, but pressure to transition from IPv4 to IPv6 
is mostly recent. (The exhaustion of the IPv4 address space has been delayed mainly 
through the use of NAT and DHCP.) Today, the pressure for transition from IPv4 to IPv6 
comes mainly from network service providers and operators and other groups with 
large internal networks, such as cellular telephone network operators.

In some applications, major IPv6 addresses are confi ned to the core of large IP 
networks, and customers and users still see only IPv4 addresses. Nevertheless, there is 
nothing to fear about learning IPv6, and some familiarity with IPv6 will probably be 
expected in the future.

Table 4.1  Special Forms of IPv4 Addresses, Showing How Some Are Limited 
in Application to Source or Destination

Special Address NetID HostID Example Use

Network itself Non-0 All zeros 
(0s)

192.168.14.0 Used by routers: on a host, 
means “some host,” but it is 
not used.

Directed broadcast Non-0 All ones 
(1s)

192.168.14.255 Destination only: used by 
 routers to send to all host on 
this network.

Limited broadcast All 1s All 1s 225.255.255.255 Destination only: direct broad-
cast when NetID is not known.

This host on this 
network

All 0s All 0s 0.0.0.0 Source only: used when host 
does not know its IPv4 address.

Specifi c host on 
this network

All 0s Non-0 0.0.0.46 Destination only: defi ned, but 
not used

Loopback 127 Any 127.0.0.0 Destination only: packet is not 
sent out onto network.
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Features of IPv6 Addressing
The major features of IPv6, such as IPSec, have nearly all been back-ported into IPv4. 
However, the major design features of IPv6 follow:

■  An increase in the size of the IP address from 4 bytes (32 bits) to 16 bytes 
(128 bits).

■  An increase in the size of the IP header from 24 bytes (192 bits) to 40 bytes 
(320 bits). (Although aside from the address fi elds, the header is actually smaller 
than in IPv4.)

■ Enhanced security capabilities using IPSec (if needed).
■ Provision of special “mobile” and autoconfi guration features.
■  Provision for support of fl ows between routers and hosts for interactive 

multimedia.
■ Inclusion of header compression and extension techniques.

The IPv6 address increases the size of the IP address from 4 bytes (32 bits) to 16 
bytes (128 bits). For backward compatibility, all currently assigned public IP addresses 
are supported as a subset of the IPv6 address space.  The IPv6 address size increases 
the overall IP packet header size (and total TCP/IP overhead) from the current 24 bytes 
(192 bits) to 40 bytes (320 bits). However, the IPv6 header is much simpler than the 
IPv4 header.

IPv6 includes autoconfi gured address and special support for mobile (not always 
wireless) users.  A new mobile feature called chained headers might allow the faster 
forwarding of IPv6 packets through routers, and forbids intermediate fragmentation of 
IPv6 packets in routers.  The path MTU size must always be respected in IPv6 routers.

IPv6 features support for what are called “fl ows.” Flows were included in IPv6 
because forwarding packets at wirespeed was originally considered impossible. Flow 
caching (the association of IPv6 packets into fl ows with similar TCP/IP header fi elds) 
was thought to be the workaround. However, fl ow caching is now widely discredited 
in the IPv4 world and fl ows are now established and applied to stateful fi rewall fi lters 
(Chapter 28).  The fl ow fi eld in IPv6 is normally set to all 0s.

IPv6 is a good fi t for a dynamic environment.  There are many address discovery 
options bundled with IPv6, including support for autoconfi guration, fi nding the maxi-
mum path MTU size (to avoid the need for fragmentation, which IPv6 routers will not 
do), fi nding other hosts’ MAC addresses without ARP broadcasts, and fi nding routers 
other than the default.

The last major feature in IPv6 is a standard for header compression and extension. 
At fi rst, these two features may seem contradictory, but they are actually complemen-
tary. Header compression addresses situations where the 40 bytes of the IPv6 header 
 consists mostly of “empty” or repeated fi elds (like all-0 bit fi elds). In IPv6, there is a 
standard way of compressing the 40 bytes of the header down to 20 or so.  There is also 
a way to extend these IPv6 header fi elds for future new features (IPv4 also has header 
extension options).
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Most networks with a choice will be content to sit and wait before making a 
 transition to IPv6. Naturally, networks concerned with IPv4 address exhaustion (such 
as huge, IP-based cell telephone networks) will convert to IPv6 right away, as large net-
works in China have. For the vast majority of TCP/IP users, IPv6 is a long way off, and 
IPv4 will be around for many years.

IPv6 Address Types and Notation
There are no broadcast addresses at all in IPv6, even directed broadcasts (these were 
favorites of IPv4 hackers). In IPv6, multicast addresses serve the same purpose as broad-
casts do in IPv4.  The difference between IPv6 anycast and multicast is that packets sent 
to an anycast IPv6 address are delivered to one of several interfaces, while packets sent 
to a multicast IPv6 address are delivered to all of many interfaces.

There is no such thing as dotted decimal notation for IPv6.  All IPv6 addresses are 
expressed in hexadecimal.  They could be expressed in binary as well, but 128 0s and 
1s are tedious to write down. IPv6 addresses are written in 8 groups of 16 bits each, 
or 8 groups of 4 hexadecimal numbers, separated by colons. Some examples of IPv6 
addresses (which appear over and over) follow:

FEDC:BA98:7654:3210:FEDC:BA98:7654:3210
1080:0000:0000:0000:0008:0800:200C:417A

Because this is still a lot to write or type, there are several ways to abbreviate IPv6 
addresses. For example, any group can leave out leading 0s, and all-0 groups can be 
expressed as just a single 0.  A long string of leading 0s can simply be replaced by a 
double colon (::). In fact, as long as there is no ambiguity, groups of 0s anywhere in the 
IPv6 address can be expressed as ::.  The double colon can only be used once in an IPv6 
address.

Even with these conventions, the fi rst IPv6 address given earlier cannot be com-
pressed at all.  The second address can be expressed as

1080::8:800:200C:417A

This is better than writing out all 128 bits, even as hexadecimal. Because only one set 
of double colons can ever be used inside an IPv6 address,

1080:0000:0000:9865:0000:0000:0000:4321

could be written as

1080:0:0:9865::4321

or

1080::9865:0:0:0:4321
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but never as

1080::9865::4321

(How big are the missing groups of 0s to the left or right of 9865?)
A special case in IPv6 is made for using IPv4 addresses as IPv6 addresses. For exam-

ple, the IPv4 address 10.0.0.1 could be written in IPv6 as

0:0:0:0:0:0:A00:1

or even

::A00:1

IPv4 addresses in IPv6 can still be written in dotted decimal as

::10.0.0.1

The double colon at the start is the sign that this is an IPv6 address even though it looks 
just like an IPv4 address. Many routers and other devices allow this convention.

IPv6 Address Prefi xes
The fi rst few bits of an IPv6 address do reveal something about the IPv6 address, 
although IPv6 addressing is in no way classful. IPv6 addresses have an address type, and 
the type is determined by the format prefi x of the IPv6 address.  There are reserved  
addresses in IPv6 as well, for things like loopback (::1), multicast (starting with FF), 
and so on.  There is also an unspecifi ed address consisting of all 0s (0:0:0:0:0:0:0:0, 
compressed as just ::) that can be used as a source address by an IPv6 device that 
has not yet been assigned an IPv6 address. IPv6 address space is also reserved for OSI-
RM Network Service Attachment Point (NSAP) addresses, and IPX addresses used with 
Novell NetWare.

All of these format prefi xes are supposed to be given in hexadecimal, not binary.  An 
IPv6 address that begins with 1101 means 0001 0001 0000 0001, and is the same as 
11::1....  An IPv6 multicast address begins with FF and means 1111 1111:1111 1111.

There are several basic forms of IPv6 address. Like many IPv4 addresses, IPv6 
address spaces are often handed out by ISPs to their customers, usually starting with 
200x.  There are also ways to assign variable-length fi elds for the registry identifi er (the 
authority that assigned this IPv6 address space to the ISP), provider identifi er (the ISP), 
subscriber identifi er (the customer), subnet identifi er (a group of physical links), and 
the interface identifi er (such as the MAC address). However, most ISPs will assign IPv6 
addresses just as they do IPv4 addresses (i.e., as a network address space and prefi x 
length). Provider independent IPv6 addresses are not handed out by ISPs.

There used to be two types of local IPv6 addresses: site-local and link-local. Local 
IPv6 addresses are addresses without global signifi cance, and they can be used over and 
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over again as long as they do not cause confusion to hosts or routers. Local addresses 
start with the same 7 bits: 1111 111 or FE in hexadecimal (overall, the fi rst 10 bits are 
important). Site-local addresses are now deprecated (the Internet word for “more than 
obsolete”). Link-local addresses can be used between two devices that are part of the 
same broadcast domain or on a point-to-point link.

Private IPv6 addresses usually begin with FC00 (the full form is FC00::/7) and are 
called unique local-unicast addresses (ULA or ULA local or even ULA-L). Usually, link-
local IPv6 addresses end with a 64-bit representation (called EUI-64 by the IEEE) of 
the 48-bit MAC address.  The EUI-64 is a concatenation of the 24-bit OUI used in the 
MAC address with the 40-bit extension formed by prepending the 16 bits 0xFFFE to the 
lower 24 bits of the MAC address.

SUBNETTING AND SUPERNETTING
Let’s take a look at all aspects of fi nding and moving the boundary between network 
and host bits in the IP address.  The moveable boundary is an important one, because 
routers performing indirect delivery generally only need to look at the NetID or prefi x 
of the entire IP address to determine the next hop and then fi nd the output interface 
to send the packet on its way. Of course, direct delivery requires both prefi x and host 
addressing examination, which is why the location of the NetID/HostID boundary is 
so important.

How do routers and hosts know precisely where the boundary between prefi x and 
host address is in the IP address? Only when this prefi x/host boundary is known will 
the device know if the next hop is a router.  And that, as we’ll see in a later chapter, 
makes all the difference.

In the following discussions, the examples used are chosen for their simplicity, not 
for completeness.

Subnetting in IPv4
The IP address space was originally classful. (Of course, they didn’t know it was classful 
back then—it was just the IP address space).  As such, it contained a number of special 
purpose and private addresses.  These characteristics of the fi rst three classes, which 
have already been discussed, are summarized in Table 4.2.

Even before the Web exploded and everyone needed an IP network address for 
their PCs and Web sites, it was obvious that Class A and B addresses would quickly 
become exhausted, leaving only Class C addresses for most networks. However, these 
addresses only allow 254 hosts per IP network (0 and 255 were for the network and 
broadcast addresses). Many networks quickly exceeded this limit.

Also, Internet core routers must have a separate routing table entry for every reach-
able IP network. If most IP networks are Class C networks, then all Internet core routers 
would potentially have to hold in memory (and maintain!) a list of more than 2 mil-
lion entries. Even with inexpensive memory, routing and forwarding tables of this size 
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pose challenges. For example, in 1993 there were fewer than 10,000 routes on most 
 backbone routers, and this did not grow to 100,000 until about 2001. Now, it is not 
uncommon to add 2000 routes per week.

Subnetting Basics
IP address subnetting applies to any IP address.  The original application of subnetting 
was so that point-to-point links between routers did not require a full /24 address for 
each link. Subnetting also allowed a single Class C IP address to be used on small LANs 
having fewer than 254 hosts connected by routers instead of bridges. Bridges would 
simply shuttle frames among all of the ports on the bridge, but routers, as packet layer 
devices, determine the output interface for a packet based on the network portion of 
the IP address. If only one address is assigned to the entire site, but two LANs on the 
site are connected through a router, then the address must be subnetted so that the 
router functions properly. Basically, you need to create two distinct address spaces, and 
the IP host addresses assigned on each LAN segment must be correct as well.  The LAN 
segments now become subnets of the main IP address space.

Subnetting is done using an IP address mask.  The mask is a string of bits as long as 
the IP address (32 bits in the case of IPv4). If the mask bit is a 1 bit, the correspond-
ing bit in the IP address is part of the network portion of the IP address. If the address 
bit is part of the host portion, the corresponding mask bit is set to a 0 bit.  A mask 
of 255.255.0.0 means that the fi rst 16 bits of the IP address are part of the network 
address and the last 16 bits are part of the host portion of the address.

All subnet masks must end in 0, 128, 192, 224, 240, 248, 252, 254, or 255—the values 
of each bit position as they are “turned on” left to right in any octet. Strangely, subnet 
masks were once allowed to turn on bits that were “noncontiguous” (not starting at 
the left of the address without gaps).  This is no longer true, and the effect is to restrict 
masks to the ending values listed. Note that 255.224.0.0 is a valid subnet mask, as is 
255.255.248.0 and 255.255.255.252. Once the 1 bits stop, the rest of the subnet mask 
must be set to all 0 bits.

Subnet masks can be written in as many forms as there are for IP addresses: dotted 
decimal notation, bit string, octal, or hexadecimal. Seeing subnet masks in either dotted 
decimal or hexadecimal notation, or the newer prefi x “slash” notation, also known as 

Table 4.2 Classful IPv4 Addresses and Default Masks

Class Initial Bits Range Default Mask

A 0 0 to 127 255.0.0.0

B 10 128 to 191 225.255.0.0

C  110 192 to 223 255.255.255.0

Note: The value of the initial bits automatically limits the range of addresses possible in each class.
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CIDR notation, are the most common. Sometimes the default mask for an IP address 
class is called the “natural mask” for that type of address. In all cases it is possible to 
change the default mask to move the boundary between the network and host por-
tions of the IP address to wherever the device needs to see it.  All devices, whether 
hosts or routers, which need to route the packets within the subnetted network, must 
have identical masks.  All routing protocols in wide use today exchange subnet mask 
information together with routing information.

The use of the default masks for the original classful IP address space is shown in 
Table 4.3.  The more bits, the more network identifi ers, and the fewer bits, the fewer 
host identifi ers possible.

Subnetting moves the boundary between the network and host for a particular 
classful IP address to the right of the position where the boundary is normally found. 
We will see later that supernetting moves the boundary between network and host for 
a particular classful IP address to the left of this position. CIDR (which uses VLSM) can 
move the boundary anywhere.

It is important to realize that subnetting does not change anything with respect to 
the outside world. Internet routers still deliver the packets as before. It is the customer 
or site router that applies the subnet mask and delivers packets to the subnets. Instead 
of the usual two parts of the IP address, network, and host, we now have network, sub-
net, and host. However, even at the beginning of the classful era, Class A blocks were 
subnetted into /16s and /24s internally as appropriate.

Look at a simple LAN (192.168.15.0) before and after subnetting, as shown in 
 Figure 4.4.  The subnet creates two equal-sized subnets, but the Internet routers deliver 
packets as before.  The subnet adds one “extra” bit to the default Class C mask. If this bit 
is 0, the fi rst subnet is intended, and if the bit is 1, then the second subnet is intended. 
The hosts must be numbered according to the subnet, naturally, and all have the same 
subnet mask so they can determine which addresses are still on their subnet (same 
NetID) and which are not (different NetID).

Many implementations will not allow the assignment of the fi rst subnet address (the 
network) or the last (broadcast).  A LAN with 254 hosts subnetted into two subnets 
only yields 126 host addresses per subnet, not 127.

Table 4.3 Use of Default or “Natural” Subnet Masks*

Original Class Default Mask Network/Host Bits Example Interpretation

A 255.0.0.0 8/24 (/8 prefi x) 10.24.215.86 is host 0.24.215.86 on 
network 10.0.0.0

B 255.255.0.0 16/16 (/16 prefi x) 172.17.44.200 is host 0.0.44.200 on 
network 172.17.0.0

C 255.255.255.0 24/8 (/24 prefi x) 192.168.27.3 is host 0.0.0.3 on network 
192.168.27.0

*The more bits, the more network identifi ers; the fewer bits, the fewer host identifi ers possible.
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A sometimes tricky subnet issue is determining exactly what the subnet address (all 
0 bits after the mask) and broadcast address (all 1 bits after the mask) are for a given IP 
address and subnet mask.  This can be diffi cult because subnet masks do not always fall 
on byte boundaries as do classful addresses.  An IP address like 172.31.0.128 might not 
look like the address of the network itself, but it might be.  A network address, in some 
implementations of TCP/IP, cannot be assigned to a host. (172.31.0.128 with a subnet 
mask of 255.255.255.128 is a network address.)

Consider the address 172.18.0.126 with a subnet mask of 255.255.255.192.  What 
is the subnet and broadcast address for this subnet? What range of host addresses can 
be assigned to this subnet? These questions come up all the time, and there are utilities 
available on the Internet that do this quickly. But here’s one way to do it by hand.

The fi rst thing to do is to mask out the network portion of the IP address with the 
subnet mask by writing down the mask bits.  Then the subnet portion of the address 
can be easily marked off by “turning on” the masked bits. Next, it is easy to form the sub-
net and broadcast address for the subnet by setting the rest of the bits in the address 
(the host bits) fi rst to all 0 bits (network) and then to all 1 bits (broadcast).  The result-
ing address range forms the limits of the subnet.

Hosts

Router

Internet

192.168.15.0
network

192.168.15.255
broadcast

255.255.255.0
mask

Before Subnetting

192.168.15.1 192.168.15.2 192.168.15.129 192.168.15.253 192.168.15.254

Hosts

Router

Internet

192.168.15.0
network

192.168.15.127
broadcast

192.168.15.128
network

192.168.15.255
broadcast

255.255.255.128
mask

After Subnetting

192.168.15.1 192.168.15.126 192.168.15.129 192.168.15.253 192.168.15.254

FIGURE 4.4

Subnetting a LAN, showing how the value of the initial bits determines the subnet. Host addresses, 
if assigned manually, must follow the subnet mask convention.
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Let’s look at an example. Figure 4.5 shows how to derive the network and broadcast 
address answers for IP address 172.18.0.126 with the subnet mask 255.255.255.192.

These answers are important when subnetting the IP address space because care is 
needed to assign host addresses to the proper subnets (and router interfaces). Having 
a “discontiguous” classful major network that has been subnetted so that part of the 
space is reached through one interface of the router (“10.24.0.0 over here...”), and 
the other part of the subnetted major network is reached through another interface 
(“10.25.0.0 over there . . .”) can be a problem unless care is taken with the subnets and 
the masks that establish them.

CIDR and VLSM
Today, the standard methods for moving the network/host address boundary are 
 variable-length subnet masking (VLSM) for host addressing and routing inside a rout-
ing domain, and classless interdomain routing (CIDR) for routing between routing 
domains. (We’ll talk more about routing domains later in this book. For now, think of 
a routing domain as an ISP’s collection of routers.) And although treated separately 
here for  introductory reasons, it is important to realize that VLSM is the fundamental 
mechanism of CIDR.

FIGURE 4.5

Finding subnet host address range, showing those available for host assignment. Many routers 
allow the use of subnet and broadcast addresses as if they were host addresses.
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CIDR (defi ned in RFC 1519) and VLSM (defi ned in RFC 1860) address more general 
issues than simple subnetting.  We’ve been looking at addresses from the host perspec-
tive in this chapter so far. Let’s discuss CIDR from the router perspective.

CIDR was an immediate answer to two problems: fi rst, the impending exhaustion of 
the Class A and Class B address space, and second, the rapid increase in Internet core 
routing table sizes to handle the many Class C addresses required to handle new users.

In CIDR, a block of contiguous IP addresses from the former classful address space 
are assigned in a group, such as groups of Class C addresses.  This allows a service 
provider or large customer to confi gure IP networks from a few hosts up to 16,384 
hosts.  The number of contiguous addresses needed is determined by a simple count 
of the number of host addresses required.  The original CIDR plan, applied to Class C 
addresses, is shown in Table 4.4. Contiguous address numbers fl ow seamlessly between 
former class boundaries, allowing assignment of address “chunks” for larger networks.

The CIDR RFC does not “subtract” two host addresses for the network itself (fi nal 
bits all 0s) and a broadcast address (fi nal bits all 1s). CIDR applies mainly to router 
operation, and routers do not assume any structure of the IP addresses in the packets 
they route.  The limitation on assigning the high and low IP addresses to a host interface 
is a function of the host TCP/IP implementation (and some, like routers, do not enforce 
any limitations at all).

CIDR changed the terminology that applied to IP addresses. Routes to IP networks 
are now represented by prefi xes.  A prefi x consists of an IP network address, followed 
by a slash (/), and followed with an indication of how many of the leftmost contigu-
ous bits in the address are part of the network mask applied for routing purposes. For 
example, before CIDR, the Class C address 192.168.64.0 would ordinarily have a mask 
of 255.255.255.0. Subnetting could add bits to this major network mask, but only in the 
fi xed patterns and values outlined in the previous section. CIDR enabled a “CIDR-ized” 
network address to be represented as 192.168.64.0/18, and that was all the informa-
tion needed. Sometimes this is abbreviated even further to just 192.168.64/18, but the 

Table 4.4 Address Grouping under CIDR*

Number of Hosts Needing Addresses Class C Addresses Given by Registry

Fewer than 256 1 Class C network

Fewer than 512 but more than 256 2 contiguous Class C networks

Fewer than 1024 but more than 512 4 contiguous Class C networks

Fewer than 2048 but more than 1024 8 contiguous Class C networks

Fewer than 4096 but more than 2048 16 contiguous Class C networks

Fewer than 8192 but more than 4096 32 contiguous Class C networks

Fewer than 16,384 but more than 8192 64 contiguous Class C networks

*Contiguous address numbers fl ow seamlessly between former class boundaries, allowing assignment of 
address “chunks” for larger networks.
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two forms are equivalent.  The notation just means that a “subnet mask 18 bits long 
should be applied to 192.168.64.0.” This is the same as writing “192.168.64.0 with 
mask 255.255.192.0” but in more compact form.

Table 4.5 shows all possible prefi x lengths, their netmasks in dotted decimal, and 
the number of classful networks the prefi x represents. It also shows the number of 
usable IPv4 addresses that can be assigned to hosts once the network address itself and 
the directed broadcast address are subtracted.  We’ll talk about the special 0/0 address 
and prefi x length in Chapter 8.  All possible mask lengths are shown for /1 to /32.  The 
/0 mask matches the whole Internet and is discussed in the routing chapters.

Even when CIDR was used, all bits after the IP network address had to be zero, an 
aspect of IP addressing that did not change. For example, 192.168.64.0/18 was a valid 
IP network address, but 192.168.64.0/17 was not (due to the presence of the “1” bit 
for the “64” in the 17th bit position).  This aspect of CIDR is shown in Figure 4.6.  The IP 
network 192.168.64.0/18 is a CIDR “supernet” because the mask contained fewer bits 
than the natural mask in classful IP addressing.

Table 4.5 CIDR Prefi xes and Addressing*

Prefi x Length Dotted Decimal 
Netmask

Number of Classful 
Networks

Number of Usable IPv4 
Addresses

/1 128.0.0.0 128 Class A’s 2,147,483,646

/2 192.0.0.0 64 Class A’s 1,073,741,822

/3 224.0.0.0 32 Class A’s 536,870,910

/4 240.0.0.0 16 Class A’s 268,435,454

/5 248.0.0.0 8 Class A’s 134,217,726

/6 252.0.0.0 4 Class A’s 67,108,862

/7 254.0.0.0 2 Class A’s 33,554,430

/8 255.0.0.0 1 Class A or 256 Class B’s 16,777,214

/9 255.128.0.0 128 Class B’s 8,388,606

/10 255.192.0.0 64 Class B’s 4,194,302

/11 255.224.0.0 32 Class B’s 2,097,150

/12 255.240.0.0 16 Class B’s 1,048,574

/13 255.248.0.0 8 Class B’s 524,286

/14 255.252.0.0 4 Class B’s 262,142

/15 255.254.0.0 2 Class B’s 131,070

/16 255.255.0.0 1 Class B or 256 Class C’s 65,534

/17 255.255.128.0 128 Class C’s 32,766

(Continued)
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Table 4.5 CIDR Prefi xes and Addressing* (Continued)

Prefi x Length Dotted Decimal 
Netmask

Number of Classful 
Networks

Number of Usable IPv4 
Addresses

/18 255.255.192.0 64 Class C’s 16,382

/19 255.255.224.0 32 Class C’s 8,190

/20 255.255.240 16 Class C’s 4,094

/21 255.255.248.0 8 Class C’s 2,046

/22 255.255.252.0 4 Class C’s 1,022

/23 255.255.254.0 2 Class C’s 510

/24 255.255.255.0 1 Class C 254

/25 255.255.255.128 1/2 Class C 126

/26 255.255.255.192 1/4 Class C 62

/27 255.255.255.224 1/8 Class C 30

/28 255.255.255.240 1/16 Class C 14

/29 255.255.255.248 1/32 Class C 6

/30 255.255.255.252 1/64 Class C 2

/31 255.255.255.254 1/128 Class C 0

/32 255.255.255.255 1/256 Class C (1 host) – (1 host route)

*All possible mask lengths are shown, for /1 to /32. The /0 mask matches the whole Internet and will be 
discussed in the routing chapters.

The /31 Prefi x
In many cases, a /31 prefi x that allows only two IPv4 addresses on a subnet is use-
less. Hosts are not normally assigned addresses that indicate the network itself (the 
lowest address on the subnet) or the directed broadcast (the highest address on 
the subnet). Because a /31 prefi x only allows the fi nal bit to be 0 or 1, this prefi x is 
not useful for a subnet with hosts. Most subnets normally use a /30 prefi x at most, 
which yields two useful host addresses in addition to the low and high addresses.

However, many router networks employ the /31 prefi x to address the end-
points of a point-to-point link such as SONET/SDH.  There are no hosts to worry 
about, and only the router network need worry about the use of internal address 
spaces.  With /31 prefi xes, a single Class C address space can be used to provide 
addresses for 128 (256 divided by 2) point-to-point inter-router links, not just 64 
(256 divided by 4).
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CIDR allowed the creation of a network such as 192.168.64.0/18 with 16,384 hosts 
(14 bits remain for the host portion of the 192.168.64.0 network) instead of requiring 
64 separate IP network addresses to be assigned and confi gured. CIDR did more than 
allow the grouping of contiguous Class C addresses into bigger networks than possible 
before. Once the principle was established, CIDR allowed the aggregation of all pos-
sible IP addresses under the specifi ed prefi x into this one compact notation.  This kept 
routing table sizes under control in the late 1990s.

Where does VLSM fi t in? As mentioned, VLSM applied more to hosts and a single 
routing domain. Basically, in the days of classful IP addressing, all subnets of the same 
address had to have the same mask length. So you could, for example, subnet 10.0.0.0/8 
into 10.0.0.0/16 subnets, but every device on every subnet had to have the same /16 
mask.  This could be okay if all the subnetted LANs had roughly the same number of 
hosts, but what about point-to-point links between routers on the subnet? They could 
get by with a /31 or /30 mask because there were only two endpoints, but they had to 
have room for the same thousands of hosts as the rest of the /16.

Note that the Illustrated Network is an offender: The links between our routers use 
/24 masks for point-to-point links.  We would not do this in the real world, but it will help 
our understanding of simple examples when we turn to routing later in this book.

IPV6 ADDRESSING DETAILS
Let’s take a quick look at some of the differences between IPv4 and IPv6 addressing. 
The use of the IPv6 address space is determined by the value of the fi rst few bits of an 
IPv6 address. Routing in IPv6 is similar to IPv4 with CIDR and VLSM, but there are a few 
points to be made to clarify this.

IP Address

Natural Mask

CIDR Mask Bits

This method allows
64 Class C networks
to be gathered into
one routing table entry:
192.168.64/18.

00000000

00000000

00000000

11111111 11111111 11111111

111111111111111111111111

11000000 10101000 01000000

Supernet Portion

Natural Class C Mask

Natural mask:
192.168.64.05192.168.64/24

CIDR mask:
192.168.64.05192.168.64/18

192.168.64.0/18

255.255.255.0

255.255.192.0(/18)

FIGURE 4.6

CIDR in operation. Basically, supernetting moves the natural mask to the left while subnetting 
moves it to the right.
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IPv6 addresses can be provider based, provider independent, or for local use.  All 
provider-based IPv6 addresses for “aggregatable” global unicast packets begin with 
either 0010 (2) or 0011 (3) in the fi rst four bit positions of the 128-bit IPv6 address.

Typical IPv6 address prefi xes would look like:

2001:0400::/23
2001:05FF::/29
2001:0408::/35

and so on.
The 64 bits that make up the low-order bits of the IPv6 address must be in a 

 format known as the EUI-64 (64-bit Extended Unique Identifi er). Normally, the 48-bit 
MAC address consists of 3 bytes (24 bits) assigned to the manufacturer and 3 bytes 
(24 bits) for the serial number of the NIC itself.  A typical MAC address would look like 
0000:900F:C27E.  The next to the last bit in the fi rst byte of this address is the global/
local bit, and is usually set to a 0 bit (global).  This means that the MAC address is glob-
ally assigned and is using the native address assigned by the manufacturer. In EUI-64 for-
mat, this bit is fl ipped and usually ends up being set to a 1 bit (the meaning is fl ipped 
too, so in IPv6, 1 here means global).  This would make the fi rst byte 02 instead of 00. 
For example, 0000:900F:C27E becomes 0200:900F:C27E (not always, but this is just a 
simple example).

To convert a MAC address to a 64-bit address that can be used on an interface for 
the host portion of an IPv6 address, we insert the string FFFE between the manufac-
turer and the serial number fi elds of the MAC address (between the fi rst and the last 
3 bytes).  The MAC address becomes 0200:90FF:FE0F:C27E.  This is more easily shown 
as follows:

■ MAC address: 0200:900F:C27E
■ Split in half: 0200:90 0F:C27E
■ Insert FFFE: FF FE
■ Form EUI-64: 0200:90FF:FE0F:C27E

Link-local IPv6 addresses begin with 1111 1110 1000 (FE80 in hexadecimal, mak-
ing the fi rst two bytes FE80 if all of the trailing 6 bits in the second byte are 0 bits). 
ULA local addresses are in the form FC00::/7. In IPv6, interfaces are expected to have 
multiple addresses, a shift from IPv4. It’s common to fi nd three IPv6 addresses on an 
interface: global, link local, and site local. It is also common to use multiple link-local 
addresses, one based on the MAC and the other based on random numbers.

Both forms usually end with the 48-bit IEEE MAC address, but again with the added 
FFFE bits to form the EUI-64 identifi er.  The FC00 ULA address forms are used as the 
private addresses in IPv6 (just as 10.0.0.0 and the others in IPv4), and that’s how they 
are used in this book.

IPv6 addresses appear in sources and outputs about equally with capitals (FE80) or 
lower case (fe80), and we’ll see both. (In the RFCs, however, these are universally capi-
talized.) The major formats of the IPv6 address are shown in Figure 4.7.
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Two routers connected by a small LAN can use the link-local IPv6 address of 
FE80::<EUI-64 formatted MAC address> on their interfaces.  This type of address is 
never advertised by an IPv6 router attached to the Internet, and it cannot be used 
across subnets. On point-to-point links, a distinguishing identifi er of the interface card 
other than the MAC address can be used at the end of the link-local address.

ULA-L addresses can include a 16-bit subnet fi eld, so these forms of private IPv6 
addresses can be used across subnets (through routers), but these addresses are not 
usually advertised onto the Internet. Using link-local and ULA-local IPv6 addresses, an 
organization can build an entire global network, but usually only if none of the traffi c 
tries to travel across the Internet. If it does, IPv6 provider–based addresses are needed. 
This is similar to building a complete corporate network in IPv4 using the 10.0.0.0 
private address space, but using Network Address Translation (NAT) for traffi c that must 
travel across the Internet. However, in IPv6, hosts are assigned multiple addresses, some 
global and some local. In this case, the lower order bits (80 bits) of the site-local address 
(subnet and interface) are just pasted onto the higher fi elds (48 bits) of the provider-
based forms of the IPv6 address.

What about private masks and routing in IPv6? As shown above, prefi x masks in IPv6 
have the same general form as prefi x masks in IPv4. Here is a sample IPv6 link-local 

128 bits

Provider Site

16 bits

Host

64 bits48 bits

16 bits 64 bits38 bits

0 Interface ID

7 bits

Global Routing Prefix

001 Global Unicast Address Format

Private ULA Unicast Address Format

Link-Local Unicast Address Format

Subnet ID Interface ID

Subnet ID

0

1111110110000
FC00::/7

11111110100000
FE80::/10

10 bits 54 bits 64 bits

Interface ID

FIGURE 4.7

Major IPv6 address formats, showing how the value of the initial bits determine format. The 
FC00 address format is often used as private IPv6 address.

CHAPTER 4 IPv4 and IPv6 Addressing 137



host address (this time in lower case hex notation) and one possible network prefi x 
for it:

fe80::90:69ff:fea0:8000/128
fe80:: /64

As in keeping with all of the addresses used in this book, this IPv6 address is a pri-
vate address.  The /64 mask tells the router that the fi rst 64 bits of the address are to be 
used for routing purposes.

IP Address Assignment
Most people get IP addresses from their ISP. But where do ISPs get their IP addresses? 
Large organizations can still apply for their own IP addresses independent from any ISP. 
To whom do they apply?

IP addresses (and the Internet domain names associated with them) were initially 
handed out by the Internet Assigned Number Authority (IANA).  Today the Internet Cor-
poration for Assigned Names and Numbers (ICANN), an international nonprofi t organi-
zation, oversees the process of assigning IP addresses.

Actual IP addresses are handed out by the following Regional Internet Registries 
(RIRs):

■  ARIN (American Registry for Internet Numbers) at www.arin.net—ARIN has handed 
out IP addresses for North and South America, the Caribbean, and Africa below the 
Sahara since 1997.

■  RIPE NCC (Reseaux IP European Network Coordination Center) at www.ripe.net—
RIPE assigns IP addresses in Europe and surrounding areas.

■  APNIC (Asian Pacifi c Network Information Center) at www.apnic.net—APNIC 
assigns IP addresses in 62 countries and regions in Central Asia, Southeast Asia, 
 Indochina, and Oceania.

■  LACNIC (Latin American and Caribbean Network Information Center) at www.lacnic.
net—LACNIC assigns IP addresses from ARIN in 38 countries, including Mexico.

■  AfriNIC (African Network Information Center) at www.afrinic.net—AfriNIC took 
over assignment of African IP addresses from ARIN.

All of these Internet Registries databases (who has what IP address space?) combined 
are known as the Internet Routing Registry (IRR). Internet domain names comprise a 
related activity, but (like IP addresses) names must be globally unique and (unlike IP 
addresses) can be almost anything.

For the latest information on IP address assignment, which is always subject to 
change, see www.icann.org.

When it comes to IPv6, in particular, IANA still hands out addresses to the registries, 
which pass them along to IPv6 ISPs, who allocate IPv6 addresses to their customers. 
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The current policy is given at www.arin.net/policy. An older policy is used in this 
chapter (see www.arin.net/policy/ipv6_policy.html) and uses these prefi xes at each 
step of the process:

■ 2001::/16 is reserved for IANA.
■ IANA hands out a /23 prefi x to each registry.
■ Registry hands out a /32 or shorter prefi x to an IPv6 ISP.
■ ISP allocates a /48 prefi x for each customer site.
■  Local administrators add 16 bits for each LAN on their network, for a /64 

prefi x.

This scheme is shown in Figure 4.8.  When the LAN is included, most IPv6 addresses 
have /64 network masks.  This is the prefi x length used on the Illustrated Network.  IPv6 
routers can perform the following tasks:

■  Route traffi c to a particular ISP based on the fi rst 32 bits of the IPv6 
destination address.

■  Route traffi c to a particular site based on the fi rst 48 bits of the IPv6 
destination address.

■  Route traffi c to a particular LAN based on the fi rst 64 bits of the IPv6 
 destination address.

In practice, IPv6 core routers can look at (and build forwarding tables based on) 
/32 or shorter prefi xes, routers inside a particular AS (routing domain) can look at /48 
prefi xes, and site routers on the customer edge can look at /64 prefi xes to get traffi c 
right to the destination LAN.

Registry

ISP Prefix

Site Prefix

LAN Prefix

/23

/32

/48

/64

One IPv6 Address Allocation Policy

128 bits

2001 Interface ID

FIGURE 4.8

IPv6 address allocation, showing how various bits should be assigned by different entities. In 
some places, mobile phone providers are heavy users of IPv6 addresses.
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Now we can better understand the IPv6 address assigned to CE0 that we saw at the 
beginning of the chapter:

FC00:ffb3:d5:b:205:85ff:fe88:ccdb

or

FC00:FFB3:00D5:000B:0205:75FF:FE88:CCDB

Let’s break it down one element at a time and see where it all comes from:

■  Registry—We use FC00 instead of 2001 to indicate a private ULA-local IPv6 
address.

■  ISP—We add Best ISP’s AS number of 65459 (0xFFB3) for LAN 1 or Ace ISP’s AS 
number 65127 (0xFE67) for LAN2.

■  Site—We add telephony area code 213 (0x00D5) for the Los Angeles or 212 
(0x00D4) for New York sites. (We could always use more of the phone  number, 
but this is enough.)

■  LAN—We add 11 (0x000B) for LAN1 or 12 (0x000C) for LAN 2.  These are 
 borrowed from the IPv4 addresses.

■ EUI-64—We add 0x0205 85FF FE88 CCDB for the hardware MAC address.

The mask is /64, naturally. Keep in mind that in the real world, none of this complex 
coding would be done.
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QUESTIONS FOR READERS
Figure 4.9 shows some of the concepts discussed in this chapter and can be used to 
help you answer the following questions.

1. How many bits make up IPv4 and IPv6 addresses?

2.  Which special address formats make up the IPv4 network itself and directed 
broadcast (all hosts on the subnet) addresses?

3.  How many hosts can be confi gured with an IPv4 network mask of 
255.255.255.240?

4.  What are the differences in format and use between IPv6 link-local and private 
ULA-local addresses?

5. How many “double colons” (::) can appear in an IPv6 address?

IPv4

IPv6

Private ULA Unicast Address Fromat

Global Unicast Address Format

Link-Local Unicast Address Fromat

First byte

Class A NetID
HostID

8 bits for NetID, 24 bits for HostID

NetID
16 bits for NetID

NetID
24 bits for NetID, 8 bits for HostID

HostID
16 bits for NetIDClass B

128 bits

48 bits

001

10 bits 38 bits

0

10 bits 54 bits 64 bits

Interface ID0

FE80::/10

FC00::/7

Subnet ID Interface ID

16 bits 64 bits

16 bits 64 bits

Global Routing Prefix Subnet ID Interface ID

Class C

Second byte Third byte Fourth byte

HostID

FIGURE 4.9

Some major IPv4 and IPv6 address formats, showing classes in IPv4 and FE80 FC00 IPv6 
addresses.
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CHAPTER

What You Will Learn
In this chapter, you will learn about the hardware addressing used in the data link 
layer frame and how it is found by the sender.  We’ll talk a lot about the hardware 
addresses used on LANs, the MAC addresses.

You will learn about the ARP protocol, which is how IP stacks on LANs identify 
the hardware address that the destination fi eld of the frame should use.

Address Resolution 
Protocol 5

The Internet, or any internetwork, is made up of a combination of physical networks 
such as LANs and internetworking devices such as routers.  A packet sent by a host 
might pass through several different physical networks before fi nally reaching its 
 destination.  

The hosts and routers at the network layer are identifi ed by their network addresses 
(also called logical addresses). In TCP/IP, the network or logical address is the IP address, 
as we saw in the last chapter.  These addresses are usually implemented in software, 
and must be globally unique on the Internet.  At the data link layer, the interface that 
sends and receives frames is identifi ed by the physical or hardware address.  An exam-
ple of a hardware address is the 48-bit MAC address we have been seeing at the frame 
level. (See Figure 5.1.)

The hardware address and the network address are two different identifi ers with 
different sizes, but we need both of them. Layered protocol stacks can use different 
types of packets (such as IPv4 and IPv6) on the same Ethernet.  Also, IPv4 packets can 
be sent over an Ethernet link and then over a point-to-point link with a very different 
frame structure.  

However, we need some way to map back and forth between addresses at the net-
work and hardware levels. In TCP/IP, this mapping is provided by the address resolution 
protocols (the technical term is bindings).  ARP results are stored in an ARP cache on 
a host so that the entire process does not have to be constantly repeated.



CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80:205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-
0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65459

DSL Link

Wireless
in Home

Solid rules � SONET/SDH
Dashed rules � Gig Ethernet
Note: All links use 10.0.x.y
addressing...only the last
two octets are shown.

FIGURE 5.1

ARP on the Illustrated Network, showing that devices on the LANs employ ARP to determine
hardware (MAC) addresses.
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The main address resolution protocol is the Address Resolution Protocol (ARP) itself, 
but there are also Reverse ARP (RARP), proxy ARP, Inverse ARP (InARP), and ARP for 
ATM networks (ATMARP). Other ARPs have been proposed as well (such as a generic 
“WARP” for ARPs on a wide area network). In many ways, the various ARP fl avors are 
not really separate protocols. For that reason, only the main ARP will be described in 
detail in this chapter.  The purposes of the other members of the ARP family will be 
mentioned, but they are not used very often, and not at all on the Illustrated Network.

Most implementations allow the static entry of ARP IP-address-to-physical-address 
information as permanent entries into the ARP cache. However, this poses an admin-
istrative nightmare (many organizations have a hard enough time keeping track of IP 
addresses alone) and is seldom done today. Most ARP tables today are built and main-
tained dynamically.

ARP AND LANs
Let’s see how the Illustrated Network uses ARP to map IPv4 addresses to physical 
addresses.  We can look at some ARPs sent by FreeBSD, Linux, and Windows XP, and see 
what they look like.  Then we can examine the ARP caches and see what information is 
kept and how it is stored.

Figure 5.1 shows the devices on the Illustrated Network that we’ll be working with 
in this chapter.  This time we’ll be using the hosts on each LAN and a pair of routers.

We’ll use these hosts and routers to look at four different cases where ARP is used, 
as shown in Figure 5.2.

Host to host—The ARP sender is a host and wants to send a packet to another host 
on the same LAN. In this case, the IP address of the destination is known and 
the MAC address of the destination must be found.

Host to router—The ARP sender is a host and wants to send a packet to another 
host on a different LAN.  A forwarding (routing) table is used to find the IP 
address of the router. In this case, the IP address of the router is known and the 
MAC address of the router must be found.

What Layer Is ARP?
Although often shown at the same layer as IP because the messages ride inside 
frames, as in this book, the ARPs are really in a class all by themselves. Some authors 
describe them as a “high” data link layer function, but they are more of a boundary 
function between the logical network and its physical hardware.  Also, ARPs are 
not really protocols, but rather mapping methods (bindings).
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Router to router—The ARP sender is a router and wants to forward a packet to 
another router on the same LAN.  A forwarding (routing) table is used to find 
the IP address of the router. In this case, the IP address of the router is known 
and the MAC address of the destination router must be found.

Router to host—The ARP sender is a router and wants to forward a packet to a 
host on the same LAN. In this case, the IP address of the host is known (from 
the IP destination address on the packet) and the MAC address of the host 
must be found.

Let’s look at Case 1 in detail because the others are more or less variations on this 
basic theme. In Case 1, ARP is used when a host wants to send to another host on the 
same IP subnet and the MAC address of the destination is not already known.  We’ll 
start the LAN2 host lnxclient sending a short message to winsrv2 (it doesn’t really 
matter what the message is). Because this is the fi rst time that these devices have 
 communicated in a long time, an ARP request is broadcast on LAN2 and the sender 
waits for a reply.

Case 1: Find the address
of a host on the same
subnet as the source.

Case 2: Find the address
of a router on the same
subnet as the source.

Case 4: Find the address
of a host on the same

subnet as the source router.

Case 3: Find the address
of a router on the same

subnet as the source router.

Sending Host Sending Host

Sending RouterSending Router

bsdclient

bsdserver

LAN

ARP

ARPARP

ARP

LAN

LANLAN

CEO

PE5

CE6CE0

Inxserver

Receiving Host

Receiving HostReceiving Router

Receiving Router

Wincli1

FIGURE 5.2

Four ARP scenarios. Note that routers employ ARP just as hosts do, and that an ARP stays on the 
same subnet as the sender.
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Now let’s capture the ARP request and response pair on the lnxclient host at IPv4 
address 10.10.12.166.  We’ll set a fi lter to only capture and display ARP packets.

root@lnxclient admin]# /usr/sbin/tethereal -V arp
Capturing on eth0
Frame 1 (42 bytes on wire, 42 bytes captured)
 Arrival Time: May  5, 2008 22:13:40.148457000
 Time delta from previous packet: 0.000000000 seconds
 Time relative to first packet: 0.000000000 seconds
 Frame Number: 1
 Packet Length: 42 bytes
 Capture Length: 42 bytes
Ethernet II, Src: 00:b0:d0:45:34:64, Dst: ff:ff:ff:ff:ff:ff
 Destination: ff:ff:ff:ff:ff:ff (Broadcast)
 Source: 00:b0:d0:45:34:64 (Dell_45:34:64)
 Type: ARP (0x0806)
Address Resolution Protocol (request)
 Hardware type: Ethernet (0x0001)
 Protocol type: IP (0x0800)
 Hardware size: 6
 Protocol size: 4
 Opcode: request (0x0001)
 Sender MAC address: 00:b0:d0:45:34:64 (Dell_45:34:64)
 Sender IP address: 10.10.12.166 (10.10.12.166)
 Target MAC address: 00:00:00:00:00:00 (00:00:00_00:00:00)
 Target IP address: 10.10.12.52 (10.10.12.52)
Frame 2 (106 bytes on wire, 106 bytes captured)
 Arrival Time: May  5, 2008 22:13:40.148642000
 Time delta from previous packet: 0.000185000 seconds
 Time relative to first packet: 0.000185000 seconds
 Frame Number: 2
 Packet Length: 106 bytes
 Capture Length: 106 bytes
Ethernet II, Src: 00:0e:0c:3b:88:56, Dst: 00:b0:d0:45:34:64
 Destination: 00:b0:d0:45:34:64 (Dell_45:34:64)
 Source: 00:0e:0c:3b:88:56 (00:0e:0c:3b:88:56)
 Type: ARP (0x0806)
 Trailer: 00000000000000000000000000000000...
Address Resolution Protocol (reply)
 Hardware type: Ethernet (0x0001)
 Protocol type: IP (0x0800)
 Hardware size: 6
 Protocol size: 4
 Opcode: reply (0x0002)
 Sender MAC address: 00:0e:0c:3b:88:56 (00:0e:0c:3b:88:56)
 Sender IP address: 10.10.12.52 (10.10.12.52)
 Target MAC address: 00:b0:d0:45:34:64 (Dell_45:34:64)
 Target IP address: 10.10.12.166 (10.10.12.166)
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We’ll look at the fi elds of an ARP in detail later. For now, note that the ARP request, 
indicated by a 0x0806 in the Ethertype fi eld goes out as a broadcast frame with an 
all-zero MAC address fi eld. It’s looking for the MAC address that goes with IP address 
10.10.12.52 (winsrv2), the target IP address.  The ARP reply frame returns the reply 
with the correct MAC address plugged into the all-zero fi eld (and with the MAC address 
as the source address in the frame).

The results of an ARP pair between the bsdclient host (10.10.11.177) and the 
 lnxserver host (10.10.11.66) is almost the same, but not quite.  The frame sent in reply 
to the ARP is smaller than before.

bsdclient# tethereal -V arp
Capturing on em0
Frame 1 (42 bytes on wire, 42 bytes captured)
 Arrival Time: May 5, 2008 22:24:04.518213000
 Time delta from previous packet: 0.000000000 seconds
 Time since reference or first frame: 0.000000000 seconds
 Frame Number: 1
 Packet Length: 42 bytes
 Capture Length: 42 bytes
Ethernet II, Src: 00:0e:0c:3b:8f:94, Dst: ff:ff:ff:ff:ff:ff
 Destination: ff:ff:ff:ff:ff:ff (Broadcast)
 Source: 00:0e:0c:3b:8f:94 (10.10.11.177)
 Type: ARP (0x0806)
Address Resolution Protocol (request)
 Hardware type: Ethernet (0x0001)
 Protocol type: IP (0x0800)
 Hardware size: 6
 Protocol size: 4
 Opcode: request (0x0001)
 Sender MAC address: 00:0e:0c:3b:8f:94 (10.10.11.177)
 Sender IP address: 10.10.11.177 (10.10.11.177)
 Target MAC address: 00:00:00:00:00:00 (00:00:00_00:00:00)
 Target IP address: 10.10.11.66 (10.10.11.66)
Frame 2 (60 bytes on wire, 60 bytes captured)
 Arrival Time: May 5, 2008 22:24:04.518421000
 Time delta from previous packet: 0.000208000 seconds
 Time since reference or first frame: 0.000208000 seconds
 Frame Number: 2
 Packet Length: 60 bytes
 Capture Length: 60 bytes
Ethernet II, Src: 00:d0:b7:1f:fe:e6, Dst: 00:0e:0c:3b:8f:94
 Destination: 00:0e:0c:3b:8f:94 (10.10.11.177)
 Source: 00:d0:b7:1f:fe:e6 (10.10.11.66)
 Type: ARP (0x0806)
 Trailer: 000000000000000000000000000000000000
Address Resolution Protocol (reply)
 Hardware type: Ethernet (0x0001)
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 Protocol type: IP (0x0800)
 Hardware size: 6
 Protocol size: 4
 Opcode: reply (0x0002)
 Sender MAC address: 00:d0:b7:1f:fe:e6 (10.10.11.66)
 Sender IP address: 10.10.11.66 (10.10.11.66)
 Target MAC address: 00:0e:0c:3b:8f:94 (10.10.11.177)
 Target IP address: 10.10.11.177 (10.10.11.177)

The reply from the Linux system is only 60 bytes, 46 bytes less than the response 
from the Windows XP server in the fi rst example.  That’s interesting; let’s take a closer 
look at what Windows XP is doing. Figure 5.3 shows a graphical capture of the reply 
from winsrv2 (10.10.12.52) to an ARP request from wincli2 (10.10.12.222).

The reply is indeed 106 bytes long, but the extra bits are all zeros.  The only differ-
ence in the replies is the number of trailing zeroes in the frame.  And we can also see 
that the ARP software can deal with these easily.

We’ve already mentioned that ARP results are cached.  The devices that send the 
ARP requests cache the results, and the device that receives the ARP usually also caches 
the MAC address in the arriving ARP request.  The idea is that if one device in a pair 

FIGURE 5.3

Windows XP ARP reply capture. The ARP message, in this case an ARP reply, is encapsulated 
directly inside the Ethernet frame.

150 PART II Core Protocols



sends in one direction, the other device in the pair will probably send in the opposite 
 direction as well.

Let’s look at the ARP cache on the bsdserver host (10.10.12.77) using the –a (all) 
option.

bsdserver# arp -a
? (10.10.12.1) at 00:05:85:8b:bc:db on em0 [ethernet]
? (10.10.12.52) at 00:0e:0c:3b:88:56 on em0 [ethernet]
? (10.10.12.166) at 00:b0:d0:45:34:64 on em0 [ethernet]
? (10.10.12.222) at 00:02:b3:27:fa:8c on em0 [ethernet]

All four other devices on LAN2 are represented.  The question marks are there 
because we have no DNS running at the moment. Let’s see if we can add to the cache 
by sending a ping to the Windows XP server (winsrv1) on LAN1.

bsdserver# ping 10.10.11.111
PING 10.10.11.111 (10.10.11.111): 56 data bytes
64 bytes from 10.10.11.111: icmp_seq=0 ttl=126 time=0.403 ms
64 bytes from 10.10.11.111: icmp_seq=1 ttl=126 time=0.413 ms
64 bytes from 10.10.11.111: icmp_seq=2 ttl=126 time=0.376 ms
^C
--- 10.10.11.111 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.376/0.397/0.413/0.016 ms
bsdserver# arp -a
? (10.10.12.1) at 00:05:85:8b:bc:db on em0 [ethernet]
? (10.10.12.52) at 00:0e:0c:3b:88:56 on em0 [ethernet]
? (10.10.12.166) at 00:b0:d0:45:34:64 on em0 [ethernet]
? (10.10.12.222) at 00:02:b3:27:fa:8c on em0 [ethernet]

Nothing was added to the ARP cache on the FreeBSD server.  Why should it be? The 
other host is only reachable through a router, and the router’s ARP entry is already there 
(10.10.12.1).  These types of ARPs, the most common, are only used when the destina-
tion is on the same LAN subnet as the source.

Usually, entries in the ARP cache are deleted when no communication occurs with 
another device, usually after 300 seconds (5 minutes) of silence between the devices. 
We can force the ARP cache to empty by using the –d (delete) option.

bsdserver# arp -d -a
10.10.12.1 (10.10.12.1) deleted
10.10.12.52 (10.10.12.52) deleted
10.10.12.166 (10.10.12.166) deleted
10.10.12.222 (10.10.12.222) deleted

In Linux, the command to display the ARP cache is the same (arp), but the –e 
option displays the result in the “default” Linux format (using no option gives the same 
result).  The “C” means that the entry is “complete.”
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[root@lnxserver admin]# /sbin/arp
Address HWtype HWaddress Flags Mask Iface
10.10.11.1 ether 00:05:85:88:CC:DB C eth0
10.10.11.111 ether 00:0E:0C:3B:88:3C C eth0
10.10.11.177 ether 00:0E:0C:3B:8F:94 C eth0
10.10.11.51 ether 00:0E:0C:3B:87:36 C eth0
[root@lnxserver admin]# /sbin/arp -e
Address HWtype HWaddress Flags Mask Iface
10.10.11.1 ether 00:05:85:88:CC:DB C eth0
10.10.11.111 ether 00:0E:0C:3B:88:3C C eth0
10.10.11.177 ether 00:0E:0C:3B:8F:94 C eth0
10.10.11.51 ether 00:0E:0C:3B:87:36 C eth0

In Linux, use of the –a option displays the results in “BSD” style.  The output is still 
slightly different, however.

[root@lnxserver admin]# /sbin/arp -a
? (10.10.11.1) at 00:05:85:88:CC:DB [ether] on eth0
? (10.10.11.111) at 00:0E:0C:3B:88:3C [ether] on eth0
? (10.10.11.177) at 00:0E:0C:3B:8F:94 [ether] on eth0
? (10.10.11.51) at 00:0E:0C:3B:87:36 [ether] on eth0

Windows XP displays the ARP cache with arp –a as well.   This output is from  winsrv2 
on LAN2.

C:\Documents and Settings\Owner>arp -a
Interface: 10.10.12.52 --- 0x1003
  Internet Address Physical Address Type
10.10.12.1 00-05-85-8b-bc-db dynamic
10.10.12.77 00-0e-0c-3b-87-32 dynamic
10.10.12.166 00-b0-d0-45-34-64 dynamic
10.10.12.222 00-02-b3-27-fa-8c dynamic

The term dynamic distinguishes these entries from statically defi ned entries.
There is no separate ARP for IPv6. MAC addresses can be embedded in the IPv6 

addresses, but this does not solve the problem of a source host knowing the physical 
address of a destination host or router.  When a host uses IPv4-derived IPv6 addresses, 
such as ::10.10.11.111, IPv4 ARP information can be used to supply the MAC addresses 
for IPv6.

The address resolution process in IPv6 uses ICMPv6 messages and is part of the 
Neighbor Discovery (ND) process. Generally, a multicast Neighbor Solicitation message 
is sent and a unicast Neighbor Advertisement message is received in reply.  We’ll talk 
more about this process in the chapter on ICMPv6. For now, let’s just verify that IPv6 
address resolution uses ICMPv6 messages.

Ethereal can capture and display IPv6 traffi c as well as IPv6. Let’s send a test message 
using the link-local IPv6 addresses from winsrv1 to wincli1, and capture the address 
resolution in action.  We’ll capture everything but only display ICMPv6  messages.  The 
result is shown in Figure 5.4.
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Figure 5.4 shows the details of the Neighbor Solicitation message.  The frame des-
tination address is highlighted in the fi gure, showing that a special multicast frame 
address is used instead of the ARP broadcast frame address.  The major differences 
between this procedure and the ARP process in IPv4 are that ICMPv6 is used in IPv6, 
and the solicitation message is sent to the IPv6 multicast group address associated with 
the target address.

ARP PACKETS
ARP uses packets, but these are not IP packets.  ARP messages ride inside Ethernet 
frames, or any LAN frame, in exactly the same way as IP packets.  There is no need to 
use an IP address here anyway:  ARP frames are valid only for a particular LAN segment 
and never leave the local LAN (i.e.,  ARP messages cannot be routed).  The structure of 
an ARP message is shown in Figure 5.5.

FIGURE 5.4

IPv6 address resolution with ICMPv6, showing that the Neighbor Solicitation frame is sent to the 
special IPv6 Neighbor Discovery address.
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FIGURE 5.5

The ARP message’s fi elds. The message is placed directly inside a frame, such as an Ethernet 
frame.
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Target’s IP Address

Ethernet Address

Hardware
Size

This fi gure is because the 28-byte ARP message includes fi elds 1, 2, 4, and 6 bytes in 
length, and does not readily lend itself to “normal” 32-bit representation.  The fi rst fi ve 
fi elds form a type of message header.  The next four fi elds are the sender’s and target’s 
IP and MAC addresses. Usually, it’s the target’s MAC address that needs to be found with 
the ARP process.  And as we have already seen, the ARP message can end with a variable 
number of trailing zeros.

On an Ethernet LAN,  ARP messages have their own Ethertype value (0x0806). How-
ever, some ARP implementations used the “regular” Ethertype for IP packets (0x0800) 
because the IP implementation itself can easily decide if the information inside the 
frame is IPv4 (packet starts with 0x04) or an ARP message (packet starts with 0x0001 
for Ethernet).

The main fi elds are present in both ARP request and ARP reply messages:

Type of Hardware—This 2-byte field is used to identify the style of hardware 
address. (The Ethernet-style MAC address, with value = 1, is the most common, 
of course.)

Type of Protocol—This 2-byte field identifies the type of Layer 3, or network layer, 
protocol that is being queried. (ARP messages, because they are not IP packets, 
can be used for more than IP addresses.) This uses the same set of values as the 
Ethertype field, so IP is 0x0800.
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Hardware Size—This byte identifies the size, in bytes, of the hardware address. 
The Ethernet MAC address is 6 bytes long.

Protocol Size—This byte identifies the size, in bytes, of the Layer 3 protocols. IPv4 
addresses are 4 bytes long.

Operation—This 2-byte field identifies the ARP message’s intent. For example, an 
ARP request (“Who has this IPv4 address?”) has the operation value of 1 and 
a reply value of 2.

The rest of the fi elds do not have a fi xed size.  Their size is determined by the value 
in the Hardware Size and Protocol Size fi elds. On our Ethernet LANs, the hardware 
address size is 6 bytes (MAC) and the protocol address size is 4 bytes (IPv4). In that 
case, the sizes and functions of these fi elds are as follows.

Sender’s Ethernet Address—This 6-byte field holds the sender’s Ethernet address. 
It should be the same as the source address in the Ethernet frame.

Sender’s IP Address—This 4-byte field holds the sender’s Ethernet address. (This 
is how targets fill in their own ARP caches without requiring more ARPs.)

Target’s Ethernet Address—This 6-byte field holds the target’s Ethernet address. 
This field in set to all 0 bits in a request.  The reply will have this field filled in 
and the operation changed to “reply.”

Target’s IP Address—This 4-byte field holds the target’s IPv4 address.

EXAMPLE ARP OPERATION
What the ARP process adds to TCP/IP is a mechanism for a source device to ask, “Who 
has IP address 10.10.12.52 (this was our fi rst example from the Illustrated Network) 
and what is the physical (hardware) address associated with it?”

ARP messages are broadcast frames sent to all stations.  The proper destination IP 
layer realizes that the destination IP address in the packet matches its own and replies 
directly to the sender.  The target device replies by simply reversing the source and 
destination IP address in the ARP packet.  The target also uses its own hardware address 
as the source address in the frame and message.

The ARP process is shown in Figure 5.6.  The steps are numbered and taken from 
the example earlier in this chapter, where lnxclient ARPs to fi nd the MAC address of 
winsvr2.

1. The system lnxclient (10.10.12.166) assembles an ARP request and sends it as a 
broadcast frame on the LAN. Because it is unknown, the requested MAC address fi eld 
in the ARP message uses all zeros (0s), which are placeholders.
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Here’s my MAC address...
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ARP
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Broadcast
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ignored)

Not me!
(request
ignored)

Not me!
(request
ignored)

Hey!
That’s me!
(reply sent
unicast)

(These two devices can cache the
sender’s MAC and IP addresses.)

Inxclient
10.10.12.166

bsdserver
10.10.12.77

wincli2
10.10.12.222

CE6
10.10.12.1

winsvr2
10.10.12.52

2. All devices attached to the LAN receive and process the broadcast, even the router 
CE6. But only the device with the target’s IP address in the ARP message (winsvr2 
at 10.10.12.52) replies to the ARP.  The target also caches the MAC address associ-
ated with 10.10.12.166 (the source address in the broadcast frame).

3. The target system winsvr2 sends a unicast ARP reply message back to lnxclient. 
The reply has the MAC address requested both in the frame (as a source address) 
and in the ARP message fi eld sent as 0s.

The originating source system and the target system will cache the hardware 
address of the destination and proceed to send “live” IP packets with the information, 
at the same time supplying the proper frame address as a parameter to the network 
access layer software.

Figure 5.7 shows how the ARP request and reply message shown at the beginning 
of this chapter look like “on the wire.” The fi eld values can be compared to the ARP 
 message format shown in Figure 5.5.  Again, the lnxclient to winsrv2 ARP pair are 
used as the example.  Trailing zeros are not shown.

ARP operation is completely transparent to the user.  ARP operation is usually 
 triggered when a user runs some TCP/IP application, such as FTP, and the frame’s desti-
nation MAC address is not in the ARP cache.

FIGURE 5.6

The ARP request and reply process. The message asks for the MAC address associated with the 
destination, and the sender’s address that should receive the reply. Other devices that hear the 
reply can cache the information.
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ARP VARIATIONS
ARP is a fairly straightforward procedure to determine the LAN hardware address that 
goes with a given IP address. However, there are more network types than LANs and 
there are more “addresses” that need to be associated with IP addresses than “hard-
ware” addresses. Consequently, there are a few other types of ARPs that have evolved to 
deal with other IP network situations.

Proxy ARP
Proxy ARP is an older technique (it was called the “ARP Hack”) that was used in early 
routers, and is still supported in some routers today. LANs connected by bridges had 
hosts that did not (and could not) use different IP network addresses.  The same IP 

FIGURE 5.7

ARP exchange example, showing how the requested information is provided by the destination’s 
reply.
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 network address is used on both sides of a bridge, so there is one broadcast domain, and 
ARPs are shuttled back and forth.  This practice wasted bandwidth on the LANs (and on 
any WAN link between the bridges). Proxy ARP allowed the router that replaced the 
bridge to respond to ARP requests directly with its own MAC address, without having 
to propagate the ARP packets onto the other LAN segment. Hosts then sent frames 
to the router, but acted as if they were sending the frames directly to the destination 
host. Proxy ARP makes sure that the router received the frame, just as with indirect 
delivery.

Routers normally require that the same IP subnet address not be confi gured on 
more than one router port. Proxy ARP was a method of assigning a single Class A, B, or 
C address to both sides of router without using subnet masking, allowing the router to 
function as a bridge. Proxy ARP was useful as networking transitioned from bridges to 
routers.

Proxy ARP is still often used in Mobile IP networks, which often bridge between 
devices.

Reverse ARP
Reverse ARP (RARP) is used in cases where a device on a TCP/IP network knows its 
physical (hardware) address but must determine the IP address associated with it. 
A RARP request (“I have MAC address X . . .  What’s my IP address?”) is sent to a device 
running the RARP server process.  The RARP server replies with the IP address of the 
device.  The RARP server should be located on the local LAN segment, but it does not 
have to be.

RARP messages use the same packet format as ARP, but the Ethertype is 0x0835, and 
the operation fi eld is 3 for a RARP request and 5 for a RARP reply. Of course, the infor-
mation to be supplied is the IP address.  As with ARP, the request is broadcast and the 
reply is unicast. RARP is defi ned in RFC 903.

RARP was frequently used for diskless network devices on TCP/IP networks such 
as workstations, X-terminals, routers, and hubs.  These devices needed to obtain vari-
able confi guration information such as the IP address for an external source whenever 
they were rebooted or powered on. In addition, the amount of confi guration informa-
tion you could obtain through RARP was very limited.  Today, with almost every device 
 having fl ash memory to store confi guration information during reboot when power is 
off, the need for RARP is greatly diminished.

Even in cases where confi guration information or IP addresses need to be assigned 
dynamically, there are better ways to achieve the same result than with RARP, such as 
BOOTP and DHCP.  Both will be discussed in Chapter 18 of this book.

ARPs on WANs
On most WANs,  ARP is still used, but as a limited multicast rather than a broadcast.  ARP 
has a couple of variations used to address WAN environments such as frame relay 
and ATM networks.  These public network technologies use virtual circuits (a type 
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of  logical connection) at the frame (frame relay) or cell (ATM) level instead of MAC 
addresses. The issue in frame relay and ATM (both called non-broadcast multiaccess 
[NBMA] link networks) is to fi nd the virtual circuit number, such as the Data Link Con-
nection Identifi er (DLCI) in frame relay, associated with a particular IP address.

InARP (Inverse ARP) was developed for use on frame relay networks. Instead of using 
ARP to determine MAC-layer LAN addresses, TCP/IP networks linked by frame  relay net-
works use InARP to determine the IP address at the other end of a frame relay DLCI 
number to use when sending IP packets. InARP is used as soon as frame relay DLCI are 
created.  The replies are used to build the routing table in the frame relay  access device 
(router).  The InARP process is shown in Figure 5.8. InARP is essentially an adaptation of 
the reverse ARP (RARP) process used on LANs.

ATMARP is a similar method used to fi nd the ATM virtual path identifi er (VPI) and/
or virtual channel identifi er (VCI) over an ATM network.

ARP AND IPv6
IPv6 really has no need for a separate ARP function. Instead, the Neighbor Discovery 
protocol (ND, sometimes NDP) described in RFC 2461 performs the functions of the 
IPv4 ARP in IPv6.

ND is really a superset of most of the functions of IPv4’s ARP, ICMP Redirect, and 
ICMP Router Discovery features.  This section will discuss some of the features of NDP, 
but most of this will be covered in the chapter on ICMP.

FIGURE 5.8

Inverse ARP (InARP) exchange over a frame relay network. In this case, the hardware address 
(DLCI) is known and the sender needs to determine the IP address.
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Neighbor Discovery Protocol
The Neighbor Discovery protocol is the way that IPv6 hosts and routers fi nd things 
out about their immediate neighborhood, typically the LAN segment.  A lot of effort 
was expended in IPv4 to fi nd out confi guration necessities such as default routers, 
any alternate routers, MAC addresses of adjacent hosts, and so on. In some cases, these 
addresses could not be found automatically with IPv4 and had to be entered manually 
(the default router). IPv6 was designed to be almost automatic in this regard.

When an IPv6 host comes up for the fi rst time, the host advertises its MAC layer 
address and asks for neighbor and router information. Because these messages are in 
the form of ICMPv6 messages, only the basics will be presented here.

Why Neighbor and Router Discovery?
Why does IPv6 have separate neighbor and router discovery messages? After all, 
IPv4 did fi ne using a single broadcast frame structure for host–host and router–
host address discovery.

IPv6 is more sophisticated than IPv4 when it comes to devices and networks. 
In IPv6, devices can be located on a local multiple access link (LAN), which are 
considered on link, or off link. Generally, there are a lot more hosts on a network 
than routers. IPv6 directs messages that discover host addresses only to the local 
hosts, while messages to discover one or more default routers are processed only 
by the routers.

Instead of a single mass broadcast, neighbor discover in IPv6 is done with 
 multicast groups.  We’ll talk about multicast in more detail in a later chapter.

Many routers today forward packets in hardware, but broadcasts have to be 
processed by software. IPv6 routers can ignore the numerous messages sent from 
host to host on a LAN.  This makes the use of the network resources with IPv6 
more effi cient.

The ARP function in IPv6 is performed by four messages in ND.  The Router 
 Solicitation/Router Advertisement mechanism is noteworthy in that it provides the key 
for host IPv6 address confi guration, default route selection, and potentially even boot-
strap confi guration information.

Neighbor Solicitation—This message is sent by a host to find out the MAC layer 
address of another host. It is also used for Duplicate Address detection (Does 
another host have the same IPv6 address?) and for Neighbor Unreachability 
Detection (Is the other host still there?).  The receiving host must reply with a 
Neighbor Advertisement.
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Neighbor Advertisement—This message contains the MAC layer address of the 
host and is sent in reply to a Neighbor Solicitation message. Hosts also send 
unsolicited Neighbor Advertisement when they first start up or if any of the 
advertised information changes.

Router Solicitation—This message is sent by a host to find routers.  The receiving 
router must reply with a Router Advertisement.

Router Advertisement—This message contains the MAC layer address of the 
router and is sent in reply to a Router Solicitation message. Routers also send 
an unsolicited Router Advertisement when they first start up if any of the 
advertised information changes.

ND Address Resolution
ND functions are performed only for local IPv6 addresses (the hop limit is set 
to 1 for these messages). ND messages, unlike ARP, are not broadcast (“Everyone 
pay attention to this”) but rather multicast (“Only those interested pay attention 
to this”).

When an IPv6 host or router starts up, it joins several multicast groups.  The IPv6 
mode must join the all-nodes group. It must also join a solicited-node group for each 
interface running IPv6 or IPv6 address that the node has. Joining these groups allows 
the device to receive packets without having all the details of its address established. 
This is a much more sophisticated arrangement than the ARP method used in IPv4.  The 
IPv6 device must keep these multicast groups active until all of its addressing details 
have been resolved.

When an IPv6 device needs to resolve the MAC layer address of another host on the 
LAN, a Neighbor Solicitation message is sent to the solicited-node multicast address. 
The IPv6 solicited-node multicast address is formed by taking the low-order 24 bits of 
the IPv6 address and adding the 104-bit prefi x FF02::1 to it.  Thus, for the link-local IPv6 
address fe80::20e:cff:fe3b:883c, the IPv6 multicast group address used is fe02::1:
fe3b:883c.

But what multicast address should the message use in the Ethernet frame? That 
 multicast address is formed by prepending 33:33 to the lower 24 bits of the IPv6 
address. Each device with an IP address registers this form with the local NIC and 
expects to receive ND messages this way initially. For the IPv6 multicast group address 
fe02::1:fe3b:883c, the multicast address used in the Ethernet destination fi eld is 
33:33:fe:3b:88:3c.

An example of the address resolution pair capture earlier in this chapter is shown 
in Figure 5.9. Note the use of multicast IPv6 and frame addresses in the Neighbor 
Solicitation request and the way the information is supplied in the unicast Neighbor 
Announcement reply.
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FIGURE 5.9

IPv6 neighbor discovery and address resolution, showing how the request uses multicast frame 
and packet addresses.

If no response is received, the sender can generate the Neighbor Solicitation 
 message several times.  When a Neighbor Advertisement message is received by the 
sender, the content is used to update the IPv6 Neighbor cache (the equivalent of the 
IPv4 ARP cache).

More details on ND message formats and operation are discussed in the ICMP 
 chapter.
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QUESTIONS FOR READERS
Figure 5.10 shows some of the concepts discussed in this chapter and can be used to 
help you answer the following questions.

IP Layer
(32-bit address)

IP Layer
(32-bit address)

MAC Layer
(48-bit address)

MAC Layer
(48-bit address)

Bridge

Ethernet LAN Ethernet LAN

To Another
Broadcast
Domain

(Nontarget destinations parse, but ignore, broadcast ARP messages.)

Router

One Broadcast Domain

FIGURE 5.10

ARP messages are used to coordinate IP addresses with lower layer addressing.

1.  Why can’t the same address structure and value be used for network layer and 
hardware addresses?

2. Why do ARPs have to pass through bridges, but should not pass through 
 routers?

3. Why does a receiver place the sender’s MAC address in its own ARP cache?

4. What is Proxy ARP used for?

5. What is the advantage of using multicast groups instead of broadcasts for address 
resolution?
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CHAPTER

What You Will Learn
In this chapter, you will learn about the IP layer.  We’ll start with the fi elds in the 
IPv4 and IPv6 packet headers.  We’ll discuss most of the fi elds in detail and show 
how many of them relate to each other.

You will learn about fragmentation, and how large content is broken up, spread 
across a sequence of many packets, and reassembled at the destination.  We’ll also 
talk about some of the perceived hazards of this fragmentation process.

IPv4 and IPv6 Headers 6

Thus far, we’ve created a network of hosts and routers, linked them with a variety of 
architectures and link types (LANs and WANs), and discussed the frame formats and 
methods used to distribute packets among the nodes.  We’ve considered the IPv4 and 
IPv6 address formats, and the ways that they map to lower, link layer addresses.  Now 
it’s time to concentrate on the IP layer itself. 

Even casual users of the TCP/IP protocol suite are familiar with the basic IP packet, 
or, as it was initially called (and still often is) the datagram.  An IP datagram or packet 
is the connectionless IP network-layer protocol data unit (PDU).  When TCP/IP came 
along, packets were often associated with connection-oriented data networks such 
as X.25, the international packet data network standard.  To emphasize the connec-
tionless nature of IP, then a radical approach to network layer operation, the TCP/IP 
developers decided to invent a new term for the IP packet.  Through analogy with the 
telegram (a terse message sent hop by hop through a network of point-to-point links), 
they came up with the term “datagram.” 

The IP layer of the whole TCP/IP protocol stack is the very heart of TCP/IP.  The 
frames that are sent and delivered across the network from host to router and router 
to host contain IP packets.  However, like almost all statements about nearly any net-
work protocol, there are exceptions to the general “frames contain IP packets” rule.  As 
shown in the last chapter, an important class of IP layer protocols known as the Address 
Resolution Protocols (ARPs) does not technically use IP packets, but ARP messages 
are very close in structure to IP packets.  Also, the Internet Control Message Protocol 
(ICMP) uses IP packets and is included in the IP layer.  We’ll look at ICMP in the next 
chapter.



CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80:205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
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FIGURE 6.1

The LANs on the Illustrated Network use both IPv4 and IPv6 packets. We’ll be looking at the
 headers generated by the hosts on the LANs.
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CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80:205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring
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Both IPv4 and IPv6 packet structures will be detailed in this chapter.  However, for 
the sake of simplicity, whenever the term “IP” is used without qualifi cation, “IPv4” is 
implied.

PACKET HEADERS AND ADDRESSES
Let’s take a close look at the packets used on the Illustrated Network.  We’ll look at the 
IPv4 header and addresses fi rst.  We worked with the Windows clients and servers a 
lot in the last few chapters, and we’ll work with them again in this chapter.  But we’ll 
also work with the Unix devices and tethereal captures in this chapter, especially for 
fragmentation and IPv6.  And, as we’ll soon see, one of the biggest differences between 
IPv4 and IPv6 is how fragmentation is handled.

Fragmentation
People talk loosely about the pros and cons of “IP packet fragmentation,” but this 
terminology is not correct.  It is not the IP packet itself that is fragmented, but 
the packet content.  If the payload is too large to fi t inside a single IP packet (as 
determined by the IP layer implementation), the content is spread across several 
packets, each with its own IP header.

In some cases, as we will see in this chapter, the content of an IP packet must 
be further broken up to traverse the next link on the network.  However, it’s not 
really the IP packet that is fragmented.  The original packet is discarded, and a 
string of IP packets is created that preserves the packet content and overall header 
fi elds, but changes specifi cs.  When we say that “the packet is the data unit that 
fl ows end-to-end through the network,” it is not the packet that is unchanged, but 
the content.

Naturally, if packet content is kept small enough, no fragmentation is necessary.

Figure 6.1 shows the parts of the Illustrated Network that we’ll be using for our 
investigation of IP headers and fragmentation.  The LAN clients and servers are high-
lighted, as are the local customer-edge routers.

Let’s start with IPv4.  We can just start a fl ow of IPv4 packets between a client and 
server and capture them.  Then we can parse the packets until we fi nd something of 
interest.

Let’s take a good look at all the fi elds in an IPv4 packet header.  We’ve already captured 
plenty of them.  This example is from the FTP transfer from host (wincli2, with address 
10.10.12.222) to router (CE6, with address 10.10.12.1) that we fi rst saw in Chapter 2.   
Figure 6.2 shows a frame from the actual data transfer itself, frame 35, in fact.

The Ethernet frame is of type 0x0800 to show it carries an IPv4 packet.  All of the lines 
from “Internet Protocol” to the line before “Transmission Control Protocol”  interpret 
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fi elds in the IPv4 header.  The source and destination addresses are listed fi rst.  Although 
we’ll see that they are not the fi rst fi elds in the header, they are defi nitely the fi elds that 
most frequently are of interest.

Ethereal interprets a fi eld in the IPv4 header called the Type of Service (TOS) fi eld 
according to something called Differentiated Services (DiffServ).  DiffServ is only one 
way to interpret these fi elds.  The fi gure shows that there are three things indicated by 
the 8 bits in the TOS fi eld:

Differentiate Services Code Point (DSCP)—The default is zero, which means this 
packet does not require special handling by any router or host other than IP’s 
normal best-effort service.

Explicit-Congestion-Notification Capable Transport (ECT)—This bit is set by 
devices when the transport is able to provide an indication of network conges-
tion to network-attached devices.  The value of zero shows that Ethernet is not 
an ECT, so packets cannot tell devices when the LAN is congested.

ECN Congestion Explicit (ECT-CE)—On transport that can report conges-
tion, this bit is set when some predefined criteria for network congestion is 
met.  This is often a percentage of output buffer fullness.  On Ethernet this bit 
is always zero.

FIGURE 6.2

Capture of IPv4 header fi elds. The frame is broken out to show the content and meaning of every 
fi eld in the IPv4 header. Note that the DF (Don’t Fragment) bit is set on the packet.
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We’ll say a little more about DSCP and quality of service (QOS) in a later chapter. 
However, the incomplete support for and variations in QOS implementations rule out 
QOS or DSCP as a topic for an entire chapter.

There are also four fl ag bits shown in the fi gure.  The two most important are the 
bits that indicate this packet content is not to be fragmented (the DF bit is set to 1) 
and that there are no more frames carrying pieces of this packet’s payload (the More 
Fragments bit is set to 0).

In the following, we talk about fragmentation in IPv4 in more detail, and then 
explore all of the fi elds in the IPv4 header in more detail.

THE IPv4 PACKET HEADER
The general structure of the IPv4 packet is shown in Figure 6.3.  The minimum header 
(using no options, the most common situation) has a length of 20 bytes (always shown 
in a 4-bytes-per-line format), and a maximum length (very rarely seen) of 60 bytes.  Some 
of the fi elds are fairly self-explanatory, such as the fi elds for the 4-byte (32-bit) IPv4 
source and destination address, but others have specialized purposes.

1 byte

Header
Length

Type of Service Total Packet Length

Fragment OffsetIdentification

1 byte

Header Checksum

1 byte

Time to Live Protocol

32-bit IPv4 Source Address

32-bit IPv4 Destination Address

(Options, if present, padded if needed)

1 byte

Flags

DATA

32 bits

Version

H
e
a
d
e
r

FIGURE 6.3

IPv4 Packet and Header
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Version—Currently set to 0x04 for IPv4.

Header Length—Technically, this is the Internet header length (IHL).  It is the 
length of the IP header in 4-byte (32-bit) units known as “words,” and includes 
any option fields present and padding needed to align the header on a 32-bit 
boundary.  In Figure 6.2, this is 20 bytes, which is most common.

Type of Service (TOS)—Contains parameters that affect how the packet is  handled 
by routers and other equipment.  Never widely used, it was redefined as Dif-
ferentiated Services (DiffServ or DS) code points and is still hampered because 
of a lack of widespread implementation, especially from one routing domain 
to another.  The meaning of these bits, which are all set to 0 in Figure 6.2, was 
detailed earlier in this chapter.

The next four fi elds, shown in italics in Figure 6.3, fi gure directly in the fragmenta-
tion process.  Fragmentation, introduced in Chapter 4, occurs when a packet is for-
warded onto a data link and the packet content will not fi t inside a single frame.  In 
these cases, the packet content must be fragmented and spread across several frames, 
then reassembled at the destination host.  Fragmentation will be discussed in detail in 
the next section of this chapter.

Total Packet Length—This is the length of the whole packet in bytes.  The maxi-
mum value for this two-byte field is 65,535 bytes.  This length is approached 
by no common TCP/IP implementation or network MTU size.  The packet in 
Figure 6.2 is 1500 bytes long, the most common length due to the prevalence 
of Ethernet LANs.

Identification—A 16-bit number set for each packet to help the destination host 
reassemble like-numbered fragments.  Even intact, single packets could be frag-
mented by routers (sometimes repeatedly) on their way to a destination, so 
this field must be filled in.  This field is set to 0x78be (30910) in Figure 6.2.

Flags—Only the first 3 bits of this field are defined.  Bit 1 is reserved and must 
be set to 0.  Bit 2 (DF) is set to 0 if fragmentation is allowed or 1 if fragmen-
tation is not allowed.  Bit 3 (MF) is set to 0 if the packet is the last fragment, 
or 1 if there are more fragments to come.  Note that the MF field does not 
imply any sequencing of the arriving fragments, nor does it guarantee that 
the set is complete.  Other fields are examined to determine sequencing and 
completeness.  The packet in Figure 6.2 will generate an error when it encoun-
ters a device that wants to fragment the packet content.

Fragment Offset—When a packet is fragmented, the fragments must fall on an 8-byte 
boundary.  That is, an 800-byte packet can be fragmented into two packets of 400 bytes 
each, but not as eight packets of 100 bytes each, since 100 is not evenly divisible by 
8.  This fi eld contains the number of 8-byte units, or blocks, in the packet fragment.  The 
offset is 0 in Figure 6.2.
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The rest of the IP header fi elds do not deal with fragmentation.

Time to Live (TTL)—This 8-bit field value is supposed to be the number of  seconds, 
up to 255 maximum, that a packet can take to reach the destination.  Each 
router is supposed to decrement this field by a preconfigured amount which 
must be greater than 0.  If a packet arriving at a router has this field set to 0, it 
is discarded and never routed.  Unfortunately, there is no standard way to track 
time across a group of routers, so most TCP/IP networks interpret this field as 
a simple hop count between routers and simply decrement this field by 1.  The 
TTL in Figure 6.2 is 128, a fairly typical value.

Protocol—This 8-bit field contains the number of the transport-layer protocol that 
is to receive and process the data content of the packet.  The protocol number 
for TCP is 6 and UDP is 17, but almost 200 have been defined.  The packet in 
Figure 6.2 carries TCP.

Header Checksum—An error-detection field for the IP header only, not the packet 
data fields.  If the computed checksum does not match at the receiver, the 
header is damaged and not routed.  Figure 6.2 not only shows the header 
checksum of 0x4f6b, but Ethereal tells us that it is correct.

Source and Destination Addresses—The 32-bit IPv4 addresses of the source 
and destination hosts.  The packet in Figure 6.2 is sent from 10.10.12.222 to 
10.10.12.1.

Options—The IPv4 options are seldom used today for data transfer and will not 
be described further, nor do they appear in Figure 6.2.

Padding—When options are used, the padding field makes sure the header ends 
on a 32-bit boundary.  That is, the header must be an integer number of 4-byte 
“words.” The header in Figure 6.2 is not padded, and few are since options use 
is unusual.

FRAGMENTATION AND IPv4
Let’s look at IPv4 fragmentation on the Illustrated Network.  We can determine how the 
MTU size and fragmentation affect IPv4 data transfer rates.

It’s not all that important (and not all that interesting) to show the fragmentation 
process with a capture.  Moreover, it is diffi cult to convey a sense of what’s going on 
with a series of snapshots, even when Ethereal parses the fragmentation fi elds.  Appre-
ciating the effects of a small MTU size on data transfers is more important.

Let’s use the bsdclient on LAN1 and bsdserver on LAN2 to show what fragmenta-
tion does to data throughput.  We’ll use FTP to transfer a small fi le (about 30,000 bytes) 
called test.stuff from the server to the client.  Why so small a fi le? Just to show that 
if fragmentation plays a role in small transfers, the effects will be magnifi ed with larger 
fi les.  First, we’ll use the default MTU sizes.
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bsdclient# ftp 10.10.12.77
Connected to 10.10.12.77.
220 bsdserver FTP server (Version 6.00LS) ready.
Name (10.10.12.77:admin): admin
331 Password required for admin.
Password:
230 User admin logged in.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> get test.stuff
local: test.stuff remote: test.stuff
150 Opening BINARY mode data connection for 'test.stuff' (29752 bytes).
100%
|***************************************************************************
***********************| 29752 00:00 ETA
226 Transfer complete.
29752 bytes received in 0.01 seconds (4.55 MB/s)

This is about 4.5 MBps (or about 36 Mbps) and transfer time of about 1/100th of 
a second.  Not too bad.  (Keep in mind that 1/100th of a second is about the small-
est interval that can be reported without special hardware.) This is good throughput, 
but remember there are only two routers involved, connected by a SONET link at 
155 Mbps and the LAN runs at 100 Mbps.  There is also no other traffi c on the network, 
so the transfer rate is totally dependent on the ability of the host to fi ll the pipe from 
server to client.

Now let’s change to Maximum Transmission Unit size at the server connected to 
LAN2 (the server LAN) from the default of 1500 to 256 bytes.  How much of a differ-
ence will this make?

ftp> get test.stuff
local: test.stuff remote: test.stuff
150 Opening BINARY mode data connection for 'test.stuff' (29752 bytes).
100%
|***************************************************************************
***********************| 29752 00:00 ETA
226 Transfer complete.
29752 bytes received in 1.30 seconds (22.29 KB/s)
ftp>

The transfer time is up to 1.3 seconds, about 130 times longer than before! And the 
transfer rate fell from about 36 Mbps to about 184 KILOBITS per second, three orders 
of magnitude less than before.  This is the “performance penalty” of fragmentation.  (It 
should be pointed out that these numbers are not precise, and there are many other 
reasons that fi le transfers speed up or slow down.  However, the point is entirely 
valid.)

We can view a lot of packet statistics, including fragment statistics, using the 
 netstat utility.  With netstat, we can monitor an interface in real time, display the 
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host routing table, observe running network processes, and so on.  We’ll do more with 
netstat later.  For now, we’ll just see how many fragments our 30,000-byte fi le transfer 
has  generated.

To do this, we’ll look at the IP statistics on the client before and after the fi le transfer 
has been run with the small MTU size.  We’ll set the counters to zero fi rst.

bsdclient# netstat -sp ip
ip:
 0 total packets received
 0 bad header checksums
 0 with size smaller than minimum
 0 with data size < data length
 0 with ip length > max ip packet size
 0 with header length < data size
 0 with data length < header length
 0 with bad options
 0 with incorrect version number
 0 fragments received
 0 fragments dropped (dup or out of space)
 0 fragments dropped after timeout
 0 packets reassembled ok
 [many more lines deleted for clarity...]

Now we’ll reset the counters, run the transfer again, and check the IP statistics.

bsdclient# netstat -sp ip
ip:
 57 total packets received
 0 bad header checksums
 0 with size smaller than minimum
 0 with data size < data length
 0 with ip length > max ip packet size
 0 with header length < data size
 0 with data length < header length
 0 with bad options
 0 with incorrect version number
 171 fragments received
 0 fragments dropped (dup or out of space)
 0 fragments dropped after timeout
 57 packets reassembled ok
 [many more lines deleted for clarity...]

The fi le was transferred as 171 fragments that were reassembled into 57 packets.  Let’s 
take a closer look at fragmentation of the MTU size in IPv4.
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Fragmentation and MTU
If an IP packet is too large to fi t into the frame for the outgoing link, the packet content 
must be fragmented to fi t into multiple “transmission units.” The Maximum Transmis-
sion Unit (MTU) size is a key concept in all TCP/IP networks, often complicated by the 
fact that different types of links (LAN or WAN) have very different MTU sizes.  Many of 
these are shown in Table 6.1.  The link protocols shown in italics have “tunable” (con-
fi gurable) MTU sizes instead of defi ned defaults, but almost all interfaces allow you to 
lower the MTU size.  The fi gures shown are the usual maximums.  The 9000-byte packet 
size is not standard in Gigabit Ethernet, but common.

Hosts reassemble any arriving fragmented packets to avoid routers pasting together 
and then tearing apart packets repeatedly as they are forwarded from link to link.  Frag-
ments themselves can even be fragmented further as a packet makes its way from, for 
example, Gigabit Ethernet to frame relay to Ethernet.

Fragmentation is something that all network administrators used to try to avoid.  As 
a famous paper circulated in 1987 asserted bluntly, “Fragmentation [is] considered 
harmful.” As recently as 2004, an Internet draft (http://ietfreport.isoc.org/all-ids/draft-
mathis-frag-harmful-00.txt) took this one step further with the title, “Fragmentation 
Considered Very Harmful.” The paper asserts that most of the harm occurs when a frag-
ment of packet content, especially the fi rst, is lost on the network.  And a number of 
older network attacks involved sending long sequences of fragments to targets, never 
fi nishing the sequence, until the host or router ran out of buffer space and crashed.  Also, 

Table 6.1 Typical MTU Sizes*

Link Protocol Typical MTU Limit Maximum IP Packet

Ethernet 1518 1500

IEEE 802.3 1518 1492

Gigabit Ethernet 9018 9000

IEEE 802.4 8191 8166

IEEE 802.5 (Token Ring) 4508 4464

FDDI 4500 4352

SMDS/ATM 9196 9180

Frame relay 4096 4091

SDLC 2048 2046

*Frame overhead accounts for the differences between the theoretic limit and 
maximum IP packet size.
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because of the widespread use of tunnels (see Chapter 26), there are link layers that 
really need an MTU larger than 1500 to support encapsulation, and you can’t fragment 
MTUs inside a tunnel.

There are several reasons for the quest to determine the smallest of the MTU sizes 
on the links between source and destination.  This “minimum” MTU size can be used 
between a source and destination in order to avoid fragmentation.  The main reasons 
today follow:

■ Fragmentation is processor intensive.  Early routers were hard pressed to both route 
and fragment.  Even today, high link speeds force routers to concentrate on routing 
and minimize “housekeeping” tasks.

■ Many hosts struggle to reassemble fragments.  Fragmentation puts the reassembly 
burden on the receiving host, which can be a cell phone, watch, or something 
else.  This requires processing power and delays the processing of the packet.

■ Fragmentation fi elds are favorite targets for hacking.  TCP/IP implementation behav-
iors are not spelled out in detail for many situations where the fragmentation fi elds 
are set to inconsistent or contradictory values.  Many a host and router have been 
hung by exploiting this variable behavior.

■ Fragments can be lost, out-of-sequence, or errored.  The more pieces there are, the 
more things that can go wrong.  The worse occurs when the fi rst fragment is lost on 
the network.

■ Early IP implementations avoided fragmentation by setting the default IP packet 
size very low, to only 576 bytes.  All link protocols then in common use could 
handle this small packet size, and many IP implementations to this day still use 
this default packet size.  Naturally, the smaller the MTU size, the greater the num-
ber of packets sent for a given message, and the greater the chances something 
can go wrong.

Fragmentation behavior changes in IPv6.  In IPv6, routers do not perform fragmentation.

Fragmentation and Reassembly
The point has already been made that fragmentation is a processor-intensive 
operation.  Naturally, if all hosts sending packets were aware of the minimum MTU size 
on a path from source to destination before sending an IP packet, the problem would 
be solved.  There are ways to determine the path MTU size.

Path MTU Determination
The commonly used method to determine this path MTU is slow, but it works.  The 
method involves “testing” the path to the destination before sending “live” packets to 
a destination system where the path MTU is not known.  The source system sends out 
an echo packet.  (The echo service just bounces back the content of the packet to the 
sender.) The echo packet is usually the MTU size of the source system’s own TCP/IP 
network, which could be 1500 bytes for Ethernet, 4500 for Token Ring, and so on.  This 
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packet has the DF bit set in the Flags fi eld in the IPv4 header.  If the echo packet comes 
back successfully, then the MTU size is fi ne and can be used for “live” data.

However, if the current path through the routers includes a smaller MTU size on a 
link or network that the packet must traverse as the packet makes its way to the desti-
nation, the router attached to this smaller MTU size network must discard the packet, 
since the DF bit is set.  The router sends an ICMP error message back to the source 
indicating the error condition, which is that the packet was discarded because the DF 
bit was set.  The source can then adjust the packet size downward and try again.  This 
process can be repeated several times, trying to fi nd the optimal path MTU.

This path MTU determination method works, but it is awkward and slow.  The live 
data basically wait until the path MTU size is determined for a destination.  And because 
each packet is independently routed, if there are multiple paths through the router 
network (and there usually are, this being the whole point of using routers), the MTU 
size may change with every possible path that an IP packet can take from the source to 
the destination.  However, this method is better than nothing.

A FRAGMENTATION EXAMPLE
Figure 6.4 shows a router on a TCP/IP network.  The arriving IP packet is coming from a 
WAN link with a confi gured MTU size of 4500 bytes.  The destination system is attached 
to the router by means of an Ethernet LAN, which has an MTU size of 1500 bytes.   

WAN link:
4500-byte MTU size Router

4488
03E4
LAST
0

Host
(destination)

(187 8-byte blocks 51496 bytes)

Packet from WAN:
Total Packet Length:
Identification:
Flags:
Fragment Offset:
(blocks from start)

Packet from LAN:
Total Packet Length:
Identification:
Flags:
Fragment Offset:
(blocks from start)

Ethernet:
1500-byte MTU size

4488
03E4
MORE
0

4488
03E4
MORE
187

4488
03E4
LAST
374

Frag #1: Frag #2: Frag #3:

FIGURE 6.4

An IPv4 fragmentation example, showing the various header fi eld values for each of the three 
 fragments loaded into the frames.
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Obviously, the 4500-byte packet must be fragmented across three Ethernet frames to 
reach the destination host.

Figure 6.4 shows the portions of the IP packet data and the values of the frag-
mentation fi elds for each fragment.  The fi gure also shows how the destination system 
interprets the fragmentation fi elds to reassemble the entire packet at the  destination.

We’ve already looked at the problems with fragmentations from the router and 
network perspective.  From the perspective of the receiving host, there are two main 
reasons that fragmentation should be avoided.  One is the need to wait for undelivered 
fragments, and the other is the lack of knowledge on the part of a destination of the 
reassembled datagram size.  Let’s look at the destination host reassembly process to 
explore the “performance penalty” that fragmentation involves.

A fragmented packet is always reassembled at the destination host and never by 
routers.  (Why put together packets that might require fragmentation all over again?) 
However, because all packets are independently routed, the pieces of a packet can 
arrive out of sequence.  When the fi rst fragment arrives, local buffer memory is allo-
cated for the reassembly process.  The Fragment Offset of the arriving packet indicates 
exactly where in the sequence the newly arrived fragment should be placed.

At a busy destination, such as a Web server, many different packets from several 
sources can arrive in fragments.  All of these pieces can be subjected to the reassembly 
process at the same time.  The destination host IP layer software will associate packets 
having matching Identifi cation, Source, Destination, and Protocol fi elds as belonging to 
the same packet.

However, the Total Length fi eld in a packet fragment’s header only indicates the 
length of that particular fragment, not the entire packet before fragmentation.  It is only 
when the destination system receives the last fragment that the total length of the 
original packet can be determined.

If a packet is partially reassembled and the fi nal piece to complete the set has not 
arrived, IP includes a tunable reassembly time-out parameter.  If the reassembly timer 
expires, the remaining packet fragments are discarded.  If the fi nal piece of the packet 
arrives after the time-out, this packet fragment must be discarded as well.

This description of the reassembly process shows the twin problems of memory allo-
cation woes from packet size uncertainties and delays due to the reassembly time-out.

Arriving IP packets have no way to inform the destination system that “I am the fi rst 
of 10 fragments.” If so, it would be easy for the destination system to allocate memory 
for reassembly that was the best-fi t for remaining contiguous buffer space.  But all packet 
fragments can indicate is “I am the fi rst of many,” “I am the second of many,” and so 
on, until one fi nally says, “I am the last of many.” This uncertainty of reassembled size 
makes many TCP/IP implementations allocate as large a block of memory as available 
for reassembly.  Obviously, a fragmented packet may have been quite large to begin with, 
because it was fragmented in the fi rst place.  But the net result is that local buffers 
become quite fragmented.  And if smaller blocks of memory are allocated, the resulting 
non-contiguous pieces must be moved to an adequate sized memory buffer before the 
transport layer can process the  reassembled  datagram.
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The reassembly time-out value must have a value low enough to make the recovery 
process delay of the transport layer reasonable.  The transport layer contains session 
(connection) information that will detect a missing packet in a sequence of segments 
(the contents of the packets), and TCP always requests missing information to be 
resent.  Too long a value for the reassembly timer makes this retransmission process 
very ineffi cient.  Too short a value leads to needlessly discarded packets.  In most TCP/
IP implementations, the reassembly timer is set by the software vendor and cannot be 
changed.  This is yet another reason to avoid fragmentation.

Reassembly “deadlock” used to be a problem as well.  When memory was a scarce 
commodity in hosts, all available local buffer memory could end up holding partially 
assembled fragments.  An arriving fragment could not be accepted even if it completed 
a set and the system eventually hung.  However, in these days of cheap and plentiful 
memory, this rarely happens.

Limitations of IPv4
The limitations of IPv4 are often cast solely in terms of address space.  As important as 
that is, it is only part of the story.  Address space is not the only IPv4 limitation.  Some 
others follow:

■ The fragmentation fi elds are present in every IPv4 packet.

■ Fragmentation is always done with a performance penalty and is best avoided.  Yet 
the fi elds involved—all 6 bytes worth and more than 25% of the basic 20-byte IPv4 
header—must be present in each and every packet.

■ IPv4 Options were seldom used and limited in scope.

■ The IPv4 Type of Service fi eld was never used as intended.

■ The IPv4 Time To Live fi eld was also never used as intended.

■ The 8-bit IPv4 Type fi eld limited IPv4 packet content to 256 possibilities.

All of these factors contributed to the structure of the IPv6 packet header.

The IPv6 Header Structure
Let’s go back to our Windows devices and capture some IPv6 packets.  Then we can 
examine those headers and compare them to IPv4 headers.

bsdserver# ping6 fc00:fe67:d4:b:205:85ff:fe8b:bcdb
PING6(56=40+8+8 bytes) fc00:fe67:d4:b:20e:cff:fe3b:8732 -->
fc00:fe67:d4:b:205:85ff:fe8b:bcdb
1 6 bytes from fc00:fe67:d4:b:205:85ff:fe8b:bcdb, icmp_seq=0 hlim=64 
time=16.027 ms

1 6 bytes from fc00:fe67:d4:b:205:85ff:fe8b:bcdb, icmp_seq=1 hlim=64 
time=0.538 ms

1 6 bytes from fc00:fe67:d4:b:205:85ff:fe8b:bcdb, icmp_seq=2 hlim=64 
time=0.655 ms
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1 6 bytes from fc00:fe67:d4:b:205:85ff:fe8b:bcdb, icmp_seq=3 hlim=64 
time=0.622 ms

^C
--- fc00:fe67:d4:b:205:85ff:fe8b:bcdb ping6 statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max/std-dev = 0.538/4.461/16.027/6.678 ms

Here is the fi rst packet we captured:

bsdserver# tethereal -V
Capturing on em0
Frame 1 (70 bytes on wire, 70 bytes captured)
 Arrival Time: May 23, 2008 18:39:58.914560000
 Time delta from previous packet: 0.000000000 seconds
 Time since reference or first frame: 0.000000000 seconds
 Frame Number: 1
 Packet Length: 70 bytes
 Capture Length: 70 bytes
Ethernet II, Src: 00:0e:0c:3b:87:32, Dst: 00:05:85:8b:bc:db
 Destination: 00:05:85:8b:bc:db (JuniperN_8b:bc:db)
 Source: 00:0e:0c:3b:87:32 (Intel_3b:87:32)
 Type: IPv6 (0x86dd)
Internet Protocol Version 6
 Version: 6
 Traffic class: 0x00
 Flowlabel: 0x00000
 Payload length: 16
 Next header: ICMPv6 (0x3a)
 Hop limit: 64
 Source address: fc00:fe67:d4:b:20e:cff:fe3b:8732 (fc00:fe67:d4:b:20e:
cff:fe3b:8732)
 Destination address: fc00:fe67:d4:b:205:85ff:fe8b:bcdb (fc00:fe67:d4:
b:205:85ff:fe8b:bcdb)
Internet Control Message Protocol v6
 Type: 128 (Echo request)
 Code: 0
 Checksum: 0x7366 (correct)
 ID: 0x0565
 Sequence: 0x0000
 Data (8 bytes)

0000 6e b9 73 44 43 f4 0d 00 n.sDC...

In contrast to the IPv4 header, there are only eight lines (and eight fi elds) in the IPv6 
header.  Since the packet is simple enough, let’s look at the header fi elds in detail as we 
examine the meaning and values in this IPv6 packet.

The IPv6 header is shown in Figure 6.5.  Besides the new expanded, 16-byte IP source 
and destination addresses, there are only six other fi elds in the entire IPv6 header.  This 
simpler header structure makes for faster packet processing in most cases.

180 PART II Core Protocols



IPv6 packets have their own frame Ethertype value, 0x86dd, making it easy for 
receivers that must handle both IPv4 and IPv6 on the same interface to distinguish the 
frame content.

Version—A 4-bit field for the IP version number (0x06).

Traffic Class—A 12-bit field that identifies the major class of the packet content 
(e.g., voice or video packets).  Our capture shows this fi eld as the default at 0, 
meaning that it is ordinary bulk data (as FTP should carry) and requires no 
special handling at devices.

Flow Label—A 16-bit field used to label packets belonging to the same flow 
(those with the same values in several TCP/IP header parameters).  The flow 
label here is 0, but this is common.

Payload Length—A 16-bit fi eld giving the length of the packet in bytes, excluding the 
IPv6 header.  The payload of this packet, an ICMP message, is 16 bytes long.

1 byte

Version Flow LabelTraffic Class

Next HeaderPayload Length

128-bit IPv6 Source Address

128-bit IPv6 Destination Address

Hop Limit

1 byte 1 byte 1 byte

FIGURE 6.5

The IPv6 header fi elds. Note the reduction in fi eld number of how the address fi elds occupy 
most of the header.

CHAPTER 6 IPv4 and IPv6 Headers 181



Next Header—An 8-bit field giving the type of header immediately following the 
IPv6 header (this served the same function as the Protocol field in IPv4).  This 
packet carries an ICMPv3 message, so the value is 0x3a.

Hop Limit—An 8-bit field set by the source host and decremented by 1 at each 
router.  Packets are discarded if the hop limit is decremented to zero (this 
replaces the IPv4 Time To Live field).  The hop limit here is 64, half of the FTP 
value in our IPv4 example.  Generally, implementers choose the default to use, 
but values such as 64 or 128 are common.

IPv4 AND IPv6 HEADERS COMPARED
Figure 6.6 shows the fi elds in the IPv4 packet header compared to the fi elds in the 
IPv6 header.

1 byte

Hdr
Len

Type of
Service

Time to
Live

Source Address (32-bit IPv4)

Destination Address (32-bit IPv4)

Destination Address (128-bit IPv6)

Source Address (128-bit IPv6)

Field names kept from IPv4 to IPv6

Field name and position changed in IPv6

New field in IPv6

Fields not kept in IPv6

(Options, if present, padded in needed)

Protocol Header Checksum

Identification Fragment OffsetFlags

1 byte

Total Packet Length
Ver-
sion

1 byte 1 byte

Traffic Class

1 byte 1 byte 1 byte 1 byte

Flow Label

Next
Header Hop LimitPlayload Length

Ver-
sion

FIGURE 6.6

IPv4 and IPv6 headers compared, showing how the old fi elds and new fi elds relate to each 
other.
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IPv6 Header Changes
In summary, the following are some of the most important changes to the IP header in 
IPv6.

■ Longer addresses (32 bits to 128 bits).  No fragmentation fi elds.

■ No header checksum fi eld.  No header length fi eld (there is a fi xed length header).

■ Payload length given in bytes, not “blocks” (32-bit units).  Time to Live (TTL) fi eld 
becomes Hop Limit.

■ Protocol fi eld becomes Next Header (determines content format).  64-bit alignment 
of the packet, not 32-bit alignment.  A Flow Label fi eld has been added.

■ No Type of Service bits (which were seldom respected anyway).  Many of the IPv4 
fi elds vanish completely, especially the fi elds used for packet fragmentation.  IPv6 
addresses fragmentation performance penalties and problems by forbidding it alto-
gether in routers.  Source hosts can still fragment, however, if the source host wants 
to send packets larger than the Path MTU size to a destination.  In IPv6, as in IPv4, 
fragmentation issues can be avoided altogether by making all packets 1280 bytes 
long—the minimum established by RFC 2460—but this results in many “extra” 
 packets.

■ The IPv4 header Checksum fi eld is absent because destination host error checking 
is the preferred method of error detection in today’s more reliable networks, and 
almost all transmission frames provide better error detection than the IP layer.  There 
is no header length fi eld because all IPv6 headers are the same length.  The Payload 
Length fi eld excludes the IPv6 header fi elds and is measured in bytes, rather than the 
awkward 4-byte units of IPv4.

■ The TTL fi eld, never interpreted as time anyway, is gone as well.  In its place is the 
Hop Limit fi eld, a simple indication of the number of routers that a packet can pass 
through before it should reach the destination host.  The Protocol fi eld of IPv4 has 
become the Next Header fi eld in IPv6.  The term “next header” is more accurate 
because the information inside the IPv6 packet is not necessarily a higher layer pro-
tocol (e.g., TCP segment) in IPv6.  There are many other possibilities.

■ The entire packet must be an integer number of 64-bit (8-byte) units.  The 32-bit 
unit for IPv4 was established when many high-performance computers were 32-bit 
machines, meaning memory access and internal bus operations moved 32-bit units 
(called a “word”) around.  Today high-performance computers often support 64-bit 
words.  It only made sense to align the new IPv6 header for ease and speed of pro-
cessing on the newer architecture computers.

■ Finally, in place of the ToS fi eld in IPv4, the IPv6 header defi nes a Flow Label fi eld.  Flows 
are used by routers to pick out IPv6 packets containing delay-sensitive data such as 
voice, video, and multimedia.  The Type of Service fi eld was usually ignored by rout-
ers in IPv4, and other uses were not standardized.
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■ The IPv6 specifi cation includes a concept known as Extension Headers.  Extension 
Headers essentially take the place of the Options in the IPv4 packet header.  IPv6 
Extension Headers are only present when necessary and are designed to be exten-
sible (new functions may be defi ned in the future), but the term “extensible Exten-
sion Headers” is awkward.

■ The current Extension Headers include a Hop-by-Hop Option Header, exam-
ined by every router handling the IPv6 packet and an Authentication Header 
for enhanced security on TCP/IP networks (these are used in IPv4 as part of 
IPSec).  There is also a Fragmentation header for the use of the source host when 
there is no way to prevent the source from sending packets larger than the path 
MTU size (IPv6 routers cannot fragment, but hosts can).  Also, there used to be 
a Routing Header specifying the IP addresses of the routers on the path from 
source to destination (similar to “source routing” in token ring LANs), but this is 
deprecated by RFC 5095.  There are several others, but these show the kinds of 
capabilities included in the IPv6 Extension Headers.

IPv6 AND FRAGMENTATION
What would happen if we put IPv6 into a situation where it has to fragment packet 
content to make it fi t into a frame? Let’s use the Illustrated Network to fi nd out.  Two 
useful ping parameters are the size of the packet to bounce off a remote device and 
the count of packets sent.  We’ll capture the packets sent when bsdserver sends a 2000-
byte packet (too large for an Ethernet frame) to the router.

bsdserver# ping6 -s 2000 -c 1 fc00:fe67:d4:b:205:85ff:fe8b:bcdb
PING6(2048=40+8+2000 bytes) fc00:fe67:d4:b:20e:cff:fe3b:8732 --> 
fc00:fe67:d4:b:205:85ff:fe8b:bcdb
2 008 bytes from fc00:fe67:d4:b:205:85ff:fe8b:bcdb, icmp_seq=0 hlim=64 
time=2.035 ms

--- fc00:fe67:d4:b:205:85ff:fe8b:bcdb ping6 statistics ---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max/std-dev = 2.035/2.035/2.035/0.000 ms
bsdserver#

This makes 2008 bytes with the IPv6 header.  Here’s what we have (the data fi elds, 
which contain test strings, have been omitted):

bsdserver# tethereal -V
Capturing on em0
Frame 1 (1510 bytes on wire, 1510 bytes captured)
 Arrival Time: May 25, 2008 08:39:21.231993000
 Time delta from previous packet: 0.000000000 seconds
 Time since reference or first frame: 0.000000000 seconds
 Frame Number: 1
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 Packet Length: 1510 bytes
 Capture Length: 1510 bytes
Ethernet II, Src: 00:0e:0c:3b:87:32, Dst: 00:05:85:8b:bc:db
 Destination: 00:05:85:8b:bc:db (JuniperN_8b:bc:db)
 Source: 00:0e:0c:3b:87:32 (Intel_3b:87:32)
 Type: IPv6 (0x86dd)
Internet Protocol Version 6
 Version: 6
 Traffic class: 0x00
 Flowlabel: 0x00000
 Payload length: 1456
 Next header: IPv6 fragment (0x2c)
 Hop limit: 64

Source address: fc00:fe67:d4:b:20e:cff:fe3b:8732 (fc00:fe67:d4:b:20e:
cff:fe3b:8732)

Destination address: fc00:fe67:d4:b:205:85ff:fe8b:bcdb (fc00:fe67:d4:
b:205:85ff:fe8b:bcdb)

Fragmentation Header
 Next header: ICMPv6 (0x3a)
 Offset: 0
 More fragments: Yes
 Identification: 0x000000e5
Internet Control Message Protocol v6
 Type: 128 (Echo request)
 Code: 0
 Checksum: 0x74df
 ID: 0x0e60
 Sequence: 0x0000
 Data (1440 bytes) (OMITTED)

Frame 2 (622 bytes on wire, 622 bytes captured)
 Arrival Time: May 25, 2008 08:39:21.232007000
 Time delta from previous packet: 0.000014000 seconds
 Time since reference or first frame: 0.000014000 seconds
 Frame Number: 2
 Packet Length: 622 bytes
 Capture Length: 622 bytes
Ethernet II, Src: 00:0e:0c:3b:87:32, Dst: 00:05:85:8b:bc:db
 Destination: 00:05:85:8b:bc:db (JuniperN_8b:bc:db)
 Source: 00:0e:0c:3b:87:32 (Intel_3b:87:32)
 Type: IPv6 (0x86dd)
Internet Protocol Version 6
 Version: 6
 Traffic class: 0x00
 Flowlabel: 0x00000
 Payload length: 568
 Next header: IPv6 fragment (0x2c)
 Hop limit: 64
 Source address: fc00:fe67:d4:b:20e:cff:fe3b:8732 (fc00:fe67:d4:
  b:20e:cff:fe3b:8732)
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 Destination address: fc00:fe67:d4:b:205:85ff:fe8b:bcdb (fc00:fe67:
  d4:b:205:85ff:fe8b:bcdb)
Fragmentation Header
 Next header: ICMPv6 (0x3a)
 Offset: 1448
 More fragments: No
 Identification: 0x000000e5
Data (560 bytes) (OMITTED)

(Frames 3 and 4, the echoed frames sent back in response, are mirror
images of Frames 1 and 2 and have been omitted for brevity.)

bsdserver#

Because the host cannot pack 2000 bytes into an Ethernet frame, the IPv6 host does 
the fragmenting before it sends the bits onto the LAN.  There are no fragmentation fi elds 
in the IPv6 header, however, so IPv6 includes a second header (next header) that carries 
the information needed for the destination to reassemble the fragments (in this case, 
two of them).  The important fi elds are highlighted in bold in the preceding code.

The fi rst frame (the capture says “packet”) is 1510 bytes long, including 1456 bytes 
of payload (given in the Payload Length fi eld).  The Next Header value of 0x2c indicates 
that the next header is an IPv6 fragment header.  The Fragmentation Header fi elds are 
listed in full:

■  Next Header (0x3a)—The header following the Fragmentation Header is an 
ICMPv6 message header.

■ Offset (0)—This is the fi rst fragment of a series.
■ More Fragments (Yes)—There are more fragments to come.
■  Identifi cation (0x000000e5)—Only reassemble fragments that share this 

identifi er value.

The data fi eld in the ICMPv6 message is 1440 bytes long.  The rest of the 1510 bytes are 
from the various headers pasted onto these bytes.

Frame 2 holds the rest of the 2000 bytes in the ping.  This frame is 622 bytes long 
and carries 568 bytes of payload.  The Next Header is still an IPv6 fragment (0x2c).  The 
Fragmentation Header fi elds follow:

■  Next header (0x3a)—The header following the Fragmentation Header is an 
ICMPv6 message header.

■  Offset (1448)—These bytes start 1448 bytes after the content of the fi rst 
frame.  (The “extra” 8 bytes are for the ICMPv6 header.)

■ More Fragments (No)—The contents of this packet complete the series.
■  Identifi cation (0x000000e5)—This fragment goes with the previous one with 

this identifi er value.

The data fi eld in the ICMPv6 message is 560 bytes long.  Along with the 1440 bytes 
in the fi rst fragment, these add up to the 2000 bytes sent.

186 PART II Core Protocols



QUESTIONS FOR READERS
Figure 6.7 shows some of the concepts discussed in this chapter and can be used to 
help you answer the following questions.

1 byte 1 byte 1 byte 1 byte 1 byte 1 byte 1 byte 1 byte

Hdr
Len

FlagsIdentification

Time to
Live

Protocol Header Checksum

Source Address (32-bit IPv4)

Destination Address (32-bit IPv4)

(Options, if present, padded if needed)

Fragment Offset

Type of
Service Total Packet Length

Ver-
sion Traffic Class

Playload Length

Source Address (128-bit IPv6)

Destination Address (128-bit IPv6)

Flow Label

Next
Header Hop Limit

Ver-
sion

1.  Why are diagnostics like ping messages routinely given high hop-count values 
such as 64 or 128?

2.  Without any IPv4 options in use, what value should be seen in the Header Length 
fi eld most of the time?

3. How does an IP receiver detect missing fragments?

4.  Is there any way for an IP receiver to determine how many fragments are 
 supposed to arrive?

5.  Since almost all the IPv4 header fi elds are options in IPv6, is it correct to say that 
the IPv6 header is “simplifi ed”?

FIGURE 6.7

The IPv4 and IPv6 packet header fi elds. IPv6 can employ most IPv4 options as “next header” 
fi elds following the basic header.
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CHAPTER

What You Will Learn
In this chapter, you will learn about ICMP messages, their types, and (in many 
cases) the codes used in each type.  We’ll look at which ICMP messages are  routinely 
blocked at fi rewalls and which are essential for proper device operation.

You will learn about the common ping utility for determining device  accessibility 
(“reachability”) on an IP network.  We’ll discuss the mechanics of both ping and 
traceroute, and use several ping examples to illustrate ICMP on the network.

Internet Control Message 
Protocol 7

The only function of the IP layer is to provide addressing for and route the IP packet. 
That’s all. Once an IP packet has been dealt with, the IP layer just looks for the next 
packet. But IP is a connectionless, “best effort,” or “unreliable” method of packet 
delivery.  The terms “best effort” and “unreliable” often make it sound like IP is casual 
about the delivery of packets, which is why they are in quotes so that no one takes 
them too literally. IP’s best effort is usually just fi ne, given the low error rates on modern 
transports, and it is mostly unreliable with regard to a lack of guarantees, as has been 
pointed out. Besides, there is nothing wrong with letting other layers, such as the TCP 
segments or the Ethernet frames, have the major responsibility for error detection and 
correction.  

This is not to say that IP should be oblivious to errors.  The network layer, in its ubiq-
uitous and key position at the heart of the protocol stack, should know about packet 
errors and is in a good position to let layers above know what’s going on (although IP 
lets the upper layers decide what to do about the condition).

And there’s plenty that can still go wrong, and not just with regard to bit errors. 
A packet might wander the router cloud until the TTL fi eld hits zero.  A destination 
server might be down.  A destination server might no longer exist.  The “do not frag-
ment” bit might forbid fragmentation when it is needed to send a packet, stopping the 
routing process cold. In all of these situations, the sender should be informed of the 
condition.
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FIGURE 7.1

ICMP is used on all devices on the Illustrated Network, routers, and hosts. In this chapter,
we’ll work with the hosts on the LANs.
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Without error condition feedback from the network, the natural response to an 
unexpected result (in this case, a reply) is to simply repeat the original message. Some-
times this might work, especially if the condition is transient, but semipermanent or 
permanent error conditions must be reported to the source. Otherwise, repetitive 
sending might result in an endless error loop, and certainly adds unnecessary traffi c 
loads to the network.

This chapter explores aspects of IP’s built-in error reporting protocol, the Internet 
Control Message Protocol (ICMP). Note that ICMP does not deal with “error messages,” 
but “control messages,” a better term to cover all of the roles that have evolved for 
ICMP. We’ll start by looking at one indispensable utility used on all TCP/IP network: 
ping. We’ll be using the same LAN-based hosts as in the previous chapter, as shown in 
Figure 7.1.

ICMP AND PING
The easiest way to look at ICMP on the Illustrated Network is with ping and traceroute. 
Both utilities have been used before in this book, but because traceroute will be used 
again in the chapters on routing, this chapter will use ICMP and ping.

The ping utility is just a way to “bounce” packets off a target device and see if it is 
there—that is, it has the IP address that was provided, is powered on, and alive.  The 
device might still not function in the correct way (i.e., the router might not be rout-
ing properly), but at least the device is present and accounted for. It is routine to ping 
a newly installed device, host, router, or anything else, just to see if it responds. If it 
doesn’t, network administrators have a place to start troubleshooting.

Let’s use ping from the lnxclient to the bsdserver, both on LAN2 to start exploring 
ICMP.  Windows XP only sends four pings by default, but Unix systems will just keep 
going until stopped with ^C (which is what was done here).

[root@lnxclient admin]# ping 10.10.12.77
PING 10.10.12.77 (10.10.12.77) 56(84) bytes of data.
64 bytes from 10.10.12.77: icmp_seq=1 ttl=64 time=0.549 ms
64 bytes from 10.10.12.77: icmp_seq=2 ttl=64 time=0.169 ms
64 bytes from 10.10.12.77: icmp_seq=3 ttl=64 time=0.171 ms
64 bytes from 10.10.12.77: icmp_seq=4 ttl=64 time=0.187 ms
64 bytes from 10.10.12.77: icmp_seq=5 ttl=64 time=0.216 ms
^C

--- 10.10.12.77 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 3996ms
rtt min/avg/max/mdev = 0.169/0.258/0.549/0.146 ms
[root@lnxclient admin]#

The output shows the ICMP sequence numbers and round-trip time (rtt) for the 
group in terms of minimum, average, maximum, and even the maximum deviation from 
the mean.  We do not have DNS on the network, so we have to use IP addresses. Most 
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ping implementations will accept host names, and some (such as Cisco routers) will 
even do a reverse DNS lookup when given an IP address and report the host name 
in the result.  This can be very helpful when an IP address is entered incorrectly or 
assigned to a different device than anticipated.

We can look at the ICMP packets used with ping in more detail. Let’s use both LANs 
this time, and ping from wincl1 (10.10.11.51) on LAN1 to wincli2 (10.10.12.222) on 
LAN2.  With XP, we won’t have to worry about stopping the sequence.

C:\Documents and Settings\Owner> ping 10.10.12.222

Pinging 10.10.12.222 with 32 bytes of data:

Reply from 10.10.12.222: bytes=32 time<1ms TTL=126
Reply from 10.10.12.222: bytes=32 time<1ms TTL=126
Reply from 10.10.12.222: bytes=32 time<1ms TTL=126
Reply from 10.10.12.222: bytes=32 time<1ms TTL=126

Ping statistics for 10.10.12.222:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% less),
Approximate round-trip times in milliseconds:
 Minimum = 0ms, Maximum = 0ms, Average = 0ms

Due to the way the Windows operating systems handle timing, it’s not unusual to have 
RTTs of 0.

What does this group of packets look like at the target? Figure 7.2 shows us.
We can see that the four pings are accomplished with eight packets sent over the 

network. Look at the last column in the upper part of the fi gure. Ping employs  messages 
in request–reply pairs using the ICMP protocol.  An Echo request is sent out which 
 basically tells the receiver to “send an ICMP Echo message back to me, okay?” Once 
the reply is received, the next request is sent, statistics compiled as the procedure goes 
along, and so on.

The details of Frame 1 show that the ICMP message is carried directly inside an IP 
packet (and then Ethernet II frame). But ICMP is not often shown as a transport layer 
protocol.  That would make ICMP function at the same level as things like TCP and 
UDP, and this is simply not true. ICMP, as we will fi nd, is concerned with network layer 
problems, so portraying ICMP as a type of special protocol associated with IP is not 
really a mistake.

So technically, because IPv4 packets carry ICMP messages as protocol number 1, 
ICMP is as valid a layer above IP as TCP or UDP or any other of the 200 or so defi ned 
IP protocols that can be carried inside IP packets. But because every IP implementa-
tion must include ICMP (and IPv6 has ICMPv6), it makes sense to bundle ICMP and IP 
together.  This also implies that ICMP messages do not report their own errors.

What if no reply is received by the source of a ping? The source then times out 
and another ICMP Echo request message is sent. Naturally, no statistics can be gener-
ated, and we get a “host unreachable” message in most cases.  We can force a  timeout 
simply by trying to ping a nonexistent address (this could also be the result of a 
 simple typo).
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[root@lnxclient admin]# ping 10.10.12.55
PING 10.10.12.55 (10.10.12.55) 56(84) bytes of data.
From 10.10.12.166 icmp_seq=1 Destination Host Unreachable
From 10.10.12.166 icmp_seq=2 Destination Host Unreachable
From 10.10.12.166 icmp_seq=3 Destination Host Unreachable

--- 10.10.12.55 ping statistics ---
3 packets transmitted, 0 received, +3 errors, 100% packet loss, time 5022ms, 
pipe 3
[root@lnxclient admin]#  

Many ping implementations report either “unreachable” or “unknown” errors. The 
unreachable report implies that the target was once known to the source and reach-
able, but isn’t “reachable” at the moment. The unknown report implies that the source 
has never heard of the target address or port. However, unreachable reports are often 
returned by a host source pinging a new device, which obviously should be unknown. 

FIGURE 7.2

Ping ICMP requests and replies showing details of the ping echo request in the middle pane. Note 
that the content of the packet is the ICMP message, not TCP or UDP.
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Most network people treat both error condition reports the same way: Something is 
just plain wrong.

Ping remains the fi rst choice for checking connectivity on the Internet, between 
hosts, and between host and router. On LANs, the fi rst troubleshooting step is “can 
you ping it?” If you cannot, there’s no sense of going further. If you can, and things like 
applications still do not function as expected, at least the troubleshooting process can 
continue productively.

Firewalls sometimes screen out ICMP messages in the name of security. In these 
cases, even a failed ping does not prove that a device is not working properly. How-
ever, diagnostics become more complex, although not impossible. Of course, screening 
out all ICMP messages from a site usually also eliminates correct error reporting and 
proper operation of the device.  After we list the ICMP message types, we’ll discuss 
which ICMP messages are essential.

Ping works with IPv6, too. On most Unix hosts, it’s called ping6.  When used with the 
special IPv6 multicast address ff02::1, the %em0 addition probes for the IPv6 address of 
every interface on the LAN, a form of forced neighbor discovery in IPv6. Here’s what it 
looks like on LAN2 when run from the bsdserver.

bsdserver# ping6 ff02::1%em0
PING6(56=40+8+8 bytes) fe80::20e:cff:fe3b:8732%em0 —> ff02::1%em0
16 bytes from fe80::20e:cff:fe3b:8732%em0, icmp_seq=0 hlim=64 time=0.154 ms
16 bytes from fe80::202:b3ff:fe27:fa8c%em0, icmp_seq=0 hlim=128 time=0.575 
ms(DUP!)
16 bytes from fe80::5:85ff:fe8b:bcdb%em0, icmp_seq=0 hlim=64 time=1.192 
ms(DUP!)
16 bytes from fe80::20e:cff:fe3b:8856%em0, icmp_seq=0 hlim=64 time=0.097 
ms(DUP!)
^C

—- ff02::1%em0 ping6 statistics —-
1 packets transmitted, 1 packets received, +3 duplicates, 0% packet loss
round-trip min/avg/max/std-dev = 0.071/2.520/39.406/8.950 ms
bsdserver#

All four systems on LAN2 are listed, except for lnxclient, which does not have an 
IPv6 address. But hosts winsrv2 (fe80::20e:cff:fe3b:8856), wincli2 (fe80::202:b3ff:
fe27:fa8c), router TP6 (fe80::5:85ff:fe8b:bcdb), and even bsdserver (fe80::20e:
cff:fe3b:8732) itself have all replied. Oddly, the Windows XP client replies with a hop 
limit of 128.

IPv6 traffi c (and ICMPv6) is also visible to Ethereal, so we can explore the for-
mat of these packets a little further. Figure 7.3 shows how the exchange of the ping6 
ff02::1%em0 packets looks like from wincli2 when run from bsdserver. Note that this 
only captures the exchange of packets that wincli2 processes.
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IPv6 uses its own version of ICMP, called (not surprisingly) ICMPv6.  The ICMPv6 
Echo reply message, sent in response to the ping to multicast group ff02::1, is high-
lighted in the fi gure. From the source address, we can tell this is from wincli2.  We 
looked at the details of the IPv6 header in the last chapter. Note that the hop limit is 
128 in the reply, and that the protocol number for ICMP is 0x3a (58 decimal).

THE ICMP MESSAGE FORMAT
ICMP is usually considered to be part of the IP layer itself, and that is how ICMP is pre-
sented here. Hosts are supposed to set the IPv4 packet header  TOS fi eld to 0 if the packet 
carries an ICMP message, and routers are supposed to set the precedence fi eld to 6 or 7.

Figure 7.4 shows the format of two ICMP messages.  All ICMP messages start with 
the same three fi elds: an 8-bit Type and Code, followed by a 16-bit Checksum.  Then, 
depending on the value of the Type, the details of what follows varies. So to be more 
informative, a second ICMP message is shown.  The second message displays the format 
used for a very common network condition, Destination Unreachable, which we saw 
earlier.

FIGURE 7.3

ICMPv6 capture showing the ICMPv6 echo reply message from wincli2. The header details are 
shown in the middle pane.
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Destinations on a  TCP/IP network can be unreachable for a number of reasons.  The 
host could be down, or have a new IP address that is not yet known to all systems.  The 
destination’s Internet name could have been typed incorrectly (but still maps to an 
existing IP address), the only link to the site could have failed, and so on.

ICMP Message Fields
The fi elds that appear in all ICMP messages follow:

Type—This 8-bit field defines the major purpose of the ICMP message. Most 
 indicate error conditions, but two of the most common type values, 8 and 0, 
mean Echo Request and Echo Reply, respectively.  A Type value of 3 means Des-
tination Unreachable.  All Types determine the format of the rest of the ICMP 
message beyond the first three fields.

Code—This 8-bit field gives additional information about the condition in the 
Type field.  This is often not necessary, and many Types have only a Code = 0 
defined. Other Types have many Code values defined to allow the source to 

1 byte 1 byte 1 byte 1 byte

ChecksumCode

ICMP Data
(content and format depends on Type)

(a)

(b)

Type

ChecksumCode

Unused (all 0 bits)

IP Header (20 bytes)
and

First 8 bytes of Original Packet Data (usually TCP/UDP header)

Type 3

1 byte 1 byte 1 byte 1 byte

FIGURE 7.4

ICMP message format, showing how a specifi c message such as Destination Unreachable uses 
the fi elds following the initial three. (a) General format of ICMP message. (b) Format of Destination 
Unreachable ICMP message.

CHAPTER 7 Internet Control Message Protocol 197



focus on the real problem. For example, Destination Unreachable (Type = 3) 
has 16 codes (0–15) defined.

Checksum—This is the same type of checksum as used for the IP packet header. 
This points out that ICMP, although considered part of IP itself, is really just as 
much a separate layer as anything else in TCP/IP and so must provide for its 
own error checking.

ICMP Types and Codes
There are about 40 defi ned ICMP message types, and message types 41 through 255 are 
reserved for future use. Only a handful of the types have more than a Code value of 0 
defi ned, but these are the more important ICMP message types.

There are two major categories of ICMP messages: error messages (reports that do 
not expect a response) and queries (messages sent with the expectation of a match-
ing response). Some others do not fall neatly into either category.  The structure of 
the fi elds following the checksum depends on the type of ICMP message.  These two 
formats are shown in Figure 7.5.

Note that the Destination Unreachable format shown in Figure 7.4 is an ICMP error 
message and does not generate a reply.  The fi elds that appear following the initial three 
in the ICMP Destination Unreachable message are very common.

Unused—This 32-bit field must be set to all 0 bits for Destination Unreachable, 
but in other ICMP messages it is often used as a sequence number to allow 
requests and responses to be coordinated by senders and receivers.

IP Header and More—The last 28 bytes of the ICMP Destination Unreachable 
message consist of the original IP header (usually 20 bytes, but can be up to 
60 bytes) and the first 8 bytes of the segment inside the packet. Usually, this 
includes the ports used by the TCP or UDP segment.  This practice allows send-
ers to realize exactly what field value is objectionable. It’s one thing to say 
“Port unreachable,” but better to say “Hey! The port in the UDP segment you 
sent, which is port 6735, can’t be reached here right now...”

Usually, the error messages have the all-zero unused byte followed by the 28-byte 
header and packet data, but not always. Identifi ers track Query message request/
response pairs, and the sequence numbers help sort out queries sent by the same 
process (the process identifi er, the PID, is often the ICMP Query identifi er in Unix 
systems).

The suite of the 40 ICMP message types can be implemented by hosts or rout-
ers. Some of the types are mandatory, some are optional, some are for experimental 
use, and some are obsolete. In some cases, specifi cations explicitly state that hosts 
or routers be able to transmit and receive (process) ICMP messages, but not in all 
cases.
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Let’s take a look at what the specifi cations say about ICMP messages. First, we’ll look 
at error messages, and then query messages, and then all the rest.

ICMP Error Messages
ICMP Error messages report semipermanent network conditions.  The fi ve ICMP error 
messages are displayed in Table 7.1, which shows how routers and hosts should handle 
each type.

Time-exceeded errors result from TTL expiration (Code = 0) or when fragments 
cannot be completed quickly enough at a receiver (Code = 1). Parameter problems 
are usually sent in regard to IP options. The codes are for a bad IP header (0), missing a 
required option fi eld (1), or a bad length (2).

Which of these message types are essential to device operation and should not be 
blocked? Generally, the Destination Unreachable is essential (it is used by traceroute), 
and used in MTU path calculations. Of the others, the Redirect message is most often 

1 byte 1 byte

Code

Content Depends on Type/Code*

ChecksumType

1 byte 1 byte

IP Header (20 bytes)
and

First 8 bytes of Original Packet Data (usually TCP/UDP header)

1 byte 1 byte

Code

Content depends on Query Type

ChecksumType 3

1 byte 1 byte

(a)
*Usually all 0 (unused) except for:
Type 3/Code 4: Destination unreachable, fragmentation needed
  (fields are 2 bytes unused and 2-byte link MTU size)
Type 3/Code 5: Destination unreachable, redirect (field is router IP address)
Type 12/Code 0: Parameter problem (field is 4-bit pointer to parameter, rest all 0)

(b)

Identifier for Request/Response pairs
(usually PID in Unix)

Sequence Number
(set to 0 initially and incremented)

FIGURE 7.5

ICMP error and query messages. Note that error messages include the IP header that generated 
the error. (a) ICMP error message. (b) ICMP query message.
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Table 7.1 ICMP Error Messages

Type Meaning Codes Data
Router 
Sends

Router 
Receives

Host 
Sends

Host 
Receives

3 Destination 
Unreachable

0–15 IP hdr + 
8 bytes

M M M M

4 Source 
Quench

0 IP hdr + 
8 bytes

Obs Obs Obs Obs

5 Redirect 0–3 IP hdr + 
8 bytes

M M Opt Opt

11 Time 
Exceeded

0–1 IP hdr + 
8 bytes

M M Opt Opt

12 Parameter 
Problem

0–2 IP hdr + 
8 bytes

M M M M

Obs, obsolete; Opt, optional; M, mandatory.

Table 7.2 ICMP Destination Unreachable Codes

Code Meaning

0 Network is unreachable (the router’s links to it might have failed). 

1 Host is unreachable (the router can’t reach the host; it might be turned off).

2 Requested protocol is unreachable (the process might not be running on the host).

3 Port is unreachable (the remote application might not be running on the host).

4 Fragmentation needed at router but DF fl ag is set (used for path MTU determination).

5 Source route has failed (source route path might go through down link or router).

6 Destination network is unknown (different than Code = 0; router can’t fi nd it).

7 Destination host is unknown (different than Code = 1; router can’t fi nd host).

8 Source host is isolated (source host is not allowed to send onto the network).

9 Communication with this network is administratively forbidden (due to fi rewall).

10 Communication with this host is administratively forbidden (due to fi rewall).

11 Network is unreachable with specifi ed Type of Service (router can’t forward).

12 Host is unreachable with specifi ed Type of Service (router can’t forward).

13 Communication administratively prohibited (by route fi ltering).

14 Host precedence violation (the fi rst-hop router does not support this precedence).

15 Precedence cut-off in effect (requested precedence too low for router network).
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blocked, because it does just as it says, that is, it tells another device to send packets 
somewhere else.

Many ICMP errors are Destination Unreachable errors. The 16 codes for this error 
type and their meanings are shown in Table 7.2, which includes a likely cause for the 
condition.

The precedence bits are in the TOS fi eld of the IPv4 packet header, and are distinct 
from the TOS bits themselves (and are almost universally ignored anyway).

ICMP Query Messages
ICMP Query messages are used to question conditions on the network.  These messages 
are used in pairs, and each request anticipates a response.  The 10 ICMP Query messages 
are listed in Table 7.3, which shows how routers and hosts should handle each type.

These ICMP messages in Table 7.3 allow routers and hosts to query for timestamp, 
address mask, and domain name information. Echo requests and replies have special 
uses described in the section of this chapter on ping.

Table 7.3 ICMP Query Messages

Type Meaning Codes Data
Router 
Sends

Router 
Receives

Host 
Sends

Host 
Receives

0 Echo reply 0 Varies M M M M

8 Echo 
request

0 Varies M M M M

13 Timestamp 
request

0 12 bytes Opt Opt Opt Opt

14 Timestamp 
reply

0 12 bytes Opt Opt Opt Opt

15 Information 
request

0 0 bytes Obs Obs Obs Obs

16 Information 
reply

0 0 bytes Obs Obs Obs Obs

17 Mask 
request

0 4 bytes M M Opt Opt

18 Mask reply 0 4 bytes M M Opt Opt

37 Domain 
name 
request

0 0 bytes M M M M

38 Domain 
name reply

0 0 bytes M M M M

Obs, obsolete; Opt, optional; M, mandatory.
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Which of these should be allowed to pass through fi rewalls? Sites most often allow 
Echo messages (used by ping), although some allow only incoming Echo replies but 
not Echo requests (which allows my devices to ping yours, but not the other way 
around).  The timestamp reply is also used by traceroute, and if these messages are 
blocked, asterisks (*) appear instead of times in the traceroute report (we’ll look at 
traceroute operation in detail in Chapter 9).

Table 7.4 Other ICMP Query Messages

Type Meaning Codes Data
Router 
Sends

Router 
Receives

Host 
Sends

Host 
Receives

1 Unassigned NA NA NA NA NA NA

2 Unassigned NA NA NA NA NA NA

6 Alternate host 
address

0 (4 bytes) (Prohibited) (Prohibited) Opt Opt

9 Router 
 advertisement

0 Varies M Opt Prohibited Opt

10 Router 
 solicitation

0 0 bytes M M Opt Opt

19 Reserved–
security

NA NA NA NA NA NA

20–29 Reserved–
robustness

NA NA NA NA NA NA

30 Traceroute 0–1 Varies Opt Opt M M

31 Datagram con-
version error

0–11 Varies ? ? ? ?

32 Mobile host 
redirect

0 Varies Opt Opt Opt Opt

33 IPv6 
where-are-you

0 ? Opt Opt Opt Opt

34 IPv6 I-am-here 0 ? Opt Opt Opt Opt

35 Mobile regis-
tration request

0, 16 Varies Opt Opt Opt Opt

36 Mobile regis-
tration reply

0, 16 Varies Opt Opt Opt Opt

39 SKIP 0 Varies Opt Opt Opt Opt

40 Photurius 0–3 Varies Exp Exp Exp Exp

Exp, expired; Obs, obsolete; Opt, optional; M, mandatory; NA, not applicable.
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Other ICMP Messages
Some ICMP messages do not fall neatly into either the error or query category. 
These messages are typically used in specialized circumstances.  The other 25 ICMP 
 messages are listed in Table 7.4, again showing how routers and hosts should handle 
each type.

The messages displayed in Table 7.4 are less intuitive than others. Many of the other 
messages are relatively new, apply to special circumstances, and not much has been 
published about their use.

Very little has been written on the use of the alternate host address message and 
the table is fi lled in with more suggestions than anything else. Router advertisement 
and solicitation messages are defi ned in RFC 1256 as part of “neighbor discovery” 
for IPv4 and a way around network administrators needing to know local router 
addresses.

The traceroute message was introduced in RFC 1393 and was supposed to be 
a more formal way to perform a traceroute, but never really caught on. RFC 1393 
describes an alternate traceroute method that uses a single packet with an IP header 
Traceroute option fi eld and uses the answering ICMP Type = 30 messages from 
 routers to gather the same information while using far fewer messages. However, sup-
port for this method is not mandatory on routers, making this form of traceroute 
 problematic.

Datagram conversion errors are part of the “Next Generation Internet” protocol 
using 64-bit addresses described in RFC 1475 and occurring when packets cannot be 
converted to the new format. The mobile-related messages (32, 36, and 37) are part of 
Mobile IP (or “IP Mobility”). SKIP is the Simply Key Management for Internet Protocols 
and is used for Internet security. So is Photurius, an experimental aspect of IPSec that 
has four codes: one reserved (0), one for an unknown IPSec Security Parameter Index 
(SPI, 1), one for failed authentication (2), and one for failed decryption (3).

SENDING ICMP MESSAGES
Few TCP/IP protocols have been the subject of as much tinkering and add-on 
 functionality as ICMP.  The original specifi cation of ICMP was in RFC 792 and refi ned 
in RFC 1122 (Host Network Requirements) and RFC 1812 (Router Requirements). 
RFC 1191 added path MTU discovery functions to ICMP, RFC 1256 added router dis-
covery, and RFC 1393 extended traceroute functions with a special message type not 
often used.

But at heart, ICMP is a collection of predefi ned messages to indicate very specifi c 
conditions. If the sender of a packet receives an ICMP message that involves ICMP itself 
(the query messages), then ICMP deals with it directly. Otherwise, other protocols are 
notifi ed. (Unreachable ports are reported to UDP, which lacks the segment tracking 
that TCP has, and so forth.)  The precise response of an application to an ICMP message 
can vary, but usually the error is reported to the user so that corrective action (even if 
it’s just “Stop doing that!”) can be taken.
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When ICMP Must Be Sent
Systems that detect a packet error and discard the packet may or may not send an 
ICMP message back to the originating host. Usually it depends on whether the error is 
transient or semipermanent.

Things like invalid checksums are ignored in TCP/IP, because these are considered to 
be transient failures that should not persist.  The philosophy is that if the data are impor-
tant, the sender will simply resend.  Transient errors are unlikely to repeatedly manifest 
themselves in a chain of packets, and thus do not indicate a network-wide problem.

However, semipermanent errors such as invalid IP addresses need to be reported 
to the originator.  These are fundamental problems with the network or in the way that 
the application is trying to use the network.  The sender must either stop or change the 
content of the packets.

It is important to realize that the presence of many ICMP messages on a network 
does not mean that things are not working well, nor does the lack of ICMP messages 
mean that the network is working fi ne.

Most users see only a handful of ICMP message types, especially those used for ping 
and traceroute, such as the Time Exceeded, Timestamp Reply, Destination Unreach-
able, and Echo messages.

When ICMP Must Not Be Sent
ICMP also establishes situations when ICMP messages must not be sent.  Transients like 
checksum errors or intermittent link-level failures are clear examples, but ICMP goes 
further than this. Generally, error messages should not be sent if they will generate 
more network traffi c and add little new information to what is obvious to the sender.

For example, RFC 1122 says that ICMP error message should never be sent if a 
receiver gets the following:

■ ICMP error message (e.g., errors in ICMP checksums should not be reported as 
errors)

■ Internet Group Management Protocol (IGMP) message (IGMP is for multicast, and 
multicast traffi c tends to multiply exponentially on the network, and one error could 
trigger many error messages)

■ Packet with a broadcast or multicast destination address (another traffi c-oriented 
rule)

■ Link-layer frame with broadcast or multicast address

■ Packet with a special source address (all zeros, loopback, and so on)

■ Any fragment other than the fi rst fragment of a fragmented packet

PING
Most people who know little about how TCP/IP works usually know of the ICMP-based 
application known as ping.  The original metaphor was the “ping” of a naval sonar unit. 
Ping is a simple Echo query-and-response ICMP message that is used to see if another 
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device is up and reachable over the network.  A successful ping means that network 
administrators looking at problems can relax a great deal:  The network routers on the 
path and at least two hosts are running just fi ne.

Ping implementations and the parameters supported vary greatly among operating 
systems and routers (most routers support ping). Some only send four packets and quit, 
unless told to send more. Others send constantly until told to stop.  The parameters can 
usually set many of the IPv4 packet header fi elds such as TTL, TOS, and so on to specifi c 
values.

Usually, Unix versions use the PID as the Identifi er fi eld in the ping message, but 
Linux increments this based on application calls. Unix ping messages are usually 
56 bytes long, but Windows implementations use only 32 bytes.  The payload of the 
ping message echoed back to the sender typically consists of an 8-byte timestamp and 
a fi ll pattern.  The timestamp can be used to roughly calculate round-trip delays through 
the network (in milliseconds).

Ping has some quirks that users should be aware of. First, small pings (maybe 56 or 
64 bytes in the packet) often work fi ne, while larger pings with more realistic payload 
sizes do not go through reliably.  That’s what users care about—the network is strug-
gling with real data packets. Seeing a small ping getting through reliably is not always 
helpful.

Also, the round-trip times are not often vital information. You expect round-trip 
times to go up as packet sizes increase, and that’s typically what is observed.  The same 
is true if the network is heavily loaded. But this is a relative, not absolute, observation. 
Only when round-trip times are longer than expected, or if they vary by huge amounts, 
is there an indication that something is wrong.

Part of the reason that round-trip times are not reliable is that routers (in particular) 
and even hosts might process ICMP Echo requests at a lower priority than other traffi c. 
In fact, in many router architectures, ICMP message processing requires a trip to the con-
trol-plane processor, while transit traffi c is forwarded in the forwarding-plane hardware.

We’ll be using ping extensively in many chapters in this book.

TRACEROUTE
Traceroute is not an ICMP-based network utility in the same sense that ping is. How-
ever, because traceroute uses ICMP messages to perform its functions, and for many 
people the next step after ping is traceroute, this is the place to discuss this utility.  We’ll 
use traceroute heavily in Chapter 9 and throughout the rest of the book.

After ping has been used to verify that an IP address is reachable over the network, 
the next logical step is to determine how the packets make their way to the destination 
and back. In other words, we would like to trace the route from source to destination 
(the reverse path is normally the same). Yes, IP networks route around failures and 
routing tables can change, but paths are usually stable on the order of hours if not days 
when things are not going completely haywire. Of course, paths might also simply be 
asymmetric, yet stable, so it is not only path changes that are challenging for traceroute 
interpretation.

CHAPTER 7 Internet Control Message Protocol 205



Traceroute implementations vary even more than those for ping. Some have graphi-
cal displays and use other Internet utilities to display location and administrative 
information about the routers and networks uncovered.  This in turn has made many 
network administrators so nervous that they routinely block traceroute ICMP messages 
with fi rewalls or route fi lters to hide topology details. In fairness, the Internet is no 
longer a teaching tool or good place to explore the limits of knowledge, and there are 
so many disruptive or even malicious people on the Internet, that a certain amount of 
anxiety is completely understandable (which is why a network such as the one used 
for this book makes so much sense).

On Unix-based systems, traceroute often sends a sequence of three UDP packets (a 
typical default is three) to an invalid port on another host (this number starts at 33434). 
The utility can also use ICMP Echo requests, which is what the Windows version does. 
Some versions even use TCP (a utility called tcptraceroute).

Whatever the type of packet, the TTL fi eld is initially set to 1 in the three packet set, 
so the fi rst router along the path should generate an ICMP Time Exceeded message to 
the sender.  The round-trip delay in the timestamp fi eld and IP address of the router is 
recorded by the sender and another set of packets is sent, this time with the TTL set 
to 2.  These packets are discarded by the second router, and another ICMP  message is 
sent back.  The process is repeated until the destination host is reached and the host 
returns a Destination Port Unreachable message, or until a fi rewall is encountered that 
blocks the ICMP messages or unsolicited UDP traffi c. (These messages mimic port 
scans and are sometimes blocked, as mentioned earlier in this chapter.)

The end result should be a list of the routers on the path from source to destination 
(or the fi rewall) that also records round-trip delays. In some cases (sometimes many 
cases), some routers will not respond to the TTL “timeout” with an ICMP message, but 
simply silently discard the offending packet. If the packet does not return within the 
timeout window (Cisco routers use a default timeout of 2 seconds), most traceroute 
implementations indicate this with an asterisk (*) or some other placeholder and just 
keep going, trying to reach the next router. (The appearance of the asterisk does not 
necessarily mean that the packet was lost.)

One nagging traceroute issue is the number of messages exchanged over the 
network needed to reveal fairly basic information. RFC 1393 describes an alternate 
 traceroute method that uses a single packet with an IP header Traceroute option fi eld 
and uses the answering ICMP Type = 30 messages from routers to gather the same 
information while using far fewer messages. However, support for this method is not 
mandatory on routers.

We’ll use traceroute a lot in many of the chapters of this book too.

PATH MTU
ICMP messages also play a role in path MTU discovery. We’ve already mentioned the 
MTU as a critical link parameter determined by the maximum frame size. Packets, 
including all headers, that fi t inside the smallest frame size on the path from source to 
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destination do not have to be fragmented and do not incur any of the penalties that 
fragmentation involves.

But tuning the path MTU size to packet size has another network benefi t:  This prac-
tice maximizes throughput and minimizes the overhead required to move large mes-
sages from system to system. Overhead bytes are those that do no useful work in terms 
of data transfer, but are necessary for the data transfer to take place at all.

Consider a data transfer using 68-byte MTUs, once the smallest size possible. If usual 
IP and TCP headers are used, which are 20 bytes each, they will take up 40 bytes of 
the packet, leaving only 28 bytes for data. So a whopping 59% (40/68) of the packet 
is made of overhead.  And a minimum of 35,715 packets need to be sent, routed, and 
processed to transfer every megabyte of data. Bumping this MTU size up to 576 bytes 
(a typical default value and the functional minimum for IPv4) cuts the overhead down 
to about 7% (40/576) and requires only 1866 packets per megabyte of data, about 5% 
of the previous number of packets.

Using the typical Internet frame size of 1500, the overhead shrinks to about 2.5% 
and the number of packets required for a megabyte of data becomes a respectable 
685. Larger MTUs have proportional benefi ts. (It is sometimes pointed out that bigger 
packets are not always more effi cient; they can add delay for smaller units of traffi c, 
a phenomenon often called “serial delay,” and on high bit error links, larger packets 
almost guarantee that a bit error requiring a resend will occur during frame transmis-
sion. On older, more error-prone networks, throughput shrank to zero as packet size 
grew.)

The 576-btye MTU size was selected as a compromise between latency (“delay”) 
and throughput for modems and low-speed serial SLIP implementation.  This is directly 
related to the serialization delay discussed below.  And use of an MTU size smaller than 
512 precludes the use of the Dynamic Host Confi guration Protocol (DHCP).

Now, TCP can adjust this message size, no matter what the default, but UDP traffi c, 
which is growing, cannot. Of course, every link from host to router to router to host 
can have a different MTU size. That is what path MTU discovery is all about. It works 
via the following:

■ Setting the DF fl ag in the IP header to 1 (don’t fragment)
■  Sending a large packet to the destination to which the path MTU is being 

 determined
■  Seeing if any router responds with an ICMP Destination Unreachable message 

with Code 5 4 (fragmentation required but don’t fragment bit is set)
■ Repeating the fi rst three steps with a smaller packet size

The process stops when a message is received from the destination host, showing 
that a path MTU of this size works.  Again, paths are fl uid on TCP/IP router networks, 
but they are remarkably stable considering all that can go wrong. By the way, it is 
assumed that the path MTU for outbound packets is the same as the path MTU size for 
inbound packets, but this is not true just often enough to make the process unneces-
sarily  haphazard.
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The path MTU “seed” or probe size and adjustment steps are not randomly  chosen. 
A series of “plateaus” representing common link MTU limits has been established. Some 
of these are shown in Table 7.5.

In practice, as important as the path MTU size is, little is often done about the MTU 
size except to change the default to 1500 bytes if the default value is less (it usually 
is). This is because most networks that hold the source and destination networks are 
 Ethernet LANs that do not support 9000-byte jumbo frames. Between routers, WAN 
links typically support larger MTU sizes (around 4500 bytes or larger), but that does 
no good if the end system can only handle 1500-byte frames. However, WAN links with 
MTUs greater than 1500 bytes allow the use of tunnel encapsulation of 1500-byte MTU 
packets without the need for fragmentation, so the larger MTU is not actually wasted.

ICMPV6
A funny thing happened to ICMP on its way to IPv6. It didn’t work. ICMP, now offi cially 
called ICMPv4, is built around the IPv4 packet header and things that could go wrong 
with it. And not only is the IPv6 packet header different, as well as many fi elds and 
address sizes, but many functions added to IPv4 that affected ICMPv4 were scattered in 
separate RFCs and implementation varied.  These functions are systematized in ICMPv6.

ICMPv6 makes some major changes to ICMPv4:

■ New ICMPv6 messages and procedures replace ARPs.
■ There are ICMPv6 messages to help with automatic address confi guration.

Table 7.5 Path MTU Plateaus for Various Network Link Types

Plateau Size in Bytes Description

65535 Maximum MTU and packet size

32000 A value established “just in case”

17914 16-Mbps IBM token ring LANs

8166 IEEE 802.4 token bus LANs

4352 FDDI (100 Mbps fi ber rings)

2314 Wireless IEEE 802.11b native frame (often “adjusted” to 1492)

2002 4-Mbps IEEE 802.5 token ring (recommended value)

1492 IEEE 802.3 LANs (also used in 802.2)

1006 SLIP

508 Arcnet (proprietary LAN from Datapoint)

296 Some point-to-point links use this value

68 Minimum MTU size
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■  Path MTU discovery is automatic, and a new Packet Too Big message is sent 
to the source for over-large packets because IPv6 routers do not fragment.

■  There is no Source Quench in ICMPv6 (it is obsolete in ICMPv4, but still 
exists).

■ IGMP for multicast is included in ICMPv6.
■ ICMPv6 helps detect nonfunctioning routers and inactive partner hosts.
■  ICMPv6 is so different that it now has its own IP protocol number. IPv6 uses 

the next header value of 58 for ICMPv6 messages.

Basic ICMPv6 Messages
The general ICMPv6 message format is similar to ICMPv4, but somewhat simpler. 
The structure of a generic ICMPv6 message and the common Destination Unreachable 
 message are shown in Figure 7.6. ICMPv6 error messages are in the range 0 to 127. 
Some of the most common are shown in the fi gure as well.

1 byte 1 byte 1 byte 1 byte

ChecksumCode

Message Body

(a)

Type

    1  Destination Unreachable
    2  Packet Too Big
    3  Time Exceeded
    4  Parameter Problem
    5  Redirect
128  Echo Request
129  Echo Reply

Basic ICMPv6 Type field values:

1 byte 1 byte 1 byte 1 byte

ChecksumCode

Unused

As Much as Original IPv6 Packet as Will Fit in 576 bytes or Less

Type 1

(b)

FIGURE 7.6

ICMPv6 message formats, which can be compared to the IPv4 versions in Figure 7.4. (a) Generic 
ICMPv6 message format. (b) ICMPv6 Destination Unreachable message.
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Destination Unreachable
In ICMPv6, the Destination Unreachable message type is Type = 1.  The codes that can 
be compared to Table 7.2 IPv4 codes number only fi ve and are listed in Table 7.6.

Packet Too Big
A router sends an ICMPv6 Packet Too Big message to the source when the packet is big-
ger than the MTU for the next-hop link.  The next-hop link’s MTU size is reported in the 
message.  In ICMPv4, this type of information was supplied in the Destination Unreach-
able message.  The format of the Packet Too Big message is shown in Figure 7.7.

Time Exceeded
An ICMPv6 Time Exceeded message is sent by a router when the Hop Limit fi eld of the 
IPv6 header reaches 0 (ICMPv6 Code = 0) or when the receiver’s fragment reassembly 
timeout (senders can still fragment under IPv6) has expired (ICMPv6 Code = 1). The 

Table 7.6 Destination Unreachable Codes for ICMPv6

Code Meaning

0 No route to destination

1 Communication with destination administratively prohibited

2 Next destination in the IPv6 Routing header is not a neighbor, and this is a strict 
route (routing headers are not currently supported)

3 Address unreachable

4 Port unreachable

1 byte 1 byte 1 byte 1 byte

ChecksumCode

Next Link MTU

Type

As Much as Original IPv6 Packet as Will Fit in 576 bytes or Less

FIGURE 7.7

ICMPv6 Packet Too Big format, showing details of the fi elds used.
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format is the same as for the ICMPv6 Destination Unreachable message, except that 
the Type is 3.

Parameter Problem
As in ICMPv4, an ICMPv6 Parameter Problem message is sent by a host or router that 
 cannot process a packet due to a header fi eld problem.  The codes are listed in Table 7.7.

Echo Request and Reply
Under IPv6, ping becomes “pingv6” (the name is not important) and uses ICMPv6 Echo 
Request and Reply messages, but with Type = 128 used for requests and Type = 129 
used for replies.

Neighbor Discovery and Autoconfi guration
ICMPv6 provides a number of neighbor discovery functions that help with:

■ Location of routers
■ IPv6 parameter confi guration
■ Location of local hosts
■ Neighbor unreachability detection
■ Automatic address confi guration and duplicate detection

These ICMPv6 functions use the following message types:

Router Solicitation Type 5 133 messages are sent by a host to ask neighbor routers 
to make their presence known and provide link and Internet parameters, similar to 
the ICMPv4 Router Solicitations.  The message is sent to the all-router link-local IPv6 
multicast address.

Router Advertisement Type 5 134 messages are sent periodically by every router 
and in response to a host’s Router Solicitation, similar to the ICMPv4 Router 
Advertisements. The message is sent either to the all-nodes IPv6 multicast 
address (unsolicited) or to the querying host (solicited).

Table 7.7 Parameter Problem Codes and Meanings

Code Meaning

0 Erroneous header fi eld encountered

1 Unrecognized next header type encountered

2 Unrecognized IPv6 option encountered
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Neighbor Solicitation Type 5 135 messages are used, as ARP in IPv4, to fi nd the 
link-layer address of a neighbor, verify the neighbor is still reachable with the 
cached entry, or check that no other node has this IPv6 address. These messages 
also detect unresponsive neighbors.

Neighbor Advertisement Type 5 136 messages are sent in response to Neighbor 
Solicitation messages and resemble the ARP response. Nodes can also announce 
changes in link-layer addresses by sending unsolicited.

Neighbor Advertisements. Redirect Type 5 137 messages perform the same role 
as the ICMPv4 redirect.

Routers and Neighbor Discovery
IPv6 routers provide their hosts with basic confi guration and parameter informa-
tion using Router Advertisement messages sent to the all-hosts link-local IPv6 multi-
cast address. Hosts do not have to wait for these periodic router messages and can 
send a Router Solicitation message at startup.  This reply is sent to the host’s link-local 
address.

Each router will supply data that includes the following:

■ Link-layer router address
■ MTU for any links that have variable MTUs
■ List of all prefi xes and lengths used on the LAN (the specifi cation says “link”)
■ Prefi xes that a host can use to create its addresses
■ Default Hop Limit value to use on packets
■ Values for miscellaneous timers
■ Location of a DHCP server where the host should fetch more information

Note that the Router Advertisement (RA) will indicate the availability of a DHCP 
server for stateless confi guration (RA option O), or the requirement to perform state-
ful confi guration (RA option M).  The location of the DHCPv6 server is not specifi ed, 
merely that it’s available and what the requirements are for use.

Interface Addresses
Each IPv6 interfaces has a list of addresses and prefi xes associated with it, including a 
unique link-local address. In theory, this should allow LANs to easily migrate from one 
ISP to another simply by changing prefi xes and allowing the older prefi x to age-out of 
the host. In practice, migration between IPv6 service providers is not as simple. DNS 
entries do not just “fl op over,” and host and router confi guration (and fi rewalls!) have 
static confi guration parameters.  The point is that router advertisements assign a life-
time, which must be refreshed, to advertised prefi xes.  This also makes it easier to move 
hosts from LAN to LAN.
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Each host can use some of the prefi xes and lengths advertised by the routers (if 
they are fl agged for this use) to construct host addresses.  A private (ULA local) or 
global address can be constructed by appending a unique interface identifi er to the 
 advertised prefi x and added to the list of the host’s IPv6 addresses.

Router advertisements can also direct a host to a DHCP server that can assign 
addresses chosen by a network administrator.

Neighbor Solicitation and Advertisement
One of the problems with ARP in IPv4 was that it was essentially a frame-level proto-
col that did not fi t in well with the IP layer at all. In IPv6, “ARPs” are ICMPv6 messages. 
ICMPv6 packets can be handled easily at the IPv6 layer, and can be authenticated and 
even encrypted with IPSec techniques.

In addition to fi nding neighbor link-layer addresses, the Neighbor Solicitation and 
Advertisement messages are used to fi nd “dead” routers and partner hosts, and detect 
duplicate IPv6 addresses.

Neighbor Solicitation messages are sent to the solicited-node IPv6 multicast address, 
which is formed by appending the last 3 bytes of an IPv6 link-local address to a multi-
cast prefi x.  The use of the multicast address cuts down on the number of hosts that has 
to pay attention to the “ARP” message (in fact, only the target system should process the 
request).  The sender also includes its own link-layer address with the message.

Duplicate IP addresses are always a problem. Before a system can claim an IPv6 
address or any other address not constructed by adding a link-local address to a pre-
fi x, the system sends a Neighbor Solicitation message asking whether any neighbor 
already has that IPv6 address.  This message uses the special IPv6 Unspecifi ed Source 
address as the source address, because you can’t ask about a source address by using 
the source address! If the address is in use, the response is multicast to inform all 
devices.   Addresses that are manually assigned are tested in the same fashion.

Dead routers and hosts are detected by a sending unicast Router and Neighbor 
Solicitation message to the device in question.
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QUESTIONS FOR READERS
Figure 7.8 shows some of the concepts discussed in this chapter and can be used to 
help you answer the following questions.

1.  How many types of error-reporting messages are there in ICMP? How many pairs 
of query messages are there in ICMP?

2. Which pair of ICMP messages can be used to obtain the subnet mask?

3. Which kind of ICMP message notifi es a host that there is a problem in the packet 
header?

4. Which fi elds are used for the ICMP checksum calculation?

5. A ping sent to IP address 10.10.12.77 (the address assigned to bsdserver) on 
LAN2 is successful. Later, it turns out that the bsdserver was powered off for 
maintenance at the time. What could have happened?

1 byte

Type Code Checksum

Content Depends on Type/Code*

1 byte 1 byte 1 byte

IP Header (20 bytes) and
First 8 bytes of Original Packet Data (usually TCP/UDP header)

(a)

1 byte

Identifier for Request/Response Pairs
(usually PID in Unix)

Type53 Code Checksum

Sequence Number
(set to 0 initially and incremented)

1 byte 1 byte 1 byte 

Content Depends on Query Type

(b)

*Usually all 0 (unused) except for:

FIGURE 7.8

ICMP error and query messages in general. (a) Error message. (b) Query message.
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CHAPTER

What You Will Learn
In this chapter, you will learn how routing works.  We’ll look at both direct delivery 
of packets to a destination without a router and indirect delivery through a router, 
both of which happen all the time. Routers provide indirect delivery between 
LANs while bridges essentially provide direct delivery only. Packet switching, on 
the other hand, is a related form of indirect delivery that will be explored in a later 
chapter.

You will learn about the role of routing tables and forwarding tables in the 
routing process.  Technically, routers use the information in the routing table to 
create a forwarding table to forward packets to the next hop based on a metric, 
but many people use the terms routing and forwarding loosely, often using one 
term for both.  We’ll try to use the terms as defi ned here consistently in this chap-
ter, but there is no real formal defi nition of either term.

Routing 8

The Internet is the largest router-based network in the world. Router-based networks, 
as we’ll see in this chapter, are characterized by certain features and methods of 
operation.  The most obvious feature of a router-based network is that the most essen-
tial network nodes are routers and not bridges or switches or more exotic devices.  This 
does not mean that there are no bridges, switches, and other types of network devices. 
It just means that routing is the most important function in moving packets from source 
to destination.  This chapter is an introduction to routing as a process.

Figure 8.1 shows the areas of the Illustrated Network we will be investigating in this 
chapter.  The LANs and customer-edge routers are highlighted, but the other routers 
play a large but unseen part in this chapter.  We’ll look at the role of the service- provider 
routers in the chapters on routing protocols. For now, we’ll focus on how sending 
devices decide whether the destination is on their own network or whether the pack-
ets must be sent to a router for forwarding through a routing network.

We’ll talk about forwarding tables in later chapters that investigate routing and rout-
ers more deeply. For now, let’s take a look at the simple routing tables that are used on 
the Illustrated Network’s hosts and routers.



CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80:205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-0
/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65459

Wireless
in Home

Solid rules � SONET/SDH
Dashed rules � Gig Ethernet
Note: All links use 10.0.x.y
addressing...only the last
two octets are shown.

FIGURE 8.1

The Illustrated Network LAN internetworking, showing how the routers are connected and the links 
available to forward (route) packets through the network.
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CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80:205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732 

eth0: 10.10.12.166
MAC: 00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

ge-0/0/3

16.2

ge-0/0/3

16.1

Best ISP

AS 65127

Global Public
Internet
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ROUTERS AND ROUTING TABLES
The router that attaches LAN1 to the world is CE0, a Juniper Networks router. Let’s look 
at the information in the routing table on CE0.

admin@CE0> show route
inet.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)
1 5 Active Route, - 5 Last Active, * 5 Both

0.0.0.0/0 *[Static/5] 3d 02:59:20
 > via ge-0/0/3.0
10.0.50.0/24 *[Direct/0] 2d 14:25:52
 > via ge-0/0/3.0
10.0.50.1/32 *[Local/0] 2d 14:25:52
 Local via ge-0/0/3.0
10.10.11.0/24 *[Direct/0] 2d 14:25:52
 > via fe-1/3/0.0
10.10.11.1/32 *[Local/0] 2d 14:25:52
 Local via fe-1/3/0.0

inet6.0: 5 destinations, 6 routes (6 active, 0 holddown, 0 hidden)
1 5 Active Route, - 5 Last Active, * 5 Both

::/0 *[Static/5] 2d 13:50:23
 > via ge-0/0/3.0  
fe80::/64 *[Direct/0] 2d 14:25:53
 > via fe-1/3/0.0
fe80::205:85ff:fe88:ccdb/128
 *[Local/0] 2d 14:25:53
 Local via fe-1/3/0.0
fc00:fe67::/32 *[Static/5] 2d 13:50:23
 > via ge-0/0/3.0
fc00:ffb3:d4:b::/64*[Direct/0] 2d 10:45:08
 > via fe-1/3/0.0
fc00:ffb3:d4:b:205:85ff:fe88:ccdb/128
 *[Local/0] 2d 10:45:08
 Local via fe-1/3/0.0

Routing Table and Forwarding Table
There are really two different types of network tables used in routers and hosts, 
and we’ll distinguish them in this chapter.  The routing table holds all of the infor-
mation that a device knows about network addresses and interfaces, and is usually 
held in a fairly user-friendly format such as a standard set of tables or even a data-
base, often with metrics (costs) associated with each route.

A forwarding table, on the other hand, is usually a machine-coded internal one that 
contains the routes actually used by the device to reach destinations. In most cases, 
the routing one holds more information than is distilled in the forwarding table.
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Because both IPv4 and IPv6 addresses are confi gured, we have both IPv4 and IPv6 
routing tables.  There’s a lot of information here that we’ll detail in later chapters on 
routing protocols, so let’s just look at the basics of CE0’s routing tables. Only physical 
addresses are used for now, on the LAN1 interface fe-1/3/0 and the Gigabit Ethernet 
link to the provider routers, ge-0/0/3. Later, we’ll also assign an address to the router’s 
loopback interface, but not in this example.

In both tables, there are local, direct, and static entries. Local entries are the 
full 32- or 128-bit addresses confi gured on the interfaces. Direct entries are for the 
network portions of the interface address, so they have prefi xes shorter than 32 
or 128 bits. For example, the entry for the fe-1/3/0 interface has a local entry of 
10.10.11.1/32 and a direct entry of 10.10.11.0/24. Both were derived from the con-
fi guration of the address string 10.10.11.1/24 to the interface (technically, a string 
like 10.10.11.1/24 is neither 32-bit host address nor 24-bit network address, but a 
concatenation of address and network mask).

Static entries are entries that are placed in the routing table by the network admin-
istrator, and they stay there no matter what else the router learns about the network. In 
this case, the static entry is also the default route, a type of “router of last resort” that 
is used if no other entry in the routing table seems to represent the correct place to 
forward the packet.  The default route matches the entire IPv4 address space, so nothing 
escapes the default. Note that the highlighted default route for IPv4 is 0.0.0.0/0 (or 0/0) 
and sends packets out via interface ge-0/0/3 onto the service provider router network.

The local and direct entries for the ge-0/0/3 interface make up the last two entries 
in this simple fi ve-entry routing table.  The default entry basically says to the router, “If 
you don’t know where else to forward the packet, send it out here.”  This seems trivial, 
but only because router CE0 has only two interfaces. Backbone routers can have very 
complicated routing tables.

Each route in the table has a preference associated with the route.  A lower value means 
the route is somehow “better” than another route to the same place having a higher 
value.  The value of 0 associated with local/direct entries means that no other route can be 
a better way of reaching the locally attached interface, which only makes sense.

Routing table entries often have a metric associated with them.  Why do routes 
need both preferences and metrics? Preference indicates how the router knows about 
a route; the metric assigns a cost of using the route, no matter how it was learned. Both 
preference and metric are considered in determining the active route to a destination. 
Generally, only active routes are loaded into the forwarding table.  We’ll look at this 
process more closely in the later chapters of routing.  An asterisk (*) marks routes that 
are both currently active and have been active the last time the router recomputed its 
routes to use in the forwarding table.

There are no metrics in the CE0 routing tables.  Why? Because metrics are usually 
assigned by routing protocols and we don’t have any routing protocols running yet on 
CE0. Static routes can be confi gured with metrics, but they still work fi ne without them.

The six entries in the IPv6 routing table mimic the fi ve entries in the IPv4 table, 
and the default ::0 static route is highlighted.  The only unassigned or “extra” entry is 
the fe80::/64 direct route (which is generated automatically) for the link-local prefi x 
for LAN1.
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HOSTS AND ROUTING TABLES
Routers are not the only network devices that have routing tables. Hosts have them 
as well. It’s how they know whether to send a packet inside a frame directly to the 
destination or to send the packet and frame to a router so it can be forwarded to its 
destination.

The following code block shows what the routing table on bsdserver looks like.  We 
can display it with the netstat –r command (the r option displays network statistics 
about the routing table).  We’ll use netstat –nr in this chapter because the n option forces 
the output to use IP addresses instead of DNS names.  This is a good practice because 
when trouble strikes the network, chances are that DNS will be down (or provides the 
wrong information), so it’s best to get used to seeing IP addresses in these reports.

bsdserver# netstat -nr
Routing tables

Internet:
Destination Gateway Flags Refs Use Netif Expire
default 10.10.12.1 UGSc 0 0 em0
10.10.12/24 link#1 UC 0 0 em0
localhost localhost UH 0 144 lo0

Internet6:
Destination Gateway Flags Netif Expire
localhost.booklab. localhost.booklab. UH lo0
fe80::%em0 link#1 UC em0
fe80::20e:cff:fe3b 00:0e:0c:3b:87:32 UHL lo0
fe80::%lo0 fe80::1%lo0 Uc lo0
fe80::1%lo0 link#4 UHL lo0
fc00:: link#1 UC em0
fc00::20e:cff:fe3b 00:0e:0c:3b:87:32 UHL lo0
fc00:fe67:d4:b:: link#1 UC em0
fc00:fe67:d4:b:205 00:05:85:8b:bc:db UHLW em0
fc00:fe67:d4:b:20e 00:0e:0c:3b:87:32 UHL lo0
ff01:: localhost.booklab. U lo0
ff02::%em0 link#1 UC em0
ff02::%lo0 localhost.booklab. UC lo0

The IPv4 routing table is even simpler than the CE0 router’s, which we might have 
expected, because the host only has one interface (em0).  The third entry (localhost) 
is for the loopback interface (lo0), so there are really only two.  The 10.10.12/24 entry 
points to link#1, which is the em0 interface that attaches bsdserver to LAN1. It says 
Gateway above the column, but it really means “what is the next hop for this packet?”

Why does it say “gateway” and not “router”? Because technically it is a gateway, not a 
router.  A gateway, as mentioned before, connects one or more LANs to the Internet (and 
can route from LAN to LAN, not just onto or off of the Internet).  A router, on the other 
hand, can have nothing but other routers connected to it. People speak very loosely, of 
course, and usually the terms “gateway” or “router” can be used without confusion.
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So the default entry does point to a router, in this case CE6, which is the gateway 
to the world on LAN2.  The Refs and Use columns are usage indicators, and there is no 
Expire value because this information, as on router CE0, was not learned via a routing 
protocol and therefore will not get “stale” and need to be refreshed.

The fl ags commonly seen in FreeBSD follow:

■ U (Up)—The route is the active route.
■ H (Host)—The route destination is a single host.
■  G (Gateway)—Send packets for this destination here, and it will fi gure out 

where to forward it.
■  S (Static)—A manually confi gured route that was not generated by protocol 

or other means.
■  C (Clone)—Generates a new route based on this one for devices that we 

connect to. Normally used for the local network(s).
■  W (Was cloned)—A route that was autoconfi gured based on a LAN clone 

route.
■ L (Link)—The route references hardware.

Although listed as default, the actual entry value for the default route is 0.0.0.0/0 or 
0/0.   We can force numeric displays in netstat by using the n option, but we won’t use 
that here (generally, the fewer options you have to remember to use, the better).

Where’s the Metric?
Note the netstat –nr on the host did not display any metric values, and show 
route on the router didn’t either. In the case of CE0, that was explained by the fact 
that we have no routing protocol running to provide metrics for routes (destina-
tion networks). But even if a routing protocol were running, netstat never shows 
any metrics associated with routes. Does that mean hosts have no metrics or do 
not bother to compute them? Not necessarily, as we’ll soon see in the case of 
Windows XP.

Why is the Internet6 routing table so much larger than either the Internet (IPv4) 
table on bsdserver or the tables on router CE0? It is larger because of the IPv6 neighbor 
discovery feature that populates the table with all of the local IPv6 hosts on LAN2.  An 
easy way to spot them is by their MAC addresses in the Gateway column.  There are also 
number link-local (fe80) and private (fc00) entries absent in IPv4, as well as multicast 
addresses beginning with ff.

Let’s look at the routing table on lnxclient for comparison.  We don’t have IPv6 
running, so the table includes the IPv4 address only. Most of the information is the same 
as in FreeBSD, just arranged differently.
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[root@lnxclient admin]# netstat -nr
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
10.10.12.0 * 255.255.255.0 U 0 0 0 eth0
127.0.0.0 * 255.0.0.0 U 0 0 0 lo
default 10.10.12.1 0.0.0.0 UG 0 0 0 eth0
[root@lnxclient admin]#

The Gateway column has asterisks because we don’t have DNS running and 
the address is the same as the Destination. Only the default gateway entry 
(10.10.12.1) is different than the entry (0.0.0.0/0). Instead of prefi xes, lnxclient 
uses netmask  (Genmask) notation for the table entries, but either way, the network is 
10.10.12.0/24.

The fl ags used in Linux follow (note the slightly different meanings compared to 
FreeBSD):

■ G (Gateway)—The route uses a gateway.
■ U (Up)—The interface to be used is up.
■ H (Host)—Only a single host can be reached by the route.
■  D (Dynamic)—The route is not a static route, but a dynamic route learned by a 

routing protocol.
■  M (Modifi ed)—This fl ag is set if the entry was changed by an ICMP redirect 

 message.
■ ! (Exclamation)—The route will reject (drop) all packets sent to it.

Linux hosts have the maximum segment size (MSS), Window size, and initial round-
trip time (irtt) lists associated with the route, but these are not IP parameters.  
They’re most useful for TCP, and we’ll talk about them in the TCP chapter.  And confus-
ingly, a value of 0 in these columns does not mean that their values are zero (which 
would make for an interesting network), but that the defaults are used.  The Iface 
column shows the interface used to reach the destination address space, with lo being 
loopback.

Finally,  Windows hosts have routing tables as well. You can display the routing table 
contents with the route print command or with the same netstat –nr command using 
in Unix-based systems.  This output is from wincli1 and lists only the IPv4 routes.

C:\Documents and Settings\Owner>route print
Route Table
============================================================================
Interface List
0x1 . . . . . . . . . . . . . . MS TCP Loopback interface
0x2 . . .00 0e 0c 3b 88 3c. . . Intel(R) PR0/1000 MT Desktop Adapter – 
Packet Scheduler Miniport
============================================================================
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============================================================================
Active Routes: 
Network Destination Netmask Gateway Interface Metric
 0.0.0.0 0.0.0.0 10.10.11.1 10.10.11.51 10 
 10.10.11.51 255.255.255.255 127.0.0.1 127.0.0.1 10
 10.255.255.255 255.255.255.255 10.10.11.51 10.10.11.51 1
 127.0.0.0 255.0.0.0 127.0.0.1 127.0.0.1 1
 224.0.0.0 240.0.0.0 10.10.11.51 10.10.11.51 10
 255.255.255.255 255.255.255.255 127.0.0.1 127.0.0.1 1
Default Gateway: 10.10.11.1 
============================================================================
Persistent Routes: 
Network Address Netmask Gateway Address Metric 
     10.10.12.0 255.255.255.0 10.10.11.1 1 

The table looks different, yet is still very familiar.  There is an entry for the default 
gateway (10.10.11.1), which is also listed separately for emphasis. One oddity is the 
classful broadcast address entry (10.255.255.255), but this can be changed.  There 
are explicit loopback (127.0.0.0/8) and multicast (224.0.0.0/4) entries, and a 
255.255.255.255/32 entry, as well as for the host itself (10.10.11.51/32), which point 
to the loopback interface.

Instead of relying on a fl ag, Windows just shows you Active Routes. But there is also 
a Persistent Route that is always in the table, no matter what.  This was entered in the 
table manually, like a static route, and makes sure that any packets sent to LAN2 go to 
the router at 10.10.11.1. It would still work with only a default route, but this shows 
how a static route shows up in Windows.

Note that even though no routing protocol is running in the host, wincli1 assigns 
metrics to all the routes.  These can be changed, but they are always there. But what 
about when netstat –nr is used on the Windows host? We didn’t see any metrics on 
the Unix-based systems.  Take a look at what we get with netstat –nr.

This output is from wincli1 and lists only the IPv4 routes.

C:\Documents and Settings\Owner>netstat -nr
Route Table
============================================================================
Interface List
0x1 . . . . . . . . . . . . . . MS TCP Loopback interface
0x2 . . .00 0e 0c 3b 88 3c. . . Intel(R) PR0/1000 MT Desktop Adapter – 
Packet Scheduler Miniport
============================================================================
============================================================================
Active Routes: 
Network Destination Netmask Gateway Interface Metric
 0.0.0.0 0.0.0.0 10.10.11.1 10.10.11.51 10 
 10.10.11.51 255.255.255.255 127.0.0.1 127.0.0.1 10
 10.255.255.255 255.255.255.255 10.10.11.51 10.10.11.51 1
 127.0.0.0 255.0.0.0 127.0.0.1 127.0.0.1 1
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 224.0.0.0 240.0.0.0 10.10.11.51 10.10.11.51 10
 255.255.255.255 255.255.255.255 127.0.0.1 127.0.0.1 1
Default Gateway:        10.10.11.1 
============================================================================
Persistent Routes: 
Network Address Netmask Gateway Address Metric 
     10.10.12.0 255.255.255.0 10.10.11.1 1 

That’s right—the output is identical, and does show the metrics. However,    Windows 
appears to be the only implementation that shows the metrics associated with routes 
when netstat is used.

Let’s take a more detailed look at how routing tables are used to determine whether 
packets should be sent to the destination directly or to a router for forwarding.  We’ll 
see how IP and MAC addresses are used in the packets and frames as well.

DIRECT AND INDIRECT DELIVERY
When routers are used to connect or segment Ethernet LANs, the Ethernet frame that 
leaves a source may or may not be the same frame that arrives at the destination. If the 
source and destination host are on the same LAN, then a method sometimes known 
as direct delivery is used and the frame is delivered locally.  This means that the source 
and destination MAC addresses are the same in the frame that is sent from the source 
and in the frame that arrives at the destination.

Let’s see if we can verify that frames are delivered locally, without a router, when 
the IP address prefi x is the same on the destination and on the source. In this case, the 
MAC addresses on the frame that leave the source and the ones in the frame that arrive 
at the destination should be the same.

We can also check and make sure that the frames use different MAC addresses 
when the source and destination hosts are on different IP networks and the frames 
pass through a router.  We can even check and make sure that the frames came from 
the router.

First, let’s use the Windows client and server (which are located in pairs on the two 
LANs) to generate some packets to capture with Ethereal.  We’ll use a little utility called 
“ping” (discussed more fully in Chapter 7) to bounce some packets off the Windows 
IPv4 addresses.

Ethereal is running on wincli2.  When we send some pings to the client (10.10. 
12.222) from the Windows server (10.10.12.52), what we see is shown in Figure 8.2.

The MAC address 00:02:b3:27:fa:8c is associated with IPv4 address 10.10.12.222, 
and the MAC layer address 00:0e:0c:3b:88:56 is associated with IPv4 address 
10.10.12.52. If we looked at the same stream of pings on the server, the MAC address 
and IP address associations would be the same.  The frame sent is the same as the one 
that arrives.

What about a packet sent to other IP networks? We’ll use a little “echo” client and 
server utility on the Linux hosts to generate the frames for this exercise.  We’ll say more 
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about where this little utility came from in the chapter on sockets (Chapter 12). For now, 
just note that this is not the usual Linux echo utility bundled with most distributions.  With 
this utility, we can invoke the server on the lnxserver host and use the client to send a 
simple string to be echoed back by the server process.  We’ll use tethereal (the text ver-
sion of Ethereal) this time, just to show that the same information is available in either 
the graphical or text-based version.

First, we’ll run the Echo server process, which normally runs on port 7, on port 
55555:

[root@lnxserver admin]# ./Echo 55555 

We have to run tethereal on each end too, if we want to compare frames.  The com-
mand is the same on the client and server.  We’ll use the verbose (2V) switch to see the 
MAC layer information as packets arrive.

[root@lnxclient admin]# /usr/sbin/tethereal-V
Capturing on eth0

Now we can invoke the Echo client to bounce the string TESTING123 off the server 
process.

[root@lnxclient admin]# . /Echo 10.10.11.66 TESTING123 55555
Received: TESTING123
[root@lnxclient admin]#

FIGURE 8.2

MAC addresses and direct delivery. Note that the MAC layer addresses in the frame that is sent are 
the same as in the frame that will arrive at the destination.
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What did we get? Let’s look at the frames leaving the client.  We only need to examine 
the Layer 2 and IP address information.

[root@lnxclient admin]# /usr/sbin/tethereal-V
Capturing on eth0
Frame 1 (74 bytes on wire, 74 bytes captured)
 Arrival Time: May 5, 2008 13:39:34.102363000
 Time delta from previous packet: 0.000000000 seconds
 Time relative to first packet: 0.000000000 seconds
 Frame Number: 1
 Packet Length: 74 bytes
 Capture Length: 74 bytes
Ethernet II, Src: 00:b0:d0:45:34:64, Dst: 00:05:85:8b:bc:db
 Destination: 00:05:85:8b:bc:db (Juniper__8b:bc:db)
 Source: 00:b0:d0:45:34:64 (Dell_45:34:64)
 Type: IP (0x0800)
Internet Protocol, Src Addr: 10.10.12.166 (10.10.12.166), Dst Addr: 10.10.11.66 
(10.10.11.66)
 Version: 4
 Header length: 20 bytes... [much more information not shown]

We can see that the Ethernet frame leaving the Linux client has source MAC address 
00:b0:d0:45:34:64 and destination MAC address 00:05:85:8b:bc:db.  The packet 
inside the frame has the source IPv4 address 10.10.12.166 and destination address 
10.10.11.66, as expected.

How do we know that the destination MAC address 00:05:85:8b:bc:db is not asso-
ciated with the destination address 10.10.11.66? We can simply look at the frame that 
arrives at the Linux server.

[root@lnxserver admin]# /usr/sbin/tethereal -V
Capturing on eth0
Frame 1 (74 bytes on wire, 74 bytes captured)
 Arrival Time: May 5, 2008 13:39:34.104401000
 Time delta from previous packet: 0.000000000 seconds
 Time relative to first packet: 0.000000000 seconds
 Frame Number: 1
 Packet Length: 74 bytes
 Capture Length: 74 bytes
Ethernet II, Src: 00:05:85:88:cc:db, Dst: 00:d0:b7:1f:fe:e6
 Destination: 00:d0:b7:1f:fe:e6 (Intel_1f:fe:e6)
 Source: 00:05:85:88:cc:db (Juniper__88:cc:db)
 Type: IP (0x0800)
Internet Protocol, Src Addr: 10.10.12.166 (10.10.12.166), Dst Addr: 10.10.11.66 
(10.10.11.66)
 Version: 4
 Header length: 20 bytes...(much more information not shown)

Note that the frame arriving at 10.10.11.66 has the MAC address 00:d0:b7:1f:fe:e6, 
which is not the one used as the destination MAC address in the frame leaving the 
10.10.12.166 client (that address is 00:b0:d0:45:34:64).

228 PART II Core Protocols



Now, if the MAC address associated with the frame leaving the 10.10.12.166 client 
is 00:bo:do:45:34:64, then the MAC address associated with the same IP address on the 
server LAN cannot magically change to 00:05:85:88:cc:db.  As expected, the IP packet 
is identical (except for the decremented TTL fi eld), but the frame is different.  This is 
sometimes called indirect delivery of packets because the packet is sent through one 
or more network nodes and not directly to the destination.

These relationships are displayed in Table 8.1, which shows how the MAC addresses 
relate to the IP subnet addresses.

Tethereal not only gives the MAC addresses, but also parses the 24-bit OUI and help-
fully lists Intel as the owner of 00:d0:b7 and Juniper as the owner of 00:05:85.  We can 
verify this on the Linux client or server. Let’s look at the client’s ARP cache.

[root@lnxclient admin]# /sbin/arp -a
? (10.10.12.1) at 00:05:85:8b:bc:db [ether] on eth0
[root@lnxclient admin]# 

The question mark (?) just means that our routers do not have names in DNS.
The Illustrated Network uses two small LAN switches for LAN1 and LAN2, but the 

nodes used for internetworking are routers. Let’s take a closer look at just what a router 
does and how it delivers packets from LAN to LAN over an internetwork.

Routing
Routing is done entirely with IP addresses, of course. Many books make extensive use 
of the concepts of direct routing and indirect routing of packets.  This can be confus-
ing, since direct “routing” of packets does not require a router. In this chapter, the terms 
direct delivery and indirect delivery are used instead.  A host can use direct delivery to 
send packets directly to another host, perhaps using a VLAN, or use indirect delivery if 
the destination host is reachable only through a router.

How does the source host know whether the destination host is reachable through 
direct (local) delivery or indirect (remote) delivery through a router? The answer has 
a lot to do with the way bridges and routers differ in their fundamental operation, and 
how routers use the IP address to determine how to handle packets. Here’s an example 
using the Illustrated Network’s actual MAC and IP addresses.

Table 8.1 Frame IP and MAC Addresses

MAC Source 
Address

IP Source 
Address

MAC Destination 
Address

IP Destination 
Address

Frame 
leaving 
client

00:b0:d0:45:34:64 
(Linux client)

10.10.12.166 
(Linux client)

00:05:85:8b:bc:db 
(Juniper router)

10.10.11.66 
(Linux server)

Frame 
arriving at 
server

00:05:85:88:cc:db 
(Juniper router)

10.10.12.166 
(Linux client)

00:d0:b7:1f:fe:e6 
(Linux server)

10.10.11.66 
(Linux server)
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Direct Delivery without Routing
Let’s look at a packet sent from wincli on LAN1 to winsvr1. Both of these hosts are 
on LAN1, so no routing is needed.  The IPv4 addresses are 10.10.11.51 for wincli1 and 
10.10.11.111 for winsvr1, and both use the same 255.255.255.0 mask.  Therefore, both 
addresses have the same network portion of the IPv4 address, 10.10.11.0/24.

The host software knows that no router is needed to handle a packet sent from the 
source host to the destination host because the IP addresses of the source and destina-
tion hosts have the same IP network portion (prefi x) in both source and destination 
IP addresses.  This is a simple and effective way to let hosts know whether they are on 
the same LAN.  The packet can be placed in a frame and sent directly to the destination 
using the local link.  This is shown in Figure 8.3.

In Figure 8.3, a packet is followed from client to server when both are on the 
same LAN segment and there is no router between client and server.  All direct delivery 
means is that the packet and frame do not have to pass through a router on the way 
from source to destination.

The TCP/IP protocol stack on the client builds the TCP header and IP header. In 
Figure 8.3, the IP packet is placed inside an Ethernet MAC frame.  The MAC source and 
destination addresses are shown as well.  The client knows its own MAC address, and if 

Sender (wincli1):
1. Server on same subnet? YES!
2. ARP for IP address of server
3. Use ARP response to determine
    MAC address for frame
4. Build packet and frame and
    send!

(Router ignores
this frame:

It is addressed to
00:0e:0c:3b:87:36)

MAC Address:
00:0e:0c:3b:88:3b

MAC Address:
00:0e:0c:3b:87:36

winsvr1wincli1

Router
MAC Address

00:05:85:88:cc:db

To: 00:0e:0c:3b:88:3b
From: 00:0e:0c:3b:87:36

To: 10.10.11:111
Network 10.10.11 Host 111
From: 10.10.11.51
Network 10.10.11 Host 51

Frame:

Packet:

FIGURE 8.3

Direct delivery of packets on a LAN. Note that the MAC address does not change from source to 
destination, and that the router ignores the frame.
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the server’s MAC address is not cached, an ARP broadcast message that asks, “Who has 
IP address 10.10.11.111?,” is used to determine the MAC address of the server.

The source host knew to ask for the MAC address of the destination host because 
the destination host is on the same LAN as the source. Hosts with the same IP network 
addresses must be on the same LAN segment. Destination hosts on the same LAN are 
simply “asked” to provide their MAC addresses.  The destination MAC address in the 
frame is the MAC address that corresponds to the destination IP address in the IP 
packet inside the MAC frame.

What would be different when the client and server are on different LANs and must 
communicate through a router?

Indirect Delivery and the Router
It is one thing to say that the router is the network node of the Internet, but exactly 
what does this mean? What is the role of the router on the Internet? Routers route IP 
packets to perform indirect delivery (through the forwarding) of packets from source 
to destination.

Unlike direct delivery, where the packets are sent between devices on the same LAN, 
indirect delivery employs one or more routers to connect source and destination.  The 
source and destination could be near in terms of distance, perhaps on separate fl oors 
of the same building.  All that really matters is whether there is a router between source 
and destination or not.

Figure 8.4 shows a simple network consisting of two LANs connected by routers.  The 
routers are connected by a serial link using PPP, but SONET would do just as well. Of 
course, the Internet consists of thousands of LANs and routers, but all of the essentials 
of routing can be illustrated with this simple network.

The routing network has been simplifi ed to emphasize the architectural features 
without worrying about the details.  The routers are just Router 1 and Router 2, not CE0 
and CE6. But the LANs are still LAN1 and LAN2, and we’ll trace a packet from wincli1 
on LAN1 to winsvr2 on LAN2.

Both LAN segments in Figure 8.4 are implemented with Ethernet hubs and 
unshielded twisted pair (UTP) wiring, but are shown as shared media cables, just to 
make the adjacencies clearer. Each host in the fi gure has a network interface card (NIC) 
installed. It is important to realize that it is the interface that has the IP address, not the 
entire host, but in this example each host has only one interface. However, the routers 
in the fi gure have more than one network interface and therefore more than one IP 
network address.  A router is a network device that belongs to two or more networks 
at the same time, which is how they connect LANs.  A typical router can have 2, 8, 16, 
or more interfaces. Each interface usually gets an IP address and typically represents a 
separate “network” as the term applies to IP, but there are exceptions.

Each NIC in a host or router has a MAC address, and these are given in Figure 8.4.  The 
routers are only shown with network layers and IP layers, because that’s all they need 
for packet forwarding (most routers do have application layers, as we have seen). 
Because the routers in this example are in different locations, they are connected by a 
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serial link.  The serial link is running PPP and packets are placed inside PPP frames on 
this link between the routers.  There is no need for global uniqueness on serial ports, 
since they are point-to-point links in the example, so each is called “S1” (Serial1) at the 
network layer.  They don’t even require IP addresses, but these are usually provided to 
make the link visible to network management and make routing and forwarding tables 
a lot simpler.

All of the pieces are now in place to follow a packet between client and server on 
the “internetwork” in Figure 8.4 using indirect delivery of packets with routers. Let’s 
see what happens when a client process running on wincli1 wants to send a packet to 
a server process running on winsvr2.  The application is unimportant.  What is impor-
tant is that the source host knows that the destination host (server) is not on the same 
LAN. Once the IP address of the server is obtained, it is obvious to the source that the 
destination IP network address (10.10.12.52) is different than the source IP network 
address (10.10.11.51).

The source client software now knows that the packet going to 10.10.12.52 must 
be sent through at least one router, and probably several routers, using indirect deliv-
ery. It is called indirect delivery (or indirect routing) because the packet destination 

wincli1

wincli2 winsvr2

10.10.12.52

winsvr1

LAN1:
IP Network

10.10.11/24

00:0e:0c:3b:88:3c 00:0e:0c:3b:87:36

10.10.11.51

00:05:85:88:cc:db

00:05:85:8b:bc:db

00:0e:0c:3b:88:56

10.10.11.111

10.10.11.1

10.0.99.1

10.10.12.1

10.10.12.222

Router 1

Router 2
PPP

Serial
Link

10.0.99.2

00:02:b3:27:fa:8c
LAN2:

IP Network
10.10.12/24

S1

S1

FIGURE 8.4

Indirect delivery using a router. Note the different MAC and link-level addresses in place between 
source and destination.
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address is the destination IP address of winsvr2, but the initial frame destination 
address is the MAC address of the Router1.  The packet is sent indirectly to the desti-
nation host inside a frame sent to the router.  The address fi elds of the frame and packet 
constructed and sent on the LAN by wincli1 are shown in Figure 8.5.

Note that the frame is sent to Router1’s MAC address (00:05:85:88:cc:db), but the 
packet is sent to 10.10.12.52 (winsvr2).  This is how routing works. (Bridges, or direct 
delivery even in routing, always has frames in which the destination MAC address is the 
same as the IP address it represents.)

How did the source host, wincli1, know the MAC address of the correct router? 
There could be several routers on a LAN, if for no other reason than redundancy.  All that 
wincli1 did was use the routing table to look up the IP address of the destination. But 
there’s no specifi c entry for a network associated with 10.10.12.52.  However,  TCP/IP 
confi guration on a host often includes confi guration of at least one default gateway 
to be used when packets must leave the local LAN.  The default gateway (a router in 
this case) can be set statically, or dynamically using the Dynamic Host Confi guration 
Protocol (DHCP), or even other ways. In this example network, the default gateway IP 
address has been entered statically when the host was confi gured for TCP/IP.

Since the default gateway is by defi nition on the same LAN as the source host (they 
share the same IP address prefi x), the source host can just send an ARP to get the MAC 
address of the interface on the router attached to that LAN. Note that the IP address of 
the router is used only to get the MAC address of the router, not so that the source host 
wincli1 can send packets to the router (the packets are being forwarded to winsvr2).

When this packet is sent, the router pays attention to the frame when it arrives, 
but winsrv1 ignores it (the frame is not for 00:0e:0c:3b:87:36). Router1 looks at the 
packet inside the frame and knows that the destination host is not directly connected 
to Router1.  The next hop to the destination is another router. How does Router1 
know? In much the same way as wincli1:  Router1 compares the destination IP address 
to the IP addresses assigned to its local interfaces.  These are 10.10.11.0/24 and 
10.0.99.0/24.  The packet’s destination IP address of 10.10.12.0/24 does not belong 
to either of the two networks local to Router1.

However, a router can have many interfaces, not just the two in this example.  Which 
output port should the router use to forward the packet?  The network portion of the IP 

Destination
MAC Address:

00:05:85:
88:cc:db

Source
MAC Address:

00:0e:0c:
3b:88:3c

Source
IP Address:
10.10.11.51

Destination
IP Address:
10.10.12.52

DATA
(Segment)

Ethernet Frame (trailer not shown)

Packet

FIGURE 8.5

Frame and packet sent to Router1, showing source and destination IP and MAC addresses.
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address is looked up in the forwarding table according to certain rules to fi nd out the IP 
address of the next-hop router and the output interface leading to this router. (In prac-
tice, Router1 might simply have a default route pointed at the serial WAN interface.) 
The rules used for these lookups will be discussed in more detail in a later  chapter. 
For now, assume that Router1 fi nds out that the next hop for the packet to winsvr2 is 
Router2, and that Router2 is reached on serial port S1.

Router1 now encapsulates the packet from wincli1 to winsvr2 inside a PPP frame 
for transport on the serial link.  Another key feature distinguishing routers from bridges, 
as we have seen, is an IPv4 router’s ability to fragment a packet for transport on an out-
put link. Fragmentation depends on every router knowing the maximum transmission 
unit (MTU) frame size for the link types on all of the router’s interfaces. Ethernet LANs, 
for example, all have an MTU size of 1500 bytes (1518 bytes, including the LAN frame 
header). Serial links usually have MTU sizes larger than that, so this example assumes that 
Router1 does not have to fragment the content of the packet it received from the LAN.

When the packet sent by wincli1 to winsvr2 arrives at Router2 on the serial link from 
Router1, Router2 knows that the next hop for this packet is not another router. Router2 
can deliver the packet directly to winsvr2 using direct delivery. How does it know? 
Because the network portion of the IP address in the packet destination, 10.10.12.52/24, 
is on the same network as the router on one of its interfaces, 10.10.12.1/24. In brief, it 
has a route that covers the destination network on one of its interfaces.

The frame containing the packet is sent onto the LAN with the structure shown in 
Figure 8.6.  Note that in this case the MAC address of the source is Router2, and the MAC 
address of the destination is the MAC address of winsrv2.  Again, Router2 can always use 
ARP to get the MAC address associated with IP address 10.10.12.52 if the MAC address 
of the destination host is not in the local ARP cache on the router.  The source and des-
tination IP addresses on the packet do not change in this example, of course.  Winsvr2 
must be able to reply to the sender, wincli1 in this case. (We’ll talk about cases using 
NAT, when the source and destination packet addresses do and must change, in the 
chapter on NAT.)

It is assumed that there is no problem with MTU sizes in this example. However, 
MTU sizes are often important, especially when the operational differences between 
IPv4 and IPv6 routers, when it comes to fragmentation, are considered.

Destination
MAC Address:

00:0e:Oc:
3b:88:58
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00:05:85:
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DATA
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Ethernet Frame (trailer not shown)

Packet

FIGURE 8.6

Frame sent by Router2 to winsvr2, showing source and destination IP and MAC addresses.
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QUESTIONS FOR READERS
Figure 8.7 shows some of the concepts discussed in this chapter and can be used to 
help you answer the following questions.

Router
CEO

bsdserver

admin@CEO. show route
inet .0 : 5 destinations, 5 routes (5 active, 0 holddown, 0
hidden)
1 5 Active Route, 2 5 Last Active, * 5 Both

0.0.0.0/0 * [Static/5] 3d 02:59:20
. via ge-0/0/3.0

10.0.50.0/24

10.0.50.1/32

10.10.11.1/32

10.10.11.0/24

*Direct/0] 2d 14:25:52
. via ge-0/0/3.0
*[Local/0] 2d 14:25:52
Local via ge-0/0/3.0

*[Local/0] 2d 14:25:52
Local via fe-1/3/0.0

*[Direct/0] 2d 14:25:52
. via fe-1/3/0.0

bsdserver# netstat -nr
Routing tables
Internet:
Destination
default
10.10.12/24
localhost
Internet 6:
Destination
localhost.booklab.
fe80::%emo
fe80::20e:cff:fe3b
fe80::%1o0
fe80::1%1o0
fec0::
fec0::20e:cff:fe3b
fec0::fe67:d4:b::
fec0::fe67:d4:b:205
fec0::fe67:d4:b:20e
ff01::
ff02::%em0
ff02::%1o0

Flags

Flags

UGSC
UC
UH

UH

UHL

UHL

UC
UHLW

UHL

UHL

UC
UC

UC

UC

UC

10.10.12.1
Gateway

link#1
localhost

link#1
00:0e::0c:3b:87:32
fe80::1&1o0

00:0e::0c:3b:87:32
link#1

Gateway
localhost.booklab

localhost.booklab.
link#1
localhost.booklab.

link#4
link#1

00:05:85:8b:bc:db
00:0e:0c:3b:87c:32

Refs Use
0 0 em0

em0
144

0 0
0

1o0

1o0

em0
1o0

1o0

1o0
em0

1o0

Netif Expire

Netif Expire

1o0

em0

em0
1o0

em0
1o0

U

FIGURE 8.7

The routing table output from router CE0 (IPv4 only) and host bsdserver.

1.  What is the difference between a routing table and a forwarding table?

2. In the IPv6 routing table for router CE0, what is the IPv6 address associated with 
interface ge20/0/3?

3. In the IPv6 routing table for router CE0, what is the precise IP address value of the 
default route for IPv4 and IPv6?

4.  Why are there so many entries in the IPv6 host routing table on bsdserver?

5.  What is a “persistent” route? What is a “static” route?
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CHAPTER

What You Will Learn
In this chapter, you will learn how routers forward IP packets.  We’ll start with 
the logical steps a router follows to forward (“route”) a packet out the next-hop 
interface.  Then we’ll look at router architectures to see how specialized devices 
(there are “software-only” routers) accomplish routing and forwarding.

Finally, you will learn about how IPv4 routers transition to handling IPv6  routing 
and various methods to tunnel IPv6 packets through links connected by IPv4-only 
routers.  Tunnels were introduced in Chapters 3 and 4 and occur when the normal 
encapsulation sequence of packet–inside frame is violated in some fashion.

Forwarding IP Packets 9

This chapter is really a continued investigation into many of the concepts introduced 
in the previous chapter. Figure 9.1 highlights the network components we’ll be work-
ing with in this chapter.

The routers on our network are Juniper Networks routers.  These routers have a 
different “look and feel” compared to other routers, most of which use a more “Cisco-
like” interface and display. For example, the routing tables seem very long and detailed 
compared to Cisco routers’ default displays.   

admin@CE6> show route 10.10/16

inet.0: 34 destinations, 35 routes (34 active, 0 holddown, 0 hidden)
1 5 Active Route, - 5 Last Active, * 5 Both

10.10.11.0/24 *[OSPF/10] 1w5d 18:25:05, metric 6
 > via ge-0/0/3.0
10.10.12.0/24 *[Direct/0] 2w2d 00:15:44
 > via fe-1/3/0.0
10.10.12.1/32 *[Local/0] 2w2d 00:15:44
 Local via fe-1/3/0.0 

We’ll talk about the routing table entry marked Open Shortest Path First (OSPF) in 
Chapter 14.  This route was learned by a routing protocol running between the  routers 
on our network, and we’ll see how OSPF is confi gured in a later chapter. Note that 
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FIGURE 9.1

Forwarding packets across the network. Note that we’ll be using the customer-edge routers
CE0 and CE6 in this chapter.
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CE6
lo0: 192.168.6.1
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the entry has a preference of 10 (which makes it more “costly” to use than direct/local 
interface routes [0] or static routes [5]).  Traffi c to destinations on LAN1 is sent to PE1 
over the ge-0/0/3 interface.  A preference is distinct from the metric or cost of a route 
itself; preference applies to routes learned in different ways.

We can make the routing table display more Cisco-like by using the terse option:

admin@CE6> show route 10.10/16 terse

inet.0: 34 destinations, 35 routes (34 active, 0 holddown, 0 hidden)
1 5 Active Route, - 5 Last Active, * 5 Both

A Destination P Prf Metric 1 Metric 2 Next hop AS path
* 10.10.11.0/24 O  10 6  >ge-0/0/3.0
* 10.10.12.0/24 D   0   >fe-1/3/0.0
* 10.10.12.1/32 L   0   Local

The asterisk (*) means the route is active (used for forwarding),  and the P fi eld is for 
protocol. One metric is used (two are allowed),  the next-hops are the same (thankfully!), 
and we’ll talk about what an AS path is in the chapter on the BGP routing  protocol.

Let’s use traceroute to see which routers CE6 uses to reach LAN1,  attached to 
router CE0 at interface 10.10.11.1.

admin@CE6> traceroute 10.10.11.1

traceroute to  10.10.11.1  (10.10.11.1), 30 hops max, 40 byte packets
 1  10.0.16.1  (10.0.16.1)   0.743 ms  0.681 ms  0.573 ms
 2  10.0.12.2  (10.0.12.2)   0.646 ms  0.647 ms  0.620 ms
 3  10.0.24.2  (10.0.24.2)   0.656 ms  0.664 ms  0.632 ms
 4  10.0.45.2  (10.0.45.2)   0.690 ms  0.677 ms  0.695 ms
 5  10.10.11.1  (10.10.11.1)   0.846 ms  0.819 ms  0.775 ms

Each router handles the three-packet set generated by the source (CE6) in one of 
three ways:

1.  If the packet is not for this router (the device does not have 10.10.11.1  confi gured 
locally), and the TTL is 1 or 0, then the router creates an ICMP Time-Exceeded 
message, sets the source address to the router’s receiving interface address, sets 
the destination address to the source’s, and sends the ICMP packet out the inter-
face listed as the route back to the source in the forwarding table. This does not 
have to be the same as the receiving interface, but it usually is.

2.  If the packet is not for this router and the TTL is not 1 or 0, then the router dec-
rements the TTL fi eld and forwards the packet out the interface leading to the 
next hop on the way to the destination address.

3.  If the packet is for this router or device, then it sends back an ICMP Port 
 Unreachable message.

Why a TTL of 1 or 0? Some routers decrement the TTL immediately and others only 
as part of the forwarding process, right before output queuing.  This way both types of 
router handle the packet consistently.
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When the source receives a Time-Exceeded message, it records the results of the 
round-trip time for the three packets, checks to see if it has a DNS entry for the IP 
address, and prints a line of output with a “hop” number and the rest of the statistics. 
When it receives a Port Unreachable message, the traceroute utility prints the fi nal 
results and exits.

Because we don’t yet have DNS running, all the IPv4 addresses are repeated twice. 
From the network diagram, we can see that the packets fl owed from CE6 to PE1 (not 
surprisingly) at 10.0.16.1 and then through P2 (10.0.12.2), P4 (10.0.24.2), PE5 
(10.0.45.2) and on to CE0 (10.10.11.1, the local interface target, is used instead of 
10.0.50.2).  (We’ll see what happens when one of the P routers or links between them 
fails in a later chapter.)

We have IPv6 running on the LANs and routers CE0 and CE6.  Let’s see what happens 
on CE6 when we ping the LAN1 interface address four times using the LAN2 interface 
IPv6 source address. Recall that the private ULA IPv6 addresses on LAN1 start with 
fc00:ffb3:d5:a.

admin@CE6> ping count 4 inet6 source fc00:fe67:d4:b:205:85ff:fe8b:bcdb 
fc00:ffb3:d5:a:205:85ff:fe88:ccdb
PING6(56=40+8+8 bytes) fc00:fe67:d4:b:205:85ff:fe8b:bcdb —> fc00:ffb3:d5:
a:205:85ff:fe88:ccdb
—- fc00:ffb3:d5:a:205:85ff:fe88:ccdb ping6 statistics —-
4 packets transmitted, 0 packets received, 100% packet loss

What happened?  Well, for one thing, we have no routes to any IPv6 addresses on 
LAN1 in the IPv6 routing table.  And if they’re not in the routing table, they won’t be in 
the forwarding table.

admin@CE6> show route table inet6 fc00:ffb3:d5:a::/64

admin@CE6>

What can we do about this? Well, we could add some static routes to the IPv6 tables 
on each router, or we could run an IPv6 routing protocol between the routers to share 
the routing information (we’ll do this in a later chapter). Or, we can confi gure an IPv6 
over IPv4 tunnel between routers CE6 and CE0 (and back).  We know we have connec-
tivity with IPv4 between the edge routers, as shown with traceroute.

Here’s how to confi gure an IPv6-over-IPv4 tunnel on routers CE0 and CE6.  It basi-
cally tells the router to take any traffi c for LAN1 or LAN2 IPv6 addresses, put them 
inside IPv4 packets with the LAN IPv4 interface addresses, and send them out as if they 
were IPv4 packets.  We’ll apply the tunnels on a logical interface known as the Generic 
Routing Encapsulation (GRE) interfaces, abbreviated gr- on Juniper Networks routers. 
Only the fi nal confi guration statements are shown.

[edit interfaces gr-1/0/0]
admin@CE6# set interfaces gr-1/0/0 
admin@CE6# set unit 0 tunnel source 10.10.12.1;
 /*source address on LAN2 interface*/
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admin@CE6# set unit 0 tunnel destination 10.10.11.1; 
 /*destination address on LAN1 interface*/
admin@CE6# set unit 0 family inet6 address fc00:ffb3::/32 
 /*LAN1 addresses*/

[edit interfaces gr-1/0/0]
admin@CE0# set interfaces gr-1/0/0 
admin@CE0# set unit 0 tunnel source 10.10.11.1; 
 /*source address on LAN1 interface*/
admin@CE0# set unit 0 tunnel destination 10.10.12.1; 
 /*destination address on LAN2 interface*/
admin@CE0# set unit 0 family inet6 address fc00:ffb3::/32 
 /*LAN2 addresses*/

Now we should be able to ping and traceroute an IPv6 address on LAN1 (in this 
case, fc00:ffb3:d5:a:20e:cff:fe3b:8f95 for bsdclient) from the customer-edge 
router on LAN2.  And we can. Note that, because of the tunnel, the destination seems to 
be only two hops away.

admin@CE6> ping inet6 count 4 source fc00:fe67:d4:b:205:85ff:fe8b:bcdb 
fc00:ffb3:d5:a:20e:cff:fe3b:8f95
PING6(56=40+8+8 bytes) fc00:fe67:d4:b:205:85ff:fe8b:bcdb —> 
fc00:ffb3:d5:a:20e:cff:fe3b:8f95
16 bytes from fc00:fe67:d4:b:205:85ff:fe8b:bcdb,   icmp_seq=0 hlim=64 
time=0.900 ms
16 bytes from fc00:fe67:d4:b:205:85ff:fe8b:bcdb,   icmp_seq=1 hlim=64 
time=0.728 ms
16 bytes from fc00:fe67:d4:b:205:85ff:fe8b:bcdb,   icmp_seq=2 hlim=64 
time=0.856 ms
16 bytes from fc00:fe67:d4:b:205:85ff:fe8b:bcdb,   icmp_seq=3 hlim=64 
time=0.838 ms

admin@CE6> traceroute inet6 source fc00:fe67:d4:b:205:85ff:fe8b:bcdb 
fc00:ffb3:d5:a:20e:cff:fe3b:8f95
traceroute6 to fc00:ffb3:d5:a:20e:cff:fe3b:8f95 (fc00:ffb3:d5:a:205:85ff:
fe88:ccdb) from fc00:fe67:d4:b:205:85ff:fe8b:bcdb, 30 hops max, 12 byte 
packets
 1  fc00:ffb3:d4:b:205:85ff:fe88:ccdb (fc00:ffb3:d4:b:205:85ff:fe88:ccdb)  
1.059 ms  0.979 ms  0.819 ms
 2  fc00:ffb3:d5:a:20e:cff:fe3b:8f95 (fc00:ffb3:d5:a:20e:cff:fe3b:8f95)  
0.832 ms 0.887 ms  0.823 ms 

Let’s take a look at the some basic types of router architectures that can be used to 
implement these packet-forwarding strategies.

ROUTER ARCHITECTURES
There are three main steps that a router must follow to process and forward a packet 
to the next hop. Processing a packet means to check an incoming packet for errors 
and other parameters, looking up the destination address in a forwarding table to 
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determine the proper output port for the packet, and then sending the packet out on 
that port.

But how are the input ports connected to the output ports? In smaller routers, 
which can even be implemented on PC or laptop computers with two or more inter-
faces, software simply examines the packet headers and forwards the packets where 
they need to go.  Windows PCs can do this, and often do on home networks. In Linux, 
there is a command to allow the “host” to forward packets without processing the con-
tent of the packet more fully.

[root@lnxserver admin]# echo "1" > /proc/sys/net/ipv4/ip_forward

Linux IP Forwarding
If you enter the ip_forward command from the shell command prompt, the  setting 
is not “remembered” after a reboot. If the host is to function as a gateway as well 
as host, place the command in an initialization script.

Small routers, such as those for DSL or small-edge LANs, can allow the incoming 
packet to sit in a memory buffer somewhere and adjust header fi elds, perform tunnel 
encapsulation, and so on, and then queue the packet for output. Larger routers, such 
as those used by ISPs or on the Internet backbones, must route as fast as they can, usu-
ally at wire speeds (this means that the device processes data without reducing overall 
transmission speed, so even if the packets arrive as fast as the input line allows, under 
maximum load, there is minimal delay through the router).

Instead of software-based forwarding architectures, these larger routers use 
 hardware-based forwarding fabric architectures.  The differences are important, so 
we’ll take a look at them in more detail.

Basic Router Architectures
When it comes to architecture, routers look very much like a PC.  This was one of the 
reasons for the initial success of routers: Routers could be fabricated out of simple, 
off-the-shelf parts and did not require extensive or customized chipsets or hardware. So 
these routers have a CPU, memory, interfaces, peripheral ports—in short, usually every-
thing but a hard drive. Small routers do not even have fl oppy drives or other forms of 
external storage.  This makes sense: Routers don’t need to store much of anything.  A 
forwarding table needs to be in memory at all times, because it’s much too slow to try 
and fetch a piece of the table off a hard drive when needed.  A lot of routers boot them-
selves from special servers, and have nonvolatile random access memory (NVRAM) 
that keeps whatever information they need to remember whenever their power is cut 
or turned off.  Volatile memory like normal RAM is always erased when power is lost, 
but NVRAM is like a disk.
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The chief distinction is that at the heart of such routers is a general-purpose 
computer.  The architecture for large modern routers does not have a “center.”

Routers do not have to worry about adding cards for video, graphics, or other tasks 
either.  The slots in the chassis just handle various types of networking interfaces such 
as Ethernet, ATM, SONET/SDH (Synchronous Optical Network/Synchronous Digital 
Hierarchy), or other types of point-to-point WAN links. Most interface modules have 
multiple ports, depending on the type of interface that they support. In a lot of high-
end router models, the interface cards are complex devices all by themselves and 
often called blades. Interfaces usually can be added as needed for the networking 
 environment—one or more LAN cards for the routers that handle customers and one 
or more WAN cards for connection to other routers. Backbone routers often have only 
WAN cards and no customers at all.

Another difference between a software-based router and a common PC is that PCs 
almost always have only a single CPU. Because of the central role of these chips in 
running all of the hardware and software on the computer, single-CPU architectures 
require very powerful CPU chips.

Some routers use a variety of CPU chips, and because the tasks are shared among 
the processors, these CPU chips do not have to be tremendously powerful either. Each 
CPU set is chosen to fi t the mission of the router.  They have enough horsepower for 
the home and small offi ce, and these chips are stable, plentiful, and inexpensive.

Some routers use different types of memory. Figure 9.2 shows the general layout of 
the motherboard of a generic software-based router. Many router motherboards have 
four types of memory intended for specifi c purposes. Each type of memory and its loca-
tion on the motherboard is shown in the fi gure.  This architecture is also very similar 
to the network processor engine (NPE) for larger Cisco router architectures.  A lot of 
architectures forgo packet memory because of the bandwidth available in their shared 
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CPU
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MemoryROM
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FIGURE 9.2

Software-based architecture for small routers, showing the various types of memory used.

244 PART II Core Protocols



memory architecture or because the CPU itself contains a dedicated packet handling 
architecture.

Every router ships with at least the factory default minimum of DRAM (dynamic 
random access memory) and fl ash memory, but more can be added in the factory or 
in the fi eld. Generally, the DRAM can be doubled or increased fourfold, depending on 
model, and fl ash memory can be doubled.

RAM/DRAM is sometimes called working storage because in the days before hard 
drives and other types of external storage,  memory was all that computers had for stor-
ing information outside of the immediate CPU. In a router, the RAM/DRAM performs 
the same functions for the router’s CPU as the memory in a PC does for its CPU. So 
when the router is up and running, the RAM/DRAM contains an image of the operating 
system software, the running confi guration (called running-confi g in routers using the 
Cisco confi guration conventions) fi le, the routing table and associated tables built after 
startup, and the packet buffer. If this seems like a lot of work for one type of memory, 
this just shows the fl exibility of function in a general-purpose architecture router.

The RAM acronym often used by router vendors is somewhat misleading.  Almost 
all RAM in a router today is DRAM, since static memory—regular RAM—became obso-
lete some time ago. But people are used to the old RAM acronym, and it’s included in a 
lot of literature just for familiarity.

In addition to the DRAM near the CPU, these types of routers include shared 
DRAM or shared memory.  Also known as packet memory, the shared DRAM handles 
the  packet buffers in the router. Splitting the packet buffers from the other DRAM 
improves I/O performance, because the shared DRAM is physically closer to the inter-
faces that handle the packets.

Nonvolatile RAM (NVRAM) is memory that retains information even when power 
is cut off to the router. Routers use NVRAM to store a copy of the router confi gura-
tion fi le.  Without NVRAM, the router would never be able to remember its proper 
confi guration when it was restarted. NVRAM is where the startup confi guration (called 
startup-confi g on routers using the Cisco confi guration conventions) is stored.

Flash memory is another form of nonvolatile memory. But although fl ash memory is 
different from NVRAM,  fl ash memory can also be erased and reprogrammed as needed.  In 
many routers, fl ash memory is used to hold one or more copies of the router’s  operating 
system: In the case of Cisco, this is called the Internetwork Operating System, or IOS.

ROM is read-only memory and is therefore nonvolatile, but, as might be expected, 
ROM cannot be changed. Routers use ROM to hold what is called the bootstrap program. 
Normally, fl ash memory and NVRAM hold all of the information that the router needs 
to come up again properly with the current confi guration after a shutdown or other 
power loss. But if there is a catastrophe, the bootstrap program in ROM can be used to 
boot the router into a minimum confi guration. ROM used for this purpose is also called 
ROMMON (ROM monitor) and usually has a distinctive rommon>> prompt taken from 
early Unix systems. ROMMON at least gets the router to the point where simple com-
mands can be typed in through a system console terminal (monitor). In smaller routers, 
ROM holds only a minimal subset of the router’s operating system software. In larger 
routers, the ROM often holds a full copy of the router’s operating system software.
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Another Router Architecture
In contrast to the basic router architecture just explored, no one would accuse a large 
Internet backbone router of looking or acting like a PC. Routers based on a central 
CPU just about run out of gas once link speeds move into the multigigabit ranges with 
OC-48 (2.4 Gbps) and OC-192 (10 Gbps).  And with 10 Gigabit Ethernet and OC-768 
(40 Gbps), a change to the basic architecture of the router for the Internet backbone is 
necessary.  Many Internet backbone routers share the same basic architecture, whether 
they come from Cisco or Juniper Networks or someone else. However, the terminol-
ogy used for the components varies considerably from vendor to vendor. Because the 
Illustrated Network uses Juniper Networks routers as its network nodes, we’ll use the 
Juniper Networks architecture and terminology in this section, but only as an example, 
not necessarily as an endorsement.

Larger network routers, oddly enough, do have hard drives. In fact, many Internet 
backbone routers have a complete PC built right in (some even have two PCs). But wait 
a minute. Isn’t the PC architecture much too slow for heavy duty,  “wire-speed” routing? 
And isn’t a hard drive useless when it comes to routing because the forwarding table 
has to be in memory? Right on both counts.  The PC in the backbone router, called the 
routing engine (RE) in Juniper Networks routers, does not forward packets at all. Pack-
ets are routed and forwarded by the packet-forwarding engine (PFE), which is where 
all the specialized ASICs are located.  The RE controls the router, handles the routing 
protocols, and performs all of the other tasks that can be handled more leisurely than 
wire-speed packet transit traffi c. Packets are forwarded from input to output port using 
the forwarding table (FT) in the hardware fabric.

The fundamental principle in large router design is the idea that the functions of a 
router can be split into two distinct parts: one portion for handling routing and control 
operations and another for forwarding packets.  By separating these two operations, the 
router hardware can be designed and optimized to perform each function well.

This division of labor makes perfect sense. It has already been pointed out several 
times that no one really sends traffi c to a router.  The vast majority of packets just pass 
through the router. So transit packets never leave the hardware-based fabric linking input 
and output ports and control packets, such as those for the routing protocols, which only 
come along every few seconds or so, and can be handled as required by the RE.

Just like other routers, large backbone routers can handle various types of network-
ing interfaces. But these routers are normally intended for mainly customer traffi c 
aggregation or for an ISP backbone, although many corporations are attracted to edge-
oriented routers with this architecture as well.  And anywhere in an enterprise where 
there is a requirement for sustained 2-Gbps operation, routing is probably not being 
done in software.

The overall concept of the division between routing engine (routing protocol 
 control and management) and packet-forwarding engine (line-rate routing transit traf-
fi c) with a hardware-based “switching” fabric is shown in Figure 9.3.

The section of the router that is designed to handle the general routing opera-
tions (and control-plane management tasks) is the RE.  The RE is designed to handle all 
the routing protocols, user interaction, system management, and OAM&P (operations, 
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administration, maintenance, and provisioning), and so on.  The second section in Juni-
per Networks routers is the PFE, and is specifi cally designed to handle the forwarding 
of packets across the router from input to output interface.  Transit packets never enter 
the routing engine at all.

The communications channel between the routing engine and the PFE is a stan-
dard 100-Mbps Fast Ethernet.  This might seem somewhat surprising at fi rst, because 
the interfaces on a Juniper Networks router can be many gigabits per second.  But 
only control information needs to enter the routing engine.  The vast majority of pack-
ets only transits the PFE at wire speeds.  There are many advantages to using a standard 
interface, even internally.  A standard interface is easier to implement than creating a 
new proprietary interface, and standard chipsets are readily available, inexpensive, 
and so on.

The routing engine of a Juniper Networks router contains the router’s operating sys-
tem, the JUNOS Internet software, the command line interface (CLI) for confi guration 
and control, and the routing table (RT) itself.  The routing table in a Juniper Networks 
router contains all of the routing information gathered from all routing protocols run-
ning on the router, as well as miscellaneous information such as interface addresses, 
static routes, and so forth.

It might not seem that the RE would have to be very powerful, or have a large hard 
drive, but it usually does.  This is because of the increasing expense of converging a 
growing routing table.

The PFE is where the forwarding table resides.  The forwarding table contains all 
the active route information that is actually used to determine the packet’s next hop 
without needing to send the packet to the routing engine.
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FIGURE 9.3

A hardware-based router with a switching fabric architecture. Note that the fi gure uses the 
 architecture and terminology of Juniper Networks routers, which are used on the Illustrated 
Network.
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ROUTER ACCESS
Users don’t generally communicate directly with routers, but rather through routers. 
The situation is different for network administrators and managers,  however,  who 
must communicate directly with the individual routers in order to install, confi gure, 
and manage the routers.

Routers are key devices on the Internet and almost any type of network. Many 
backbone routers handle packets for hundreds or thousands of users, and some handle 
packets for even more. So when a router goes down, or even slows down due to con-
gestion or a problem, the users go wild and the network managers react immediately. 
For this reason, network managers need multiple and foolproof ways to access the rout-
ers they are responsible for in order to manage them.

Larger routers, and many smaller ones, do not normally come with a keyboard, 
mouse, and monitor.  Nevertheless, there are usually three ways that a network admin-
istrator can communicate with a router.

The Console Port
This port is for a serial terminal that is at the same location as the router and attached 
by a short cable from the serial port on the terminal to the console port on the 
router.  The terminal is usually a PC or Unix workstation running a terminal emulation 
program.  There are several physical connector types used for this port on Cisco rout-
ers. Network administrators sometimes have to carry around several different connec-
tor types so they can be sure to have the proper connector for the router they need to 
manage. (Usually, after initial installation, the console ports are connected to a terminal 
server on a management network so that access does not have to be right where the 
router is.)

The Auxiliary Port
This port is for a serial terminal that is at a remote location. Connection is made 
through a pair of modems, one connected to the router and the other connected to 
the terminal.  There is little difference, if any, between the auxiliary (AUX) and con-
sole ports in terms of characteristics.  They are separate because routers might require 
simultaneous local and remote access that would be impossible if there were only one 
serial port on the router.

The Network
The router can always be managed over the same network on which it is routing 
packets.  This is often called “in-band management” in contrast to the console and 
AUX ports, which are “out-of-band.”  This just means that the network access method 
shares the link to the router “in the same bandwidth” as user packets transiting the 
router.  There are often three ways to access a router over the network: through  Telnet 
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(called VTY lines on a Cisco router), with a more secure remote access program called 
secure shell (SSH), using a Web browser (HTTP is the protocol), or with SNMP (Sim-
ple  Network Management Protocol), a protocol invented expressly for remote router 
management.

These arrangements are shown in Figure 9.4. Small routers usually only have a con-
sole port.  With the proper cables, these console ports can be hooked up to a modem 
for remote access, but obviously cannot be used simultaneously for local access. On 
some routers, the console ports are labeled “Admin” or “Management.” It is tempting to 
try and access a console or AUX ports using the normal graphical interface provided by 
Windows, a Mac, or Unix X-Windows. But the console and AUX ports only understand a 
simple, character-based serial protocol. On Windows PCs, for example, only HyperTer-
minal (or another serial terminal emulation program) can communicate with a router 
through the console or AUX ports.

FORWARDING TABLE LOOKUPS
In the connectionless, best-effort world of IP, every packet is forwarded independently, 
hop by hop, toward the destination. Each router determines the next hop for the 
 destination address in the packet header based on information gathered into the rout-
ing table and distilled into the forwarding table.  The essential operation of a router 
is the looking up of the packet’s destination IP address in this table to determine the 
next hop.
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FIGURE 9.4

The three router access methods. Note that the console port requires access to the router, while 
the others allow remote access.
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It’s unusual that a packet address is an exact match for a table entry.  Otherwise, 
routing and forwarding tables would need an entry for every host in the world—all 
32 bits for IPv4 and 128 bits for IPv6! So in the current classless (prefi x) world of IP 
addressing, the host-hop destination is chosen by the longest match rule. Figure 9.5 
shows how the next-hop address and interface information are used with the ARP pro-
cess (cache or query) to forward the packet in a frame toward the destination.

Consider a packet sent to 10.10.11.77 (bsdclient) from LAN2. Remember, the net-
work is 10.10.11.0/24. Suppose the Best ISP edge router, PE1, has the entries shown 
in Table 9.1 about 10.10/16 networks in its tables; the longest match determines the 
correct interface that should forward the packet.

Which interface is the “best” next hop toward the destination? It would be easy if 
we had an entry like 10.10.11/24 to work with, but routers closer to the backbone 
use aggregate addresses in their tables. In most cases, Internet backbone routers will 
accept prefi xes of /24 or shorter. (It would be nice to accept only /19 or shorter, but 
not many could get away with that.)

So where should the router send a packet for network 10.10.11.0/24? Which next 
hop should it use? All three table entries are “close” to the destination address, but 
which one is “best”?

According to the longest-match rule, the router will send the packet for 10.10.11.77 
to 10.10.17.2 on interface so-0/0/2. But how exactly does it work?
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FIGURE 9.5

How the longest match rule applies to a forwarding table lookup. More specifi c (longer) routes 
are preferred to less specifi c (shorter) routes.

250 PART II Core Protocols



Routers today can “mix and match” prefi xes of differing lengths in a routing or for-
warding table and still send packets to the correct next hop. In the table, 10.10.8/21 
and 10.10.8/22 are different routes, as would be 10.10.8/23 and 10.10.8/24.

Now, the 32-bit destination address, 10.10.11.77, in bits is 00001010 00001010 
00001011 01001101.  There is, of course, no subnet mask associated with a host address. 
Looking at the table, the fi rst 20 bits are exactly the same in all three entries, as well as 
the destination address. But which is the longest match? The router will keep compar-
ing the addresses in the table to the destination address bit by bit until the table runs 
out of entries.  The last match is the longest match, no matter if it’s all 32 bits, or none 
(the default 0/0 entry matches everything).

The 21st bit is a 1 bit in the table entry for 10.10.8/21, and so is the 21st bit in the 
destination address.  The 22nd bit is a 0 bit in the table entry for 10.10.8/22, and so is 
the 22nd bit in the destination address.  There is no longer entry.  This makes the /22 
entry the longest match for the destination address, and the packet is forwarded to 
10.10.17.2.  The rest of the bits are used for local delivery of the packet on LAN2.

The longest match is also often called the best match or the more specifi c route for a 
given destination IP address. But whatever it is called, the point is the same:  The longest-
match next hop is always used in favor of a potential, but shorter match, next hop.

What if there were other entries such as 10.10.8/23 or 10.10.8/24? It doesn’t 
matter.  The 1 bit in the 23rd position will not match these entries, which all have 0s at 
the end of the entry.  The same longest match rules apply at each router.

DUAL STACKS, TUNNELING, AND IPV6
So far, we’ve seen how routers forward packets, what the routers look like internally, 
and how the longest match determines the output port. But most of this chapter dealt 
with IPv4. But what about IPv6 packets? It’s one thing to say that some routers can 
handle both IPv4 and IPv6, but what about older or smaller routers and hosts that don’t 
integrate IPv6 support and handle IPv4 only? This chapter ends with a consideration of 
the role of the router in a world that is slowly making its way toward IPv6.

The transition to IPv6 will be a long one for most networks.  There might be net-
works where it will be necessary to mix hosts and routers that run IPv4 only, IPv6 only, 
and a combination of the two.  Why would a host need to run both IPv4 and IPv6? Well, 
a Web site that only ran IPv6 would be forever unreachable by IPv4 browsers. Routers, 
of course, can be used to build separate IPv4 and IPv6 router networks. For example, 

Table 9.1 Tables for Router PE1

Network (Network Bits in Bold) Prefi x Next-Hop Address Interface

10.10.0 (00001010 00001010 0000xxxx xxxx) /20 10.0.12.2 so-0/0/0

10.10.8 (00001010 00001010 00001xxx xxxx) /21 10.0.19.2 so-0/0/1

10.10.8 (00001010 00001010 000010xx xxxx) /22 10.0.17.2 so-0/0/2
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LAN1 and LAN2 could have two routers each—one for IPv4 and one for IPv6 traffi c. 
But a lot of newer routers should be able to handle both IPv4 and IPv6 packets, and 
many do.

There are two main strategies that have emerged for dealing with mixed IPv4 and 
IPv6 environments.  These are dual protocol stacks and tunneling.

Dual Protocol Stacks
All of the hosts on the Illustrated Network, as we have seen, are capable of assigning 
both an IPv6 and IPv4 address to their network interfaces.  This is possible because they 
all implement a sort of “split” IP network layer. For example, if the Ethernet Type fi eld is 
set to 0x0800 the packet is handed off to the IPv4 process, and if the Type fi eld is set to 
0x86DD, then the packet is handed off to the IPv6 process.  This is shown conceptually 
in Figure 9.6.

The dual protocol stack must provide error messages that are IPv6 “aware,” and rout-
ing protocols have to adapt to IPv6 addresses as well (as we’ll see).  And in spite of the 
fi gure, which is a very common representation, the TCP/UDP layer is also dual.

Dual protocols stacks are not new with IPv6.  This method was frequently used 
whenever two or more protocol stacks had to share a single host interface. In fact, very 
complex arrangements were not unknown, with IBM’s (and Microsoft’s) NetBios shar-
ing the network with Novell’s NetWare and IP itself (for Internet access).

Tunneling
Tunneling is a much misunderstood topic in general.  This section talks about IPv6 tun-
nels, but networks also feature IPSec tunnels, VPN tunnels, and possibly even more. But 
they all employ tunnels.  Tunneling occurs whenever the normal sequence of encap-
sulation headers is violated.  That’s all.
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FIGURE 9.6

Dual protocol stacks for IPv4 and IPv6 sharing a single network connection. Technically, TCP and 
UDP have to be adjusted for an IPv6 environment.
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Normally, a message is broken up into segments, which are put inside packets placed 
inside frames that are sent as a sequence of bits to an adjacent system.  The receiver 
usually expects that the frame contains a packet, and so on, but what if it doesn’t? Then 
the device is using tunneling.

We’ve already seen a form of tunneling in action.  When we put PPP frames inside 
 Ethernet frames, we put a frame inside a frame and violated the normal OSI-RM 
sequence of headers.  That’s okay, as long as the receiver knows the sequence of head-
ers the sender is generating.

Not all devices need to know the exact sequence of encapsulations used by the 
sender and receiver. Only the endpoints (usually hosts, but not always) need to know 
how to encapsulate the data at one end and process the headers correctly at the des-
tination. In between, inside the tunnel, all other devices can treat the data units as 
usual.

Tunneling in a mixed IPv4 and IPv6 network is used to transport IPv6 packets over 
a series of IPv4 routers or to an IPv4 host.  There is a lot of variation in tunnels to sup-
port IPv4/IPv6 operation. For example, a native IPv6 backbone might tunnel IPv4 to 
reduce address consumption in the network core. For the sake of simplicity, let’s con-
sider four types of tunnels and two major scenarios for their use:

1.  Host to router—Hosts with dual-stack capabilities can tunnel IPv6 packets to a 
dual-stack router that is only reachable over a series IPv4-only device.

2.  Router to router—Routers with dual-stack capabilities can tunnel IPv6 packets 
over an IPv4 infrastructure to other routers.

3.  Router to host—Routers with dual-stack capabilities can tunnel IPv6 packets 
over an IPv4 infrastructure to a dual-stack destination host.

4.  Host to host—Hosts with dual-stack capabilities can tunnel IPv6 packets over an 
IPv4 infrastructure to other dual-stack IP hosts without an intervening router.

The four types of tunnels are shown in Figure 9.7.  When the IPv6 packet is sent to 
a router (the fi rst two tunneling methods), the endpoint of the tunnel is not the same 
as the destination, so the destination address of the IPv6 packet does not indicate the 
same device as the IPv4 tunnel endpoint address that carries the IPv6 packet.  The 
source host or router must have the tunnel endpoint’s IPv4 address confi gured.  This is 
called confi gured tunneling.

In contrast, the last two methods send the encapsulated IPv6 packet directly to the 
destination host, so the IPv4 and IPv6 addresses used correspond to the same host.  This 
lets the IPv6 destinations use IPv4-compatible addresses that are derived automatically 
by the devices.  This is called automatic tunneling because it does not require explicit 
confi guration.

Automatic tunneling uses a special form of the IPv6 address.  The 32-bit IPv4 address 
is simply prepended with 96 zero bits in the form 0:0:0:0:0:0:<IPv4 address>.  This 
format is abbreviated as ::<IPv4 address>.

All dual-stack IP hosts recognize this format and encapsulate the IPv6 packet inside 
an IPv4 packet using the embedded IPv4 address, creating an end-to-end tunnel.  The 
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receiver simply strips off the IPv4 header and processes the IPv6 header and packet 
inside.

Hosts that only run IPv6 can use dual-stack routers to communicate using this spe-
cial form of IPv6 address also. Dual-stack routers recognize the IPv6 traffi c and use the 
last 32 bits to create the IPv4 address for the IPv4 “wrapper.” Figure 9.8 shows how this 
special addressing format works. Naturally, this requires IPv6-only hosts to have valid 
and routable IPv4 addresses, which clearly marks the format as a transitional method. 
If the IPv6 address is not in this special address form, then a confi gured tunnel must 
be used, or, if every device on the path from source to destination uses dual protocol 
stacks, or IPv6 only, well-formed IPv6 addresses can be used.
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The various types of IPv6 tunnels, showing host and router situations that can be used to connect.
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The special IPv6 tunnel-addressing format for dual-stack routers.
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TUNNELING MECHANISMS
The theory of tunneling IPv6 packets through a collection of IPv4 routers is one thing. 
Exactly how to do it is another.  There are several tunnel mechanisms that embody the 
concepts discussed previously.

Manually configured tunnels—These are defined in RFC 2893, and both end-
points of the tunnel must have both IPv4 and IPv6 addresses.  These tunnels are 
usually used between dual-stack edge routers.

Generic Routing Encapsulation (GRE) tunnels—GRE tunnels were designed to 
transport non-IP protocols over an IP network. But GRE is also a good way to 
carry IPv6 across the IPv4 routers.  We used a GRE tunnel earlier in this chapter.

IPv4-compatible (6over4) tunnels—Also defined in RFC 2893, these are the 
automatic tunnels based on IPv4-compatible IPv6 addresses using the ::<IPv4 
address> form of IPv6 address.

6to4 tunnels—Another form of automatic tunnel defined in RFC 3065.  They use an 
IPv4 address embedded in the IPv6 address to identify the tunnel  endpoint.

Intra-site Automatic Tunnel Addressing Protocol (ISATAP) tunnels—ISATAP tun-
nels are a mechanism much like 6to4 tunneling, but for local site (campus) 
networks. An ISATAP address uses a special prefix and the IPv4 address to 
identify the endpoint.

The differences between the 6to4 tunnel and the ISATAP tunnel address are shown 
in Figure 9.9.
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FIGURE 9.9

The differences between 6to4 and ISATAP tunnel addressing, showing how the 128 bits of the 
IPv6 address are structured in each case. (a) 6to4 tunneling address format (b) ISATAP tunneling 
address format
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TRANSITION CONSIDERATIONS
Routers occupy a key position during the transition period between IPv4 and 
IPv6.  There are still a lot of routers, mostly older ones, that do not handle IPv6 or 
understand only the ::<IPv4 address> form of IPv6 address. How will IPv4 and IPv6 
routers and hosts interoperate?

A transition plan has been put in place and contains some distinct terminology that 
is new.  The IPv4 to IPv6 transition plan defi nes the following terms for nodes:

■ IPv4-only Node—A host or router that implements only IPv4.
■  IPv6/IPv4 (dual) Node—A host or router that implements both 

IPv4 and IPv6.
■ IPv6-only Node—A host or router that implements only IPv6.
■  IPv6 Node—A host or router that implements IPv6. Both IPv4/IPv6 dual 

nodes and IPv6-only nodes are included in this category.
■  IPv4 Node—A host or router that implements IPv4. Both IPv4/IPv6 dual 

nodes and IPv4-only nodes are included in this category.

In addition, the plan defi nes three types of addresses:

1.  IPv4-compatible IPv6 address—An address assigned to an IPv6 node that can 
be used in both IPv6 and IPv4 packets.  The ::<IPv4 address> format is used for 
this type of IP address. For example, an address such as ::10.10.11.66 is used 
when there is no IPv6 router available.

2.  IPv4-mapped IPv6 address—An address assigned to an IPv4-only node rep-
resented as an IPv6 address.  These addresses always identify IPv4-only nodes, 
never IPv4/IPv6 or IPv6-only nodes.  These are provided when an IPv6 applica-
tion requests the host name for a node with an IPv4 address only. For example, 
::FFFF:10.10.12.166 is an IPv4-mapped IPv6 address.

3.  IPv6-only address—An address globally assigned to any IPv4/IPv6 or IPv6-only 
node.  These addresses never identify IPv4-only nodes.

These terms can be somewhat confusing, but all they mean is that hosts and routers 
can be classifi ed either as IPv4 devices, IPv6 devices, or both IPv4 and IPv6 devices. 
The IPv4/IPv6 devices are capable of understanding and using both IPv4 and IPv6. 
However, the IPv6-only address (an address that has no relationship to an IPv4 address) 
can be used in an IPv6/IPv4 device.

256 PART II Core Protocols



QUESTIONS FOR READERS
Figure 9.10 shows some of the concepts discussed in this chapter and can be used to 
help you answer the following questions.

1.  Which router, based on the architecture in the fi gure, is probably a small site 
router? Which is probably a large Internet backbone router?

2.  Which output interface, based on the routing table shown in the fi gure, will 
packets arriving from the directly attached host for IPv4 address 10.10.11.1 use 
for forwarding? Assume longest match is used.

3.  Which output interface will packets for 10.10.192.10 use? Assume the longest 
match is used.

4.  Which IPv6 tunneling protocol can be used between the two hosts? How many 
bits will be used for the subnet identifi er?

5. Do the routers require IPv6 support to deliver packets between the two hosts?

Router with
NVRAM

and DRAM

Interface 1

Interface 2

Interface 3Router
with RE
and PFE

Host
Supporting
6to4 and
ISATAP
Tunnels

Host
Supporting

6to4 
Tunnels

admin@router0> show route
inet.0: 2 destinations, 2 routes (2 active...
10.10.0.0/16     >via interface #1
10.10.64.0/18     >via interface #2
10.10.128.0/18     >via interface #3

FIGURE 9.10

A simple network of routers and hosts, showing architecture, a routing table, and tunnel support.
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CHAPTER

What You Will Learn
In this chapter,  you will learn about UDP, one of the major transport layer  protocols 
in the TCP/IP stack.  We’ll talk about datagrams and the structure of the UDP 
header.

You will learn about ports and sockets and how they are used at the transport 
layer.

User Datagram Protocol 10 

The User Datagram Protocol (UDP) is one the major transport layer protocols that rides 
on top of IPv4 or IPv6.  Most explorations of the TCP/IP transport layer treat the other 
major protocol, the connection-oriented Transmission Control Protocol (TCP) fi rst and 
present connectionless UDP later. But the complexities of TCP, and the reasons for these 
often sophisticated procedures, are better understood after appreciating the basic con-
nectionless service provided by UDP. In addition, certain concepts that are shared by 
both UDP and TCP, such as ports, can be introduced in UDP and so reduce the number 
of new ideas that must be covered during TCP discussions to a more  manageable level.

The UDP acronym shows the effects of early Internet efforts to distinguish con-
nectionless packet delivery (“It’s a datagram, not a packet!”) from more conventional 
connection-oriented schemes in use at the time. The data unit of UDP is not a packet 
anyway, but a datagram, the content of a connectionless packet (many authors call IP 
packets datagrams as well, but we do not in this book). UDP datagrams have their own 
headers, naturally, and the UDP header is about as simple as a header can get. That’s only 
to be expected, because UDP operation is also very simple, making UDP ideal for a fi rst 
look at end-to-end functions on a network.

In recent years, UDP’s popularity as a transport layer protocol for applications has 
been growing. The simple and fast operation of UDP makes it ideal for delay-sensitive 
traffi c like voice samples (the digital representation of analog speech), multicast digital 
video, and other types of “real-time” traffi c that cannot be resent if lost on the network. 
This use of UDP is not as originally intended, and there are other things that need 
to be done before UDP is ready for voice and video, but in the true spirit of Internet 
 innovation, UDP was adapted for these new circumstances.
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FIGURE 10.1

UDP ports and sockets on the Illustrated Network. Note that this chapter mainly uses the Unix-based 
hosts on the network to explore UDP.
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UDP is used by many common network applications, including DNS, IPTV streaming 
media applications, voice over IP (VoIP), the Trivial File Transfer Protocol (TFTP), and 
online games. UDP is required for multicast applications.

UDP PORTS AND SOCKETS
Figure 10.1 shows the hosts on the Illustrated Network that we’ll be using in this 
 chapter to explore UDP ports and sockets. We’ll primarily use the Unix-based hosts, 
both FreeBSD and Linux.

Let’s look at a simple application of UDP between the lnxclient and lnxserver hosts. 
The standard Unix “echo” utility (not the same “echo” program as the application used in 
a previous chapter) sends a simple text string from a client to a server using UDP port 
7. The server just bounces a UDP datagram back with the same content. But even with 
this simple interaction, all of the major points about UDP discussed in this chapter can 
be illustrated.

The capture is from lnxserver (10.10.11.66). The server is responding to the 

lnxclient (10.10.12.166) request to echo the string “TEST.” The important sections 

of the request and response packets relevant to UDP are highlighted.

[root@lnxserver admin]# /usr/sbin/tethereal -V port 7
Capturing on eth0
Frame 1 (60 bytes on wire, 60 bytes captured)
 Arrival Time: May 6, 2008 16:31:30.947137000
 Time delta from previous packet: 0.000000000 seconds
 Time relative to first packet: 0.000000000 seconds
 Frame Number: 1
 Packet Length: 60 bytes
 Capture Length: 60 bytes
Ethernet II, Src: 00:05:85:88:cc:db, Dst: 00:d0:b7:1f:fe:e6
 Destination: 00:d0:b7:1f:fe:e6 (Intel_1f:fe:e6)
 Source: 00:05:85:88:cc:db (Juniper__88:cc:db)
 Type: IP (0x0800)
 Trailer: 0000000000000000000000000000
Internet Protocol, Src Addr: 10.10.12.166 (10.10.12.166), Dst Addr: 
10.10.11.66 (10.10.11.66)
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
 0000 00.. = Differentiated Services Codepoint: Default (0x00)
 .... ..0. = ECN-Capable Transport (ECT): 0
 .... ...0 = ECN-CE: 0
 Total Length: 32
 Identification: 0x0000
 Flags: 0x04
 .1.. = Don’t fragment: Set
 ..0. = More fragments: Not set
 Fragment offset: 0
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 Time to live: 62
 Protocol: UDP (0x11)
 Header checksum: 0x10d2 (correct)
 Source: 10.10.12.166 (10.10.12.166)
 Destination: 10.10.11.66 (10.10.11.66)
User Datagram Protocol, Src Port: 32787 (32787), Dst Port: echo (7)
 Source port: 32787 (32787)
 Destination port: echo (7)
 Length: 12
 Checksum: 0xac26 (correct)
Data (4 bytes)

0000  54 45 53 54 TEST

Frame 2 (46 bytes on wire, 46 bytes captured)
 Arrival Time: May 6, 2008 16:31:30.948312000
 Time delta from previous packet: 0.001175000 seconds
 Time relative to first packet: 0.001175000 seconds
 Frame Number: 2
 Packet Length: 46 bytes
 Capture Length: 46 bytes
Ethernet II, Src: 00:d0:b7:1f:fe:e6, Dst: 00:05:85:88:cc:db
 Destination: 00:05:85:88:cc:db (Juniper__88:cc:db)
 Source: 00:d0:b7:1f:fe:e6 (Intel_1f:fe:e6)
 Type: IP (0x0800)
Internet Protocol, Src Addr: 10.10.11.66 (10.10.11.66), Dst Addr: 
10.10.12.166 (10.10.12.166)
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
 0000 00.. = Differentiated Services Codepoint: Default (0x00)
 .... ..0. = ECN-Capable Transport (ECT): 0
 .... ...0 = ECN-CE: 0
 Total Length: 32
 Identification: 0x0000
 Flags: 0x04
 .1.. = Don’t fragment: Set
 ..0. = More fragments: Not set
 Fragment offset: 0
 Time to live: 64
 Protocol: UDP (0x11)
 Header checksum: 0x0ed2 (correct)
 Source: 10.10.11.66 (10.10.11.66)
 Destination: 10.10.12.166 (10.10.12.166)
User Datagram Protocol, Src Port: echo (7), Dst Port: 32787 (32787)
 Source port: echo (7)
 Destination port: 32787 (32787)
 Length: 12
 Checksum: 0xac26 (correct)
Data (4 bytes)

0000  54 45 53 54 TEST
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The DF bit in the packet is set, and the UDP checksum fi eld is used. Technically, 
the UDP checksum is optional, and the client decides whether to use it. The server 
responds with a checksum because the client used a checksum in the request. In fact, 
Windows XP and FreeBSD do the same.

The UDP checksum was made optional to cut processing on reliable networks like 
small LAN segments to a bare minimum. Today, client and server on the same LAN 
segment are not very common, and processing the checksum is not a burden for mod-
ern computing devices. Also, UDP checksum calculation can be offl oaded to modern 
Ethernet chipsets, so it’s less “expensive” than it used to be. Currently, use of the UDP 
checksum is common, and most traditional texts say it “should” be used with IPv4. Use 
of the UDP checksum is mandatory with IPv6.

Note that the program uses client UDP port 32787. This is in the range of ports 
known as registered ports. We’ll talk about those, and the dynamic port range of 
49152 to 65535, later in this chapter. The dynamic port range that a Unix system uses 
is a kernel-tunable parameter and can be changed using tweaks to the /etc/sysctl.
conf fi le, but information on exactly how to do it is scarce and beyond the scope of 
this book.

We can see the sockets in use on a Linux host by using the netstat –lp command 
to display listening sockets. (Although the options imply these are listening ports, it 
is the socket information that is displayed.)

root@lnxserver admin]# netstat -lp
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
 PID/Program name
tcp 0 0 *:32768 *:* LISTEN
 1664/
tcp 0 0 localhost.localdo:32769 *:* LISTEN
 1783/xinetd
tcp 0 0 localhost.localdoma:783 *:* LISTEN
 1853/spamd -d -c -a 
tcp 0 0 *:sunrpc *:* LISTEN
 1645/
tcp 0 0 *:x11 *:* LISTEN
 2103/X
tcp 0 0 *:ssh *:* LISTEN
 1769/sshd
tcp 0 0 localhost.localdoma:ipp *:* LISTEN
 6813/cupsd
tcp 0 0 localhost.localdom:smtp *:* LISTEN
 1826/
udp 0 0 *:32768 *:*
 1664/
udp 0 0  *:echo *:*
 1923/Echo
udp 0 0 *:sunrpc *:*
 1645/
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udp 0 0 *:631 *:*
 6813/cupsd
udp 0 0 localhost.localdoma:ntp *:*
 1800/
udp 0 0 *:ntp *:*
 1800/
Active UNIX domain sockets (only servers)
Proto RefCnt Flags       Type       State         I-Node PID/Program name    
Path
unix  2      [ ACC ]     STREAM     LISTENING     2663   1939/
/tmp/jd_sockV4
unix  2      [ ACC ]     STREAM     LISTENING     2839   2053/
/tmp/.gdm_socket
unix  2      [ ACC ]     STREAM     LISTENING     2714   2016/
/tmp/.font-unix/fs7100
unix  2      [ ACC ]     STREAM     LISTENING     2542   1872/
/tmp/.iroha_unix/IROHA
unix  2      [ ACC ]     STREAM     LISTENING     2849   2103/X
/tmp/.X11-unix/X0
unix  2      [ ACC ]     STREAM     LISTENING     2535   1862/gpm
/dev/gpmctl

The output is diffi cult to parse, but we can see our little echo utility (highlighted, 
and the second line of the UDP section) patiently waiting for clients on port 7 (the 
output identifi es it as the standard “echo” port). UDP, being a stateless protocol, is not 
technically in a “listening” state, but that’s what the server socket essentially does. The 
asterisks (*:*) mean that communications will be accepted from another IP address 
and port.

The command to reveal the same type of information on bsdserver is sockstat.

bsdserver# sockstat
USER     COMMAND    PID   FD PROTO  LOCAL ADDRESS         FOREIGN ADDRESS      
root sendmail 88 4     tcp4   *:25 *:*
root sendmail 88 6     tcp4   *:587 *:*
root sshd 83 4     tcp4   *:22 *:*
root inetd 79 4     tcp4   *:21 *:*
root inetd 79 5     tcp4   *:23 *:*
root syslogd 72 5     udp4   *:514 *:*

USER     COMMAND    PID   FD PROTO  LOCAL ADDRESS         FOREIGN ADDRESS      
root sendmail 88 5     tcp46  *:25 *:*
root sshd 83 3     tcp46  *:22 *:*
root syslogd 72 4     udp6   *:514 *:*
USER     COMMAND    PID   FD PROTO  ADDRESS          
admin sshd 48218 3     stream sshd[48216]:4
root sshd 48216 4     stream sshd[48218]:3    
smmsp sendmail 91 3     dgram  syslogd[72]:3 
root sendmail 88 3     dgram  syslogd[72]:3 
root syslogd 72 3     dgram  /var/run/log  
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The little “echo” port is not listed because it is not running on this host. Note that 
the syslogd process in FreeBSD listens on both the UDP and TCP ports (in this case, 
port 514) for clients.

What about Windows XP? The command here is netstat –a (all), but be prepared 
to be surprised. Windows hosts listen to a larger number of sockets than Unix systems. 
It depends on exactly what the system is doing, but even on our “quiet” test network, 
winsrv2 has 25 TCP and 19 UDP processes waiting to spring into action. They range 
from Netbios (an old IBM and Microsoft LAN protocol) to Microsoft-specifi c functions. 
Heavily loaded systems have even higher numbers.

What about looking at UDP with IPv6? It’s not really necessary. We are now high 
enough in the TCP/IP protocol stack not to worry about differences between IPv4 and 
IPv6. (In practical terms, we still have to worry about DNS a bit, but we’ll talk about 
that in Chapter 19.) With the exception of the checksum use and something called the 
pseudo-header, UDP is the same in both.

WHAT UDP IS FOR
UDP was defi ned in RFC 768 and refi ned in RFC 1122. All implementations must 
 follow both RFCs to make interoperability reliable, and all do. UDP uses IP protocol 
ID 17.  Any IPv4 or IPv6 packet received with 17 in the protocol ID fi eld is given to 
the local UDP service.

UDP is defi ned as stateless (no session information is kept by hosts) and  unreliable 
(no guarantees of any QoS parameters, not even delivery). This does not mean that 
UDP traffi c is somehow lower priority on the network or through routers. It’s not as 
if UDP traffi c is routinely tossed by stressed-out routers. It just means that if the appli-
cation using UDP needs to keep track of a session history (“How many datagrams did 
you get before that link failed?”) or guaranteed delivery (“I’m not sending any more 
until I know if you got the datagrams I sent.”), then the application itself must do it, 
because UDP can’t and won’t.

Nevertheless, there is a whole class of applications that use UDP, some almost 
 exclusively. These are applications that are invoked to exchange quick, request–
response pairs of messages, such as DNS (“Quick! What IP address goes with www.
example.com?”). These applications could suffer while waiting for all the overhead 
that TCP requires to set up a connection between hosts before sending a message.

Multicast allows one source to send a single packet stream to multiple destina-
tions (TCP is strictly a one-source-to-one-destination protocol), so UDP must be used 
for multicast data transfer as well. Multicast is not only used with video or audio, but 
also in applications such as the Dynamic Host Confi guration Protocol (DHCP).

In other words, UDP is a low-overhead transport for applications that do not need, or 
cannot have, the “point-to-point” connections or guaranteed delivery that TCP  provides.

Packets carrying UDP traffi c in IPv4 sometimes have the DF (Don’t Fragment) bit 
set in the IPv4 header. However, no one should be surprised or upset to fi nd a UDP 
datagram riding inside an IPv4 packet without the DF bit set.
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THE UDP HEADER
Figure 10.2 shows the UDP header. There are only four fi elds, and the data inside the 
datagram (the message) are optional.

The header is only 8 bytes (64 bits) long. First are the 2-byte Source Port fi eld and 
the 2-byte Destination Port fi eld. These fi elds are the datagram counterparts of the 
source and destination IP addresses at the packet level. But unlike IP addresses, there 
is no structure to the port fi elds:  All values between 0 and 65,353 are represented as 
pure numerics. This does not mean that all port numbers, source and destination, are 
the same, however. Port values can be divided into well-known, registered, and dynamic 
port numbers.

The Length fi eld gives the length in bytes of the UDP datagram, and includes the 
header fi elds along with any data. The minimum length is 8 (the header alone), and the 
maximum value is 65,353. However, the achievable maximum UDP datagram lengths 
are determined by the size of the send and receive buffers on the host end systems, 
which are usually set to around 8000 bytes (although they can be changed).

As already mentioned, hosts are required to handle 576-byte IP packets at a  minimum, 
but many protocols (the most common being DNS and DHCP) limit the maximum size 
of the UDP datagram that they use to 512 bytes or less.

The Checksum fi eld is the most interesting fi eld in the UDP header. This is because 
the checksum is not a simple value calculated on the UDP header fi elds and data, 
if present. The UDP checksum is computed on what is called the pseudo-header. The 
pseudo-header fi elds for IPv4 are shown in Figure 10.3.

The all-zero byte is used to provide alignment of the pseudo-header, and the data 
fi eld must be padded to align it with a 16-bit boundary. The 12 bytes of the UDP 
pseudo-header are prepended to the UDP datagram, and the checksum is computed on 
the whole object. For this computation, the Checksum fi eld itself is set to zero, and the 
16-bit result placed in the fi eld before transmission. If the checksum computes to zero, 
an all-1s value is sent, and all-1s is not a computable checksum.  The pseudo-header 
fi elds are not sent with the datagram.

1 byte

Source Port

Datagram Data (optional)

Length (including header) Checksum

1 byte 1 byte 1 byte

Destination Port

FIGURE 10.2

The four UDP header fi elds. Technically, use of the checksum is optional, but it is often used 
today.
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At the receiver, the value of the Checksum is copied and the fi eld again set to zero. 
The checksum is again computed on the pseudo-header and compared to the received 
value. If they match, the datagram is processed by the receiving application indicated 
by the destination port number. If they do not match, the datagram is silently discarded 
(i.e., no error message is sent to the source).

Naturally, using 32-bit IPv4 addresses to compute transport layer checksums 
will not work in IPv6, although the procedure is the same. RFC 2460 establishes a 
different set of pseudo-header fi elds for IPv6.  The IPv6 pseudo-header is shown in 
Figure 10.4.

The Next Header value is not always 17 for UDP, because other extension head-
ers could be in use. Length is the length of the upper layer header and the data it 
carries.

IPv4 AND IPv6 NOTES
The presence of the IP source and destination address in an upper layer checksum 
computation strikes many as a violation of the concept of protocol layer independence. 
(The same concern applies to NAT, discussed in Chapter 27.) In fact, a lot of TCP/IP 
books mention that including packet level fi elds in the end-to-end checksum helps 
assure (when the checksum is correct at the receiver) that the message has not only 
made its way to right port, but to the correct system.

The presence of a pseudo-header also shows how late in the development process 
that TCP and UDP were separated from IP. Not only that, but the transport layer and 
network layer (or, to give them more intuitive names, the end-to-end layer and routing 
layer) have always been tightly coupled in any working network.

The use of the UDP checksum is not required for IPv4, but highly recommended. 
It is required in IPv6, of course. In IPv4, servers that receive client datagrams with the 
checksum fi eld set are supposed to reply using the checksum, but this is not always 
enforced. If the IPv4 checksum fi eld is not used, it is set to all 0 bits (recall that all 0 
checksums are sent as all-1s).

1 byte 1 byte 1 byte 1 byte

Source IPv4 Address

Destination IPv4 Address

UDP LengthAll 0 byte Protocol (517)

FIGURE 10.3

The UDP IPv4 pseudo-header. These fi elds are used for checksum computation and include 
fi elds in the IP header.
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1 byte

Source IPv6 Address

1 byte 1 byte 1 byte

Destination IPv6 Address

UDP (Upper Layer Protocol) Length

Next HeaderAll 0 bytes

PORT NUMBERS
Each application running above UDP (and TCP) and IP is indexed by its port number, 
allowing for the multiplexing of the IP layer. Just as frames with different types of pack-
ets inside (on Ethernet, IPv4 is 0x0800 and IPv6 is 0x86DD) are multiplexed onto a single 
LAN interface, the individual IPv4 or IPv6 packets are multiplexed and distributed by 
the protocol number (UDP is IP protocol number 17, and TCP is 6).

The port numbers in turn multiplex and distribute datagrams from applications, 
allowing them to share a single UDP or TCP process, which is usually integrated closely 
with the operating system.   This function of frame Ethertype, packet protocol, and data-
gram port is shown in Figure 10.5.   The fi gure shows how IPv4 data for DNS makes its 
way from frame through IPv4 through UDP to the DNS application listening on UDP 
port 53.

Well-Known Ports
Port numbers can run from 0 to 65353. Port numbers from 0 to 1023 are reserved for 
common TCP/IP applications and are called well-known ports. The use of well-known 
ports allows client applications to easily locate the corresponding server application 
processes on other hosts. For example, a client process wanting to contact a DNS 

FIGURE 10.4

The UDP IPv6 pseudo-header. Use of the UDP checksum is not optional in IPv6.
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process running on a server must send the datagram to some destination port. The 
well-known port number for DNS is 53, and that’s where the server process should 
be listening for client requests. These ports are sometimes called “privileged” ports, 
although a number of applications that formerly ran in “privileged” mode, such as HTTP 
servers, do not run this way anymore except when binding to the port. It should be 
noted that it is getting harder and harder to register new applications in the space 
below 1023 (these often use registered ports in the range 1024 to 49151).

Ports used on servers are persistent in the sense that they last for a long time, or at 
least as long as the application is running. Ports used on clients are ephemeral (“lasting 
a short time,” although the term technically means “lasting a day”) in the sense that they 
“come and go” as the user runs client applications.

Technically, UDP port numbers are independent from TCP port numbers. In 
practice, most of the applications indexed by port numbers are the same in UDP or 
TCP (although a few applications can use either protocol), excepting a handful that 
are maintained for historical reasons. This does not imply that applications can use 
TCP or UDP as they choose. It just means that it’s easier to maintain one list rather 
than two. But no matter what port numbers are used, UDP port 1000 is a different 

TCP
Applications

UDP
Applications

UDP Process

Echo Service
Domain
Name
Server

7 53

TCP Process

Ethertype 5 0800 for IPv4,
86DD for IPv6

IPV6 Process SegmentProtocol 5 6 for TCP,
17 for UDP

Port 5 53 for DNS,
7 for Echo

Packet Header

Packet

Frame Header

Data

FIGURE 10.5

UDP port multiplexing and distribution, showing how a single IP layer (IPv6 in this case) can be 
used by multiple transport protocols and applications.
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 application than TCP port 1000, even though both applications might perform the 
same  function.

Some of the more common well-known port numbers are shown in Table 10.1. In 
the table, the UDP and TCP port numbers are identical.

Port numbers above 1023 can be either registered or dynamic (also called private 
or non-reserved). Registered ports are in the range 1024 to 49151. Dynamic ports are in 
the range 49152 to 65535.   As mentioned, most new port assignments are in the range 
from 1024 to 49151.

Registered port numbers are non–well-known ports that are used by vendors for 
their own server applications. After all, not every possible application capability will 
be refl ected in a well-known port, and software vendors should be free to innovate. Of 
course, if another vendor chooses the same port number for a server process, and they 
are run on the same system, there would be no way to distinguish between these two 
seemingly identical applications.

■ Well-known ports—Ports in the range 0 to 1023 are assigned and controlled.

■ Registered ports—Ports in the range 1024 to 49151 are not assigned or controlled, 
but can be registered to prevent duplication.

■ Dynamic ports—Ports in the range 49152 to 65535 are not assigned, controlled, 
or registered. They are used for temporary or private ports. They are also known as 
private or non-reserved ports. Clients should choose ephemeral port numbers from 
this range, but many systems do not.

Table 10.1 Some Well-Known Ports Used by UDP and TCP Services and Functions

Port Number Service Meaning

7 Echo Used to echo data back to the sender

9 Discard Used to discard data at receiver

13 Daytime Reports time information in user-friendly format

17 Quote Returns a “quote of the day” (rarely used today)

19 Chargen Character generator

53 DNS Domain Name Service

67 DHCP server Server port used to send confi guration i nformation

68 DHCP client Client port used to receive confi guration  information

69 TFTP Trivial fi le transfer

161 SNMP Used to receive network management queries

162 SNMP traps Used to receive network problem reports

1011–1023 Reserved Reserved for future use
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Vendors can register their application’s ports with ICANN. Other software vendors 
are supposed to respect these registered values and register their own server appli-
cation port numbers from the pool of unused values. Some registered UDP and TCP 
 protocol numbers are shown in Table 10.2.

The private, or dynamic, port numbers are used by clients and not servers. Data-
grams sent from a client to a server are typically only sent to well-known or registered 
ports (although there are exceptions). Server applications are usually long lived, while 
client processes come and go as users run them. Client applications therefore are free 
to choose almost any port number not used for some other purpose (hence the term 
“dynamic”), and many use different source port numbers every time they are run. The 
server has no trouble replying to the proper client because the server can just reverse 
the source and destination port numbers to send a reply to the correct client (assuming 
the IP address of the client is correct).

All TCP/IP implementations must know the range of well-known, registered, and 
private ports when choosing a port number to use. Unix systems hold this informa-
tion is the /etc/services fi le. Windows users can fi nd this C:\%SystemRoot%\system32\
drivers\etc\SERVICES fi le, where %SystemRoot% will be automatically referred to a 
folder such as WinNT or WINDOWS. Most ports are the same for UDP or TCP, but some are 
unique to one or the other. For example, FTP control uses TCP port 21.

Table 10.2  Selected Registered UDP and TCP Ports with Service 
and Brief Description of Meaning

Port Number Service Brief Description of Use

1024 Reserved Reserved for future use

1025 Blackjack Network version of blackjack

1026 CAP Calendar access protocol

1027 Exosee ExoSee

1029 Solidmux Solid Mux Server

1102 Adobe 1 Adobe Server 1

1103 Adobe 2 Adobe Server 2

44553 Rbr-debug REALBasic Remote Debug

46999 Mediabox MediaBox Server

47557 Dbbrowse Databeam Corporation

48620–49150 Unassigned These ports have not been 
registered

49151 Reserved Reserved for future use
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Here is the beginning of the fi le from winsvr2:

# Copyright (c) 1993-1999 Microsoft Corp.
#
# This file contains port numbers for well-known services defined by IANA
#
# Format:
#
# <service name>  <port number>/<protocol>  [aliases...]   [#<comment>]
#

echo 7/tcp
echo 7/udp
discard 9/tcp sink null
discard 9/udp sink null
systat 11/tcp users #Active users
systat 11/tcp users #Active users
daytime 13/tcp
daytime 13/udp
qotd 17/tcp quote #Quote of the day
qotd 17/udp quote #Quote of the day
chargen 19/tcp ttytst source #Character generator
chargen 19/udp ttytst source #Character generator
ftp-data 20/tcp #FTP, data
ftp 21/tcp #FTP. control
telnet 23/tcp
[many more lines not shown...]

For the latest global list of well-known, registered, and private port numbers, see 
www.iana.org/assignments/port-numbers. The port numbers are the same for IPv4 
and IPv6.

The Socket
The combination of IPv4 or IPv6 address and port numbers forms an abstract concept 
called a socket. We’ve mentioned the socket concept briefl y before, and will do so 
again and again in later chapters. The socket concept is important for many reasons, 
and a later chapter will explore some of them more completely. For now, all that is 
important to mention is that, for each client–server interaction, there is a socket on 
each host at the endpoints of the network. The sockets at each end uniquely identify 
that particular client–server interaction, although the same sockets can be used for 
subsequent interactions.

Sockets are usually written in IPv4 and IPv6 by adding a colon (:) to the IP address, 
although sometimes a dot (.) is used instead. In IPv6, it is also necessary to add brack-
ets to avoid confusion with the :: notation, such as in [FC00:490:f100:1000::1]:80. 
A UDP socket on lnxclient, for example, would be 10.10.12.166:17, while one on 
bsdserver would be 10.10.12.77:17.
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UDP OPERATION
The delivery of UDP datagrams is by no means certain. The lack of an expected 
response on the part of a server to a UDP client request is handled by a simple timeout. 
Responses are not always expected, as might be the case with streaming audio and 
video. The client might resend the datagram, but in many cases this might not be the 
best strategy.

In some cases, lack of response is not a reliable indication that anything is wrong 
with the network or remote host. Routers routinely fi lter out unwanted packets, and 
many do so silently, while others send the appropriate ICMP “administratively prohib-
ited” message.

In general, there are fi ve major possible results when an application sends a UDP 
request, shown in Figure 10.6. Note that any of the replies can be lost on the way back 
to the sender, generating a timeout.

UDP OVERFLOWS
We’ve looked at UDP as a sort of quick-and-dirty request–response interaction between 
hosts over a network. Delivery is not guaranteed, but neither is an important network 
property called fl ow control. A lot of nonsense has been written about fl ow con-
trol, which is a very simple idea. It just means that no sender should ever be able to 
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FIGURE 10.6

UDP protocol actions, showing the request–reply outcomes.
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 overwhelm a receiver with traffi c. In other words, receivers must have a way to tell 
senders to slow down. UDP, of course, has no such mechanism.

The confusion over fl ow control often comes from treating fl ow control as a syn-
onym for a related concept called congestion control. While fl ow control is strictly a 
local property of individual senders and receivers, congestion control is a global prop-
erty of the network. No sender overwhelms a receiver: There’s just too much traffi c in 
the router network for things to work properly.

Congestion control often uses fl ow control to accomplish its goals (source quench 
was a not-too-sophisticated mechanism). There’s not much else a router can use other 
than fl ow control to tell senders to shut up for a while. But that’s no excuse for treating 
the two as one and the same.

What has this to do with UDP? Well, it is possible for UDP receivers’ buffers, which 
are usually fi xed, to overfl ow with unexpected UDP datagrams and be forced to discard 
traffi c. Most UDP implementations include a way to display “UDP socket overfl ows” or 
discarded UDP datagrams.

But what if an application needs guaranteed delivery, sequencing, and fl ow control 
to work properly, and we don’t want to add these to the application? Files cannot use 
quick request–response messages to transfer themselves over a network. That’s the job 
of TCP, which is the topic of the next chapter.
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QUESTIONS FOR READERS
Figure 10.7 shows some of the concepts discussed in this chapter and can be used to 
help you answer the following questions.

1. Which UDP header fi eld does UDP use for demultiplexing?

2. What is UDP’s only attempt at error control?

3. A socket is comprised of which two TCP/IP components?

4. What is the registered port range? Is this assigned or controlled?

5. What is the dynamic or private port range? Are these assigned or controlled?

1 byte 1 byte 1 byte 1 byte

Source Port

Length (including header)

Datagram Data (optional)

(a)

Destination Port

Checksum

(b)

1 byte 1 byte 1 byte 1 byte

Source IPv4 Address

Destination IPv4 Address

UDP  LengthAll 0 byte Protocol (517)

FIGURE 10.7

The UDP header (a) and pseudo-header (b) fi elds for IPv4.
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CHAPTER

What You Will Learn
In this chapter, you will learn about the TCP transport layer protocol, which is 
the connection-oriented, more reliable companion of UDP.  We’ll talk about all 
the fi elds in the TCP header (which are many) and how TCP’s distinctive three-way 
handshake works.

You will learn how TCP operates during the data transfer and disconnect phase, 
as well as some of the options that have been established to extend TCP’s use for 
today’s networking conditions.

Transmission Control 
Protocol 11

The Transmission Control Protocol (TCP) is as complex as UDP is simple. Some of the 
same concepts apply to both because both TCP and UDP are end-to-end protocols. 
Sockets and ports, well-known, dynamic, and private, apply to both.  TCP is IP protocol 
6, but the ports are usually the same as UDP and run from 0 to 65,535.  The major dif-
ference between UDP and TCP is that TCP is connection oriented.  And that makes all 
the difference.

Internet specifi cations variously refer to connections as “virtual circuits,” “fl ows,” 
or “packet-switched services,” depending on the context.  These subtle variations are 
unnecessary for this book, and we simply use the term “connection.” A connection is 
a logical relationship between two endpoints (hosts) on a network. Connections can 
be permanent (although the proper term is “semipermanent”) or on demand (often 
called “switched”). Permanent connections are usually set up by manual confi guration 
of the network nodes. (On the Internet, this equates to a series of very specifi c static 
routes.) On-demand connections require some type of signaling protocol to estab-
lish connections on the fl y, node by node through the network from the source (the 
“caller”) host to the destination (the “callee”) host.

Permanent connections are like intercoms: You can talk right away or at any time 
and know the other end is there. However, you can only talk to that specifi c endpoint 
on that connection. On-demand connections are like telephone calls: You have to wait 
until the other end “answers” before you talk or send any information, but you connect 
to (call) anyone in the world.
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TCP client–server connections, showing that this chapter uses a client and server pair on the 
same LAN.
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TCP AND CONNECTIONS
As much as router discussions become talks about IP packets and headers, host discus-
sions tend to become talks about TCP. However, a lot of the demonstrations involving 
TCP revolve around things that can go wrong.  What happens if an acknowledgment 
(ACK) is lost? What happens when two hosts send almost simultaneous connection 
requests (SYN) to open a connection? With the emphasis on corner cases, many pages 
written on TCP become exercises in exceptions. Yet there is much to be learned about 
TCP just by watching it work in a normal, error-free environment. 

Instead of watching to check whether TCP recovers from lost segments (it does), 
we’ll just capture the sequence of TCP segments used on various combinations of 
the three operating system platforms and see what’s going on. Later, we’ll use an FTP 
data transfer between wincli2 and bsdserver (both on LAN2) to look at TCP in action. 
In many ways it is an odd protocol, but we’ll only look at the basics and  examine FTP 
in detail in a later chapter. Figure 11.1 shows these hosts on the  network.

As before, we’ll use Ethereal to look at frames and packets.  There is also a utility 
called tcpdump, which is bundled with almost every TCP/IP implementation.  The major 
exception, as might be expected, is Windows.  The Windows version, windump, is not 
much different than our familiar Ethereal, so we’ll just use Ethereal to capture our Win-
dows TCP sessions. Because TCP operation is complicated, let’s look at some details of 
TCP operation before looking at how TCP looks on the Illustrated Network.

THE TCP HEADER
The TCP header is the same for IPv4 and IPv6 and is shown in Figure 11.2.  We’ve 
already talked about the port fi elds in the previous chapter on UDP. Only the features 
unique to TCP are described in detail.

Source and destination port—In some Unix implementations, source port num-
bers between 1024 and 4999 are called ephemeral ports. If an application 
does not specify a source port to use, the operating systems will use a source 
port number in this range.  This range can be expanded and changed (but not 
always), and 49,152 through 65,535 is more in line with current standards. Use  
of ephemeral ports impacts firewall use and limits the number of connections 
a host can have open at any one time.

Sequence number—Each new connection (re-tries of failed connections do not 
count) uses a different initial sequence number (ISN) as the basis for tracking 
segments. Windows uses a very simple time-based formula to compute that 
ISN, while Unix ISNs are more elaborate (ISNs can be spoofed by hackers).

Acknowledgment number—This number must be greater than or equal to zero 
(even a TCP SYN consumes one sequence number) except for the all 1’s ISN. 
 All segments on an established connection must have this bit set. If there is no 
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actual data in the received segment, the acknowledgment number increments 
by 1. (Every byte in TCP is still counted, but that’s not all that contributes to 
the sequence number field.)

Header length—The TCP header length in 4-byte units.

Reserved—Four bits are reserved for future use.

ECN flags—The two explicit congestion notification (ECN) bits are used to tell 
the host when the network is experiencing congestion and send windows 
should be adjusted.

URG, ACK, PSH, RST, SYN, FIN—These six single-bit fields (Urgent, Acknowledg-
ment, Push, Reset, Sync, and Final) give the receiver more information on how 
to process the TCP segment.  Table 11.1 shows their functions.

Window size—The size of receive window that the destination host has set.  This 
field is used in TCP flow control and congestion control. It should not be set 
to zero in an initial SYN segment.

Checksum—An error-checking field on the entire TCP segment and header as 
well as some fields from the IP datagram (the pseudo-header).  The fields are 
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FIGURE 11.2

The TCP header fi elds. Note that some fi elds are a single bit wide, and others, like the options 
fi eld, can be up to 40 bytes (320 bits) long.
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the same as in UDP. If the checksum computed does not match the received 
value, the segment is silently discarded.

Urgent pointer—If the URG control bit is set, the start of the TCP segment con-
tains important data that the source has placed before the “normal” contents 
of the segment data field. Usually, this is a short piece of data (such as CTRL-C). 
This field points to the first nonurgent data byte.

Options and padding—TCP options are padded to a 4-byte boundary and can be 
a maximum of 40 bytes long. Generally, a 1-byte Type is followed by a 1-byte 
Length field (including these initial 2 bytes), and then the actual options.  The 
options are listed in Table 11.2.

Table 11.1 TCP Control Bits by Abbreviation and Function

Bit Function

URG If set, the Urgent Pointer fi eld value is valid (often resulting from an interrupt-like 
CTRL-C). Seldom used, but intended to raise the priority of the segment.

ACK If set, the Acknowledgment Number fi eld is valid. 

PSH If set, the receiver should not buffer the segment data, but pass them directly to the 
application. Interactive applications use this, but few others. 

RST If set, the connection should be aborted. A favorite target of hackers “hijacking” TCP 
connections, a series of rules now govern proper reactions to this bit.

SYN If set, the hosts should synchronize sequence numbers and establish a connection. 

FIN If set, the sender had fi nished sending data and initiated a close of the connection.

Table 11.2  TCP Option Types, Showing Abbreviation (Meaning), Length, and RFC 
in Which Established

Type Meaning Total Length and Description RFC

0 EOL 1 byte, indicates end of option list (only used if end of 
options is not end of header)

793

1 NOP 1 byte, no option (used as padding to align header with 
Header-Length Field)

793

2 MSS 4 bytes, the last 2 of which indicate the maximum payload 
that one host will try to send another. Can only appear in 
SYN and does not change.

793 
879
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TCP MECHANISMS
It might not be obvious why TCP connections should be such a complication. One of 
the reasons is that TCP adds more to connectionless IP than connection capability.  The 
TCP service also provides aspects of what the ISO-RM defi nes as Session Layer services, 
services that include the history (a popular term is “state variables”) of the connection 
progress. Connections also provide a convenient structure with which to associate 
QoS parameters, although every layer of any protocol stack always has some QoS duties 
to perform, even if it is only error checking.

Offi cially, TCP is a virtual circuit service that adds reliability to the IP layer, reli-
ability that is lacking in UDP.  TCP also provides sequencing and fl ow control to the 
host-to-host interaction, which in turn provides a congestion control mechanism to the 
routing network as a whole (as long as TCP, normally an end-to-end concern, is aware 
of the congested condition).  The fl ow control mechanism in TCP is a sliding window 
procedure that prevents senders from overwhelming receivers and applies in both 
directions of a TCP connection.

TCP was initially defi ned in RFC 793, refi ned in RFCs 879, 1106, 1110, and 1323 
(which obsoleted RFC 1072 and RFC 1185). RFCs 1644 and 1693 extended TCP to 
 support transactions, which can be loosely understood as “connection-oriented 

Table 11.2 (continued)

Type Meaning Total Length and Description RFC

 3 WSCALE 3 bytes, the last establishing a multiplicative (scaling) factor. 
Supports bit-shifted window values above 65,535. 

1072

 4 SACKOK 2 bytes, indicating that selective ACKs are permitted. 2018

 5 SACK Of variable length, these are the selective ACKs. 1072

 6 Echo 6 bytes, the last 4 of which are to be echoed. 1072

 7 Echo reply 6 bytes, the last 4 of which echo the above. 1072

 8 Timestamp 10 bytes, the last 8 of which are used to compute the retrans-
mission timer through the RTT calculation. Makes sure that an 
old sequence number is not accepted by the current connection.

1323

 9 POC perm 2 bytes, indicating that the partial order service is permitted. 1693

10 POC profi le 3 bytes, the last carrying 2-bit fl ags. 1693

11 CC 6 bytes, the last 4 providing a segment connection count. 1644

12 CCNEW 6 bytes, the last 4 providing new connection count. 1644

13 CCECHO 6 bytes, the last 4 echoing previous connection count. 1644
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request–response pairs that cannot use UDP.” RFC 3168 added explicit congestion noti-
fi cation (ECN) bits to the TCP header.  These bits were “added” by redefi ning bits 6 and 
7 in the TOS fi eld of the packet header.

TCP and Transactions
It is important to note that TCP does not use the term “transaction” to describe 
those peculiar interactions that require coordinated actions among multiple hosts 
on the network. A familiar “transaction” is an accounting process that is not com-
plete until both one account has been debited and another has been credited. 
Database transactions are a completely different notion than what a transaction 
means in TCP.

But this is not the purpose of transactions for TCP (T/TCP)! TCP “transactions” 
are a way to sneak a quick burst of request–response data into an exchange of con-
nection setup segments, similar to the way that UDP works.

TCP headers can be between 20 bytes (typical) and 60 bytes long when options are 
used (not often).  A segment, which is the content of a TCP data unit, is essentially a por-
tion of the application’s send buffer.  As bytes accumulate in the send buffer, they will 
exceed the maximum segment size (MSS) established for the connection.  These bytes 
receive a TCP header and are sent inside an IP packet.  There are also ways to “push” a 
partially full send buffer onto the network.

At the receiver, the segment is added to a receive buffer until complete or until the 
application has enough data to process. Naturally, the amount of data exchanged varies 
greatly.

Let’s look at how TCP works and then examine the header fi elds that make it all 
happen. It might seem strange to talk about major TCP features before the TCP header 
has been presented, but the operation of many of the fi elds in the TCP header depend 
on terminology and concepts used during TCP connection and other procedures.

CONNECTIONS AND THE THREE-WAY HANDSHAKE
TCP establishes end-to-end connections over the unreliable, best-effort IP packet ser-
vice using a special sequence of three TCP segments sent from client to server and 
back called a three-way handshake.  Why three ways? Because packets containing the 
TCP segment that ask a server to accept another connection and the server’s response 
might be lost on the IP router network, leaving the hosts unsure of exactly what is 
going on.

Once the three segments are exchanged, data transfer can take place from host 
to host in either direction. Connections can be dropped by either host with a simple 
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exchange of segments (four in total), although the other host can delay the dropping 
until fi nal data are sent, a feature rarely used.

TCP uses unique terminology for the connection process.  A single bit called the 
SYN (synchronization) bit is used to indicate a connection request.  This single bit is 
still embedded in a complete 20-byte (usually) TCP header, and other information, such 
as the initial sequence number (ISN) used to track segments, is sent to the other host. 
Connections and data segments are acknowledged with the ACK bit, and a request to 
terminate a connection is made with the FIN (fi nal) bit.

The entire TCP connection procedure, from three-way handshake to data transfer 
to disconnect, is shown in Figure 11.3.  TCP also allows for the case where two hosts 
performs an active open at the same time, but this is unlikely.

This example shows a small fi le transfer to a server (with the server sending 1000 
bytes back to the client) using 1000-byte segments, but only to make the sequence 
numbers and acknowledgments easier to follow.  The whole fi le is smaller than the 
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ACK SEQ 4002 ACK 10002

ACK

SYN

ACK 4001

WAIT!

..

FIGURE 11.3

Client–server interaction with TCP, showing the three connection phases of setup, data transfer, 
and release (disconnect).
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server host’s receive window and nothing goes wrong (but things often go wrong in 
the real world).

Note that to send even one exchange of a request–response pair inside segments, 
TCP has to generate seven additional packets.  This is a lot of packet overhead, and the 
whole process is just slow over high latency (delay) links.  This is one reason that UDP 
is becoming more popular as networks themselves become more reliable.

Connection Establishment
Let’s look at the normal TCP connection establishment’s three-way handshake in some 
detail.  The three messages establish three important pieces of information that both 
sides of the connection need to know.

1.  The ISNs to use for outgoing data (in order to deter hackers, these should not 
be  predictable).

2. The buffer space (window) available locally for data, in bytes.

3.  The Maximum Segment Size (MSS) is a TCP Option and sets the largest segment 
that the local host will accept.  The MSS is usually the link MTU size minus the 40 
bytes of the TCP and IP headers, but many implementations use segments of 512 
or 536 bytes (it’s a maximum, not a demand).

A server issues a passive open and waits for a client’s active open SYN, which in 
this case has an ISN of 2000, a window of 5840 bytes and an MSS of 1460 (common 
because most hosts are on Ethernet LANs).  The window is almost always a multiple 
of the MSS (1460 3 4 5 5840 bytes).  The server responds with a SYN and declares the 
connection open, setting its own ISN to 4000, and “acknowledging” sequence number 
2001 (it really means “the next byte I get from you in a segment should be numbered 
2001”).  The server also established a window of 8760 bytes and an MSS of 1460 (1460 3 
6 5 8760 bytes).

Finally, the client declares the connection open and returns an ACK (a segment with 
the ACK bit set in the header) with the sequence number expected (2001) and the 
acknowledgment fi eld set to 4001 (which the server expects).  TCP sequence numbers 
count every byte on the data stream, and the 32-bit sequence fi eld allows more than 
4 billion bytes to be outstanding (nevertheless, high-speed transports such as Gigabit 
 Ethernet roll this fi eld over too quickly for comfort, so special “scaling” mechanisms are 
available for these link speeds).

TCP’s three-way handshake has two important functions. It makes sure that both 
sides know that they are ready to transfer data and it also allows both sides to agree 
on the initial sequence numbers, which are sent and acknowledged (so there is no 
mistake about them) during the handshake.  Why are the initial sequence numbers so 
important? If the sequence numbers are not randomized and set properly, it is possible 
for malicious users to hijack the TCP session (which can be reliable connections to a 
bank, a store, or some other commercial entity).
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Each device chooses a random initial sequence number to begin counting every 
byte in the stream sent. How can the two devices agree on both sequence number val-
ues in about only three messages? Each segment contains a separate sequence number 
fi eld and acknowledgment fi eld. In Figure 11.3, the client chooses an initial sequence 
number (ISN) in the fi rst SYN sent to the server.  The server ACKs the ISN by adding one 
to the proposed ISN (ACKs always inform the sender of the next byte expected) and 
sending it in the SYN sent to the client to propose its own ISN.  The client’s ISN could 
be rejected, if, for example, the number is the same as used for the previous connection, 
but that is not considered here. Usually, the ACK from the client both acknowledges the 
ISN from the server (with server’s ISN 1 1 in the acknowledgment fi eld) and the con-
nection is established with both sides agreeing on ISN. Note that no information is sent 
in the three-way handshake; it should be held until the connection is established.

This three-way handshake is the universal mechanism for opening a TCP connec-
tion. Oddly, the RFC does not insist that connections begin this way, especially with 
regard to setting other control bits in the TCP header (there are three others in addition 
to SYN and ACK and FIN). Because TCP really expects some control bits to be used dur-
ing connection establishment and release, and others only during data transfer, hackers 
can cause a lot of damage simply by messing around with wild combinations of the six 
control bits, especially SYN/ACK/FIN, which asks for, uses, and releases a connection 
all at the same time. For example, forging a SYN within the window of an existing SYN 
would cause a reset. For this reason, developers have become more rigorous in their 
interpretation of RFC 793.

Data Transfer
Sending data in the SYN segment is allowed in transaction TCP, but this is not typical. 
Any data included are accepted, but are not processed until after the three-way hand-
shake completes. SYN data are used for round-trip time measurement (an important 
part of  TCP fl ow control) and network intrusion detection (NID) evasion and inser-
tion attacks (an important part of the hacker arsenal).

The simplest transfer scenario is one in which nothing goes wrong (which, fortu-
nately, happens a lot of the time). Figure 11.4 shows how the interplay between TCP 
sequence numbers (which allow TCP to properly sequence segments that pop out of 
the network in the wrong order) and acknowledgments allow both sides to detect 
missing segments.

The client does not need to receive an ACK for each segment.  As long as the estab-
lished receive window is not full, the sender can keep sending.  A single ACK covers a 
whole sequence of segments, as long as the ACK number is correct.

Ideally, an ACK for a full receive window’s worth of data will arrive at the sender 
just as the window is fi lled, allowing the sender to continue to send at a steady rate. 
This timing requires some knowledge of the round-trip time (RTT) to the partner host 
and some adjustment of the segment-sending rate based on the RTT. Fortunately, both 
of these mechanisms are available in TCP implementations.
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What happens when a segment is “lost” on the underlying “best-effort” IP router net-
work? There are two possible scenarios, both of which are shown in Figure 11.4.

In the fi rst case, a 1000-byte data segment from the client to the server fails to arrive 
at the server.  Why? It could be that the network is congested, and packets are being 
dropped by overstressed routers. Public data networks such as frame relay and ATM 
(Asynchronous Transfer Mode) routinely discard their frames and cells under certain 
conditions, leading to lost packets that form the payload of these data units.

If a segment is lost, the sender will not receive an ACK from the receiving host. 
After a timeout period, which is adjusted periodically, the sender resends the last unac-
knowledged segment.  The receiver then can send a single ACK for the entire sequence, 
covering received segments beyond the missing one.

But what if the network is not congested and the lost packet resulted from a sim-
ple intermittent failure of a link between two routers? Today, most network errors are 
caused by faulty connectors that exhibit specifi c intermittent failure patterns that 
steadily worsen until they become permanent. Until then, the symptom is sporadic lost 
packets on the link at random intervals. (Predictable intervals are the signature of some 
outside agent at work.)

Client–Server Response to Lost SegmentsCLIENT SERVER
ACK 3001SEQ 8001

ACK 3001SEQ 8001

ACK 3001SEQ 10001

ACK 3001SEQ 11001

ACK 10001(no data)

ACK 10001(no data)

ACK 14001(no data)

ACK 10001(no data)

ACK 10001(no data)

ACK 3001SEQ 12001

ACK 3001SEQ 13001

ACK 3001SEQ 10001

ACK 3001SEQ 9001
(Where is 8001?)

LOST!

LOST!

(Where is 10001?
Repeat ACK for
100001)

(Ah! There it is...)

(Ah! There it is...)

(Sending data...)

(Thanks!)

(Where’s my
ACK for 8001
and 9001?)

Timeout!
(resend)

(Sending data...)

..

FIGURE 11.4

How TCP handles lost segments. The key here is that although the client might continue to send 
data, the server will not acknowledge all of it until the missing segment shows up.
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Waiting is just a waste of time if the network is not congested and the lost packet 
was the result of a brief network “hiccup.” So TCP hosts are allowed to perform a “fast 
recovery” with duplicate ACKs, which is also shown in Figure 11.4.

The server cannot ACK the received segments 11,001 and subsequent ones because 
the missing segment 10,001 prevents it. (An ACK says that all data bytes up to the ACK 
have been received.) So every time a segment arrives beyond the lost segment, the 
host only ACKs the missing segment.  This basically tells the other host “I’m still waiting 
for the missing 8001 segment.” After several of these are received (the usual number 
is three), the other host fi gures out that the missing segment is lost and not merely 
delayed and resends the missing segment.  The host (the server in this case) will then 
ACK all of the received data.

The sender will still slow down the segment sending rate temporarily, but only in 
case the missing segment was the result of network congestion.

Closing the Connection
Either side can close the TCP connection, but it’s common for the server to decide just 
when to stop.  The server usually knows when the fi le transfer is complete, or when the 
user has typed logout and takes it from there. Unless the client still has more data to 
send (not a rare occurrence with applications using persistent connections), the hosts 
exchange four more segments to release the connection.

In the example, the server sends a segment with the FIN (fi nal) bit set, a sequence 
number (whatever the incremented value should be), and acknowledges the last data 
received at the server.  The client responds with an ACK of the FIN and appropriate 
sequence and acknowledgment numbers (no data were sent, so the sequence number 
does not increment).

The TCP releases the connection and sends its own FIN to the server with the 
same sequence and acknowledgment numbers.  The server sends an ACK to the FIN 
and increments the acknowledgment fi eld but not the sequence number.  The connec-
tion is down.

But not really.  The “best-effort” nature of the IP network means that delayed dupli-
cated could pop out of a router at any time and show up at either host. Routers don’t 
do this just to be nasty, of course.  Typically, a router that hangs or has a failed link rights 
itself and fi nds packets in a buffer (which is just memory) and, trying to be helpful, 
sends them out. Sometimes routing loops cause the same problem.

In any case, late duplicates must be detected and disposed of (which is one reason 
the ISN space is 32 bits—about 4 billion—wide).  The time to wait is supposed to be 
twice as long as it could take a packet to have its TTL go to zero, but in practice this is 
set to 4 minutes (making the packet transit time of the Internet 2 minutes, an incred-
ibly high value today, even for Cisco routers, which are fond of sending packets with 
the TTL set to 255).

The wait time can be as high as 30 minutes, depending on TCP/IP implementation, 
and resets itself if a delayed FIN pops out of the network. Because a server cannot 
accept other connections from this client until the wait timer has expired, this often 
led to “server paralysis” at early Web sites.
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Today, many TCP implementations use an abrupt close to escape the wait-time 
requirement.  The server usually sends a FIN to the client, which fi rst ACKs and then 
sends a RST (reset) segment to the server to release the connection immediately and 
bypass the wait-time state.

FLOW CONTROL
Flow control prevents a sender from overwhelming a receiver with more data than it 
can handle.  With TCP, which resends all lost data, a receiver that is discarding data that 
overfl ows the receive buffers is just digging itself a deeper and deeper hole.

Flow control can be performed by either the sender or the receiver. It sounds 
strange to have senders performing fl ow control (how could they know when receiv-
ers are overwhelmed?), but that was the fi rst form of fl ow control used in older 
 networks.

Many early network devices were printers (actually, teletype machines, but the 
point is the same).  They had a hard enough job running network protocols and print-
ing the received data, and could not be expected to handle fl ow control as well. So 
the senders (usually mainframes or minicomputers with a lot of horsepower for the 
day) knew exactly what kind of printer they were sending to and their buffer sizes. If 
a printer had a two-page buffer (it really depended on byte counts), the sender would 
know enough to fi re off two pages and then wait for an acknowledgment from the 
printer before sending more. If the printer ran out of paper, the acknowledgment was 
delayed for a long time, and the sender had to decide whether it was okay to continue 
or not.

Once processors grew in power, fl ow control could be handled by the receiver, and 
this became the accepted method. Senders could send as fast as they could, up to a 
maximum window size.  Then senders had to wait until they received an acknowledg-
ment from the receiver. How is that fl ow control? Well, the receiver could delay the 
acknowledgments, forcing the sender to slow down, and usually could also force the 
sender to shrink its window. (Receivers might be receiving from many senders and 
might be overwhelmed by the aggregate.)

Flow control can be implemented at any protocol level or even every protocol layer. 
In practice, fl ow control is most often a function of the transport layer (end to end). Of 
course, the application feeding TCP with data should be aware of the situation and also 
slow down, but basic TCP could not do this.

TCP is a “byte-sequencing protocol” in which every byte is numbered.  Although 
each segment must be acknowledged, one acknowledgment can apply to multiple seg-
ments, as we have seen. Senders can keep sending until the data in all unacknowledged 
segments equals the window size of the receiver.  Then the sender must stop until an 
acknowledgment is received from the receiving host.

This does not sound like much of a fl ow control mechanism, but it is.  A receiver is 
allowed to change the size of the receive window during a connection. If the receiver 
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fi nds that it cannot process the received window’s data fast enough, it can establish 
a new (smaller) window size that must be respected by the sender.  The receiver can 
even “close” the window by shrinking it to zero. Nothing more can be sent until the 
receiver has sent a special “window update ACK” (it’s not ACKing new data, so it’s not 
a real ACK) with the new available window size.

The window size should be set to the network bandwidth multiplied by the round-
trip time to the remote host, which can be established in several ways. For example, a 
100-Mbps Ethernet with a 5-millisecond (ms) round-trip time (RTT) would establish 
a 64,000-byte window on each host (100 Mbps 3 5 ms 5 0.5 Mbits 5 512 kbits 5 
64 kbytes).  When the window size is “tuned” to the RTT this way, the sender should 
receive an ACK for a window full of segments just in time to optimize the sending 
process.

“Network” bandwidths vary, as do round-trip times.  The windows can always shrink 
or grow (up to the socket buffer maximum), but what should their initial value be? 
The initial values used by various operating systems vary greatly, from a low of 4096 
(which is not a good fi t for Ethernet’s usual frame size) to a high of 65,535 bytes. Free-
BSD defaults to 17,520 bytes, Linux to 32,120, and Windows XP to anywhere between 
17,000 and 18,000 depending on details.

In Windows XP, the TCPWindowSize can be changed to any value less that 64,240. 
Most Unix-based systems allow changes to be made to the /etc/sysctl.conf fi le.  When 
adjusting TCP transmit and receive windows, make sure that the buffer space is suffi -
cient to prevent hanging of the network portion on the OS. In FreeBSD, this means 
that the value of nmbclusters and socket buffers must be greater than the maximum 
window size. Most Linux-based systems autotune this based on memory settings.

TCP Windows
How do the windows work during a TCP connection? TCP forms its segments in mem-
ory sequentially, based on segment size, each needing only a set of headers to be added 
for transmission inside a frame.  A conceptual “window” (it’s all really done with point-
ers) overlays this set of data, and two moveable boundaries are established in this series 
of segments to form three types of data.  There are segments waiting to be transmitted, 
segments sent and waiting for an acknowledgment, and segments that have been sent 
and acknowledged (but have not been purged from the buffer).

As acknowledgments are received, the window “slides” along, which is why the 
process is commonly called a “sliding window.”

Figure 11.5 shows how the sender’s sliding window is used for fl ow control. (There 
is another at the receiver, of course.) Here the segments just have numbers, but each 
integer represents a whole 512, 1460, or whatever size segment. In this example, seg-
ments 20 through 25 have been sent and acknowledged, 26 through 29 have been sent 
but not acknowledged, and segments 30 through 35 are waiting to be sent.  The send 
buffer is therefore 15 segments wide, and new segments replace the oldest as the buf-
fer wraps.
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Flow Control and Congestion Control
When fl ow control is used as a form of congestion control for the whole network, the 
network nodes themselves are the “receivers” and try to limit the amount of data that 
senders dump into the network.

But now there is a problem. How can routers tell the hosts using TCP (which is an 
end-to-end protocol) that there is congestion on the network? Routers are not sup-
posed to play around with the TCP headers in transit packets (routers have enough to 
do), but they are allowed to play around with IP headers (and often have to).

Routers know when a network is congested (they are the fi rst to know), so they can 
easily fl ip some bits in the IPv4 and IPv6 headers of the packets they route.  These bits 
are in the TOS (IPv4) and Flow (IPv6) fi elds, and the hosts can read these bits and react 
to them by adjusting windows when necessary.

RFC 3168 establishes support for these bits in the IP and TCP headers. However, 
support for explicit congestion notifi cation in TCP and IP routers is not mandatory, 
and rare to nonexistent in routers today. Congestion in routers is usually indicated by 
dropped packets.

PERFORMANCE ALGORITHMS
By now, it should be apparent that TCP is not an easy protocol to explore and  understand. 
This complexity of TCP is easy enough to understand: Underlying network should be 
fast and simple, IP transport should be fast and simple as well, but unless every applica-
tion builds in complex mechanisms to ensure smooth data fl ow across the network, the 
complexity of networking must be added to TCP.  This is just as well, as the data transfer 
concern is end to end, and TCP is the host-to-host layer, the last bastion of the network 
shielding the application from network operations.

Sliding Window

Data sent and
acknowledged

Data sent and waiting
for acknowledgment

Data to
be sent

Data to
be sent

(Each integer represents a segment of
hundreds or thousands of bytes)

2120 22 23 24 25 26 27 28 29 30 31 32 33 34 35

FIGURE 11.5

TCP sliding window.
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To look at it another way, if physical networks and IP routers had to do all that the 
TCP layer of the protocol stack does, the network would be overwhelmed. Routers 
would be overwhelmed by the amount of state information that they would need to 
carry, so we delegate carrying that state information to the hosts. Of course, applica-
tions are many, and each one shouldn’t have to do it all. So TCP does it. By the way, 
this consistent evolution away from “dumb terminal on a smart network” like X.25 to 
“smart host on a dumb network” like TCP/IP is characteristic of the biggest changes in 
networking over the years.

This chapter has covered only the basics, and TCP has been enhanced over the 
years with many algorithms to enhance the performance of TCP in particular and the 
network in general. ECN is only one of them. Several others exist and will only be men-
tioned here and not investigated in depth.

Delayed ACK—TCP is allowed to wait before sending an ACK.  This cuts down 
on the number of “stand-alone” ACKs, and lets a host wait for outgoing data 
to “piggyback” an acknowledgment onto. Most implementations use a 200-ms 
wait time.

Slow Start—Regardless of the receive window, a host computes a second con-
gestion window that starts off at one segment.  After each ACK, this window 
doubles in size until it matches the number of segments in the “regular” 
window.  This prevents senders from swamping receivers with data at the start 
of a connection (although it’s not really very slow at all).

Defeating Silly Window Syndrome Early—TCP implementations processed 
receive buffer data slowly, but received segments with large chunks of data. 
Receivers then shrunk the window as if this “chunk” were normal. So windows 
often shrunk to next to nothing and remained here. Receivers can “lie” to pre-
vent this, and senders can implement the Nagle algorithm to prevent the send-
ing of small segments, even if PUSHed. (Applications that naturally generate 
small segments, such as a remote login, can turn this off.)

Scaling for Large Delay-Bandwidth Network Links—The TCP window-scale 
option can be used to count more than 4 billion or so bytes before the sequence 
number field wraps.  A timestamp option sent in the SYN message helps also. 
Scaling is sometimes needed because the Window field in the TCP header is  
16 bits long, so the maximum window size is normally 64 kbytes. Larger 
 windows are needed for large-delay times, high-bandwidth product links 
(such as the “long fat pipes” of satellite links).  The scaling uses 3 bytes: 1 for type 
(scaling), 1 for length (number of bytes), and 2 for a shift value called S.  The 
shift value provides a binary scaling factor to be applied to the usual value 
in the Window field. Scaling shifts the window field value S bits to the left to 
determine the actual window size to use.

Adjusting Resend Timeouts Based on Measured RTT—How long should a sender 
wait for an ACK before resending a segment? If the resend timeout is too short, 
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resends might clutter up a network slow in relaying ACKs because it is teeter-
ing on the edge of congestion. If it is too long, it limits throughput and slows 
recovery.  And a value just right for TCP connection over the local LAN might 
be much too short for connections around the globe over the Internet.  TCP 
adjusts its value for changing network conditions and link speeds in a rational 
fashion based on measured RTT, how fast the RTT has change in the past.

TCP AND FTP
First we’ll use a Windows FTP utility on wincli2 (10.10.12.222) to grab the 30,000-
byte fi le test.stuff from the server bsdserver (10.10.12.77) and capture the TCP 
(and FTP) packets with Ethereal. Both hosts are on the same LAN segment, so the pro-
cess should be quick and error-free.

The session took a total of 91 packets, but most of those were for the FTP data 
transfer itself.  The Ethereal statistics of the sessions note that it took about 55 seconds 
from fi rst packet to last (much of which was “operator think time”), making the average 
about 1.6 packets per second.  A total of 36,000 bytes were sent back and forth, which 
sounds like a lot of overhead, but it was a small fi le.  The throughput on the 100 Mbps 
LAN2 was about 5,200 bits per second, showing why networks with humans at the 
controls have to be working very hard to fi ll up even a modestly fast LAN.

We’ve seen the Ethereal screen enough to just look at the data in the screen shots. 
And Ethereal lets us expand all packets and create a PDF out of the capture fi le.  This in 
turn makes it easy to cut-and-paste exactly what needs to be shown in a single fi gure 
instead of many.

For example, let’s look at the TCP three-way handshake that begins the session in 
Figure 11.6.

FIGURE 11.6

Capture of three-way handshake. Note that Ethereal sets the “relative” sequence number to zero 
instead of presenting the actual ISN value.
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The fi rst frame, from 10.10.12.222 to 10.10.12.77, is detailed in the fi gure.  The 
window size is 65,535, the MSS is 1460 bytes (as expected for Ethernet), and selective 
acknowledgments (SACK) are permitted.  The server’s receive window size is 57,344 
bytes. Figure 11.7 shows the relevant TCP header values from the capture for the initial 
connection setup (which is the FTP control connection).

Ethereal shows “relative” sequence and acknowledgment numbers, and these always 
start at 0. But the fi gure shows the last bits of the actual hexadecimal values, showing 
how the acknowledgment increments the value in sequence and acknowledgment 
number (the number increments from 0x...E33A to 0x...E33B), even though no data 
have been sent.

Note that Windows XP uses 2790 as a dynamic port number, which is really in the 
registered port range and technically should not be used for this purpose.

This example is actually a good study in what can happen when “cross-platform” 
TCP sessions occur, which is often. Several segments have bad TCP checksums. Since 
we are on the same LAN segment, and the frame and packet passed error checks cor-
rectly, this is probably a quirk of TCP pseudo-header computation and no bits were 
changed on the network.  There is no ICMP message because TCP is above the IP layer. 
Note that the application just sort of shrugs and keeps right on going (which happens 
not once, but several times during the transfer).  Things like this “non–error error” hap-
pen all the time in the real world of networking.

At the end of the session, there are really two “connections” between wincli2 and 
bsdserver.  The FTP session rides on top of the TCP connection. Usually, the FTP session 
is ended by typing BYE or QUIT on the client. But the graphical package lets the user 
just click a disconnect button, and takes the TCP connection down without ending the 
FTP session fi rst.  The FTP server objects to this breach of protocol and the FTP server 
process sends a message with the text, You could at least say goodbye, to the client. 
(No one will see it, but presumably the server feels better.)

TCP sessions do not have to be complex. Some are extremely simple. For example, 
the common TCP/IP “echo” utility can use UDP or TCP.  With UDP, an echo is a simple 

Checksum Bad!
(But 3-way handshake
complete anyway...)

OPEN

Passive OPEN
bsdserverwincli2

Active OPEN
(Client port 2790)

OPEN

FTP Handshake Using 1460-byte Segments
SYN SEQ (ISN) ...72d1 WIN 65535

ACK SEQ ...72d2 WIN 65535
ACK ... e33b

SYN SEQ (ISN) ... e33a WIN 57344

MSS (OPT) 1460

MSS (OPT) 1460

FIGURE 11.7

FTP three-way handshake, showing how the ISNs are incremented and acknowledged.
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exchange of two segments, the request and reply. In TCP, the exchange is a 10-packet 
sequence.

This is shown in Figure 11.8, which captures the echo “TESTstring” from lnxclient 
to lnxserver. It includes the initial ARP request and response to fi nd the server.

Why so many packets? Here’s what happens during the sequence.

Handshake (packets 3 to 5)—The utility uses dynamic port 33,146, meaning 
Linux is probably up-to-date on port assignments.  The connection has a win-
dow of 5840 bytes, much smaller than the FreeBSD and Windows XP window 
sizes.  The MMS is 1460, and the exchange has a rich set of TCP options, includ-
ing timestamps (TSV) and windows scaling (not used, and not shown in the 
figure).

Transfer (packets 6 to 9)—Note that each ECHO message, request and response, is 
acknowledged. Ethereal shows relative acknowledgment numbers, so ACK=11 
means that 10 bytes are being ACKed (the actual number is 0x0A8DA551, or 
177,055,057 in decimal.

Disconnect (packets 10 to 12)—A typical three-way “sign-off” is used.

We’ll see later in the book that most of the common applications implemented on 
the Internet use TCP for its sequencing and resending features.

FIGURE 11.8

Echo using TCP, showing all packets of the ARP, three-way handshake, data transfer, and 
 connection release phases.
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QUESTIONS FOR READERS
Figure 11.9 shows some of the concepts discussed in this chapter and can be used to 
help you answer the following questions.

1. What are the three phases of connection-oriented communications?

2.  Which fi elds are present in the TCP header but absent in UDP? Why are they not 
needed in UDP?

3. What is the TCP fl ow control mechanism called?

4.  What does it mean when the initial sequence and acknowledgment numbers are 
“relative”?

5. What is the silly window syndrome? What is the Nagle algorithm?

1 byte

Source Port

1 byte 1 byte 1 byte

Destination Port

Sequence Number

Acknowledgment Number

Header
Length

RESV Control Bits Window Size

TCP Checksum

wincli2
Active OPEN
(Client port 2790)

Urgent Pointer

Options Field (variable length, maximum 40 bytes, 0 padded to 4-byte multiple)

DATA (application message)

H
e
a
d
e
r

FTP Handshake Using 1460-byte Segments bsdserver
Passive OPEN

OPEN

OPEN

SYN SEQ (ISN) ... e33a WIN 57344

MSS (OPT) 1460

ACK SEQ ...72d2 WIN 65535

ACK ... e33b

SYN SEQ(ISN) ...72d1 WIN 65535

MSS (OPT) 1460

3-Way Handshake
Complete

FIGURE 11.9

The TCP header fi elds and three-way handshake example.
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CHAPTER

What You Will Learn
In this chapter, you will learn about how multiplexing (and demultiplexing) and 
sockets are used in TCP/IP.  We’ll see how multiplexing allows many applications 
can share a single TCP/IP stock process.

You will learn how layer and applications interact to make multiplexing and 
the socket concept very helpful in networking.  We’ll use a small utility program to 
investigate sockets and illustrate the concepts in this chapter.

Multiplexing and Sockets 12 

Now that we’ve looked at UDP and TCP in detail, this chapter explores two key 
 concepts that make understanding how UDP and TCP work much easier: multiplex-
ing and sockets.  Technically, the term should be “multiplexing and demultiplexing,” but 
because mixing things together makes little sense unless you can get them back again, 
most people just say “multiplexing” and let it go at that.

Why is multiplexing necessary? Most TCP/IP hosts have only one TCP/IP stack pro-
cess running, meaning that every packet passing into or out of the host uses the same 
software process.  This is due to the fact that the hosts usually have only one network 
connection, although there are exceptions.  However, a host system typically runs many 
(technically, if other systems can access them, the host system is a server).  All these 
applications share the single network interface through multiplexing.

LAYERS AND APPLICATIONS
Both the source and destination port numbers, each 16 bits long, are included as the 
fi rst fi elds of the TCP or UDP segment header.  Well-known ports use numbers between 
0 and 1023, which are reserved expressly for this purpose.  In many TCP/IP implemen-
tations, there is a process (usually inetd or xinetd, the “Internet daemon”) that listens 
for all TCP/IP activity on an interface.  This process then launches to FTP or other appli-
cation processes on request, using the well-known ports as appropriate.
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Sockets between Linux client and server, showing the devices used in this chapter to illustrate socket 
operation.
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However, the well-known server port numbers can be statically mapped to their 
respective application on the TCP/IP server, and that’s how we will explore them in 
this introduction to sockets.  With static mapping, the DNS (port number 53) or FTP 
(port number 21) server processes (for example) must be running on the server at all 
times in order for the server TCP protocol to accept connections to these application 
form clients.   Things are more complex when both IPv4 and IPv6 are running, but this 
chapter considers the situation for IPv4 for simplicity.

This chapter will be a little different than the others.  Instead of jumping right in and 
capturing packets and then analyzing them, the socket packet capture is actually the 
whole point of the chapter.  So we’ll save that until last.  In the meantime, we’ll develop 
a socket-based application to work between the lnxclient (10.10.12.166 on LAN2) 
and lnxserver (10.10.11.66 on LAN1), as shown in Figure 12.1.

THE SOCKET INTERFACE
Saying that applications share a single network connection through multiplexing is 
not much of an explanation.  How does the TCP/IP process determine the source and 
destination application for the contents of an arriving segment? The answer is through 
sockets.  Sockets are the combination of IP address and TCP/UDP port number.  Hosts 
use sockets to identify TCP connections and sort out UDP request–response pairs, and 
to make the coding of TCP/IP applications easier.

The server TCP/IP application processes that “listen” through passive opens for con-
nection requests use well-known port numbers, as already mentioned.   The client TCP/
IP application processes that “talk” through active opens and make connection requests 
must choose port numbers that are not reserved for these well-known numbers.  Serv-
ers listen on a socket for clients talking to that socket.   There is nothing new here, but 
sockets are more than just a useful concept.   The socket interface is the most common 
way that application programs interact with the network.

There are several reasons for the socket interface concept and construct.  One rea-
son has already been discussed.  Suppose there are two FTP sessions in progress to 
the same server, and both client processes are running over the same network con-
nection on a host with IP address 192.168.10.70.  It is up to the client to make sure 
that the two processes use different client port numbers to control the sessions to 
the server.  This is easy enough to do.  If the clients have chosen client port numbers 
14972 and 14973, respectively, the FTP server process replies to the two client sockets 
as 192.168.10.79:14972 and 192.168.10.70:14973.  So the sockets allow simultaneous 
fi le transfer sessions to the same client from the same FTP server.  If the client sessions 
were distinguished only by IP address or port number, the server would have no way 
of uniquely identifying the client FTP process.  And the FTP server’s socket address is 
accessed by all of the FTP clients at the same time without confusion.

Now consider the server shown in Figure 12.2. Here there is a server that has more 
than one TCP/IP interface for network access, and thus more than one IP address. Yet 
these servers may still have only one FTP (or any other TCP/IP application) server  process 
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running. With the socket concept, the FTP server process has no problem separating 
 client FTP sessions from different network interfaces because their socket identifi ers 
will differ on the server end.  Since a TCP connection is always identifi ed by both the cli-
ent and server IP address and the client and server port numbers, there is no confusion.

This illustrates the sockets concept in more depth, but not the use of the socket 
interface in a TCP/IP network.   The socket interface forms the boundary between the 
application program written by the programmer and the network processes that are 
usually bundled with the operating system and quite uniform compared to the myriad 
of applications that have been implemented with programs.

Socket Libraries
Developers of applications for TCP/IP networks will frequently make use of a sockets 
library to implement applications.   These applications are not the standard “bundled” 
TCP/IP applications like FTP, but other applications for remote database queries and 
the like that must run over a TCP/IP network.   The sockets library is a set of program-
ming tools used to simplify the writing of application programs for TCP or UDP.  Since 
these “custom” applications are not included in the regular application services layer 
of TCP/IP, these applications must interface directly with the TCP/IP stack.  Of course, 
these applications must also exist in the same client–server, active–passive open envi-
ronment as all other TCP/IP applications.

The socket is the programmer’s identifi er for this TCP/IP layer interface.  In Unix 
environments, the socket is treated just like a fi le.   That is, the socket is created, opened, 
read from, written to, closed, and deleted, which are exactly the same operations that 
a programmer would use to manipulate a fi le on a local disk drive.  Through the use of 
the socket interface, a developer can write TCP/IP networked client–server applica-
tions without thinking about managing TCP/IP connections on the network.

The programmer can use sockets to refer to any remote TCP/IP application layer 
entity.   Many developers use socket interfaces to provide “front-end” graphical interfaces 

FTP ProcessSocket 1:
172.16.24.17:22

Socket 2:
172.16.43.11:22

172.16.24.17 172.16.43.11

FIGURE 12.2

The concept of sockets applied to FTP. Note how sockets allow a server with two different IP 
addresses to access the FTP server process using the same port.
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to common remote TCP/IP server processes such as FTP.  Of course, the developers may 
choose to write applications that implement both sides of the client–server model.

The socket can interface with either TCP (called a “stream” socket), UDP (called a 
“datagram” socket), or even IP directly (called the “raw” socket).  Figure 12.3 shows the 
three major types of socket programming interfaces.  There are even socket libraries 
that allow interfaces with the frames of the network access layer below IP itself.  More 
details must come from the writers of the sockets libraries themselves, since socket 
libraries vary widely in operational specifi cs.

TCP Stream Service Calls
When used in the stream mode, the socket interface supplies the TCP protocol with 
the proper service calls from the application.  These service calls are few in number, 
but enough to completely activate, maintain, and terminate TCP connections on the 
TCP/IP network.  Their functions are summarized in the following:

OPEN—Either a passive or active open is defined to establish TCP connections.

SEND—Allows a client or server application process to pass a buffer of informa-
tion to the TCP layer for transmission as a segment.

RECEIVE—Prepares a receive buffer for the use of the client or server application 
to receive a segment from the TCP layer.

STATUS—Allows the application to locate information about the status of a TCP 
connection.

CLOSE—Requests that the TCP connection be closed.

Application Programs

Stream
Interface

Network

Datagram
Interface

Raw Socket
Interface

TCP UDP

IP Layer

FIGURE 12.3

The three socket types. Note that the raw socket interface bypasses TCP and UDP. (The socket 
program often builds its own TCP or UDP header.)
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ABORT—Asks that the TCP connection discard all data in buffers and terminate 
the TCP connection immediately.

These commands are invoked on the application’s behalf by the socket interface, 
and therefore are not seen by the application programmer.  But it is always good to 
keep in mind that no matter how complicated a sockets library of routines might seem 
to a programmer, at heart the socket interface is a relatively simple procedure.

THE SOCKET INTERFACE: GOOD OR BAD?
However, the very simplicity of socket interfaces can be deceptive.  The price of this 
simplicity is isolating the network program developers from any of the details of how 
the TCP/IP network actually operates.  In many cases, the application programmers 
interpret this “transparency” of the TCP/IP network (“treat it just like a fi le”) to mean 
that the TCP/IP network really does not matter to the application program at all.

As many TCP/IP network administrators have learned the hard way, nothing could 
be further from the truth.  Every segment, datagram, frame, and byte that an applica-
tion puts on a TCP/IP network affects the performance of the network for everyone.   
Programmers and developers that treat sockets “just like a fi le” soon fi nd out that the 
TCP/IP network is not as fast as the hard drive on their local systems.  And many appli-
cations have to be rewritten to be more effi cient just because of the seductive transpar-
ency of the TCP/IP network using the socket interface.

For those who have been in the computer and network business almost from the 
start, the socket interface controversy in this regard closely mirrors the  controversy that 
erupted when COBOL, the fi rst “high-level” programming language, made it possible for 
people who knew absolutely nothing about the inner workings of computers to be 
trained to write application programs.  Before COBOL, programmers wrote in a low-level 
assembly language that was translated (assembled) into machine instructions.  (Some 
geniuses wrote directly in machine code without assemblers, a process known as “bare 
metal programming.”)

Proponents then, as with sockets, pointed out the effi ciencies to be enjoyed by 
 freeing programmers from reinventing the wheel with each program and writing 
the same low-level routines over and over.  There were gains in production as well—
 programmers who wrote a single instruction in COBOL could rely on the compiler 
to generate about 10 lines of underlying assembly language and machine code.  Since 
programmers all wrote about the same number of lines of code a day, a 10-fold gain in 
productivity could be claimed.

The same claims regarding isolation are often made for the socket interface.  Freed 
from concerns about packet headers and segments, network programmers can con-
centrate instead on the real task of the program and benefi t from similar productivity 
gains.  Today, no one seriously considers the socket interface to be an isolation liabil-
ity, although similar claims of “isolation” are still heard when programmers today can 
 generate code by pointing and clicking at a graphical display in Visual Basic or another 
even higher level “language.”
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The “Threat” of Raw Sockets
A more serious criticism of the socket interface is that it forms an almost perfect tool 
for hackers, especially the raw socket interface.  Many network security experts do not 
look kindly on the kind of abuses that raw sockets made possible in the hands of 
 hackers.

Why all the uproar over raw sockets? With the stream (TCP) and datagram (UDP) 
socket interfaces, the programmer is limited with regard to what fi elds in the TCP/UDP 
or IP header that they can manipulate.  After all, the whole goal is to relieve the program-
mer of addressing and header fi eld concerns.  Raw sockets were originally intended as 
a protocol research tool only, but they proved so popular among the same circle of 
trusted Internet programmers at the time that use became common.

But raw sockets let the programmer pretty much control the entire content of the 
packet, from header to fl ags to options.  Want to generate a SYN attack to send a couple 
of million TCP segments with the SYN bit sent one after the other to the same Web 
site, and from a phony IP address? This is diffi cult to do through the stream socket, but 
much easier with a raw socket.  Consequently, this is one reason why you can fi nd and 
download over the Internet hundreds of examples using TCP and UDP sockets, but raw 
socket examples are few and far between.  Not only could users generate TCP and UPD 
packets, but even “fake” ICMP and traceroute packets were now within reach.

Microsoft unleashed a storm of controversy in 2001 when it announced support 
for the “full Unix-style” raw socket interface in Windows XP.  Limited support for raw 
sockets in Windows had been available for years, and third-party device drivers could 
always be added to Windows to support the full raw socket interface, but malicious 
users seldom bestirred themselves to modify systems that were already in use.  How-
ever, if a “tool” was available to these users, it would be exploited sooner or later.

Many saw the previous limited support for raw sockets in Windows as a blessing 
in disguise.  The TCP/UDP layers formed a kind of “insulation” to protect the Internet 
from malicious application programs, a protective layer that was stripped away with 
full raw socket support.  They also pointed out that the success of Windows NT servers, 
and then Windows 95/98/Me, all of which lacked full raw socket support, meant that 
no one needed full raw sockets to do what needed doing on the Internet.  But once full 
raw sockets came to almost everyone’s desktop, these critics claimed, hackers would 
have a high-volume, but poorly secured, operating system in the hands of consumers.

Without full raw sockets, Windows PCs could not spoof IP addresses, generate TCP 
segment SYN attacks, or create fraudulent TCP connections.  When taken over by email-
delivered scripts in innocent-looking attachments, these machines could become “zom-
bies” and be used by malicious hackers to launch attacks all over the Internet.

Microsoft pointed out that full raw sockets support was possible in previous edi-
tions of Windows, and that “everybody else had them.” Eventually, with the release of 
Service Pack 2 for Windows XP, Microsoft restricted the traffi c that could be sent over 
the raw socket interface (receiving was unaffected) in two major ways:  TCP data could 
not be sent and the IP source address for UDP data must be a valid IP address.  These 
changes should do a lot to reduce the vulnerability on Windows XP in this regard.
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Also, in traditional Unix-based operating systems, access to raw sockets is a  privileged 
activity.  So, in a sense the issue is not to hamper raw sockets, but to prevent unauthor-
ized access to privileged modes of operation.  According to this position, all raw socket 
restrictions do is hamper legitimate applications and form an impediment to effec-
tiveness and portability.  Restrictions have never prevented a subverted machine from 
spoofi ng traffi c before Windows XP or since.

Socket Libraries
Although there is no standard socket programming interface, there are some socket inter-
faces that have become very popular for a number of system types.  The original socket 
interface was developed for the 1982 version of the Berkeley Systems Distribution of 
Unix (BSD 4.1c).  It was designed at the time to be used with a number of network pro-
tocol architectures, not just TCP/IP alone.  But since TCP/IP was bundled with BSD Unix 
versions, sockets and TCP/IP have been closely related.  A number of improvements have 
been made to the original BSD socket interface since 1982.  Some people still call the 
socket interfaces “Berkeley sockets” to honor the source of the concept.

In 1986,  AT&T, the original developers of Unix, introduced the Transport Layer 
Interface (TLI).  The TLI interface was bundled with AT&T UNIX System V and also sup-
ported other network architectures besides TCP/IP.  However, TLI is also almost always 
used with TCP/IP network interface.  Today, TLI remains somewhat of a curiosity.

WinSock, as the socket programming interface for Windows is called, is a special 
case and deserves a section of its own.

THE WINDOWS SOCKET INTERFACE
One of the most important socket interface implementations today, which is not for 
the Unix environment at all, is the Windows Socket interface programming library, or 
WinSock.  WinSock is a dynamic link library (DLL) function that is linked to a  Windows 
TCP/IP application program when run.  WinSock began with a 16-bit version for 
 Windows 3.1, and then a 32-bit version was introduced for Windows NT and Windows 
95.  All Microsoft DLLs have well-defi ned application program interface (API) calls, and 
in WinSock these correspond to the sockets library functions in a Unix environment.

It is somewhat surprising, given the popularity of the TCP/IP protocol architecture 
for networks and the popularity of the Microsoft Windows operating system for PCs, 
that it took so long for TCP/IP and Windows to be used together.  For a while, Microsoft 
(and the hardcover version of Bill Gates’s book) championed the virtues of multime-
dia CD-ROMs over the joys of surfi ng the Internet, but that quickly changed when the 
softcover edition of the book appeared and Microsoft got on the Internet bandwagon 
(much to the chagrin of Internet companies like Netscape).  In fairness to Microsoft, 
there were lots of established companies, such as Novell, that failed to foresee the rise 
of the Internet and TCP/IP and their importance in networking.  There were several 
reasons for the late merging of Windows and TCP/IP.
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TCP/IP and Windows
First, TCP/IP was always closely associated with the Unix world of academics and 
research institutions.  As such, Unix (and the TCP/IP that came with it) was valued as an 
open standard that was easily and readily available, and in some cases even free.  Win-
dows, on the other hand, was a commercial product by Microsoft intended for cor-
porate or private use of PCs.  Windows came to be accepted as a proprietary, de facto 
standard, easily and readily available, but never for free.  Microsoft encouraged develop-
ers to write applications for Windows, but until the release of Windows for Workgroups 
(WFW) these applications were almost exclusively “stand-alone” products intended to 
run complete on a Windows PC.  Even with the release of Windows for Workgroups, the 
network interface bundled with WFW was not TCP/IP, but NetBIOS, a network inter-
face for LANs jointly owned by IBM and Microsoft.

Second, in spite of Windows multitasking capabilities (the ability to run more 
than one process at a time), Windows used a method of multitasking known as “non-
preemptive multitasking.” In non-preemptive multitasking, a running process had 
to “pause” during execution on its own, rather than the operating system taking 
control and forcing the application to pause and give other processes a chance to 
execute.  Unix, in contrast, was a preemptive multitasking environment.  With pre-
emptive multitasking, the Unix operating system keeps track of all running pro-
cesses, allocating computer and memory resources so that they all run in an effi cient 
manner.  This system is characterized by more work for the operating system, but it is 
better for all the applications in the long run.  Windows was basically a multitasking 
GUI built on top of a single-user operating system (DOS).

Sockets for Windows
The pressure that led to the development of the WinSock interface is simple to 
relate.  Users wanted to hook their Windows-based PCs into the Internet.  The Internet 
only understands one network protocol, TCP/IP.  So WinSock was developed to satisfy 
this user need.  At fi rst the WinSock interface was used almost exclusively to Internet-
enable Windows PCs.  That is, the applications developed in those pre-Web days to use 
the WinSock interface were simple client process interfaces to enable Windows users 
to Telnet to Internet sites, run FTP client process programs to attach to Internet FTP 
servers, and so on.  This might sound limited, but before WinSock, Windows users were 
limited to dialing into ports that offered asynchronous terminal text interfaces and 
performed TCP/IP conversion for Windows users.

There were performance concerns with those early Windows TCP/IP implementa-
tions.  The basic problem was the performance of multitasked processes in the Micro-
soft Windows non-preemptive environment.  Most TCP/IP processes, client or server, 
do not worry about when to run or when to pause, as the Unix operating system 
handles that.  With Windows applications written for the WinSock DLL, all of the  TCP/IP
processes worried about the decision of whether to run or pause, since the Win-
dows operating system could not “suspend” or pause them on its own.  This voluntary 
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 giving up of  execution time was a characteristic of Windows, but not of most TCP/IP 
 implementations.

Also, Unix workstations had more horsepower than PC architectures in those early 
days, and the Unix operating system has had multitasking capabilities from the start.  Orig-
inally, Unix required a whole minicomputer’s resources to run effectively.  When PCs 
came along in the early 1980s, they were just not capable of having enough memory 
or being powerful enough to run Unix effectively (a real embarrassment for the mak-
ers of AT&T PCs for a while).  By the early 1990s, when the Web came along, early Web 
sites often relied on RISC processors and more memory than Windows PCs could even 
address in those days.

It is worth pointing out that most of these limitations were fi rst addressed with 
Windows 95, the process continued with Windows NT, and fi nally Windows XP and 
Vista.  Today, no one would hesitate to run an Internet server on a Windows platform, 
and many do.

SOCKETS ON LINUX
Any network, large or small, can use sockets.  In this section, let’s look at some socket 
basics on Linux systems.

We could write socket client and server applications from scratch, but the truth 
is that programmers hate to write anything from scratch.  Usually, they hunt around 
for code that does something pretty close to what they want and modify it for the 
occasion (at least for noncommercial purposes).  There are plenty of socket exam-
ples available on the Internet, so we downloaded some code written by Michael 
J.  Donahoo and Kenneth L.  Calvert.  The code, which comes with no copyright and a 
“use-at-your-own-risk” warning, is taken from their excellent book, TCP/IP Sockets in 
C (Morgan Kaufmann, 2001).

We’ll use TCP because there should be more effi ciency derived from a connection-
oriented, three-way handshake protocol like TCP than in a simple request–response 
protocol like UDP.  This application sends a string to the server, where the server 
socket program bounces it back.  (If no port is provided by the user, the client looks 
for well-known port 7, the TCP Echo function port.) First, we’ll list out and compile 
my version of the client socket code (TCPsocketClient and DieWithError.c) on 
lnxclient.  (Ordinarily, we would put all this is its own directory.)

[root@lnxclient admin]# cat TCPsocketClient.c
#include <stdio.h> /* for printf() and fprintf() */
#include <sys/socket.h> /* for socket(), connect(), send(), and recv() */
#include <arpa/inet.h> /* for sockaddr_in and inet_addr() */
#include <stdlib.h> /* for atoi() and exit() */
#include <string.h> /* for memset() */
#include <unistd.h> /* for close() */

#define RCVBUFSIZE 32   /* Size of receive buffer */
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void ErrorFunc(char *errorMessage);  /* Error handling function */

int main(int argc, char *argv[])
{
    int sock; /* Socket descriptor */
    struct sockaddr_in echoServAddr; /* Echo server address */
    unsigned short echoServPort; /* Echo server port */
    char *servIP; /* Server IP address (dotted quad) */
    char *echoString; /* String to send to echo server */
    char echoBuffer[RCVBUFSIZE]; /* Buffer for echo string */
    unsigned int echoStringLen; /* Length of string to echo */
    int bytesRcvd, totalBytesRcvd; /* Bytes read in single recv() 
 and total bytes read */

    if ((argc < 3) || (argc > 4)) /*  Test for correct number of 
arguments  */

    {
       fprintf(stderr, "Usage: %s <Server IP> <Echo Word> [<Echo Port>]\n",
               argv[0]);
       exit(1);
    }

    servIP = argv[1]; /* First arg: server IP address (dotted quad) */
    echoString = argv[2];            /* Second arg: string to echo */

    if (argc == 4)
        echoServPort = atoi(argv[3]); /* Use given port, if any */
    else
        echoServPort = 7;  /*  7 is the well-known port for the echo 

service */

    /* Create a reliable, stream socket using TCP */
    if ((sock = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP)) < 0)
        DieWithError("socket() failed");

    /* Construct the server address structure */
    memset(&echoServAddr, 0, sizeof(echoServAddr)); /*  Zero out 

structure */
    echoServAddr.sin_family = AF_INET; /*  Internet address 

family */
    echoServAddr.sin_addr.s_addr = inet_addr(servIP); /*  Server 

IP address */
    echoServAddr.sin_port = htons(echoServPort); /* Server port */

    /* Establish the connection to the echo server */
    if  (connect(sock, (struct sockaddr *) &echoServAddr, 

sizeof(echoServAddr)) < 0)
       DieWithError("connect() failed");

    echoStringLen = strlen(echoString);        /* Determine input length */
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    /* Send the string to the server */
    if (send(sock, echoString, echoStringLen, 0) != echoStringLen)
        DieWithError("send() sent a different number of bytes than expected");

    /* Receive the same string back from the server */
    totalBytesRcvd = 0;
    printf("Received: ");             /* Setup to print the echoed string */
    while (totalBytesRcvd < echoStringLen)
    {
        /* Receive up to the buffer size (minus 1 to leave space for
           a null terminator) bytes from the sender */
        if ((bytesRcvd = recv(sock, echoBuffer, RCVBUFSIZE - 1, 0)) <= 0)
            DieWithError("recv() failed or connection closed prematurely");
        totalBytesRcvd += bytesRcvd;   /* Keep tally of total bytes */
        echoBuffer[bytesRcvd] = ‘\0’; /* Terminate the string! */
        printf(echoBuffer); /* Print the echo buffer */
    }

    printf("\n");    /* Print a fi nal linefeed */

    close(sock);
    exit(0);
}

[root@lnxclient admin]# cat DieWithError.c
#include <stdio.h>  /* for perror() */
#include <stdlib.h> /* for exit() */

void DieWithError(char *errorMessage)
{
    perror(errorMessage);
    exit(1);

}

[root@lnxclie3nt admin]#

The steps in the program are fairly straightforward. First, we create a stream socket, 
and then establish the connection to the server.  We send the string to echo, wait for 
the response, print it out, clean things up, and terminate.  Now we can just compile the 
code and get ready to run it.

[root@lnxclient admin]# gcc –o TCPsocketClient TCPsocketClient.c DieWithError.c
[root@lnxclient admin]#

Before we run the program with TCPsocketoClient <ServerIPAddress> <StringtoEcho> 
<ServerPort>, we need to compile the server portion of the code on lnxserver.   The code 
in these two fi les is more complex.
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[root@lnxserver admin]# cat TCPsocketServer.c
#include <stdio.h> /* for printf() and fprintf() */
#include <sys/socket.h> /* for socket(), bind(), and connect() */
#include <arpa/inet.h>  /* for sockaddr_in and inet_ntoa() */
#include <stdlib.h> /* for atoi() and exit() */
#include <string.h> /* for memset() */
#include <unistd.h> /* for close() */

#define MAXPENDING 5 /* Maximum outstanding connection requests */

void ErrorFunc(char *errorMessage);     /* Error handling function */
void HandleTCPClient(int clntSocket);   /* TCP client handling function */

int main(int argc, char *argv[])
{
    int servSock;                    /* Socket descriptor for server */
    int clntSock;                    /* Socket descriptor for client */
    struct sockaddr_in echoServAddr; /* Local address */
    struct sockaddr_in echoClntAddr; /* Client address */
    unsigned short echoServPort;     /* Server port */
    unsigned int clntLen;            /*  Length of client address data 

structure */

    if (argc != 2)     /* Test for correct number of arguments */
    {
        fprintf(stderr, "Usage:  %s <Server Port>\n", argv[0]);
        exit(1);
    }

    echoServPort = atoi(argv[1]);  /* First arg:  local port */

    /* Create socket for incoming connections */
    if ((servSock = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP)) < 0)
        DieWithError("socket() failed");
      
    /* Construct local address structure */
    memset(&echoServAddr, 0, sizeof(echoServAddr));   /*  Zero out 

structure */
    echoServAddr.sin_family = AF_INET;                /*  Internet address 

family */
    echoServAddr.sin_addr.s_addr = htonl(INADDR_ANY); /*  Any incoming 

interface */
    echoServAddr.sin_port = htons(echoServPort);      /* Local port */

    /* Bind to the local address */

      
    if (bind(servSock, (struct sockaddr *) &echoServAddr,
        sizeof(echoServAddr)) < 0)
        DieWithError("bind() failed");

    /* Mark the socket so it will listen for incoming connections */
    if (listen(servSock, MAXPENDING) < 0)
        DieWithError("listen() failed");
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    for (;;) /* Run forever */
    {
        /* Set the size of the in-out parameter */
        clntLen = sizeof(echoClntAddr);

        /* Wait for a client to connect */
        if ((clntSock =  accept(servSock, (struct sockaddr *) &echoClntAddr, 
                               &clntLen)) < 0)
            DieWithError("accept() failed");

        /* clntSock is connected to a client! */

        printf("Handling client %s\n", inet_ntoa(echoClntAddr.sin_addr));

        HandleTCPClient(clntSock);
    }
    /* NOT REACHED */
}

[root@lnxserver admin]# cat HandleTCPClient.c
#include <stdio.h>      /* for printf() and fprintf() */
#include <sys/socket.h> /* for recv() and send() */
#include <unistd.h>     /* for close() */

#define RCVBUFSIZE 32   /* Size of receive buffer */

void DieWithError(char *errorMessage);  /* Error handling function */

void HandleTCPClient(int clntSocket)
{
    char echoBuffer[RCVBUFSIZE];        /* Buffer for echo string */
    int recvMsgSize;                    /* Size of received message */

    /* Receive message from client */
    if ((recvMsgSize = recv(clntSocket, echoBuffer, RCVBUFSIZE, 0)) < 0)
        DieWithError("recv() failed");

    /* Send received string and receive again until end of transmission */
    while (recvMsgSize > 0)      /* zero indicates end of transmission */
    {
        /* Echo message back to client */
        if (send(clntSocket, echoBuffer, recvMsgSize, 0) != recvMsgSize)
            DieWithError("send() failed");

        /* See if there is more data to receive */
        if ((recvMsgSize = recv(clntSocket, echoBuffer, RCVBUFSIZE, 0)) < 0)
            DieWithError("recv() failed");
    }
    close(clntSocket);    /* Close client socket */
}

[root@lnxserver admin]#

The server socket performs a passive open and waits (forever, if need be) for the 
 client to send a string for it to echo.  It’s the HandleTCPClient.c code that does the bulk 
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of this work.  We also need the ErrorFunc.c code, as before, so we have three fi les to 
compile instead of only two, as on the client side.

[root@lnxserver admin]# gcc -o TCPsocketServer TCPsocketServer.c 
HandleTCPClient.c DieWithError.c
[root@lnxserver admin]#

Now we can start up the server on lnxserver using the syntax TCPsocketServer 

<ServerPort>.  (Always check to make sure the port you choose is not in use already!)

[root@lnxserver admin]# .  /TCPsocketServer 2005

The server just waits until the client on lnxclient makes a connection and presents a 
string for the server to echo.  We’ll use the string TEST.

[root@lnxclient admin]# .  /TCPsocketClient 10.10.11.66 TEST 2005
Received: TEST
[root@lnxclient admin]#

Not much to that.  It’s very fast, and the server tells us that the connection with 
lnxclient was made.  We can cancel out of the server program.

Handling client 10.10.12.166
^C
[root@lnxserver admin]#

We’ve also used Ethereal to capture any TCP packets at the server while the socket 
client and server were running.  Figure 12.4 shows what we caught.

So that’s the attraction of sockets, especially for TCP.  Ten packets (two ARPs are not 
shown) made their way back and forth across the network just to echo “TEST” from 
one system to another.  Only two of the packets actually do this, as the rest are TCP 
connection overhead.

But the real power of sockets is in the details, or lack of details.  Not a single line 
of C code mentioned creating a TCP or IP packet header, fi eld values, or anything 
else.  The stream socket interface did it all, so the application programmer can concen-
trate on the task at hand and not be forced to worry about network details.

FIGURE 12.4

The socket client–server TCP stream captured. This is a completely normal TCP connection 
accomplished with a minimum of coded effort.
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QUESTIONS FOR READERS
Figure 12.5 shows some of the concepts discussed in this chapter and can be used to 
help you answer the following questions.

1. In the fi gure, two clients have picked the same ephemeral port for their FTP 
connection to the server.  What is it about the TCP connection that allows this to 
happen all the time without harm?

2. What if the user at the same client PC ran two FTP sessions to the same server 
process? What would have to be different to make sure that both TCP control 
(and data) connections would not have problems?

3. What is the attraction of sockets as a programming tool?

4. Why can’t the same type of socket interface be used for both TCP and UDP?

5. Are fully supported raw sockets an overstated threat to the Internet and attached 
hosts?

Server Socket:
172.16.19.10:22 FTP Server

FTP Client 1:
IP: 192.168.14.76

Port: 50001

FTP Client 2:
IP: 192.168.243.17

Port: 50001

Internet

Application Programs

Stream
Interface

Datagram
Interface

TCP UDP

IP Layer

Network

Raw Socket
Interface

FIGURE 12.5

A socket in an FTP server and the various types of socket programming interfaces.
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Internet service providers (ISPs) use routers and routing protocols to connect 
pieces of the Internet together.  This part explores IGPs such as RIP, OSPF, and 
IS-IS, and also BGP. It includes a look at multicast routing protocols and MPLS, a 
method of IP switching.

■ Chapter 13—Routing and Peering

■ Chapter 14—IGPs: RIP, OSPF, and IS–IS 

■ Chapter 15—BGP

■ Chapter 16—Multicast

■ Chapter 17—IP Switching and Convergence

Routing and 
Routing 
Protocols

PART

III





CHAPTER

What You Will Learn
In this chapter, you will learn about how routing differs from switching, the other 
network layer technology.  We’ll compare connectionless and connection-oriented 
networking characteristics and see how quality of service (QOS) can be sup-
ported on both.

You will learn what a routing protocol is and what they do.  We’ll investigate 
the differences between interior and exterior routing protocols as the terms apply 
to an ISP.  We’ll also talk about routing policies and the role they play on the mod-
ern Internet.

Routing and Peering 13

In Chapter 9, we introduced the concept of forwarding packets hop by hop across a 
network of interconnected routers and LANs.  This process is loosely called “routing,” 
and that chapter comprised a fi rst look at routing tables (and the associated forward-
ing tables). In this chapter, we’ll discuss how ISPs manipulate their routing tables with 
routing policies to infl uence the fl ow of traffi c on the Internet.  This chapter will focus 
more closely on the routing tables on hosts. In Chapters 14 and 15, we discuss in more 
detail the routing tables and routing policies on the network routers.

This chapter will look at the routing tables on the hosts on the LANs, as shown in 
Figure 13.1. But we’ll also discuss, for the fi rst time, how the two ISPs on the network 
(called Ace ISP and Best ISP) relate to each other and how their routing tables ensure 
that traffi c fl ows most effi ciently between LAN1 and LAN2. For example, it’s obviously 
more effective to send LAN1–LAN2 traffi c over the link between P4 and P2 instead of 
shuttling onto the Internet from P4 and relying on routers beyond the control of either 
Best or Ace ISP to route the packets back to P2. (Of course, traffi c could fl ow from P4 
to P7, or even end up at P9 to be forwarded to P7, but this is just an example.) But how 
do the routers know how P2 and P4 are connected? More importantly, how do the 
routers PE5 and PE1 know how the other routers are connected? What keeps router 
PE5 from forwarding Internet-bound traffi c to P9 instead of P4? And, because P9 is also 
connected to P4, why should it be a big deal anyway?
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The hosts on the LANs have routing tables as well as the routers. The ISPs on the Illustrated  Network 
have chosen to implement an ISP peering arrangement.
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This chapter will begin to answer these questions, and the next two chapters will 
complete the investigation. However, it should be mentioned right away that connec-
tionless routers that route (forward) each packet independently through the network 
are not the only way ISPs can connect LANs on the Internet.  The network nodes can 
be connection-oriented switches that forward packets along fi xed paths set up through 
the network nodes from source to destination.

We’ve already discussed connectionless and connection-oriented services at the 
transport layer (UDP and TCP). Let’s see what the differences are between connection-
less and connection-oriented services at the network layer.

NETWORK LAYER ROUTING AND SWITCHING
Are the differences between connection-oriented and connectionless networking at 
the network layer really that important? Actually, yes.  The difference between the way 
connectionless router networks handle traffi c (and link and node failures) is a major 
reason that IP has basically taken over the entire world of networking.

A switch in modern networking is a network node that forwards packets toward a 
destination depending on a locally signifi cant connection identifi er over a fi xed path. 
This fi xed path is called a virtual circuit and is set up by a signaling protocol (a switched 
virtual circuit, or SVC) or by manual confi guration (a permanent virtual circuit, or 
PVC).  A connection is a logical association of two endpoints. Connections only need be 
referenced, not identifi ed by “to” and “from” information.  A data unit sent on  “connection 
22” can only fl ow between the two endpoints where it is established—there is no need 
to specify more. (We’ve seen this already at Layer 2 when we looked at the connection-
oriented PPP frame.) As long as there is no confusion in the switch, connection identi-
fi ers can be reused, and therefore have what is called local signifi cance only.

Packets on SVCs or PVCs are often checked for errors hop by hop and are resent 
as necessary from node to node (the originator plays no role in the process). Packet 
switching networks offer guaranteed delivery (as least as error-free as possible).  The 
network is also reliable in the sense that certain performance guarantees in terms of 
bandwidth, delay, and so on can be enforced on the connection because packets always 
follow the same path through the network.  A good example of a switched network is 
the public switched telephone network (PSTN). SVCs are normal voice calls and PVCs 
are the leased lines used to link data devices, but frame relay and ATM are also switched 
network technologies.  We’ll talk about public switched network technologies such as 
frame relay and ATM in a later chapter.

On the other hand, a router is a network node that independently forwards pack-
ets toward a destination based on a globally unique address (in IP, the IP address) 
over a dynamic path that can change from packet to packet, but usually is fairly stable 
over time. Packets on router networks are seldom checked for errors hop by hop and 
are only resent (if necessary) from host to host (the originator plays a key role in 
the process). Packet routing networks offer only “best-effort” delivery (but as error-
free as possible).  The network is also considered “unreliable” in the sense that certain 
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 performance guarantees in terms of bandwidth, delay, and so on cannot be enforced 
from end to end because packets often follow different paths through the network.  
A good example of a router-based network is the global, public Internet.

CONNECTION-ORIENTED AND CONNECTIONLESS NETWORKS
Many layers of a protocol stack, especially the lower layers,  offer a choice of  connection-
oriented or connectionless protocols.  These choices are often independent.  We’ve seen 
that connectionless IP can use connection-oriented PPP at Layer 2. But what is it that 
makes a network connectionless? Not surprisingly, it’s the implantation of the network 
layer. IP,  the Internet protocol suite’s network layer protocol, is connectionless, so TCP/IP 
networks are connectionless.

Connection-oriented networks are sometimes called switched networks, and con-
nectionless networks are often called router-based networks.  The signaling protocol 
messages used on switched networks to set up SVCs are themselves routed between 
switches in a connectionless manner using globally unique addresses (such as tele-
phone numbers).  These call setup messages must be routed, because obviously there 
are no connection paths to follow yet. Every switched network that offers SVCs must 
also be a connectionless, router-based network as well.

One of the major reasons to build a connectionless network like the Internet was 
that it was inherently simpler than connection-oriented networks that must route sig-
naling setups messages and forward traffi c on connections.  The Internet essentially 
handles everything as if it were a signaling protocol message.  The differences between 
 connection-oriented switched networks and connectionless router networks are 
shown in Table 13.1.

Table 13.1 Switched and Connectionless Networks Compared by Major Characteristics

Characteristic Switched Network Connectionless Network

Design philosophy Connection oriented Connectionless

Addressing unit Circuit identifi ers Network and host address

Scope of address Local signifi cance Globally unique

Network nodes Switches Routers

Bandwidth use As allowed by “circuit” Varies with number and size of 
frames

Traffi c processing Signaling for path setup Every packet routed independently 

Examples Frame relay, ATM, ISDN, PSTN, 
most other WANs

IP, Ethernet, most other LANs
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Note that every characteristic listed for a connectionless network applies to the 
 signaling network for a switched network. It would not be wrong to think of the Inter-
net as a signaling network with packets that can carry data instead of connection (call) 
setup information.  The whole architecture is vastly simplifi ed by using the connection-
less network for everything.

The simplifi ed router network, in contrast to the switched network, would auto-
matically route around failed links and nodes. In contrast, connection-oriented networks 
lost every connection that was mapped to a particular link or switch.  These had to be 
re-established through signaling (SVCs) or manual confi guration (PVCs), both of which 
involved considerable additional traffi c loads (SVCs) or delays (PVCs) for all affected 
users. One of the original aims of the early “Internet” was explicitly to demonstrate that 
packet networks were more robust when faced with failures.  Therefore, connectionless 
networks could be built more cheaply with relatively “unreliable” components and still be 
resistant to failure.  Today, “best-effort” and “unreliable” packet delivery over the Internet is 
much better than any other connection-oriented public data network not so long ago.

Of course, an Internet router has to maintain a list of every possible reachable des-
tination in the world (and so did signaling nodes in connection-oriented networks), 
but processors have kept up with the burden imposed by the growth in the scale of 
the routing tables.  A switch only has to keep track of local associations of two end-
points (connections) currently established.  We’ll talk about multiprotocol label switch-
ing (MPLS) in Chapter 17 as an attempt to introduce the effi ciencies of switching into 
router-based networking. (MPLS does not really relieve the main burdens of interdo-
main routing, but we will see that MPLS has traffi c engineering capabilities that allow 
ISPs to shift the paths that carry this burden.)

In only one respect is there even any discussion about the merits of connection-
oriented networks versus the connectionless Internet.  This is in the area of the ability 
of connectionless router networks to deliver quality of service (QoS).

Quality of Service
It might seem odd to talk about QoS in a chapter on connectionless Internet routing 
and forwarding. But the point is that in spite of the movement to converge all types 
of information (voice and video as well as data) onto the Internet, no functional inter-
domain QoS mechanism exists. QoS is at heart a queue management mechanism, and 
only by applying these strategies across an entire routing domain will QoS result in any 
route optimization at all. Even then, no ISP can impose its own QoS methodology on 
any other.

One of the biggest challenges in quality of service (QoS) discussions is that there 
is no universal, accepted agreement of just what network QoS actually means. Some 
sources defi ne QoS quite narrowly, and others defi ne it more broadly. For the purposes 
of this discussion, a broader defi nition is more desirable.  We’ll use six parameters in 
this book.
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Our working defi nition of QoS in this book is the “ability of an application to 
 specify required values of certain parameters to the network, values without which the 
 application will not be able to function properly.”  The network either agrees to provide 
these parameters for the applications data fl ow, or not. These parameters include things 
like minimum bandwidth, maximum delay, and security. It makes no sense to put delay-
sensitive voice traffi c onto a network that cannot deliver delays less than 2 or 3 seconds 
one way (voice suffers at delays far less than full seconds), or to put digital, wide-screen 
video onto a network of low-bandwidth, dial-up analog connections.

Table 13.2 shows some typical example values that are used often. In some cases, an 
array of values is offered to customers as a CoS.

Bandwidth is usually the fi rst and foremost QoS parameters, for the simple rea-
son that bandwidth was for a long time the only QoS parameter that could be deliv-
ered by networks with any degree of consistency. It has also been argued that, given 
enough bandwidth (just how much is part of the argument), every other QoS param-
eter becomes irrelevant.

Jitter is just delay variation, or how much the end-to-end network latency varies 
from time to time due to effects such as network queuing and link failures, which cause 
alternate routes to be used. Information loss is just the effect of network errors. Some 

CoS or QoS?
Should the term for network support of performance parameters be “class of 
 service” (CoS) or “quality of service” (QoS)? Many people use the terms inter-
changeably, but in this book QoS is used to mean that parameters can take on 
almost any value between maximum and minimum. CoS, on the other hand, estab-
lishes groups of parameters based on real world values (e.g., bandwidth at 10, 100, 
or 1000 Mbps with associated delays), and is offered as a “class” to customers (e.g., 
bronze, silver, or gold service).

Table 13.2 The Six QoS Parameters

QoS Parameter Example Values (Typical)

Bandwidth (minimum) 1.5 Mbps, 155 Mbps, 1 Gbps

Delay (maximum) 50-millisecond (ms) round-trip delay, 150-ms delay

Jitter (delay variation) 10% of maximum delay, 5-ms variation

Information loss (error effects) 1 in 10,000 packets undelivered

Security All data streams encrypted and authenticated
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applications can recover from network errors by retransmission and related strategies. 
Other applications, most notably voice and video, cannot realistically resend informa-
tion and must deal with errors in other ways, such as the use of forward error correc-
tion codes. Either way, the application must be able to rely on the network to lose only 
a limited amount of information, either to minimize resends (data) or to maximize the 
quality of the service (voice/video).

Availability and reliability are related. Some interpret reliability as a local network 
quality and availability as global quality. In other words, if my local link fails often, 
I cannot rely on the network, but global availability to the whole pool of users might 
be very good.  There is another way that reliability is important in TCP/IP. IP is often 
called an unreliable network layer service.  This does not imply that the network fails 
often, but that, at the IP layer, the network cannot be relied on to deliver any QoS 
parameter values at all, not even minimum bandwidth. But keep in mind that a system 
built of unreliable components can still be reliable, and QoS is often delivered in just 
this fashion.

Security is the last QoS parameter to be added, and some would say that it is the 
most important of all.

Many discussions of QoS focus on the fi rst four items on the parameter list. But 
reliability and security also belong with the others, for a number of reasons. Security 
concerns play a large part in much of IPv6.  And reliability can be maximized in IP 
routing tables.  There are several other areas where security and reliability impact QoS 
parameters; the items discussed here are just a few examples.

Service providers seldom allow user application to pick and choose values from 
every QoS category. Instead, many service providers will gather the typical values of 
the characteristics for voice, video, and several types of data applications (bulk transfer, 
Web access, and so on), and bundle these as a class of service (CoS) appropriate for that 
traffi c fl ow. (On the other hand, some sources treat QoS and CoS as synonyms.) Usually, 
the elements in a CoS suite that a service provider offers have distinctive names, either 
by type (voice, video) or characteristic (“gold” level availability), or even in combina-
tion (“silver-level video service”).

The promise of widespread and consistent QoS has been constantly derailed by 
the continuing drop in the cost (and availability) of network links of higher and higher 
bandwidth. Bandwidth is a well-understood network resource (some would say the 
only well-understood network resource), and those who control network budgets 
would rather spend a dollar on bandwidth (known effects, low risk, etc.) than on other 
QoS schemes such as DiffServ (spotty support, diffi cult to implement, etc.).

HOST ROUTING TABLES
Now that we’ve shown that the Illustrated Network is fi rmly based on connectionless 
networking concepts, let’s look at the routing tables (not switching tables) on some 
of the hosts. Host routing tables can be very short.  When initially confi gured, many of 
them have only four types of entries.
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Loopback—Usually called lo0 on Unix-based systems (and routers), this is the 
prefix 127/8 in IPv4 and ::1 in IPv6. Not only used for testing, the loopback 
is a stable interface on a router (or host) that should not change even if the 
interface addresses do.

The host itself—There will be one entry for every interface on the host with an IP 
address.  This is a /32 address in IPv4 and a /128 address in IPv6.

The network—Each host address has a network portion that gets its own routing 
table entry.

The default gateway—This tells the host which router to use when the network 
portion of the destination IP address does not match the network portion of 
the source address.

Gateway or Edge Router?
A lot of texts simply say that the term “router” is the new term for “gateway” on the 
Internet, but that this old term still shows up in a number of acronyms (such as 
IGP). Other sources use the term “gateway” as a kind of synonym for what we’ve 
been calling the customer-edge router, meaning a router with only two types of 
routing decisions, that is, local or Internet. A DSL “router” is really just a “gateway” 
in this terminology, translating between local LAN protocols and service provider 
protocols. On the other hand, a backbone router without customer LANs is defi -
nitely a router in any sense of the term.

In this book, we’ll use the terms “gateway” and “router” interchangeably, keep-
ing in mind that the gateway terminology is still used for the entry or egress point 
of a particular subnet.

Routing Tables and FreeBSD
FreeBSD systems keep this fundamental information in the /etc/default/rc.conf fi le. 
But this information can be manipulated with the ifconfig command, which we’ve used 
already. However, interface information does not automatically jump into the routing 
table unless the changes are made to the rc.conf fi le. (If the network_interfaces vari-
able is kept to the default of auto, the system fi nds its network interfaces at boot time.)

Let’s use the netstat –nr command to take a closer look at the routing table on 
bsdserver.

bsdserver# netstat -nr
Routing tables

Internet:
Destination        Gateway            Flags    Refs      Use  Netif Expire
default            10.10.12.1         UGSc       1       97   em0
10.10.12/24        link#1             UC         2       0    em0
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10.10.12.1        00:05:85:8b:bc:db  UHLW       2       0    em0    335
10.10.12.52       00:0e:0c:3b:88:56  UHLW       0       4    em0   1016
127.0.0.1         127.0.0.1          UH         0    6306    lo0

Internet6:
Destination                     Gateway                Flags   Netif Expire
::1                             ::1                    UH      lo0
fe80::%em0/64                   link#1                 UC      em0
fe80::20e:cff:fe3b:8732%em0     00:0e:0c:3b:87:32      UHL     lo0
fe80::%xl0/64                   link#2                 UC      xl0
fe80::2b0:d0ff:fec5:9073%xl0    00:b0:d0:c5:90:73      UHL     lo0
fe80::%lo0/64                   fe80::1%lo0            Uc      lo0
fe80::1%lo0                     link#4                 UHL     lo0
ff01::/32                       ::1                    U       lo0
ff02::%em0/32                   link#1                 UC      em0
ff02::%xl0/32                   link#2                 UC      xl0
ff02::%lo0/32                   ::1                    UC      lo0

FreeBSD merges the routing and ARP tables, which is why hardware addresses (and 
their timeouts) appear in the output.  The C and c fl ags are host routes, and the S is a 
static entry.

To manually confi gure an Ethernet interface and add the route to the routing table, 
we use the ifconfig and route commands.

bsdserver# ifconfig em0 inet 10.10.12.77/24
bsdserver# route add –net 10.10.12.77 10.10.12.1

Routing and Forwarding Tables
Remember, the routing tables we’re looking at here are tables of routing informa-
tion and mainly for human inspection. Generally, everything the system learns 
about the network from a routing protocol is put into the routing table. But not all 
of the information is used for packet forwarding.

At the software level, the system creates a forwarding table in a much more 
compact and machine-useable format. The forwarding table is used to determine 
the output, the next-hop interface (if the system is not the destination). How-
ever, we’ll use the friendly routing tables to illustrate the routing process, as is 
normally done.

Routing Tables and RedHat Linux
RedHat Linux systems keep most network confi guration information in the /etc/ 
sysconfig and /etc/sysconfig/network-scripts directories.  The hostname, default gate-
way, and other information are kept in the /etc/sysconfig/network fi le.  The Ethernet 
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interface-specifi c information, such as IP address and network mask for eth0, is in the 
/etc/sysconfig/network-scripts/ifcfg-eth0 fi le (loopback is in ifcfg-lo0).

Let’s look at the lnxclient routing table with the netstat –nr command.

[root@lnxclient admin]# netstat -nr
Kernel IP routing table
Destination  Gateway     Genmask        Flags  MSS  Window  irtt  Iface
10.10.12.0   0.0.0.0     255.255.255.0  U        0  0          0  eth0
127.0.0.0    0.0.0.0     255.0.0.0      U        0  0          0  lo
0.0.0.0      10.10.12.1  0.0.0.0        UG       0  0          0  eth0

Oddly, the host address isn’t here.  This system does not require a route for the 
interface address bound to the interface.  The loopback entries are slightly different 
as well. Only network entries are in the Linux routing table. If we added a second 
 Ethernet interface (eth1) with IPv4 address 172.16.44.98 and a different default router 
(172.16.44.1), we’d add that information with the ipconfig and route commands.

[root@lnxclient admin]# ifconfig eth1 172.16.44.98 netmask 255.255.255.0
[root@lnxclient admin]# route add default gw 172.16.44.0 eth1

We’re not running IPv6 on the Linux systems, so no IPv6 information is displayed.

Routing and Windows XP
Windows XP, of course, handles things a little differently.  We’ve already used ipconfig 
to assign addresses, and Windows XP uses the route print command to display routing 
table information, such as on wincli2.

C:\Documents and Settings\Owner>route print
============================================================================
Interface List
0x1 ........................... MS TCP Loopback interface
0x2 ...00 02 b3 27 fa 8c ...... Intel(R) PRO/100 S Desktop Adapter - Packet 
Scheduler Miniport
============================================================================
============================================================================
Active Routes:
Network Destination        Netmask          Gateway       Interface   Metric
          0.0.0.0          0.0.0.0       10.10.12.1    10.10.12.222       20
       10.10.12.0    255.255.255.0     10.10.12.222    10.10.12.222       20
     10.10.12.222  255.255.255.255        127.0.0.1       127.0.0.1       20  
   10.255.255.255  255.255.255.255     10.10.12.222    10.10.12.222       20
        127.0.0.0        255.0.0.0        127.0.0.1       127.0.0.1       1
        224.0.0.0        240.0.0.0     10.10.12.222    10.10.12.222       20
  255.255.255.255  255.255.255.255     10.10.12.222    10.10.12.222       20
Default Gateway:        10.10.12.1 
============================================================================
Persistent Routes:
  None
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The table is an odd mix of loopbacks, multicast, and host and router information. 
Persistent routes are static routes that are not purged from the table.  We can delete 
information, add to it, or change it. If no gateway is provided for a new route, the system 
attempts to fi gure it out on its own.

The IPv6 routing table is not displayed with route print.  To see that, we need to 
use the IPv6 rt command.  The table on wincli2 reveals only a single entry for the link-
local–derived IPv6 address of the default router.

C:\Documents and Settings\Owner>ipv6 rt
::/0 -> 5/fe80:5:85ff:fe8b:bcdb pref 256 life 25m52s <autoconf>

This won’t even let us ping the wincli1 system on LAN1, even though we know to 
what router to send the IPv6 packets.

C:\Documents and Settings\Owner>ping6 fe80::20c:cff:fe3b:883c

Pinging fe80::20c:cff:fe3b:883c with 32 bytes of data:

No route to destination.
   Specify correct scope-id or use –s to specify source address.
No route to destination.
   Specify correct scope-id or use –s to specify source address.
No route to destination.
   Specify correct scope-id or use –s to specify source address.
No route to destination.
   Specify correct scope-id or use –s to specify source address.

Ping statistics for fe80::20c:cff:fe3b:883c:
   Packets: Sent = 4, Received = 0, Lost = 4 (100% loss)

What’s wrong? Well, we’re using link-local addresses, for one thing.  Also, we have 
no way to get the routing information known about LAN2 and router CE6 to LAN1 
and router CE0.  That’s the job of the Interior Gateway Protocols (IGPs), the types of 
routing protocols that run between ISP’s routers.  Why do we need them? Let’s look at 
the Internet fi rst, and then we’ll use an IPG in the next chapter so that the IPv6 ping 
works.

THE INTERNET AND THE AUTONOMOUS SYSTEM
Before taking a more detailed look at the routing protocols that TCP/IP uses to ensure 
that every router knows how to forward packets closer to their ultimate destination, 
it’s a good idea to have a fi rm grasp of just what routing protocols are trying to accom-
plish on the modern Internet.  The Internet today is composed of interlocking network 
pieces, much like a jigsaw puzzle of global proportions. Each piece is called an autono-
mous system (AS), and it’s convenient to think of each ISP as an AS, although this is not 
strictly true. 
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Routing protocols do not and cannot blend all these ASs together into a seamless 
whole all on their own. Routing protocols allow routers or networks to share adjacency 
information with their neighbors. They establish the global connectivity between rout-
ers, within an AS and without, and ASs in turn establish the global connectivity that 
characterizes the Internet. Routing policies change the behavior of the routing proto-
cols so AS connectivity is made into what the ISPs want (usually, ISPs add some term 
like “AS connectivity is made more effective and effi cient” but many times routing 
 policy doesn’t do this, as we’ll see). 

Routers are the network nodes of the global public Internet, and they pass IP address 
information back and forth as needed.  The result is that every router knows how to 
reach every IP network (really, the IP prefi x) anywhere in the world, or at least those 
that advertise that they are willing to accept traffi c for that prefi x.  They also know 
when a link or router has failed, and thus other networks might then be (temporarily) 
unreachable. Routers can dynamically route around failed links and routers, unless the 
destination network is connected to the Internet by only one link or happens to be 
right there on the local router.

There are no users on the router itself that originate or read email (as an example), 
although routers routinely take on a client or a server role (or both) for confi guration 
and administrative purposes. Routers almost always just pass IP packet traffi c through 

Routing Protocols and Routing Policies
A routing protocol is run on a router (and can be run on a host) to allow the router 
to dynamically learn about its network neighborhood and pass this knowledge on 
until every router has built a consistent view of the network “map” and the least 
cost (“best”) place to forward traffi c toward any reachable destination. Until the 
protocol converges there is always the possibility that some routers do not have 
the latest view of the network and might forward packets incorrectly.  Actually, it’s 
possible that some of the “maps” never converge and that some less-than-optimal 
path might be taken. But that need not be a disaster, although the reasons are far 
beyond this simple introduction.

A routing policy can be defi ned as “a rule implemented on the router to deter-
mine the handling of routing protocol information.” An example of an ISP’s routing 
policy rule is to “accept no routing protocol updates from hosts or routers not 
part of this ISP’s network.” This rule, intended to minimize the effects of malicious 
users, can be combined with others to create an overall routing policy for the 
whole ISP.

The term should not be confused with policy routing. Policy routing is usually 
defi ned as the forwarding of packets based not only on destination address, but 
also on some other fi elds in the TCP/IP header, especially the IPv4 ToS bits. Con-
fusingly, policy routing can be made more effective with routing policies, but this 
book will not deal with policy routing or QoS issues.
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from one interface to another, input port to output port, while trying to ensure that the 
packets are making progress through the network and moving one step closer to its 
destination. It is said that routers route packets “hop by hop” through the Internet. In a 
very real sense, routers don’t care if the packet ever reaches the destination or not:  All 
the router knows is that if the IP address prefi x is X, that packet goes out port Y.

THE INTERNET TODAY
There is really no such thing as the Internet today.  The concept of “the Internet” is a 
valid one, and people still use the term all the time. But the Internet is no longer a 
thing to be charted and understood and controlled and administered.  What we have 
is an interlocking grid of ISPs, an ISP “grid-net,” so to speak.  Actually, the graph of the 
Internet is a bit less organized than this, although ISPs closer to the core have a higher 
level of interconnection than those at the edge.  This is an interconnected mesh of 
ISPs and related Internet-connected entities such as government bureaus and learning 
institutions.  Also, keep in mind that in addition to the “big-I internet,” there are other 
internetworks that are not part of this global, public whole.

If we think of the Internet as a unity, and have no appreciation of actual ISP con-
nectivity, then the role of routing protocols and routing policies on the Internet today 
cannot be understood.  Today, Internet talk is peppered with terms like peers, aggre-
gates, summaries, Internet exchange points (IXPs), backbones, border routers, edge 
routers, and points of presence (POPs).  These terms don’t make much sense in the 
context of the Internet as a unifi ed network.

The Internet as the spaghetti bowl of connected ISPs is shown in Figure 13.2.  There 
are large national ISPs, smaller regional ISPs, and even tiny local ISPs.  There are also 
pieces of the Internet that act as exchange points for traffi c, such as the Network 
Access Points NAPs and IXPs. IXPs can by housed in POPs, formal places dedicated for 
this purpose, and in various collocation facilities, where the organizations rent fl oor 
space for a rack of equipment (“broom closet”) or larger fl oor space for more elaborate 
arrangements, such as redundant links and power supplies.  The IXPs are often run by 
former telephone companies.

Each cloud, except the one at the top of the fi gure, basically represents an ISP’s AS. 
Within these clouds, the routing protocol can be an IGP such as OSPF, because it is 
presumed that each and every network device (such as the backbone routers) in the 
cloud is controlled by the ISP. However, between the clouds, an EGP such as BGP must 
be used, because no ISP can or should be able to directly control a router in another 
ISP’s network.

The ISPs are all chained together by a complex series of links with only a few hard 
and fast rules (although there are exceptions).  As long as local rules are followed, as 
determined by contract, the smallest ISP can link to another ISP and thus give their 
users the ability to participate in the global public Internet. Increasingly, the nature of 
the linking between these ISPs is governed by a series of agreements known as peer-
ing arrangements. Peers are equals, and national ISPs may be peers to each other, but 
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treat smaller ISPs as just another customer, although it’s not all that unusual for small 
regional ISPs to peer with each other.

Peering arrangements detail the reciprocal way that traffi c is handed off from one 
ISP (and that means AS) to another. Peers might agree to deliver each other’s packets 
for no charge, but bill non-peer ISPs for this privilege, because it is assumed that the 
national ISP’s backbone will be shuttling a large number of the smaller ISPs’ packets. 
But the national ISP won’t be using the small ISP much.  A few examples of national 
ISPs, peer ISPs, and customer ISPs are shown in the fi gure.  This is just an example, and 
very large ISPs often have plenty of very small customers and some of those will be 
attached to more than one other ISP and employ high capacity links.  There will also be 
“stub AS” networks with no downstream customers.

Millions of PCs and Unix systems act as clients, servers, or both on the Internet. 
These hosts are attached to LANs (typically) and linked by routers to the Internet.  The 
LANs and “site routers” are just “customers” to the ISPs. Now, a customer of even 
 moderate size could have a topology similar to that of an ISP with a distinct border, 
core, and aggregation or services routers.  Although all attached hosts conform to the 
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The haphazard way that ISPs are connected on today’s Internet, showing IXPs at the top. 
 Customers can be individuals, organizations, or other ISPs.
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client–server architecture, many of them are strictly Web clients (browsers) or Web 
 servers (Web sites), but the Web is only one part of the Internet (although probably the 
most important one). It is important to realize that the clients and servers are on LANs, 
and that routers are the network nodes of the Internet.  The number of client hosts 
greatly exceeds the number of servers.

The link from the client user to the ISP is often a simple cable or DSL link. In con-
trast, the link from a server LAN’s router to the ISP could be a leased, private line, but 
there are important exceptions to this (Metro Ethernet at speeds greater than 10 Mbps 
is very popular).  There are also a variety of Web servers within the ISP’s own network. 
For example, the Web server for the ISP’s customers to create and maintain their own 
Web pages is located inside the ISP cloud.

The smaller ISPs link to the backbones of the larger, national ISPs. Some small ISPs 
link directly to national backbones, but others are forced for technical or fi nancial rea-
sons to link in a “daisy-chain” fashion to other ISPs, which link to other ISPs, and so on 
until an ISP with direct access to an IXP is reached. Peering bypasses the need to use 
the IXP structure to deliver traffi c.

Many other countries obtain Internet connectivity by linking to an IXP in the United 
States, although many countries have established their own IXPs. Large ISPs routinely 
link to more than one IXP for redundancy, while truly small ones rarely link to more 
than one other ISP for cost reasons. Peer ISPs often have multiple, redundant links 
between their border routers. (Border routers are routers that have links to more than 
one AS.) For a good listing of the world’s major IXPs, see http://en.wikipedia.org under 
Internet Exchange Point.

Speeds vary greatly in different parts of the Internet. Client access by way of low-
speed dial-up telephone lines is typically 33.6 to 56 kbps. Servers are connected by 
Metro Ethernet or by medium-speed private leased lines, typically 1.5 Mbps.  The high-
speed backbone links between national ISPs run at yet higher speeds, and between the 
IXPs themselves, speeds of 155 Mbps (known as OC-3c), 622 Mbps (OC-12c), 2.4 Gbps 
(OC-48c), and 10 Gbps (OC-192c) can be used, although “n 3 10” Gbps Ethernet trunks 
are less expensive. Higher speeds are always needed, both to minimize large Web site 
content-transfer latency times (like video and audio fi les) and because the backbones 
concentrate and aggregate traffi c from millions of clients and servers onto a single 
network.

THE ROLE OF ROUTING POLICIES
Today, it is impossible for all routers to know all details of the Internet.  The Internet 
now consists of an increasing number of routing domains. Each routing domain has 
its own internal and external routing policies.  The sizes of routing domains vary greatly, 
from only one IP address space to thousands, and each domain is an AS. Many ISPs 
have only one AS, but national or global ISPs might have several AS numbers.  A global 
ISP might have one AS for North America, another for Europe, and one for the rest of 
the world. Each AS has a uniquely assigned AS number, although there can be various, 
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 logical “sub-ASs” called confederations or subconfederations (both terms are used) 
inside a single AS.

We will not have a lot to say about routing policies, as this is a vast and complex 
topic. But some basics are necessary when the operation of routers on the network is 
considered in more detail.

An AS forms a group of IP networks sharing a unifi ed routing policy framework. 
A routing policy framework is a series of guidelines (or hard rules) used by the ISP to 
formulate the actual routing policies that are confi gured on the routers.  Among differ-
ent ASs, which are often administered by different ISPs, things are more complex. Care-
ful coordination of routing policies is needed to communicate complicated policies 
among ASs.

Why? Because some router somewhere must know all the details of all the IPv4 or 
IPv6 addresses used in the routing domain.  These routes can be aggregated (or sum-
marized) as shorter and shorter prefi xes for advertisement to other routers, but some 
routers must retain all the details.

Routes, or prefi xes, not only need to be advertised to another AS, but need to be 
accepted.  The decision on which routes to advertise and which routes to accept is deter-
mined by routing policy.  The situation is summarized in the extremely simple exchange 
of routing information between two peer ASs shown in Figure 13.3. (Note that the labels 
“AS #1” and “AS #2” are not saying “this is AS1” or “this is AS2”—AS numbers are reserved 
and assigned centrally.) The routing information is transferred by the routing protocol 
running between the routers, usually the Border Gateway Protocol (BGP).

The exchange of routing information is typically bidirectional, but not always. In 
some cases, the routing policy might completely suppress or ignore the fl ow of routing 
information in one direction because of the routing policy of the sender (suppress the 
advertising of a route or routes) or the receiver (ignore the routing information from 
the sender). If routing information is not sent or accepted between ASs, then clients 
or servers in one AS cannot reach other hosts on the networks represented by that 
 routing information in the other AS.

ISP B
(AS 2)

Announces Net3 to ISP Peer and
Accepts Net1, But NOT Net2

ISP A
(AS 1)

Announces Net1 and Net2 to
ISP Peer and Accepts Net3

FIGURE 13.3

A simple example of a routing policy, showing how routes are announced (sent) and accepted 
(received). ISP A and  ISP B are peers.

CHAPTER 13 Routing and Peering 337



Economic considerations often play a role in routing policies as well. In the old 
days, there were always subsidies and grants available for continued support for the 
research and educational network. Now the ISP grid-net has ISPs with their own cus-
tomers, and they can also be customers of other ISPs as well.  Who pays whom, and 
how much?

PEERING
Telephony faced the same problem and solved it with a concept called settlements. 
This is where one telephone company bills the call originator and shares a portion of 
the billed amount with other telephone companies as an access charge.  Access charges 
compensate the other telephone companies, long distance and local, that carry the call 
for the loss of the use of their own facilities (which could otherwise make money for 
the company directly) for the duration of the call. Now, in the IP world the source and 
destination share the cost of delivering packets, but the point is that telephony solved 
a similar issue and the terminology has been borrowed by the ISPs, which are often 
telephone companies as well.

The issue on the Internet becomes one of how one ISP should compensate another 
ISP for delivering packets that originate on the other ISP (if at all).  The issue is compli-
cated because the “call” is now a stream of packets, and an ISP might just be a transit ISP 
for packets that originate in one ISP’s AS and are destined for a third ISP’s AS.

ISP peers have tried three ways to translate this telephony “settlements” model to 
the Internet. First, there are very popular bilateral (between two sides) settlements 
based on the “call,” usually defi ned as some aspect of IP packet fl ows. In this settlement 
arrangement, the fi rst ISP, where the packet originates at a client, gets all of the revenue 
from the customer. However, the fi rst ISP shares some of this money with the other ISP 
(where the server is located). Second, there is the idea of sender keeps all (SKA), where 
the fl ow of packets from client to server one way is supposedly balanced by the fl ow 
of packets from client to server the other way. So each ISP might as well just keep all 
of the revenue from their customers. Finally, there are transit fees, which are just settle-
ments between one ISP and another, usually paid by a smaller ISP to a larger (because 
this traffi c fl ow is seldom symmetrical).

Unfortunately, none of these methods have worked out well on the Internet.  TCP/IP 
is not telephony and routers are not telephone switches.  There are often many more 
than just two or three ISPs involved between client and server.  There is no easy way to 
track and account for the packets that should constitute a “call,” and even TCP  sessions 
leave a lot to be desired because a simple Web page load might involve many rapid 
TCP connections between client and server. It is often hard to determine the  “origin” 
because a packet and packets do not always follow stable network paths. Packets are 
often dropped, and it seems unfair to bill the originating ISP for resent packets replacing 
those that were not delivered by the billing ISP in the fi rst place. Finally, dynamic rout-
ing might not be symmetric: So-called “hot potato” routing seeks to pass packets off to 
another ISP as soon as possible. So the path from client to server often passes through 
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different ISPs rather than keeping requests and replies all on one ISP’s network.  This 
common practice has real consequences for QoS  enforcement.

These drawbacks of the telephony settlements model resulted in a movement to 
more simplistic arrangements among ISP peers, which usually means ISPs of roughly 
equal size.  These are often called peering arrangements or just peering.  There is no 
strict defi nition of what a peer is or is not, but it often describes two ISPs that are 
directly connected and have instituted some routing policies between them. In addi-
tion, there is nearly endless variation in settlement arrangements.  These are just some 
of the broad categories.  The key is that any traffi c that a small network can offl oad onto 
a peer costs less than traffi c that stays on internal transit links.

Economically, there is often also a sender-keeps-all arrangement in place, and 
no money changes hands.  An ISP that is not a peer is just another customer of the 
ISP, and customers pay for services rendered.  An interesting and common situation 
arises when three peers share a “transit peer” member.  This situation is shown in 
 Figure 13.4.  There are typically no fi nancial arrangements for peer ISPs providing 
 transit services to the third peer, so peer ISPs will not provide transit to a third peer 
ISP (unless, of course, the third peer ISP is willing to pay and become a customer of 
one of the other ISPs).
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FIGURE 13.4

ISPs do not provide free transit services, and generally are either peers or customers of other 
ISPs. Unless “arrangements” are made, ISP B will routinely block transit traffi c between ISP A 
and ISP C.
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All three of these ISPs are “peers” in the sense that they are roughly equal in terms 
of network resources.  They could all be small or regional or national ISPs. ISP A peers 
with ISP B and ISP B peers with ISP C, but ISP A has no peering arrangement (or 
direct link) with ISP C. So packet deliveries from hosts in ISP A to ISP B (and back) 
are allowed, as are packet deliveries from hosts in ISP C to and from ISP B. But ISP B 
has routing policies in place to prevent transit traffi c from ISP A to and from ISP C 
through ISP B. How would that be of any benefi t to ISP B? Unless ISP A and ISP C are 
willing to peer with each other, or ISP A or ISP C is willing to become a customer of 
ISP B, there will be no routing information sent to ISP A or ISP C to allow these ISPs 
to reach each other through ISP B.  The routing policies enforced on the routers in 
ISP B will make sure of this, telling ISP A (for example) “you can’t get to ISP C’s hosts 
through me!”

The real world of the Internet, without a clearly defi ned hierarchy, complicates 
peering drastically. Peering is often a political issue.  The politics of peering began 
in 1997, when a large ISP informed about 15 other ISPs that its current, easy-going 
peering arrangements would be terminated. New agreements for transit traffi c were 
now required, the ISP said, and the former peers were effectively transformed into 
customers.  As the trend spread among the larger ISPs, direct connections were favored 
over public peering points such as the IXPs.

This is one reason that Ace ISP and Best ISP in Figure 13.1 at the beginning of the 
chapter maintain multiple links between the four routers in the “quad” between their 
border routers. Suppose for a moment that routers P2 and P4 only have a single, direct 
link between them to connect the two ISPs.  What would happen if that link were 
down? Well, at fi rst glance, the situation doesn’t seem very drastic. Both have links 
to “the Internet,” which we know now is just a collection of other ISPs just like Ace 
and Best.

Can LAN1 reach LAN2 through “the Internet”? Maybe. It all depends on the arrange-
ments between our two ISPs and the ISPs at the end of the “Internet” links.  These ISPs 
might not deliver transit traffi c between Ace and Best, and may even demand payment 
for these packets as “customers” of these other ISPs.  The best thing for Ace and Best to 
do—if they don’t have multiple backup links in their “quad”—is to make more peers 
of other ISPs.

PICKING A PEER
All larger ISPs often want to be peers, and peers of the biggest ISPs around. (For many, 
buying transit and becoming a customer of some other ISP is a much less expensive 
and effective way to get access to the global public Internet if being a transit provider is 
not your core business.) When it comes to peering, bigger is better, so a series of merg-
ers and acquisitions (it is often claimed that there are no mergers, only acquisitions) 
among the ISPs took place as each ISP sought to become a “bigger peer” than another. 
This consolidation decreased the number of huge ISPs and also reduced the number of 
potential peers considerably.
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Potential partners for peering arrangements are usually closely examined in several 
areas. ISPs being considered for potential peering must have high capacity backbones, 
be of roughly the same size, cover key areas, have a good network operations center 
(NOC), have about the same quality of service (QoS) in terms of delay and dropped 
packets, and (most importantly), exchange traffi c roughly symmetrically. Nobody wants 
their routers, the workhorse of the ISP, to peer with an ISP that supplies 10,000 packets 
for every 1000 packets it accepts. Servers, especially Web sites, tend to generate much 
more traffi c than they consume, so ISPs with “tight” networks with many server farms 
or Web hosting sites often have a hard time peering with anyone. On the other hand, 
ISPs with many casual, intermittent client users are courted by many peering suitors. 
Even if match is not quite the same in size, if the traffi c fl ows are symmetrical, peering 
is always possible.  The peering situation is often as shown in Figure 13.5. Keep in mind 
that other types of networks (such as cable TV operators and DSL providers) have dif-
ferent peering goals than presented here.

Without peering arrangements in place, ISPs rely on public exchange and peer-
ing points like the IXPs for connectivity.  The trend is toward more private peering 
between pairs of peer ISPs.

Private peering can be accomplished by installing a WAN link between the AS border 
routers of the two ISPs.  Alternatively, peering can be done at a collocation site where the 
two peers’ routers basically sit side by side. Both types of private peering are common.

ISP A

Traffic with Balance
ISP A to ISP B: 1000
   packets per min.
ISP B to ISP A: 1000
   packets per min.

Traffic Flow Unbalanced
ISP A to ISP C: 1000
   packets per min.
ISP C to ISP A: 10,000
   packets per min.

Medium Infrastructure
Mix of Clients and Servers

ISP B

Large Infrastructure
with Many Clients

ISP C

Many Web Servers
on Lots of Server Farms

Who will peer
with ISP A?

(a) (b)

FIGURE 13.5

Good and bad peering candidates. Note that the goal is to balance the traffi c fl ow as much as 
 possible. Generally, the more servers the ISP maintains, the harder it is to peer. (a) ISP A will 
propose peering to ISP B; (b) ISP A will not want to peer with ISP C but will take them on as a 
customer.
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The Internet today has more routes than there were computers attached to the 
Internet in early 1989. Routing policies are necessary whether the peering relationship 
is public or private (through an IXP or through a WAN link between border routers). 
Routing information simply cannot be easily distributed everywhere all at once. Even 
the routing protocols play a role. Some routing protocols send much more information 
than others, although protocols can be “tuned” by adjusting parameters and with rout-
ing policies.

Routing policies help interior gateway protocols (IGPs) such as OSPF and IS–IS 
distribute routing information within an AS more effi ciently.  The fl ow of routing infor-
mation between routing domains must be controlled by routing policies to enforce the 
public or private peering arrangements in place between ISPs.

In the next chapter, we’ll see how an IGP works within an AS or routing domain.
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Even Better ISP
(established when EveNet ISP

bought Better ISP)

One Unified Routing
Policy and Domain

Lower Speed
Link

Higher Speed
Link

Private Peering with Ace
ISP (large amounts of

traffic exchanged)
Public Peering with Best

ISP at an IXP

AS
(former EveNet ISP) AS

(former Better ISP)

FIGURE 13.6

Even Better ISP, showing peering arrangements and routing domains.

QUESTIONS FOR READERS
Figure 13.6 shows some of the concepts discussed in this chapter and can be used to 
help you answer the following questions.

1. What is an Internet autonomous system (AS)?

2. Why might a single ISP like Even Better ISP have more than one routing domain?

3. What is the purpose of a routing policy?

4. What does “ISP peering” mean?

5. What is the difference between public and private peering? Are both  necessary?
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CHAPTER

What You Will Learn
In this chapter, you will learn about the role of IGPs and how these routing proto-
cols are used in a routing domain or autonomous system (AS).  We’ll use OSPF and 
RIP, but mention IS–IS as well.

You will learn how a routing policy can distribute the information gathered 
from one routing protocol into another, where it can be used to build routing and 
forwarding tables, or announced (sent) to other routers.  We’ll create a routing 
policy to announce our IPv6 routes to the other routers.

As is true of many chapters in this book, this chapter’s content is more than 
enough for a whole book by itself. Only the basics of IGPs are covered here, but 
they are enough to illustrate the function of an internal routing protocol on our 
network.

14

In this chapter, we’ll confi gure an IGP to run on the Juniper Networks routers that 
make up the Illustrated Network. In Chapter 9 we saw output that showed OSPF run-
ning on router CE6 as part of Best ISP’s AS. So fi rst we’ll show how OSPF was confi g-
ured on the routers in AS 65127 and AS 65459.  We could confi gure IS–IS on the other 
AS, but that would make an already long chapter even longer. Because we closed the 
last chapter with IPv6 ping messages not working, let’s confi gure RIPng, the version of 
RIP that is for IPv6.  This is not an endorsement of RIPng, especially given other avail-
able choices. It’s just an example.

Why not add OSPFv3 (the version of OSPF used with IPv6) for IPv6 support? We 
certainly could, but suppose the smaller site routers only supported RIP or RIPng? (RIP 
is usually bundled with basic software, but other IGPs often have to be purchased.) 
Then we would have no choice but to run RIPng to distribute the IPv6 addresses. If we 
confi gure RIPng to run on the ASs between on-site routers CE0 and CE6, we can always 
extend RIPng support right to the Unix hosts (the IPv6 hosts just need to point to CE0 
or CE6 as their default routers).

In this chapter, we’ll use the routers heavily, as shown in Figure 14.1.

IGPs: RIP, OSPF, 
and IS–IS



FIGURE 14.1

The routers on the Illustrated Network, showing routers on which OSPF and RIPng will be running.  
The IGPs will not be running between the two AS routing domains; instead, an EGP will run.

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80:205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-0
/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65459

Wireless
in Home

Solid rules � SONET/SDH
Dashed rules � Gig Ethernet
Note: All links use 10.0.x.y
addressing...only the last
two octets are shown.

346 PART III Routing and Routing Protocols



CE6
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Unfortunately, when it comes to networks, a lot of things are interrelated, although 
we’d like to learn them sequentially. For example, we’ve already shown in Chapter 9 
that OSPF is confi gured on the routers, although we didn’t confi gure it.  Also, although 
both ASs will run the same IGP (RIPng) in this chapter, the ASs are not running RIPng 
or any other IGP in between (e.g., on the links between routers P9 and P7).  That’s the 
job of the EGP, which we’ll explore in the next chapter.  There is a lot going on in this 
chapter, so let’s list the topics covered here (and in Chapter 15), so we don’t get lost.

1. We’ll talk about ASs and the role of IGP and EGPs on a network.

2. We’ll confi gure RIPng as the IGP in both ASs, starting with the IPv6 address on the 
interfaces and show that the routing information about LAN1 and LAN2 ends up 
everywhere.  We will not talk about the role of the EGP in all this until Chapter 15.

3. We’ll compare three major IGPs: RIP, OSPF, and IS–IS. In the OSPF section, we’ll 
show how OSPF was confi gured in the two ASs for Chapter 9.

Internal and External Links
In this chapter, we’ll add RIPng as an IGP on all but the links between AS 65459 
and AS 65127.  This affects routers P9 and P4 in AS 65459 and routers P7 and P2 in 
AS 65127. IGPs run on internal (intra-AS) links, and EGPs run on external (inter-
AS) links.

In Chapter 15, we’ll confi gure BGP as the EGP on those links.  This chapter 
assumes that BGP is up and running properly on the external links between P9 
and P4 in AS 65459 and P7 and P2 in AS 65127.

We’ll use our Windows XP clients for this exercise, just to show that the “home 
 version” of XP is completely comfortable with IPv6.

 Autonomous System Numbers
Ace and Best ISP on the Illustrated Network use AS numbers (ASNs) in the private 
range, just as our IP addresses. IANA parcels them out to the various registries that 
assign them as needed to those who apply. Before 2007,   AS numbers were 2-byte 
(16-bit) values with the following ranges of relevance:

■ 0: Reserved (can be used to identify nonrouted networks)
■ 1–43007: Allocated by ARIN,  APNIC,  AfriNIC, and RIPE NCC
■ 43008–48127: Held by IANA
■ 48128–64511: Reserved by IANA
■ 64512–65534: Designated by IANA for private use
■ 65535: Reserved
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Now, let’s see what it takes to get RIPng up and running on these routers. So far, the 
link-local fe80 addresses have been fi ne for running ping and for neighbor discovery 
from router to host, but these won’t be useful for LAN1 to LAN2 communications with 
IPv6. For this, we’ll use routable fc00 private ULA IPv6 addresses. Once we get RIPng 
up and running with routable addresses on our hosts and routers, we should be able to 
successfully ping from LAN1 to LAN2 using only IPv6 addresses.  While we’ll be confi g-
uring IGPs on both Ace and Best ISP’s AS routing domains, we won’t be running IGPs 
between them.  That’s the job of the EGP (Border Gateway Protocol, or BGP), and we’ll 
add that in Chapter 15.

We need to create four routable IPv6 addresses and prefi xes—two for the hosts 
and two for the router’s LAN interfaces (both are fe-1/3/0).  We’ve already done this in 
Chapter 4.  The site IPv6 addresses, and the IPv4 and MAC addresses used on the same 
interfaces, are shown in Table 14.1.  We don’t need to change the link-local addresses on 
the link between the routers because, well, they are link-local.

We know from Chapter 13 that we have these IPv6 addresses confi gured on  wincli1 
and wincli2.  We have to do three things to enable RIPng on the routers:

■ Confi gure routable addresses on interface fe-1/3/0

■  Confi gure the RIPng protocol to run on the site (customer-edge) routers (CE0 and 
CE6), the provider-edge routers (PE5 and PE1), and the internal links on the provider- 
backbone routers (P9, P7, P4, and P2).

■  Create and apply a routing policy on CE0 and CE6 to advertise the fe-1/3/0 IPv6 
addresses with RIPng.

Since 2007, ASNs are allocated as 4-byte values. Because each fi eld can run 
from 0 to 65535, the current way of designating ASNs is as two numbers in the 
form nnnnn.nnnnnn.  The full range of ASNs now is from 0.0 to 65535.65535 
(0 to 4,294,967,295 in decimal).

For example, 0.65525 is how the former 2-byte ASN 65535 would be written 
today. In this book, we’ll drop the leading “0,” and just use the “legacy” 2-byte AS 
format for Ace and Best ISP: 65459 and 65127. 

Table 14.1 Routable IPv6 Addresses Used on the Network

System
IPv4 Network 

Address MAC Address IPv6 Address

wincli1 10.10.11/24 02:0e:0c:3b:88:3c fc00:ffb3:d5:b:20e:cff:fe3b:883c

CE0 (fe-1/3/0) 10.10.11/24 00:05:85:88:cc:db fc00:ffb3:d5:b:205:85ff:fe88:ccdb

CE6 (fe-1/3/0) 10.10.12/24 00:05:85:8b:bc:db fc00:fe67:d4:c:205:85ff:fe8b:bcdb

Wincli2 10.10.12/24 00:02:b3:27:fa:8c fc00:fe67:d4:c:202:b3ff:fe27:fa8c
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The confi gurations are completely symmetrical, so one of each type will do for 
 illustration purposes. Let’s use router CE0 as the customer-edge router. First, the 
addresses for IPv4 (family inet) and IPv6 (family net6) must be confi gured on LAN 
interface fe-1/3/0.

set interfaces fe-1/3/0 unit 0 family inet address 10.10.11.1/24
set  interfaces fe-1/3/0 unit 0 family inet6 address fe80::205:85ff:fe88:ccdb/64
s et  interfaces fe-1/3/0 unit 0 family inet6 address fc00:fe67:d4:c:205:85ff:fe88:

ccdb/64

Note that the link-local address is fi ne as is.  We usually have many addresses on 
an interface in most IPv6 implementations, including multicast.  We just added the 
second address to it. Now we can confi gure RIPng itself on the link between CE0 and 
PE5.  We have to explicitly tell RIPng to announce (export) the routing information 
specifi ed in the send-ipv6 routing policy (which we’ll write shortly) and tell it the 
RIPng “ neighbor” (routing protocol partner) is found on interface ge-0/0/3 logical 
unit 0.

set protocols ripng group ripv6group export send-ipv6
set protocols ripng group ripv6group neighbor ge-0/0/3.0

Because RIPv2 and RIPng use multicast addresses, we specify the router’s neigh-
bor location with the physical address information (ge-0/0/3) instead of unicast 
address.  And because Juniper Network’s implementation of RIP always listens for rout-
ing information but never advertises or announces routes unless told, we’ll have to 
write a routing policy to “export” the IPv6 addresses we want into RIPng.  There’s only 
one interface needed in this case, fe-1/3/0.0 to LAN1. It seems odd to say from when 
sending, but in a Juniper Networks routing policy, from really means “out of”—“Out of 
all the interfaces, this applies to interface fe-1/3/0.”

set policy-options policy-statement send-ipv6 from interface fe-1/3/0.0
set policy-options policy-statement send-ipv6 from family inet6
set policy-options policy-statement send-ipv6 then accept

All this routing policy says is that “if the routing protocol (which is RIPng) running 
on the LAN1 interface (fe-1/3/0) wants to advertise an IPv6 route (from family inet6), 
let it (accept).”

We also have to confi gure RIPng on the other routers.  We know that we can’t 
run RIPng on the external links on the border routers (P7, P9, P2, and P4), but we 
can show the full confi gurations on PE5 and PE1.  These routers have to run RIPng 
on three interfaces, not just one, so that RIPng routing information fl ows from site 
router to backbone (and from backbone to site router). Let’s look at PE5 (PE1 is about 
the same).
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set interfaces fe-1/3/0 unit 0 family inet address 10.10.50.1/24
set  interfaces fe-1/3/0 unit 0 family inet6 address fe80::205:85ff:fe85:aafe/64
set  interfaces fe-1/3/0 unit 0 family inet6 address fc00:fe67:d4:c:205:85ff:fe85:

aafe/64

We have IPv6 addresses on the SONET links to P9 and P4, so-0/0/0 and so-0/0/2, 
but the details are not important.  What is important is that we run RIPng on all three 
interfaces.

set protocols ripng group ripv6group export send-ipv6
set protocols ripng group ripv6group neighbor ge-0/0/3.0
set protocols ripng group ripv6group neighbor so-0/0/0.0
set protocols ripng group ripv6group neighbor so-0/0/2.0

The routing policy now will export the interface IPv6 addresses we want into 
RIPng.  This policy has one term for each interface and is more complex than the one 
for the site routers.

set policy-options policy-statement send-ipv6 term A from interface ge-0/0/3.0
set policy-options policy-statement send-ipv6 term A from family inet6
set policy-options policy-statement send-ipv6 term A then accept
set policy-options policy-statement send-ipv6 term B from interface so-0/0/0.0
set policy-options policy-statement send-ipv6 term B from family inet6
set policy-options policy-statement send-ipv6 term B then accept
set policy-options policy-statement send-ipv6 term C from interface so-0/0/2.0
set policy-options policy-statement send-ipv6 term C from family inet6
set policy-options policy-statement send-ipv6 term C then accept

The policy simply means this: “Out of all interfaces, look at ge-0/0/3, so-0/0/0, and 
so-0/0/2. If the routing protocol running on those links (which is RIPng) wants to 
advertise an IPv6 route (from family inet6), let it (accept).”

The backbone routers run RIPng on their internal interfaces, but the confi gurations 
and policies are very similar to those on the provider-edge routers.  We don’t need to 
list those.

When all the confi gurations are committed and made active on the routers, we form 
an adjacency and exchange IPv6 routing information with each neighbor according to 
the policy.  The IPv6 routing table on CE0 now shows the prefi x of LAN2 (fc00:fe67:
d4:c::/64) learned from CE6 with RIPng.

admin@CE0# show route table inet6 fc00:fe67:d4:c::/64

inet6.0: 38 destinations, 38 routes (38 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

fc00:ffbe:d5:b::/64 *[RIPng/100] 01:15:19, metric 6, tag 0
               to fc00:ffbe:d5:b::a00:3b01 via so-0/0/0.0
               > to fc00:ffbe:d5:b::a00:2d01 via so-0/0/2.0
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What does all this mean? We’ve learned this route with RIPng, and its preference is 
100 (high compared to local interfaces, which are 0).  When routes are learned in dif-
ferent ways from different protocols, the route with the lowest preference will be the 
active route.  The metric of 6 (hops) essentially shows that LAN2 is 6 routers away from 
LAN1. If there are different paths with different metrics through a collection of routers, 
the hop to the path with the lowest metric becomes the active route. More advanced 
routing protocols can compute metrics on the basis of much more than simply number 
of routers (hops).

Note the right angle bracket (>) to the left of the so-0/0/2.0 link to router P9. Remem-
ber, there are two ways for PE5 to forward packets to LAN2: through router P4 at the end 
of link so-0/0/0.0 and through router P9 at the end of link so-0/0/0.0.  The > indicates 
that packets are being forwarded to router P9. (Usually,  all other things being equal, a 
router chooses the link with the lower IP address.) However, the other link is available if 
the active link or router fails. (If we want to forward packets out both links, we can turn 
on load balancing and the links will be used in a round-robin fashion.)

But even with RIPng up and running among the routers, we still have to give non–
link-local addresses to the hosts. Right now, if we try to use ping6 on LAN2 to ping a 
different IPv6 private address on LAN1, we’ll still get an error condition. Let’s try it from 
wincli2 on LAN2 to wincl1 on LAN1.

C:\Documents and Settings\Owner>ping6 fe80::20c:cff:fe3b:883c

Pinging fe80::20c:cff:fe3b:883c with 32 bytes of data:

No route to destination.
  Specify correct scope-id or use –s to specify source address.

No route to destination.
  Specify correct scope-id or use –s to specify source address.

No route to destination.
  Specify correct scope-id or use –s to specify source address.

No route to destination.
  Specify correct scope-id or use –s to specify source address.

Ping statistics for fe80::20c:cff:fe3b:883c:
    Packets: Sent = 4, Received = 0, Lost = 4 (100% loss)

Like the routers, the Windows XP hosts need routable addresses.  We assign an inter-
face (by index shown by ipconfig) that is a routable IPv6 address with the ipv6 adu 
command. But the address is still shown with ipconfig.

C:\Documents and Settings\Owner>ipconfig

Ethernet adapter Local Area Connection:
         
        Connection-specific DNS Suffix . :
        IP Address . . . . . . . . . . . : 10.10.12.222
        Subnet Mask  . . . . . . . . . . : 255.255.255.0
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        IP Address . . . . . . . . . . . : fc00:fe67:d5:c:202:b3ff:fe27:fa8c
        IP Address . . . . . . . . . . . : fe80::202:b3ff:fe27:fa8c%5
        Default Gateway  . . . . . . . . : 10.10.12.1
                                         fe80::5:85ff:fe8b:bcdb%5
                                         fc00:fe67:d5:c:205:85ff:fe8b:bcdb     

How did the host know the default gateway to use for IPv6? We probed for neighbors 
earlier, but even if we had not, IPv6 router advertisement (which was confi gured with 
RIPng on the routers, and the main reason we did it) takes care of that.

Now we should be able to ping end to end from wincli2 to wincli1 by IPv6 address.

C:\Documents and Settings\Owner>ping6 fc00:ffb3:d4:b:20e:cff:fe3b:883c

Pinging fc00:ffb3:d.4:b:20e:cff:fe3b:883c 
from fc00:fe67:d5:c:202:b3ff:fe27:fa8c with 32 bytes of data:

Reply from fc00:ffb3:d4:b:20e:cff:fe3b:883c: bytes=32 time<1ms
Reply from fc00:ffb3:d4:b:20e:cff:fe3b:883c: bytes=32 time<1ms
Reply from fc00:ffb3:d4:b:20e:cff:fe3b:883c: bytes=32 time<1ms
Reply from fc00:ffb3:d4:b:20e:cff:fe3b:883c: bytes=32 time<1ms

Ping statistics for fc00:ffb3:d4:b:20e:cff:fe3b:883c:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 4ms, Maximum = 5ms, Average = 4ms        

The reverse also works as well. In the rest of this chapter, let’s take a closer look 
at how the IGPs perform their task of distributing routing information within an AS. 
Remember, how the IGP routing information gets from AS to AS with an EGP is the 
topic of Chapter 15.

INTERIOR ROUTING PROTOCOLS
Routers initially know only about their immediate environments.  They know the IP 
addresses and prefi xes confi gured on their local interfaces, and at most a little more 
statically defi ned information. Yet all routers must know all the details about everything 
in their routing domain to forward packets rationally, hop by hop, toward a given des-
tination. So routers offer to and ask their neighbor routers (adjacent routers one hop 
away) about the routing information they know. Little by little, each router then builds 
up a detailed routing information database about the TCP/IP network.

How do routers exchange this routing information within a domain and between 
routing domains? With routing protocols.  Within a routing domain, several different 
routing protocols can be used. Between routing domains on the Internet, another rout-
ing protocol is used.  This chapter focuses on the routing protocols used within a rout-
ing domain and the next chapter covers the routing protocol used between routing 
domains.
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Interior routing protocols, or IGPs, run between the routers inside a single  routing 
domain, or autonomous system (AS).  A large organization or ISP can have a single AS, 
but many global networks divide their networks into one or more ASs. IGPs run within 
these routing domains and do not share information learned across AS boundaries 
except physical interface addresses if necessary.

Modern routing protocols require minimal confi guration of static routes (routes 
confi gured and maintained by hand).  Today, dynamic routing protocols allow adjacent 
(directly connected) routers to exchange routing table information periodically to build 
up the topology of the router network as a whole by passing information received by 
adjacent neighbors on to other routers.

IGPs essentially “bootstrap” themselves into existence, and then send information 
about their IP addresses and interfaces to other routers directly attached to the source 
router.  These neighbor, or adjacent, routers distribute this information to their neigh-
bors until the network has converged and all routers have the identical information 
available.

When changes in the network as a result of failed links or routers cause the rout-
ing tables to become outdated, the routing tables differ from router to router and are 
inconsistent.  This is when routing loops and black holes happen.  The faster a routing 
protocol converges, the better the routing protocol is for large-scale deployment.

THE THREE MAJOR IGPs
There are three main IGPs for IPv4 routing: RIP, OSPF, and IS–IS.  The Routing Informa-
tion Protocol (RIP), often declared obsolete, is still used and remains a popular routing 
protocol for small networks.  The newer version of RIP, known as RIPv2, should always 
be used for IPv4 routing today. Open Shortest Path First (OSPF) and Intermediate 
 System–Intermediate System (IS–IS) are similar and much more robust than RIP.  There 
are versions of all three for IPv6: OSPFv3, RIPng (sometimes seen as RIPv6), and IS–IS 
works with either IPv4 or IPv6 today.

RIP is a distance-vector routing protocol, and OSPF and IS–IS are link-state routing 
protocols. Distance-vector routing protocols are simple and make routing decisions 
based on one thing: How many routers (hops) are there between here and the destina-
tion? To RIP, link speeds do not matter, nor does congestion near another router.  To RIP, 
the “best” route always has the fewest number of hops (routers).

Link-state protocols care more about the network than simply the number 
of routers along the path to the destination.  They are much more complex than 
 distance-vector routing protocols, and link-state protocols are much more suited 
for networks with many different link speeds, which is almost always the case 
today. However, link-state protocols require an elaborate database of information 
about the network on each router.  This database includes not only the local router 
addressing and interfaces, but each and every router in the immediate area and 
often the entire AS.
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ROUTING INFORMATION PROTOCOL
The RIP is still used on all types of TCP/IP networks.  The basics of RIP were spelled out 
in RFC 1058 from 1988, but this is misleading. RIP was in use long before 1988, but no 
one bothered to document RIP in detail. RIP is bundled with almost all implementa-
tions of TCP/IP, so networks often run only RIP.  Why pay for something when RIP was 
available for free?

RIP version 1 (RIPv1) in RFC 1058 has a number of annoying limitations, but RIP 
is so popular that doing away with RIP is not a realistic consideration. RFC 1388 intro-
duced RIP version 2 (RIPv2 or sometimes RIP-2) in 1993. RIPv2 addressed RIPv1 limita-
tions, but could not turn a distance-vector protocol into a link-state routing protocol 
such as OSPF and IS–IS.

RIPv2 is backward compatible with RIPv1, and most RIP implementations run RIPv2 
by default and allow RIPv1 to be confi gured. In this chapter, the term “RIP” by itself 
means “a version of RIP runs RIPv2 by default but can also be confi gured as RIPv1 as 
required.”

Router vendor Cisco was deeply dissatisfi ed with RIPv1 limitations and so created 
its own vendor-specifi c (proprietary) version of an IGP routing protocol, which Cisco 
called the Interior Gateway Routing Protocol (IGRP). IGRP improved upon RIPv1 in 
several ways, but “pure” IGRP could only run between Cisco routers.  As good as IGRP 
was, IGRP was still basically implemented as a distance-vector protocol.  As networks 
grew more and more complex in terms of link speeds and router capacities, it was pos-
sible to switch to a link-state protocol such as OSPF or IS–IS, but many network admin-
istrators at the time felt these new protocols were not stable or mature enough for 
production networks. Cisco then invented Enhanced IGRP (EIGRP) as a sort of “hybrid” 
routing protocol that combined features of both distance-vector and link-state routing 
protocols all in one (proprietary) package.

Due to the proprietary nature of IGRP and EIGRP, only the basics of these routing 
protocols are covered in this chapter.

Distance-Vector Routing
RIP and related distance-vector routing protocols are classifi ed as “Bellman–Ford” routing 
protocols because they all choose the “best” path to a destination based on the shortest 
path computation algorithm. It was fi rst described by R. E. Bellman in 1957 and applied 
to a distributed network of independent routers by L. R. Ford, Jr. and D. R.  Fulkerson in 
1962. Every version of Unix today bundles RIP with TCP/IP, usually as the routed (“route 
management daemon”) process, but sometimes as the gated process.

All routing protocols use a metric (measure) representing the relative “cost” of send-
ing a packet from the current router to the destination.  The lowest relative cost is the 
“best” way to send a packet. Distance-vector routing protocols have only one metric: 
distance.  The distance is usually expressed in terms of the number of routers between 
the router with the packet and the router attached to the destination network.  The 
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distance metric is carried between routers running the same distance-vector routing 
protocol as a vector, a fi eld in a routing protocol update packet.

A simple example of how distance-vector, or hop-count, routing works will illustrate 
many of the principles that all routing protocols simple and complex must deal with.  All 
routing protocols must pass along network information received from adjacent rout-
ers to all other routers in a routing domain, a concept known as fl ooding. Flooding is 
the easiest way to ensure consistency of routing tables, but convergence time might 
be high as routers at one end of a chain of routers wait for information from routers at 
the far end of the chain to make its way through the routers in between. Flooding also 
tends to maximize the bandwidth consumed by the routing protocol itself, but there 
are ways to reduce this.

RIP fl oods updates every 30 seconds. Note that routing information takes at least 30 
seconds to reach the closest neighbor if that is the routing update interval used. Long 
chains of routers can take quite a long time to converge (several minutes) when a net-
work address is added or when a link fails.

When this network converges, each routing table will be consistent and each router 
will be reachable from every other router over one of the interfaces.  The network 
topology has been “discovered” by the routing protocol.  An example of the information 
in one of these tables is shown in Table 14.2.

Routers can have alternatives other than those shown in the table. For example, the 
cost to reach network 192.168.44.0 from this router could be the same (3) over E1 as 
it is over E2.  The E1 interface is most likely in the table because the update from the 
neighbor router saying “send 192.168.44.0 packets here” arrived before the update 
from another router saying the same thing, or the entry was already in the table.  When 
costs are equal, routing tables tend to keep what they know.

Broken Links
The distance-vector information has now been exchanged and the routers all have a 
way to reach each other. Usually, the routing protocol will update an internal database 
in the router just for that routing protocol and one or more entries based on the data-
base are made in the routing table, which might contain information from other rout-
ing protocols as well.  The routing table information is then used to compute the “best” 
routes to be used in the forwarding table (sometimes called the switching table) of the 

Table 14.2 Example RIP Routing Table

Network Next Hop Interface Cost

10.0.14.0 Ethernet 1 (E1) 2

172.16.15.0 Serial 1 (S1) 1

192.168.44.0 Ethernet 2 (E2) 3

192.168.66.0 Serial 2 (S2) INF (15)

192.168.78.0 Locally attached 0
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router.  This chapter blurs the distinctions between routing protocol database, routing 
table, and forwarding table for the sake of simplicity and clarity.

What will happen to the network if a link “breaks” and can no longer be used to 
forward traffi c? In a static routing world, this would be disastrous. But when using a 
dynamic routing protocol, even one as simple as a distance-vector routing protocol, the 
network should be able to converge around the new topology.

The routers at each end of the link, since they are locally connected to the interface 
(direct), will notice the outage fi rst because routers constantly monitor the state of 
their interfaces at the physical level. Distance-vector protocols note this absent link by 
noting that the link now has an “infi nite” cost.  All routers formerly reachable through 
the link are now an infi nite distance away.

Distance-Vector Consequences
In some cases, distance-vector updates are generated so closely in time by different 
routers that a link failure can cause a routing loop to occur, and packets can easily 
“bounce” back and forth between two adjacent routers until the packet TTL expires, 
even though the destination is reachable over another link.  The “bouncing effect” will 
last until the network converges on the new topology.

However, this convergence can take some time, since routers not located at the end 
of a failed link have to gradually increase their costs to infi nity one “hop” at a time.  This 
is called “counting to infi nity,” and can drag out convergence time considerably if the 
value of “infi nity” is set high enough. On the other hand, a low value of “infi nity” will 
limit the maximum number of routers that can form the longest path through the net-
work from source to destination.

In order to minimize the effects of bouncing and counting to infi nity, most imple-
mentations of distance-vector routing protocols such as RIP also implement split hori-
zon and triggered updates.

Split Horizon
If Router A is sending packets to Router B to reach Router E, then it makes no sense at 
all for Router B to try to reach Router E through Router A.  All Router A will do is turn 
around and send the packet right back to Router B. So Router A should never advertise 
a way to reach Router E to Router B.

A more sophisticated form of split horizon is known as split horizon with poison 
reverse. Split horizon with poison reverse eliminates a lot of counting to infi nity prob-
lems due to single link failures. However, many multiple link failures will still cause 
routing loops and counting to infi nity problems even when split horizon with poison 
reverse is in use.

Triggered Updates
With triggered updates, a router running a distance-vector protocol such as RIP can 
remain silent if there are no changes to the information in the routing table. If a link 
failure is detected, triggered updates will send the new information.  Triggered updates, 
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like split horizon, will not eliminate all cases of routing loops and counting to infi nity. 
However, triggered updates always help the counting process to reach infi nity much 
faster.

RIPv1
A RIP packet must be 512 bytes or smaller, including the header. RIP packets have no 
implied sequence, and each update packet is processed independently by the router 
receiving the update.  A router is only required to keep one entry associated with each 
route. But in practice, routers might keep up to four or more routes (next hops) to the 
same destination so that convergence time is lowered.

RIPv1 required routers running RIP to broadcast the entire contents of their rout-
ing tables at fi xed intervals. On LANs, this meant that the RIPv1 packets were sent 
inside broadcast MAC frames. But broadcast MAC frames tell not only every router on 
the LAN, but every host on the LAN, “pay attention to this frame.” Inside the frame, the 
host would fi nd a RIPv1 update packet, and probably ignore the contents. But every 
30 seconds, every host on the LAN had to interrupt its own application processing and 
start throwing away RIPv1 packets.

Each host could keep the information inside the RIPv1 update packet. Some hosts 
on LANs with RIPv1 routers have as elaborate a routing table as the routers themselves. 
Hackers loved RIPv1: With a few simple coding changes, any host could impersonate 
a RIPv1 router and start pumping out fake routing information, as many college and 
university network administrators discovered in the late 1980s. (This is one reason you 
don’t run RIP on host interfaces.)

Many people see RIP updates vary from 30 seconds and assume that timers are off. 
In fact, table updates in RIP are initiated on each router at approximate 30-second 
intervals. Strict synchronization is avoided because RIP traffi c spikes can easily lead to 
discarded RIP packets.  The update timer usually adds or subtracts a small amount of 
time to the 30-second interval to avoid RIP router synchronization.

Network devices running RIP can be either active or passive (silent) mode.  Active 
RIP devices will listen for RIP update packets and also generate their own RIP update 
packets. Passive RIP devices will only listen for RIP updates and never generate their 
own update packets. Many hosts, for example, which must process the broadcast RIP 
updates sent on a LAN, are purely passive RIP devices.

RIPv1 Limitations
RIPv1 had a number of limitations that made RIPv1 diffi cult to use in large networks.  The 
larger the routing domain, the more severe and annoying the limitations of RIPv1 
become.

Wasted Space—All of the RIPv1 packet fields are larger than they need to be, 
sometimes many times larger.  There are almost three times as many 0 bits as 
information bits in a RIP packet.
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Limited Metrics—As a network grows, the distance-vector might require a metric 
greater than 15, which is unreachable (infinite).

No Link Speed Allowances—The simple hop count metric will always result in 
packets being sent (as an example) over two hops using low-speed, 64-kbps 
links rather than three hops using SONET/SDH links.

No Authentication—RIPv1 devices will accept RIPv1 updates from any other 
device. Hackers love RIPv1 for this very reason, but even an innocently mis-
configured router can disrupt an entire network using RIPv1.

Subnet Masks—RIPv1 requires the use of the same subnet mask because RIPv1 
updates do not carry any subnet mask information.

Slow Convergence—Convergence can be very slow with RIPv1, often 5 minutes 
or more when links result in long chains of routers instead of neat meshes.  And 
“circles” of RIPv1 routers maximize the risk of counting to infinity.

RIPv2
RIPv2 fi rst emerged as an update to RIPv1 in RFC 1388 issued in January 1993.  This 
initial RFC was superseded by RFC 1723 in November 1994.  The only real difference 
between RFC 1388 and RFC 1723 is that RFC 1723 deleted a 2-byte Domain fi eld 
from the RIPv2 packet format, designating this space as unused. No one was really 
sure how to use the Domain fi eld anyway.  The current RIPv2 RFC is RFC 2453 from 
 November 1998.

RIPv2 was not intended as a replacement for RIPv1, but to extend the functions of 
RIPv1 and make RIP more suitable for VLSM.  The RIP message format was changed as 
well to allow for authentication and multicasting.

In spite of the changes, RIPv2 is still RIP and suffers from many of the same limita-
tions as RIPv1. Most router vendors support RIPv2 by default, but allow interfaces or 
whole routers to be confi gured for backward compatibility with RIPv1. RIPv2 made 
major improvements to RIPv1:

■ Authentication between RIP routers
■ Subnet masks to be sent along with routes
■ Next hop IP addresses to be sent along with routes
■ Multicasting of RIPv2 messages

The RIPv2 packet format is shown in Figure 14.2.

Command Field (1 byte)—This is the same as in RIPv1: A value of 1 is for a 
Request and a value of 2 is for a Response.

Version Number (1 byte)—RIPv1 uses a value of 1 in this field, and RIPv2 uses a 
value of 2.
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Unused (2 bytes)—Set to all zero bits.  This was the Domain field in RFC 1388. 
Now officially unused in RFC 1723, this field is ignored by routers running 
RIPv2 (but this field must be set to all 0 bits for RIPv1 routers).

Address Family Identifier (AFI) (2 bytes)—This field is set to a value of 2 when 
IP packet and routing information is exchanged. RIPv2 also defined a value of 
1 to ask the receiver to send a copy of its entire routing table.  When set to all 
1s (0xFFFF), the AFI field is used to indicate that the 16 bits following the AFI 
field, ordinarily set to 0 bits, now carry information about the type of authen-
tication being used by RIPv2 routers.

Authentication or Route Tag (2 bytes)—When the AFI field is not 0xFFFF, this 
is the Route Tag field.  The Route Tag field identifies internal and external 
routes in RIPv2. Internal routes are those learned by RIP itself, either locally 
or through other RIP routers. External routes are routes learned from another 
routing protocol such as OSPF or BGP.

IPv4 Address (4 bytes)—This field and the three that follow can be repeated up 
to 25 times in the RIPv2 Response packet.  This field is almost the same as in 
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Command Version

Address Family Identifier

Address Family Identifier

Authentication or Route Tag

Authentication or Route Tag

Subnet Mask

Next Hop

IP Address

Metric

Subnet Mask

Next Hop

IP Address

Metric

32 bits

(Repeats multiple times,up to a maximum of 25)

Unused (set to all zeros)

1 byte 1 byte 1 byte

FIGURE 14.2

RIPv2 packet format, showing how the subnet mask is included with the routing information 
advertised.
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RIPv1.  This address can be a host route, a network address, or a default route.
A RIPv2 Request packet has the IP address of the originator in this field.

Subnet Mask (4 bytes)—This field, the biggest change in RIPv2, contains the sub-
net mask that goes with the IP address in the previous field. If the network 
address does not use a subnet mask different from the natural classful major 
network mask, then this field can be set to all zeroes, just as in RIPv1.

Next Hop (4 bytes)—This field contains the next hop IP address that traffic to this 
IP address space should use.  This was a vast improvement over the “implied” 
next hop used in RIPv1.

Metric (4 bytes)—Unfortunately, the metric field is unchanged.  The range is still 1 
to 15, and a metric value of 16 is considered unreachable.

RIPv2 is still RIP. But RIPv2’s additions for authentication, subnet masks, next 
hops, and the ability to multicast routing information increase the sophistication of RIP 
and have extended RIP’s usefulness.

Authentication
Authentication was added in RIPv2.  The Response messages contain the routing 
update information, and authenticating the responder to a Request message is a good 
way to minimize the risk of a routing table becoming corrupted either by accident or 
through hacker activities. However, there were really only 16 bits available for authen-
tication, hardly adequate for modern authentication techniques. So the authentication 
actually takes the place of one routing table entry and authenticates the entire update 
message.  This gives 16 bytes (128 bits) for authentication, which is not state of the art, 
but is better than nothing.

The really nice feature of RIPv2 authentication is that router vendors can add their 
own Authentication Type values and schemes to the basics of RIPv2, and many do. For 
example, Cisco and Juniper Networks routers can be confi gured to use MD5 (Message 
Digest 5) authentication encryption to RIPv2 messages.  Thus, most routers can have 
three forms of authentication on RIP interfaces: none, simple password, or MD5. Natu-
rally, the MD5 authentication keys used must match up on the routers.

Subnet Masks
The biggest improvement from RIPv1 to RIPv2 was the ability to carry the subnet mask 
along with the route itself.  This allowed RIP to be used in classless IP environments 
with VLSM.

Next Hop Identifi cation
Consider a network where there are several site routers with only one or a few small 
LANs.  The small routers run RIPv2 between themselves and their ISP’s router, but might 
run a higher speed link to one router and a lower speed link to another.  The higher 
speed link might be more hops away than the lower speed link.
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The next hop fi eld in RIPv2 is used to “override” the ordinary metric method of 
deciding active routes in RIP. RIPv2 routers check the next hop fi eld in the routing 
update message. If the next hop fi eld is set for a particular route, the RIP router will use 
this as the next hop for the route, regardless of distance-vector considerations.

This RIPv2 next hop mechanism is sometimes called source routing in some docu-
ments. But true source routing information is always set by a host, not a router.  This is 
just RIPv2 next hop identifi cation.

Multicasting
Multicasting is a kind of “halfway” distribution method between unicast (one source 
to one destination) and broadcast (one source to all possible destinations). Unlike 
 broadcasts that are received by all nodes on the subnet, only devices that join the 
RIPv2  multicast group will receive packets for RIPv2. (We’ll talk more about multi-
cast in Chapter 16.) RIPv2 multicasting also offers a way to fi lter out RIPv2 messages 
from a RIPv1 only router.  This can be important, since RIPv2 messages look very much 
like RIPv1 messages. But RIPv2 messages are all invalid by RIPv1 standards. RIPv1 
devices would either discard RIPv2 messages because the mandatory all-zero fi elds are 
not all zeroes, or accept the routes and ignore the additional RIPv2 information such 
as the subnet mask. RIPv2 multicasting makes sure that only RIPv2 devices see the 
RIPv2 information. So RIPv1 and RIPv2 routers can easily coexist on the same LAN, for 
instance.  The multicast group used for RIPv2 routers is 224.0.0.9.

RIPv2 is still limited in several ways.  The 15 maximum-hop count is still there, as 
well as counting to infi nity to resolve routing loops.  And RIPv2 does nothing to improve 
on the fi xed distance-vector values that are a feature of all versions of RIP.

RIPng for IPv6
The version of RIP used with IPv6 is called RIPng, where “ng” stands for “next genera-
tion.” (IPv6 itself was often called IPng in the mid-1990s.) RIPng uses exactly the same 
hop count metric as RIP as well as the same logic and timers. So RIPng is still a distance-
vector RIP, with two important differences.

1. The packet formats have been extended to carry the longer IPv6 addresses.
2. IPv6 security mechanisms are used instead of RIPv2 authentication.

The overall format of the RIP packet is the same as the format of the RIPv2 packet 
(but RIPng cannot be used by IPv4).  There is a 32-bit header followed by a set of 20-byte 
route entries.  The header fi elds must be the same as those used in RIPv2:    There is a 
1-byte Command code fi eld, followed by a 1-byte Version fi eld (now 6), and then 2 unused 
bytes of bits that must still be set to all 0 bits. However, the 20-byte router entry fi elds in 
RIPng are totally different that those in RIPv2.

IPv6 addresses are 16 bytes long, leaving only 4 bytes for any other information that 
must be associated with the IPv6 route. First, there is a 2-byte Route Tag fi eld with the 
same use as in RIPv2:    The Route Tag fi eld identifi es internal and external routes. Inter-
nal routes are those learned by RIP itself, either locally or through other RIP  routers. 
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External routes are routes learned from another routing protocol such as OSPF or 
BGP.  Then there is a 1-byte Prefi x Length fi eld that tells the receiver where the bound-
ary between network and host is in the IPv6 address. Finally, there is a 1-byte Metric 
fi eld (this fi eld was a full 32 bits in RIPv1 and RIPv2). Since infi nity is still 16 in RIPng, 
this is not a problem.

The fi elds of the RIPng packet are shown in Figure 14.3.  The combination of IPv6 
address and Prefi x Length do away with the need for the Subnet Mask fi eld in RIPv2 
packets.  The Address Format Identifi er (AFI) fi eld from RIPv2 is not needed in RIPng, 
since only IPv6 routing information can be carried in RIPng.

But IPv6 still needs a Next Hop fi eld.  This RIPv2 fi eld contained the next-hop IP 
address that traffi c to this IP address space should use, and was a vast improvement 
over the “implied” next hop used in RIPv1. Now, IPv6 does not always need this Next 
Hop information, but in many cases the next hop should be included in an IPv6 routing 
information update.  An IPv6 Next Hop needs another 128 bits (16 bytes).  The creators 
of RIPng decided to essentially reproduce the same route entry structure for the IPv6 
Next Hop, but use a special value of the last fi eld (the Metric) to indicate that the fi rst 
16 bytes in the route entry was an IPv6 Next Hop, not the route itself.  The value chosen 
for the metric was 256 (0xFF) because this was far beyond the legal hop count limit 
(15) for RIP.

1 byte 1 byte 1 byte 1 byte

Unused (set to all zeros)VersionCommand

IPv6 Address

IPv6 Address

Route Tag

(Repeats multiple times, up to a maximum of 25)

Prefix Length Metric
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FIGURE 14.3

RIPng for IPv6 packet fi elds. Note the large address fi elds and different format than RIPv2 fi elds.
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When the route entry used is an IPv6 Next Hop, the 3 bytes preceding the 0xFF 
Metric must be set to all 0 bits.  This is shown in Figure 14.4.

At fi rst it might seem that the amount of the IPv6 routing information sent with 
RIPng must instantly double in size, since now each 20-byte IPv6 route requires a 
20-byte IPv6 Next Hop fi eld.  This certainly would make IPv6 very unattractive to cur-
rent RIP users. But it was not necessary to include a Next Hop entry for each and every 
IPv6 route because the creators of RIPng used a clever mechanism to optimize the use 
of the Next Hop entry.

A Next Hop always qualifi es any IPv6 routes that follow it in the string of route 
entries until another Next Hop entry is reached or the packet stream ends.  This keeps 
the number of “extra” Next Hop entries needed in RIPng to an absolute minimum.  And 
due to the fact that the Next Hop fi eld in RIPv2 has only specialized use, a lot of IPv6 
routes need no Next Hop entry at all.

The decision to replace RIPv2 authentication with IPv6 security mechanisms was 
based on the superior security used in IPv6.  When used with RIPng updates, the IPv6 
Authentication Header protects both the data inside the packet and the IP addresses of 
the packet, but this is not the case with RIPv2 authentication no matter which method 
is used.  And IPv6 encryption can be used to add further protection.

A NOTE ON IGRP AND EIGRP
Cisco routers often use a proprietary IGP known as the Interior Gateway  Routing 
 Protocol (IGRP) instead of RIP. Later, features were added to IGRP in the form of 
Enhanced IGRP (EIGRP). In spite of the name, EIGRP was a complete redesign of 
IGRP.  This section will only give a brief outline of IGRP and EIGRP,  since IGRP/EIGRP 
interoperability with Juniper Networks routers is currently impossible.

IGRP and EIGRP might appear to be open standards, but this is only due to the wide-
ranging deployment of Cisco routers. Cisco has never published the details of IGRP 
internals (EIGRP is based on these), and is not likely to.

1 byte 1 byte 1 byte 1 byte

Next Hop IPv6 Address

Must Be All Zeros

32 bits

Metric50xFF

FIGURE 14.4

The Next Hop in IPv6 with RIPng. Note the use of the special metric value.
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IGRP improves on RIP in several areas, but IGRP is still essentially a distance-vector 
routing protocol. EIGRP, on the other hand, is advertised by Cisco as a “hybrid” rout-
ing protocol that includes aspects of link-state routing protocols such as OSPF and 
IS–IS among the features of EIGRP.  Today not many, even those with all-Cisco networks, 
would consider running EIGRP over OSPF or IS–IS.

Open Shortest Path First
OSPF is not a distance-vector protocol like RIP, but a link-state protocol with a set of 
metrics that can be used to refl ect much more about a network than just the number 
of routers encountered between source and destination. In OSPF, a router attempts to 
route based on the “state of the links.”

OSPF can be equipped with metrics that can be used to compute the “shortest” path 
through a group of routers based on link and router characteristics such as highest 
throughput, lowest delay, lowest cost (money), link reliability, or even more. OSPF is still 
used very cautiously, with default metrics based entirely on link bandwidth. Even with 
this conservative use, OSPF link states are an improvement over simple hop counts.

Distance-vector routing protocols like RIP were fi ne for networks comprised of 
equal speed links, but struggled when networks started to be built out of WAN links 
with a wide variety of available speeds.  When RIP fi rst appeared, almost all WANs were 
composed of low-speed analog links running at 9600 bps. Even digital links running at 
56 or 64 kbps were mainly valued for their ability to carry fi ve 9600-bps channels on 
the same physical link. Commercial T1s at 1.544 Mbps were not widely available until 
1984, and then only in major metropolitan areas.  Today, the quickest way to send pack-
ets from one router to another is not always through the fewest number of routers.

The “open” in OSPF is based on the fact that the Shortest Path First (SPF) algorithm 
was not owned by anyone and could be used by all.  The SPF algorithm is often called 
the Dijkstra algorithm after the computer and network pioneer that fi rst worked it 
out from graph theory. Dijkstra himself called the new method SPF, fi rst described in 
1959, because compared to a distance-vector protocol’s counting to infi nity to produce 
convergence, his algorithm always found the “shortest path fi rst.”

OSPF version 1 (OSPFv1), described in RFC 1131, never matured beyond the experi-
mental stage.  The current version of OSPF, OSPFv2, which fi rst appeared as RFC 1247 
in 1991, and is now defi ned by RFC 2328 issued in 1998, became the recommended 
replacement for RIP (although a strong argument could be made in favor of IS–IS, dis-
cussed later in this chapter).

Link States and Shortest Paths
Link-state protocols are all based on the idea of a distributed map of the network.  All 
of the routers that run a link-state protocol have the same copy of this network map, 
which is built up by the routing protocol itself and not imposed on the network from 
an outside source.  The network map and all of the information about the routers and 
links (and the routes) are kept in a link-state database on each router.  The database 
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is not a “map” in the usual sense of the word: Records represent the topology of the 
network as a series of links from one router to another.  The database must be identical 
on all of the routers in an area for OSPF to work.

Initially, each router only knows about a piece of the entire network.  The local 
router knows only about itself and the local interfaces. So link-state advertisements 
(LSAs), the OSPF information sent to all other routers from the local router, always iden-
tify the local router as the source of the information.

The OSPF routing protocol “fl oods” this information to all of the other routers so 
that a complete picture of the network is generated and stored in the link-state data-
base. OSPF uses reliable fl ooding so that OSPF routers have ways to fi nd out if the 
information passed to another router was received or not.

The more routers and links that OSPF has to deal with, the larger the link-state data-
base that has to be maintained. In large router networks, the routing information could 
slow traffi c. OSPFv2 introduced the idea of stub areas into an OSPF routing domain. 
A stub area could function with a greatly reduced link-state database, and relied on a 
special backbone area to reach the entire network.

What OSPF Can Do
By 1992, OSPF had matured enough to be the recommended IGP for the Internet and 
had delivered on its major design goals.

Better Routing Metrics for Links
OSPF employs a confi gurable link metric with a range of valid values between 1 and 
65,535.  There is no limit on the total cost of a path between routers from source to 
destination, as long as all the routers are in the same AS. Network administrators, for 
example, could assign a metric of 10,000 to a low-bandwidth link and 10 to a  very 
high-bandwidth Metro Ethernet or SONET/SDH link. In theory, these values could be 
manually assigned through a central authority. In practice, most implementations of 
OSPF divide a reference bandwidth by the actual bandwidth on the link, which is 
known through the router’s interface confi guration.  The default reference bandwidth 
is usually 100 Mbps (Fast Ethernet). Since the metric cannot be less than 0, all links at 
100 Mbps or faster use a 1 as a link metric and thus revert to a simple hop count when 
computing longest cost paths.  The reference bandwidth is routinely raised to accom-
modate higher and higher bandwidths, but this requires a central authority to carry out 
consistently.

Equal-Cost Multipaths
There are usually multiple ways to reach the same destination network that the rout-
ing protocol will compute as having the same cost.  When equal-cost paths exist, OSPF 
routers can fi nd and use equal-cost paths.  This means that there can be multiple next 
hops installed in a forwarding table with OSPF. OSPF does not specify how to use these 
multipaths: Routers can use simple round-robin per packet, round-robin per fl ow, hash-
ing, or other mechanisms.
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Router Hierarchies
OSPF made very large routing domains possible by introducing a two-level hierarchy 
of areas.  With OSPF, the concepts of an “edge” and “backbone” router became common 
and well understood.

Internal and External Routes
It is necessary to distinguish between routing information that originated within the 
AS (internal routing information) and routing information that came from another AS 
(external routing information). Internal routing information is generally more trusted 
than external routing information that might have passed from ISP to ISP across the 
Internet.

Classless Addressing
OSPF was fi rst designed in a classful Internet environment with Class A, B, and C 
addresses. However, OSPF is comfortable with the arbitrary network/host boundaries 
used by CIDR and VLSM.

Security
RIPv1 routers accepted updates from anyone, and even RIPv2 routers only offi cially 
used simple plain-text passwords that could be discovered by anyone with access to 
the link. OSPF allows not only for simple password authentication, but strong MD5 key 
mechanisms on routing updates.

ToS Routing
The original OSPF was intended to support the bit patterns established for the Type of 
Service (ToS) fi eld in the IP packet header. Routers at the time had no way to enforce 
ToS routing, but OSPF anticipated the use of the Internet for all types of traffi c such 
as voice and video and went ahead and built into OSPF ways to distribute multiple 
metrics for links. So OSPF routing updates can include ToS routing information for 
fi ve IP ToS service classes, defi ned in RFC 1349.  The service categories and OSPF ToS 
values are normal service (ToS 5 0), minimize monetary cost (2), maximize reliability 
(4), maximize throughput (8), and minimize delay (16). Since all current implementa-
tions of OSPF support only a ToS value of 0, no more need be said about the other ToS 
metrics.

By the way, here’s all we did on the customer- and provider-edge routers in each AS 
to confi gure OSPF to run on every router interface. Now, in a real network, we wouldn’t 
necessarily confi gure OSPF to run on all of the router’s internal or management inter-
faces, but it does no harm here.

set protocols ospf area 0.0.0.0 interface all

All OSPF routers do not have to be in the same area, and in most real router net-
works, they aren’t. But this is a simple network and only confi gures an OSPF backbone 
area, 0.0.0.0.  The provider routers in our ISP cores (P9, P7, P4 and P2), which are called 
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AS border routers, or ASBRs, run OSPF on the internal links within the AS, but not on 
the external links to the other AS (this is where we’ll run the EGP).

The relationship between the OSPF use of a reference bandwidth and ToS routing 
should be clarifi ed. Use of the OSPF link reference bandwidth is different from and 
independent of ToS support, which relies on the specifi c settings in the packet head-
ers. OSPF routers were supposed to keep separate link-state databases for each type 
of service, since the least-cost path in terms of bandwidth could be totally different 
from the least-cost path computed based on delay or reliability.  This was not feasible 
in early OSPF implementations, which struggled to maintain the single, normal ToS 5 0 
database.  And it turned out that the Internet users did not want lots of bandwidth or 
low delay or high reliability when they sent packets. Internet users wanted lots of 
bandwidth and low delay and high reliability when they sent packets. So the reference 
bandwidth method is about all the link-state that OSPF can handle, but that is still bet-
ter than nothing.

OSPF Router Types and Areas
OSPFv2 introduced areas as a way to cut down on the size of the link-state database, the 
amount of information fl ooded, and the time it takes to run the SPF algorithm, at least 
on areas other than the special backbone area.

An OSPF area is a logical grouping of routers sharing the same 32-bit Area ID.  The 
Area ID can be expressed in dotted decimal notation similar to an IP address, such as 
192.168.17.33.  The Area ID can also be expressed as a decimal equivalent, so Area 261 
is the same as Area 0.0.1.5.  When the Area ID is less than 256, usually only a single num-
ber is used, but Area 249 is still really Area 0.0.0.249.

There are fi ve OSPF area types.  The position of a router with respect to OSPF areas 
is important as well.  The area types are shown in Figure 14.5.

The OSPF Area 0 (0.0.0.0) is very special.  This is the backbone area of an OSPF 
routing domain.  An OSPF routing domain (AS) can consist of a single area, but in that 
case the single area must be Area 0. Only the backbone area can generate the summary 
routing topology information that is used by the other areas.  This is why all interarea 
traffi c must pass through the backbone area. (There are backdoor links that can be 
confi gured on some routers to bypass the backbone area, but these violate the OSPF 
specifi cation.) In a sense, the backbone area knows everything. Not so long ago, only 
powerful high-end routers could be used on an OSPF backbone. On the Illustrated Net-
work, each AS consists of only an Area 0.

If an area is not the backbone area, it can be one of four other types of areas.  All of 
these areas connect to the backbone area through an Area Border Router (ABR).  An 
ABR by defi nition has links in two or more areas. In OSPF, routers always form the 
boundaries between areas.  A router with links outside the OSPF routing domain is 
called an autonomous system boundary router (ASBR). Routing information about des-
tination IP addresses not learned from OSPF are always advertised by an ASBR. Even 
when static routes, or RIP routes, are redistributed by OSPF, that router technically 
becomes an ASBR.  ASBRs are the source of external routes that are outside of the 
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OSPF routing domain, and external routes are often very numerous in an OSPF routing 
domain attached to the global Internet. If a router is not an ABR or ASBR, it is either an 
internal router and has all of its interfaces within the same area, or a backbone router 
with at least one link to the backbone. However, these terms are not as critical to OSPF 
confi gurations as to ABRs or ASBRs.  That is, not all backbone routers are ABRs or ASBRs; 
backbone routers can also be internal routers, and so on.

Non-backbone, Non-stub Areas
These areas are really smaller versions of the backbone area.  There can be links to other 
routing domains (ASBRs) and the only real restriction on a non-backbone, non-stub area 
is that it cannot be Area 0.  Area 11 in Figure 14.5 is a non-backbone, non-stub area.

Stub Area
Stub areas cannot have links outside the AS. So there can be no ASBRs in a stub area.  This 
minimizes the amount of external routing information that needs to be distributed into 
the link-state databases of the stub area routers. Because an AS might be an ISP on the 

Area 0
(backbone)

ABR
ABR ABR

ASBR

ASBR

AS

ABR

Area 10.0.0.3
(NSSA: ASBR
allowed, otherwise
same as stub)

Area 24
(total stub area:
no ASBR, only
one default
route)

Area 1.17
(stub: no ASBR
allowed, default
external routes)

Area 11
(non-backbone
non-stub)

Inter-AS
Link

ASBR

Inter-AS
Link

Inter-AS
Link, RIP, etc.

FIGURE 14.5

OSPF area types, showing the various ways that areas can be given numbers (decimal, IP address, 
or other). Note that ABRs connect areas and ASBRs have links outside the AS or to other routing 
protocols.
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Internet, the number of external routes required in an OSPF routing domain is usually 
many times larger than the internal routes of the AS itself. Stub area routers only obtain 
information on routes external to the AS from the ABR.  Area 1.17 in Figure 14.5 is a 
stub area.

Total Stub Area
This is also called a “totally stubby area.” Recall that stub areas cannot have ASBRs 
within them, by defi nition. But stub areas can only reach other ASBRs, which have the 
links leading to and from other ASs, through an ABR. So why include detailed external 
route information in the stub area router’s link-state database? All that is really needed 
is the proper default route as advertised by the ABR.  Total stub areas only know how 
to reach their ABR for a route that is not within their area.  Area 24 in Figure 14.5 is a 
total stub area.

Not-So-Stubby Area
Banning ASBRs from stub areas was very restrictive. Even the advertisement of static 
routes into OSPF made a router an ASBR, as did the presence of a single LAN running 
RIP, if the routes were advertised by OSPF.  And as ISPs merged and grew by acquiring 
smaller ISPs, it became diffi cult to “paste” the new OSPF area with its own ASBRs onto 
the backbone area of the other ISP.  The easiest thing to do was to make the new former 
AS a stub area, but the presence of an ASBR prevented that solution.  The answer was to 
introduce the concept of a not-so-stubby area (NSSA) in RFC 1587.  An NSSA can have 
ASBRs, but the external routing information introduced by this ASBR into the NSSA is 
either kept within the NSSA or translated by the ABR into a form useful on the back-
bone Area 0 and to other areas.  Area 10.0.0.3 in Figure 14.5 is an NSSA.

OSPF Designated Router and Backup Designated Router
An OSPF router can also be a Designated Router (DR) and Backup Designated Router 
(BDR).  These have nothing to do with ABRs and ASBRs, and concern only the relation-
ship between OSPF routers on links that deliver packets to more than one destination 
at the same time (mainly LANs).

There are two major problems with LANs and public data networks like ATM and 
frame relay (called non-broadcast multiple-access, or NBMA, networks). First is the fact 
that the link-state database represents links and routers as a directed graph.  A simple 
LAN with fi ve OSPF routers would need N(N 2 1)/2, or 5(4)/2 5 20 link-state advertise-
ments just to represent the links between the routers, even though all fi ve routers are 
mutually adjacent on the LAN and any frame sent by one is received by the other four. 
Second, and just as bad, is the need for fl ooding. Flooding over a LAN with many OSPF 
routers is chaotic, as link-state advertisements are fl ooded and “refl ooded” on the LAN.

To address these issues, multiaccess networks such as LANs always elect a desig-
nated router for OSPF.  The DR solves the two problems by representing the multi-
access network as a single “virtual router” or “pseudo-node” to the rest of the network 
and managing the process of fl ooding link-state advertisements on the multiaccess 
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network. So each router on a LAN forms an OSPF adjacency only with the DR (and also 
the Backup DR [BDR] as mentioned later).  All link-state advertisements go only to the 
DR (and BDR), and the DR forwards them on to the rest of the network and internet-
work routers.

Each network that elects a DR also elects a BDR that will take over the functions of 
the DR if and when the DR fails.  The DR and BDR form OSPF adjacencies with all of the 
other routers on the multiaccess network and the DR and BDR also form an adjacency 
with each other.

OSPF Packets
OSPF routers communicate using IP packets. OSPF messages ride directly inside of IP 
packets as IP protocol number 89. Because OSPF does not use UDP or TCP, the OSPF 
protocol is fairly elaborate and must reproduce many of the features of a transport pro-
tocol to move OSPF messages between routers.

There can be one of fi ve OSPF packet types inside the IP packet, all of which 
share a common OSPF header.  The structure of the common OSPF header is shown in 
Figure 14.6.

The version fi eld is 2, for OSPFv2, and the type has one of the fi ve values.  The 
packet length is the length of the OSPF packet in bytes.  The Router ID is the IP address 
selected as OSPF Router ID (usually the loopback interface address), and the Area ID is 
the OSPF area of the router that originates the message.  The checksum is the same as 
the one used on IP packets and is computed on the whole OSPF packet.

32 bits

1 byte

Version Type Packet Length

Router ID

Area ID

Checksum Authentication Type

Authentication Length

Authentication*

Authentication*

1 byte 1 byte 1 byte

*When authentication type52, the authentication field has this structure:

Key ID030000

Cryptographic Sequence Number

FIGURE 14.6

OSPF packet header fi elds, showing how the structure can vary with type.
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The Authentication Type (or AuType) is either none (0), simple password authen-
tication (1), or cryptographic authentication (2).  The simple password is an eight-
character plain-text password, but the use of AuType = 2 authentication gives the 
authentication fi eld the structure shown in the fi gure. In this case, the Key ID identifi es 
the secret key and authentication algorithm (MD5) used to create the message digest, 
the Authentication Data Length specifi es the length of the message digest appended 
to the packet (which does not count as part of the packet length), and the Crypto-
graphic Sequence Number always increases and prevents hacker “replay” attacks.

OSPFv3 for IPv6
The changes made to OSPF for IPv6 are minimal. It is easy to transition from OSPF 
for IPv4 to OSPF for IPv6.  There is new version number, OSPF version 3 (OSPFv3), 
and some necessary format changes, but less than might be expected.  The basics are 
described in RFC 2740.

OSPF for IPv6 (often called OSPFv6) will use link local IPv6 addresses and IPv6 
multicast addresses.  The IPv6 link-state database will be totally independent of the IPv4 
link-state database, and both can operate on the same router.

Naturally, OSPFv6 must make some concessions to the larger IPv6 addresses and 
next hops. But the common LSA header has few changes as well.  The Link State Iden-
tifi er fi eld is still there, but is now a pure identifi er and not an IPv4 address.  There is 
no longer an Options fi eld, since this fi eld also appears in the packets that need it, 
and the LSA Header Type fi eld is enlarged to 16 bits. Naturally, when LSAs carry the 
details of IPv6 addresses, those fi elds are now large enough to handle the 128 bit IPv6 
addresses.

INTERMEDIATE SYSTEM–INTERMEDIATE SYSTEM
OSPF is not the only link-state routing protocol that ISPs use within an AS.  The other 
common link-state routing protocol is IS–IS (Intermediate System–Intermediate 
System).  When IS–IS is used with IP, the term to use is Integrated IS. IS–IS is not really 
an IP routing protocol. IS–IS is an ISO protocol that has been adapted (“integrated”) for 
IP in order to carry IP routing information inside non-IP packets.

IS–IS packets are not IP packets, but rather ConnectionLess Network Protocol 
(CLNP) packets. CLNP packets have ISO addresses, not IP source and destination 
addresses. CLNP packets are not normally used for the transfer of user traffi c from 
client to server, but for the transfer of link-state routing information between routers. 
IS–IS does not have “routers” at all: Routers are called intermediate systems to distin-
guish them from the end systems (ES) that send and receive traffi c.

The independence of IS–IS from IP has advantages and disadvantages. One advan-
tage is that network problems can often be isolated to IP itself if IS–IS is up and running 
between two routers. One disadvantage is that there are now sources and destinations 
on the network (the ISO addresses) that are not even “ping-able.” So if a link between 
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two routers is confi gured with incorrect IP addresses (such as 10.0.37.1/24 on one 
router and 10.0.38.2/24 on the other), IS–IS will still come up and exchange routing 
information over the link, but IP will not work correctly, leaving the network adminis-
trators wondering why the routing protocol is working but the routes are broken.

Our network does not use IS–IS, so much of this section will be devoted to intro-
ducing IS–IS terminology, such as link-state protocol (LSP) data unit instead of OSPF’s 
link-state advertisement (LSA), and contrasting IS–IS behavior with OSPF.

The IS–IS Attraction
If IS–IS is used instead of OSPF as an IGP within an AS, there must be strong reasons 
for doing so.  Why introduce a new type of packet and addressing to the network? 
And even the simple task of assigning ISO addresses to routers can be a complex task. 
Yet many ISPs see IS–IS as being much more fl exible than OSPF when it comes to the 
structure of the AS.

IS–IS routers can form both Level 1 (L1) and Level 2 (L2) adjacencies. L1 links con-
nect routers in the same IS–IS area, and L2 links connect routers in different areas. In 
contrast to OSPF, IS–IS does not demand that traffi c sent between areas use a special 
backbone area (Area 0.0.0.0). IS–IS does not care if interarea traffi c uses a special area 
or not, as long as it gets there.  The same is true when a larger ISP acquires a smaller one 
and it is necessary to “paste” new areas onto existing areas.  With IS–IS, an ISP can just 
paste the new area wherever it makes sense and confi gure IS–IS L1/L2 routers in the 
right places. IS–IS takes care of everything.

A backbone area in IS–IS is simply a contiguous collection of routers in different 
areas capable of running L2 IS–IS.  The fact that the routers must be directly connected 
(contiguous) to form the backbone is not too much as a limitation (most core routers 
on the backbone usually have multiple connections). Each and every IS–IS backbone 
router can be in a different area. If an AS structure similar to centralized OSPF is desired, 
this is accomplished in IS–IS by running certain (properly connected) routers as 
L2-only routers in one selected area (the backbone), connecting areas adjacent to 
the central area with L1/L2 routers, and making the other the routers in the other areas 
L1-only routers.  The IS–IS attraction is in this type of fl exibility compared to OSPF.

IS–IS and OSPF
ISO’s idea of a network layer protocol was CLNP.  To distribute the routing information, 
ISO invented ES–IS to get routing information from routers to and from clients and 
servers, and IS–IS to move this information between routers.

IS–IS came from DEC as part of the company’s effort to complete DECnet Phase 
V. Standardized as ISO 10589 in 1992, it was once thought that IS–IS would be the 
natural progression from RIP and OSPF to a better routing protocol. (OSPF was strug-
gling at the time.) To ease the transition from IP to OSI-RM protocols, Integrated IS–IS 
(or Dual IS–IS) was developed to carry routing information for both IP and ISO-RM 
protocols.
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OSPF rebounded, ironically by often borrowing what had been shown to work 
in IS–IS.  Today OSPF is the recommended IGP to run on the Internet, but IS–IS still 
has adherents for reasons of fl exibility. Of course, OSPF has much to recommend it 
as well.

Similarities of OSPF and IS–IS

■ Both IS–IS and OSPF are link-state protocols that maintain a link-state database and 
run an SPF algorithm based on Dijkstra to compute a shortest path tree of routes.

■ Both use Hello packets to create and maintain adjacencies between neighboring 
 routers.

■ Both use areas that can be arranged into a two-level hierarchy or into interarea and 
intraarea routes.

■ Both can summarize addresses advertised between their areas.

■ Both are classless protocols and handle VLSM.

■ Both will elect a designated router on broadcast networks, although IS–IS calls it a 
designated intermediate system (DIS).

■ Both can be confi gured with authentication mechanisms.

Differences between OSPF and IS–IS
Many of the differences between IS–IS and OSPF are terminology.  The use of the terms 
IS and ES have been mentioned. IS–IS has a subnetwork point of attachment (SNPA) 
instead of an interface, protocol data units (PDUs) instead of packets, and other minor 
differences. OSPF LSAs are IS–IS link-state PDUs (LSPs), and LSPs are packets all on their 
own and do not use OSPF’s LSA-OSPF header-IP packet encapsulation.

But all IS–IS and OSPF differences are not trivial. Here are the major ones.

Areas—In OSPF, ABRs sit on the borders of areas, with one or more interfaces 
in one area and other interfaces in other areas. In IS–IS, a router (IS) is either 
totally in one area or another, and it is the links between the routers that con-
nect the areas.

Route Leaking—When L2 information is redistributed into L1 areas, it is called 
route leaking. Route leaking is defined in RFC 2966.  A bit called the Up/Down 
bit is used to distinguish routes that are local to the L1 area (Up/Down 5 0) 
from those that have been leaked in the area from an L1/L2 router (Up/
Down 5 1).  This is necessary to prevent potential routing loops. Route leak-
ing is a way to make IS–IS areas with LI only routers as “smart” as OSPF routers 
in not-so-stubby-areas (NSSAs).

374 PART III Routing and Routing Protocols



Network Addresses—CLNP does not use IP addresses in its packets. IS–IS  packets 
use a single ISO area address (Area ID) for the entire router because the 
router must be within one area or another. Every IS–IS router can have up to 
three  different area ISO addresses, but this chapter uses one ISO address per 
router.  The ISO Area ID is combined with an ISO system address (System ID) 
to give the ISO Network Entity Title, or NET. Every router must be given an ISO 
NET as described in ISO 8348.

Network Types—OSPF has five different link or network types that OSPF can 
be configured to run on: point-to-point, broadcast, non-broadcast multi-access 
(NBMA), point-to-multipoint, and virtual links. In contrast, IS–IS defines only 
two types of links or subnetworks: broadcast (LANs) and point-to-point (called 
“general topology”).  This only distinguishes links that can support multicast-
ing (broadcast) and use a designating router (DIS) and links that do not sup-
port multicasting.

Designated Intermediate System (DIS)—Although IS–IS technically uses a DIS, 
many still refer to these devices as a designated router (DR).  The DIS or DR 
represents the entire multiaccess network link (such as a LAN) as a single 
pseudo-node.  The pseudo-node (a “virtual node” in some documentation) does 
not really exist, but there are LSPs that are issued for the entire multiaccess 
network as if the pseudo-node were a real device. Unlike OSPF, all IS–IS rout-
ers on a pseudo-node (such as a LAN) are always fully adjacent to the pseudo-
node.  This is due to the lack of a backup DIS, and new DIS elections must take 
place quickly.

LSP Handling—IS–IS routers handle LSPs differently than OSPF routers handle 
LSAs.  While OSPF LSAs age from zero to a maximum (MaxAge) value of 3600 sec-
onds (1 hour), IS–IS LSPs age downward from a MaxAge of 1200 seconds (20 min-
utes) to 0.  The normal refresh interval is 15 minutes. Since IS–IS does not use IP 
addresses, multicast addresses cannot be used in IS–IS for LSP distribution. Instead, 
a MAC destination address of 0180.c200.0014 (AllL1ISs) is used to carry L1 LSPs to 
L1 ISs (routers), and a MAC destination address of 0180.c200.0015 (AllL2ISs) is used 
to carry L2 LSPs to L2 ISs (routers).

Metrics—Like OSPF, IS–IS can use one of four different metrics to calculate least-cost 
paths (routes) from the link-state database. For IS–IS, these are default (all routers 
must understand the default metric system), delay, expense, and error (reliability in 
OSPF). Only the default metric system is discussed here, as with OSPF, and that is the 
only system that most router vendors support.  The original IS–IS specifi cation used 
a system of metric values that could only range from 0 to 63 on a link, and paths (the 
sum of all link costs along the route) could have a maximum cost of 1023.  Today, 
IS–IS implementations allow for “wide metrics” to be used with IS–IS.  This makes 
the IS–IS metrics 32 bits wide.
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IS–IS for IPv6
One advantage that IS–IS has over OSPF is that IS–IS is not an IP protocol and is not as 
intimately tied up with IPv4 as OSPF. So IS–IS has fewer changes for IPv6: IPv4 is already 
strange enough.

With IPv6, the basic mechanisms of RFC 1195 are still used, but two new Type-
Length-Vector (TLVs, which defi ne representation) types are defi ned for IPv6.

IPv6 Interface Address (type 232)—This TLV just modifies the interface address 
field for the 16-byte IPv6 address space.

IPv6 Reachability (type 236)—This TLV starts with a 32-bit wide metric.  Then 
there is an Up/Down bit for route leaking, an I/E bit for external (other routing 
protocol or AS) information, and a “sub-TLVs present?” bit.  The last 5 bits of this 
byte are reserved and must be set to 0.  There is then 1 byte of Prefix Length 
(VLSM) and from 0 to 16 bytes of the prefix itself, depending on the value of 
the Prefix Length field. Zero to 248 bytes of sub-TLVs end the TLV.

Both types have defi ned sub-TLVs fi elds, but none of these has yet been standardized.
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QUESTIONS FOR READERS
Figure 14.7 shows some of the concepts discussed in this chapter and can be used to 
help you answer the following questions.
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FIGURE 14.7

Three IGPs and some of their major characteristics.

1. Why does RIP continue to be used in spite of its limitations?

2. What is the difference between distance-vector and link-state routing protocols?

3. It is often said that it is easier to confi gure a backbone area in IS–IS than in 
OSPF.  What is the basis for this statement?

4. What are the similarities between OSPF and IS–IS?

5. What are the major differences between OSPF and IS–IS?
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CHAPTER

What You Will Learn
In this chapter, you will learn about the BGP and the essential role it plays on the 
Internet.  With BGP, routing information is circulated outside the AS and to all rout-
ing domains.  We’ll see how a simple routing policy change can make a destination 
unreachable.

You will learn about the differences between the Internet BGP (IBGP) and the 
Exterior Gateway Protocol (EBGP), and why both are needed.  We’ll also look at 
BGP attributes and message formats.

Border Gateway Protocol 15

The EGP used on the Internet is the Border Gateway Protocol (BGP). IGPs run between 
the routers inside a routing domain (single AS). BGP runs between different autono-
mous services (ASs). BGP runs on links between the border routers of these routing 
domains and shares information about the routes within the AS or learned by the AS 
with the AS on the other side of the “border.”

BGP makes sure that every network and interface in any AS located anywhere on 
the Internet is reachable from every other place. BGP does not generate any routing 
information on its own, unlike the IGPs, which essentially “bootstrap” themselves into 
existence. BGP relies on an underlying IGP (or static routes) as the source of the BGP-
distributed information.

BGP runs on the border routers of Ace ISP’s AS 65459 (routers P9 and P4) and Best 
ISP’s AS 65127 (routers P7 and P2).  These are highlighted in Figure 15.1.  An IGP such as 
OSPF or IS–IS runs on the direct links between routers P9 and P4 and routers P7 and P2, 
but these are interior links. BGP runs on the other links between the backbone routers.

BGP AS A ROUTING PROTOCOL
There are EGPs defi ned other than BGP.  The Inter-Domain Routing Protocol (IDRP) 
from ISO is the EGP that was to be used with IS–IS as an IGP. IDRP is also sometimes 
promoted as the successor to BGP, or the best way to carry IPv6 routing information 
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BGP on the Illustrated Network.
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between ISP ASs. However, when it comes to the Internet today, the only EGP worth 
considering is BGP.

In a very real sense, BGP is not a routing protocol at all. BGP does not really 
 carry routing information from AS to AS, but information about routes from AS to AS. 
 Generally, a route that passes through fewer ASs (ISPs) than another is considered more 
attractive, although there are many other factors (BGP attributes) to consider. BGP is a 
routing protocol without real routes or metrics, and both of those derive from the IGP. 
BGP is not a link-state protocol, because the state of links in many AS clouds would be 
diffi cult to convey and maintain across the entire network (and links would tend to 
“average out” to a sort of least common denominator anyway). But it’s not a distance-
vector protocol either, because more attributes than just AS path length determine 
active routes. BGP is called a “path-vector” protocol (a  vector has a direction as well as 
value), but mainly because a new term was needed to describe its operation.

BGP information is not even described as a “route.” BGP carries network layer 
reachability information (NLRI). BGP “routes” do not have metrics, like IGP routes, but 
attributes.  Together, the BGP NLRI and their attributes allow other ASs to make deci-
sions about the best way to reach a route (network) in another AS. Once a packet is 
routed to the correct AS through BGP information, the packet is delivered locally using 
the IGP information.

The differences between BGP and IGPs should always be remembered. Some new 
to BGP struggle with BGP terminology and concepts because they attempt to interpret 
BGP features in terms of more familiar IGP features. BGP does not work like an IGP 
because BGP is not an IGP and should not work like an IGP.  When BGP passes informa-
tion from one AS border router to another AS border router inside an AS, a form known 
as interior BGP (IBGP) is used.  When BGP passes information from one AS to another 
AS, the form of BGP used is called exterior BGP (EBGP).

This chapter does not deal much with routing policies for BGP based on multiple 
attributes, which determine how the routers use BGP to route packets. Complex rout-
ing policies are beyond the scope of this book.

Confi guring BGP
It’s important to keep in mind exactly what is meant by a routing domain and routing 
policy. For example, is CE0 part of AS 65459 or not? This is not as simple a question as 
it sounds, because there might be a dozen routers behind CE0 that the Ace ISP knows 
nothing about. But the interface to PE5 is fi rmly under the control of Ace, and generally 
all customer site routers are considered part of the ISP’s routing domain in the sense 
that a routing policy on PE5 can always control the routing behavior of CE0.

This does not mean something like preventing the users on LAN1 from running 
Internet Chat or something.  This type of application-level detailing is not what a rout-
ing policy is for. Corporate policies of this type (application policing) are best han-
dled by an appliance on site. ISP routing policies determine things like where the 
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10.10.11.0/24 route to LAN1 is advertised or held back, and which routes are accepted 
from other sources.

Let’s see how easy it is to confi gure BGP on the border routers. Each of them is 
essentially identical in basic confi guration, so let’s use P9 as an example.

set protocols bgp group ebgp-to-as65127 type external;
set protocols bgp group ebgp-to-as65127 peer-as 65127;
set protocols bgp group ebgp-to-as65127 neighbor 10.0.79.1;
set protocols bgp group ebgp-to-as65127 neighbor 10.0.29.1;

set protocols bgp group ibgp-mesh type internal;
set protocols bgp group ibgp-mesh local-address 192.168.9.1;
set protocols bgp group ibgp-mesh neighbor 192.168.4.1;
set protocols bgp group ibgp-mesh neighbor 192.168.5.1;

BGP confi gurations are organized into groups that have user-defi ned names
(ebgp-to-as65127 and ibgp-mesh) Note that there are two types of BGP running on 
the border routers: EBGP and IBGP. EBGP must know the other AS number and IBGP 
must know the local address to use as a source address (routers typically have many 
IP addresses). Note that EBGP uses link addresses and IBGP uses the router’s “loopback” 
address, in this case the address assigned to the routing engine.  We’ll see why this is 
usually done when we discuss EBGP and IBGP later in this chapter.

We showed at the end of the previous chapter that we could ping IPv6 addresses 
from the Windows XP client on LAN1 to the Windows XP client on LAN2. Let’s see 
if the same works for the IPv4 addresses on the Unix hosts.  All is well between 
 bsdclient and bsdserver.

bsdclient# ping 10.10.12.77
PING 10.10.12.1 (10.10.12.77): 56 data bytes
64 bytes from 10.10.12.77: icmp_seq=0 ttl=255 time=0.600 ms
64 bytes from 10.10.12.77: icmp_seq=1 ttl=255 time=0.477 ms
64 bytes from 10.10.12.77: icmp_seq=2 ttl=255 time=0.441 ms
64 bytes from 10.10.12.77: icmp_seq=3 ttl=255 time=0.409 ms
^C
--- 10.10.12.77 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.409/0.482/0.600/0.072 ms

The default behavior for BGP is to advertise all active routes that it learns by its 
own operation, so no special advertising policies are needed on the backbone rout-
ers. Because there are direct links in place between the two ISPs to connect the Los 
Angeles offi ce (LAN1) with the New York offi ce (LAN2), each ISP relies on the routing 
protocol metrics to make sure traffi c fl owing between LAN1 (10.10.11/24) and LAN2 
(10.10.12/24) is not forwarded onto the Internet.  That is, the cost of forwarding a 
LAN1-LAN2 packet between the provider backbone routers will always be less than 
using the Internet at large.
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However, one day the users on LAN1 and LAN2 discover a curious thing: no one can 
reach servers on the other LAN. Pings to the local router work fi ne, but pings to remote 
hosts on the other LAN produce no results at all.

bsdserver# ping 10.10.12.1
PING 10.10.12.1 (10.10.12.1): 56 data bytes
64 bytes from 10.10.12.1: icmp_seq=0 ttl=255 time=0.599 ms
64 bytes from 10.10.12.1: icmp_seq=1 ttl=255 time=0.476 ms
64 bytes from 10.10.12.1: icmp_seq=2 ttl=255 time=0.401 ms
64 bytes from 10.10.12.1: icmp_seq=3 ttl=255 time=0.443 ms
^C
--- 10.10.12.1 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.401/0.480/0.599/0.071 ms
bsdserver# ping 10.10.11.177
PING 10.10.11.177 (10.10.11.177): 56 data bytes
^C
--- 10.10.11.177 ping statistics ---
5 packets transmitted, 0 packets received, 100% packet loss

The remote router cannot be pinged either (presumably, no security prevents them 
from pinging to another site router’s port).

bsdserver# ping 10.10.11.1
PING 10.10.11.1 (10.10.11.1): 56 data bytes
^C
--- 10.10.11.1 ping statistics ---
7 packets transmitted, 0 packets received, 100% packet loss

The Power of Routing Policy
There are many things that could be wrong in this situation. In this case, the cause of 
the problem is ultimately determined to be a feud between the Ace ISP and Best ISPs 
running the service provider routers.  The issue (greatly exaggerated here) is a server 
located on LAN2 in New York.  This essential server provides full-motion video, huge 
database fi les, and all types of other information to the clients in Los Angeles on LAN1. 
Naturally, a lot more packets fl ow from Best ISP’s AS to Ace ISP’s  AS than the other way 
around. So, the Ace ISP (AS 65459) controlling border routers P9 and P4 decided that 
Best ISP (AS 65127) should pay for all these “extra” packets they were delivering from 
the New York server. Shortly before the LANs stopped communicating, they sent a bill 
to Best ISP—turning AS 65127 from a peer into a customer.

Naturally, Best ISP was not happy about this new arrangement and refused to pay. 
So,  Ace ISP decided to do a simple thing: they applied a routing policy and did not send 
any information about the LAN1 network (10.10.11/24) to AS 65127’s border routers
(P7 and P2). If the border routers don’t know how to send packets back to LAN1 
from the servers on LAN2,  Ace ISP will be getting what they paid Best ISP for—which 
is nothing. (In the real world, the customer paying for LAN1 and LAN2 connectivity 
would be asked to pay for the asymmetrical traffi c load.)
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Without the correct routing information available on the routers on both ASs, no 
one on LAN2 can fi nd a route to LAN1. Even if there were still some connectivity 
between the sites through Ace and Best ISPs’ links to the Internet, this means that the 
symptom would show up as a sharply increased network delay (and related application 
timeouts), as packets now wander through many more hops than before. Something 
would still clearly be wrong.

This large effect comes from a very simple cause. Let’s look at the routing tables and 
policies on P2 and P7 (and P9 and P4) and see what has happened. Best ISP has applied 
a very specifi c routing policy to their external BGP session with Ace ISP’s border rout-
ers. Here’s what it looks like on P7.

set policy-statement no-10-10-11 term1 from route-filter 10.10.11.0/24 exact;
set policy-statement no-10-10-11 term1 then reject;

This basically says, “Out of all the routing protocol information, fi nd (fi lter) the infor-
mation matching the network 10.10.11.0/24 exactly and nothing else; then discard 
(reject) this information and do not use it in the routing or forwarding tables.”

This import policy on P7 and P2 (Best ISP’s routers) is applied on links from neigh-
bor border routers P4 and P9 (Ace ISP’s routers).  The effect is to block BGP in AS 65127 
from learning anything at all about network 10.10.11/24 from P4 and P9. Normally, Best 
ISP’s backbone routers would pass the information about the route to LAN1 through 
P7 and P2 to all other routers in the AS, including CE6 (LAN2’s site router).  Without this 
information, no forwarding table can be built on CE6 to allow packets to reach LAN1. 
Problem solved: no packets for LAN1 can fl ow through Best ISP’s router network.

Note that Best ISP (AS 65127) still advertises its own LAN2 network (10.10.12/24) 
to Ace ISP, and Ace ISP’s routers accept and distribute the information. So, on LAN1 the 
site router CE0 still knows about both LANs.

admin@CE0# show route 10.10/16
inet.0: 38 destinations, 38 routes (38 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both
10.10.11.0/24 *[Direct/0] 00:03:31
> via fe-1/3/0.0
10.10.11.1/32 *[Local/0] 00:03:31
Local via fe-1/3/0.0
10.10.12.0/24 *[BGP/170] 00:00:09
> via ge-0/0/3.0

But this makes no difference: Packets can get to LAN2 through CE6 (and from any-
where else in Best ISP’s AS), but they have no way to get back if they have a source 
address of 10.10.12.x. Let’s verify this on CE6.

admin@CE6# show route 10.10/16
inet.0: 38 destinations, 38 routes (37 active, 0 holddown, 1 hidden)
+ = Active Route, - = Last Active, * = Both
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10.10.12.0/24 *[Direct/0] 00:25:42
> via fe-1/3/0.0
10.10.12.1/32 *[Local/0] 00:25:42
Local via fe-1/3/0.0

How are packets to get back to 10.10.11/24? They can’t. (  The former route to 
LAN1 is now hidden because the network is no longer reachable.)  This simple exam-
ple shows the incredible power of BGP and routing policies on the Internet.

BGP AND THE INTERNET
BGP is the glue of the Internet. Generally, an ISP cannot link to another ISP unless both 
run BGP. Contrary to some claims, customer networks (even large customer networks 
with many routers and multiple ASs) do not have to run BGP between their own net-
works and to their ISP (or ISPs).  Smaller customers especially can defi ne a limited num-
ber of static routes provided by the ISP,  and larger customers might be able run IGP 
passively (no adjacency formed) on the border router’s ISP interface.  It depends on the 
complexity of the customer and ISP network.  A customer with only one link to a single 
ISP generally does not need BGP at all. But if a routing protocol is needed, it will be BGP.

When a customer network links to two ISPs and runs BGP, routing policies are 
immediately needed to prevent the large ISPs from seeing the smaller network as a 
transit AS to each other.  This actually happened a number of times in the early days of 
BGP, when small corporate networks new to BGP suddenly found themselves passing 
traffi c between two huge national ISPs whose links to each other had failed.  Why pass 
traffi c through two or three other ISPs when “Small Company, Inc.” has a BGP path 
a single AS long? BGP routing policies are immediately put in place to not advertise 
routes learned for one national ISP to the other.  As long as “you can’t get there from 
here,” all will be fi ne at the little network in the middle.

BGP summarizes all that is known about the IP address space inside the local AS 
and advertises this information to other ASs.  The other ASs pass this information along, 
until all ASs running BGP know exactly what is where on the Internet.  Without BGP, 
a single default route must handle all destinations outside the AS.  This is okay when a 
single router leads to the Internet, but inadequate for networks with numerous connec-
tions to other ASs and ISPs.

BGP was not the original EGP used on the Internet.  The fi rst exterior gateway pro-
tocol was Exterior Gateway Protocol (EGP). EGP is still around, but only on isolated 
portions of the original Internet—such as for the U.S. military.  An appreciation of EGP’s 
limitations helps to understand why BGP works the way it does.

EGP and the Early Internet
In the early 1980s, the Internet had grown to include almost 1000 computers. Several 
noted that distance-vector routing protocols such as the original Gateway-to-Gateway 
Protocol (GGP), an IGP, would not scale to a large network environment. If every router 

386 PART III Routing and Routing Protocols



needed to know everything about every route, convergence times when links failed 
would be very high. GGP routing changes had to happen globally and in a coordinated 
fashion. But the Internet, even in the 1980s, was a huge network with many different 
types of computers and routers run by many different organizations.

The answer divided the emerging Internet into independent but interconnected  ASs. 
As seen in Chapter 14, the AS is identifi ed by a 4-byte (32-bit) number assigned by the 
same authorities that assign IP addresses.  We’ll use a shorthand such as 65127 instead 
of the full (and proper) 0.65127 to indicate legacy 2-byte AS numbers.  The AS range 
64512 through 65535 is reserved for private AS numbers. Inside the AS, the network 
was assumed to be under the control of a single network administrator.  Within the AS, 
local network matters (addressing, links, new routers, and so on) could be addressed 
locally with GGP. But GGP ran only within the AS. Between ASs, some way had to be 
found to communicate what networks were reachable within and through one AS to 
the other AS.

EGP was the solution. EGP ran on the border routers (gateways), with links to other 
ASs. EGP routers just sent a list of other routers and the classful major networks that 
the router could reach.  This cut down on the amount of information that needed to 
be sent between ASs.  Today, aggregation should be used as often as possible with BGP 
instead of classful major network routes, but the intent and result are the same. So, 
if a BGP router knows about networks 10.10.1.0/24 through 10.10.127.0/24 it can 
aggregate the route as 10.10.0.0/17 and advertise that one route ( NRLI ) instead of 
128 separate routing updates. Even if a network such as 10.10.11.0/24 is not included 
in the range, the more specifi c advertisement of 10.10.11.0/24 and the longest match 
rule will make sure traffi c fi nds its way to the right place—as long as the route is adver-
tised properly. Nevertheless, there are many reasons people do not aggregate as much 
as they should, and many of their reasons are fl awed. For example, trying to protect a 
network against “prefi x hijacking” is a bad reason not to aggregate.

There is no need for an EGP to reproduce the features of an IGP.  An IGP needs to 
tell every router in the AS which router has which interfaces and what IP addresses are 
attached to these interfaces or reachable through that router (such as static routes).  All 
that other ASs need to know is which IP addresses are reachable in a particular AS and 
how to get to a border router on, or nearer to, the target AS.

The Birth of BGP
EGP suffered from a number of limitations, too technical to recount.  After some ini-
tial attempts to upgrade EGP, it was decided to create a better EGP (as a class of 
routing protocol, contrasted with IGPs) than EGP: BGP. BGP was defi ned in 1989 
with RFC 1105 (BGP1 or BGP-1 or BGPv1), revised in 1990 as RFC 1163 (BGP2), and 
revised again in 1991 as RFC 1267 (BGP3).  The version of BGP used today on the 
Internet, BGP4, emerged in 1994 as RFC 1654 and was extended for classless opera-
tion in 1995 as RFC 1771.  The baseline BGP specifi cation today is RFC 4271.  This 
chapter describes BGP4.

CHAPTER 15 Border Gateway Protocol 387



BGP has been extended for new roles on the Internet. BGP extended  communities 
are used with virtual private networks (VPNs). Communities are simply labeled that 
so they can be used to associate NLRIs that do not share other traits. For example, a 
 community value can be assigned to small customers and another community value 
used to identify a small customer with multiple sites.  There are few limits to the com-
munity “tags’” usage.  And BGP routes are often the only ones that can use multiprotocol 
label switching (MPLS) label-switched paths (LSPs). BGP is as easily extensible as IS–IS 
and OSPF to support new functions and add routing information that needs to be cir-
culated between ASs.

Many organizations fi nd themselves suddenly forced to adapt BGP in a hurry, for 
instance, when they have to multihome their networks.  Also, when they deploy VPNs 
or MPLS or any one of the many newer technologies used to potentially span ISPs and 
ASs, BGP is needed.  The problem with IGPs is that they cannot easily share information 
across routing domain boundaries.

BGP AS A PATH-VECTOR PROTOCOL
One of the problems with EGP was that the metrics looked very much like RIP hop 
counts. Simple distance vectors were not helpful at the AS level, because hop counts 
did not distinguish the fast links that began appearing in major ISP network backbones. 
Destinations that were “close” over two or three 56- or 64-kbps links actually took 
much longer to reach than through four or fi ve hops over 45-Mbps links, and distance 
vectors had no protection against routing loops.

Link-state protocols could have dealt with the problem by implementing some of 
the alternate TOS metrics described for OPSF and IS–IS. However, these would rely not 
only on consistent implementation among all ISPs but the proper setting of bits in IP 
packets. In the world of independent highly competitive ISPs, this consistency was 
next to impossible. So, BGP was developed as a path-vector protocol.  This means that 
one of the most important attributes BGP uses to choose the active route is the length 
of the AS path reported in the NLRI.

To create this AS list, BGP routing updates carry a complete list of transit networks 
(ASs) that must be traversed between the AS receiving the update and the AS that can 
deliver the packet using its IGP.  A loop occurs when an AS path list contains the same 
AS that is receiving the update, so this update is rejected and loops are prevented. If 
the update is accepted, that AS will add its own AS to the list when advertising the 
 routing update to other ASs.  This lets an AS apply routing policies to the updates and 
avoid using routes that lead through an AS that is not the preferred way to reach a 
 destination.

Path vectors do not mean that all ASs are created equal. Numerous small ASs might 
get traffi c through faster than one huge AS. But more aspects of a route are described in 
BGP than just the length of the AS path to the destination.  The system allows each AS 
to represent the route with a different metric that means something to the AS originat-
ing the route.
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But more ASs generate more and longer path information. RFC 1774 in 1995 
 estimated that 100,000 routes generated by 3000 ASs would have paths about 20 ASs 
long.  There was a concern about router memory and processor requirements to store 
and maintain all of this information, especially in smaller routers.

Several mechanisms are built into BGP to address this. ISPs would not usually accept 
a BGP route advertisement with a mask more than 19 bits long (/19).  This was called 
the universally reachable address level.  The price for compact routing tables and 
maintenance was a loss of routing accuracy, and many ISPs relaxed this policy. Most 
today accept /24 prefi xes (although they can accept more specifi c addresses from their 
own customers, of course).  The other BGP mechanisms to cut down on routing table 
size and maintenance complexity are route refl ectors, confederations (also called sub-
confederations), and route damping (or dampening).  All of these are beyond the scope 
of this chapter, but should be mentioned.

IBPG AND EBGP
BGP is an EGP that runs between individual routing domains, or ASs.  When BGP speak-
ers (the term for routers confi gured to peer with BGP neighbors) are in different ASs, 
the routers use an exterior BGP (EBPG) session to exchange information.  When BGP 
peers are within the same AS, the routers use interior BGP (IBGP).  These terms often 
appear as E-BPG/I-BGP or eBGP/iBGP.

IBGP is not some IGP version of BGP. It is used to allow BGP routers to exchange 
BGP routing information inside the same AS. IBGP sessions are usually only required 
when an AS is multihomed or has multiple links to other ASs. (However, we used them 
on the Illustrated Network anyway, and that’s fi ne too.) An AS with only a single link to 
one other AS need only run EBGP on the border router and relies on the IGP to distrib-
ute routes learned by EBPG to the other routers. In the case where there is only one 
exit point for the entire AS, a single static default route to the border router can be used 
effectively instead.  The reason that IBGP is needed is shown in Figure 15.2.

Without IBGP, all routes learned by EBGP must be dumped into the IGP to make 
sure all routes are known in the entire AS.  This can easily overwhelm the IGP. For this 
reason, it is usual to create an IBGP mesh between routers on the backbone (other rout-
ers can make do with a handful of default routes).

EBGP sessions typically peer to the physical interface address of the neighbor router. 
These are often point-to-point WAN links, and are the only way to reach another AS. If 
the link is down, the other AS is unreachable over that link. So, there is little point in 
trying to keep a BGP session going to the peer.

On the other hand, IBGP sessions usually peer to the stable “loopback” interface 
address of the peer router.  An IBGP peer can typically be reached over more than one 
physical interface within the AS, so even if an IBGP peer’s “closest” interface is down 
the BGP sessions can stay up because BGP packets use the IGP routing table to fi nd an 
alternate route to the peer.
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Two BGP neighbors, EBGP or IBGP, fi rst exchange their entire BGP routing tables—
subject to the policies on each router. After that, only incremental or partial table 
information is exchanged when routing changes occur. BGP keepalives are exchanged 
because in stable networks long periods of time might elapse before something inter-
esting happens.

IGP Next Hops and BGP Next Hops
BGP uses NLRIs as the way one AS tells another, “I know how to reach IP address space 
192.168.27.0/24 and 172.16.44.0/24 and…”  The AS does not say that it is the AS that 
has assigned that IP address space locally. Many of the addresses might be from other 
ASs beyond the AS advertising the routes.  The AS path allows an AS to fi gure out how 
far away a destination is through the AS that has advertised the route, or NLRI.

With an IGP, the next hop associated with a route is usually the IP address of the 
physical interface on the next hop router. But the BGP next hop (also sometimes called 
the “protocol next hop”) is often the IP address of the router that is advertising the 
BGP NLRI information.  The BGP next hop is the address of the BGP peer, most often 
the loopback interface address (the BGP Identifi er) for IBGP and the physical interface 
address in the other AS for EBGP.  The BGP next hop is the way one BGP router tells 
another, “If you have a packet for this IP address space, send it here.”

The IGP has to know how to reach the next hop, whether it’s a BGP next hop or 
not. But the next hop for EBGP is often at the end of a link to the other AS and is not 
running an IGP (it’s not an internal link). So, how is the IGP to know about it? Well, BGP 
routes could be “dumped” into the IGP—but there are a lot more external routes than 
internal, and the whole point is to keep the IGP and EGP separate to some extent.  This 
brings up an interesting point about the relationship of BGP and the IGP and a practice 
known as next hop self.

“I can reach
10.10.11.0/24”

“I can reach
10.10.12/24”

EBGP EBGPIBGP

AS 64513Router in
AS 65459

Router in
AS 65127Router A

“How can Router A
know how to reach
10.10.12.0/24?”

“How can Router B
know how to reach
10.10.11.0/24?”

Router B

FIGURE 15.2

The need for IBGP. Note that if only EBGP is running, the AS in the middle must dump all BGP 
routes into the IGP to advertise them throughout the network.
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BGP and the IGP
There is a well-known unreachable condition in BGP that must be solved with a 
 simple routing policy know as next hop self, or just NHS.  An EBGP route (NLRI) nor-
mally arrives from another AS with the physical address of the remote interface as 
the BGP next hop. If the EBGP route is readvertised through IBPG, it is likely that 
the BGP next hop will be completely unknown to the IGP routing tables inside the 
receiving AS. A router within an AS does not care how to reach a physical interface 
IP  address in another AS. Next hop self is just a way to have the router advertising the 
route through IBGP use itself as the next hop for the EBGP route.  The idea is not BGP 
“next-hop-is-the-physical-interface-in-another-AS” but BGP “next-hop-is-me-in-this-AS” 
or BGP “next-hop-self.”

BGP is not a routing protocol built directly on top of IP. BGP relies on TCP connec-
tions to reach its peers, and so resembles an IP application more than an IGP routing 
protocol.  Without the IGP to provide connectivity, TCP sessions for the BGP messages 
cannot be established except on links to adjacent routers. BGP does not fl ood infor-
mation with IBPG. So, what an IBGP router learns from its IBGP peers is never passed 
along to another IBGP neighbor.  

To fully distribute BGP information among the routers within an AS, a full mesh of 
IBGP connections (adjacencies) is necessary. Every IBGP router must send complete 
routing information to every other IBGP router in the AS. In a large AS with many exter-
nal links to other ASs, this meshing requirement can add a lot of overhead traffi c and 
confi guration maintenance to the network.  This is where route refl ectors and confed-
erations come in (these concepts are far beyond the scope of this chapter and will not 
be discussed further).

The main reasons BGP was built this way were to keep BGP as simple as possible 
and to prevent routing loops inside the AS.  The dependency on TCP and the lack of 
fl ooding means that IBGP must communicate directly with every other router that 
needs to know BGP routing information.  This does not mean that every router must be 
adjacent (connected by a direct link), because TCP can be routed through many routers 
to reach its destination.  What it does mean is that routers connected by IBGP inside an 
AS must create a full mesh of IGBP peering sessions.  This need to create a full mesh 
and synchronize BGP with the IGP is shown in Figure 15.3.

In the fi gure, Ace ISP and Best ISP are no longer peers. Now they are both custom-
ers of National ISP. Naturally, everyone on LAN2 still has to know how to reach LAN2 
at 10.10.11.0/24 (and vice versa, of course). EBGP advertises LAN1 to National ISP, and 
IBGP from border router to border router makes sure that LAN2 on Best ISP can reach 
10.10.11.0/24. But what about an internal router inside National ISP’s AS? There are 
only two ways to allow everyone in National ISP’s service area to access LAN1 (pre-
sumably to buy something, although there are cases concerning LAN1 security where 
the route might not be advertised everywhere).  With a full mesh of IBGP sessions in 
National ISP, there is no need to dump all external routes into the IGP (the IGP should 
only handle routes within the AS).
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OTHER TYPES OF BGP
The major types of BGP are EBGP for external peers outside the AS and IBGP for inter-
nal peers within the same AS.  These are usually the only types of BGP mentioned in 
most sources. But there are other variations of BGP used in other situations.

One BGP variation that is becoming very important, especially where VPNs are con-
cerned, is Multiprotocol BGP (often seen as MBGP or MP-BGP). Multiprotocol BGP 
originally extended BGP to support IP multicast routes and routing information. But 
MBGP is also used to support IP-based VPN information and to carry IPv6 routing infor-
mation, such as from RIPng and OSPF for IPv6. MBGP work on IPv6 is just starting, so 
no special consideration of using BGP for IPv6 appears in this chapter other than to 
note than MBGP is used for this purpose. MBGP is currently defi ned in RFC 4760.

There is also Multihop BGP, sometimes seen as EBGP multihop. Multihop BGP is only 
used with EBGP and allows an EBGP peer in another AS to be more than one hop away. 
Usually, EBGP peers are directly connected by a point-to-point WAN link. But sometimes 
it is necessary to peer with a router beyond the border router that actually terminates 
the link. Normally, BGP packets have a TTL of 1 and thus never travel beyond the adjacent 
router. Multihop BGP packets have a TTL greater than 1 and the peer is beyond the adja-
cent router. Multihop BGP is also used in load balancing situations when there is more 
than one link between two border routers, and for “route-view”–style route collectors.

Finally, there is a slight change in behavior of the BGP that runs between confed-
erations. In most cases, the version of BGP that runs between confederations is just 
called EBGP. However, there are slight differences in the EBGP that runs between 
ASs and the EBGP that runs between confederations—which are always inside the 

Internal
RTR 1

Internal
RTR 2

Border
RTR 1

“How do I get to
10.10.11.0/24?”

“I know how
to get to

10.10.11.0/24”

Border
RTR 2

Best ISP

National ISP EBGP
10.10.11.0/24

IBGP

EBGP

Ace ISP

10.10.11.0/24

Internal RTR 3

FIGURE 15.3

The need for a full IBGP mesh. Note that the routers inside National ISP do not necessarily know 
how to reach 10.10.11.0/24 (LAN1).
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same AS.  Sometimes the variant of BGP that runs between confederations is known as 
 Confederation BGP, or CBGP, although use of this term is not common.

BGP ATTRIBUTES
The information that all forms of BGP carry is associated with a route (NLRI) as a series 
of attributes.  This is the major difference between BGP and IGPs. IGP routes carry the 
route, next hop, metric, and maybe an optional tag (or two). BGP routes can carry a 
considerable amount of information, all intended to allow an AS to choose the “best” 
way to reach a destination.

Most implementations of BGP will understand 10 attributes, and some use and under-
stand even more. Every BGP attribute is characterized by two major parameters.  An attri-
bute is either well known or optional.  Well-known attributes must be understood and 
processed by every implementation of BGP regardless of vendor. Optional attributes are 
exactly that: there is no guarantee that a given BGP implementation will understand or 
process that particular attribute. BGP implementations that do not support an optional 
attribute simply pass that information on if that is what is called for, or ignore it.

In addition, a well-known BGP attribute is either mandatory or discretionary. Manda-
tory BGP attributes must be present in every BGP update message for EBGP, IBGP, or 
something else. Discretionary BGP attributes appear only in some types of BGP update 
messages, such as those used by EBGP only.

Finally, optional BGP attributes are transitive or nontransitive.  Transitive BGP optional 
attributes are passed from peer to peer even if the router does not support that option. 
Nontransitive BGP optional attributes can be ignored by the receiver BGP process if not 
supported and not sent along to peers.  The ten BGP attributes discussed in this chapter 
are listed in Table 15.1 and their characteristics are described in the list that follows.

Table 15.1 BGP Attributes

Attribute and Type 
Code

Well-Known 
Mandatory

Well-Known 
Discretionary

Optional 
Transitive

Optional 
Nontransitive

ORIGIN (1) X

AS_PATH (2) X

NEXT_HOP (3) X

LOCAL_PREF (4) X

ATOMIC_AGGR (5) X

AGGREGATOR (6) X

COMMUNITY (7) X

MED (8) X

ORIGINATOR_ID (9) X

CLUSTER_LIST (10) X
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ORIGIN—This attribute reflects where BGP obtained knowledge of the route in 
the first place.  This can be the IGP, EGP, or “incomplete.”

AS_PATH—This forms a sequence of AS numbers that leads to the originating AS 
for the NLRI.  The main use of the AS Path is for loop avoidance among ASs, but 
it is common to artificially extend the AS Path attribute through a routing policy 
so that a particular path through a certain router looks very unattractive.  The 
AS Path attribute can consist of an ordered list of AS numbers (AS_SEQUENCE) 
or just a collection of AS numbers in no particular order (AS_SET).

NEXT_HOP—The BGP Next Hop (or “protocol next hop”) is quite distinct from 
an IGP’s next hop. Outside an AS, the BGP Next Hop is most likely the border 
router—not the actual router inside the other AS that has this network on a 
local interface. Next Hop Self is the typical way to make sure that the BGP Next 
Hop is reachable.

LOCAL_PREF—The Local Preference of the NLRI is relative to other routes learned 
by IBGP within an AS and therefore is not used by EBGP.  When routes are 
advertised with IBGP, traffic will f low toward the AS exit point (border router) 
that advertised the highest Local Preference for the route. It is used to estab-
lish a preferred exit link to another AS.

MULTI_EXIT_DISC (MED)—The Multi-Exit Discriminator (MED) attribute is the 
way one AS tries to influence another when it goes to choosing among mul-
tiple exit points (border routers) that link to the AS.  A MED is the closest thing 
to a purely IGP metric that BGP has. Changing MEDs is one of the most com-
mon ways one ISP tries to make another ISP use the links it wants between 
the ISPs, such as higher speed links (“use this address on this link to reach me, 
unless it’s down, then use this one…”). MED values are totally arbitrary.

ATOMIC_AGGREGATE and AGGREGATOR—These two attributes work together. 
Both are used when routing information is aggregated for BGP.  A common 
goal on the Internet today is to represent as many networks (routes) with 
as few routing table entries as possible. So, as routing information makes 
its way through the Internet each AS will often try to condense (aggregate) 
the  routing information as much as possible with as short a VLSM as can be 
 properly  contrived.

COMMUNITY—The BGP Community attribute is sort of a “club for routes.” 
 Communities make it easier to apply policies to routes as a group.  There might 
be a community that applies to an ISP’s customers. In that case, it is not nec-
essary to list every customer’s IP address in a policy to set Local Pref or MED 
(for example) as long as they all are assigned to a unique “customer” community 
value. Community values are often used today as a way for one ISP to inform a 
peer ISP of the value of the Local Pref for the route inside the originating ISP’s 
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AS (Local Pref is not present in EBGP).  The Community attribute was originally 
Cisco  specifi c, but was standardized in RFC 1997. Communities just make it  easier 
for a router to fi nd all NLRIs associated with (for example) a  particular VPN.

ORIGINATOR_ID and CLUSTER_LIST—These attributes are used by BGP route 
reflectors. Both of these attributes are used to prevent routing loops when 
route reflectors are in use.  The Originator ID is a 32-bit value created by the 
route reflector and is the originator of the route within the local AS. If the 
originator router sees that its own ID is a received route, a loop has occurred 
and the route is ignored.  The Cluster List is a list of the route reflection cluster 
IDs of the clusters through which the route has passed. If a route reflector 
sees it own cluster ID in the Cluster List, a loop has occurred and the route is 
ignored.

BGP AND ROUTING POLICY
BGP is a policy-driven protocol.  What BGP does and how BGP does it can be almost 
totally determined by routing policy. It is diffi cult to make BGP do exactly what an ISP 
wants without the use of routing policies.

Want BGP to advertise customers on static routes or running OSPF, IS–IS, or RIP? 
Redistribute statics, OSPF, IS–IS, and RIP into BGP? Want to artifi cially extend an AS path 
to make an AS look very unattractive for transit traffi c? Write a routing policy to pre-
pend the AS multiple times.  Want to change the community attribute to add or subtract 
information? Use a routing policy. Concerned about the shear amount of routes adver-
tised? Write a routing policy to aggregate the routes any way that makes sense.  Want to 
advertise a more specifi c route along with a more general aggregate (called “punching 
a hole” in the advertised address space)? Write a routing policy. BGP depends on rout-
ing policy to behave the way it should.

BGP Scaling
A global corporation today might have 3000 routers large and small spread around the 
world. Even with multiple ASs, there could be 1000 routers within an AS that might 
all need IBGP information—no matter how the routes have been aggregated.  To 
fully mesh 1000 IBGP routers within an AS requires 499,500 IBGP sessions.  A net-
work 100 times larger than a 10-router network requires more than 10,000 times 
more IBGP  sessions.  Adding one router adds 1000 additional IBGP sessions to the 
network.

This problem with the exponential growth of IBGP sessions is the main BGP scaling 
issue.  There are two ways to deal with this issue: the use of router refl ectors (RR) and 
confederations.

What is the difference between RRs and confederations? At the risk of offending 
BGP purists, it can be loosely stated that RRs are a way of grouping BGP routers inside 
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an AS and running IBGP between the RR clusters. Confederations are a way of group-
ing BGP routers inside an AS and running EBGP between the confederation “sub-ASs.” 
Because of the differences between RRs and confederations, it is even possible to have 
both confi gured at the same time in the same AS.  There is also BGP route damping, 
which is not a way of dealing with BGP scaling directly but rather a way to deal with 
the effects of BGP scaling in terms of the amount of routing information that needs to 
be distributed to IBGP and EBGP peers when a router or link fails.

BGP MESSAGE TYPES
BGP messages types are simpler than those used by OSPF and IS–IS because of the 
presence of TCP.  TCP handles all of the details of connection setup and maintenance, 
and before a BGP peering session is established the router performs the usual TCP 
three-way handshake using TCP port 179 on one router.  The other router uses a port 
that is not well known, and it is just a matter of whose TCP SYN message arrives fi rst 
that determines which BGP peer is technically the “server.” All BGP messages are then 
unicast over the TCP connection.  There are only four BGP message types.

Open—Used to exchange version numbers (usually four, but two routers can agree 
on an earlier version), AS numbers (same for IBGP, different for EBGP), hold 
time until a Keepalive or Update is received (the smaller value is used if they 
differ), the BGP identifier (Router ID, usually the loopback interface address), 
and options such as authentication method (if used).

Keepalive—Keepalive messages are used to maintain the TCP session when there 
are no Updates to send.  The default time is one-third of the hold time estab-
lished in the Open message exchange.

Update—This advertises or withdraws routes.  The Update has fields for the NLRI 
(both prefix and VLSM length), path attributes, and withdrawn routes by prefix 
and length.

Notification—These are for errors and always close a BGP connection. For exam-
ple, a BGP version mismatch in the Open message closes the connection, 
which must then be reopened when one router or the other adjusts its version 
support.

The maximum TCP segment size for a BGP message is 4096 bytes and the minimum 
is 19 bytes.  All BGP messages have a common header, as shown in Figure 15.4.

The Marker is a 16-byte fi eld used for synchronizing BGP connections and in 
 authentication. If no authentication is used and the message is an Open, this fi eld is 
set to all 1s.  The Length is a 16-bit fi eld that contains the length of the message, includ-
ing the header, in bytes. Finally, the Type is an 8-bit fi eld set to 1 (Open), 2 (Update), 3 
(Notifi cation), or 4 (Keepalive).
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FIGURE 15.4

The BGP message header carried inside a TCP segment.

BGP MESSAGE FORMATS
A data portion follows the header in all but the Keepalive messages. Keepalives consist 
of only the BGP message headers and so need not be discussed further in this section.

The Open Message
Once a TCP connection has been established between two BGP speakers, Open mes-
sages are exchanged between the BGP peers. If the Open is acceptable to a router, 
a Keepalive is sent to confi rm the Open. Once Keepalives are exchanged, peers can 
exchange Updates, Keepalives, and Notifi cation messages.  The format of the Open mes-
sage is shown in Figure 15.5.

The Open message has an 8-bit Version fi eld, a 2-byte My Autonomous System fi eld, 
a 2-byte Hold Time value (0 or at least 3 seconds), a 32-bit BGP Identifi er (router ID), 
an 8-bit Optional Parameters Length fi eld (set to 0 if no options are present), and the 
optional parameters themselves in the same TLV format used by IS–IS in the previous 
chapter. BGP options are not discussed in this chapter.

The Update Message
The Update message is used to advertise NLRIs (routes) to a BGP peer, to withdraw 
multiple routes that are now unreachable (or unfeasible), or both.  The format of the 
Update message is shown in Figure 15.6. Because of the peculiar “skew” the 19-byte 
BGP header puts on subsequent fi elds, this message is shown in a different format than 
the others.  There are two distinct sections to the Update message.  They are used to 
Withdraw and Advertise routes.
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FIGURE 15.5

The BGP Open message showing optional fi elds at the end.

The Update message starts with a 20-byte fi eld indicating the total length of the 
Withdrawn Routes fi eld in bytes. If there are no Withdrawn Routes, this fi eld is set 
to zero. If there are Withdrawn Routes, the routes follow in a variable-length fi eld 
with the list of Withdrawn Routes. Each route is a Length/Prefi x pair.  The length indi-
cates the number of bits that are signifi cant in the following prefi x and form a mask/
prefi x pair.

The next fi eld is a 2-byte Total Path Attribute Length fi eld.  This is the length in bytes 
of the Path Attributes fi eld that follows.  A value of zero means that nothing follows.

The variable-length Path Attributes fi eld lists the attributes associated with the 
NRLIs that follow. Each Path attribute is a TLV of varying length, the fi rst part of which 

Unfeasible Routes Length
(2 bytes)

Total Path Attribute Length
(2 bytes)

Path Attribute
(variable length)

Network Layer Reachability Information
(variable length)

Withdrawn Routes
(variable length)

FIGURE 15.6

The BGP Update message. This is the main way routes are advertised with BGP.
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is the 2-byte Attribute Type.  There is a structure to the Attribute Type fi eld, as shown 
in Figure 15.7.  There are four fl ag bits, four unused bits, and then an 8-bit Attribute 
Type code.

There are other attribute codes in use with BGP, but these are not discussed in this 
chapter. One of the most important of these other attributes is the Extended Commu-
nity attribute used in VPNs.

The Update message ends with a variable-length NLRI fi eld. Each NLRI (route) 
is a Length/Prefi x pair.  The length indicates the number of bits that is signifi cant 
in the following prefi x.  There is no length fi eld for this list that ends the Update 
message.  The number of NLRIs present is derived from the known length of all of the 
other fi elds.

So, instead of saying “here’s a route and these are its attributes…” for every NLRI 
advertised the Update message basically says “here’s a group of path attributes and here 
are the routes that these apply to…” This cuts down on the number of messages that 
needs to be sent across the network. In this way, each Update message forms a unit of 
its own and has no further fragmentation concerns.

The Notifi cation Message
Error messages in BGP have an 8-bit Error Code, an 8-bit Subcode, and a variable-length 
Data fi eld determined by the Error Code and Subcode.  The format of the BGP Notifi ca-
tion message is shown in Figure 15.8.

8 bits 8 bits

O T P E U U U U Attribute Type Code

Flag bits:

O: Optional bit
       05Optional
       15Well known
T: Transitive bit
       05Transitive
       15Nontransitive
P: Partial bit
       05Optional transitive attribute is partial
       15Optional transitive attribute is complete
E: Extended length bit
       05Attribute length is 1 byte
       15Attribute length is 2 bytes
U: Unused

FIGURE 15.7

The BGP Attribute Type format. This is how NRLIs are grouped.
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A full discussion of BGP Notifi cation codes and subcodes is beyond the scope of 
this chapter.  The major Error Codes are Message Header Error (1), Open Message Error 
(2), Update Message Error (3), Hold Timer Expired (4), Finite State Machine Error (5), 
used when the BGP implementation gets hopelessly confused about what it should be 
doing next, and Cease (6), used to end the session.

32 bits

Data

Error SubcodeError Code

1 byte 1 byte 1 byte 1 byte

Error codes:
1: Message header error
2: Open message error
3: Update message error

4: Hold timer expired
5: Finite State Machine error
6: Cease

FIGURE 15.8

The BGP Notifi cation message format. BGP benefi ts from using TCP as a transport protocol.
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QUESTIONS FOR READERS
Figure 15.9 shows some of the concepts discussed in this chapter and can be used to 
help you answer the following questions.

“I don’t know
10.0.75.1!

It’s not in this AS!”

Router
192.168.14.1

“Oh! I know how to reach
192.168.14.1”

IBGP
without
NHS

IBGP with
NHS

EBGP
(No IGP)

Router in
AS 65127

“I can reach
10.10.12/24.
Use 10.0.75.1
as a next hop.”

10.0.75.2 10.0.75.1

FIGURE 15.9

How Next Hop Self allows internal routers to forward packets for BGP routes. Border router 
192.168.14.1 substitutes its own address for the “real” next hop.

1.  BGP distributes “reachability” information and not routes. Why doesn’t BGP 
 distribute route information?

2. What does it mean to say that the BGP is a “path-vector” protocol?

3. What is “next hop self” and why is it important in BGP?

4. Which two major BGP router confi gurations are employed to deal with BGP 
scaling?

5. What are the ten major BGP attributes?
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CHAPTER

What You Will Learn
In this chapter, you will learn how multicast routing protocols allow multicast 
 traffi c to make its way from a source to interested receivers through a router-based 
network.  We’ll look at both dense and parse multicast routing protocols, as well as 
some of the other protocols used with them (such as IGMP).

You will learn how the PIM rendezvous point (RP) has become the key 
 component in a multicast network. We’ll see how to confi gure an RP on the 
 network and use it to deliver a simple multicast traffi c stream to hosts.

Multicast 16

If the Internet and TCP/IP are going to be used for everything from the usual data 
activities to voice and video, something must be done about the normal unicast packet 
addressing refl ecting one specifi c source and one specifi c destination.  Almost every-
thing described in this book so far has featured unicast, although multicast addresses 
have been mentioned from time to time—especially when used by routing protocols.

The one-to-many operation of multicast is a technique between the one-to-one 
packet delivery operation of unicast and the one-to-all operation of broadcast. Broad-
casts tend to disrupt hosts’ normal processing because most broadcasts are not really 
intended for every host yet each receiving host must pay attention to the broadcast 
packet’s content. Many protocols that routinely used broadcasts, such as RIPv1, were 
replaced by versions that used multicast groups instead (RIPv2, OSPF). Even the proto-
cols in IPv4 that still routinely use broadcast, such as ARPing to fi nd the MAC address 
that goes with an IP address, have been replaced in IPv6 with multicast-friendly  versions 
of the same procedure.

Multicast protocols are still not universally supported on much of the Internet.  Then 
how do large numbers of people all watch the same video feed from a Web server 
(for example) at the same time? Today, this is normally accomplished with numerous 
 unicast links, each running from the server to every individual host.  This works, but 
it does not scale. Can a server handle 100, 1000, or 1,000,000 simultaneous users? 
Many-to-many multicast applications, such as on-line gaming and gambling sites, use 
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FIGURE 16.1

Portion of the Illustrated Network used for the multicast examples. The RP will be router PE5, and 
the ISPs have merged into a single AS for this chapter.
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multiple point-to-point meshes of links in most cases. Even if modern server clusters 
could do this, could all the routers and links handle this traffi c? Multicast uses the rout-
ers to replicate packets, not the servers.

However, interdomain (or even intersubnet) multicasting is a problem. IP multicast 
is widely leveraged on localized subnets where it’s solely a question of host support. 
Many-to-many applications have some fundamental scaling challenges and multicast 
does not address these very well. For example, how does each host in a shared tree of 
multicast traffi c manage the receipt of perhaps 50 video streams from participants?

Today, multicast is a key component of local IPv6 and IPv4 resource discovery 
mechanisms and is not confi ned to enterprise applications. However, multicast appli-
cations are used mainly on enterprise networks not intended for the general public. 
In the future, multicast must move beyond a world where special routers (not all rout-
ers can handle multicast packets) use special parts of the Internet (most famously, the 
MBONE, or multicast backbone) to link interested hosts to their sources. Multicast must 
become an integral part of every piece of hardware and software on the Internet.

Let’s look at a few simple multicast packets and frames on the Illustrated Network. 
We don’t have any video cameras or music servers on the network to pump out con-
tent, but we do have the ability to use simple socket programs to generate a stream of 
packets to multicast group addresses as easily as to unicast destinations.  We could look 
at multicast as used by OSPF or IPv6 router announcements, but we’ll look at simple 
applications instead.

We’ll look at IPv4 fi rst, and then take a quick look at IPv6 multicasting.  We’ll use the 
devices shown in Figure 16.1 to illustrate multicast protocols, introducing the terms 
used in multicast protocols as we go.  We’ll explore all of the terms in detail later in the 
chapter.

This chapter uses wincli2 and lxnclient on LAN2 and wincli1 on LAN1.  The router 
PE5 will serve as our PIM sparse-mode RP.  To simplify the number of multicast protocols 
used, we’ve merged the two ISPs into Best-Ace ISP for this chapter.  This means we will 
not need to confi gure the Multicast Source Discovery Protocol (MSDP), which allows 
receivers in an AS to fi nd RPs in another AS.  A full investigation of MSDP is beyond the 
scope of this chapter, but we will go over the basics.

A FIRST LOOK AT IPV4 MULTICAST
This section uses two small socket programs from the source cited in Chapter 12: the 
excellent TCP/IP Sockets in C by Michael J. Donahoo and Kenneth L. Calvert.  We’ll use 
two programs run as MulticastReceiver and MulticastSender, and two free Windows 
multicast utilities, wsend and wlisten.

Let’s start with two hosts on the same LAN.  We’ll use lnxclient (10.10.12.166) 
and wincli2 (10.10.12.222) for this exercise (both clients, but there’s no heavy mul-
ticasting going on).  We’ll set the Linux client to multicast the text string HEY once 
every 3 seconds onto the LAN using multicast group address 239.2.2.2 (multicasts 
use  special IP addresses for destinations) and UDP port 22222 (multicast applications 
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often use UDP,  and cannot use TCP). Naturally, we’ll set the multicast receiver socket 
program on the Windows XP client to receive traffi c sent to that group.

It should be noted that the multicast group addresses used here are administra-
tively scoped addresses that should only reach a limited number of hosts and not be 
used on the global public Internet, much like private IP addresses. However, we won’t 
discuss how the traffi c to these groups is limited.  This is mainly because there are some 
operational disagreements about how to apply administratively scoped boundaries.  We 
are using scoped addresses primarily as an analogy for private IP addresses.  We could 
also have used GLOP addresses (discussed in this chapter) or addresses from the 
dynamic multicast address block.

The receiver socket program does not generate any special messages to say, “Send 
me content addressed to group 239.2.2.2.”  We know it’s going to be there. Later, 
we’ll see that a protocol called Internet Group Management Protocol (IGMP) sends 
join or leave messages and knows what content is carried at this time by group 
239.2.2.2 because of the Session Announcement Protocol and Source Description 
Protocol (SAP/SDP) messages it receives. In reality, multicast is a suite of protocols—
and much more is required to create a complete multicast application. However, 
this little send-and-receive exercise will still reveal a lot about multicast. Figure 16.2 
shows a portion of the Ethereal capture of the packet stream, detailing the UDP con-
tent inside the IP packet.

FIGURE 16.2

Multicast packet capture, showing the MAC address format used and the port in the UDP 
 datagram. Some IGMPv3 messages appear also.
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The Ethernet frame destination address is in a special form, starting with 01 and 
ending in 02:02:02—which corresponds to the 239.2.2.2 multicast group address. 
We’ll explore the rules for determining this frame address in material following. Note 
that the packet is addressed to the entire group, not an individual host (as in unicast). 
How does the network know where to send replicated packets? Two strategies (dis-
cussed later in the chapter) are to send content everywhere and then stop if no one 
says they are listening (fl ood-and-prune, or dense mode), or to send content only to 
hosts that have indicated a desire to receive the content (sparse mode).

The fi gure also shows that the Windows XP receiver (10.10.12.222) is generating 
IGMPv3 membership reports sent to multicast group address 224.0.0.22 (the IGMP 
multicast group). XP does this to keep the multicast content coming, even though 
the socket sender program has no idea what it means.  These messages from XP to the 
IGMP group sometimes cause consternation with Windows network administrators, 
who are not always familiar with multicast and wonder where the 224.0.0.22 “server” 
could be.

Now let’s set our multicast group send program to span the router network from 
LAN1 to LAN2.  We’ll start the socket utility sending on wincli1 (10.10.11.51), using 
multicast group 239.1.1.1 and UDP port 11111. The listener will still be wincli2 
(10.10.12.222).

This is easy enough, and Ethereal on wincli1 shows a steady stream of multicast 
traffi c being dumped onto LAN1. However, the Ethereal capture on wincli2 (which had 
no problem receiving a multicast stream only moments ago) now receives absolutely 
nothing.  What’s wrong?

The problem is that the routers between LAN1 and LAN2 are not running a multicast 
routing protocol.  The router on LAN1 at 10.10.11.1 adjacent to the source receives 
every multicast packet sent by wincli1. But the destination address of 239.1.1.1 is 
meaningless when considered as a unicast address. No entry exists in the unicast rout-
ing table, and there is yet no multicast “routing table” (more properly, table for multicast 
interface state) on the router network.

Before we confi gure multicast for use on our router network and allow multicast traf-
fi c to travel from LAN1 to LAN2, there are many new terms and protocols to explain—a 
few of which we’ve already mentioned (IGMP, SAP/SDP, how a multicast group maps to 
a frame destination address, and so on.) Let’s start with the basics.

MULTICAST TERMINOLOGY
Multicast in TCP/IP has developed a reputation of being more diffi cult to understand 
than unicast. Part of the problem is the special terminology used with multicast, and 
the implication that if something is not universally supported, it must be complicated 
and diffi cult to understand. But there is nothing in multicast that is more complex than 
subnet masking, multicast sockets are nearly the same as unicast sockets (except that 
they don’t use TCP sockets), and many things that routing protocols do with multicast 
packets are now employed in unicast as well (the reverse-path forwarding, or RFP 
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check). Figure 16.3 shows a general view of some of the terms commonly used in an 
IP multicast network.

The key component of the multicast network is the multicast-capable router, which 
replicates the packets.  The routers in the IP multicast network, which has exactly the 
same topology as the unicast network it is based on, use a multicast routing protocol 
to build a distribution tree to connect receivers (this term is preferred to the mul-
timedia implications of listeners, but the listener term is also used) to sources.  The 
distribution tree is rooted at the source.  The interface on the router leading toward 
the source is the upstream interface, although the less precise terms incoming or 
inbound  interface are also used.  There should be only one upstream interface on the 
router receiving  multicast packets.  The interface on the router leading toward the 
receivers is the downstream interface, although the less precise terms outgoing or 
outbound interface are used as well.  There can be 0 to N – 1 downstream interfaces on 
a router, where N is the number of logical interfaces on the router.  To prevent looping, 
the upstream interface should never receive copies of downstream multicast packets.

Routing loops are disastrous in multicast networks because of the repeated replica-
tion of packets. Modern multicast routing protocols need to avoid routing loops, packet 
by packet, much more rigorously than in unicast routing protocols.

Each subnetwork with hosts on the router that has at least one interested receiver 
is a leaf on the distribution tree. Routers can have multiple leafs or leaves (both terms 
are used) on different interfaces and must send a copy of the IP multicast packet out 

Multicast
Host

Multicast
Host

Multicast
Host

Multicast
Host

Multicast
Host

Multicast
Host

Multicast
Host

Multicast
Host

Multicast
RoutersPRUNE JOIN JOIN

Multicast
Source
(Group A)

Multicast
Source
(Group B)

Leafs

Root of
Multicast
Tree

Distribution
Tree(s)

Uninterested
Host

Uninterested
Host

Interested
Host

(Group A)

Interested
Host

(Group B)

Interested
Host

(Group B)

Interested
Host

(Group B)

Upstream Downstream

FIGURE 16.3

Examples of multicast terminology showing how multicast trees are “rooted” at the source. JOINs 
are also sent using IGMP from receivers to local routers.
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on each interface with a leaf.  When a new leaf subnetwork is added to the tree (i.e., 
the interface to the host subnetwork previously received no copies of the multicast 
packets), a new branch is built, the leaf is joined to the tree, and replicated packets are 
now sent out on the interface.

When a branch contains no leaves because there are no interested hosts on the 
router interface leading to that IP subnetwork, the branch is pruned from the distribu-
tion tree, and no multicast packets are sent out from that interface. Packets are repli-
cated and sent out from multiple interfaces only where the distribution tree branches 
at a router, and no link ever carries a duplicate fl ow of packets.

Collections of hosts all receiving the same stream of IP packets, usually from the 
same multicast source, are called groups. In IP multicast networks, traffi c is delivered to 
multicast groups based on an IP multicast address or group address.  The groups deter-
mine the location of the leaves, and the leaves determine the branches on the multicast 
network. Some multicast routing protocols use a special RP router to allow receivers 
to fi nd sources effi ciently.

DENSE AND SPARSE MULTICAST
Multicast addresses represent groups of receivers, and two strategies can be employed 
to ensure that all receivers interested in a multicast group receive the traffi c.

Dense-Mode Multicast
The assumption here is that almost all possible subnets have at least one receiver 
 wanting to receive the multicast traffi c from a source, so the network is fl ooded with 
traffi c on all possible branches and then pruned back as branches do not express 
an interest in receiving the packets—explicitly (by message) or implicitly (timeout 
silence).  This is the dense mode of multicast operation. LANs are appropriate environ-
ments for dense-mode operation. In practice, although PIM-DM is worth covering (and 
we’ll even confi gure it!) there aren’t a lot of scenarios in which people would seriously 
consider it. Periodic blasting of source content is neither a very scalable nor effi cient 
use of resources.

Sparse-Mode Multicast
The assumption here is that very few of the possible receivers want packets from this 
source, so the network establishes and sends packets only on branches that have at 
least one leaf indicating (by message) a desire for the traffi c.  This is the sparse mode 
of multicast operation.  WANs (like the Internet) are appropriate networks for sparse-
mode operation. Sparse-mode multicast protocols use the special RP router to allow 
receivers to fi nd sources effi ciently.

Specifi c networks can run whichever mode makes sense.  A low-volume multicast 
application can make effective use of dense mode, even on a WAN.  A high-volume 
application on a LAN might still use sparse mode for effi ciency.
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Some multicast routing protocols, especially older ones, support only dense-mode 
operation—which makes them diffi cult to use effi ciently on the public Internet.  Others 
allow sparse mode as well. If sparse-dense mode is supported, the multicast routing 
protocol allows some special dense multicast groups to be used to the RPs—at which 
point the router operates in sparse mode.

MULTICAST NOTATION
To avoid multicast routing loops, every multicast router must always be aware of the 
interface that leads to the source of that multicast group content by the shortest path. 
This is the upstream (incoming) interface, and packets should never be forwarded back 
toward a multicast source.  All other interfaces are potential downstream (outgoing) 
interfaces, depending on the number of branches on the distribution tree.

Routers closely monitor the status of the incoming and outgoing interfaces, a process 
that determines the multicast forwarding state.  A router with a multicast forwarding 
state for a particular multicast group is essentially “turned on” for that group’s content. 
Interfaces on the router’s outgoing interface list (OIL) send copies of the group’s pack-
ets received on the incoming interface list for that group.  The incoming and outgoing 
interface lists might be different for different multicast groups.

The multicast forwarding state in a router is usually written in (S,G) or (*,G) 
notation.  These are pronounced “S comma G” and “star comma G,” respectively. In (S,G), 
the S refers to the unicast IP address of the source for the multicast traffi c, and the 
G refers to the particular multicast group IP address for which S is the source.  All multi-
cast packets sent from this source have S as the source address and G as the  destination 
address.

The asterisk (*) in the (*,G) notation is a wild card indicating that the source sending 
to group G is unknown. Routers try to track down these sources when they have to in 
order to operate more effi ciently.

MULTICAST CONCEPTS
The basic terminology of multicast is complicated by the use of several related con-
cepts. Many of these apply to how the routers on a multicast-capable network handle 
multicast packets and have little to do with hosts on LANs, but they are important 
concepts nonetheless.

Reverse-Path Forwarding
Unicast forwarding decisions are typically based on the destination address of the 
packet arriving at a router.  The unicast routing table is organized by destination subnet 
and mainly set up to forward the packet toward the destination.
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In multicast, the router forwards the packet away from the source to make progress 
along the distribution tree and prevent routing loops.  The router’s multicast forward-
ing state runs more logically by organizing tables based on the reverse path, from the 
receiver back to the root of the distribution tree.  This process is known as reverse-path 
forwarding (RPF).

The router adds a branch to a distribution tree depending on whether the request for 
traffi c from a multicast group passes the RPF check. Every multicast packet received must 
pass an RPF check before it is eligible to be replicated or forwarded on any  interface.

The RPF check is essential for every router’s multicast implementation.  When a 
multicast packet is received on an interface, the router interprets the source address in 
the multicast IP packet as the destination address for a unicast IP packet.  The source 
multicast address is found in the unicast routing table, and the outgoing interface is 
determined. If the outgoing interface found in the unicast routing table is the same 
as the interface that the multicast packet was received on, the packet passes the RPF 
check. Multicast packets that fail the RPF check are dropped because the incoming 
interface is not on the shortest path back to the source.

Routers can build and maintain separate tables for RPF purposes.  The router must 
have some way to determine its RPF interface for the group, which is the interface 
topologically closest to the root.  The distribution tree should follow the shortest-path 
tree topology for effi ciency.  The RPF check helps to construct this tree.

The RPF Table
The RPF table plays the key role in the multicast router.  The RPF table is consulted for 
every RPF check, which is performed at intervals on multicast packets entering the 
multicast router. Distribution trees of all types rely on the RPF table to form properly, 
and the multicast forwarding state also depends on the RPF table.

The routing table used for RPF checks can be the same routing table used to for-
ward unicast IP packets, or it can be a separate routing table used only for multicast 
RPF checks. In either case, the RPF table contains only unicast routes because the RPF 
check is performed on the source address of the multicast packet (not the multicast 
group destination address), and a multicast address is forbidden from appearing in the 
source address fi eld of an IP packet header.  The unicast address can be used for RPF 
checks because there is only one source host for a particular stream of IP multicast 
content for a multicast group address, although the same content could be available 
from multiple sources.

Populating the RPF Table
If the same routing table used to forward unicast packets is also used for the RPF 
checks, the routing table is populated and maintained by the traditional unicast routing 
protocols such as Border Gateway Protocol (BGP), Intermediate System-to-Intermediate 
System (IS–IS), OSPF, and Routing Information Protocol (RIP). If a dedicated multicast 
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RPF table is used, this table must be populated by some other method. Some multicast 
routing protocols, such as the Distance Vector Multicast Routing Protocol (DVMRP), 
essentially duplicate the operation of a unicast routing protocol and populate a dedi-
cated RPF table. Others, such as Protocol Independent Multicast (PIM), do not duplicate 
routing protocol functions and must rely on some other routing protocol to set up this 
table—which is why PIM is protocol independent.

Some traditional routing protocols (such as BGP and IS–IS) now have extensions 
to differentiate between different sets of routing information sent between routers 
for unicast and multicast. For example, there is multiprotocol BGP (MBGP) and multi-
topology routing in IS–IS (M-ISIS). Multicast Open Shortest Path First (MOSPF) also 
extends OSPF for multicast use, but goes further than MBGP or M-ISIS and makes 
MOSPF into a complete multicast routing protocol on its own.  When these routing 
protocols are used, routes can be tagged as multicast RPF routers and used by the 
receiving router differently than the unicast routing information.

Using the main unicast routing table for RPF checks provides simplicity.  A dedicated 
routing table for RPF checks allows a network administrator to set up separate paths 
and routing policies for unicast and multicast traffi c, allowing the multicast network to 
function more independently of the unicast network.  The following section discusses 
in further detail how PIM operates, although the concepts could be applied to other 
multicast routing protocols.

Shortest-Path Tree
The distribution tree used for multicast is rooted at the source and is the shortest-path 
tree (SPT) as well. Consider a set of multicast routers without any active multicast 
 traffi c for a certain group (i.e., they have no multicast forwarding state for that group). 
When a router learns that an interested receiver for that group is on one of its directly 
connected subnets, the router attempts to join the tree for that group.

To join the distribution tree, the router determines the unicast IP address of the 
source for that group.  This address can be a simple static confi guration in the router, or 
use more complex methods.

To build the SPT for that group, the router executes an RPF check on the source 
address in its routing table.  The RPF check produces the interface closest to the source, 
which is where multicast packets from this source for this group should fl ow into the 
router.

The router next sends a join message out on this interface using the proper mul-
ticast protocol to inform the upstream router that it wishes to join the distribution 
tree for that group.  This message is an (S,G) join message because both S and G are 
known. The router receiving the (S,G) join message adds the interface on which the 
message was received to its OIL for the group and performs an RPF check on the 
source address. The upstream router then sends an (S,G) join message out the RPF 
interface toward the source, informing the upstream router that it also wants to join 
the group.
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Each upstream router repeats this process, propagating joins out the RPF  interface—
building the SPT as it goes.  The process stops when the join message does the  following:

■ Reaches the router directly connected to the host that is the source, or
■  Reaches a router that already has multicast forwarding state for this  

source-group pair.

In either case, the branch is created, each of the routers has multicast forwarding state 
for the source-group pair, and packets can fl ow down the distribution tree from source 
to receiver.  The RPF check at each router ensures that the tree is an SPT.

SPTs are always the shortest path, but they are not necessarily short.  That is, sources 
and receivers tend to be on the periphery of a router network (not on the backbone) and 
multicast distribution trees have a tendency to sprawl across almost every router in the 
network. Because multicast traffi c can overwhelm a slow interface, and one packet can 
easily become a hundred or a thousand on the opposite side of the backbone, it makes 
sense to provide a shared tree as a distribution tree so that the multicast source could 
be located more centrally in the network (on the backbone).  This sharing of distribution 
trees with roots in the core network is accomplished by a multicast  rendezvous point.

Rendezvous Point and Rendezvous-Point Shared Trees
In a shared tree, the root of the distribution tree is a router (not a host), and is located 
somewhere in the core of the network. In the primary sparse-mode multicast routing 
protocol, Protocol Independent Multicast sparse mode (PIM-SM), the core router at the 
root of the shared tree is the RP. Packets from the upstream source and join messages 
from the downstream routers “rendezvous” at this core router.

In the RP model, other routers do not need to know the addresses of the sources for 
every multicast group.  All they need to know is the IP address of the RP router.  The RP 
router knows the sources for all multicast groups.

The RP model shifts the burden of fi nding sources of multicast content from each 
router—the (S,G) notation—to the network—the (*,G) notation knows only the RP. 
Exactly how the RP fi nds the unicast IP address of the source varies, but there must 
be some method to determine the proper source for multicast content for a particular 
group.

Consider a set of multicast routers without any active multicast traffi c for a certain 
group.  When a router learns that an interested receiver for that group is on one of its 
directly connected subnets, the router attempts to join the distribution tree for that 
group back to RP (not to the actual source of the content). In some sparse-mode pro-
tocols, the shared tree is called the rendezvous-point tree (RPT).

When the branch is created, packets can fl ow from the source to the RP and from 
the RP to the receiver. Note that there is no guarantee that the shared tree (RPT) is 
the shortest path tree to the source. Most likely it is not. However, there are ways to 
“migrate” a shared tree to an SPT once the fl ow of packets begins. In other words, the 
forwarding state can transition from (*,G) to (S,G).  The formation of both types of trees 
depends heavily on the operation of the RPF check and the RPF table.
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PROTOCOLS FOR MULTICAST
Multicast is not a single protocol used for a specifi c function, like FTP. Nor is  multicast 
a series of separate protocols that can be used as desired between adjacent hosts 
and  routers to perform a function, like IS–IS and OSPF. Multicast is a series of related 
 protocols that must be carefully coordinated across and between an AS and often 
among hosts.

The family of multicast protocols is due to the complexity of source discovery 
and the mechanisms used to perform this task. Most hosts can send and receive 
multicast frames and packets on a LAN as easily as they handle broadcast or uni-
cast. Routers must be capable of sending copies of a single received packet out on 
more than one interface (replication), and many low-end routers cannot do this. In 
addition, routers must be able to use unicast routing tables for multicast purposes, 
or construct special tables for multicast information (again, many low-end routers 
cannot do this).

Multicast routers must be able to maintain state on each interface with regard to 
multicast traffi c. That is, the router must know which multicast groups have active 
receivers on an outgoing interface (called downstream interfaces) and which interface 
is the “closest” to the source (called upstream interface).  These interfaces vary from 
group to group, one group can have more than one potential source (for redundancy 
purposes), and special routers might be employed for many groups (the RPs).

Multicast Hosts and Routers
Multicast tasks are very different for hosts versus routers.  At this juncture, we will 
extend the multicast discussion beyond IPv4 to IPv6 and hosts. General points follow.

■ Hosts must be able to join and leave multicast groups.  The major protocols here are 
various versions of the Internet Group Management Protocol (IGMP) in IPv4 and 
Multicast Listener Discovery (MLD) in IPv6.

■ Hosts (users) must know the content of multicast groups. The related Session 
Announcement Protocol and Session Description Protocol (SAP/SDP, defi ned in RFC 
2974 and RFC 2327) are the standard protocols used to describe the content and 
some other aspects of multicast groups.  These should not be used as a method of 
multicast source discovery.

■ Routers must be able to fi nd the sources of multicast content, both in their own 
 multicast (routing) domain and in others. For sparse modes, this means fi nding the 
RPs. These can be confi gured statically, or use protocols such as Auto-RP, anycast RP 
(RFC 3446), bootstrap router (BSR), or MSDP (RFC 3618). For IPv6, embedded RP is 
used instead of MSDP—which is not defi ned for IPv6 use. (This point actually applies 
to ASM, not SSM, discussed in material following.)

■ Routers must be able to prevent loops that replicate the same packet over and over. 
The techniques here are not really protocols, and include the use of scoping (limit-
ing multicast packet hops) and RPF checks.
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■ Routers must provide missing multicast information when feasible. Multicast 
 networks can use Pragmatic General Multicast (PGM) to add some TCP features 
lacking in UDP to multicast networks. However, the only assurance is that you 
know you missed something.  Application-specifi c mechanisms can do the same 
thing with simple sequence numbers.

Fortunately, only a few of these protocols are really used for multicast at present on 
the Internet.  The only complication is that some of the special protocols used for IPv4 
multicasting do not work with IPv6, and thus different protocols perform the same 
functions.

Multicast Group Membership Protocols
Multicast group membership protocols allow a router to know when a host on a 
directly attached subnet, typically a LAN, wants to receive traffi c from a certain mul-
ticast group. Even if more than one host on the LAN wants to receive traffi c for that 
multicast group, the router has to send only one copy of each packet for that multicast 
group out on that interface because of the inherent broadcast nature of LANs. Only 
when the router is informed by the multicast group membership protocol that there 
are no interested hosts on the subnet can the packets be withheld and that leaf pruned 
from the distribution tree.

Internet Group Management Protocol for IPv4
There is only one standard IPv4 multicast group membership protocol: the Internet 
Group Management Protocol (IGMP). However, IGMP has several versions that are sup-
ported by hosts and routers.  There are currently three versions of IGMP.

IGMPv1—The original protocol defined in RFC 1112. An explicit join message 
is sent to the router, but a timeout is used to determine when hosts leave a 
group.  This process wastes processing cycles on the router, especially on older 
or smaller routers.

IGMPv2—Among other features, IGMPv2 (RFC 2236) adds an explicit leave mes-
sage to the join message so that routers can more easily determine when a 
group has no interested listeners on a LAN.

IGMPv3—Among other features, IGMPv3 (RFC 3376) optimizes support for a 
 single source of content for a multicast group or source-specific multicast 
(SSM). (RFC 1112 supported both many-to-many and one-to-many multicast, but 
one-to-many is considered the more viable model for the Internet at large.)

Although the various versions of IGMP are backward compatible, it is common 
for a router to run multiple versions of IGMP on LAN interfaces because backward 
compatibility is achieved by dropping back to the most basic of all versions run on 
a LAN. For example, if one host is running IGMPv1, any router attached to the LAN 
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 running IGMPv2 drops back to IGMPv1 operation—effectively eliminating the IGMPv2 
 advantages. Running multiple IGMP versions ensures that both IGMPv1 and IGMPv2 
hosts fi nd peers for their versions on the router.

Multicast Listener Discovery for IPv6
IPv6 does not use IGMP to manage multicast groups. Multicast groups are an integral 
part of IPv6, and the Multicast Listener Discovery (MLD) protocol is an integral part 
of IPv6. Some IGMP functions are assumed by ICMPv6, but IPv6 hosts perform most 
multicast functions with MLD. MLD comes in two versions: MLD version 1 (RFC 2710) 
has basic functions, and MLDv2 (RFC 3590) supports SSM groups.

Multicast Routing Protocols
There are fi ve multicast routing protocols.

Distance-Vector Multicast Routing Protocol
This is the fi rst of the multicast routing protocols and hampered by a number of 
 limitations that make this method unattractive for large-scale Internet use. DVMRP is 
a dense-mode-only protocol that uses the fl ood-and-prune, or implicit join method, 
to deliver traffi c everywhere and then determines where uninterested receivers are. 
DVMRP uses source-based distribution trees in the form (S,G).

Multicast Open Shortest Path First 
This protocol extends OSPF for multicast use, but only for dense mode. However, 
MOSPF has an explicit join message, and thus routers do not have to fl ood their entire 
domain with multicast traffi c from every source. MOSPF uses source-based distribution 
trees in the form (S,G).

PIM Dense Mode
This is Protocol Independent Multicast operating in dense mode (PIM DM), but the dif-
ferences from PIM sparse mode are profound enough to consider the two modes sepa-
rately. PIM also supports sparse-dense mode, but there is no special notation for that 
operational mode. In contrast to DVMRP and MOSPF, PIM dense mode allows a router 
to use any unicast routing protocol and performs RPF checks using the  unicast routing 
table. PIM dense mode has an implicit join message, so routers use the fl ood-and-prune 
method to deliver traffi c everywhere and then determine where the uninterested 
receivers are. PIM dense mode uses source-based distribution trees in the form (S,G), 
as do all dense-mode protocols.

PIM Sparse Mode
PIM sparse mode allows a router to use any unicast routing protocol and performs RPF 
checks using the unicast routing table. However, PIM sparse mode has an explicit join 
message, so  routers determine where the interested receivers are and send join mes-
sages upstream to their neighbors—building trees from receivers to RP.  The Protocol 
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Independent  Multicast sparse mode uses an RP router as the initial source of multicast 
group traffi c and therefore builds distribution trees in the form (*,G), as do all sparse-
mode protocols. However, PIM sparse mode migrates to an (S,G) source-based tree if 
that path is shorter than through the RP for a particular multicast group’s traffi c.

Core-Based Trees
Core-based trees (CBT) share all of the characteristics of PIM sparse mode (sparse 
mode, explicit join, and shared [*,G] trees), but are said to be more effi cient at fi nding 
sources than PIM sparse mode. CBT is rarely encountered outside academic discus-
sions and the experimental RFC 2201 from September 1997.  There are no large-scale 
deployments of CBT, commercial or otherwise.  The differences among the fi ve multi-
cast routing protocols are summarized in Table 16.1.

It is important to realize that retransmissions due to a high bit-error rate on a link or 
overloaded router can make multicast as ineffi cient as repeated unicast.

Any-Source Multicast and SSM
RFC 1112 originally described both one-to-many (for radio and television) and many-
to-many (for videoconferences and application on-line gaming) multicasts.  This model 
is now known as Any-Source Multicast (ASM).  To support many-to-many multicasts, 
the network is responsible for source discovery. So, whenever a host expresses a desire 
to join a group the network must fi nd all the sources for that group and deliver them 
to the receiver.

Source discovery is especially complex with interdomain scenarios (source in one 
AS, receiver/s in another).  And most plans to commercialize Internet multicasts, such 
as bringing radio station and television channel multicasts directly onto the Internet, 
revolve around the one-to-many model exclusively. So, the one-to-many scenario has 
been essentially split off from the all-embracing RFC 1112 vision and become Source-
Specifi c Multicast (SSM, defi ned in FC 3569).

As the name implies, SSM supports multicast content delivery from only one  specifi c 
source. In SSM, source discovery is not the responsibility of the network but of the 

Table 16.1 Major Characteristics of Multicast Routing Protocols

Multicast 
Routing 
Protocol

Dense 
Mode

Sparse 
Mode

Implicit 
Join

Explicit 
Join (S,G) SBT

(*,G) Shared 
Tree

DVMRP Yes No Yes No Yes No

MOSPF Yes No No Yes Yes No

PIM-DM Yes No Yes No Yes No

PIM-SM No Yes No Yes Yes, maybe Yes, initially

CBT No Yes No Yes No Yes
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receivers (hosts).  This eliminates much of the complexity of multicast mechanisms 
required in ASM and the use of MSDP. It also eliminates some of the scaling consider-
ations associated with traffi c on (*,G) groups.

ASM and SSM are not protocols but service models. Most of what is described in 
this chapter applies to ASM (the more general model). But keep in mind that SSM does 
away with many of the procedures covered in detail here that apply to ASM, including 
RPs, RPTs, and MSDP. Figure 16.4 shows the current suite of multicast protocols and 
how they all fi t together.

Multicast Source Discovery Protocol
MSDP, described in RFC 3618, is a mechanism to connect multiple PIM-SM domains 
(usually, each in an AS). Each PIM-SM domain can have its own independent RPs, 
and these do not interact in any way (so MSDP is not needed in SSM scenarios).  The 
advantages of MSDP are that the RPs do not need any other resource to fi nd each 
other and that domains can have receivers only and get content without globally 
advertising group membership. In addition, MSDP can be used with protocols other 
than PIM-SM.

Protocols for Source-
Specific Multicast

PIM-SM

PIM-DM PIM-DM

Sparse Mode Sparse Mode

PIM-SSM
(No RP)

OSPF

M-ISIS

RIP

DVRMPDVMRP DVMRP

Distance VectorDense ModeDense Mode

(None needed in
SMS)

Protocols for Any-Source
Multicast

Peer-RPF Flooding

Protocols for Reverse-
Path Forwarding

Path Vector

Link State

Interdomain 
(AS to AS)

Intradomain (same AS)

MBGPMSDP

FIGURE 16.4

Suite of multicast protocols showing how those for ASM, SSM, and RFP checks fi t together 
and are used.

CHAPTER 16 Multicast 419



MSDP routers in a PIM-SM domain peer with their MSDP router peers in other 
domains.  The peering session uses a TCP connection to exchange control information. 
Each domain has one or more of these connections in its “virtual topology.”  This allows 
domains to discover multicast sources in other domains. If these sources are deemed 
of interest to receivers in another domain, the usual source-tree mechanism in PIM-SM 
is used to deliver multicast content—but now over an interdomain distribution tree. 
More details about MSDP are beyond the scope of this introductory chapter.

Frames and Multicast
Multicasting on a LAN is a good place to start an investigation of multicasting in general. 
Consider a single LAN, without routers, with a multicast source sending to a certain 
group.  The rest of the hosts are receivers interested in the multicast group’s content. 
So, the multicast source host generates packets with its unicast IP address as the source 
and the group address as the destination.

One issue comes up immediately.  The packet source address obviously will be 
the unicast IP address of the host originating the multicast content.  This translates 
to the MAC address for the source address in the frame in which the packet is encap-
sulated. The packet’s destination address will be the multicast group. So far, so good. 
But what should be the frame’s destination address that corresponds to the packet’s 
multicast group address?

Using the LAN broadcast MAC address defeats the purpose of multicast, and hosts 
could have access to many multicast groups. Broadcasting at the LAN level makes no 
sense. Fortunately, there is an easy way out of this.  The MAC address has a bit that is set 
to 0 for unicast (the LAN term is individual address) and to a 1 to indicate that this 
is a multicast address. Some of these addresses are reserved for multicast groups for 
specifi c vendors or MAC-level protocols. Internet multicast applications use the range 
0x01-00-5E-00-00-00 to 0x01-00-5E-FF-FF-FF.  TCP/IP multicast receivers listen for frames 
with one of these addresses when the application joins a multicast group and stops 
listening when the application terminates or the host leaves the group.

So, 24 bits are available to map IPv4 multicast addresses to MAC multicast addresses. 
But all IPv4 addresses, including multicast addresses, are 32 bits long.  There are 8 bits 
left over. How should IPv4 multicast addresses be mapped to MAC multicast addresses 
to minimize the chance of “collisions” (two different multicast groups mapped to the 
same MAC multicast address)?

All IPv4 multicast addresses begin with the same four bits (1110), so we only have 
to really worry about 4 bits (not 8).  We shouldn’t drop the last bits of the IPv4 address, 
because these are almost guaranteed to be host bits—depending on subnet mask. But 
the high-order bits, the rightmost bits, are almost always network bits and we’re only 
worried about one LAN for now.

One other bit of the remaining 24 MAC address bits is reserved (an initial 0 indicates 
an Internet multicast address), so let’s just drop the 5 bits following the initial 1110 in 
the IPv4 address and map the 23 remaining bits (one for one) into the last 23 bits of the 
MAC address.  This procedure is shown in Figure 16.5.
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Note that this process means that there are 32 (25) IPv4 multicast addresses that 
could map to the same MAC multicast addresses. For example, multicast IPv4 addresses 
224.8.7.6 and 229.136.7.6 translate to the same MAC address (0x01-00-5E-08-07-06). 
This is a real concern, and because the host will accept frames sent to both multicast 
groups, the IP software must reject one or the other.  This problem does not exist in 
IPv6, but is always a concern in IPv4.

Once the MAC address for the multicast group is determined, the operating system 
essentially orders the NIC card to join or leave the multicast group and accept frames 
sent to the address as well as the host’s unicast address or ignore that multicast group’s 
frames. It is possible for a host to receive multicast content from more than one group 
at the same time, of course.  The procedure for IPv6 multicast packets inside frames 
is nearly identical, except for the MAC destination address 0x3333 prefi x and other 
points outlined in the previous section.

IPv4 Multicast Addressing
The IPv4 addresses (Class D in the classful addressing scheme) used for multicast usage 
range from 224.0.0.0 to 239.255.255.255.  Assignment of addresses in this range is 
controlled by the Internet Assigned Numbers Authority (IANA). Multicast addresses can 
never be used as a source address in a packet (the source address is always the unicast 

Ethernet Frame Multicast Destination Address

IPv4 Header Multicast Destination Address

Decimal:

Binary:

Hex:

Hex:

Binary:

232. 224. 202. 181

E8 - E0 - CA - B5

60 - CA - B5

Ignore Copy

0110 0000 1100 1010 10110101

350 for Internet
351 for other

3110 0000 1100 1010 10110101

11101000 1110 0000 1100 1010 10110101

Copy
Drop

Multicast Bit

MAC Address in Hex: 01 : 00 : B3 : 27 : FA : 8C

MAC Multicast Address: 01 : 00 : B3 : 60 : CA : B5

FIGURE 16.5

How to convert from IPv4 header multicast to Ethernet MAC multicast address formats.
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IP address of the content originator). Certain subranges within the range of addresses 
are reserved for specifi c uses.

■  224.0.0.0/24—The link-local multicast range (these packets never pass
through routers)

■ 224.2.0.0/16—The SAP/SDP range
■ 232.0.0.0/8—The Source-Specifi c Multicast (SSM) range
■  233.0.0.0/8—The AS-encoded statically assigned GLOP range defi ned in 

RFC 3180
■  239.0.0.0/8—The administratively scoped multicast range defi ned in

RFC 2365 (these packets may pass through a certain number of routers)

For a complete list of currently assigned IANA multicast addresses, refer to the 
www.iana.org/assignments/multicast-addresses Web site. If multicast addresses had 

Table 16.2 Multicast Addresses Used for Various Protocols

Address Purpose Comment

224.0.0.0 Reserved base address RFC 1112

224.0.0.1 All systems of this subnet RFC 1112

224.0.0.2 All routers on this subnet

224.0.0.3 Unassigned

224.0.0.4 DVMRP routers on this subnet RFC 1075

224.0.0.5 All OSPF routers on this subnet RFC 1583

224.0.0.6 All OSPF DRs on this subnet RFC 1583

224.0.0.7 All ST (Streams protocol) routers on this subnet RFC 1190

224.0.0.8 All ST hosts on this subnet RFC 1190

224.0.0.9 All RIPv2 routers on this subnet RFC 1723

224.0.0.10 All Cisco IGRP routers on this subnet (Cisco)

224.0.0.11 All Mobile IP agents

224.0.0.12 DHCP server/relay agents RFC 1884

224.0.0.13 All PIM routers (IANA)

224.0.014-224.0.0.21 Assigned to various routing protocols and router 
features

(IANA)

224.0.0.22 IGMP (IANA)

224.0.0.23-244.0.0.255 See www.iana.org/assignments/multicast-addresses (IANA)
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been assigned in the same manner that unicast addresses were allocated, the Class D 
address space would have been exhausted long ago. However, IANA allocates static 
multicast addresses only for protocols. Routers cannot forward packets in these ranges. 
Some of these addresses are outlined in Table 16.2.

A simple dynamic address allocation mechanism is used in the SAP/SDP block to 
prevent multicast address exhaustion.  Applications, such as the Session Directory Tool 
(SDR), use this mechanism to randomly select an unused address in this range.  This 
dynamic allocation mechanism for global multicast addresses is similar to the DHCP 
function, which dynamically assigns unicast addresses on a LAN.

However, some applications require static multicast addresses. So, GLOP (described 
in RFC 3180) provides static multicast ranges for organizations that already have an 
AS number. (GLOP is not an acronym or abbreviation—it’s just the name of the mech-
anism.) GLOP uses the 2-byte AS number to derive a /24 address block within the 
233/8 range. It’s worth noting that there are no GLOP addresses set aside for 4-byte AS 
numbers.  The static multicast range is derived from the following form:

233.[first byte of AS].[second byte of AS].0/24

For example,  AS 65001 is allocated 233.253.233.0/24—and only this AS can use it.  The 
following is an easy way to compute this address.

1. Convert the AS number to hexadecimal (65001 5 0xFDE9).
2. Convert the fi rst byte back to decimal (0xFD 5 253).
3. Convert the second byte back to decimal (0xE9 5 233).

Addresses in the 239/8 range are defi ned as administratively scoped. Packets sent 
to these addresses should not be forwarded by a router outside an administratively 
defi ned boundary (usually a domain).

Addresses in the 232/8 range are reserved for SSM.  A nice feature of SSM is that 
the multicast group address no longer needs to be globally unique.  The source-group 
“channel,” or tuple, provides uniqueness because the receiver is expressing interest in 
only one source for the group.

SSM has solved the multicast addressing allocation headache.  With SSM, as well 
as GLOP, administrative scoping, and SAP/SDP, IPv4 multicast address allocation is 
 suffi cient until IPv6 becomes more common.

IPv6 Multicast Addressing
In IPv6, the number of multicast (and unicast) addresses available is not an issue.  All 
IPv6 multicast addresses start with 1111 1111 (0xFF).  As in IPv4, no IPv6 packet can 
have an IPv6 multicast address as a source address.  There is really no such thing as a 
“broadcast” in IPv6. Instead, devices must belong to certain multicast groups and pay 
attention to packets sent to these groups.  The structure of the IPv6 multicast address 
is shown in Figure 16.6.
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Format Prefi x
This 8-bit fi eld is simply 1111 1111 (0xFF).

Flags
As of RFC 2373, the only fl ag defi ned for this 4-bit fi eld is Transient (T). If 0, the  multicast 
address is a permanently assigned well-known address allocated by IANA. If 1, the 
 multicast address is not permanently assigned (transient).

Scope
This 4-bit fi eld establishes the multicast packets’ boundaries. RFC 2372 defi nes several 
well-known scopes, including node-local (1), link-local (2), site-local (3),  organization-
local (8), and global (E). Packets sent to 0xFF02:X are confi ned to a single link and can-
not pass through a router (this issue came up in the IGP chapter with RIPng).

Group ID
The IPv6 multicast group ID is 112 bits long. Permanently assigned group IDs are valid 
regardless of the scope value, whereas transient group IDs are valid only within a par-
ticular scope.  The 122 bits of the Group ID fi eld pose a challenge to the 48-bit MAC 
address (and only 23 of those bits were used in IPv4). But the solution is much simpler 
than in IPv4. RFC 2373 recommends using the low-order 32 bits of the Group ID and 
setting the high-order 16 bits to 0x3333.  This is shown in Figure 16.7.

Naturally, there are 80 more bits that could be used in the Group ID fi eld. For now, 
RFC 2373 recommends setting the 801 bits available for multicast group IDs to 0s. If 
there is a problem with 32 bits for multicast groups, which can be as many as 4 billion, 
probably in the future the RFC group will think about extending the bits.

8 bits

1111 1111 Flags Scope Group ID

128 bits

112 bits4 bits 4 bits

FIGURE 16.6

The IPv6 multicast address format. Note the presence of the scope fi eld.

16 bits 80 bits 32 bits

0011  0011  0011  0011 MAC Group IDMust Be All Zeroes

128 bits

FIGURE 16.7

The IPv6 multicast group addresses showing how the MAC group ID is embedded.
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PIM-SM
The most important multicast routing protocol for the Internet today is PIM sparse 
mode, defi ned in RFC 2362. PIM-SM is ideal for a number of reasons, such as its  protocol-
independent nature (PIM can use regular unicast routing tables for RPF checks and 
other things), and it’s a nice fi t with SSM (in fact, not much else fi ts at all with SSM). So, 
we’ll look at PIM-SM in a little more detail (also in addition, because that’s what we’ll 
be using on the Illustrated Network’s routers).

If a potential receiver is interested in the content of a particular multicast group, it 
sends an IGMP Join message to the local router—which must know the location of the 
network RPs servicing that group. If the local router is not currently on the distribu-
tion tree for that group, the router sends a PIM Join message (not an IGMP message) 
through the network until the router becomes a leaf on the shared tree (RPT) to the 
RP. Once multicast packets are fl owing to the receiver, the routers all check to see if 
there is a shorter path from the source to the destination than through the RP. If there 
is, the routers will transition the tree from an RPT to an SPT using PIM Join and Prune 
messages (technically, they are PIM Join/Prune messages, but it is common to distin-
guish them).  The SPT is rooted at the designated router of the source.  All of this is done 
transparently to the receivers and usually works very smoothly.

There are other reasons to transition from an RPT to an SPT, even if the SPT is 
actually longer than the RPT.  An RP might become quite busy, and the shortest path 
might not be optimal as determined by unicast routing protocols.  A lot of multicast 
discussion at ISPs involves issues such as how many RPs there should be (how many 
groups should each service?) and where they should be located (near their sources? 
centrally?).  A related issue is how routers know about RPs (statically? Auto-RP? BSR?), 
but these discussions have no clear or accepted answers.

There is only one PIM-SM feature that needs to be explained. How does traffi c get 
from the sender’s local router to the RP? The rendezvous point could create a tree 
directly to every source, but if there is a lot of sources, there is a lot of state informa-
tion to maintain. It would be better if the senders’ local routers could send the content 
directly to the RP.

But how? The destination address of all multicast packets is a group address and not 
a unicast address. So, the source’s router (actually, the DR) encapsulates the multicast 
packets inside a unicast packet sent to the RP and tunnels the packet to the RP in this 
form.  The RP decapsulates the multicast content and makes it available for distribution 
over the RPT tree.

There is much more to PIM-SM that has not been detailed here, such as PIM-SM for 
SSM (sometimes seen as PIM-SSM). But it is enough to explain the interplay among host 
receivers, IGMP (in IPv4), MLD (in IPv6), PIM itself, the RP, and the source.

The Resource Reservation Protocol and PGM
A lot of books and material on multicast include long discussions of the Resource 
 Reservation Protocol (RSVP), and some multicast routers and hosts still use RSVP to 
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 signal the network that the multicast packet stream they will be receiving will  consume 
a certain amount of resources on the network. However, the most common use of RSVP 
today is not with multicast but with Multiprotocol Label Switching (MPLS)—and that’s 
where we’ll put RSVP.

RVSP makes sense for multicast in a restricted bandwidth environment. But the 
need for RSVP was undermined (as was ATM) by the embarrassment of bandwidth 
available on LANs and router backbones (the video network YouTube today uses more 
bandwidth than the entire Internet had in 2000). On slow networks, the biggest short-
coming is that you can’t reserve bandwidth you don’t have. If you do anyway, you’re 
really just performing admission control (limited to those who are allowed to connect 
over the network) and hosing the other applications. Everything works better with 
enough bandwidth.

However, this is not to say that multicast is fi ne using UDP in all cases—especially 
when multicast content must cross ISP boundaries, where bandwidth on these  heavily 
used links is often consumed by traffi c. Nothing is more annoying when receiving 
multicast content, voice, or video than dropped packets causing screen freezes and 
unpredictable silences. So, routers and hosts can use Pragmatic General Multicast 
(PGM), described in RFC 3208. PGM occupies the same place in the TCP/IP stack as 
TCP itself. PGM runs on sender and receiver hosts, and on routers (which perform the 
PGM router assist function).

As mentioned, the goal of PGM is not to make multicast UDP streams as reliable as 
TCP.   The PGM goal is to allow senders or routers (performing router assist  functions) 
to supply missing multicast packets if possible (such as for stock-ticker applications) 
or to assure receivers that the data is indeed missing and not just delayed (it does this 
by simply sequencing multicast packets).  The issue is that you have to carry all of this 
state information in routers, which is not good for scaling.

Multicast Routing Protocols
Now we can go back to the network.  We’ll have to run a multicast routing protocol 
on our routers.  We’ll run PIM, which is the most popular multicast protocol. But PIM 
can be confi gured in dense “send-everywhere” mode or sparse “only if you ask” mode. 
Which should we use?

Let’s consider our router confi guration. Nothing is easier to confi gure than dense 
mode.  We can just confi gure PIM dense mode (PIM-DM) to run on every router inter-
face (even the LAN interfaces if we like—the PIM messages won’t hurt anything), 
except for the network management interface on Juniper Networks routers (fxp0.0). 
Multicast  traffi c is periodically fl ooded everywhere and pruned back as IGMP member-
ship reports come in on local area network interfaces.  This is just an exercise for our lab 
network. You defi nitely should not try this at home.  The following is the confi guration 
on router CE6:

set protocols pim interface all mode dense;
set protocols pim interface fxp0.0 disable;
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It is not necessary to confi gure IGMP on the LAN interface.  As long as PIM is confi g-
ured, IGMPv2 is run on all interfaces that support broadcasts (including frame relay and 
ATM). Of course, if a different version of IGMP—such as IGMPv1 or IGMPv3  (wincli 
was running IGMPv3, as shown in Figure 16.2)—is desired, this must be explicitly 
 confi gured.

It is more interesting and meaningful to confi gure the PIM sparse mode, because that 
is what is used, with few exceptions, on the Internet.  There are two distinct confi gura-
tions: one for the RP router and the other on all the non-RP routers.  We’ll use simple 
static confi guration to locate the RP router, but that’s not what is typically done in the 
real world.  The confi guration on the RP router, which is router PE5 in this example, 
 follows:

set protocols pim rp local address 192.168.5.1;
set protocols pim rp interface all mode sparse;
set protocols pim rp interface fxp0.0 disable;

The local keyword means that the local router is the RP.  The address is the RP 
address that will be used in PIM messages between the routers.  The confi guration on 
the non-RP router, such as P9, follows:

set protocols pim rp static address 192.168.5.1;
set protocols pim rp interface all mode sparse;
set protocols pim rp interface fxp0.0 disable;

The static keyword means that another router is the RP, located at the IP address given. 
The RP address is used in PIM messages between the routers.

Once PIM is up and running on the rest of the router network (we don’t need MSDP 
because the RP is known everywhere within the merged Best-Ace ISP routing domain 
and this precludes interdomain ASM use anyway), wincli2 receives multicast traffi c 
from wincli1, as shown in Figures 16.8 and 16.9.

FIGURE 16.8

Receiving a stream of multicast traffi c from wincli1 across the router network on wincli2.
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IPv6 Multicast
In contrast to IPv4, where multicast sometimes seems like an afterthought compared 
to the usual unicast business of the network, IPv6 is fairly teeming with multicast. 
You have to do a lot to add multicast to IPv4, but IPv6 simply will not work without 
 multicasting. Of course, a lot of this multicast use is confi ned to single subnets. So, 
despite being more heavily used, IPv6 multicast is not necessarily easier to deploy 
(even though you don’t have to worry about MSDP).

Figure 16.10 shows a multicast IPv6 neighbor discovery packet, which contains an 
ICMPv6 message (an echo request).  As expected, the packet is sent to IPv6 multicast 
address 0xFF02::1, and the frame is sent to the address beginning 0x33:33.

FIGURE 16.9

ICMPv6 multicast packets for neighbor discovery, showing how the MAC address is embedded in 
the IPv6 source address fi eld.
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QUESTIONS FOR READERS
Figure 16.10 shows some of the concepts discussed in this chapter and can be used to 
help you answer the following questions.

1.  Generally, it is a good idea for RPs to be centrally located on the router network. 
Why does this make sense?

2.  In Figure 16.10, does the rightmost host, which is interested in Group B content, 
have to get it initially from the RP when the source is closer?

3. Would the RP be required if the routers were running PIM dense mode?

4.  Will the leftmost router with the uninterested host constantly stream multicast 
traffi c onto the LAN anyway?

5.  Is the uninterested host on the LAN in the middle able to listen in on Group A 
and Group B traffi c without using IGMP to join the groups?
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A group of routers running PIM sparse mode with sources and receivers.
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CHAPTER

What You Will Learn
In this chapter, you will learn how the desire for convergence has led to the 
 development of various IP switching techniques.  We’ll also compare and  contrast 
frame relay and ATM switched networks to illustrate the concepts behind IP 
switching.

You will learn how MPLS is used to create LSPs to switch (instead of route) 
IP packet through a routing domain.  We’ll see how MPLS can form the basis for a 
type of  VPN service offering.

MPLS and IP Switching 17

One of the reasons TCP/IP and the Internet have grown so popular is that this 
 architecture is the promising way to create a type of “universal network” well suited 
for and equally at home with voice, video, and data.  The Internet started as a network 
exclusively for data delivery, but has proved to be remarkably adaptable for different 
classes of traffi c. Some say that more than half of all telephone calls are currently  carried 
for part of their journey over the Internet, and this percentage will only go higher in 
the future.  Why not watch an entire movie or TV show over the Internet? Many now 
watch episodes they missed on the Internet.  Why not everything? As pointed out in 
the previous chapter, multicast might not be used to maximum effect for this but video 
delivery still works. 

When a service provider adds television (or video in general) to Internet access and 
telephony,  this is called a “triple play” opportunity for the service provider.   (Adding wire-
less services over the Internet is sometimes called a “quadruple play” or “home run.”) 

This desire for networking convergence is not new.  When the telephone was 
invented,  there were more than 30 years’ worth of telegraph line infrastructure in 
place from coast to coast and in most major cities throughout the United States.  The 
initial telephone services used existing telegraph links to distribute telegrams, but this 
was not a satisfactory solution.  The telegraph network was optimized for the dots and 
dashes of Morse code, not the smooth analog waveforms of voice. Early attempts to run 
voice over telegraph lines stumbled not over bandwidth, but with the crosstalk induced 
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The routers on the Illustrated Network will be used to illustrate MPLS. Note that we are still dealing with 
the merged Best-Ace ISP and a single AS.
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by the pulses of Morse code running in adjacent wires.  The solution was to twist and 
pair telephone wires and maintain adequate separation from telegraph wire bundles.

So,  two separate networks grew up: telephone and telegraph.  When cable TV came 
along much later, the inadequate bandwidth of twisted-pair wire led to a third major 
distinct network architecture—this one made of coaxial cable capable of delivering 
50 or more (compared to the handful of broadcast channels available, that was a lot) 
television channels at the same time.

Naturally, communications companies did not want to pay for, deploy,  and maintain 
three separate networks for separate services. It was much more effi cient to use one 
converged infrastructure for everything. Once deregulation came to the telecommuni-
cations industry,  and the same corporate entity could deliver voice as a telephony com-
pany, video as a cable TV company,  and data as an ISP,  the pressure to fi nd a “universal” 
network architecture became intense. But the Internet was not the only universal net-
work intended to be used for the convergence of voice, video,  and data over the same 
links.  Telecommunications companies also used frame relay (FR) and asynchronous 
transfer mode (ATM) networks to try to carry voice, video,  and data on the same links.

Let’s see if we can “converge” these different applications onto the Illustrated 
Network.  This chapter will use the Illustrated Network routers exclusively.  This is 
shown in Figure 17.1, which also reveals something interesting when we run trace-
route from bsdclient on LAN1 to bsdserver on LAN2.

bsdclient# traceroute bsdserver

traceroute to bsdserver (10.10.12.77), 64 hops max, 44 byte packets
 1  10.10.11.1 (10.10.11.1)  0.363 ms  0.306 ms  0.345 ms
 2  10.0.50.1 (10.1.36.2)  0.329 ms  0.342 ms  0.346 ms
 3  10.0.45.1 (10.0.45.1) 0.330 ms  0.341 ms  0.346 ms
 4  10.0.24.1 (10.0.24.1) 0.332 ms  0.343 ms  0.345 ms
 5  10.0.12.1 (10.0.12.1) 0.329 ms  0.342 ms  0.347 ms
 6  10.0.16.2 (10.0.16.2) 0.330 ms  0.341 ms  0.346 ms
 7  10.10.12.77 (10.10.12.77)  0.331 ms  0.343 ms  0.347 ms

bsdclient#

The packets travel from PE5 to P4 and then on to P2 and PE1.  Why shouldn’t they 
fl ow through P9 and P7? Well, they could, but without load balancing turned on (and 
it is not) PE5 has to choose P9 or P4 as the next hop.  All things being equal, if all other 
metrics are the same, routers typically pick to lowest IP address.  A look at the network 
diagram shows this to be the case here.

There are obviously other users on the Best-Ace ISP’s network, not just those on 
LAN1 and LAN2. However, it would be nice if the customer-edge (site) routers CE0 and 
CE6 were always seven hops away and never any more (in other words, no matter how 
traffi c is routed there are always six routers between LAN1 and LAN2).  This is because 
most of the traffi c fl ows between the two sites, as we have seen (on many LANs, vast 
quantities of traffi c usually fl ow among a handful of destinations).

Before the rise of the Internet, the company owning LAN1 and LAN2 would pay a 
service provider (telephone company or other “common carrier”) to run a point-to-point 
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link between New York and Los Angeles and use it for data traffi c.  They might also do the 
same for voice,  and perhaps even for video conferences between the two sites.  The nice 
thing about these leased line links (links used exclusively for voice are called tie lines) is 
that they make the two sites appear to be directly connected, reducing the number of 
hops (and network processing delay) drastically.

But leased lines are an expensive solution (they are paid for by the mile) and are lim-
ited in application (they only connect the two sites).  What else could a public network 
service provider offer as a convergence solution to make the network more effi cient?

We’ll take a very brief look at the ideas behind some public network attempts at 
convergence (frame relay and ATM) and then see how TCP/IP itself handles the issue. 
We’ll introduce Multiprotocol Label Switching (MPLS) and position this technology as 
a way to make IP router networks run faster and more effi ciently with IP switching.

CONVERGING WHAT?
Convergence is not physical convergence through channels,  which had been done for 
a very long time. Consider a transport network composed of a series of fi ber optic links 
between SONET/SDH multiplexers.  The enormous bandwidth on these links can be 
(and frequently is) channelized into multiple separate paths for voice bits, data bits,  and 
video bits on the same physical fi ber. But this is not convergence.

In this chapter convergence means the combination of voice, video, and data on 
the same physical channel. Convergence means more than just carrying channels on 
the same physical transport. It means combining the bits representing voice, video, 
and data into one stream and carrying them all over the total bandwidth on the same 
“unchannelized” fi ber optic link. If there are voice, video,  and data channels on the link, 
these are now virtual channels (or logical channels) and originate and terminate in the 
same equipment—not only at the physical layer, but at some layer above the lowest.

On modern Metro Ethernet links,  the convergence is done by combining the  traffi c 
from separate VLANs on the same physical transport.  The VLANs can be established 
based on traffi c type (voice, video,  and data), customer or customer site, or both (with 
an inner and outer VLAN label.) In this chapter,  we’ll talk about MPLS—which can 
work with VLANs or virtual channels.

Fast Packet Switching
Before there was MPLS,  there was the concept of fast packet switching to speed up 
packet forwarding on converged links and through Internet network nodes.  Two major 
technologies were developed to address this new technology, and they are worth at 
least a mention because they still exist in some places.

Frame Relay
Frame relay was an attempt to slim down the bulky X.25 public packet switching 
standard protocol stack for public packet networks for the new environment of home 
PCs and computers at every work location in an organization.  Although it predated 
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modern layered concepts, X.25 essentially defi ned the data units at the bottom three 
layers—physical interface, frame structure, and packet—as an international standard. 
It was mildly successful compared to the Internet, but wildly successful for a world 
without the Web and satellite or cell phones. In the mid-1980s, about the only way to 
communicate text to an off-shore oil platform or ships at sea was with the familiar but 
terse “GA” (go ahead) greeting on a teletype over an X.25 connection.

The problem with X.25 packets (called PLP, Packet Layer Protocol, packets) was 
that they weren’t IP packets, and so could not easily share or even interface with the 
Internet, which had started to take off when the PC hit town. But IP didn’t have a 
popular WAN frame defi ned (SLIP did not really use frames), so the X.25 Layer 2 frame 
structure, High-level Data Link Control (HDLC)—also used in ISDN—was modifi ed to 
make it more useful in an IP environment populated by routers. In fact, routers,  which 
struggled with full X.25 interfaces, could easily add frame relay interfaces.

One of the biggest parts of X.25 dropped on the way to frame relay was error 
resistance.  Today, network experts have a more nuanced and sophisticated understand-
ing of how this should be done instead of the heavyweight X.25 approach to error 
detection and recovery.

Frame relay was once popularly known as “X.25 on steroids,” a choice of analogies 
that proved unfortunate for both X.25 and frame relay. But at least frame relay switch 
network nodes could relay frames faster than X.25 switches could route packets.   
Attempts were made to speed X.25 up prior to the frame relay makeover, such as 
allowing a connection-request message to carry data,  which was then processed and a 
reply returned by the destination in a connection-rejected message,  thus making X.25 
networks as effi cient for some things as a TCP/IP network with UDP. However, an X.25 
network was still much more costly to build and operate than anything based on the 
simple Internet architecture.  The optimization to X.25 that frame relay represented is 
shown in Figure 17.2.

Even with frame relay defi ned,  there was still one nagging problem: Like X.25 before 
it, frame relay was connection oriented. Only signaling protocol messages were con-
nectionless, and many frame relay networks used “permanent virtual circuits” set up 
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How X.25 packet routing relates to frame relaying. Note that frame relay has no network layer, 
leaving IP free to function independently.
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with a labor-intensive process comparable to confi guring router tables with hundreds 
of static entries in the absence of mature routing protocols.

Connections were a large part of the reason that X.25 network nodes were switches 
and not routers.  A network node that handled only frame relay frames was still a 
switch, and connections were now defi ned by a simple identifi er in the frame relay 
header and called “virtual circuits.” But a connection was still a connection. In the time 
it took a frame relay signaling message exchange to set up a connection, IP with UDP 
could send a request and receive a reply. Even for bulk data transfer, connections over 
frame relay had few attractions compared to TCP for IP.

The frame relay frame itself was tailor-made for transporting IP packets over public 
data networks run by large telecommunications carriers rather than privately owned 
routers linked by dedicated bandwidth leased by the mile from these same carriers. 
The frame relay frame structure is shown in Figure 17.3.

■  DLCI—The Data Link Connection Identifi er is a 10-bit fi eld that gives the 
connection number.

■ C/R—The Command/Response bit is inherited from X.25 and not used.
■  EA—The Extended Address bit tells whether the byte is the last in the 

header (headers in frame relay can be longer than 2 bytes).
■  FECN and BECN—The Forward/Backward Explicit Congestion Notifi cation 

bits are used for fl ow control.
■  DE—The Discard Eligible bit is used to identify frames to discard under  

congested conditions.

Unlike a connectionless packet,  the frame relay frame needs only a connection 
identifi er to allow network switch nodes to route the frame. In frame relay,  this is the 
DLCI. A connection by defi nition links two hosts, source and destination.  There is no 
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The basic 2-byte frame relay frame and header. The DLCI fi eld can come in larger sizes.
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sense of “send this to DLCI 18” or “this is from DLCI 18.” Frames travel on DLCI 18, 
and this implies that connections are inherently unidirectional (which they are, but 
are usually set up and released in pairs) and that the connection identifi ers in each 
direction did not have to match (although they typically did, just to keep network 
operators sane).

One of the things that complicate DLCI discussions is that unlike globally unique IP 
addresses, DLCIs have local signifi cance only.  This just means that the DLCI on a frame 
relay frame sent from site A on DLCI 25 could easily arrive at site B on DLCI 38.  And 
in between, the frame could have been passed around the switches as DLCI 18, 44, or 
whatever. Site A only needs to know that the local DLCI 25 leads to site B, and site B 
needs to know that DLCI 38 leads to site A, and the entire scheme still works. But it is 
somewhat jarring to TCP/IP veterans.

This limits the connectivity from each site to the number of unique DLCIs that 
can operate at any one time, but the DLCI header fi eld can grow if this becomes a 
problem.  And frame relay connections were never supposed to be used all of the 
time.

What about adding voice and video to frame relay? That was actually done, espe-
cially with voice. Frame relay was positioned as a less expensive way of linking an orga-
nization’s private voice switches (called private branch exchanges, or PBXs) than with 
private voice circuits. Voice was not always packetized, but at least it was  “framerized” 
over these links. If the links had enough bandwidth, which was not always a given, 
primitive videoconferencing (but not commercial-quality video signals that anyone 
would pay to view) could be used as well.

Frame relay suffered from three problems, which proved insurmountable. It was 
not particularly IP friendly, so frame relay switches (which did not run normal IP rout-
ing protocols) could not react to TCP/IP network conditions the way routers could. 
The router and switches remained “invisible” to each other.  And in spite of efforts to 
integrate voice and video onto the data network, frame relay was fi rst and foremost a 
data service and addressed voice and video delay concerns by grossly overconfi gur-
ing bandwidth in almost all cases. Finally,  the telecommunications carriers (unlike the 
ISPs) resisted easy interconnection of the frame relay network with those of other car-
riers, which forced even otherwise eager customers to try to do everything with one 
carrier (an often impossible task). It was a little like cell phones without any possibility 
of roaming, and in ironic contrast to the carrier’s own behavior as an ISP,  this closed 
environment was not what customers wanted or needed.

Frame relay still exists as a service offering. However, outside of just another type of 
router WAN interface, frame relay has little impact on the Internet or IP world.

Asynchronous Transfer Mode 
The Asynchronous Transfer Mode (ATM) was the most ambitious of all convergence 
 methods. It had to be, because what ATM essentially proposed was to throw everything 
out that had come before and to “Greenfi eld” the entire telecommunications structure 
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the world over.  ATM was part of an all-encompassing vision of networking known as 
broadband ISDN (B-ISDN), which would support all types of voice, video, and data 
applications though virtual channels (and virtual connections). In this model, the Inter-
net would yield to a global B-ISDN network—and TCP/IP to ATM.

Does this support plan for converged information sound familiar? Of course it does. 
It’s pretty much what the Internet and TCP/IP do today, without B-ISDN or ATM. But 
when ATM was fi rst proposed, the Internet and TCP/IP could do none of the things 
that ATM was supposed to do with ease. How did ATM handle the problems of mixing 
 support for bulk data transfer with the needs of delay-sensitive voice and bandwidth-
hungry (and delay-sensitive) video?

ATM was the international standard for what was known as cell relay (there were 
cell relay technologies other than ATM, now mostly forgotten).  The cell relay name 
seems to have developed out of an analogy with frame relay. Frame relay “relayed” 
(switched) Layer 2 frames through network nodes instead of independently routing 
Layer 3 packets.  The effi ciency of doing it all at a lower layer made the frame relay node 
faster than a router could have been at the time.

Cell relay took it a step further, doing everything at Layer 1 (the actual bit level). 
But there was no natural data unit at the physical layer, just a stream of bits. So, they 
invented one 53 bytes long and called it the “cell”—apparently in comparison to the 
cell in the human body—which is very small, can be generic, and everything else is 
built up from them.  Technically, in data protocol stacks, cells are a “shim” layer slipped 
between the bits and the frames, because both bits and frames are still needed in hard-
ware and software at source and destination.

Cell relay (ATM) “relayed” (switched) cells through network nodes.  This could be 
done entirely in hardware because cells were all exactly the same size. Imagine how 
fast ATM switches would be compared to slow Layer 3 routers with two more layers 
to deal with! And ATM switches had no need to allocate buffers in variable units, or to 
clean up fragmented memory.  The structure of the 5-byte ATM cell header is shown in
Figure 17.4 (descriptions follow on next page).  The call payload is always 48 bytes long.

GFC VPI

VCIVPI

VCI

VCI PTI CLP

HEC

8 Bits 1

UNI Cell Header

VPI

VCIVPI

VCI

VCI PTI CLP

HEC

8 Bits 1

NNI Cell Header5
octets

FIGURE 17.4

The ATM cell header. Note the larger VPI fi elds on the network (NNI) version of the header.
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■ GFC—The Generic Flow Control is a 4-bit fi eld used between a customer site and 
ATM switch, on the User-Network Interface (UNI). It is not present on the Network–
Network Interface (NNI) between ATM switches.

■ VPI—The Virtual Path Identifi er is an 8- or 12-bit fi eld used to identify paths between 
sites on the ATM network. It is larger on the NNI to accommodate aggregation on 
customer paths.

■ VCI—The Virtual Connection Identifi er is a 16-bit fi eld used to identify paths between 
individual devices on the ATM network.

■ PTI—The Payload Type Indicator is a 3-bit fi eld used to identify one of eight traffi c 
types carried in the cell.

■ CLP—The Cell Loss Priority bit serves the same function as the DE bit in frame relay, 
but identifi es cells to discard when congestion occurs.

■ HEC—The Header Error Control byte not only detects bit errors in the entire 
40-bit header, but can also correct single bit errors.

In contrast to frame relay,  the ATM connection identifi er was a two-part virtual path 
identifi er (VPI) and virtual channel identifi er (VCI). Loosely, VPIs were for connections 
between sites and VCIs were for connections between devices.  ATM switches could 
“route” cells based on the VPI,  and the local ATM switch could take care of fi nding the 
exact device for which the cell was destined.

Like frame relay DLCIs,  ATM VPI/VCIs have local signifi cance only.  That is, the VPI/
VPI values change as the cells make their way from switch to switch and depending on 
direction. Both frame relay and ATM switch essentially take a data unit in on an input 
port, look up the header (DLCI or VPI/VCI label) in a table,  and output the data unit 
on the port indicated in the table—but also with a new label value,  also provided by 
the table.

This distinctive label-swapping is characteristic of switching technologies and 
protocols.  And, as we will see later, switching has come to the IP world with MPLS, 
which takes the best of frame relay and ATM and applies it directly to IP without the 
burden of “legacy” stacks (frame relay) or phantom applications (ATM and B-ISDN).

The tiny 48-byte payload of the ATM cell was intentional. It made sure that no delay-
sensitive bits got stuck in a queue behind some monstrous chunk of data a thousand 
times larger than the 48 voice or video bytes. Such “serialization delay” introduced 
added delay and delay variation (jitter) that rendered converged voice and video almost 
useless without more bandwidth than anyone could realistically afford.  With ATM, all 
data encountered was a slightly elevated delay when data cells shared the total band-
width with voice and video. But because few applications did anything with data (such 
as a fi le) before the entire group of bits was transferred intact ATM pioneers deemed 
this a minor inconvenience at worst.

All of this sounded too good to be true to a lot of networking people,  and it turned 
out that it was.  The problem was not with raw voice and video,  which could be molded 
into any form necessary for transport across a network.  The issue was with data, which 
came inside IP packets and had to be broken down into 48-byte units—each of which 
had a 5-byte ATM cell header, and often a footer that limited it to only 30 bytes.
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This was an enormous amount of overhead for data applications, which normally 
added 3 or 4 bytes to an Ethernet frame for transport across a WAN. Naturally, no hard-
ware existed to convert data frames to cells and back—and software was much too 
slow—so this equipment had to be invented. Early results seemed promising,  although 
the frame-to-cell-and-back process was much more complex and expensive than antici-
pated. But after ATM caught on, prices would drop and effi ciencies would be naturally 
discovered. Once ATM networks were deployed,  the B-ISDN applications that made the 
most of them would appear. Or so it seemed.

However, by the early 1990s it turned out that making cells out of data frames was 
effective as long as the bandwidth on the link used to carry both voice and video 
along with the data was limited to less than that needed to carry all three at once. 
In other words, if the link was limited to 50 Mbps and the voice and video data added 
up to 75 Mbps, cells made sense. Otherwise, variable-length data units worked just fi ne. 
Full-motion video was the killer at the time, with most television signals needing about 
45 Mbps (and this was not even high-defi nition TV). Not only that, but it turned out that 
the point of diminishing ATM returns (the link bandwidth at which it became slower 
and more costly to make cells than simply send variable-length data units) was about 
622 Mbps—lower than most had anticipated.

Of course, one major legacy of the Internet bubble was the underutilization of 
fi ber optic links with more than 45 Mbps, and in many cases greatly in excess of 
622 Mbps.  And digital video could produce stunning images with less and less band-
width as time went on.  And in that world, in many cases,  ATM was left as a solution 
without a problem.  ATM did not suffer from lack of supporters, but it proved to be the 
wrong technology to carry forward as a switching technology for IP networks.

Why Converge on TCP/IP?
Some of the general reasons TCP/IP has dominated the networking scene have been 
mentioned in earlier chapters. Specifi cally, none of the “new” public network technolo-
gies were particularly TCP/IP friendly—and some seemed almost antagonistic.  ATM 
cells, for instance, would be a lot more TCP/IP friendly if the payload were 64 bytes 
instead of 48 bytes.  At least a lot of TCP/IP traffi c would fi t inside a single ATM cell 
intact, making processing straightforward and effi cient.

At 48 bytes, everything in TCP/IP had to be broken up into at least two cells. But the 
voice people wanted the cell to be 32 bytes or smaller, in order to keep voice delays as 
short as possible. It may be only a coincidence that 48 bytes is halfway between 32 and 
64 bytes, but a lot of times reaching a compromise instead of making a decision annoys 
both parties and leaves neither satisfi ed with the result. So,  ATM began as a standard 
by alienating the two groups (voice and data) that were absolutely necessary to make 
ATM a success.

But the real blow to ATM came because a lot of TCP/IP traffi c would not fi t into 
64-byte frames.  ACKs would fi t well, but TCP/IP packet sizes tend to follow a bimodal 
distribution with two distinct peaks at about 64 and between 1210 and 1550 bytes. 
The upper cluster is smaller and more spread out, but this represents the vast bulk of 
all traffi c on the Internet.
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Then new architectures allowed otherwise normal IP routers to act like frame relay 
and ATM switches with the addition of IP-centric MPLS. Suddenly, all of the benefi ts 
of frame relay and ATM could be had without using unfamiliar and special equipment 
(although a router upgrade might be called for).

MPLS
Rather than adding IP to fast packet switching networks, such as frame relay and ATM, 
MPLS adds fast packet switching to IP router networks.  We’ve already talked about 
some of the differences between routing (connectionless networks) and switching 
networks in Chapter 13.  Table 17.1 makes the same type of comparisons from a differ-
ent perspective.

The difference in the way CoS is handled is the major issue when convergence is 
concerned. Naturally, the problem is to fi nd the voice and video packets in the midst of 
the data packets and make sure that delay-sensitive packets are not fi ghting for bandwidth 
along with bulk fi le transfers or email.  This is challenging in IP routers because there is no 
fi xed path set up through the network to make it easy to enforce QoS at every hop along 
the way. But switching uses stable paths, which makes it easy to determine exactly which 
routers and resources are consumed by the packet stream. QoS is also challenging because 
you don’t have administrative control over the routers outside your own domain.

MPLS and Tunnels
Some observers do not apply the term “tunnel” to MPLS at all.  They reserve the term 
for wholesale violations on normal encapsulations (packet in frame in a packet, for 
example). MPLS uses a special header (sometimes called a “shim” header) between 
packet and frame header, a header that is not part of the usual TCP/IP suite layers.

However, RFCs (such as RFC 2547 and 4364) apply the tunnel terminology 
to MPLS. MPLS headers certainly conform to general tunnel “rules” about stack 
encapsulation violations.  This chapter will not dwell on “MPLS tunnel” terminol-
ogy but will not avoid the term either. (This note also applies to MPLS-based VPNs, 
discussed in Chapter 26.)

But QoS enforcement is not the only attraction of MPLS.  There are at least two 
others,  and probably more. One is the ability to do traffi c engineering with MPLS,  and 
the other is that MPLS tunnels form the basis for a certain virtual private network 
(VPN) scheme called Layer 3 VPNs.  There are also Layer 2 VPNs, and we’ll look at them 
in more detail in Chapter 26.

MPLS uses tunnels in the generic sense:  The normal fl ow of the layers is altered at one 
point or another,  typically by the insertion of an “extra” header.  This header is added at 
one end router and removed (and processed) at the other end. In MPLS, routers form the 
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endpoints of the tunnels. In MPLS,  the header is called a label and is placed between the 
IP header and the frame headers—making MPLS a kind of “Layer 2 and a half” protocol.

MPLS did not start out to be the answer to everyone’s dream for convergence or 
traffi c engineering or anything else. MPLS addressed a simple problem faced by every 
large ISP in the world, a problem shown in Figure 17.5.

MPLS was conceived as a sort of BGP “shortcut” connecting border routers across 
the ISP.  As shown in the fi gure, a packet bound for 10.10.100.0/24 entering the border 
router from the upstream ISP is known,  thanks to the IBGP information, to have to exit 
the ISP at the other border router. In practice, of course,  this will apply to many border 
routers and thousands of routes (usually most of them), but the principle is the same.

Only the local packets with destinations within the ISP technically need to be 
routed by the interior routers.  Transit packets can be sent directly to the border router, 

Table 17.1 Comparing Routing and Switching on a WAN 

Characteristic Routing Switching

Network node Router Switch

Traffi c fl ow Each packet routed independently 
hop by hop

Each data unit follows same 
path through network

Node coordination Routing protocols share 
information

Signaling protocols set up 
paths through network

Addressing Global, unique Label, local signifi cance

Consistency of address Unchanged source to destination Label is swapped at each node

QoS Challenging Associated with path

Router Router

Router

Router

ISP Border
Router

Router
Router

Border
Router

Upstream
ISP

Downstream
ISP

Packet for
10.10.100.0/24

Network
10.10.100.0/24
(and many more)

FIGURE 17.5

The rationale for MPLS. The LSP forms a “shortcut” across the routing network for transit traffi c. 
The Border Router knows right away, thanks to BGP, that the packet for 10.10.100.0/24 must exit 
at the other border router. Why route it independently at every router in between?
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if  possible. MPLS provides this mechanism, which works with BGP to set up tunnels 
through the ISP between the border routers (or anywhere else the ISP decides to use 
them).

The structure of the label used in MPLS is shown in Figure 17.6. In the fi gure, 
it is shown between a Layer 2 PPP frame and the Layer 3 IP packet (which is very 
 common).

■  Label—This 20-bit fi eld identifi es the packets included in the “fl ow” through the 
MPLS tunnel.

■  CoS—Class-of-Service is a 3-bit fi eld used to classify the data stream into one of 
eight categories.

■  S—The Stack bit lets the router know if another label is stacked after the 
current 32-bit label.

■  TTL—The Time-to-Live is an 8-bit fi eld used in exactly the same way as the IP 
packet header TTL.  This value can be copied from or into the IP packet or used 
in other ways.

Certain label values and ranges have been reserved for MPLS.  These are outlined in 
Table 17.2.

The MPLS architecture is defi ned in RFC 3031, and MPLS label stacking is defi ned in 
RFC 3032 (more than one MPLS label can precede an IP packet). General traffi c engi-
neering in MPLS is described in RFC 2702, and several drafts add details and features 
to these basics.

What does it mean to use traffi c engineering on a router network? Consider the 
Illustrated Network. We saw that traffi c from LAN1 to LAN2 fl ows through backbone 
routers P4 and P2 (reverse traffi c also fl ows this way). But notice that P2 and P4 also 
have links to and from the Internet. A lot of general Internet traffi c fl ows through rout-
ers P2 and P4 and their links, as well as LAN1 and LAN2 traffi c.

PPP Header MPLS Label
(32 bits) IP Packet

Label

20 bits 3 bits 1
bit

8 bits

CoS S TTL

FIGURE 17.6

The 32-bit MPLS label fi elds. Note the 3-bit CoS fi eld, which is often related to the IP ToS header. 
The label fi eld is used to identify fl ows that should be kept together as they cross the network.
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So, it would make sense to “split off” the LAN1 and LAN2 traffi c onto a less utilized 
path through the network (for example, from PE5 to P9 to P7 to PE1). This will ease 
congestion and might even be faster, even though in some confi gurations there might 
be more hops (for example, there might be other routers between P9 and P7). 

Table 17.2 MPLS Label Values and Their Uses

Value or Range Use

0 IPv4 Explicit Null. Must be the last label (no stacking). Receiver 
removes the label and routes the IPv4 packet inside.

1 Router Alert. The IP packet inside has information for the 
router itself, and the packet should not be forwarded.

2 IPv6 Explicit Null. Same as label 0, but with IPv6 inside.

3 Implicit Null. A “virtual” label that never appears in the 
label itself. It is a table entry to request label removal by the 
 downstream router.

4–15 Reserved.

16–1023 and 10000–99999 Ranges used in Juniper Networks routers to manually confi gure 
MPLS tunnels (not used by the signaling protocols).

1024–9999 Reserved.

100000–1048575 Used by signaling protocols.

Why Not Include CE0 and CE6?
Why did we start the MPLS tunnels at the provider-edge routers instead of directly 
at the customer edge, on the premises? Actually, as long as the (generally) smaller 
site routers support the full suite of MPLS features and protocols there’s no reason 
the tunnel could not span LAN to LAN.

However, MPLS traditionally begins and ends in the “provider cloud”—usually 
on the PE routers, as in this chapter.  This allows the customer routers to be more 
independent and less costly,  and allows reconfi guration of MPLS without access to 
the customer’s routers. Of course, in some cases the customer might want ISP to 
handle MPLS management—and then the CE routers certainly could be included 
on the MPLS path.

There are ways to do this with IGPs, such as OSPF and IS–IS, by adjusting the link 
metrics, but these solutions are not absolute and have global effects on the network. 
In contrast, an MPLS tunnel can be confi gured from PE5 to PE1 through P9 and P7 and 
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only affect the routing on PE5 and PE1 that involves LAN1 and LAN2 traffi c, exactly the 
effect that is desired.

MPLS Terminology
Before looking at how MPLS would handle a packet sent from LAN1 to LAN2 over an 
MPLS tunnel, we should look at the special terminology involved with MPLS. In no 
 particular order, the important terms are:

LSP—We’ve been calling them tunnels, and they are, but in MPLS the tunnel is 
called a label-switched path.  The LSP is a unidirectional connection following 
the same path through the network.

Ingress router—The ingress router is the start of the LSP and where the label is 
pushed onto the packet.

Egress router—The egress router is the end of the LSP and where the label is 
popped off the packet.

Transit or intermediate router—There must be at least one transit (sometimes 
called intermediate) router between ingress and egress routers.  The transit 
router(s) swaps labels and replaces the incoming values with the outgoing 
values.

Static LSPs—These are LSPs set up by hand, much like permanent virtual  circuits 
(PVCs) in FR and ATM.  They are difficult to change rapidly.

Signaled LSPs—These are LSPs set up by a signaling protocol used with MPLS 
(there are two) and are similar to switched-virtual circuits (SVCs) in FR 
and ATM.

MPLS domain—The collection of routers within a routing domain that starts and 
ends all LSPs form the MPLS domain. MPLS domains can be nested, and can be 
a subset of the routing domain itself (that is, all routers do not have to under-
stand MPLS; only those on the LSP).

Push, pop, and swap—A push adds a label to an IP packet or another MPLS label. 
A pop removes and processes a label from an IP packet or another MPLS label. 
A swap is a pop followed by a push and replaces one label by another (with 
different field values). Multiple labels can be added (push push . . .) or removed 
(pop pop . . .) at the same time.

Penultimate hop popping (PHP)—Many of LSPs can terminate at the same bor-
der router.  This router must not only pop and process all the labels but route 
all packets inside, plus all other packets that arrive from within the ISP.  To 
ease the load of this border router, the router one hop upstream from the 
egress router (known as the penultimate router) can pop the label and simply 
route the packet to the egress router (it must be one hop, so the effect is the 
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same). PHP is an optional feature of LSPs, and keep in mind that the LSP is still 
 considered to terminate at the egress router (not at the penultimate).

Constrained path LSPs—These are traffic engineering (TE) LSPs set up by a 
 signaling protocol that must respect certain TE constraints imposed on the 
network with regard to delay, security, and so on.  TE is the most intriguing 
aspect of MPLS.

IGP shortcuts—Usually, LSPs are used in special router tables and only available to 
routes learned by BGP (transit traffic). Interior Gateway Protocol (IGP) short-
cuts allow LSPs to be installed in the main routing table and used by traffic 
within the ISP itself, routes learned by OSPF or another IGP.

Signaling and MPLS
There are two signaling protocols that can be used in MPLS to automatically set up 
LSPs without human intervention (other than confi guring the signaling protocols 
themselves!).  The Resource Reservation Protocol (RSVP) was originally invented to set 
up QoS “paths” from host to host through a router network, but it never scaled well or 
worked as advertised.  Today, RSVP has been defi ned in RFC 3209 as RSVP for TE and is 
used as a signaling protocol for MPLS. RSVP is used almost exclusively as RSVP-TE (most 
people just say RSVP) by routers to set up LSPs (explicit-path LSPs), but can still be used 
for QoS purposes (constrained-path LSPs).

The Label Distribution Protocol (LDP), defi ned in RFC 3212, is used exclusively with 
MPLS but cannot be used for adding QoS to LSPs other than using simple constraints 
when setting up paths. On the other hand, LDP is trivial to confi gure compared to RSVP. 
This is because LDP works directly from the tables created by the IGP (OSPF or IS–IS). 
The lack of QoS support in LDP is due to the lack of any intention in the process.  The 
reason for the LDP paths created from the IGP table to exist is only simple adjacency. In 
addition, LDP does not offer much if your routing platform can forward packets almost 
as fast as it can switch labels.  Today, use of LDP is deprecated (see the admonitions in 
RFC 3468) in favor of RSVP-TE.

A lot of TCP/IP texts spend a lot of time explaining how RSVP-TE works (they deal 
with LDP less often).  This is more of an artifact of the original use of RSVP as a host-
based protocol. It is enough to note that RSVP messages are exchanged between all 
routers along the LSP from ingress to egress.  The LSP label values are determined, and 
TE constraints respected, hop by hop through the network until the LSP is ready for 
traffi c.  The process is quick and effi cient, but there are few parameters that can be 
confi gured even on routers that change RSVP operation signifi cantly (such as interval 
timers)—and none at all on hosts.

Although not discussed in detail in this introduction to MPLS, another protocol is 
commonly used for MPLS signaling, as described in RFC 2547bis. BGP is a routing pro-
tocol, not a signaling protocol, but the extensions used in multiprotocol BPG (MPBGP) 
make it well suited for the types of path setup tasks described in this chapter.  With 
MPBGP, it is possible to deploy BGP- and MPLS-based VPNs without the use of any other 
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signaling protocol. LSPs are established based on the routing information distributed by 
MPBGP from PE to PE. MPBGP is backward compatible with “normal” BGP, and thus use 
of these extensions does not require a wholesale upgrade of all routers at once.

Label Stacking
Of all the MPLS terms outlined in the previous section, the one that is essential to 
understand is the concept of “nested” LSPs; that is, LSPs which include one or more 
other LSPs along their path from ingress to egress.  When this happens, there will be 
more than one label in front of the IP packet for at least part of its journey.

It is common for many large ISPs to stack three labels in front of an IP packet. Often, 
the end of two LSPs is at the same router and two labels are pushed or popped at once. 
The current limit is eight labels.

There are several instances where this stacking ability comes in handy.  A larger ISP 
can buy a smaller ISP and simply “add” their own LSPs onto (outside) the existing ones. 
In addition, when different signaling protocols are used in core routers and border 
routers, these domains can be nested instead of discarding one or the other.

The general idea of nested MPLS domains with label stacking is shown in Figure 17.7. 
There are fi ve MPLS domains, each with its own way of setting up LSPs: static, RSVP, 
and LDP.  The fi gure shows the number of labels stacked at each point and the order 

R R R R

MPLS Domain 1

MPLS Domain 2
MPLS Domain 3

Static RSVP

RSVP

MPLS
Domain 4

LDP

MPLS
Domain 5

LDP

Two stacked labels
(MPLS2, MPLS1, IP)

Three stacked labels
(MPLS4, MPLS3,

MPLS1, IP)

Three stacked labels
(MPLS5, MPLS3,

MPLS1, IP)

FIGURE 17.7

MPLS domains, showing how the domains can be nested or chained, and how multiple labels 
are used.
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they are stacked in front of the packet.  All of the routers shown (in practice, there will 
be many more) pop and process multiple labels. MPLS domains can be nested for geo-
graphical, vendor, or organizational reasons as well.

MPLS and VPNs
MPLS forms the basis for many types of VPNs used on IP networks today, especially 
Layer 3 VPNs. LSPs are like the PVCs and SVCs that formed “virtually private” links 
across a shared public network such as FR or ATM. LSPs are not really the same as 
 private leased-line links, but they appear to be to their users.

Of course, while the path is constrained, the MPLS-based Layer 3 VPN is not actually 
doing anything special to secure the content of the tunnel or to protect its integrity. So, 
this “security” value is limited to constraining the path.  This reduces the places where 
snooping or injection can occur, but it does not replace other Layer 3 VPN technology 
for security (such as IPSec, discussed in Chapter 29).

Nevertheless, VPNs are often positioned as a security feature on router networks. 
This is because, like “private” circuits, hackers cannot hack into the middle of an LSP 
(VPN) just by spoofi ng packets.  There are labels to be dealt with, often nested labels. 
The ingress and egress routers are more vulnerable, but it’s not as easy to harm VPNs or 
the sites they connect as it is to disrupt “straight” router networks.

So, VPNs have a lot in common with MPLS and LSPs—except that the terms are 
 different! For example, the transit routers in MPLS are now provider (P) routers in 
VPNs. VPNs are discussed further in the security chapters.

MPLS Tables
The tables used to push, pop, and swap labels in multiprotocol label switching are dif-
ferent from the tables used to route packets.  This makes sense: MPLS uses switching, 
and packets are routed.

Most MPLS tables are little more than long lists of labels with two key pieces of 
information attached: the output interface to the next-hop router on the LSP and the 
new value of the label. Other pieces of information can be added, but this is the abso-
lute minimum.

What does an MPLS switching table look like? Suppose we did set up an LSP between 
LAN1 and LAN2 to carry packets from PE5 to PE1 through backbone routers P9 and P7 
instead of through P4 and P2?

Figure 17.8 shows how the MPLS switching tables might be set up to switch a 
packet from LAN1 to LAN2. Note that this has nothing to do with routed traffi c going 
back from LAN2 to LAN1! (In the real world,  we would set up an LSP going from LAN2 
to LAN1 as well.)
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CONFIGURING MPLS USING STATIC LSPS
Let’s build the static LSP from LAN1 to LAN2 from PE5 to P9 to P7 to PE1 that was shown 
in Figure 17.8.  Then we’ll show how that affects the routing table entries and run a 
 traceroute for packets sent from 10.10.11.0/24 (LAN1) to 10.10.12.0/24 (LAN2).

The Ingress Router
Let’s start by confi guring the LSP on PE5,  the ingress router, so that packets from LAN1’s 
address space get an MPLS label value of 1023 and are sent to 10.0.59.2 as a next hop 
on the link to P9 (so-0/0/0).

set protocols mpls static-path LAN1-to-LAN2 10.10.11.0/24 next-hop 10.0.59.2;
set protocols mpls static-path LAN1-to-LAN2 10.10.11.0/24 push 1023;
set protocols mpls static-path LAN1-to-LAN2 interface so-0/0/0;

Once the confi guration is committed, the static LSP shows up as a static route natu-
rally (signaled LSPs are referenced by signaling a protocol, RSVP or LDP).

admin@PE5# show route table inet.0 protocol static
10.10.11.0/24     *[Static/5]  00:01:42
                  > to 10.0.59.2 via so-0/0/0. push 1023

The Transit Routers
This is how the LSP is confi gured on P9, the fi rst transit (or intermediate) router.

set protocols mpls interface so-0/0/0 label-map 1023 next-hop 10.0.79.1;
set protocols mpls interface so-0/0/0 label-map 1023 swap 1104;

Ingress
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Egress
Router
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Transit
Router

PE5 PE1P9 P7

10.10.11/24 10.0.59/24 10.0.79/24 10.0.17/24 10.10.12/24

Label Table
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Output on:
10.0.59/24

Output on:
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ROUTE to:
10.10.12/24

Label Table
Pop 1253
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Push 1104
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Label Table
Pop 1104
Push 1253
(swap 1253
for 1104)

FIGURE 17.8

Label tables for a static LSP from PE5 (ingress) to PE1 (egress).
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Note that this table is not organized by destination, as on the PE router, but by 
the interface that the MPLS data unit arrives on.  There can be many labels, but this 
“label map” looks for 1023, swaps it for label 1104, and forwards it to 10.0.79.1. Note 
that there was no need to look anything up in the main routing table (in Juniper 
Networks routers, the interface addresses are held in hardware).  Transit LSPs are 
identifi ed by the use of swap in the static router entry, but this time in MPLS “label 
table” mpls.0.

admin@P9# show route table mpls.0 protocol static
1023           *[Static/5]  00:01:57
               > to 10.0.79.1 via so-0/0/1. swap 1104

The link to P7 is so-0/0/1, as expected.  The confi guration on the P7, the second transit 
router, is very similar.

set protocols mpls interface so-0/0/1 label-map 1104 next-hop 10.0.17.1;
set protocols mpls interface so-0/0/1 label-map 1104 swap 1253;

If we wanted to confi gure PHP, this is the router where we would enable it.  The 
statement swap 3 is the “magic word” that enables PHP. MPLS label value 3 says to the 
local router, “Don’t really push a 3 on the packet, but instead pop the label and route 
the packet inside.”  The use of the label at least makes it easier to remember that the end 
of the LSP is really on PE1.

The Egress Router
The confi guration on the egress router, PE1, is essentially the opposite of that on the 
ingress router but more similar to that on a transit router.

set protocols mpls interface so-0/0/2 label-map 1253 next-hop 10.0.12.0/24;
set protocols mpls interface so-0/0/2 label-map 1253 pop;
admin@PE1# set protocols mpls interface so-0/0/2 label-map 1253 next-hop 10.10.12.0/24;
admin@PE1# set protocols mpls interface so-0/0/2 label-map 1253 pop;

There is no need to tell the router what label value to pop: if it got this far, the label 
value is 1253. Note that the next hop is the IP address of LAN2,  which is the entire 
point of the exercise.  When PHP is used, there is no need for a label map for that LSP 
on the egress router.  When PHP is not used, the egress LSPs are identifi ed by the use of 
pop in the static router entry in mpls.0.

admin@PE1# show route table mpls.0 protocol static
1253         *[Static/5]  00:02:17
             > to 10.10.12.0/24 via ge-0/0/3. pop
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Static LSPs are fi ne, but offer no protection at all against link failure.  And consider 
how many interfaces, labels,  and other information have to be maintained and entered 
by hand. In MPLS classes, most instructors make students suffer through a complex 
static LSP confi guration (some of which never work correctly) before allowing the use 
of RSVP-TE and LDP to “automatically” set up LSPs anywhere or everywhere. It is a les-
son that is not soon forgotten. (In fact, dynamic LSP confi guration using RVSP-TE is so 
simple that it is not even used as an example in this chapter.)

Traceroute and LSPs
How do we know that our static LSP is up and running properly? A ping that works 
proves nothing about the LSP because it could have been routed, not switched. Even 
one that fails proves nothing except the fact that something is broken.

But traceroute is the perfect tool to see if the LSP is up and running correctly.  The 
following is what it looked like before we confi gured the LSP.

bsdclient# traceroute bsdserver
traceroute to bsdserver (10.10.12.77), 64 hops max, 44 byte packets
 1  10.10.11.1 (10.10.11.1)  0.363 ms  0.306 ms  0.345 ms
 2  10.0.50.1 (10.1.36.2) 0.329 ms  0.342 ms  0.346 ms
 3  10.0.45.1 (10.0.45.1) 0.330 ms  0.341 ms  0.346 ms
 4  10.0.24.1 (10.0.24.1) 0.332 ms  0.343 ms  0.345 ms
 5  10.0.12.1 (10.0.12.1) 0.329 ms  0.342 ms  0.347 ms
 6  10.0.16.2 (10.0.16.2) 0.330 ms  0.341 ms  0.346 ms
 7  10.10.12.77 (10.10.12.77)  0.331 ms  0.343 ms  0.347 ms
bsdclient#

Let’s look at it now, after the LSP.

bsdclient# traceroute bsdserver
traceroute to bsdserver (10.10.12.77), 64 hops max, 44 byte packets
 1  10.10.11.1 (10.10.11.1)  0.363 ms  0.306 ms  0.345 ms
 2  10.0.59.1 (10.0.59.1)  0.329 ms  0.342 ms  0.346 ms
 3  10.0.16.2 (10.0.16.2) 0.330 ms  0.343 ms  0.0347 ms 
 4  10.10.12.77 (10.10.12.77)  0.331 ms  0.343 ms  0.347 ms
bsdclient#

Only four routers have “routed” the packet. On the backbone, the packet is switched 
based on the MPLS tables, and so forms one router hop. But at least we can see that the 
packets are sent toward P9 (10.0.59.1) and not P4 (10.0.50.1).

The details of the path of MPLS LSPs are not visible from the hosts.  Why should 
they be? LSPs are tools for the service providers on our network. Only on the routers, 
running a special version of traceroute, can we reveal the hop-by-hop functioning of 
the LSP.  When run on PE5 to trace the path to the link to CE6, traceroute “expands” the 
path and provides details—showing that the CE6 is still fi ve routers away from CE0 
(and that there are still six routers and seven hops between LAN1 and LAN2).
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admin@PE5> traceroute 10.10.16.1
traceroute to 10.10.12.0 (10.10.12.0), 30 hops max, 40 byte packets
 1  10.10.12.1 (10.10.12.1)  0.851 ms  0.743 ms  0.716 ms
    MPLS Label=1023 CoS=0 TTL=1 S=1
 2  10.0.59.1 (10.0.59.1)  0.799 ms  0.753 ms  0.721 ms
    MPLS Label=1104 CoS=0 TTL=1 S=1
 3  10.0.79.1 (10.0.79.1)  0.832 ms  0.769 ms  0.735 ms
    MPLS Label=1253 CoS=0 TTL=1 S=1
 4  10.0.17.1 (10.0.17.1)  0.854 ms  0.767 ms  0.734 ms
 5  10.0.16.1 (10.0.16.1)  0.629 ms !N  0.613 ms !N  0.582 ms !N
admin@PE5>

Just to show that the LSP we set up is unidirectional,  watch what happens when we 
run traceroute in reverse from bsdserver on LAN2 to bsdclient on LAN1.

bsdserver# traceroute bsdclient
traceroute to bsdclient (10.10.11.177), 64 hops max, 44 byte packets
 1  10.10.12.1 (10.10.12.1)  0.361 ms  0.304 ms  0.343 ms
 2  10.0.16.1 (10.1.16.1) 0.331 ms  0.344 ms  0.347 ms
 3  10.0.12.2 (10.0.12.2) 0.329 ms  0.340 ms  0.345 ms
 4  10.0.24.2 (10.0.24.2) 0.333 ms  0.344 ms  0.346 ms
 5  10.0.45.2 (10.0.45.2) 0.329 ms  0.342 ms  0.347 ms
 6  10.0.50.2 (10.0.50.2) 0.330 ms  0.341 ms  0.346 ms
 7  10.10.11.177 (10.10.11.177)  0.331 ms  0.343 ms  0.347 ms
bsdclient#

Packets fl ow through backbone routers P2 and P4, as they did before the MPLS LSP 
was set up! The “old” route is used, showing that MPLS is the basis for traffi c  engineering 
on a router network.
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QUESTIONS FOR READERS
Figure 17.9 shows some of the concepts discussed in this chapter and can be used to 
help you answer the following questions.

1.  Does the LSP in Figure 17.9 use the shortest path in terms of number of routers 
from ingress to egress?

2. What does traffi c engineering mean as the term applies to MPLS?

3. Is there an LSP set up on the reverse path from egress to ingress router?

4.  Which label is used on the LSP between routers A and B? Is this label added to 
another, or swapped?

5. Is PHP used on the LSP? How can you tell?

Router
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Router
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Router
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Router
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ISP Egress
Router

Router
E

Router
F

Ingress
Router

Upstream
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Packet for
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(and many more)

1104
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3

FIGURE 17.9

An MPLS LSP from ingress to ingress router, showing label value to path. The LSP runs along the 
heavy lines through the routers designated. The label values used on each link are also shown.
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Every host on the Internet typically runs a set of basic client–server  applications. 
This part of the book examines each one in detail.

■ Chapter 18—Dynamic Host Confi guration Protocol

■ Chapter 19—The Domain Name System

■ Chapter 20—File Transfer Protocol

■ Chapter 21—SMTP and Email

■ Chapter 22—Hypertext Transfer Protocol

■ Chapter 23—Securing Sockets with SSL
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CHAPTER

What You Will Learn
In this chapter, you will learn how IP addresses are assigned in modern IP  networks. 
You will learn how the Dynamic Host Confi guration Protocol (DHCP) and related 
protocols, such as BOOTP, combine to allow IP addresses to be assigned to devices 
dynamically instead of by hand.

You will learn how users often struggle to fi nd printers and servers whose IP 
addresses “jump around,” and you will learn means of dealing with this issue. 

Dynamic Host Confi guration 
Protocol 18

When TCP/IP fi rst became popular, confi guration was never trivial and often complex. 
Whereas many clients needed only a handful of parameters, servers often required 
long lists of values. Operating systems had quickly outgrown single fl oppies,  and most 
hosts now needed hard drives just to boot themselves into existence. Routers were in 
a class by themselves, especially when they connected more than two subnets—and 
in the days of expensive memory and secondary storage (hard drives), routers usually 
needed to load not only their confi guration from a special server, but often their entire 
operating systems.

A once-popular movement to “diskless workstations” hyped devices that put all of 
their value into hefty processors while dispensing with expensive (and failure-prone) 
hard drives altogether. Semiconductor memory was not only prohibitively expensive in 
adequate quantities but universally volatile, meaning that the content did not carry over 
a power failure if shut down. How could routers and diskless workstations fi nd the soft-
ware and confi guration information they needed when they were initially powered on?

RFC 951 addressed this situation by defi ning BOOTP, the bootstrap protocol, to fi nd 
servers offering the software and confi guration fi les routers and other devices needed 
on the subnet.  The basic functions were extended in RFC 1542, which described relay 
agents that could be used to fi nd BOOTP servers almost anywhere on a network. BOOTP 
did a good job at router software loading, but the confi guration part  (notably the IP   
addresses) assigned by the device’s physical address had to be laboriously  maintained 
by the BOOTP server administrator.
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So, BOOTP was updated and clarifi ed in RFC 2131 to become DHCP, which 
 automated the IP address assignment process, making the entire system more friendly 
and useful for host confi guration. RFC 2132 described all parameters that could be 
used with BOOTP and DHCP.  The real value offered by DHCP over BOOTP was the 
ability to release an address. Dynamically assigned BOOTP devices received an address 
that had no upper bound on how long they could use it.

DHCP AND ADDRESSING
So far, we’ve used static address assignment on all of the hosts on the Illustrated 
Network.  This is a common enough practice: Lab network testing is often hard enough 
without worrying about address leases expiring, host addresses changing,  and clut-
tering up the LAN with DHCP chatter. But the point here is to dynamically assign the 
host addresses on the Illustrated Network (we’ll leave the routers alone), so that’s 
what we’ll do for this chapter.  We’ll use the equipment as confi gured in Figure 18.1. 
Note that for these application-level chapters we can go back to two ISPs and routing 
domains.

We’ll use IPv4 only and set up our Linux server (lnxserver) as a DHCP server for 
the IP address ranges on both LAN1 and LAN2. First, we’ll confi gure Windows XP on 
the same LAN to fi nd its address using the DHCP server. Naturally,  as with multicast this 
won’t help the hosts on LAN2 fi nd the DHCP server. So, we’ll confi gure LAN2 router 
CE6 as a BOOTP and DHCP relay agent by sending DHCP messages to the Linux DHCP 
server and sending back the replies. Finally, we’ll confi gure the Windows XP client on 
LAN2 to use dynamic IP address assignment and to make sure the entire confi guration 
works.

Once again, it must be pointed out that this network exists solely for this book. 
In a real situation, no one would really make clients in Los Angeles rely on a DHCP 
server across the country (although it would certainly work). Considering the amount 
of information that would be exposed, it would at least be carried over some sort of 
encrypted path.

DHCP Server Confi guration
Linux-based DHCP servers run /usr/sbin/dhcpd, the DHCP daemon, using parameters 
found in the /etc/dhcpd.conf fi le.  The confi guration guide bundled with the most 
common DHCP implementation, from the Internet Software Consortium (ISC), is 36 
pages long and gives all sorts of options that are not needed for basic confi gurations.

There are even freeware implementations of DHCP servers for Windows XP.  These 
feature the expected point-and-click GUI setup interface,  and are just as useful as their 
Unix-based cousins.

The following is a fairly minimal confi guration fi le for a DHCP server. Note that we 
can assign the default router address as an option for the subnet. If this option is not 
present, users will have to enter their default “gateway” information manually.
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[root@lnxserver admin]# /cat  /etc/dhcpd.conf
# dhcpd.conf
#
# global options
ddns-update-style interim;
default-lease-time 600;
max-lease-time 7200;

subnet 10.10.11.0 netmask 255.255.255.0 {
   range 10.10.11.200 10.10.11.210;
   option routers 10.10.11.1;
}
subnet 10.10.12.0 netmask 255.255.255.0 {
   range 10.10.12.210 10.10.12.220;
   option routers 10.10.12.1;
}

Although we are not using DHCP to dynamically update DNS entries,  and we don’t 
even have a DNS server on the LAN yet, the ISC implementation insists on having a 
line in the confi guration referencing dynamic DNS update “style.” And although a lot 
of TCP/IP references mention DHCP’s “unhelpful” error messages, we found the error 
messages when we tried to start dhcpd with a missing semicolon (;) or a missing ddns-
update-style line to be explicit and welcome.

By the way, this lack of DNS is one reason many hands-on Internet services work-
shops start with DNS fi rst. But there is no requirement for this, as the order of the 
chapters in this book illustrates.

But what DNS name should be associated with a DHCP address? Typically,  a generic 
name such as dhcp1.example.com is associated with the DHCP address. However, this 
is not appropriate for servers,  and only barely tolerable for clients, which usually have 
more informative names in DNS.  And generally, you don’t want to hand out changing 
IP addresses to routers, servers, or the DHCP server itself.

Ordinarily, we would include an option line for the DNS server’s names, but we 
haven’t confi gured those yet on the network. Options can be global or applied to only 
a subset of the network,  a nice feature.  We’d also usually have a host entry for our serv-
ers so that they would get the same IPv4 addresses every time. For testing, it’s common 
to override the default lease time and maximum lease time (which are fairly high) for 
which a host can ask to use the address.  We’ve made them 10 minutes and an hour, 
respectively, here.

The most important lines are those that establish the address pool for hosts on 
LAN1 (10.10.11.0) that ask for an IPv4 address.  This information is set in the subnet 
and range lines.  We’ve made the range different from any of the IPv4 addresses used 
before, just so it’s easy to see if Windows XP is really picking up the DHCP address.

We’ve also set up an address pool for LAN2 (10.10.12.0), just to save time.  We 
haven’t confi gured the LAN2 router as a DHCP relay agent yet, but we will.

Setting up a DHCP client is much easier than setting up the server.  Windows XP, for 
example, makes it very easy to reconfi gure a PC to obtain an IPv4 address (including 
the default router) from the network’s DHCP server (as shown in Figure 18.2).
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Now let’s run the DHCP server on lnxserver and see what address the Windows XP 
host wincli1 is assigned.
C:\Documents and Settings\Owner>ipconfig
Windows IP Configuration
Ethernet adapter Local Area Connection:

     Connection-specific DNS Suffix . :
     IP Address . . . . . . . : 10.10.11.200
     Subnet Mask . . . . . . . : 255.255.255.0
     Default Gateway . . . . . . : 10.10.11.1

As expected, the address assigned is within the range specifi ed,  and is the fi rst address 
in that range.

Router Relay Agent Confi guration
The confi guration stanza to make a Juniper Network router a DHCP relay agent is 
under the BOOTP hierarchy level.  This makes sense because DHCP relay agents are all 
BOOTP relay agents as well.  We’ll talk more about BOOTP later in this chapter.

FIGURE 18.2

Confi guring Windows to use DHCP, as is commonly done. Note that the IP address and DNS 
server to be used are assigned.
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The router can act as a relay agent globally or for a group of interfaces.  This just 
makes the CE6 router into a DHCP relay agent for the LAN2 interface.  There is no need 
to do anything for LAN1 on the network because the DHCP server handles all of those 
hosts locally.

set  forwarding-options helpers bootp description "DHCP relay agent for 
lnxserver on LAN1";

set forwarding-options helpers bootp server 10.10.11.66;
set forwarding-options helpers bootp interface fe-1/3/0;

That’s all there is to it.  As long as there’s a way to reach network 10.10.11/24 from 
LAN2 and a way to get back to 10.10.12/24 from CE0, DHCP messages should have no 
problem crossing the network like any other packets.

Getting Addresses on LAN2
Without a relay agent running on the LAN2 router, we can fi re up wincli2 all we want 
and it will never receive an IP address from a DHCP server. One is not present on LAN2, 
and the router will not route DHCP messages unless told to.

Now that we have the relay agent running, we can check the IPv4 address on  wincli2. 
Note that the lowest IP address in the range is not always the fi rst one handed out by 
the DHCP server. In this case, the host asks for its “old” address of 10.10.12.222,  and 
the server attempts to assign the closest address it has to that one.

C:\Documents and Settings\Owner>ipconfig
Windows IP Configuration
Ethernet adapter Local Area Connection:

      Connection-specific DNS Suffix . :
      IP Address . . . . . . . : 10.10.12.220
      Subnet Mask . . . . . . . : 255.255.255.0
      Default Gateway . . . . . . : 10.10.12.1

DHCP is such an important part of LANs and the Internet today that a closer look 
at the functioning of DHCP through a router relay agent is a good idea.  The complete 
sequence of events, captured on wincli2 as it received its DHCP address, is shown in 
Figure 18.3.

We’ll talk about DHCP messages and sequences in detail later in this chapter. Note 
that the sequence starts with wincli2 sending a broadcast DHCP discover message 
onto LAN2 with the “unknown” source address of 0.0.0.0.  The host asks for its “old” 
address, 10.10.12.222.  The router, acting as relay agent, forwards the request to the 
DHCP server (10.10.11.66, lnxserver) on LAN1, which replies to the relay agent 
and wants to assign address 10.10.12.220 to wincli2.  The relay agent sends an ARP 
(No. 2) to see if anyone on LAN2 already has 10.10.12.220 (it could have been assigned 
statically).  The relay agent then offers the host this IP address (No. 3), and the DHCP 
server itself (No. 4) sends a ping to check on 10.10.12.220 itself (note that there is no 
reply to the ping from wincli2).
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It takes a while for the host to gather the information about possible multiple DHCP 
servers, and there are two pairs of repeated DHCP discover messages from "0.0.0.0" 
and DHCP offers from the relay agent (Nos. 5–8). In each exchange, the host asks for 
its old IP address (10.10.12.222) in the DHCP discover message, and the relay agent 
assigns 10.10.12.220 in the DHCP offer message.

Finally, wincli2 accepts the DHCP information and assigned address, and sends a 
DHCP request message (No. 9) for confi guration information for 10.10.12.220, but it is 
still using the 0.0.0.0 address.  The relay agent replies with a DHCP acknowledgement 
(No. 10), which basically contains the same information as before.

The sequence ends with a series of gratuitous ARPs to the relay agent (Nos. 11–13) 
for address 10.10.12.220, the host’s new address (see the source IP address fi eld).  This 
tells the DHCP relay agent that everything has worked out.  The details of one of the 
DHCP discover messages sent by the host (all of them are essentially the same) are 
shown in Figure 18.4.

The details of one of the DHCP offer messages sent by the relay agent on behalf of 
the DHCP server (all of these are essentially the same too) are shown in Figure 18.5.

Using DHCP on a Network
As we have seen, what DHCP brings to TCP/IP for the fi rst time is a measure of 
mobility.  With the proper DHCP servers available, a user could unplug a host from one 
Ethernet LAN subnet, move it across the country, plug it into another subnet, expect 
the confi guration data to be loaded properly, and become productive on the new sub-
net immediately.

Once ISPs began offering dial-up Internet access to the general public with home 
PCs, the benefi ts of DHCP became instantly obvious. Suppose an ISP had a pool of 
254 IPv4 addresses, that is, what used to be a Class C address. But the ISP also has 
300 customers. Obviously, 254 IP addresses cannot be statically assigned to 300 hosts. 
However,  all of them cannot be on-line at the same time because the ISP has only 200 
dial-in modem ports (a situation that was not uncommon before the Web took over 
the planet). So, DHCP quickly became the means of choice in assigning IP addresses 
dynamically to a pool of users.

FIGURE 18.3

DHCP messages sent through a router relay agent. Note the use of broadcast and the “unknown” 
source IP address.
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FIGURE 18.4

The DHCP discover message details. Note the use of the bootstrap protocol (BOOTP) and the 
numerous options.

FIGURE 18.5

The DHCP offer message details, showing the use of the “magic cookie.”
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Organizations that employed proxy servers to protect their Internet users (or limit 
Internet users) could do the same thing, and often did. In fact, any time the pool of 
potential users exceeds the number of IP addresses available, DHCP is a potential 
 solution.

The heavy use of changing IP addresses among ISPs was one major reason ISPs 
refused to support servers on the customer’s premises (asymmetric traffi c loads, 
especially over always-on but asymmetrical DSL links, was the other one). Servers 
were typically included in DNS, to make them easy to remember, and this required 
a high degree of stability of IP addresses because changes had to propagate literally 
around the world. Naturally, dynamic server addresses, changing rapidly, challenged 
DNS procedures and capabilities. Servers could get static IP addresses, if they could 
be found, and running one server process like a Web server on an otherwise all-client 
host made the box into a server.  The simplest thing for an ISP to do was to ban serv-
ers on the customer’s premises, unless extra fees for DNS “maintenance” were paid (in 
truth, there was little maintenance the ISP had to do except initially). Offi cially, home 
servers were “not supported”; since ISPs had little way of making sure that a server 
was present this essentially meant, “If you call and try to open a trouble ticket on it, 
we won’t listen.”

When DHCP is confi gured on a client in many operating systems, it usually isn’t 
even required to name it. Just check off or click on “obtain an IP address automatically” 
and you’re in business.

BOOTP still exists, and some devices still use BOOTP alone. BOOTP is often com-
bined with the Trivial File Transfer Protocol (TFTP), defi ned in RFC 1350 (RFCs 2347, 
2348, and 2349 all discuss TFTP options).  And the best way to understand why DHCP 
works the way it does is to begin with BOOTP.

BOOTP
Diskless workstations were expected to have only basic IP, UDP,  and TFTP capabilities 
at start-up,  although of course they needed Ethernet and rudimentary operating sys-
tem functions as well.  The original vision for BOOTP was to have the process complete 
in three steps.

The BOOTP client broadcast a request for information from port UDP 68 to a boot 
server listening on port 67. (BOOTP uses well-known ports for both client and server 
because server replies can be broadcast, but typically are not.)

The boot server returned the client’s IP address and,  as an option, the location of 
a fi le to be downloaded (presumably, the rest of the client’s software was in this fi le). 
The client used TFTP and the boot server listening on UDP port 69 to download the 
software.

RARP, discussed in Chapter 5, provides the IP address that goes with a physical 
address (such as the MAC address). RARP provides an IP address to a diskless client, but 
only an IP address.  And RARP broadcasts never pass through a router, whereas BOOTP 
requests, in proper confi gurations, will (this requires a relay agent,  as in DHCP).
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BOOTP Implementation
Diskless workstations never became a popular line, and most users saw them as a 
return to the “bad old days” of “dumb terminals” and considered a full-blooded PC 
on the desktop as a sign of status.  And soon enough the cost differential for diskless 
devices as opposed to full-fl edged workstations or desktops shrunk to zero and then 
went negative.  Applications for devices with no local storage still exist, but there is no 
cost benefi t associated with them.

Once almost all PCs began to ship with minimal hard disks it became more com-
mon to split the boot server functions between two separate servers.  The boot server 
still listened on UDP port 67 for client broadcast requests sent on port 68,  and this was 
usually all PCs needed. But for truly diskless devices one or more TFTP servers provided 
the fi les needed for further operation, usually separated by type.  This arrangement is 
shown in Figure 18.6.

BOOTP was very fl exible. Clients could start with some or no information, accept 
any boot server or pick a particular one,  and use no fi le (a default) or a specifi c down-
load fi le.

BOOTP Messages
All BOOTP requests and replies are sent as 300-byte UDP messages.  These are shown 
in Figure 18.7. Fields shown in bold must be fi lled in for a BOOTP request, and those in 
italic represent optional information supplied by the client.

Opcode—This byte is set to 1 for a request and 2 for a reply.

Hardware Type—This byte is set to 1 for Ethernet,  and uses the same values as 
the hardware type field in an ARP message.

Boot Server

UDP Port UDP Port UDP Port

Client
Device

Software for
Client

TFTP Server

LAN

67 68 69

IP Address and
Configuration
Information

FIGURE 18.6

BOOTP and TFTP servers, showing the ports used by the servers and client.
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Hardware Address Length—This byte is set to 6 for Ethernet.

Hop Counter—The client sets this to 0, but a proxy BOOTP server (or relay agent, 
described later) can use this field when the BOOTP message is sent beyond 
the local Ethernet.

Transaction ID—A random 4-byte number chosen by the client and used to 
match replies to their requests. Multiple servers can reply, and only the first is 
accepted by the client.

Seconds Elapsed—A 2-byte field set by the client to the amount of time since the 
bootstrap process began. It starts at 0 and gradually increases if the request is 
not answered.  A secondary server can monitor this value, and if it gets too high 
will assume the primary BOOTP server is down and reply to the client.

Client IP Address—Set to all 0 bits unless the client knows its IP address, in which 
case it is placed here.

“Your” Client IP Address—If the previous field is 0, the server supplies the client’s 
IP address in this field.

1 byte 1 byte1 byte

Transaction ID (used to match request and reply)

Hardware Type
Length of
Hardware
Address

Hop Counter
(initially 0)

Unused

Client IP Address (if known to Client, otherwise all 0)

Client IP Address (provided by Server in response)

Boot File Name (Client supplies generic name:“Windows”: Server
supplies full pathname to Boot file)

1 byte

25 reply 

Opcode
1�  request

Seconds Elapsed since Client
Sent First Request Message

IP Address of Server
(provided by Server in response: where Client should go for Boot file)

Client Hardware Address

Relay Router IP Address

“Vendor-Specific Area”
Additional Parameters

Server Host Name (Client can optionally identify Server)

32 bits

FIGURE 18.7

Request.
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Server IP Address—Filled in by the server.

Relay Router IP Address—If a BOOTP relay agent is used, the router fills in the 
address of the port the request was received on.  This allows the server to reply 
to the proper relay agent.

Client Hardware Address—The same 16-byte address is in the frame source 
address, but the BOOTP process has no easy access to this information (which 
is three layers away) so it is placed here.

Server Hostname—The server optionally can use these 64 bytes (null terminated) 
to identify itself to the client.

Boot File Name—The server optionally can use these 128 bytes (null terminated) 
to identify the path to and the name of the boot file.

Vendor-Specific Area—These 64 bytes are used for BOOTP extensions, defined in 
RFC 1533.

BOOTP Relay Agents
BOOTP requests are broadcast,  and broadcasts will not be forwarded through a router. 
Yet maintaining BOOTP servers on all subnets, which are often quite small, can be 
burdensome in many organizations. So, BOOTP allows the use of relay agents, which 
can be hosts but are usually routers having the added capability to forward BOOTP 
requests to a centrally located server.

The router BOOTP relay agent is allowed to broadcast the request onto other sub-
nets, using the hop count to control endless looping, but it is more common for the 
relay agent to maintain a list of the IP addresses of one or more boot servers to which 
to forward the requests.  The way it all fi ts together is shown in Figure 18.8.

The relay agent receiving a BOOTP broadcast checks the Relay Router fi eld. If it is 
set to 0, the relay agent inserts the port’s IP address (if the fi eld is non-zero, another 
relay router has already processed this request).  The BOOTP server will use the address 
to reply to the proper relay agent.

The relay agent can send the request to one or more preconfi gured BOOTP 
servers.  The relay agent usually replaces the broadcast IP address with the BOOTP 
server’s destination address.

BOOTP “Vendor-Specifi c Area” Options
The fi elds in the BOOTP request and reply do not cover a lot of things client hosts often 
need to know to function properly. For example, how is the subnet mask and default 
router address conveyed to the client?

RFC 1533 kept the vendor-specifi c purpose of the fi eld but added several optional 
functions that can be used to supply needed information to a client.  The “magic cookie” 

CHAPTER 18 Dynamic Host Confi guration Protocol 471



IPv4 address of 99.130.83.99 is used to signal clients that there is useful information 
in this area.

Each item begins with a 1-byte Tag (for example, Tag 5 1 is for the subnet mask) and 
Length (subnet mask 5 4 bytes) fi eld.  Tag 5 0 is used to pad items to a 32-bit boundary, 
and Tag 5 255 is used pad out the end of the list.

Once a client has used BOOTP to obtain an IP address, subnet mask, and default 
router address, it is ready to begin the software download phase if needed.  The TFTP 
protocol is used for this process.

TRIVIAL FILE TRANSFER PROTOCOL 
Many books discuss TFTP in the context of full FTP. But TFTP is best understood in the 
context of the BOOTP environment. In particular, TFTP differs greatly from usual FTP 
operation (FTP is discussed in Chapter 20). In contrast to full FTP,  TFTP

■ Uses UDP port 69
■  Uses uniformly sized 512-byte blocks of data, except for the last (If the fi le is a 

multiple of 512 bytes,  a fi nal, empty block signals end-of-fi le.)

Client
Device

BOOTP Broadcast

LAN

LAN

Router
Performing

Relay Agent Function

w.x.y.z

Relay BOOTP
Messages to
IP Address

w.x.y.z

Server

FIGURE 18.8

BOOTP relay agent (router), showing how the relay agent forwards broadcast BOOTP messages 
to a unicast IP address.
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■ Numbers blocks starting from 1
■ Acknowledges every block
■ Uses no authentication

Today, of course, the lack of authentication means that use of  TFTP requires special 
considerations.  And it still makes more sense to use Trivial File Transfer Protocol for 
BOOTP software downloads because in many cases the client and server are on the 
same low-error-rate LAN.

Once a client knows where to go and what to get, a TFTP transaction starts with 
a read request (RRQ) to download a fi le or write request (WRQ), used if the client is 
going to save information back onto the TFTP server.  The requests are sent to UDP port 
69 on the server, and a dynamic port is used on the client.

The server does not use port 69 throughout the process, but identifi es a server 
port to use for the rest of the procedure. Data transfer proceeds through an exchange 
of sequenced data blocks and answering ACKs, one-for-one, echoing the data block 
 number.  Any non–full-data block ends the exchange.

The default block size can be changed using the options at the end of the read or 
write request.  A size of 1468 (a 1500-byte Ethernet frame minus the 20 IP, 8 UDP, and 
4 TFTP header bytes) is common. Other options include a resend timeout value (UDP 
has none of its own) and the total size of the fi le to be transferred.  This value is offered 
in the client write request, but is set to 0 in a read request and sent by the server in 
response.  A client is allowed to abort the transfer if the fi le size the server wants to 
transfer is too large.

TFTP Messages
TFTP really only has requests (RQ), data blocks (DATA), and ACKs, but these are 
employed to yield a total of six message types.

■ Read request (RRQ)
■ Write request (WRQ)
■ Data block (DATA)
■ Acknowledgment (ACK)
■ Error (ACK)
■ Option acknowledgment (OACK)

The six operation codes are used in the Trivial File Transfer Protocol header, shown in 
Figure 18.9.

The fi elds in RRQ and WRQ can vary in size and are thus delimited with all-0 bytes. 
Oddly, there are no codes for the modes or for the strings netascii and octet (there 
was also a mail mode initially).

TFTP Download
TFTP lives up to its name.  A simple TFTP transfer is shown in Figure 18.10. In the fi gure, 
it is assumed that no options are used.
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TFTP message inside UDP

2 bytes

2 bytes

2 bytes

2 bytes 1 byte

1 byte1 byte

N bytes

N bytes N bytes

2 bytes

2 bytes

2 bytes

2 bytes

Opcode
15RRQ
25WRQ

1 byte 1 byteN bytes

Filename

N bytes

0 0Mode

0–512 bytes

Data

Opcode
45ACK

Opcode
55Error

Opcode
65OACK

Error
Number

Error Message 0

0 0Option B

Opcode
35DATA

Block
Number

Block
Number

Option A

FIGURE 18.9

The six TFTP messages. Note that the content is extremely variable depending on opcode.

Choose a Source
Port, Then
Send Read
Request to
UDP Port 69

TFTP Reading a Remote File

Send ACK
for Block 1

Send ACK
for Block N

Send ACK
for Last Block
TERMINATE

Send ACK
for Block 2

CLIENT
TFTP Process
Running and
“Listening”
Choose Source
Port, Send Block 1

SERVER

Send
Block 2

Send
Block N

Send Block with
Less Than
512 bytes

TERMINATE

FIGURE 18.10

TFTP fi le transfer. Compared to full FTP, this exchange is very simple.
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DHCP
It might seem odd to spend so much time in a chapter on DHCP discussing BOOTP 
and TFTP. But much of what DHCP does and the way it accomplishes its functions is 
similar to the operation of these two earlier protocols. DHCP involves a more complex 
exchange of messages between client and server, but the intention was always that 
servers could provide both BOOTP and DHCP functions with a minimum of recoding.

DHCP was referenced in BOOTP RFCs 1533 and 1534, but as an “extension” of 
BOOTP capabilities. Currently, RFC 2131 describes DHCP and distinguishes it from 
BOOTP. Not only does a DHCP server allocate addresses to clients, but it also main-
tains parameters for individual clients and entire client groups, greatly enhancing the 
 effi ciency of the entire system. In general, DHCP is designed to:

■ Be a mechanism.  No “policy” or ideas about IP address allocation schemes are assumed 
by DHCP. However, DHCP can be the mechanism on which such policies are built.

■ Do away with manual confi guration.  A user should always be able to simply plug 
their devices into the network and work. (The requirement to confi gure DHCP, if not 
the default, is beyond DHCP’s control.)

■ Handle many subnets from one server. DHCP employs the BOOTP relay agent 
 concept, mostly implemented in routers, for this purpose.

■ Allow multiple servers. For redundancy and reliability, clients and servers must be 
able to deal with more than one DHCP server.

■ Coexist with statically addressed hosts.  As mentioned, dynamically addressed serv-
ers are a challenge for DNS and the user in general. DHCP must allow these hosts to 
function properly.

■ Support BOOTP. DHCP can use BOOTP relay agents and must be able to service 
BOOTP clients.

■ Guarantee unique addresses. No address can ever be assigned to two clients at the 
same time.

■ Retain client information.  The servers must retain all client parameters in case of 
failures or between shutdown and start-up.

If the addresses handed out by DHCP were permanent, there would be little dif-
ference between static assignment or the way that BOOTP operates. But the DHCP 
association between client and address is called a binding, or, more commonly, a lease. 
And like any lease, it must be renewed periodically or become available for assignment 
to a new client.

The pool of IP addresses handed out by the DHCP server is called a scope.  A collec-
tion of scopes gathered for administrative purposes is known as a superscope.

DHCP Operation
The format of the DHCP message is shown in Figure 18.11, which should be compared 
to the BOOTP message in Figure 18.7. Many BOOTP clients have no problem interact-
ing with DHCP servers,  and that was the intent all along.
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The fi elds are the same in form and content as those for BOOTP, with a few 
 exceptions. Opcode DHCP uses the same operation codes as BOOTP (1 5 request and 
2 5 reply). DHCP is indicated by the use of an Option Tag value of 53.  This allowed 
DHCP to use BOOTP relay agents transparently.

Flags—These 16 bits were unused in BOOTP. Only one flag is defined for DHCP, 
the rightmost bit, or BROADCAST flag.  All other bits must be set to 0.  A tricky 
issue in dynamic configuration was the fact that some clients discarded unicast 
packets until configuration was complete, and so the DHCP messages were 
rejected with their addresses! The BROADCAST bit told servers to broadcast 
replies to these DHCP clients.

Options—The BOOTP “vendor-specific” fields in what is now the DHCP options 
field, were greatly extended to become DHCP parameters. Client ID Option 
DHCP clients can be identified other than by hardware MAC address, as in 
BOOTP. Some other identifier, such as a fully qualified domain name, could be 
used instead.  This helped if NIC cards were replaced. In practice, those cards 
are very reliable and this option is not used much.

1 byte

Opcode
1 � request Hardware Type

Transaction ID (used to match request and reply)

Flag Field
(only broadcast flag bit defined)

Client IP Address (if known to Client, otherwise all 0)

Server Host Name (Client can optionally identify Server)

File Name

Options

32 bits

Relay Router IP Address

Client IP Address (provided by Server in response)

IP Address of Server

Seconds Elapsed Since Client Sent
First Request Message

Client Hardware Address

Length of
Hardware
Address

Hop Counter
(initially 0)

1 byte 1 byte 1 byte

25 reply

FIGURE 18.11

DHCP message format, showing similarities with the BOOTP message.
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The client ID option is used for several things: It provides better logging, supports 
dynamic DNS,  and allows for hosts with more than one network interface (such as 
laptops with wired and wireless capability). Care must be taken that you don’t produce 
collisions, because two hosts with the same client ID will get the same IP address.

Once a host is confi gured to seek out confi guration information using DHCP, the 
message fl ow is straightforward—even with two “competing” DHCP servers on a LAN. 
The usual fl ow of messages is shown in Figure 18.12.

DHCP, in contrast to BOOTP, uses a complex sequence of messages between cli-
ents and servers,  all tucked neatly inside the “BOOTP” options fi eld at the end of the 
message.  There are eight major DHCP messages types (all using either request or reply 
operation codes, of course).

■ DHCPDISCOVER—Used by clients to discover DHCP servers,  and usually includes a 
list of the parameters for which the client needs values, such as IP addresses, subnet 
mask,  and default router.

■ DHCPOFFER—Used by servers to offer the needed values to clients.

■ DHCPREQUEST—Used by a client to request a reply from one server. The request is 
sent to all servers, even those not selected.

■ DHCPDECLINE—Used by a client to refuse to accept one or more values from a 
server, usually because they are not valid for the client.

DHCP Server 1

Determines
Configuration
Requirements

(Use
Parameters)

(Lease
Expires)

Select
Configuration
Offer

Commits to
Configuration

Discards
Lease

DHCP Server 2

Determines
Configuration
Requirements

DHCPREQUEST DHCPREQUEST

DHCPRELEASE

DHCPPACK

Collect
Replies

DHCPDISCOVER

DHCPOFFER

DHCPOFFER

DHCPDISCOVER

Begin Initialization
Client

FIGURE 18.12

Typical DHCP message fl ow when there are two potential DHCP servers from which to choose.
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■ DHCPACK—Used for server responses and to furnish the parameters to a client.

■ DHCPNAK—Used by a server to refuse a client request. (Clients must start over.)

■ DHCPRELEASE—Used by a client to release an IP address, returning it to the 
 server pool.

■ DHCPINFORM—Used by clients to tell servers the client has an IP address already, 
but needs the values for other parameters.

DHCP Message Type Options
DHCP clients can request values for more than 60 different parameters from a DHCP 
server.  The fi rst 49 can be used by BOOTP or DHCP,  and these include the very funda-
mental IP subnet mask request (Tag 5 1) and default router address (Tag 5 3).

Options 50 through 61 are reserved for DHCP only.  These are outlined in Table 18.1. 
Tag numbers through 127 are reserved for current and future standard options.  Tags 
128 through 254 are reserved for site-specifi c options.

Table 18.1 DHCP Parameters Shown by Tag Value

Tag Parameter Description

50 Requested IP address Client asks for a specifi c IP address.

51 IP address lease time Client’s request or time granted by server.

52 Option overload The Server Host Name or Boot File Name fi elds are 
carrying DHCP options to save space in the message.

53 DHCP message type This is how the DISCOVER, OFFER, or REQUEST 
formats are determined.

54 DHCP server identifi er Client tells which server was accepted. 

55 Parameter request list Client’s list of needed parameters.

56 Message Used for errors. Server sends errors with DHCPNAK, 
and client uses DHCPDECLINE.

57 Max. DHCP message size Largest DHCP message the client can accept.

58 Renewal time (T1) Client will try to renew lease after this time.

59 Rebinding time (T2) If lease renewal fails, client tries any server after this 
elapsed time (T2 must be greater than T1).

60 Class identifi er Vendor code describing client. Servers can reply 
based on this class.

61 Client identifi er Unique identifi er for this client used by server to 
determine parameters. 
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DHCP AND ROUTERS
DHCP takes advantage of the BOOTP relay agent concept. In fact, router confi guration 
of DHCP can be complicated because many routers mention only BOOTP relay agents 
and assume administrators know they are the same.

A DHCP relay agent is usually a router, but it could also be a dual-homed host that 
uses a router to reach the DHCP server.  A typical confi guration using a router as a relay 
agent was shown in Figure 18.1.

The DHCP relay agent listens for broadcast BOOTP request messages and sends 
them to the server.  The relay agent then receives replies from the DHCP server and 
replies to the client.

DHCPv6
We haven’t done anything with DHCP in IPv6.  There’s a reason for that,  and it has to 
do with the way IPv6 confi gures itself on a host.

A lot of what DHCP does in IPv4 can also be done with RARP and ICMP.  Yet DHCP 
is all over the place in IPv4. IPv6 includes elaborate neighbor and router discovery pro-
tocols that allow IPv6 hosts to invent link-local IPv6 addresses and multicast groups for 
confi guration purposes. Yet, just like IPv4 DHCP for IPv6 exists as DHCPv6.  There are 
at least three reasons DHCPv6 continues to make sense in IPv6.

■  Not all networks support the multicasts needed for IPv6 autoconfi guration, 
like those consisting of point-to-point links or ATM and frame relay.

■  Some small IPv6 networks might not have a router, which is required for 
IPv6 autoconfi guration.

■  Network managers might desire more control over device confi guration 
than afforded by IPv6 autoconfi guration.

DHCPv6 will not be used on the Illustrated Network.  There is no BOOTP support 
because it is not really needed in IPv6. In truth,  a lot of DHCP parameters are superfl uous 
in IPv6. It is enough for this chapter to point out that DHCPv6 can be triggered by options 
in the IPV6 Router Advertisement messages, which we fi rst introduced in Chapter 5.

DHCPv6 and Router Advertisements
DHCPv6 and its relationship to IPv6 addressing are described in a series of RFCs, 
most notably RFC 3315 and 3726. DHCPv6 can provide stateless or stateful address 
 autoconfi guration information to IPv6 hosts. Stateless address autoconfi guration is 
used to confi gure both link-local and additional non–link-local addresses through the 
exchange of Router Solicitation and Router Advertisement messages with routers. State-
ful address autoconfi guration is used to confi gure non–link-local addresses through the 
use of a confi guration protocol such as DHCP.
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How does a host know which one it can use? We did not emphasize it then, but our 
discussion of the IPv6 Router Advertisement protocol in Chapter 7 mentioned the M 
and O bit fl ags.  The Router Advertisement message can set the following:

Managed Address Configuration Flag, known as the M flag—When set to 1, this 
bit instructs the host to use the configuration protocol to obtain a stateful 
(non–link-local) address.

Other Stateful Configuration Flag, known as the O flag—When set to 1, this bit 
instructs the host to use the configuration protocol to obtain more configura-
tion settings.

There can be four different situations.

1. Both M and O fl ags are 0.  This is used when the local network has no DHCPv6 
infrastructure. IPv6 hosts use Router Advertisements and other methods, such as 
manual confi guration, to get non–link-local addresses and other settings.

2. Both M and O fl ags are 1. In this case, DHCPv6 is used to obtain both addresses 
and other confi guration settings.  This is known as the “DHCPv6 stateful” situa-
tion, and DHCPv6 is used to assign stateful addresses to the IPv6 hosts.

3. M fl ag is 0, O fl ag is 1. DHCPv6 is not used to provide addresses, but only other 
confi guration settings, such as the location of DNS servers.  The routers are set to 
advertise non–link-local prefi xes from which the IPv6 hosts can confi gure state-
less addresses. This is known as “DHCPv6 stateless” because stateful addresses 
are not provided.

4. M fl ag is 1, O fl ag is 0. DHCPv6 is used to provide addresses, but no other set-
tings. This combination is allowed but unlikely, because IPv6 hosts need to know 
other things, such as the addresses of the DNS servers.

Because we’re not using DHCPv6 on the Illustrated Network, we won’t detail the 
DHCPv4 message formats and exchange patterns—which are different for stateful and 
stateless operation.

DHCPv6 Operation
All DHCP servers and relay agents are required to join the local All-DHCP-Agents multi-
cast group,  and all servers must join the local All-DHCP-Servers group.  All relay agents 
also join the local All-DHCP-Relays group.

DHCPv6 servers and agents send to UDP port 546,  and clients send to UDP port 
547.  There are six message types defi ned for DHCPv6,  and one nice feature is that the 
operation code (or message type byte) comes fi rst in the message instead of being 
 buried in the old BOOTP options fi eld (as is DHCP for IPv4).
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QUESTIONS FOR READERS
Figure 18.13 shows some of the concepts discussed in this chapter and can be used to 
help you answer the following questions.

1.  The client sets the BOOTP hop count to zero initially. If that is the case, what is 
the hop counter used for?

2. What is the hardware type and hardware address length for Ethernet?

3. How is the relay router IP address fi eld used?

4. What is the client ID option in DHCP?

5. What is the “magic cookie” IP address in BOOTP?

Opcode

Opcode

Transaction ID (used to match request and reply)

Client Hardware Address

Flag Field

Client IP Address (if known to Client, otherwise all 0)

Server Host Name (Client can optionally identify Server)

File Name

Client IP Address (provided by Server in response)

IP Address of Server

Options

Relay Router IP Address

Hardware
Type

Length of
Hw Address

Hop
Counter

Unused

Client IP Address (if known to Client, otherwise all 0)

Client IP Address (provided by Server in response)

IP Address of Server
(Server response: where Client should go for Boot file)

Relay Router IP Address

Server Host Name (Client can optionally identify Server)

Boot File Name (Client supplies generic name — “Windows”)

“Vendor-Specific Area”
Additional Parameters

Client Hardware Address

Hardware
Type

Length of
Hw Address

Transaction ID (used to match request and reply)

Seconds Elapsed Since Client
Sent First Request Message

Seconds Elapsed Since Client
Sent First Request Message

Hop
Counter

BOOTP Message
Format and Fields

DHCP Message
Format and Fields

FIGURE 18.13

The BOOTP and DHCP messages compared.
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CHAPTER

What You Will Learn
In this chapter, you will learn how DNS gives the Internet a more user-friendly 
way to access resources.  We’ll see how names are associated with IP addresses and 
how applications fi nd this information.

You will learn how DNS servers provide information about local networks, and 
how this information is distributed and shared on the Internet.  We’ll also use show 
tools to help examine DNS.

The Domain Name
System 19

The Domain Name System (DNS) is the distributed database used by the TCP/IP 
 protocol suite to translate hostnames to IP addresses (both IPv4 and IPv6) and provide 
related information, such as email routing information. DNS has been around as part of 
the Internet for so long that it is easy to forget that in the early days users needed a fi le 
named /etc/hosts (no extension) unless they wanted to type in the 32-bit IP address 
that went along with the hostname.

Today, the database is distributed because no single site on the Internet knows 
everyone’s hostname and IP address. Of course, placing every host’s IP address in a 
single text fi le would be impractical now, but people can still type www.juniper.net 
anywhere on the Internet and access the main Web page for the site.  The correct func-
tioning of DNS is so ingrained in expectations that many users do not even realize 
that when DNS fails typing, http://207.17.137.68 yields the same result as the www 
entry. For many, when DNS disappears the Internet might as well have vanished as well 
(except for some local and cached IP addresses, this is probably true enough).

Microsoft support services report that well over 70% of all calls, no matter what the 
reported symptom, end up being DNS calls. How can something as apparently simple 
as DNS cause such problems? Two big reasons are that the details of DNS functioning 
have changed a lot recently, and that many users and administrators know very little 
about the inner workings of DNS.

Because of the abundance of new terminology, special operations, and new types 
of servers, this chapter requires us to discuss some of the basics of DNS before looking 
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DNS on the Illustrated Network, showing the hosts used as primary and secondary DNS servers and 
utilities.
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at how DNS is employed on a network. In this chapter, we’ll use the equipment in the 
roles shown in Figure 19.1. Discussion will be kept to a minimum and exploration is 
maximized in this chapter.

DNS BASICS
Recall that two things are globally administered in TCP/IP: the network portion of the 
IPv4 or IPv6 address and the domain name that goes along with it.  The host portion 
of the IP address and the further qualifi cation of the domain name are administered 
locally. It is up to the local administrator to prevent duplicates at this level, and in large 
organizations this is not as easy as it sounds. (In some cases there are valid reasons 
for duplicates to exist in an organization, such as due to “split horizon” issues.) Very 
large organizations often depend on several layers of administration (perhaps division, 
department, and so on) to dole out blocks of addresses and domain names correctly. 
Along with this responsibility goes the duty to ensure that all of the detailed host 
addressing and the corresponding fully qualifi ed domain names (FQDNs) is correct so 
that all of the clients can fi nd the servers they are supposed to fi nd.

Usually each site—whether it be a company, university, or other type of organiza-
tion—maintains its own database of information and runs a server process (typically 
on a dedicated system) other systems can query. You can also get a third party (not the 
ISP) to manage a zone for you, and that is a service most registrars will do for a nominal 
fee (if not free) with the registration of a domain name.

At one time, connection to the Internet required an organization to provide at least 
two DNS servers for the site.  The goal was resilience, but because missing authoritative 
name serves can cause all sorts of performance issues two non-topologically diverse 
name serves do not really solve anything. Now, very small organizations (or individual 
users) often rely on their ISP to provide the DNS service and point all of their hosts 
at these two “public” DNS servers for hostname resolution.  This arrangement poses its 
own set of problems, such as a recurring ISP charge to “maintain” the database records 
(surely the lowest maintenance task on the Internet) and the need to update the ISP’s 
database when changes to FQDN or IP addressing take place on the local network. 
Dynamic IP addresses also cause problems for DNS, as detailed later in this chapter.

The DNS Hierarchy
DNS servers are arranged in a hierarchical fashion.  That is, the hundreds of thousands 
of systems that are authoritative for the FQDNs in their zone are found at the bottom 
of the DNS “pyramid.” For ease of maintenance, when two or more DNS servers are 
involved only one of them is fl agged as the primary server for the zone, and the rest 
become secondary DNS servers. Both are authoritative for the zone. ISPs typically run 
their own DNS servers, often for their customers, with the actual number of systems for 
each ISP depending on the size of the ISP.  At the top of the pyramid is the “backbone.” 
There are root servers for the root zone and others for .com, .edu, and so on.
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DNS servers above the local authoritative level refer other name servers to the 
systems beneath them, and when appropriate each name server will cache informa-
tion. Information provided to hosts from any but the authoritative DNS system for the 
domain is considered non-authoritative, a designation not refl ecting its reliability, but 
rather its derived nature.

Authoritative and non-authoritative servers can be further classifi ed into categories. 
Authoritative servers can be:

■  Primary—The primary name server for a zone. Find its information locally in 
a disk fi le.

■  Secondary—One or more secondary name servers for the zone.  They get their 
information from the primary.

■  Stub—A special secondary that contains only name server data and not 
host data.

■  Distribution—An internal (or “stealth server”) name server known only by IP 
address.

Keep in mind that the primary and secondary distinction is relevant only to the operator 
of the systems and not to the querier, who treats them all the same.  Non- authoritative 
servers (technically, only the response is non-authoritative) can be:

■  Caching—Contain no local zone information. Just caches what it learns from 
other queries and responses it handles.

■ Forwarder—Performs the queries for many clients. Contains a huge cache.

Root Name Servers
The root servers that stand at the tip of the DNS pyramid deserve more explanation in 
terms of operation and organization.  Today, the root servers are the entry points to the 
DNS service and rely more on caching than the passive databases that once character-
ized the root server system.  With the explosion of the Internet, it made little sense to 
maintain records with the same “priority” for sites that are constantly bombarded with 
traffi c and those that are seldom visited.  The current database in a root name server is 
small.

The current root servers only know which name server a local DNS needs to ask 
next to resolve a query. So, any query for a .com sent to a root name server produces 
a list of name servers that might know the answer.  The continuous caching of these 
answers means that there is less need to query the root servers after the fi rst query.

Root Server Operation
The root server operators are not involved in the policymaking regarding Internet 
names and addresses, nor in modifi cation of the data.  They just take what is originated 
by one of their number (Verisign Global Registry Services) and propagate it to the 
others.  The operators are encouraged to explore diversity in organizational structure, 
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locations, hardware, and software, while maintaining expected levels of physical sys-
tem security and over-provisioning of capacity.  They maintain their own infrastructure 
for emergencies, including telephone hotlines, encrypted email, and secure credentials. 
The root servers use distributed anycast where practical, making many separate sys-
tems all over the world appear and act as one system with one IP address.  The use of 
anycast helps minimize the effects of denial-of-service attacks.

We haven’t talked about anycast before. In anycast, as in multicast, there is a one-
to-many association between addresses and destinations (multicast has groups) on the 
network. Each destination address identifi es a set of receiver endpoints, but (in contrast 
to multicast) only one of them (determined to be the “nearest” or the “best”) is chosen 
at any particular time to receive information from a particular sender. For example, in 
contrast to a broadcast (which goes to everyone) or a multicast (which goes to all inter-
ested listeners) sent onto a LAN, a message to an anycast address goes to only one of a 
set of hosts and is then considered delivered.  Anycast (“send this to any one of these”) 
is more suited to connectionless protocols (such as UDP) than stateful protocols (such 
as TCP) that have to maintain state information.

Root server operators often struggle to overcome a lot of misconceptions, even on 
the part of people who should know better. Contrary to what some believe, all Internet 
traffi c does not fl ow through the root servers (nor do they determine routes), not every 
DNS query goes to a root server, the “A” system is not special, and there are many more 
than just 13 machines.

Table 19.1 DNS Root Servers Listed by Operator, Locations, and IP Address

Server Operator Locations

A Verisign Dulles, VA

B Information Sciences Institute Marina Del Rey, CA

C Cogent Communications Herndon, VA; Los Angeles; New York; Chicago

D University of Maryland College Park, MD

E NASA Ames Research Center Mountain View, CA

F Internet Systems Consortium, Inc. 43 sites all over the world

G U.S. DoD NIC Vienna, VA

H U.S. Army Research Lab Aberdeen, MD

I Autonomica/NORDUnet 31 sites all over the world

J Versign 41 sites all over the world

K Réseaux IP Européens–Network 
Coordination Center

17 sites all over the world

L ICANN Los Angeles; Miami

M WIDE Project 6 sites around the world
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Root Server Details
Table 19.1 shows the 13 root name servers (A through M), who operates them, their 
locations, and their IP addresses (IPv4 and IPv6, where applicable). For the latest infor-
mation, which changes from time to time (for example, the IPv4 address of B.root-
servers.net changed in 2004), see www.root-servers.org.

Note that many of the root servers, although all grouped under a single name, are 
actually many systems spread throughout the world.  This is where anycast is useful.

In the past, the willingness of DNS servers to accept updates from any source when 
offered was a major security weakness. Modern DNS servers accept only authorized and 
digitally signed updates, and higher level DNS servers never accept dynamic updates 
from anyone. One interesting initiative is the continuing development of DNS Security 
(DNSSec). DNS is still a tempting target on the Internet, and although DNSSec raises the 
bar the target remains attractive.

DNS IN THEORY: NAME SERVER, DATABASE, AND RESOLVER
DNS consists of three essential components: the name server, the database of DNS 
resource records, and the resolver.  An application interacts with name servers through 
a resolver.  This is an application program that resides on user workstations and sends 
requests for DNS information when necessary. Resolvers must be able to fi nd at least 
one name server, usually the local name server, and local DNS servers provide authori-
tative answers for local systems.  The resolver must also be able to use the information 
returned by the local name server, if the resource records needed are not local or 
cached, to pursue the query using referral information leading to other DNS name 
servers on the Internet.

The resource records of the Domain Name Space are grouped and formatted with a 
strict tree-structured name space. Information is associated with each type of resource 
record.  The sets of local information (the zones) in this structure are distributed among 
all DNS servers.  The name servers essentially answer resolver queries using the infor-
mation in its zones or from other zones.  A resolver query gives the name of interest and 
stipulates the type of information needed.

The name servers themselves maintain the structure of the Domain Name Space 
and the sets of information about the hosts in the zones.  Any name server can cache 
anything it sees about any part of any Internet domain, but generally a particular name 
server knows only about a tiny fraction of the Internet zones. But there are pointers 
to other name servers that can be used to answer a resolver query. Name servers can 
distribute zone information to other name servers to provide redundancy. Finally, DNS 
name servers periodically refresh their zone information, from local fi les (the primary) 
or from other name servers (the secondaries) through a zone transfer.

Other important DNS concepts are relative name and absolute name (FQDN). 
A  resolver request for the IP address for the relative name Web server would produce 
many addresses on many networks around the world.  The relative name is part of 
the complete absolute name, perhaps webserver.example.com. Most resolvers step 
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through an ordered list of preconfi gured suffi xes, append them one at a time to the 
relative name, and attempt to fi nd the IP address without the absolute name.  Absolute 
names always end in a dot (.).

Like all good protocols using query/response pairs, DNS uses UDP (port 53). How-
ever, DNS also uses TCP (and port 53 there, too) for zone transfers between name 
servers.  These transfers can be considerable in large organizations, and although LANs 
usually feature very low-error rates the risk of corrupt DNS information more than 
justifi es the use of TCP for the zone transfers.  TCP is also used if a response is larger 
than 512 bytes.  And fl ow control is a really good reason to use TCP for zone transfers, 
because they can occur over essentially arbitrary distances.

Adding a New Host
Whenever a new host is added to a zone, the DNS administrator must add the resource 
records (minimally the name and IP address of the host) to a fi le on the primary name 
server.  The primary name server is then told to read the confi guration fi les, and when 
the secondaries query the primary (typically every 3 hours), the secondaries fi nd 
newer information on the primary and perform a zone transfer.  The DNS Notify feature 
enhances the basic zone status check and zone transfer mechanisms.  This lets the pri-
mary server notify the secondaries when the database has changed.  A related feature 
allows part of a zone to be transferred and not the entire zone information.

How can all of the local name servers fi nd each other? They can’t. But every name 
server must be able to fi nd and contact the root name servers on the Internet.  Their 
positions at the top of the DNS pyramid allow the root name servers to answer que-
ries directly from the zone they have loaded, if with non-authoritative information. Of 
course, there’s always a chance a user on one side of the world will attempt to contact 
a server or Web site that has just been linked to the Internet and has the zone informa-
tion such as the IP address available only in the local name server on the network with 
the Web site.

Recursive and Iterative Queries
If DNS database information is spread throughout the Internet, and the local name serv-
ers cannot fi nd each other and the root name servers don’t have gigantic databases, 
how can all hosts in the world fi nd out anything at all? It is because of the way the local 
DNS name server handles a query from a resolver.

DNS queries can be sent out asking for another name server to handle the query 
recursively or iteratively (some texts say “non-recursively”). Most local DNS servers 
function recursively by default. In fact, recursive operation maximizes the amount of 
information available for caching on name servers, although iterative operation will 
maximize the amount of information available to a particular name server. Many local 
name servers use recursive queries (they can be asked to handle a query iteratively), 
and higher level name servers use iterative queries (root servers always answer queries 
iteratively).
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Recursive DNS queries are handled by the receiving name server waiting until it 
receives an answer to its own queries. Iterative queries are handled with an immediate 
“I don’t know the answer, but here’s where you can look next” response. In the recur-
sive case, the name server “in the middle” can fi nd and cache the information, whereas 
in the iterative case, it cannot.  This might sound confusing, but we’ll look at a detailed 
example of how DNS usually works in the following sections.

Delegation and Referral
Large organizations, or large ISPs operating the DNS servers for their customers, often 
delegate part of the domain name space to a separate system. For example, a huge 
bigcompany.com might have headquarters records on the main DNS but delegate DNS 
chores for maintaining and housing east.bigcompany.com (on the east coast) and west.
bigcompany.com (on the west) to its two main divisions. So, there are three DNS serv-
ers in all, perhaps called hqns.bigcompany.com, ns1.east.bigcompany.com on the east 
coast and ns2.west.bigcompany.com on the west coast.  There could be many LANs 
for which one of these name servers is authoritative, such as the LANs for accounting, 
marketing, sales, and so on.

Figure 19.2 shows the fl ow of DNS-related actions (solid arrows) and the responses 
they invoke (dashed arrows) among the DNS name servers mentioned in the 
 bigcompany.com example the fi rst time someone looks for the Web site.  The initial 
user resolver query to the LAN’s local name server and the eventual response are also 
shown.  The following is the sequence in detail.

The local user on the wincli1 Web browser (me) requests a Web page from www.
sales.west.bigcompany.com (the example is valid, but the name has been changed).  The 
browser invokes the local name resolver software in the PC and passes this name to it.

The local resolver checks its cache to see if there is already an IP address stored 
for this name. (If there is, the quest is over, but we’ve assumed that this is the fi rst time 
the user has asked for the Web site so it’s not cached.) The resolver also checks to 
see if there is a local host table fi le. (Again, let’s assume there is no static mapping for 
the name.)

The resolver generates a recursive query (typically) and sends it to the local name 
server, which we’ve set up as ns1.booklab.englab.jnpr.net on winsrv1 using the 
name server’s IP address, which it knows because the server is local (it’s 10.10.11.111). 
The local DNS system receives the request and checks its cache. If present, the DNS 
returns a non-authoritative response to the resolver. It would also check to see if there 
are zone resource records for the request name, but because they are completely dif-
ferent domains there are no zone records.

The local DNS generates an iterative request containing the name sought and sends 
it to a root name server.  The root name server doesn’t resolve the name, but returns the 
name and IP address of the name server for the .com domain.  The local DNS (which is 
performing the bulk of the work, we should note) now sends an iterative request to the 
name server for the .com domain.
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The .com name server returns the name and IP address for the name server for the 
bigcompany.com domain.  The local DNS then generates an iterative request to the name 
server for the bigcompany.com domain.  The bigcompany.com name server looks to see 
if it has that information. It notices that the requested name is in a separate zone, the 
west.bigcompany.com subdomain.

The local DNS next generates an iterative request to the name server for the west.
bigcompany.com domain.  This name server is authoritative for the www.sales.west. 
bigcompany.com information. It returns the address information for the host to the 
local DNS.  The local DNS system (winsrv1) caches the information.

The local DNS returns the resolution to the client's resolver software (wincli1). 
The local resolver also caches the information.  The local resolver supplies the address  
information to the browser.  The browser can now send an HTTP request to the
correct IP address.

Local Name Server
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5. Resolve query to root

6. Name Server for .com

7. Resolve
query to .com

6. Name Server
for bigcompany.com

9. Resolve query to
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FIGURE 19.2

Example DNS query and response message fl ow. Messages sent to the servers are shown as 
solid arrows and replies as dashed arrows.
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It’s actually a tribute to the entire DNS server collection that all of this usually 
 happens very quickly. Note how using recursion on the PC maximized the amount 
of DNS information available for caching and how iteration elsewhere minimized the 
amount of information needing to be stored permanently.

Glue Records
There was one key step in the chain of delegation and referral in Figure 19.2 that 
did not use DNS to fi nd an IP address. Notice that the bigcompany.com name server 
did not use DNS to fi nd the IP address of the west.bigcompany.com name server. Del-
egation must use an address (A) resource record to indicate the IP addresses of name 
servers responsible for zones below the current level.  These are called glue records 
in DNS and are the answer to an interesting question involving dynamic IP address 
 allocation.

When DHCP fi rst became available, many organizations confi gured a pool of IP 
addresses to be assigned only to active users on the Internet. Many organizations 
included their DNS servers in this pool, and quickly found out that DNS stopped 
working.  Why? Simply, the glue records used by intermediate name servers to fi nd the 
local authoritative servers didn’t work anymore. In other words, the headquarters can’t 
use DNS to fi nd the zone resource records for delegated zones! Glue records serve that 
purpose.

This is one main reason users whose ISPs use DHCP with dynamic IP addresses for 
host confi guration cannot establish their own DNS name server at home.  These users 
would form delegated zones from the main ISP.  And without a local DNS server users 
who want to place their own server on-site need to work with the ISP to make this 
happen. Some people see this as part of an ISP plot to prevent users from running their 
own servers, creating hosting revenue for ISPs and others. But it’s really just the glue 
records.

You need a DNS service provider willing to upgrade the glue records when your 
address changes. In practice, dynamic DNS service providers can do this, but it also 
means that the TTL on the records must be low enough so that they fl ow over in short 
order. Ideally, they would also provide a secondary DNS.

DNS IN PRACTICE: RESOURCE RECORDS 
AND MESSAGE FORMATS
When implemented as a series of resolvers and name servers, DNS databases consist of 
resource records (RRs) entered into a zone fi le and loaded onto the authoritative name 
server.  Any other DNS name server can cache this information as a non-authoritative 
source, and a special reverse zone fi le is used to enable resolvers to look up a host name 
by IP address. RRs all end in in-addr.arpa.  A DNS RR contains the following fi elds.

Name—The FQDN or portion that is represented by the entry. For example, 
 bigcompany.com.
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TTL (Time to Live)—How long in seconds the record can be cached. Many ISPs 
use 2 or even 3 days for this field (172,800 or 259,000). If no value is entered, 
the default can be short (as little as 1 hour).

Class—Today, the only class that counts is IN for Internet address. This is usu-
ally entered only once, in the first record, and is inherited by all subsequent 
records for that name.

Record-Type—There are many record types, usually indicated by a short  abbreviation, 
such as A for address and NS for name server.  The types fall into four categories: 

Table 19.2 Common DNS Resource Record Types and Their Uses and Meanings

Use Record Type Meaning

Zone

SOA Start of Authority records identify the zone and set parameters.

NS Gives an authoritative name server for the zone, and delegates sub-
domains. Not the IP address of the name server, but a text fi eld. 

Basic

A Maps the name to the IPv4 address. Each device address requires a 
separate A record.

AAAA Used to allow an IPv4 name server to return an IPv6 address. 
Intended as a transitional type. 

A6 Now obsolete, these were used to map a name to an IPv6 address. 

PTR Used to map an IP address to a host name in reverse zone lookups.

DNAME Formerly used for redirection for reverse lookups in IPv6 DNS servers 
due to longer nature of IPv6 addresses. Now obsolete.

MX Mail Exchanger records point from a name to A records that are the 
mail exchanger for the name. 

Security

KEY The public key for the DNS name.

NXT Used for negative answers with DNSSec.

SIG The signature for an authenticated zone.

Optional

CNAME Maps an alias name to a canonical (“real”) name. For example, 
www.example.com and ftp.example.com might both be running on 
the host server.example.com. 

LOC Geographical location.

NAPTR Name Authority Pointer is used to allow regular expression rewrites 
of the domain name.

RP Contact information for responsible person.

SRV Gives locations of well-known services.

TXT To add comments and information to the record.
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zone, basic, security, and optional.  A list of the more common record types appears 
in Table 19.2.

Record-Data—Depending on the type, this information varies. For a name server, 
this is the domain name of the name server. For a host, this is the IP address.

Comments—These are optional and begin with a semicolon (;) and are never 
returned with data.

This is not an exhaustive list. Some defi ned record types are seldom used (HINFO 
is supposed to mention host model and operating system) or are perceived as security 
risks (WKS records list the “well-known services” available at the host).

Some readers might have noticed the elaborate form of the IPv6 addresses used on 
the Illustrated Network.  This is because IPv6 once used something called the binary 
label syntax. IPv6 addresses use the fi rst bits (really, whole words) of the 128-bit IPv6 
address to indicate the ISP.  The A6 records included a referral fi eld to allow a name 
server to refer to the ISP’s name server for the “network” portion of the IPv6 address. 
The A6 record also gave the number and value of the bits present in the A6 record itself. 
This prevented the laborious entry of many redundant bits into the resource records. It 
also made shifting service providers easier. So, a query for an A6 record might only get 
the last 64 bits of an IPv6 address.  A further referral query to the name server in the A6 
record is necessary for the fi rst 64 bits.  The DNAME records do the same for the Pv6 
host name.  This now obsolete system was used for the IPv6 addresses.

The same DNS message format is used for queries and responses.  The DNS query 
message goes out with a 12-octet header and a variable number of questions.  The DNS 
response message essentially pastes on a variable number of three types of response 
fi elds: answer RRs, RRs identifying authoritative servers, and RRs with additional infor-
mation. Figure 19.3 shows the general format of the DNS message.

0

Identification

Numbers of Questions Number of Answer RRs

15 16
Q
R

Op
code

A
A

T
C

R
D

R
A

R
code

12
octets

31

Number of Authority RRs Number of Additional RRs

Question(s)

Variable Number of RR Answers

Variable Number of Authority RRs

Variable Number of Additional RRs

FIGURE 19.3

DNS message format. Note that the last four fi elds are variable in size.
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DNS Message Header
The 16-bit identifi cation fi eld, set by the client and returned by the server, allows for 
coordination of outstanding requests and responses. The 16-bit Flags fi eld is quite 
 complex:

QR—A 1-bit field where 0 = query and 1 = response.

Opcode—A 4-bit field where 0 = standard query. Other values are for an inverse 
query (1) and a server status request (2).

AA—A 1-bit flag that indicates that the name server is authoritative for the zone 
(1 = true).

TC—A 1-bit fl ag meaning that the reply has been truncated. UDP limits DNS 
responses to 512 octets, except when Extension Mechanism for DNS (EDNS0, 
defi ned in RFC 2671) is used. EDNS0 identifi es the requester’s UDP packet size.

RD—A 1-bit flag for “recursion desired.” If this bit is set in a query, the receiving 
name server is supposed to keep trying to find the answer. If this bit is not set, 
the name server returns a list of other name servers to contact unless it can 
provide an authoritative answer.

RA—A 1-bit flag for “recursion available.” Some name servers will refuse to act 
recursively, and this bit is cleared in response to let other systems know about 
server refusal.

Pad—A 3-bit field that must be set to 000.

Rcode—A 4-bit field for the return code.  The most common values are for no 
error (0) and a name error (3).

The next four 16-bit fi elds help receivers parse the four fi elds in the rest of the 
 message. In a query, the number of questions is usually 1 and the other three fi elds 
are 0.  A reply typically sets the Number of Answers fi eld to 1 (or more), and the other 
two are 0. Utilities such as tcpdump and Ethereal normally parse all of the fi elds and 
fl ags. There are other ways to watch DNS in action, however.

DNSSec
As indispensable as DNS is for Internet operation, DNS was not (unfortunately) designed 
to be secure.  Threats to DNS fall into several distinct classes, many of which are just 
well-known security threats redirected at DNS. However, a few are specifi c to the par-
ticular way the DNS protocol functions. RFC 3833 documents some of the known 
threats to DNS and tries to assess the extent to which DNSSec will succeed in defend-
ing against these threats.  Although this section uses some concepts we haven’t covered 
yet, DNSSec is important enough to introduce in this chapter on DNS itself.
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In particular, DNSSec was designed to protect Internet DNS resolvers (the clients) 
from forged DNS data, which can point people looking for a particular Web site (such 
as their bank) to the wrong IP address.  This forged information can be put in place by 
a process called DNS cache poisoning. In DNSSec, all answers to queries are digitally 
signed (we’ll talk more about digital signatures and certifi cates in Chapters 22 and 23). 
The digital signature can be checked by the resolver to see if the information is identi-
cal to the information on the authoritative DNS server for the site. DNSSec, although 
designed primarily to protect IP addresses, can be used to protect other information 
(such as the cryptographic certifi cates stored in DNS). RFC 4367 describes how to use 
DNS to distribute certifi cates, including those used for email, so it is possible to use 
DNSSec as a global infrastructure for secure email.

However, DNSSec does not say anything about the confi dentiality of data.  That is, 
all DNSSec responses are authenticated but not encrypted (we’ll talk more about the 
differences in Chapter 29). It also really doesn’t protect against denial-of-service attacks 
directly, although DNSSec does provide some benefi t through the authentication fea-
tures of the digital signature. Other methods must be used to protect bulk data, such 
as a large zone transfer. Of course (per RFC 4367) DNSSec cannot prevent users from 
making false assumptions about domain names, such as the idea that the organization’s 
name plus .com is always the company (or bank) Web site they are looking for. But 
at least DNSSec can authenticate that the data provided by DNS is actually from the 
domain owner.

The current DNSSec specifi cations describe DNSSec-bis.  The most important are 
RFC 4033, RFC 4034, and RFC 4035.

DNS Tools: nslookup, dig, and host
The Berkeley Internet Name Domain (BIND), developed for the Unix environment, 
is both resolver and name server.  When BIND is running as name server, the process 
is named. Entire books have been written about DNS and BIND, so this chapter can 
only look at a few of the things that can be explored with a few simple DNS tools and 
 utilities.

BIND confi guration statements for a zone are in named.conf, usually found in /etc—
where the name servers to be contacted (in resolv.conf) are also located.  A “hints” fi le 
(variously named named.ca, named.root, or root.cache) has information about the 
root servers and essentially “primes” the DNS cache at start-up.

The nslookup utility program allows a user to interact with a DNS name server 
directly. Options allow the user to display detailed query and response information 
as needed. Originally a testing tool, nslookup functions in both interactive and non-
 interactive mode.  Today, the use of nslookup is deprecated, and it is not included in 
many operating system distributions. Its functionality has been taken over by dig and 
host.

The Domain Internet Groper (dig) DNS query tool is more general than nslookup, 
and is often used with other tools. It has a consistent output format that is easily parsed 
with other programs, and is available for Windows 2000/XP (but not 98/ME).
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Over time, dig developed a distinct “feature sprawl” that offended some who favored 
clean and mean Internet tools.  The host utility by Eric Wassenaar is intended to be an 
evolutionary step for both nslookup and dig.  The examples in this chapter will use dig 
as well as nslookup, if only because of the familiarity of the nslookup format.

DNS IN ACTION
Putting a functioning DNS system on the Illustrated Network will allow us to do things 
such as ping winsrv1.booklab.englab.jnpr.net instead of having to know the IP address 
and use ping 10.10.11.111.  We’ll go against common wisdom and make a Windows 
XP system (winsrv1) our primary DNS server, and we will use the FreeBSD server 
 (bsdserver) as the secondary DNS for LAN1 and LAN2.  Windows XP Pro does not 
support DNS natively, so we’ll use a GUI-based DNS server package called SimpleDNS 
instead of BIND.

Once DNS is up and running,  we have to ensure that all hosts know where to fi nd it. 
On lnxclient, and most Unix hosts, we just add them to the /etc/resolv.conf fi le.

search booklab.englab.jnpr.net englab.jnpr.net jnpr.net
nameserver 10.10.11.111
nameserver 10.10.12.77

Now, let’s see how DNS works to fi nd local hosts.

[root@lnxclient admin]# nslookup
Note:  nslookup is deprecated and may be removed from future releases.
Consider using the 'dig' or 'host' programs instead.  Run nslookup with
the '-sil[ent]' option to prevent this message from appearing.
> winsrv1
Server:         10.10.11.111
Address:        10.10.11.111#53

Name:   winsrv1.booklab.englab.jnpr.net
Address: 10.10.11.111
> winscli1
Server:         10.10.11.111
Address:        10.10.11.111#53

Name:   wincli1.booklab.englab.jnpr.net
Address: 10.10.11.51
> bsdserver
Server:         10.10.11.111
Address:        10.10.11.111#53

Name:   bsdserver.booklab.englab.jnpr.net
Address: 10.10.12.77
>

Note the “warning” about continued use of nslookup. But it still works. Of course, if 
we pause the DNS on winsrv1, we can still get a response from bsdserver (as long as a 
zone transfer has taken place).
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> lnxserver
Server: 10.10.12.77
Address: 10.10.12.77#53

Non-authoritative answer:
Name: lnxserver.booklab.englab.jnpr.net
Address: 10.10.11.66

Simple DNS has a nice GUI, in contrast to the text fi les used in most Unix DNS 
 versions (as shown in Figure 19.4).

The Ethereal capture in Figure 19.5 shows the utter simplicity of the DNS message 
exchanges.  There’s even a nice log of these messages, as shown in Figure 19.6 (it also 
tracks DHCP leases when dynamic DNS is used).

Now we can fi nally ping on the Illustrated Network the “normal” way.

[root@lnxclient admin]# ping wincli1.booklab.englab.jnpr.net
PING wincli1.booklab.englab.jnpr.net (10.10.11.51) 56(84) bytes of data.
6 4 bytes from wincli1.booklab.englab.jnpr.net (10.10.11.51): icmp_seq=1 
ttl=126 time=0.768 ms

6 4 bytes from wincli1.booklab.englab.jnpr.net (10.10.11.51): icmp_seq=2 
ttl=126 time=0.283 ms

FIGURE 19.4

DNS records on winsrv1 using a GUI. Note the various record types (the name servers in 
 particular).
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FIGURE 19.5

DNS server reply. Note that the question fi eld shows up as “queries.”

FIGURE 19.6

DNS server log showing the history of queries and responses.
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6 4 bytes from wincli1.booklab.englab.jnpr.net (10.10.11.51): icmp_seq=3 
ttl=126 time=0.285 ms

6 4 bytes from wincli1.booklab.englab.jnpr.net (10.10.11.51): icmp_seq=4 
ttl=126 time=0.259 ms

6 4 bytes from wincli1.booklab.englab.jnpr.net (10.10.11.51): icmp_seq=5 
ttl=126 time=0.276 ms

6 4 bytes from wincli1.booklab.englab.jnpr.net (10.10.11.51): icmp_seq=6 
ttl=126 time=0.244 ms

6 4 bytes from wincli1.booklab.englab.jnpr.net (10.10.11.51): icmp_seq=7 
ttl=126 time=0.259 ms

^C

--- wincli1.booklab.englab.jnpr.net ping statistics ---
7 packets transmitted, 7 received, 0% packet loss, time 8080ms
rtt min/avg/max/mdev = 0.244/0.325/0.768/0.158 ms
[root@lnxclient admin]#

LAN1 is also running a DNS server on lnxserver, and to keep the confi guration 
very simple only functions as a non-authoritative server.  The confi guration is short and 
sweet:

lnxserver$ cat /etc/named.conf
options {
  directory "/var/named";
};
// this is a caching only name server zone configuration
zone "." {
  type hint;
  file "named.ca";
};
zone "0.0.127.in-addr.local";
  type master;
  file "named.local";
};

The two zone statements only point to the root servers on the Internet (in the hints fi le 
named.ca) and make this server the master for its own loopback address.  These two 
zones appear in all name server confi gurations.

We should also limit the hosts from which recursion can be performed on the 
caching name server. Otherwise, it might get used as a denial-of-service amplifi er.  That 
section would be:

allow-recursion { 127.0.0.1;
10.10.11.0/24;
};

We’ll point to the lnxserver name server on wincli1 on LAN1 and use nslookup to 
verify that we can still fi nd the Internet name servers.  At the interactive DNS prompt 
(>), we’ll set the type of query to send to ns for name servers and we will look for “com.” 
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This is the root of the entire “.com” Domain Name Space (note that we ask for com. and 
not .com without the ending dot). Otherwise, the system would append a suffi x and try 
to fi nd com.booklab.englab.jnpr.net and return an error (unless we did have a system 
named “com” on the network).

> com.
Server: lnxserver.booklab.juniper.net
Address: 192.168.27.14

Non-authoritative answer:
com    nameserver = f.gtld-servers.net
com    nameserver = g.gtld-servers.net
com    nameserver = h.gtld-servers.net
com    nameserver = i.gtld-servers.net
com    nameserver = j.gtld-servers.net
com    nameserver = k.gtld-servers.net
com    nameserver = l.gtld-servers.net
com    nameserver = m.gtld-servers.net
com    nameserver = a.gtld-servers.net
com    nameserver = b.gtld-servers.net
com    nameserver = c.gtld-servers.net
com    nameserver = d.gtld-servers.net
com    nameserver = e.gtld-servers.net

a.gtld-servers.net   internet address = 192.5.6.30
a.gtld-servers.net   AAAA IPv6 address = 2001:503:a83e::2:30
b.gtld-servers.net   internet address = 192.33.14.30
b.gtld-servers.net   AAAA IPv6 address = 2001:503:231d::2:30
c.gtld-servers.net   internet address = 192.26.92.30
d.gtld-servers.net   internet address = 192.31.80.30
e.gtld-servers.net   internet address = 192.12.94.30
f.gtld-servers.net   internet address = 192.35.51.30
g.gtld-servers.net   internet address = 192.42.93.30
h.gtld-servers.net   internet address = 192.54.112.30
i.gtld-servers.net   internet address = 192.43.172.30
j.gtld-servers.net   internet address = 192.48.79.30
k.gtld-servers.net   internet address = 192.52.178.30
l.gtld-servers.net   internet address = 192.41.162.30
m.gtld-servers.net   internet address = 192.55.83.30

There are 13 servers,  A through M, on the fi rst part of the list. But instead of being 
called “root servers” these are “gltd servers.” GLTD stands for generic top-level domains 
(sometimes seen as gTLD), and that’s what the traditional Internet host name endings 
such as .com, .mil, .org, and so on are in DNS.  There are also ccTLDs (country code 
TLDs), such as .fr for France and .ca for Canada.

Note that the A and B GTLD servers return AAAA record types, showing that the 
A6 and DNAME records (once so promising) are obsolete.  We’re not supposed to use 
nslookup (dig is not built into Windows XP, but can be installed as freeware). Let’s see 
what dig can do, this time on the FreeBSD client.
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bsdclient# dig

; <<>> DiG 8.3 <<>> 
;; res options: init recurs defnam dnsrch
;; got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 10624
;; flags: qr rd ra; QUERY: 1, ANSWER: 13, AUTHORITY: 0, ADDITIONAL: 13
;; QUERY SECTION:
;;   ., type = NS, class = IN

;; ANSWER SECTION:
.                       12h46m16s IN NS  d.root-servers.net.
.                       12h46m16s IN NS  a.root-servers.net.
.                       12h46m16s IN NS  h.root-servers.net.
.                       12h46m16s IN NS  c.root-servers.net.
.                       12h46m16s IN NS  g.root-servers.net.
.                       12h46m16s IN NS  f.root-servers.net.
.                       12h46m16s IN NS  b.root-servers.net.
.                       12h46m16s IN NS  j.root-servers.net.
.                       12h46m16s IN NS  k.root-servers.net.
.                       12h46m16s IN NS  l.root-servers.net.
.                       12h46m16s IN NS  m.root-servers.net.
.                       12h46m16s IN NS  i.root-servers.net.
.                       12h46m16s IN NS  e.root-servers.net.

;; ADDITIONAL SECTION:
d.root-servers.net.     12h46m16s IN A  128.8.10.90
a.root-servers.net.     12h46m16s IN A  198.41.0.4
h.root-servers.net.     12h46m16s IN A  128.63.2.53
c.root-servers.net.     12h46m16s IN A  192.33.4.12
g.root-servers.net.     12h46m16s IN A  192.112.36.4
f.root-servers.net.     12h46m16s IN A  192.5.5.241
b.root-servers.net.     12h46m16s IN A  192.228.79.201
j.root-servers.net.     12h46m16s IN A  192.58.128.30
k.root-servers.net.     12h46m16s IN A  193.0.14.129
l.root-servers.net.     12h46m16s IN A  198.32.64.12
m.root-servers.net.     12h46m16s IN A  202.12.27.33
i.root-servers.net.     12h46m16s IN A  192.36.148.17
e.root-servers.net.     12h46m16s IN A  192.203.230.10

;; Total query time: 1 msec
;; FROM: bsdclient.booklab.englab.jnpr.net to SERVER: 10.10.11.66
;; WHEN: Fri Feb 22 10:10:00 2008
;; MSG SIZE  sent: 17  rcvd: 449

bsdclient#

That’s a lot more detailed information, and it doesn’t use an interactive prompt. 
By default, dig looks for root NS records and serves up fl ags, TTL information (in user-
friendly units), and so on. Let’s look at a more complete (or realistic) example and look 
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for the IP address of the server for www.amazon.com (perhaps so you can prepare to 
order more copies of this book).

bsdclient# dig www.amazon.com

; <<>> DiG 8.3 <<>> www.amazon.com 
;; res options: init recurs defnam dnsrch
;; got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 10904
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0
;; QUERY SECTION:
;;     www.amazon.com, type = A, class = IN

;; ANSWER SECTION:
www.amazon.com.         1m7s IN A       207.171.175.35

;; Total query time: 95 msec
;; FROM: bsdclient.booklab.englab.jnpr.net to SERVER: 10.10.11.66
;; WHEN: Fri Feb 22 10:40:17 2008
;; MSG SIZE  sent: 32  rcvd: 48

dig got us an answer, but not an authoritative one (AUTHORITY: 0).  To get the author-
itative answer to the Amazon Web site, and not something from cache, we’ll have to fi nd 
the Amazon name servers and ask one of them.

bsdclient# dig www.amazon.com ns

; <<>> DiG 8.3 <<>> www.amazon.com ns 
;; res options: init recurs defnam dnsrch
;; got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 44598
;; flags: qr rd ra; QUERY: 1, ANSWER: 4, AUTHORITY: 0, ADDITIONAL: 1
;; QUERY SECTION:
;;      www.amazon.com, type = NS, class = IN

;; ANSWER SECTION:
www.amazon.com.         21h7m55s IN NS  ns-40.amazon.com.
www.amazon.com.         21h7m55s IN NS  ns-30.amazon.com.
www.amazon.com.         21h7m55s IN NS  ns-20.amazon.com.
www.amazon.com.         21h7m55s IN NS  ns-10.amazon.com.

;; ADDITIONAL SECTION:
ns-40.amazon.com.       21h7m55s IN A   207.171.169.7
;; Total query time: 1 msec
;; FROM: bsdclient.booklab.englab.jnpr.net to SERVER: 10.10.11.66
;; WHEN: Fri Feb 22 10:38:37 2008
;; MSG SIZE  sent: 32  rcvd: 128

Amazon has four name servers (note we found these answers cached, because of 
the AUTHORITY: 0).  We’ll ask ns-40 about Amazon’s Web site:
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bsdclient# dig @ns-40.amazon.com www.amazon.com A 

; <<>> DiG 8.3 <<>> @ns-40.amazon.com www.amazon.com A
; (1 server found)
;; res options: init recurs defnam dnsrch
;; got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 6717
;; flags: qr rd; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIONAL: 0
;; QUERY SECTION:
;;     www.amazon.com, type = A, class = IN

;; AUTHORITY SECTION:
www.amazon.com.         1m7s IN A       207.171.166.48

;; Total query time: 3 msec
;; FROM: bsdclient.booklab.englab.jnpr.net to SERVER: 204.74.101.1
;; WHEN: Fri Feb 22 10:32:52 2008
;; MSG SIZE  sent: 32  rcvd: 112

Now AUTHORITY: 1 appears. It’s nice to know that Amazon’s own name server 
is authoritative for itself. But let’s not get too worried about authoritative answers. 
Cached information is usually just as good. In fact, look what happens when we repeat 
the query.

bsdclient# dig @ns-40.amazon.com www.amazon.com A

; <<>> DiG 8.3 <<>> @ns-40.amazon.com www.amazon.com A
; (1 server found)
;; res options: init recurs defnam dnsrch
;; got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 52895
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0
;; QUERY SECTION:
;;      www.amazon.com, type = A, class = IN

;; ANSWER SECTION:
www.amazon.com.         1m7s IN A       207.171.175.35

;; Total query time: 91 msec
;; FROM: bsdclient.booklab.englab.jnpr.net to SERVER: 207.171.169.7
;; WHEN: Fri Feb 22 10:55:29 2008
;; MSG SIZE  sent: 32  rcvd: 48

Isn’t the ns-40 server still authoritative? Sure, but our earlier query just popped that 
information into the local cache.  Why fetch up an authoritative reply when there’s one 
just as good in cache? Caching can be a nuisance when trying to “force” authoritative 
answers, especially across the Internet.

Dig has been criticized for feature bloat. For comparison, the host DNS utility retains 
the clean and sparse Unix output philosophy.
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bsdclient# host www.amazon.com
www.amazon.com has address 207.171.166.102
bsdclient#

Even at its most verbose, host is not as forthcoming as the other utilities.

bsdclient# host -v www.amazon.com ns-40.amazon.com
Using domain server:
Name: ns-40.amazon.com
Addresses: 207.171.169.7

Trying null domain
rcode = 0 (Success), ancount=1
The following answer is not verified as authentic by the server:
www.amazon.com  67 IN   A      207.171.175.29

This has been by no means an exhaustive look at how DNS acts. For more informa-
tion, the excellent DNS and BIND by Cricket Liu (O’Reilly Media) should be consid-
ered defi nitive.
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QUESTIONS FOR READERS
Figure 19.7 shows some of the concepts discussed in this chapter and can be used to 
help you answer the following questions.

1. How many questions (queries) are usually present in a DNS request?

2. Is the message in the fi gure a query or a response?

3. What are the host names of the client and the DNS server on the Illustrated 
 Network that correspond to the IP addresses in the fi gure?

4. The fl ag fi eld value is 0x8580. Is the DNS server authoritative for the zone?

5. Based on the fl ag fi eld value, is recursion desired and available?

FIGURE 19.7

A DNS server reply message parsed by Ethereal.
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CHAPTER

What You Will Learn
In this chapter, you will learn how FTP provides a method to move fi les around the 
Internet.  We’ll examine various aspects of FTP as a protocol and as an application, 
showing how commands translate to protocol actions.

You will learn about the differences between FTP’s active and passive modes 
of operation.  We’ll discuss how security concerns affect the operation of FTP.

File Transfer Protocol 20

The original Internet boasted three applications: electronic mail, remote computer 
access, and remote fi le access. Over time, not only have these three been joined by a 
host of others but the original applications have evolved to keep pace with expansion 
of the Internet and the environment of the modern world.  As a simple example of this 
trend, these applications have all moved beyond their simple commands typed in at a 
prompt to graphical front ends.  These GUIs make the applications more accessible to 
novices, but at the same time mask the details of protocol operation from users. Yet in 
most cases the original protocols are still there, running behind the scenes, as this look 
at the File Transfer Protocol (FTP) will show.

FTP transfers a copy of a fi le.  The original fi le is usually still present on the source 
host, available for copying over and over as remote users request it. Copying fi les 
between two different computer systems has always been more diffi cult than it seems. 
Today, most users are familiar with the differences between Windows fi le formats and 
those used by Apple, which is why one can’t usually take a fl oppy or CD from one and 
load it on the other.  When other fi le systems are considered, such as the varieties of 
Unix and older formats used by minicomputer and mainframe vendors (many of which 
could not be copied between computer models from the same vendor), it is no won-
der the FTP is one of the most elaborate and robust applications in TCP/IP (although 
format  conversion is much less of a concern than it used to be).
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FTP client and servers on the Illustrated Network use Unix-based and Windows hosts.
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OVERVIEW
Of all the applications covered in this book, FTP is the one we’ve used most on the 
Illustrated Network.  Whenever we had software to install, capture fi les to consolidate, 
or screen images to transfer, we used FTP to move them around. Every server device 
had a different FTP package installed, from the “native” FreeBSD and Linux CLI version 
to a couple of different GUI FTP servers for Windows XP.

That said, the “experimental” nature of the Illustrated Network should be noted. 
FTP is still useful for fi le transfers on the global public Internet (especially a form 
known as anonymous FTP), but in the real world it’s better practice to use an authen-
ticated form of fi le transfer such as SFTP or SCP (discussed at the end of this chap-
ter). Let’s take a look at how these applications look and feel.  Then we’ll explore the 
basics of FTP operation in a little more detail.  This chapter makes FTP servers out of 
winsrv1 and winsrv2.  We’ll access them from bsdclient and lnxclient, as shown in 
Figure 20.1.

The CLI versions of FTP depend on commands, of course.  The GUI version depends 
on commands as well, but these are often hidden from the user (some show the com-
mands executed after you click on a button or icon).  This is not an FTP tutorial, and 
FTP application’s commands are not part of the FTP protocol, but this will give a feel 
for the number of things FTP can do. You can look at the commands a client can use 
to tell the servers what to do in FreeBSD and Linux.  These are the FTP help command 
listings. The following is FreeBSD:

bsdclient# ftp
ftp>> help
Commands may be abbreviated.  Commands are:

!         chmod       ftp     ls       msend     proxy     rhelp     system
$         close       get     macdef   newer     put       rmdir     tenex
account   cr          gate    mdelete  nlist     pwd       rstatus   trace
append    debug       glob    mdir     nmap      quit      runique   type
ascii     delete      hash    mget     ntrans    quote     send      umask
bell      dir         help    mkdir    open      recv      sendport  user
binary    disconnect  idle    mls      page      reget     site      verbose
bye       edit        image   mode     passive   rename    size      ?
case      epsv4       lcd     modtime  preserve  reset     status
cd        exit        less    more     progress  restart   struct
cdup      form        lpwd    mput     prompt    restrict  sunique
ftp>>

The list given by Linux is similar, but not the same. Most of the commands appear 
in both lists, but 6 are unique to Linux and 11 are unique to FreeBSD. Some are quite 
handy, such as the ability in FreeBSD’s FTP to preserve the modifi cation timestamp on 
downloaded fi les. Usually, the “extra” commands are used to determine how fi les are 
handled before or after they are transferred.  The actual session commands are fairly 
consistent, and they both get the job done.
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The biggest difference in FTP application-level operation is between the “regular” 
use of the port command and the use of the passive (PASV) command. Until recently, 
it was the server that supplied the port number assignment to use for the data connec-
tion and then opened the connection. But in passive mode the port number and open 
command used for the data connection is supplied by the client instead of the server, 
mainly to satisfy fi rewall rules and still allow FTP to function.  We’ll talk more about this 
later in this chapter, because it can cause problems when fi rewalls are in use, which 
should be just about always today.

First, let’s see if the FreeBSD or Linux versions of Unix differ in how their FTP client 
implementations handle the PASV mode. In both cases, we’ll fetch the same fi le from 
the FTP server running on winsrv1.

PORT and PASV
In both FreeBSD and Linux, passive mode is the default.  The FTP passive command is a 
toggle that turns the mode on and off as it is entered.

ftp> passive
Passive mode off.
ftp> passive
Passive mode on.
ftp>

The following shows a little 30,000-byte fi le called testfile.zip from the CLI on 
FreeBSD and Linux.  This example uses a plain text password, but only for instructional 
purposes.

bsdclient# ftp
ftp> open 10.10.11.111
Connected to 10.10.11.111.
220 Fastream NETFile FTP Server Ready
Name (10.10.11.111:admin): walter
331 Password required for walter.
Password: (not shown)
230 User walter logged in.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> get testfile.zip
local: testfile.zip remote: testfile.zip
227 Entering Passive Mode (10,10,11,111,7,69).
150 Opening data connection for testfile.zip.
100% 
|***************************************************************************
***************************| 30642       00:00 ETA
226 File sent ok
30642 bytes received in 0.10 seconds (306.08 KB/s)
ftp>
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We like the fact that the client shows we are in passive mode and tells me the port 
number I’m going to use to open the data connection to the server.  We also like the 
tick mark progress bar and the statistics displayed. Let’s look at what we get in Linux:

[root @lnxclient admin]# ftp
ftp> open 10.10.11.111
Connected to 10.10.11.111.
220 Fastream NETFile FTP Server Ready
500 'AUTH': command not understood.
500 'AUTH': command not understood.
KERBEROS_V4 rejected as an authentication type
Name (10.10.11.111:admin): walter
331 Password required for walter.
Password: (not shown)
230 User walter logged in.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> get testfile.zip
local: testfile.zip remote: testfile.zip
227 Entering Passive Mode (10,10,11,111,7,80).
150 Opening data connection for testfile.zip.
226 File sent ok
30642 bytes received in 0.0065 seconds (4.6e+03 Kbytes/s)
ftp>

Linux is more terse and tries to use Kerberos (a more secure authentication method), 
going back to simple userID and password only when it has to.  We are comparing vari-
ants of the default FTP client on these systems rather than something built into the 
systems themselves or a high-quality FTP application. However, we’ll look at the packet 
capture as well.

Let’s see what these exchanges look like when captured by Ethereal. Figure 20.2 
shows the packets from the time the user logs into the server until that data connec-
tion is used.

It is reassuring to note that the client does indeed use the port expected by the 
server (7 3 256 5 1792 1 98 5 1890), although the port is not in the currently 
accepted range for these ports. Figure 20.3 shows the same using the Linux client.

As expected with an application as widely used and as venerable as FTP, there are 
only a few differences here and there. Note that the Windows XP fi le server identifi es 

FTP Features
Most features that you get by default in some FTP applications (such as the 
 transfer progress “tick marks”) must be explicitly turned on in other FTP 
 implementations.

514 PART IV Application Level



itself as a “Unix Type” fi le server. FreeBSD tries an initial EPSV, the RFC 2428 extended 
 passive command for IPv6, and network address translation (NAT) environments and 
FTP. (We’ll talk all about EPSV later in the chapter.) It then uses, as Linux does from the 
start, the PASV command.

Linux is more in line with current client port usage conventions, using 33371 rather 
than FreeBSD, which still is using four-digit port numbers. In both cases, the data trans-
fer does not use the well-known port 20 on the server side.

FIGURE 20.2

FTP passive using FreeBSD, showing that the client initiates the data connection.

FIGURE 20.3

FTP passive using Linux. The port numbers are more in line with current practice.
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FTP AND GUIS
When it comes to Windows, winsrv1 is running the FTP package Fastream and winsrv2 
is running FileZilla.  We had no familiarity with these packages: they were just the fi rst 
“shareware” ones we found when looking on the Web.  Again, given the history of vul-
nerabilities in FTP servers and the possible consequences of having a server subverted 
you should not run random FTP software found on the Internet except in tightly con-
trolled circumstances like these.

The Fastream NETFile FTP server is also an HTTP Web server and is free for personal 
use. It has a nice logging capability, which can display on-screen and save to a fi le at the 
same time.  This is shown in Figure 20.4.

FileZilla has the most impressive array of log-in variations, as shown in Figure 20.5. 
We’ll say more about SSL and SSH in later chapters. SFTP solves many of the problems 
running FTP with tunnels and NAT can cause.

In addition, almost all Web browsers can handle FTP as well as HTTP, the Web 
protocol.  This is part of the “universal client” role of the browser.

For example, if we use the Web browser on winsrv1 to “visit” the FTP server on 
winsrv2 (ftp://winsrv2), we are still asked to log in (no anonymous user is defi ned on 
winsrv2, but if it had been, no log-in screen would appear.  The log-in request is shown 
in Figure 20.6.

FIGURE 20.4

Fastream FTP logging. Note the amount of detail provided.
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FIGURE 20.5 

FileZilla FTP log-in variations. SFTP is part of SSH2, but is a separate protocol.

FIGURE 20.6

FTP browser log-in screen, showing how verbose a GUI can be compared to CLI implementations.
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But once we log in properly, we will get a listing of the default FTP directory.  This 
directly, C:\NFRoot, contained a series of Ethereal capture fi les when this was done (as 
shown in Figure 20.7).

FTP Basics
FTP was defi ned in RFC 959 and updated in RFC 2228, RFC 2640, RFC 2773, RFC 
3659 and several others. One major difference between FTP and almost every other 
application is the fact that FTP employs not one but two ports between client and 
server. One explanation is that there is always an available control connection to 
quickly countermand actions that have unintended or unexpected results. But RFC 
959 simply notes that the control connection essentially uses the remote access tel-
net protocol, leading one to believe that the developers wanted to use something 
already existing.

The FTP control connection is set up in the usual client–server fashion.  That is, 
an FTP server process (such as ftpd) is listening for clients’ connection requests.  The 
 number of simultaneous clients an FTP server can accept varies and is usually a 
 confi gurable parameter, but limits well above 100 are not unusual.

FIGURE 20.7

Browser FTP listing, showing how a browser can act as a “universal client.”
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The FTP server requires a log-in from the user, and in many cases servers will allow 
a special log-in for anonymous FTP.  The user is supposed to use their email address 
as a password, a primitive auditing measure.  Anonymous FTP implementations used to 
allow users to simply press Enter and leave the anonymous password fi eld blank, but 
many FTP implementations now demand at least something at the password prompt. 
Some do not allow more creative substitutes for an email address, and many FTP servers 
check for things such as the presence of dots and the at sign (@) to try to enforce some 
semblance of honesty. In many cases, the FTP server will accept a similar term such as 
guest or visitor.  The point behind anonymous FTP is that users are not required to 
have a valid user ID or password on the remote system in order to be able to access 
fi les in some directories.

Of course, there are fi le areas on the FTP server that should only be accessed by 
authenticated users of the remote system. Private IDs can be combined with anon-
ymous FTP to protect certain areas of the fi le system while allowing public access 
to others. Of course, this does not stop people from trying to access fi les they had no 
business seeing, but if the fi le system permissions are set up correctly (or at all), FTP is 
highly secure. However, the best way to prevent access to sensitive fi les is not to put 
them on an FTP server with public access in the fi rst place.

The well-known port of the control connection is TCP port 21.  The client runs 
the FTP client program and uses an ephemeral port to begin the interaction with the 
server.  This connection asks for the user ID and password, anonymous or not, and is 
nothing more than a normal remote log-in session using the Telnet application.

Once logged in, the user is placed in a default fi le system directory. Navigation out-
side this directory might be permitted, but usually there’s a good reason to direct a user 
to this particular directory, and thus outside access should be unnecessary.

FTP Commands and Reply Codes
Users are sometimes surprised to see that FTP employs a very rich protocol all by itself. 
When run in interactive mode from the command line, FTP supplies its own prompt 
(like DNS) and supplies users with return codes for everything they type in.

The client and server have a conversation over the control connection, with the 
user at the client typing simple commands and sending them to the server process 
over the control connection. Some of the more common and helpful FTP commands 
are outlined in Table 20.1.  These are the commands users type. But FTP sends four-
 character representations of these commands. For example, a get is a RETR (retrieve) 
and a put is STOR (store).

The server receives the command, takes the appropriate action (if allowed), and 
returns a numeric reply code.  The reply codes are translated by the FTP client into text 
that can be understood easily and displayed at the prompt.  The displayed text can vary 
from system to system because each FTP client implementation is free to interpret the 
reply codes, within reason, and display that text to the user.  The meanings of the fi rst 
and second digits of the reply codes are outlined in Table 20.2.

The third digit adds details. For example, the reply code 500 means that there is 
a syntax error and an unrecognized command has been sent to the server.  The reply 
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Table 20.1 Common FTP Commandsa

Command Meaning

Open Create an FTP connection between the two hosts.

Close Close an FTP connection between two hosts.

Bye End the FTP session.

Get Retrieve a remote fi le from the remote host.

Put Store a fi le on the remote host.

Mget Get multiple fi les using wildcards (for example, mget a* fetches all fi les 
that being with the letter “a” in the current directory).

Mput Put multiple fi les on the remote host using wildcards.

Glob Enable wildcard interpretation. This is usually on by default.

Ascii The fi le transferred is in ASCII representation (a common default).

Binary The fi le is in image (binary) format (sometimes the default), and is useful 
for programs and formatted word processing fi les.

Cd Change the directory on the remote host.

Dir Get a directory listing from the remote host.

Ldir Get a directory listing from the local host.

Hash Display hash marks (dots) to show fi le transfer progress.

a These commands are not part of the FTP protocol.

code 501 means the syntax error is in the command arguments. If the reply code 
 generates more than one line at the client (for example, if the valid arguments are 
listed), the reply code appears on the fi rst line with a hyphen and is repeated at the 
end of the text.

The user then can type in another command. Common FTP replies, including the 
text that could be displayed with them, are:

■ 125 Data connection open and transfer starting
■ 200 Command okay
■ 214 Help message (text follows)
■ 331 User name okay, password required
■ 425 Unable to open data connection
■ 452 Error writing fi le
■ 500 Command syntax error
■ 501 Argument syntax error

Sessions end with the user typing bye or quit at the FTP prompt.  The server should 
respond with a 221 reply, usually displayed as 221 Goodbye. In some cases, the server 
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Table 20.2 FTP Protocol Reply Codes

Reply Meaning

1xx Positive response, but preliminary. Action begun, but wait for another reply 
before sending further commands.

2xx Positive completion. New commands can be sent.

3xx Positive response, but intermediate. Command accepted, but another 
 command is required to complete the action.

4xx Negative reply, but transient. Action did not take place, but the condition is 
temporary and the same command can be used again.

5xx Negative reply, permanent. Action did not take place, and cannot be done. 
The command should not be sent again in that form.

x0x Syntax error.

x1x Information. 

x2x Reply refers to control or data connections.

x3x Reply refers to authenticating and accounting commands, such as login. 

x4x Unspecifi ed. 

x5x File system status information.

simply disappears, and one client we’ve used groused in the session log You could 
at least say Goodbye. But it is a sign of the robustness and stability of FTP that such 
breaches of protocol seldom mean that things do not work properly overall.

One advantage of running FTP from the command line instead of from a GUI is 
that the user can type in the entire array of FTP commands, which typically number 
50 or more. GUI point-and-click clients can be prettier and easier, but do not always 
implement the full suite of FTP commands. (Some of the commands are seldom used or 
necessary today, such as glob, but might come in handy in certain situations.)

FTP Data Transfers
At some point in the FTP conversation between client and server port 21, the user 
will use a command that will trigger a fi le transfer.  The transfer might not be the 
actual fi le itself, such as with get or put. Often, the user requests a fi le directory list-
ing from the present working directory on the server with the dir command, usually 
to ensure that the desired fi le is there or to check the spelling after the fi rst transfer 
attempt has failed. These actions require the server to set up an FTP data connection. 
(The control connection is just a Telnet remote access session and is inappropriate for 
bulk data transfer anyway.) The FTP model of control and data connections is shown 
in Figure 20.8.
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Consider what happens when a user at an FTP client types in the dir command to 
receive a list of the contents of the remote host’s directory.  This requires the establish-
ment of a data connection on the part of the server.  The server normally uses well-
known TCP port 20 as the server end of the data connection. But how does the client 
know which ephemeral port to listen on for the data?

The server sends an FTP PORT command over the control connection to the client 
with this information.  This tells the client which port should be used at the client end 
for the data connection. So that there is no misunderstanding, the server includes the 
client’s IP address as well.  Thus, the command really supplies socket information.  The 
PORT command is sent over the control connection and is formatted as if it were data 
to appear on a Telnet terminal, including control characters such as \n (new line).

The port number is expressed as two independent numbers.  The fi rst is multiplied 
by 256 and added to the second (which must be in the range 0–255) to give the client’s 
port number. So, if the PORT command ends with the numbers 14, 234 (excluding the 
control characters) the port number the client should use for the data connection is 
3818 (14 3 256 5 3584 1 234 5 3818).

The client issues a passive open on port 3818, and the FTP server now sends a TCP 
SYN message to open the TCP session and send the dir listing as requested.  The server 
usually closes the data connection as soon as the transfer is complete.

The control connection process of obtaining a simple dir listing from a remote 
FTP server is shown in Figure 20.9. Note that the client issues FTP commands and the 
server replies with codes.

The activity on the data connection is shown in Figure 20.10.  Although in many 
cases the data connection uses well-known port 20 on the server, it does not have to.
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FIGURE 20.8

FTP control and data connections, showing how both are used in an FTP application.
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FTP control connection, showing how a directory listing proceeds.
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FIGURE 20.10

FTP data connection. The connection does not have to use port 20 on the server.
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Passive and Port
Using the PORT command is not the only way the port used for the FTP data connection 
is determined.  Today, the PORT command is considered in many cases to be an unac-
ceptable security risk to an organization.  This is because the PORT command requires 
an external FTP server to open a connection to an internal client. It is possible for a 
fi rewall to support incoming TCP connections for FTP, but with the common use of 
network address translation (see Chapter 27) it is simpler to use passive. (In larger 
installations using fi rewalls and NAT, collisions among the incoming port numbers are 
common anyway.)

FTP Passive
FTP supports two different methods of data connection establishment. In the 
 normal active mode using PORT, the server (1) initiates the data connection, then 
(2) the client asks for a data transfer and (3) the client responds. In passive mode 
(PASV), the client tells the server that the client will initiate the data connection 
and the server responds. Passive mode allows the transfer to proceed when mod-
ern client devices are prohibited from accepting incoming data connections.

Consider the implication for a user sitting at a client host on a corporate LAN.  We 
haven’t talked about security in any detail, but in many cases the company will employ 
a fi rewall between internal LANs and the external world of the Internet.  The fi rewall’s 
job is to prevent malicious hackers or their code from attacking the hosts on the inter-
nal network. 

One of the ways fi rewalls do this is to prevent any outside devices from establishing 
TCP connections to any internal client hosts on the LAN (publicly accessed servers are 
typically isolated, physically and logically, from purely internal hosts). Hosts accepting 
outside connections are seen, from the fi rewall’s perspective, as vulnerable to any num-
ber of malicious worms or viruses. Many inexpensive fi rewalls also see an external FTP 
server’s attempt to establish a TCP data connection to the client as a potential hostile 
attack.  This attempt is blocked, and the transfer fails.

The PASV command reverses the procedure, and lets the client open the data con-
nection to the server. Figure 20.11 shows the major difference between a client using 
the POST and PASV commands to initiate a data transfer. In both cases, the client uses 
port 4122 for the data connection. However, in active mode the server initiates the data 
connection and uses well-known port 20. In passive mode, the client initiates the data 
connection and listens on port 2020 instead of 20 for the connection.

However, all might still not be well. Many fi rewalls will not allow internal hosts to 
open connections to external ports that are not well known.  After all, the malicious 
user could be on the local LAN and attacking someone else remotely. So, even when 
PASV is used the data connection set up might still fail.
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More state-of-the-art fi rewalls will look at more than just TCP or UDP headers and 
can fi gure out that an FTP session is in progress. Many will only allow ports from a cer-
tain preconfi gured pool to be used, but there is a lot of variation in implementation.

RFC 2428 defi nes the EPRT and EPSV commands to be used when IPv6 addresses and 
NAT is in use. Some FTP implementations use these forms of PORT and PASS by default. 
Network address translation can be particularly harsh on FTP because addresses can 
change. Some applications, such as FTP, send IP address and protocol ports inside 
messages as data. Unless NAT can change the addresses in the data stream to agree 
with its other changes, the application will fail.  We’ll talk more about NAT in a later 
chapter, but a full discussion of the interplay of NAT and FTP is beyond the scope of 
this book.

Sometimes the FTP application tries to get into the act and imposes certain con-
ventions on the user. One FTP implementation insists on using PASV when it fi nds that 
private IPv4 addresses are being used, presumably because private addresses are only 
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FTP active and passive. Note which side opens the data connection and which ports are used in 
each case.
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used behind a fi rewall or when NAT is used.  This particular form of FTP also insists that 
the user enter the public “WAN” address space used, which can be problematic when a 
purely private TCP/IP network such as the Illustrated Network is being used! (Needless 
to say, this application was not very useful on the Illustrated Network.)

File Transfer Types
What about the actual fi les that can be transferred from server to client or from cli-
ent to server? The original FTP specifi cation listed multiple options as to fi le type, 
embedded control characters, structure, and transmission mode. In those days, there 
were many types of computer architectures.  Today, those choices usually boil down 
to exactly two: ascii and binary. Either one can be the implementation default, but 
as time goes on, pure text fi les using ASCII are becoming rarer and rarer, whereas fi les 
with executable code and embedded HTML formatting are becoming more and more 
common. FTP helpfully puts in line formatting control characters if they are missing 
when performing an ascii transfer. Naturally, this renders code fi les completely useless 
(although many newer FTP-based applications make this much less of a concern).

Unless there is a compelling reason to do otherwise, most FTP transfers are better 
off using binary (the fi le is transferred as a string of bits, and FTP makes no effort to 
fi gure out what they mean).  This doesn’t mean that the transferred fi le will be useful, 
but it has a better chance than a fi le of program code transferred as a text note with 
ascii.

When Things Go Wrong
There is a huge benefi t to keeping FTP data transfers off the control connection.  The 
use of two connections allows users to abort a fi le transfer that is unintended or out 
of control (a misformed mget is usually the culprit).  When the client is storing a fi le on 
a server, the use of the control connection is straightforward: The client stops sending 
data and sends an ABOR command to the sender on the control connection.  The inter-
rupt key is usually cntl-C, but others are possible depending on operating system.  The 
ABOR command is sent as urgent TCP data to make sure it is handled promptly by the 
server.

When the server receives the ABOR command on the control connection, it should 
respond with 426 (transfer aborted) and 226 (abort successful) messages.  The data 
transfer might continue sending data, and typically does, but the client will not acknowl-
edge it and ignores everything received after the user abort.

There are only a few other things that can go wrong with FTP.  A common mistake is 
to transfer binary fi les as text, and some FTP servers will warn the user if the fi le exten-
sion seems to indicate this might be going to happen. Other servers assume that users 
know what they are doing and simply perform the transfer.

There are two other parameters dealing with fi le transfer in FTP that can be changed 
and might cause problems when multiple fi les are transferred without restoring the set-
tings. One is the fi le-structure.  A transfer can use fi le-structure (the name is  unfortunate) 
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or record-structure. File-structure, the usual default, makes no assumptions about the 
fi le at all and simply views the content as a string of bytes. Record-structure, rarely used 
today, means that there is a record format to the fi le and is set by sending the STRU R 
command to the other host.

Even when the record-structure is set for the transfer, the actual formatting of the 
data depends on another setting—this one is called the transmission mode. Modes can 
be stream (the typical default), block, and compressed.  The three modes combine with 
the fi le-structure to give four types of fi le transfer formatting.

Stream mode with file-structure—The file is set as a stream of bytes, and TCP 
provides data integrity. No headers or delimiters are inserted into the data 
stream, and the end of the transferred file is only indicated by closing the data 
connection normally.  This is the most common way in which FTP works on 
the Internet today.

Stream mode with record-structure—The file is sent as a string of records, each 
one delimited by a 2-byte End of Record (EOR) control code (0xFF01).  An End 
of File (EOF) code, 0xFF02 (or sometimes 0xFF03), is used to indicate the end 
of the file to the receiver.

Block mode—The file is sent as a series of data blocks. Each block begins with a 
3-byte header containing some descriptor flags and a 2-byte length field giving 
the block byte count. Flags are used to indicate EOR, EOF, and restart.

Compressed mode—Rarely supported today because modern compression meth-
ods have superseded this primitive function.  The file is sent after removing 
repeated string of bytes.  Today, files are compressed outside FTP and sent as 
binary data.

Finally, many FTP server implementations routinely check the domain name of the 
client to make sure it is valid before allowing the connection. Reverse DNS, as this is 
called, is not a robust security feature, and at times has caused problems as well on the 
network. Hackers can easily use phony IP addresses, the theory goes, but it’s more dif-
fi cult (and foolish) to map it to a public domain name and distribute the information by 
registering on the public DNS.  This was a problem with some early Illustrated Network 
fi le transfers because no DNS was running on the network at all, and even when it was 
no Illustrated Network domain names were registered on the Internet. But “dumber” 
FTP versions worked just fi ne with only IP addresses.

FTP COMMANDS
One of the things that surprises people when they examine traces of FTP activity is 
that the FTP commands sent and received by client and server are not the same as the 
ones entered by the user at the client.  We’ve already looked at some examples (cntl-C 
sends an ABORT), but maybe it’s a good idea to look at them in more detail.
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Clients and servers do not have to implement all of the FTP commands, which are 
often added to.  What happens if a server requires the user at the client to use an FTP 
command the client implementation does not support? A thorough client will imple-
ment the quote user command, which lets the user enter the exact formal command 
(and any parameters) necessary to continue.  The input is then sent over the control 
connection exactly as entered.

The six FTP commands that control a user’s access to a remote fi le server are out-
lined in Table 20.3.  The 11 FTP commands that control a user’s fi le access and man-
agement functions on the remote fi le server are outlined in Table 20.4.  The working 
directory is the current directory.

Table 20.3 FTP Commands for File Server Access with Meaning and Parameters

Command Meaning Parameter(s)

USER User ID User ID

PASS User password Password itself

ACCT Provide an account for charging purposes Account ID

REIN Reinitialize to the start state None

QUIT End and log out None

ABORT Abort previous command and any fi le transfer None

Table 20.4  FTP Commands for Remote Server File Management with Meaning 
and  Parameters

Command Meaning Parameter(s)

CWD Change to another directory Directory path

CDUP Change to the parent directory None

DELE Delete a fi le File name

LIST List fi le information None, or directory name, or list of fi les

MKD Make a directory Directory name

NLST List the fi les in a directory None for current directory, or name

PWD Show the name of the current working directory None

RMD Remove a directory Directory name

RNFR Rename a fi le (references current name) Current fi le name

RNTO Rename a fi le (references new name) New fi le name

SMNT Mount a different fi le system File system identifi er

ABORT Abort previous command and any fi le transfer None
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The three FTP commands that set the type, structure, and mode of the fi le transfer 
are outlined in Table 20.5. The 10 FTP commands that actually control the fi le trans-
fer are outlined in Table 20.6. Finally, the fi ve FTP commands outlined in Table 20.7 
supply useful information to the user.

Variations on a Theme
Few people use the command line interface for FTP unless they have to. However, it is 
common to use the CLI for instructional purposes (as done here). But today almost all 
FTP client software, and many servers, use GUI interfaces to let users simply point and 

Table 20.5 FTP Commands for Transfer Parameters, with Meaning and Parameters

Command Meaning Parameter(s)

TYPE Identify the fi le type for transfer A (ASCII), E (EBCDIC), I (binary image), 
N ( nonprint), T (telnet), C (ASA)

STRU File structure F (fi le) or R (record)

MODE Format used for transmission S (stream), B (block), C (compressed)

Table 20.6 FTP Commands for File Transfer, with Meaning and Parameters

Command Meaning Parameter(s)

ALLO Allocate enough space for the data to come Integer number of bytes

APPE Append a local fi le to the remote fi le File names

EPSV The extended version (RFC 2428) of the PASV 
 command, used for IPv6 and NAT 

IP address and port

EPRT The extended version (RFC 2428) of the PORT 
 command, used for IPv6 and NAT

IP address and port

PASV Supply the network address and port number that will 
be used for the data connection initiated by the client 

IP address and port

PORT Supply the network address and port number that will 
be used for the data connection initiated by the server 

IP address and port

REST Identify a restart marker (followed by the transfer 
 command to be restarted) 

Marker value

RETR Get (retrieve) a fi le File name(s)

STOR Put (store) a fi le File name(s)

STOU Create a version of the fi le with a unique name (store 
unique) 

File name
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click at directories and fi les and effect a transfer.  Almost all still allow users to watch 
the interplay between mouse strokes and FTP commands and response codes, but few 
pay attention to them unless things go wrong.

GUI implementations of FTP tend to be much more sophisticated than their CLI 
cousins, especially when it comes to security variations.  The heavy use of security on 
modern networks has spawned many variations of the simple FTP control and data 
connection process. Most of these variations have to do with how the user ID and pass-
word are packaged and sent from client to server, but some are more far-reaching than 
that. Many commercial FTP server implementations can be set up to function in any of 
the following environments:

■ Simple FTP
■  FTP over Secure Sockets Layer and Transport Layer Security (SSL/TLS), using 

implicit encryption
■ FTP over SSL/TLS using explicit encryption
■ FTP over TLS directly, using explicit encryption
■ FTP bypassing the fi rewall

We’ll have much more to say about these security variations later in this book.  There 
is also Secure FTP (SFTP), a feature of Secure Shell 2 (SSH2). But this is a completely 
different protocol than FTP, as we’ll see in Chapter 25 (on SSH).

A Note on NFS
If TCP/IP is indeed for everything, an employee at a branch bank should be able to use 
common TCP/IP applications to change a customer’s information in the central bank’s 
database. However, it makes no sense at all to access the master account fi le, transfer a 
copy of it to the branch host, update it, and then load it back up to the central location. 
Not only does this method transfer masses of information not needed, but it prevents 
(hopefully) anyone else from updating any other customer record at the same time.

Table 20.7 FTP Commands for User Information, with Meaning and Parameters

Command Meaning Parameter(s)

HELP Gives information about server implementation None

NOOP Request “OK” reply from server None

SITE Used in the popular WU-FTP implementation from Washington 
University (used in many Linux versions) to engage server-specifi c 
commands not in the FTP standard

None

SYST Requests that the server identify its OS version None

STAT Request connection status and parameter information from server None
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Many applications don’t want or need remote fi le transfer.  They just need remote 
fi le access, usually to a particular record or even fi eld.  This is the idea behind the Net-
work File System (NFS), pioneered by Sun Microsystems. NFS allows local fi le systems 
to be accessed by remote users as if they were local users and is a nice illustration of 
the power and utility of the socket interface.

NFS is actually part of an overall system that includes an extension of the socket 
concept known as remote procedure calls (RPCs). RPCs are a more sophisticated way 
of handling basic programming subroutine (or function) calls by allowing the subpro-
gram (the procedure) to be called on a remote system across a network (hence the 
term remote procedure call).

RPCs do not use well-known ports. RPC server processes handle RPC client requests 
for server connections by dynamically mapping the server ports. In dynamic map-
ping, all connection requests handled by TCP go to one server process running at the 
application layer instead of several.  This server process is capable of dynamically start-
ing up the correct port server application process and allowing the TCP protocol to 
grant the connection.  The single server application process running under dynamic 
mapping is known as the port mapper.  These port mappers (usually run as the rpcbind 
process) are very common on most Unix implementations of TCP/IP.

Another part of the NFS is the External Data Representation (XDR) standard, a way 
of defi ning data types in terms of standard formats.  The point is to allow remote fi le 
access between different platforms, from Unix to Windows to MACs and even more. 
NFS has been a part of the overall TCP/IP standardization process since 1998.
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QUESTIONS FOR READERS
Figure 20.12 shows some of the concepts discussed in this chapter and can be used to 
answer the following questions.

1. Who initiates the data connection in active and passive mode, respectively?

2.  In the fi gure, for active mode what port will the client use on the server for data 
transfer?

3.  In the fi gure, for passive mode what port will the client use on the server for 
data transfer?

4.  In the fi gure, what port will the client use for the data connection in active 
mode?

5.  In the fi gure, what port will the client use for the data connection in passive 
mode? How does the server know what it is?

CLIENT

ACK

Send PORT 33167 command

(send or receive data)

(send or receive data)(send or receive data)

(send or receive data)

Send PASV command

“Use Data Port 2020”

Control Connection
on Port 4096

Control Connection
on Port 4096

Control Connection
on Port 21

Control Connection
on Port 21

Active FTP

Passive FTP

Data Connection

Open data connection

CLIENT

SERVER

SERVER

Data Connection

Open data connection

FIGURE 20.12

Simplifi ed view of active and passive data transfer modes.

533





CHAPTER

What You Will Learn
In this chapter, you will learn about the major architectures used to send and 
receive email on the Internet.  We’ll also see the fi ve steps needed to send an email 
message.

You will learn about the protocols used with email applications, especially 
SMTP and POP3.  We’ll also describe MIME messages and discuss the important 
role of headers in email.

SMTP and Email 21

The Internet and TCP/IP are known to the greatest number of people through  electronic 
mail (email) applications. Even those who cannot tell a router from a modem, or a 
packet from a frame, can check their email and send a message.  A certain percentage of 
users still use the Internet mainly for email.

Email was one of the original applications the Internet was created to support (the 
others being fi le transfer and remote computer access).  Things have come a long way 
since the original mail application, which is still supported on many Unix boxes:

>mail harry
We need to talk.
.

The modern email explosion has produced on-line ads, do-not-contact lists, spam, 
spam blockers, evil attachments, impounded attachments, and dozens of other moves 
and countermoves that make the email experience at once essential and yet daunt-
ing for many. Hardly anyone uses email except through a GUI today, and the mail user 
agents (MUAs)—the technical term for email client applications—are as varied as they 
are powerful, allowing users to schedule meetings, reserve conference rooms, or even 
request a projector for a certain time or place.

Email is a set of related and interconnected protocols that run on clients and  servers 
to provide the global mesh of mailboxes and readers and writers upon which email 
depends.  We’ll look at several scenarios for sending and receiving email, using the 
devices on the network shown in Figure 21.1.
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Email on the Illustrated Network, showing the Unix-based hosts used on email clients and servers.
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In some examples, we’ll use the Unix-based host systems as email clients and 
servers.  We won’t leave Windows out, however.  We’ll use the email client at the home 
to offi ce to show that Windows Outlook works essentially the same as older email 
systems.

ARCHITECTURES FOR EMAIL
What needs to be added to the network to create the TCP/IP email system shown in the 
fi gure? It all depends on the overall architecture used to support email, and these have 
evolved through three distinct stages, all of which are still supported today.  The fi nal 
stage is the general email architecture for the Internet today, and that’s what we will be 
exploring in this chapter.  The three architectures are:

Single shared system—The shared system could be a mainframe or minicomputer 
that users access.  The email administrator creates mailboxes (restricted access 
files on the local hard drive) where received messages are stored.  A special 
user agent (UA) program creates the messages and stores them in the user’s 
mailbox.

Shared systems connected by the Internet—The second architecture takes into 
account the fact that users might not share the same local system.  Another 
piece was added to the email architecture: the message transfer agent (MTA). 
The UA still handles mailboxes and messages locally, whereas the MTA handles 
communications between the two systems in the usual client/server fashion.

Email clients and servers connected by the Internet—The final step is to realize 
that today most users are connected to their email servers by a LAN or WAN 
(dial-up or DSL) link. Because receivers are not always present (even on a LAN), 
users need the services of a message access agent (MAA) to retrieve their email 
from their local email server.  The architecture of this final scenario is shown 
in Figure 21.2, between typical users we can call “Alice” and “Bob.” The flow 
shown is from Alice to Bob, but when Bob replies to Alice the roles of client 
and server (as well as MTA and MAA) are reversed.

This architecture shows two systems dedicated to managing users’ email mailboxes 
and delivering email. But how does the sender’s email system know which device is 
acting as the receiver’s email system? Today, special DNS records provide this informa-
tion, but in the early days of the Internet relaying was used to deliver email. Email was 
routed from email system to email system in a fashion similar to forwarding packets. 
Today, most email travels over the Internet from an originator’s email system directly to 
the recipient’s, minimizing complexity and delay.

But email servers are not necessary for the TCP/IP email protocol, the Simple Mail 
Transfer Protocol (SMTP), to operate.  We can still use the original and simple Unix 
built-in applications (sendmail and mail) to send and retrieve email from (for example) 
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bsdserver to bsdclient. It’s nice to know that even today complex GUIs and massive 
directories are not needed to exchange email messages from the command prompt.

bsdserver# sendmail admin@bsdclient.booklab.englab.juniper.net
testing to 10.10.11.177
.
bsdserver#

This email is going to the admin user on bsdclient.  The text of the message is 
“testing to 10.10.11.177” and the text entry ends with a single period on a line by 
itself. Shown in the following is what happens at the receiver, starting with the prompt 
indicating that mail has arrived (the period does not appear in the received text).

You have new mail.
bsdclient# mail
Mail version 8.1 6/6/93.  Type ? for help.
"/var/mail/admin": 2 messages 1 unread
    1 admin@bsdserver.engl  Fri Jan 18 22:38  22/1153 
U   2 admin@bsdserver.engl  Fri Jan 18 22:56  22/1162 
& 2

UA

Alice

MTA
Client

MAA
Client

LAN/WAN

MTA
Server

Mailboxes

MTA
Server

Email System

Internet

MTA
Client

Mailboxes

MTA
Server

LAN/WAN

UA: User Agent; MTA: Message Transfer Agent; MAA: Message Access Agent

Email System

Bob

UA

FIGURE 21.2

Email over the Internet, showing the role of client and server components.
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Message 2:
From admin@bsdserver.booklab.englab.juniper.net Fri Jan 18 22:56:47 2008
Date: Fri, 18 Jan 2008 22:50:47 -0700 (PDT)
From: Administrator<admin @bsdserver.booklab.englab.juniper.net>
To: undisclosed-recipients:;

testing to 10.10.11.177

&

FIGURE 21.3

Delivery of message using SMTP. Note the embedded control characters (starting with \) in the 
message body.

In this case, the mail was delivered directly from system to system. Only the SMTP 
MTA was used, with a minimal UA. Figure 21.3 shows the actual delivery of the mes-
sage text itself. (Do not be concerned about the “undisclosed-recipients:” in the To: 
fi eld. The for fi eld in the message shows that the message is for the admin user on 
bsdclient.) Note that there is a lot more information carried in the message and dis-
played by the receiver than was entered by the sender.  We’ll talk more about these 
added email headers in detail later in this chapter.

Even when a complex GUI is used as an email front end, the same basic sequence of 
about 24 packets is used by SMTP to pass a small message off anywhere in the world. 
However, most people don’t use the command prompt for this purpose. Modern email 
is more complex.

Sending Email Today
Today, there are fi ve basic steps almost everyone uses to send and receive email.   Although 
the procedures are absolutely symmetrical, and everyone is both sender and receiver 
when it comes to email, we’ll follow a message one way from one person to another.
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Email Message Composition
The user accesses a GUI email user agent (UA or sometimes MUA) to create the  message. 
The email message contains two major parts: the header and the body.  The header con-
tains a series of fi elds that describes the message and controls how it is delivered and 
processed.  The body of the message contains the actual information to be sent to the 
recipient.  There can be multiple fi les accompanying the header and simple text of the 
message, and these are known as attachments. Most users do little more with the header 
than specify the email addresses of the intended recipients and subject line content.  The 
UA takes care of making sure the entire message is in the correct standard format.

Submission of Email
When the user “sends” the newly created email, the sender’s host (in a client role) does 
not need to set up a TCP connection directly to the receiver’s host (in a server role). In 
fact, the user can compose a message and decide to submit it for delivery later, manu-
ally or automatically. Even when the message leaves the sender’s host, the message is 
sent to the local email server using SMTP, and might sit there for a while rather than 
being forwarded across the Internet immediately.  This allows for more effi cient use of 
resources on the local email server.  The server might require SMTP authentication of 
the user before accepting the message (we’ll talk more about authentication later).

Delivery of Email
Once the local SMTP server has accepted the email message, the email server of the 
recipient(s) must be determined. DNS is used for this purpose, and the local email 
server performs a DNS query to access special Mail Exchanger (MX) records stored 
on a name server to provide this information. For example, an email sent to walter@
example.com might be sent to a remote email server known as pop3.example.com. DNS 
provides both the name and IP address of this server.

SMTP also supports the ability to pass email messages through a specifi ed sequence 
of SMTP servers to reach the destination. The intermediate servers are email relay 
agents. Relay agents are useful when a large organization has a single email server 
connected to the Internet (perhaps for ease of screening incoming messages) and yet 
has departments with their own email servers on each LAN. One way or another, the 
message makes its way to the destination email SMTP server that knows exactly who 
 walter@example.com is. If the server cannot be contacted after a certain period of time, 
the mail is bounced back to the sender as undeliverable.

Email Processing
The receiving STMP server processes the incoming message, and if all seems well, 
places it into the recipient’s mailbox.  The message remains until the user retrieves it. If 
the recipient is unknown to the receiving server, the message is bounced back to the 
sender (also as undeliverable).

Email Access and Reading
The recipient’s email application checks in periodically with the local SMTP server to 
see if any mail has arrived.  This checking can be either automatic or when  specifi cally 
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run. If there is mail, the user can retrieve the mail, open it, and read it, and delete it. 
 Usually, these are all separate steps.  This step does not use SMTP, but a special mail 
access method and protocol such as POP3 or IMAP4 (both are used by TCP/IP MAAs).

All fi ve of these steps are not always necessary. Some hosts act as mail servers all on 
their own, and the host-local-mail-server communication steps can be bypassed. Dial-in 
users often compose, send, and receive email all at once when they send mail. But usu-
ally all fi ve steps are needed.

Four devices are involved in the fi ve steps.  They are the sender’s client, the send-
er’s local SMTP mail server, the recipient’s local SMTP mail server, and the recipient’s 
client.  The relationship they have with one another and the protocols the email uses 
are shown in Figure 21.4. Note the symmetrical nature of the components so that two-
way communication is possible.

Email Protocols
There are three common protocols used to deliver email over the Internet: the  Simple 
Mail Transfer Protocol (SMTP), the Post Offi ce Protocol (POP), and the Internet  Message 
Access Protocol (IMAP).  All three use TCP, and the last two are used for accessing 
electronic mailboxes. Special records stored in DNS servers play a role as well, using 
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FIGURE 21.4

Email protocols and components, showing the components used to send an email message. Note 
the symmetrical nature of the sender and recipient so that the receiver can respond.
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UDP.  The current version of POP is version 3 (POP3) and the current version of IMAP 
is version 4 (IMAP4).

Although not a protocol, there is a series of Multipurpose Internet Mail Extensions 
(just MIME, never “MIMEs”) for various types of email attachments (not just simple 
text). Finally, a number of related specifi cations add authentication to the basic email 
protocols.  The way the protocols fi t together is shown in Figure 21.5.

As we have seen, the original SMTP was designed as a simple host-to-host protocol. 
A user on one host created a message with a program called sendmail or mail and this 
text was sent directly to the destination host using SMTP as a Mail Transfer Agent (MTA). 
Of course, if the remote user was not running an email server process to accept the 
SMTP session, there was nothing for the sender to do but keep trying.

Modern email systems “decouple” the sender from the receiver so that email still 
goes through, even when the recipient is away for two weeks (but the messages keep 
piling up, just like regular mail). In addition, unlike almost every other TCP/IP applica-
tion email operates not from host to host but from user to user.  This means that users 
are not required to receive email on a particular host, nor is a particular host expected 
to have only one user with email capabilities. (We can even pick up email for a recipi-
ent from the sending host, and we’ll do that later.) This user “mobility” poses special 
challenges for email addressing, which is why more than just a host name is required 
for correct email delivery.

The solution, of course, is to add another level to the hostname, this one identifying 
a particular user. So, for example, walter@example.com indicates a different mail destina-
tion than goralski@example.com.  And, in fact, the actual host on which an email user is 
defi ned is not always added to the email address (which would yield something like  walter
@ bsdclient.example.com).  The email protocols all work together to make this work.

MIME
AttachmentsEmail

Client

Sender

SMTP

MX Records

POP/IMAP

SMTP
Server

DNS Email
Client

Recipient

ISP A

ISP B
SMTP
Server SMTP

FIGURE 21.5

Email protocols, showing where they fi t between sender and recipient.
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There are older email address formats—FIDOnet, UUCP,  email gateways (distin-
guished by the use of user% notations), and so on—but these are only of  historical inter-
est today. This is not to say that the evolution of email is not interesting, just that the 
history can be given very briefl y and the discussion can turn to what is actually done 
with email on the Internet today.

The Evolution of Email in Brief
As expected with an application that has grown from a simple way to send text 
 messages to an almost universal tool on the Internet, the email RFCs track a long evo-
lutionary path as email changed with the times. In fact, email goes back to the days 
before TCP/IP and the Internet formally existed—all the way back to ARPAnet.  Two 
very early documents, RFCs 95 and RFC 155, described physical mailing lists for dis-
tributing documents.  Then the pioneers realized that the network itself could be used 
to distribute these documents, in the form of an electronic messaging application and 
associated protocols. In 1971, RFC 196 described the Mail Box Protocol for sending 
documents for remote printing.

By the mid-1970s, more sophisticated methods were developed, including some 
based on FTP.  Today, the basic protocol for TCP/IP email is defi ned in RFC 821, and RFC 
822 defi nes the format of the basic email message. RFC 974 added interactions with 
DNS to email transactions, and RFC 1869 added more capabilities as SMTP Service 
Extensions (ESMTP).  Today, everyone still calls it SMTP, even when ESMTP is a more 
accurate term.  Those same RFCs are still essentially in force today, although heavily 
added to in a number of ways and currently gathered as RFC 2821 and RFC 2822 
(exactly 2000 away from the originals, an intentional numeration).

Email quickly grew to include various types of attachments, and modern users are 
used to these. RFCs 2045 through 2048 defi ne basic MIME, which allows email to carry 
various types of email attachments.  This series replaced RFCs 1521, 1522, and 1590, 
which had displaced RFC 1341.

Modern email protocols split the sending and retrieving task.  The retrieval protocol 
POP3 has evolved through fi ve RFCs, from RFC 1081 to RFC 1939.  Another method, 
IMAP4 (often just IMAP), went from RFC 1730 to 2060.

Finally, RFC 2254 extended the SMTP authentication capabilities, and these 
were based on ESMTP in RFC 1869. Most modern SMTP applications support SMTP 
 authentication, which defi nes an SMTP authentication server to advertise this func-
tion to SMTP clients.  Today, the list of RFCs relating to MIME security (S/MIME) is a 
lengthy one and additional drafts are added all the time.  And many RFCs address SMTP 
authentication.

SMTP Authentication
How do you know that the email you send goes only to the person intended? How 
do you know that the email you just got, supposedly from the president of your 
company, really came from that person? SMTP authentication was introduced to 
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help prevent these email abuses, and others. It was based partly on ESTMP, and most 
 implementations support SMTP authentication today.  A lot of MUAs, which of course 
include the SMTP client, make it available.  A server can support several forms of 
 authentication, and the client application should pick one to use.  The client can request 
a specifi c  authentication method, but the server is free to reject its use.

SMTP authentication, which is advertised by an SMTP authentication server, requires 
clients to authenticate themselves, and both parties must mutually accept and support 
the chosen authentication procedure. Once successfully authenticated, the user can 
receive and send email.

Unfortunately, SMTP authentication does not fi t very well into the SMTP protocol, 
mainly because it is based on the Simple Authentication and Security Layer (SASL) 
concept, which is more strictly aimed at direct client–server interactions.  And several 
RFCs are needed to understand how it all works, some of which don’t even mention 
any SMTP extensions, although they require use of the special ESMTP EHLO (Extended 
Hello) command.

The goal of SMTP authentication is to prevent username and password from cross-
ing the network (the Internet) in plain text.  A full discussion of STMP authentication 
depends on an understanding of how encryption provides authentication, topics which 
have not been covered yet. SMTP authentication is still evolving, and the mechanisms, 
methods, and procedures used will change as time goes on.

Simple Mail Transfer Protocol
A basic SMTP session between sender and local SMTP server is shown in Figure 21.6.

Like FTP, SMTP uses a system of client commands with parameters and numerical 
server responses, which is usually accompanied by some basic text as well. Oddly, if 
you know what you are doing, you can simply use a remote access method to connect 
to the SMTP server, and simply send the keywords and any parameters by typing them 
at the command prompt.  The basic interaction between client and server when SMTP 
authentication is used is shown in Figure 21.7.

The client indicates to the server that it knows the server supports ESMTP (and 
wants to use it) with the SMTP EHLO command.  The server offers a number of authen-
tication schemes, including simple log-in with password.  The client selects this option 
with the AUTH command. The server then uses base64 encoding (a special type of 
character coding) to ask the user for username and password, one at a time.  The client 
replies are also encoded with base64, not encrypted. If the user types in the password 
incorrectly, the authentication fails, but the user can usually try again before the server 
drops the connection altogether.

The 11 most common SMTP commands are outlined in Table 21.1.  A few others are 
defi ned, but they are hardly used anymore.

SMTP reply codes resemble FTP reply codes.  The fi rst digit refers to the command 
status, the second classifi es the reply, and the third adds details.  The meanings of the 
fi rst two digits are outlined in Table 21.2.
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Client–Server AuthenticationCLIENT SERVER

(Active open for
data connection)

(Composes
message with
mail program)

User Types
Wrong Password

220 (server supports ESMTP)

EHLO (identifies sending host)

AUTH login (login picked for authentication method)

250 (...Auth types offered, including “login”)

334 VXN1cm5hbWU1 (base64 “Username”)

334 UGFzc3dvcmQ6 (base64 “Password”)

(base64 password string)

535 Authentication Failure

(base64 userID)

FIGURE 21.7

SMTP authentication. Note that SMTP uses a special coding known as base64.

Client–Server Mail ConnectionCLIENT SERVER

(Active open for
data connection)

(Composes
message with
mail program) 220 (sendmail server greeting)

HELO (identifies sending host)

MAIL (sender’s address)

250 (host okay)

250 (sender okay)

250 (recipient okay)

250 (mail accepted)

QUIT

221 (server signs off)

DATA (put server in receive mode)

354 (okay to send mail)

(email text, followed by “.”)

RCPT (recipient’s address)

FIGURE 21.6

Basic STMP email exchange between a client and a server.
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Table 21.1 Common SMTP Commands and Meanings

Command Meaning

HELO Identifi es the sender to the receiver.

EHLO Identifi es the sender with extended capabilities to the receiver. 

MAIL FROM Identifi es the originator and starts a mail transaction.

RCPT TO Identifi es an individual recipient. Repeated for multiple recipients. Receiver, if 
possible, checks for the validity of the recipient.

DATA Sender is ready to transmit lines of text. Maximum line length is 1000 characters, 
including fi nal “new line” character or characters. 

RSET Aborts current mail transaction and clears all information.

NOOP Asks for a positive reply.

QUIT Asks for a positive reply to close the connection.

VRFY Asks the receiver to validate recipient name.

EXPN Asks the receiver to confi rm name in a mailing list, and for list content. For 
 information only (do not change recipient names).

HELP Asks for implementation details, such as commands supported.

Table 21.2 SMTP Reply Codes and Meanings

Digit and Position Meaning

1xx Positive preliminary (not currently used)

2xx Positive completion

3xx Positive intermediate result

4xx Transient negative (okay to try again)

5xx Permanent negative (“stop doing that!”)

x0x For a problem, syntax error, or unknown command

x1x Information request reply (such as to HELP)

x2x Connection reply

x3x Unspecifi ed

x4x Unspecifi ed

x5x Receiver status reply

MULTIPURPOSE INTERNET MAIL EXTENSIONS
MIME is a rather dry subject, but quite important, if for no other reason than that 
MIME formats are also used in transfer using the protocol of the World Wide Web, the 
Hypertext Transport Protocol (HTTP), which is examined in the next chapter. So, MIME 
deserves at least a quick look here.
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A MIME message has a set of headers and one or more “body parts.” Internet text 
mail messages also have headers, of course, with fi elds such as To:, From:, and Date:. 
MIME messages have additional introductory headers to describe the overall format 
and content of the message.

MIME Media Types
When there are multiple parts to a MIME message, one introductory header defi nes a 
string used to mark the boundaries between parts.  After the boundary delimiter, which 
is chosen by the email application, there are additional headers to describe the part of 
the MIME message that follows.  The overall structure of the information in each part is 
determined by the Content-Type MIME headers.  The type can be an image, audio, text, 
or even a mixture of these.

There are seven standard media types, all of which have a variety of subtypes. Five 
of them are considered “discrete” (meaning that the format is consistent throughout 
the part), and two are “composite,” meaning that the format changes independently in 
each component.  The discrete types are:

■ Text
■ Image
■ Video
■ Audio
■ Application

The composite types are:

■ Multipart—Each component can have a different data type, usually discrete.
■  Message—Used to “encapsulate” other information, such as a forwarded email 

message.

Some of the more common subtypes used in these seven major data types are 
 outlined in Table 21.3.

MIME Encoding
The data type and subtype establish the format of the content of a MIME body part. But 
how should the data in each part be represented for transmission across the Internet? 
MIME defi nes a variety of coding methods, allowing hosts and MTAs to be as fl exible 
as possible.

The default coding method is ASCII (as used in the United States). If another method 
is used, such as for formatted documents, this must be announced in a MIME Content-
Transfer-Encoding header.

There are six major MIME encoding methods.  These are listed in Table 21.4.  The 
quoted-printable encoding extends the usual 7-bit ASCII code set to allow a few extra 
characters. Special hex characters are preceded by an = sign. So, 0x0C (form feed) is sent 
in quoted =printable as = 0C.

Base64 encoding is very common today. SMTP was originally a text-based transmis-
sion system. Yet a lot of email content is sent as simple bytes, such as audio and video, 
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and even as executable code (much to the chagrin of network administrators). Base64 
encoding converts a binary data stream to a sequence of “text” characters.  This usually 
results in the size of the binary fi le growing by about 33% in terms of bytes.  This is 
because 6 bits can indicate the numbers 0 through 63. But bytes are 8 bits, of course, at 
least where the Internet and TCP/IP are concerned.

An Example of a MIME Message
Consider a writer delivering a short story to an editor as an email attachment (been 
there, done that).  What would the MIME headers that form the overall body of the 
email message look like? Well, they would resemble the following:

Content-Type: multipart/mixed;
    boundary = "--- = _NextPart_000_027HB582.0E7E0F6"
This is a message in MIME format.
--- = _NextPart 000_027HB582.0E7E0F6
Content-Type: text/plain

Table 21.3 MIME Content Types and Subtypes

Type Subtypes

text plain, richtext, tab-separated-values, html, sgml

image jpeg, gif, ief, tiff, g3fax, png

video mpeg, quicktime, vnd.vivo

audio basic, 32kadpcm, vnd.vivo

application octet-stream, postscript, rtf, pdf, zip, macwriteii, msword, remote-printing, EDI-X12, 
EDIFACT, dec-dx, dca-rft, activemessage, applefi le, mac-binhex40, news-message-id, 
mews-transmission, wordperfect5.1, mathematica, pgp-encrypted, pgp-signature, 
pgp-keys, andrew-inset, slate, set-payment, set-registration, sgml, wita, lotus-wordpro, 
lotus-1-2-3, lotus-organizer, ms-excel, powerbuilder-6

multipart mixed, alternative, digest, parallel, appledouble, header-set, form-data, report, 
voice-message, signed, encrypted

message rfc822, partial, external-body, news, http, delivery-status

Table 21.4 MIME Encoding Methods and Meanings

Method Meaning

7bit Ordinary ASCII as used in the United States. 

quoted-printable Adds a few special characters and coding to ASCII text.

base64 Content is mapped into a “text” package (very common).

8bit Similar to 7bit, but can include 8-bit characters.

binary True binary data.

x-(name) Experimental encodings must have a name starting with “x”.
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Please take a look at the attached short story. Thanks.

W

--- = _NextPart_000_027HB582.0E7E0F6
Content-Type: application/msword;
    name = "new story.doc"
Content-Transfer-Encoding: base64
Content-Disposition: attachment;
    filename = "new story.doc"

(Lots of nonsense characters form the base64 table.)

--- = _NextPart_000_027HB582.0E7E0F6

The lines in bold are the MIME headers.

USING POP3 TO ACCESS EMAIL
The original host-to-host SMTP did not allow for attachments, limited messages to 
1000 bytes, was a purely connection-oriented application, and never imagined a world 
of personal computers and intermittent email checking. STMP was built for immediate 
email delivery to a specifi c host, sort of what we think of as instant messaging (IM) 
today. Email today is often delivered to mailboxes on mail servers, not directly to the 
end user, that is, users who might only have dial-up Internet access.

FIGURE 21.8

A POP3 capture, highlighting how the email listing is sent to the user.
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Client–Server POP3 Connection
(TCP 3-way handshake and close omitted)

�OK POP3 Inxserver...(etc.)

�OK User name accepted, password please

�OK Mailbox open, 1 message

USER admin1

PASS admin11

DELE 1

QUIT

STAT

(SERVER)
port 110

Inxserver
(CLIENT)
port 2447

Inxclient

�OK 1 1108

�OK Mailbox scan listing follows\r\n1 1108...(etc.)

�OK 1108 octets

�OK Message deleted

�OK Sayonara

LIST

RETR 1

FIGURE 21.9

A POP3 connection used to fetch email, showing a more schematic view than the capture.

These intermittent Internet users log in and access their mailbox with POP3 (com-
monly just called POP). POP3 does not send email: SMTP does that. But POP3 retrieves 
the email, and the IMAP4 protocol maintains and controls access to the mailbox 
accounts.

POP3 uses TCP port 110, and users are authenticated by userID and password. POP3 
then places a lock on the mailbox to avoid access confl icts.  The POP3 server then 
enters transaction mode for user access to messages. POP3 features include the abil-
ity to view a list of email messages and their sizes and to selectively retrieve or delete 
messages, but many implementations simply dump all waiting mail to the client. POP3 
servers can be the same device as the SMTP mail server, but this is not a requirement.

Let’s add POP3 to our network.  We used the BSD hosts before, so let’s make lnxserver 
(10.10.11.66) into our email server for the network.  We can then compose a fairly long 
(1108 bytes) message and send it to user admin1. Figure 21.8 shows the sequence of 
packets used to retrieve the message from host lnxclient (10.10.12.166).

POP3 employs a characteristic +OK and not a code when responding normally to a 
client.  The series of packets shown in Figure 21.8 is boiled down to its POP3 essentials 
in Figure 21.9.
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Note that the retrieval of the message (RETR) by the client and its deletion from the 
server (DELE) are separate steps. You don’t have to delete email as you read it, of course. 
The +OK Sayonara is also part of the POP3 protocol implementation.

HEADERS AND EMAIL
We’ve mentioned email headers already and supplied some details about MIME headers 
(header extensions). Email has its own proper set of headers as well, and an Internet 
email message is little more than a sequence of headers and their values, one after the 
other, from the start of the email message to the end.  Table 21.5 outlines the basic email 
header fi eld names and groups established by RFC 822.

Now we have everything in place to examine the headers created when sending a 
short email message through our email server (lnxserver) from a client host to another 
user.  We’ll use the admin account on lnxclient to send a message to the admin user on 

Table 21.5 RFC 822 Email Header Fields and Characteristics

Field Group Field Name Appearance
Occurrences 
per Message Comment

Destination 
Address Field

To: Usually present 1 Primary recipient list

Cc: Optional 1 Copy recipient 

Bcc: Optional 1 “Blind” copy

Identifi cation 
Fields

Message-ID: Usually present 1 Unique code applied when 
sent

In-Reply-To: Optional, normal 
for replies

1 Provides method to coordi-
nate responses

References: Optional 1 Other documents or mes-
sage IDs

Informational 
Fields

Subject: Usually present 1 Topic of the message

Comments: Optional Unlimited Describe message

Keywords: Optional Unlimited Useful search item

Origination 
Date

Date: Mandatory 1 Date and time stamp for 
mail

Originator 
Fields

From: Mandatory 1 Source address of 
“originator”

Sender: Optional 1 If different from 
“originator”

Reply-To: Optional 1 If absent, reply goes to 
“from”
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lnxserver (these are not necessarily the same users: they just share a mailbox name). 
Then we’ll fetch the message from the email server mailbox using the admin account, 
showing that we can fetch our email almost anywhere, even from the sending host.

We can use the same basic mail program as we did on the BSD hosts.  This time, 
we’ll use the –s fl ag to create a subject for the message.  The text is simple, and we end 
our message with a single dot as before.

[admin@lnxclient admin]$ mail –s "Here is another example"
      admin@lnxserver.booklab.englab.juniper.net

This is text…
.
Cc: (enter)

Now we’ll use fetchmail to “fetch” the mail message with POP3 from the email 
server (lnxserver) and bring it back to lnxclient. Note that when we run the program 
and have email we get a version of the familiar “you’ve got mail” prompt.

[admin@lnxclient admin]$ fetchmail
Enter password for admin@lnxserver.booklab.englab.juniper.net: (not shown)
You have new mail in /var/spool/mail/admin

Usually, our complete email application would display the information and the mes-
sage. But there’s nothing magical about that.  We can do the same with the command 
prompt, listing the mailbox content and displaying the email message with normal 
Unix commands.

[admin@lnxclient admin]$ ls –l /var/spool/mail/admin
-rw-------  1 admin    mail         3122 Jan 17 16:42 /var/spool/mail/admin

Table 21.5 (continued)

Field Group Field Name Appearance
Occurrences 
per Message Comment

Resent Fields Resent-Date:
Resent-From:
Resent-Sender:
Resent-To:
Resent-Cc:
Resent-Bcc:
Resent-Message-ID:

Each time 
 message is 
resent, this block 
is generated

Resent-Date: 
and Resent-
Sender: are 
mandatory; 
all others 
optional

Special, used for 
forwarding an email 
message to others

Trace Fields Received:
Return-Path:

Inserted by 
email 
system

Unlimited Used to trace the 
message through the 
email system
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[admin@lnxclient admin]$ cat /var/spool/mail/admin
From admin@lnxserver.booklab.englab.juniper.net  Wed Jan 16 13:04:50 2008
Return-Path: <admin@lnxclient.booklab.englab.juniper.net>
Received: from localhost (localhost.localdomain [127.0.0.1])
        by lnxclient.booklab.englab.juniper.net (8.12.9/8.12.8) with ESMTP id
        jBGL4onD026830
        for <admin@localhost>; Wed, 16 Jan 2008 13:04:50 -0800
Received: from lnxserver.booklab.englab.juniper.net  
        by localhost with POP3 (fetchmail-6.2.0)
         for admin@localhost (single-drop); Wed, 16 Jan 2008 13:04:50 -0800 (PST)
Received: from lnxclient.booklab.englab.juniper.net ([10.10.12.166]) 
        by lnxserver.booklab.englab.juniper.net (8.12.8/8.12.8) with ESMTP id
        jBGL4HFa027257
         for <admin@lnxserver.booklab.englab.juniper.net>; Wed, 16 Jan 2008 

13:04:17 -0800 (PST)
Received: from lnxclient.booklab.englab.juniper.net (localhost.localdomain 
        [127.0.0.1])  
        by lnxclient.booklab.englab.juniper.net (8.12.8/8.12.8) with ESMTP id
        jBGL4HnD026820
         for <admin@lnxserver.booklab.englab.juniper.net>; Wed, 16 Jan 2008 

13:04:17 -0800 
Received: (from admin@localhost)
        by lnxclient.booklab.englab.juniper.net (8.12.8/8.12.8/Submit) id
        jBGL4HHf026818
         for admin@lnxserver.booklab.englab.juniper.net; Wed, 16 Jan 2008 

13:04:17 -0800 
Date: Wed, 16 Jan 2008 13:04:17 -0800 
From: admin@lnxclient.booklab.englab.juniper.net
Message-Id: <200801172104.jBGL4HHf-26818 @lnxclient.booklab.englab.juniper.net>
To: admin@lnxserver.booklab.englab.juniper.net
Subject: Here is another example
X-IMAPbase: 1134766876 8
Status: o
X-UID: 8
X-Keywords:

This is text…

The important fi elds are highlighted. Most of the other headers were added when 
the email was created, of course. Most useful is the series of Received: headers, which 
allows us to trace the message back to its origin. It might seem odd that there are fi ve 
receiver headers along the trace for a message that has gone from client to email server 
and then back to client. But the application adds a localhost step at each end, at the 
sender (admin@localhost) and receiver (from localhost) to the message trace.  The 
complete path of the message recorded in the headers (from “bottom to top”) is:

1. The mail application receives the composed message from the local user.
2. The local mailbox receives the message using ESMTP.
3. The email server receives the message using ESMTP.
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4.  The other client retrieves the message from the email server using POP3 
 (fetchmail).

5. The local host transfers the message to the local mailbox using ESMTP.
6. The use of these protocols is highlighted in the headers.

HOME OFFICE EMAIL
Let’s end our email discussion by showing that Windows uses the same protocols 
and headers to send and receive email over the Internet.  This time, we’ll send a mes-
sage from lnxclient on the Illustrated Network to my home offi ce host (which uses 
 Outlook).

Almost all email applications have an option to view the complete headers. In Out-
look, it’s just “Message Header” in the singular, but the following is the result of viewing 
the message headers in Outlook. Only the headers are displayed, not the message text 
itself.

Microsoft Mail Internet Headers Version 2.0
Received: from beta.jnpr.net ([172.24.18.109]) by positron.jnpr.net with 
    Microsoft SMTPSVC(5.0.2195.6713);
    Thu, 17 Jan 2008 07:37:14 -0700
Received: from merlot.juniper.net ([172.17.27.10]) by beta.jnpr.net over TLS 
    secured channel with Microsoft SMTPSVC(6.0.3790.1830);
    Thu, 17 Jan 2008 07:37:13 -0700
Received: from lnxclient.englab.juniper.net (lnxclient.englab.juniper.net 
   [10.10.12.166])
   by merlot.juniper.net (8.11.3/8.11.3) with ESMTP id k9JEbDH15244
   for <walterg@juniper.net>; Thu, 17 Jan 2008 07:37:13 -0700 (PDT)
   (envelope-from admin@lnxclient.englab.juniper.net)
Received: from lnxclient.englab.juniper.net (localhost.localdomain 
   [127.0.0.1])
   by lnxclient.englab.juniper.net (8.12.8/8.12.8) with ESMTP id 
   k9JEacUg026193
   for <walterg@juniper.net>; Thu, 17 Jan 2008 07:36:58 -0700
   Received: (from admin@localhost)
   by lnxclient.englab.juniper.net (8.12.8/8.12.8/Submit) id k9JEaSlp026191
   for walterg@juniper.net; Thu, 17 Jan 2008 07:36:28 -0700
Date: Thu, 17 Jan 2008 07:36:28 -0700
From: admin@lnxclient.englab.juniper.net
Message-Id: <200801171436.k9JEaSlp026191@lnxclient.englab.juniper.net>
To: walterg@juniper.net
Subject: here is an email example
Return-Path: admin@lnxclient.englab.juniper.net
X- OriginalArrivalTime: 17 Jan 2008 14:37:13.0230 (UTC) FILETIME=[10F80AE0:
01C6F38C]
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QUESTIONS FOR READERS
Figure 21.10 shows some of the concepts discussed in this chapter and can be used to 
answer the following questions.

FIGURE 21.10

POP3 session capture.

1. Which port does POP3 use?

2. Which password is provided by the user?

3. Was the email message deleted after it was retrieved?

4. How long was the message?

5. How many other messages are in the user’s mailbox?
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CHAPTER

What You Will Learn
In this chapter, you will learn about the HTTP protocol used on the Web, including 
the major message types and HTTP methods.  We’ll also discuss the status codes 
and headers used in HTTP.

You will learn how URLs are structured and how to decipher them.  We’ll also 
take a brief look at the use of cookies and how they apply to the Web.

Hypertext Transfer 
Protocol 22

After email, the World Wide Web is probably the most common TCP/IP application 
 general users are familiar with. In fact, many users access their email through their Web 
browser, which is a tribute to the versatility of the protocols used to make the Web 
such a vital part of the Internet experience.

There is no need to repeat the history of the Web and browser, which are covered 
in other places. It is enough to note here that the Web browser is a type of “universal 
client” that can be used to access almost any type of server, from email to the fi le trans-
fer protocal (FTP) and beyond.  The unique addressing and location scheme employed 
with a browser along with several related protocols combine to make “surfi ng the Web” 
(it’s really more like fi shing or trawling) an essential part of many people’s lives around 
the world.

The protocol used to convey formatted Web pages to the browser is the Hypertext 
Transfer Protocol (HTTP). Often confused with the Web page formatting standard, the 
Hypertext Markup Language (HTML), it is HTTP we will investigate in this chapter. The 
more one learns about how the Hypertext Transfer Protocol and the browser inter-
act with the Web site and TCP/IP, the more impressed people tend to become with 
the  system as a whole. The wonder is not that browsers sometimes freeze or open 
unwanted windows or let worms wiggle into the host but that it works effectively and 
effi ciently at all.
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FIGURE 22.1

The Web servers on the Illustrated Network, also showing the major client browser hosts. Note that 
we’ll be using IIS with ASP on the Windows platform and Apache with SSL on the Unix host.
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HTTP IN ACTION
Web browsers and Web servers are perhaps even more familiar than electronic mail, 
but nevertheless there are some interesting things that can be explored with HTTP on 
the Illustrated Network. In this chapter, Windows hosts will be used to maximum effect. 
Not that the Linux and FreeBSD hosts could not run GUI browsers, but the “purity” of 
Unix is in the command line (not the GUI).

We’ll use the popular Apache Web server software and install it on bsdserver. Just 
to make it interesting (and to prepare for the next chapter), we’ll install Apache with 
the Secure Sockets Layer (SSL) module, which we’ll look at in more detail in the next 
chapter.  We’ll also be using winsrv1 and the two Windows clients, wincli1 and wincli2, 
as shown in Figure 22.1.

We could install Apache for Windows XP as well, because one of the goals of this 
book is to explore how much can be done with basic Windows XP Professional. But 
we don’t want to go into full-blown server operating systems and build a complete 
Windows server. It should be noted that many Unix hosts are used exclusively as Web 
sites or email servers, but here we’re only exploring the basics of the protocols and 
applications, not their ability or relative performance.

The Web has changed a lot since the early days of statically defi ned content deliv-
ered with HTTP. Now it’s common for the Web page displayed to be built on fl y on the 
server, based on the user’s request.  There are many ways to do this, from good old Perl 
to Java and beyond, all favored and pushed by one vendor or platform group or another. 
In Windows, the “in-house” dynamic Web page software is called Active Service Pages 
(ASP).  ASP works differently than the others, but all of them vary in large or small ways, 
so that’s not really a criticism.

So, we’ll install Integrated Information Services (IIS), available for Windows XP Pro 
and a few other (free) packages, notably the .NET Framework and Software Develop-
ment Kit (SDK).  This will make it possible for us to build ASP Web pages on winsrv1 
and access them with a browser.

The ASP installation was rather torturous, but there are invaluable Web sites and 
books that take you through the process step by step. One book includes an extremely 
simple Web page along the lines of “Hello World!” (but the Web page is also small 
enough to demonstrate how HTTP fetches the page). Figure 22.2 shows how the page 
looks in the browser window on wincli2.

What does the HTTP exchange look like between the client and server? Let’s cap-
ture it with Ethereal and see what we come up with. Figure 22.3 shows the result.

Not surprisingly, after the TCP handshake the content is transferred with a single 
HTTP request and response pair.  The entire page fi t in one packet, which is detailed in 
the fi gure.  And just as it should, once TCP acknowledges the transfer the connection 
stays open (persistent).

Note that the dynamic date and time content is transferred as a static string of text. 
All of the magic of dynamic content takes place on the server’s “back room” and does 
not involve HTTP in the least.
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What about more involved content? Let’s see what the default Apache with SSL page 
looks like from wincli2 when we install it on bsdserver.  This is shown in Figure 22.4.

This is just the default index.html page showing that Apache installed success-
fully.  There is no “real” SSL on this page, however.  There is no security or encryption 

FIGURE 22.2

An ASP page from winsrv1. The “active” component means that the date and time on the page 
are kept current.

FIGURE 22.3

Capture of the HTTP for the ASP page, showing how the protocol identifi es the “make and model” 
of the Web site (Microsoft IIS using ASP.NET).
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FIGURE 22.4

Apache HTTP “success” page displayed when the software is installed correctly.

FIGURE 22.5

HTTP Apache capture. Most of the text is transferred in only a few packets.
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involved.  What does the HTTP capture look like now? It’s captured on wincli2 (shown 
in Figure 22.5).

This exchange involved 21 packets, and would have been longer if the image had 
not been cached on the client (a simple “Not Modifi ed” string is all that is needed to 
fetch it onto the page). Most of the text is transferred in packets 10 through 12, and 
then the images on the page are “fi lled in.” We’ll take a look at the SSL aspects of this 
Web site in the next chapter.

Before getting into the nuts and bolts of HTTP, there is a related topic that must 
be investigated fi rst.  This is an appreciation of the addressing system used by brows-
ers and Web servers to locate the required information in whatever form it may 
be stored. There are three closely related systems defi ned for the Internet (not just 
the Web). These are uniform resource identifi ers (URIs), locators (URLs), and names 
(URNs).

Uniform Resources
As if it weren’t enough to have to deal with MAC addresses, IP addresses, ports, sockets, 
and email addresses, there is still another layer of addresses used in TCP/IP that has 
to be covered.  These are “application layer” addresses, and unlike most of the other 
addresses (which are really defi ned by the needs of the particular protocol) application 
layer addresses are most useful to humans.

This is not to say that the addresses we are talking about here are the same as 
those used in DNS, where a simple correspondence between IP address 192.168.77.22 
and the name www.example.com is established.  As is fi tting for the generalized Web 
browser, the addresses used are “universal”—and that was one name for them before 
someone fi gured out that they weren’t really universal quite yet, but they were at least 
uniform.

So, labels were invented not only to tell the browser which host to go to and appli-
cation use but what resources the browser was expecting to fi nd and just where they 
were located. Let’s start with the general form for these labels, the URI.

URIs
The generic term for resource location labels in TCP/IP is URI. One specifi c form of 
URI, used with the Web, is the URL.  The use of URLs as an instance of URIs has become 
so commonplace that most people don’t bother to distinguish the two, but they are 
technically distinct.

The latest work on URIs is RFC 2396, which updated several older RFCs (including 
RFC 1738, which defi nes URLs). In the RFC, a URI is simply defi ned as “a compact string 
of characters for identifying an abstract or physical resource.” There is no mention of 
the Web specifi cally, although it was the popularity of the Web that led to the develop-
ment of uniform resource notations in the fi rst place.

When a user accesses http://www.example.com from a Web browser, that string is a 
URI as much as a URL. So, what’s the difference between the URI and the URL?
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URLs
RFC 1738 defi ned a URL format for use on the Web (although the RFC just says “Inter-
net”). Newer URI rules all respect conventions that have grown up around URLs over 
the years. URLs are a subset of URIs, and like URIs, consist of two parts: a method used 
to access the resource, and the location of the resource itself.  Together, the parts of the 
URL provide a way for users to access fi les, objects, programs, audio, video, and much 
more on the Web.

The method is labeled by a scheme, and usually refers to a TCP/IP application or pro-
tocol, such as http or ftp. Schemes can include plus signs (+), periods (.), or hyphens 
(-), but in practice they contain only letters. Methods are case insensitive, so HTTP is the 
same as http (but by convention they are expressed in lowercase letters).

The locator part of the URL follows the scheme and is separated from it by a colon 
and two forward slashes (:// ).  The format or the locator depends on the type of 
scheme, and if one part of the locator is left out, default values come into play.  The 
scheme- specifi c information is parsed by the received host based on the actual scheme 
(method) used in the URL.

Theoretically, each scheme uses an independently defi ned locator. In practice, 
because URLs use TCP/IP and Internet conventions many of the schemes share a com-
mon syntax. For example, both http and ftp schemes use the DNS name or IP address 
to identify the target host and expect to fi nd the resource in a hierarchical directory 
fi le structure.

The most general form of URL for the Web is shown in Figure 22.6.  There is very 
little difference between this format and the general format of a URI, and some of these 
differences are mentioned in the material that follows the fi gure.

The format changes a bit with method, so an FTP URL has only a type=<typecode> 
fi eld as the single <params> fi eld following the <url-path>. For example, a type code of 
d is used to request an FTP directory listing.  The fi gure shows the general fi eld for the 
http method.

<scheme>://<user:><password>@<host>:<port>/<url-path>?<query>#<fragment>

http
for

Web

Public Access (Local host) 80 Working
Directory

StartNot a
Query

Default value if not specified

http://myuserid:mypassword@www.example.com:8080/cgi-bin/figs.php?Ch22#Fig1

FIGURE 22.6

The fi elds of a complete URL, showing that the default values used in the fi elds are absent.
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<scheme>—The method used to access the resource.  The default method for a Web 
browser is http.

<user> and <password>—In a URI, this is the authorization field.  A URL’s autho-
rization consists of a user ID and password separated by a colon (:). Many 
private Web sites require user authorization, and if not provided in the URL 
the user is prompted for this information.  When absent, the user defaults to 
publicly available resource access.

<host>—Called the networkpath in a URI, the host is specified in a URL by DNS 
name or IP address (IPv6 works fine for servers using that address form).

<port>—This is the TCP or UDP port that together with the host information 
specifies the socket where the method appropriate to the scheme is found. For 
http, the default port is 80.

<url-path>—The URI specification calls this the absolutepath. In a URL, this is 
usually the directory path starting from the default directory to where the 
resource is to be found. If this field is absent, the Web site has a default direc-
tory into which the user is placed.  The forward slash (/) before the path is not 
technically part of the path, but forms the delimiter and must follow the port. 
If the url-path ends in another slash, this means a directory and not a “file” 
(but most Web sites figure out whether the path ends at a file or directory on 
their own).  A double dot (..) moves the user up one level from the default 
directory.

<params>—These parameters control how the method is used on the resource and 
are scheme specific. Each parameter has the form <parameter>5<value> and 
the parameters are separated by semicolons (;). If there are no parameters, the 
default action for the resource is taken.

<query>—This URL field contains information used by the server to form the 
response.  Whereas parameters are scheme specific, query information is 
resource specific.

<fragment>—The field is used to indicate which particular part of the resource 
the user is interested in. By default, the user is presented with the start of the 
entire resource.

Most of the time, a simple URL, such as ftp://ftp.example.com, works just fi ne for 
users. But let’s look at a couple of examples of fairly complex URLs to illustrate the use 
of these fi elds.

http:// myself:mypassword@mail.example.com:32888/mymail/ShowLetter?MsgID-5551212#1

The user myself, authenticated with mypassword, is accessing the mail.example.com 
server at TCP port 32888, going to the directory /mymail, and running the ShowLetter 
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program.  The letter is identifi ed to the program as MsgID-5551212, and the fi rst part of 
the message is requested (this form is typically used for a multipart MIME message).

www.examplephotos.org:8080/cgi-bin/pix.php?WeddingPM#Reception19

The user is going to a publicly accessible part of the site called www.examplephotos.
org, which is running on TCP port 8080 (a popular alternative or addition to port 80). The 
resource is the PHP program pix.php in the cgi-bin directory below the default direc-
tory, and the URL asks for a particular page of photographs to be accessed  (WeddingPM) 
and for a particular photograph (Reception19) to be presented.

www.sample.com/who%20are%20you%3F

File names that have embedded spaces and special characters that are the same as URL 
delimiters can be a problem.  This URL accesses a fi le named who are you? in the default 
directory at the www.sample.com site.  There are 21 “unsafe” URL characters that can be 
represented this way.

There are many other URL “rules” (as for Windows fi les), and quite a few tricks. 
For example, if we wanted to make a Web page at www.loserexample.com (IP address 
192.168.1.1) appear as if it is located at www.nobelprizewinners.org, we can translate 
the Web site’s IP address to decimal (192.168.1.1 5 0xC0A80101 5 3232235777 deci-
mal), add some “bogus” authentication information in front of it (which will be ignored 
by the Web site), and hope that no one remembers the URL formatting rules:

http://www.nobelprizewinners.org@3232235777

A lot of evil hackers use this trick to make people think they are pointing and clicking 
at a link to their bank’s Web site when they are really about to enter their account infor-
mation into the hacker’s server! Well, if that’s what a URL is for, why is a URN needed?

URNs
URNs extend the URI and URL concept beyond the Web, beyond the Internet even, 
right into the ordinary world. URIs and URLs proved so popular that the system was 
extended to become URNs. URNs, fi rst proposed in RFC 2141, would solve a particu-
larly vexing problem with URLs.

It may be a tautology, but a URL specifi es resources by location.  This can be a prob-
lem for a couple of reasons. First, the resource (such as a freeware utility program) 
could exist on many Web servers, but if it is not on the one the URL is pointing to the 
familiar HTTP 404 – NOT FOUND error results.  And how many times has a Web site moved, 
changing name or IP address or both—leaving thousands of pages with embedded 
links to the stale information? (URLs do not automatically supply a helpful “You are 
being directed to our new site” message.)

As expected, URNs label resources by a name rather than a location.  The familiar 
Web URL is a little like going by address to a particular house on a particular street 
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and asking for Joe Smith.  A URN is like asking for Joe Smith, getting an answer from a 
“resolver,” and going to the current address where good old Joe is found. “Joe Smith” is 
an example of a URN in the human “namespace.” Of course, if this is to work properly 
there can only be one Joe Smith in the world.

Any namespace that can be used to uniquely identify any type of resource can be 
used as a URN. But before you rush out to invent a URN system for automobiles, for 
example, keep in mind that designing URNs for new namespaces is not that easy.

Each URN must be recognized by some offi cial body or another, and must be strictly 
defi ned by a formal language. It’s not enough to say that the URN string will identify 
a car. It is necessary to defi ne things such as the length of the string and just what is 
allowed in the string and what isn’t (actually, there’s a lot more to it than that).

For example, the International Standard Book Number (ISBN) system uniquely 
identifi es books published all over the world. Part of the number identifi es region of 
the world where the book is published, another part the publisher, yet another part 
the particular book, and fi nally there is a checksum digit that is computed in case 
someone makes a mistake writing down one of the other parts.  The formal defi ni-
tion of the ISBN namespace would establish the length of these fi elds, and note that 
the ISBN must be 10 digits long and can only be made up of the digits 0 through 
9, except for the last checksum digit, where the Roman numeral X is used for the 
checksum 10 (10 is a valid ISBN checksum “digit”).  The general format of a URN is 
URN:<namespace-ID>:<resource-identifier>.

Note the lack of any sense of location.  The namespace ID is needed to distinguish 
a 10-digit telephone number from a 10-digit ISBN numbers (for example), and the URN 
literally makes it obvious that the URN notation system is being employed.

Work on URNs has been slow.  A resource identifi ed by URN still has a location, and 
so must still provide one or more URLs (think of all the places where a certain book 
might be located) to the user.  A series of RFCs, from RFC 3401 to RFC 3406, defi nes a 
system of URN “resolvers” called the Dynamic Delegation Discovery System (DDDS). 
For now, the Internet will have to make do with URLs.

HTTP
HTTP started out as a very simple protocol, based on the familiar scheme of a small 
set of commands issued by the client (browser) and reply codes and related informa-
tion issued by the server (Web site).  As indicated by the name, the original HTTP (and 
HTML) concerned itself with hypertext, the idea being to embed active links in textual 
information and allow users to spontaneously follow their instincts from page to page 
and site to site around the Internet and around the world.  There were also graphics 
associated with the Web almost immediately, and this was a startling enough innovation 
to completely change the user perception of the Internet.

The original version of HTTP, now called HTTP 0.9, was just something people did 
if they wanted their Web sites to work, and nobody bothered to write down much 
about it.  The people who wanted to know found out how it worked.  This was fi ne for 
a few years, but once the Web got rolling RFC 1945 in 1996 defi ned HTTP 1.0 (a more 
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full-blooded protocol)—which made “old” HTTP into HTPP 0.9.  Then HTTP 1.1 came 
along in 1997 with RFC 2068, which was extended in 1999 with RFC 2616.  And that 
was pretty much it.  The basic HTTP 1.1 is what we live and work with on the Internet 
today.

However, it’s always good to remember what HTTP is and isn’t. HTTP is just a trans-
port mechanism for Web stuff, and not only for varied content. HTTP is fl exible enough 
to transport Web features such as cascading style sheets (CCSs), Java Applets, Active 
Server Pages (ASPs), Perl scripts, and any one of the half dozen of so languages and pro-
gramming tools that have evolved to make Web servers more complex and paradoxi-
cally easier to confi gure and use.

The Evolution of HTTP
HTTP began as a simple TCP/IP request/response language using TCP to retrieve infor-
mation from a server in a stateless manner (most TCP/IP applications are stateless). 
Because the server is stateless, the server has no idea of any history of the interaction 
between client and server.  Therefore, any state information has to be stored in the 
client.  We’ll talk about cookies later, after looking at the basics of HTTP.

With HTTP 0.9, a basic browser accessed a Web page by issuing a GET command for 
the page desired (indicated in the URL), accompanied by a number of HTTP headers. 
This was sent over a TCP connection established between the browser port and port 
80 (the default Web port) on the server.  The server responded with the text-based Web 
page marked up in HTML and closed the TCP session.  The initial browser command 
was usually GET /index.html.

But what about the graphics and audio in the reply, if included in the Web page? 
HTML is a markup language, meaning that special tags are inserted into an ordi-
nary text fi le to control the appearance of the Web page on the browser screen. 
Once the initial request transfer was made in HTTP 0.9, the browser parsed the 
HTML tags and opened a separate TCP connection to the server for every element of 
the page.  This is why the location of the graphics and associated media fi les are so 
important in HTML: they aren’t really “there” on the page in any sense until HTTP is 
used to fetch them.

Naturally, the TCP overhead involved with all of this shuttling of information was 
staggering, especially on slow dial-up links and when Web pages grew to include 30 or 
more elements. Some Web sites shut down as the “listen” queues fi lled up, router links 
became saturated with TCP overhead, and browsers hung as frustrated users began 
pounding and clicking everything in sight (one old Internet Explorer message box 
begged “Stop doing that!”).

Interim solutions were not particularly effective. Many solutions made use of mas-
sive caching of Web pages on “intermediate systems” that were closer to the perceived 
user pool, and many businesses used “proxy servers” (an old Internet security mecha-
nism pressed into service as a caching storehouse). Caching Web pages became so 
common that Internet gurus felt compelled to remind everyone that the point of TCP 
was that it was an end-to-end protocol and that fetching Web pages from caches from 
proxy servers was not the same as the real thing.
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So, HTTP evolved to make the entire process more effi cient. HTTP 1.0 created a 
true messaging protocol and added support for MIME types, adapted for the Web, and 
addressed some of the issues with HTTP 0.9 (but not all). In addition, vendors had 
been incrementally adding features here and there haphazardly. HTTP 1.1 brought all 
of these changes under one specifi cation. In particular, HTTP 1.1 added:

Persistent connections: A client can send multiple requests for related resources 
in a single TCP session.

Pipelining—Persistent connections permitted clients to pipeline requests to the 
server. If the browser requests images 1, 2, and 3 from the server, the client 
does not have to wait for a response to the image 1 request before requesting 
file 2.  This allows the server to handle requests much more efficiently.

Multiple host name support—Web sites could now run more than one Web server 
per IP address and host name.  Today, one Web server can handle requests for 
literally hundreds of individual Web sites, all running as “virtual hosts” on the 
server.

Partial resource selection—A client can ask for only part of a document of 
resource.

Content negotiation—The client and server can exchange information to allow 
the client to select the best format for a resource, such as MP3 or WAV format 
for audio files (the formats must be available on the server, of course).  This 
negotiation is not the same as presenting format options to the user.

Better security—Authentication was added to HTTP interactions with RFC 2617.

Better support for caching and proxying—Rules were added to make caching of 
Web pages and the operation of proxy servers more uniform.

HTTP 1.1 is the current version of HTTP.  With so many millions of Web sites in 
operation today, any fundamental changes to HTTP would be unthinkable. Instead, 
changes to HTTP are to be made through extensions to HTTP 1.1. Unfortunately, not 
everyone agrees about the best way to do this.  An HTTP extension  “framework” was 
written as RFC 2774 in 2000 but has never moved beyond the  experimental stage.

HTTP Model
The simplest HTTP interaction is for a browser client to send a request directly to the 
Web site server (running httpd) and get a response over a TCP connection between 
client and server.  With HTTP 1.1, the model was extended to allow for intermediaries 
in the path between client and server.  These devices can be proxies, gateways, tunnel 
endpoints, and so on. Proxy servers are especially popular for the Web, and a company 
frequently uses them to improve response time for job-related queries and to provide 
security for the corporate LAN.

Like FTP, HTTP invites data from “untrustworthy” sources right in the front door, and 
the proxy tries to screen harmful pages out.  The proxy also protects IP addresses and 
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other types of information from leaving the site. (Some companies feared that  workers 
would fritter away company time and so tried to limit Web access with proxies as 
well.) With an intermediary in place, the direct request/response becomes a four-step 
process.

1. Browser request: HTTP client sends the request to the intermediary.
2.  Intermediary request: The intermediary makes changes to the request and 

forwards the request to the actual Web server.
3.  Web server response: The Web site interprets the request and sends the reply 

back to the intermediary.
4.  Intermediary response: The intermediary device processes the reply, makes 

changes, and forwards it to the client browser.

Generally, intermediaries become security devices that can perform a variety of 
functions, which we will explore later in this book. It is not unusual to fi nd more 
than one intermediary on the path from HTTP client to server. In these scenarios, the 
request (and response) is created once but sent three times, usually with slightly differ-
ent information.  The difference between direct interactions and those with intermedi-
aries is shown in Figure 22.7.

HTTP Messages
All HTTP messages are either requests or responses. Clients almost always issue 
requests, and servers almost always issue responses. Intermediaries can do both.  The 
HTTP generic message format is similar to a text-based email message and is defi ned 
as a series of headers followed by an optional message body and trailer (which consists 
of more “headers”).  The whole is introduced by a “start line.”

CLIENT
(Runs browser)

SERVER
(Active Web site)

Request

Intermediary 1

Request Request Request

ResponseResponseResponse

Intermediaries (proxies or caching devices) can alter fields
in a request and generate an appropriate response.

Intermediary 2

Response

FIGURE 22.7

The HTTP models of interaction, showing how intermediaries can act on a request or response.
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<start-line>
<message-headers>
<empty-line>
[<message-body>]
[<message-trailers>]

The start line text identifi es the nature of the message. HTTP headers can be 
presented in any order at all, and they follow a <header-name>:<header-value> 
convention.  The message body frequently carries a fi le (called an entity in HTTP) 
found more often in responses than in requests. Special headers describe the encod-
ing and other characteristics of the entity.

TRAILERS AND DYNAMIC WEB PAGES
Web pages were originally statically defi ned in HTML and passed out to whoever was 
allowed to see them.  Web pages today are sometimes still created this way, but the most 
sophisticated Web pages create their content dynamically, on the fl y, after a user has 
requested it.  And for reasons of effi ciency, the beginning can be streamed toward the 
browser before the end of the result has been determined. Pages that include current 
date and time stamps are good examples of dynamic Web page content, but of course 
many are much more complex.

Dynamic Web pages, however, pose a problem for persistent TCP connections.  The 
browser has to know when the entire Web page response has been received.  With 
a static Web page, the size is announced in a header at the start of the item. But 
dynamic page headers cannot list the size ahead of time, because the server does 
not know.

HTTP today uses chunked encoding to solve this problem.  As soon as it is known, 
each piece of the response gets it own size (the chunk) and is sent to the browser. 
The last chunk has size 0, and can include optional “trailer” information consisting of a 
series of HTTP headers.

HTTP Requests and Responses
HTTP requests are a specifi c instance of the generic message format.  They are intro-
duced by a “request line.”

<request-line>
<general-headers>
<request-headers>
<entity-headers>
<empty-line>
[<message-body>]
[<message-trailers>]

A typical initial request from a browser to the Web site is shown in Figure 22.8.
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GET.index.html HTTP/1.1
Date: Mon, 04 July 2007 19:12:45 GMT
Connection: close
Host: www.example.com
From: walterg@example.com
Accept: text/html, text/plain
User-Agent: MSIE6.0 (Windows XP)

Request line
General headers

Request
headers

Entity headers

Message body

FIGURE 22.8

The HTTP request message, showing some details of the general and request headers.

If the request is sent to an intermediary, such as a proxy server, the host name would 
appear in the request line as the resource’s full URL: GET http://www.example.com. The 
use of the general, request, and entity headers are fairly self-explanatory. Request head-
ers, however, can be conditional and are only fi lled if certain criteria are met. Each HTTP 
request to a server generates a response, and sometimes two (a preliminary response 
and then the full response).  The format is only slightly different from the request.

<status-line>
<general-headers>
<response-headers>
<entity-headers>
<empty-line>
[<message-body>]
[<message-trailers>]

HTTP/1.1 200 OK
Date: Mon, 04 July 2007 19:12:48 GMT
Connection: close
Server: Apache/1/3/27
Accept-Range: bytes
Content-Type: text/html
Content-Length: 170
Last-Modified: Fri, 01 July 2007 22:15:32 GMT

<html>
<head>
<title>Welcome to the Illustrated Network Site!</title>
</head>
<body>
<p> This site under construction. Check back later... </p>
</body>
</html>

Status line
General headers

Response headers

Entity headers

Message body

FIGURE 22.9

The HTTP response message, showing the headers usually included.
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The status line has two purposes: It tells the client what version of HTTP is in use 
and summarizes the results of processing the client’s request.  The results are set as 
a status code and reason phrase associated with it.  The structure of a typical HTTP 
response, sent in response to the request shown in Figure 22.8, is shown in Figure 22.9. 
The response headers provide details for the overall status summarized in the fi rst line 
of the response.

HTTP Methods
HTTP commands, such as GET, are not called commands at all. HTTP is an object-
 oriented language, and instead of pointing out that all languages used for programming 
are to one extent or another object oriented we’ll just mention that HTTP commands 
are called methods. (Yes, the URI method http has other HTTP methods beneath 
it.) Most HTTP messages use the fi rst three methods almost exclusively.  The HTTP 
methods are:

GET—Requests a resource from a Web site by URL. Sometimes also used to upload 
form data, but this is not a secure method.  When the request headers contain 
conditionals, this situation is often called a conditional GET.  When part of a 
resource is requested, this is sometimes called a partial GET.

HEAD—Formatted very much like a GET, the HEAD requests only the HTTP headers 
from the server (not the target itself). Clients use this to see if the resource is 
actually there before asking for a potentially monstrous file.

POST—Sends a block of data from the browser to the server, usually data from a 
form the user has filled out or some other application data.  The URL sent must 
identify the function (program) that processes the data on the server.

PUT—Also sends data to the server, but asks the server to store the body of the 
data as a resource (file), which must be named in the URL.  This can be used 
(with authentication) to store a file on the server, but FTP is most often used 
to accomplish this and thus PUT is not often used (or allowed).

OPTIONS—Requests information about communication options available on the 
Web server, with an asterisk (*) asking for details about the server itself. Not 
surprisingly, this method can be a security risk.

DELETE—Asks the server to delete the resource, which must be named in the URL. 
Not often used, for the same reasons as PUT.

TRACE—Used to debug Web applications, especially when proxy servers and gate-
ways are in use.  The client asks for a copy of the request it sent.

CONNECT—Reserved for future use with SSL tunneling.

The initial HTTP RFC 2068 also defi ned PATCH, LINK, and UNLINK, but these have been 
removed. However, some sources continue to list them. Most of the HTTP methods are 
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“safe” methods that can be repeated by impatient users without harm.  The exception 
is the POST method, which should only be done once or side effects will result in incon-
sistent or just plain wrong information on the server.

HTTP Status Codes
The status codes used to provide status information to the browser are very similar to 
those used in FTP and email. Only the major (fi rst) digit codes are listed in Table 22.1.

Each status code has an associated reason phrase.  The reason phrases in the HTTP 
specifi cation are “samples” that everyone copies and uses.  They are intended as aids to 
memory and not as a full explanation of what is wrong when an error occurs. But a 
lot of browsers just display the 404 status code reason phrase, Not Found, and deem it 
adequate.

It’s not necessary to list all of the HTTP status codes, but one does require additional 
comment.  The 100 status code (reason phrase Continue) is often seen when a client is 
going to use the POST (or PUT) method to store a large amount of data on the server.  The 
client might want to check to see whether the server can accept the data, rather than 
immediately sending it all. So, the request will have a special Expect: 100-continue 
header in it asking the server to reply with a 100 Continue preliminary reply if all is 
well.  After this response is received, the client can send the data.

That’s the theory, anyway. In practice, it’s a little different. Clients usually go ahead 
and send the data even if they don’t get the 100 Continue response from the server 
(hey, the browser has to do something with all of that data).  And servers, perhaps think-
ing about all those users out there holding their breaths just waiting for 100 Continue 
responses before they turn blue, often send out 100 Continue preliminary responses 
for almost every request they get from a browser. But it was a fi ne idea.

HTTP Headers
It is not possible or necessary to list every HTTP header. Instead, we can just a take 
a look at the types of things HTTP headers do. First, some of the headers are end-
to-end and others are hop-by-hop.  As might be expected, the end-to-end headers are 
not changed as they make their way between client and server no matter how many 

Table 22.1 HTTP Status Codes and Their Meanings

Code Meaning

1xx Informational, such as “request received” or “continuing process”

2xx Successful reception, processing, acceptance, or completion

3xx Redirection, indicating further action is needed to complete the request

4xx Client error, such as the familiar 404, not found often, indicating syntax error

5xx Server error when the Web site fails to fulfi ll a valid request
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 intermediary devices are between client and server. Hop-by-hop headers, on the other 
hand, have information relevant to each intermediary system.

General Headers
General headers are not supposed to be specifi c to any particular message or compo-
nent.  These convey information about the message itself, not about content. They also 
control how the message is handled and processed. However, in practice general head-
ers are found in one type of message and not another. Some can have slightly different 
meanings in a request or response.  The general headers are outlined in Table 22.2.

Request Headers
The request headers in an HTTP request message allow clients to supply information 
about themselves to the server, provide details about the request, and give the client 
more control over how the server handles the request and how (or if) the response is 

Table 22.2 HTTP General Headers and Their Uses

Header Use

Cache-control These contain a directive that establishes limits on how the request or 
response in cached. Only one directive can accompany a cache-control 
header, but multiple cache-control headers can be used.

Connection These contain instructions that apply only to a particular connection. The 
headers are hop-by-hop and cannot be retained by proxies and used for other 
connections. The most common use is with the “close” parameters (Connec-
tion: close) to override a persistent connection and terminate the TCP session 
after the server response. 

Date Date and time the message originated, in RFC 822 email format.

Pragma Implementation-specifi c directives similar to Unix programming. Often used for 
cache control in older versions of HTTP. 

Trailer When the response is chunked, this header is used before the data to indicate 
the presence of the trailer fi elds.

Transfer-encoding Message body encoding, most often used with chunked transfers. This applies 
to the entire message, not a particular entity.

Upgrade Clients can list connection protocols they support. If the server supports 
another in common, it can “upgrade” the connection and inform the  client in 
the response.

Via Used by intermediaries to allow client and server to trace the exact path.

Warning Carries additional information about the message, usually from an intermediary 
device regarding cached information.
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returned.  This is the largest category of headers, and only the briefest description can 
be given of each.  They are listed in Table 22.3.

Response Headers
HTTP response headers are the opposite of request headers and appear only in mes-
sages sent from server to browser.  They expand on the information provided in the 
summary status line, as outlined in Table 22.4. Many response headers are sent only in 
answer to a specifi c type of request, or to certain headers within particular requests.

Table 22.3 HTTP Request Headers and Their Uses

Header Use

Accept What media types the client will accept, including preference (q).

Accept-Charset Similar to accept, but for character sets. 

Accept-Encoding Similar to accept, but for content encoding (especially compression).

Accept-Language Similar to accept, but for language tags.

Authorization Used to present authentication information (“credentials”) to the server.

Expect Tells the server what action the client expects next, usually “Continue.” 

From Human user’s email address. Optional, and for information only.

Host Only mandatory header, used to specify DNS name/port of Web site.

If-Match Usually in GET, server responds with entity only if it matches the value of the 
entity tags. 

If-Modifi ed-Since Similar to If-Match, but only if the resource has changed in the time interval 
specifi ed.

If-None-Match Similar to If-Match, but the exact opposite. 

If-Range Used with Range header to check whether entity has changed and request 
that part of the entity. 

If-Unmodifi ed-Since Opposite of If-Modifi ed-Since.

Max-Forwards Limits the number of intermediaries. Used with TRACE and OPTIONS. Value 
is decremented and when 0 must get a response.

Proxy-Authorization Similar to Authorization, but used to present authentication information 
(“credentials”) to a proxy server.

Range Asks for part of an entity.

Referer Never corrected to “referrer,” this is used to supply the URL for the “back” 
button function to the server (also has privacy implications).

TE Means “transfer encodings,” and is often used with chunking.

User-Agent Provides server with information about the client (name/version).
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Entity Headers
Finally, entity headers describe the resource carried in the body of the HTTP message. 
They usually appear in responses, but can appear in PUT and POST requests. Many of 
the entity headers have the same names as the MIME types they are based on, but with 
important differences.  The entity headers are outlined in Table 22.5.

Table 22.4 HTTP Response Headers and Their Uses

Header Use

Accept-Ranges Tells client if server accepts partial content requests using Range 
request header. Typical values are in bytes, or “none” for no support. 

Age Tells the client the approximate age of the resource.

ETag Gives the entity tag for the entity in the response. 

Location Gives client a new URL to use instead of one requested. 

Proxy-Authenticate Tells client how the proxy requires authentication, both method and 
parameters needed.

Retry-After Tells client to try the request again later, seconds or by date/time.

Server Server version of User-Agent request header, used for server details.

Vary Used by caching devices to make decisions.

WWW-Authenticate Tells client how the Web site requires authentication, both method and 
parameters needed.

Table 22.5 HTTP Entity Headers and Their Uses

Header Use

Allow Lists methods that apply to this resource. 

Content-Encoding Describes optional encoding method, usually the compression algorithm 
used so that the client can decompress the entity.

Content-Language Specifi es the human language used by the entity. It is optional and can 
specify multiple languages. 

Content-Length Size of the entity in bytes (octets). Not used in chunked transfers.

Content-Location Resource location as URL. Optional, but used if entity is in multiple places.

Content-MD5 Used for message integrity checking with Message Digest 5.

Content-Range Used for entities that are part of the complete resource. 

Content-Type Similar to MIME type and subtype, but not exactly the same.

Expires Data and time after which entity is considered stale.

Last-Modifi ed Date and time server “believes” entity last changed.
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Use of the Last-Modifi ed header is complicated by the fact that the server might not 
know when an entity was last modifi ed, especially if the resource is “virtual.” For dynamic 
content, this header should be the same as the time the message was  generated.

Cookies
A Web server gets a request, processes a request, and returns a response in a completely 
stateless manner. Every request, even from the same client a moment later, looks brand 
new to the server.

Stateless servers are the easiest to operate. If they fail, just start them up again. No 
one cares where they left off. You can even transfer processing to another host and 
everything runs just fi ne, as long as the resources are there. Stateless servers are best 
for simple resource-retrieval systems.

That’s how the Web started out, but unfortunately this is not how the Web is used 
today.  Web sites have shopping carts that remember content and billing systems that 
remember credit card information.  They also remember log-in information that would 
otherwise have to be entered every time an HTTP request was made.

How should the state information necessary for the Web today be stored? For bet-
ter or worse, the answer today is in cookies.  The term seems to have originated in 
older programs that required users to supply a “magic cookie” to make the program do 
something out of the ordinary (“Easter eggs” seem to be the GUI equivalent).  Accord-
ing to others, an old computer virus put the image onscreen of Cookie Monster (of 
Sesame Street fame) announcing, “Want cookie!”  The user had to type the word cookie 
to continue.  The cookie term is also used in BOOTP/DHCP.

Cookies were initially developed by Netscape and were formalized as a Web state 
management system in RFC 2965, which replaced RFC 2109. Cookies are not actually 
part of HTTP, and remain an option, but few Web browsers can afford to reject all cook-
ies out of hand (so to speak).

The idea behind cookies as a method of server state management is simple. If the 
server can’t hold state information about the user and the session, let the client do 
it.  When the server has a function that needs a state to be maintained over time, the 
server sends a small amount of data to the client (a cookie).

Cookies are presented when the server asks for them, and are updated as the ses-
sion progresses. Cookies are just text strings and have no standard formats, in that 
only a particular server has to understand and parse them. In Windows XP, cookies 
are stored in the cookies.txt fi le under the user’s Documents and Settings directory. 
Cookies just accumulate there until users clear them out (few do). If deleted, the fi le is 
built again from scratch. Looking at someone’s cookies is a quick and dirty way to see 
where the browser (not necessarily the user) has gone recently.

Cookies, as indispensable as they are on the Web today, tend to have a somewhat 
unsavory reputation.  They aren’t perfect: If a cookie is established to allow access to a 
book-shop Web site at home, the cookie is not present on the user’s offi ce computer 
and the Web site has no idea who the user is because there is no cookie to give to the 
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server.  A lot of users assume they’ve done something wrong, but that’s just the way 
cookies work.

Most browsers can be set to screen or reject cookies, mainly because cookies are a 
barely tolerated security risk to many people (many think the browser default should 
be to reject all cookies instead of accepting them). In particular, there are three big 
issues with cookies.

Sending of sensitive information— Banks routinely store user ID and password 
in a cookie. Even if it is encrypted when sent, the information is typically sit-
ting on your computer in plain text (waiting for anyone to look at it).

User tracking abuse—Servers can set cookies for any reason, including tracking 
the sites a user visits rather than storing useful parameters.  This is often seen 
as a violation of the right to privacy, and some Web browsers are silent when 
a cookie is set.

Third-party cookies—If a Web page contains a link (perhaps to a small image) to 
another Web site, the second site can set a cookie (called a third-party cookie) 
on your machine even though you’ve never visited (or intend to visit) the site. 
So, that must be how all those porn-site cookies got there.

Some people regard cookies as much ado about nothing, whereas others busily turn 
off all cookie support whenever they go on-line. But most people should at least con-
sider disabling third-party cookies, which really have no legitimate use when it comes 
to HTTP state management.
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QUESTIONS FOR READERS
Figure 22.10 shows some of the concepts discussed in this chapter and can be used to 
answer the following questions.

FIGURE 22.10

The Apache server capture.

1. Which version of Apache is the server using?

2. Which ports are the client and server using?

3.  Completely parse the following URL: http://www.examplebooks.com:8888/ cgi-
bin/ebook.php?HTTPforChimps#page345.

4.  Completely parse the following URL: 

 ftp://ftp.freestuff.com/Is%20This%20Really%20Free%3F.

5. What is a cookie used for? Examine your cookies.txt fi le.
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CHAPTER

What You Will Learn
In this chapter, you will learn about the secure sockets layer (SSL) and how it is 
used on Web sites.  We investigate the layers and operation of the SSL protocol and 
discuss the SSL’s use of certifi cates.

You will learn about the public key infrastructure (PKI) and how public keys 
are used for encryption.  We present a simple example of public key encryption 
and decryption using only a pocket calculator and no advanced mathematics.

Securing Sockets 
with SSL 23

Web site security and user authentication were not much of a concern in the HTTP 
chapter. But the popularity of the Web for e-commerce is based on trusting that the 
transactions sent over the Internet are secure.  To most users, this means two things:

Server authentication—The identity of the server is vouched for in some way 
(such as a certificate), so that users have confidence that the Web site is not 
run by a bunch of hackers collecting credit card or password information.

Safe passage—Data that passes back and forth between client and server cannot 
be read (decrypted) by hackers sniffing odd interfaces here and there.

In this chapter, we explore the SSL, the most widely deployed security protocol on 
the Web (and in the world) today. Many users notice the little yellow lock that appears 
in the lower right-hand corner of most Web browsers, and a large percentage of those 
realize that this means the browser has deemed this site “secure,” but few bother to 
investigate just what that means.

SSL AND WEB SITES
In the last chapter, we confi gured the hosts bsdserver and winsvr1 to act as a Web site 
using Apache. In this chapter, we’ll explore the security aspects of the Web software. 
We’ll be using the same equipment as in the previous chapter, as shown in Figure 23.1.
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FIGURE 23.1

Web sites on the Illustrated Network showing that the Apache Web server supports SSL.
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The Apache Web server software uses a type of SSL called OpenSSL.  What happens 
when we use the Apache Web server with the OpenSSL module on bsdserver? Let’s 
try it from wincli2 and see what happens. In the HTTP chapter, when we accessed the 
default Apache Web page (index.html) at http://bsdserver.booklab.englab.jnpr.net, the 
page mentioned SSL but did not display a security lock.

When we type in a request for the secure part of the bsdserver by using https, 
as in https://bsdserver.booklab.englab.jnpr.net, we get a default security alert 
right away from IE (as shown in Figure 23.2). It seems odd to warn about a secure 
 connection, but that’s what it does.

FIGURE 23.2

A security alert in IE, oddly “alerting” the user that the information cannot be viewed by others. 
Note that these warnings can be disabled.

FIGURE 23.3

A certifi cate security warning. Often the certifi cate has expired and has not yet been renewed.
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Most people choose not to see this warning over and over and click the box, but it’s 
good to see that the browser knows that it’s going to establish a secure connection. If 
we okay the operation, the fi rst thing that is noticeable is how much slower the server 
is to respond compared to the “regular” default Web page display—which is just about 
instantaneous because the two hosts are on the same LAN. Of course, the bsdserver is 
not the fastest platform, or the platform of choice, for commercial Web site hosting.

A lot is going on between server and client, but eventually the browser receives 
the site certifi cate and in this case immediately objects to the certifi cate provided by 
bsdserver.  This is shown in Figure 23.3.

The certifi cate must pass three major tests, and the certifi cate used for testing 
OpenSSL with Apache is wanting in all three categories. First, the issuing “company” 
does not exist. Second, the certifi cate has expired.  Third, the name on the certifi cate 
has nothing to do with bsdserver.  The user can view the certifi cate, and ultimately 
decide to proceed or essentially abort the request for the page. If we view the certifi -
cate used for testing in Apache SSL, the reasons for the warnings become obvious (as 
shown in Figure 23.4).

The testing certifi cate issued by the nonexistent Snake Oil CA not only expired 
long ago but is issued to a bogus domain. Nevertheless, the user can choose to view the 

FIGURE 23.4

Apache SSL test certifi cate, which fails on all three counts.
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details of the certifi cate fi elds, optionally store a copy of the certifi cate on the client, or 
choose to proceed (users cannot say they have not been warned!).

Clicking on OK fi nally (after another longish wait) delivers the secure Web page and 
displays the familiar browser secure lock in the lower right-hand corner of the window. 
We haven’t actually installed any “real” secure pages, so the same page is used for con-
tent as in the last chapter. However, the content is sent encrypted to the client—which 
is the point.  The page and lock are shown in Figure 23.5. IE7 moves the lock to the top 
of the page, but it’s the same lock.

We can always view the certifi cate again by double-clicking on the lock.  We see the 
same view as in Figure 23.4.  The Details tab provides information about the certifi cate. 
The following are the fi elds in the Snake Oil certifi cate in detail.

■ Version—V3 (SSLv3)
■ Serial Number—01
■ Signature algorithm—md5RSA
■  Issuer—ca@snakeoil.dom, Snake Oil CA, Snake Oil, Ltd, Snake Town, Snake 

Desert, XY

FIGURE 23.5

The secure Web page and lock (IE 7 moves it to the top of the page). Note the use of https.
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■ Valid From—Thursday, October 21, 1999 11:21:51 AM
■ Valid To—Saturday, October 20, 2001 11:21:51 AM
■  Subject—www@snakeoil.dom, www.snakeoil.dom, Webserver Team, Snake Oil, Ltd, 

Snake Town, Snake Desert, XY
■ Public key—RSA (1024 bits; all 128 bytes follow)
■ Subject alternative name—RFC822 Name5www@snakeoil.dom
■ Netscape comment—mod ssl generated custom server certifi cate
■ Netscape Cert Type—SSL Server Authentication (40)
■ Thumbprint algorithm—sha1
■ Thumbprint—20 bytes displayed

The Ethereal capture of the session shows that it takes 98 packets between client 
and server for an entire secure exchange. It also took almost 3 minutes to load the SSL 
page, but much of this time was “user think time” spent examining the warnings and 
alerts for the purposes of this book.

There is much more that could be explored in SSL, but the procedures become 
complex very quickly. Interested readers are referred to texts devoted to security 
issues.  The rest of this chapter explores in more detail what we’ve just seen.

The Lock
The lock in the browser always gives users the strength of encryption used. Passing 
the mouse over the lock and pausing it will display a message box with text such as 
SSL Secured (128 Bit) in Internet Explorer (IE).  This means that the keys used for 
encryption and decryption are 128 bits long, barely respectable today. Other browsers 
have other ways of revealing this information.

If you double-click on the lock, you’ll be able to see the certifi cate information and 
purpose—which is usually to verify the identity of the server (remote computer).  The 
information should also show the domain for which the certifi cate was issued (such 
as www.example.com), which should match the Web site.  The issuer of the certifi cate is 
available, as well as the dates the certifi cate is valid.

Modern browsers have a built-in security feature that displays a warning message 
when you try to send information to a Web site that has a certifi cate “problem.” The 
certifi cate could have expired, or the name on the certifi cate might not match the Web 
site.  The user can choose to proceed, or not, or view the certifi cate itself.

Servers use the certifi cate to derive two keys, public and private.  The public key 
is part of the digital certifi cate sent to the client browser.  The public key is used to 
encrypt initial data sent to the server to set up session keys for the transaction.  The 
reason the public key is not used throughout will be examined later in this chapter.

Some people get their own personal certifi cates and use them to secure a lot of 
what they do on the Internet, even protecting their email messages. Let’s take a closer 
look at how SSL works as a protocol layer in TCP/IP.
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Secure Socket Layer
The SSL protocol was invented as a way to secure Web sites, but the status of SSL as 
a  protocol layer allows it to be used for any client–server transactions as long as they 
use TCP. SSL is the basis of a related method, Transport Layer Security (TLS), defi ned in 
RFC4346. Both form a complete socket layer sitting above TCP and UDP and add authen-
tication (you are who you say you are), integrity (messages have not been changed 
between client-server pairs), and privacy (through encryption) to the Internet.

Figure 23.6 shows the relationship between SSL/TLS and the socket interface. SSL 
and TLS are so closely related that they both use the same well-known port. Many 
implementations of SSL support TLS. In fact, Ethereal often parses bits as “TLS” instead 
of the expected “SSL” in many places.

Typical SSL implementations on the Internet only authenticate the server.  That 
is, SSL is used as the de facto standard way client users can be sure that when they 
log on to www.mybank.com the server is really an offi cial entity of MyBank and not 
a phony Web site set up by hackers to entice users to send account, Social Security, 
PIN, or other information hackers always fi nd useful. SSL used by a server is indicated 
by the little “lock” symbol that appears in the lower right-hand corner of most Web 
browsers.

TLS 1.0 can be considered an extension of SSL 3.0 to include the client side of the 
transaction. SSL is still used in the Netscape and Internet Explorer browsers, and in 
most Web server software. Not all Web pages need to be protected with SSL or TLS, and 
SSL can be used free for noncommercial use or licensed for commercial applications.

Why would a Web server need to authenticate and protect the client? Well, consider 
the liability of and bad publicity for MyBank if www.mybank.com accepted a request on 
the part of a fake client user who transferred someone’s assets to an offshore account 
and closed the accounts? Today, many activities that could easily be done over the Inter-
net require a phone call or fax or letter with signature (or several of these!) to protect 
the server from phony clients.

Application Programs

TCP

IP Layer

Network

Secure Sockets Layer/ Transport Layer Security
(Authentication, Integrity, and Privacy for Applications)

FIGURE 23.6

SSL/TLS as a “socket layer” protocol, showing how it sits on top of TCP.
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PRIVACY, INTEGRITY, AND AUTHENTICATION
Before exploring SSL and TLS in more depth, an introduction to the methods they use 
to provide authentication, integrity, and privacy is necessary.  A more complete discus-
sion of these methods, especially certifi cates and public key cryptography, is presented 
in the chapter on IPSec.

Privacy
Privacy is the easiest for most to understand. Coded messages based on “conventional” 
or “traditional” secret keys have been used since ancient times, and anyone who has 
played with a “secret decoder ring” from a cereal box knows that the point is that only 
the sender and receiver know the shared secret key needed to code and decode the 
message. Most people also understand that such codes can be broken (some easily, 
some only with diffi culty) by extensive analysis of the messages (the more text avail-
able, the better) or by simply fi nding out the “secret” key (the basis of many old spy 
movies).  The key is the weakest point of the system: You can’t use the code to protect 
the key for the same code because it is sent to other communication partners!

Today, public key (or asymmetrical) cryptography addresses the “key exchange 
problem” by using two keys—either one of which can be used to encrypt a message. 
One key remains private (i.e., known only to one party), whereas the other key is made 
public and available to anyone. Either key, public or private, can be used to encrypt 
a message—but then only the other key can be used to decrypt the message. (That’s 
right, the key used for encryption can’t even be used to “undo” the initial coding. Be 
careful when deleting the uncoded messages that the encrypted texts are based on!) 
A complete example of public key encryption is given later in this chapter.

Messages encrypted with the public key can only be decrypted by the private key, 
which means that the key exchange problem is solved.  And if you give your public key 
to someone careless, it doesn’t really matter: Anyone can learn the public key and the 
method is still secure as long as your private key remains private. Even better, we can 
now exchange old-fashioned shared secret keys this way and use them for a while (the 
longer a secret key is used, and the more text accumulates to analyze, the less secure 
the secret key). For instance, you can use your bank’s public key to send transactions 
across the Internet and remain confi dent that only the bank can decrypt the message 
using its secret key.

Integrity
Traditional methods of making sure that the message sent is the one received left a lot to 
be desired.  Witnessing documents with other signers, using public notaries, and other 
methods all had problems that could be circumvented.  Traditional message integrity 
simply relied on the strength of the encryption method to make sure that no one “in 
the middle” had changed the message in transit. It is one thing to tell MyBank “transfer 
$10,000 to pay off my credit cards” and another to fi nd out MyBank thought you said 
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“transfer $10,000 to Harry Hacker.” As fascinating as your broken bank  correspondence 
might be to read, hackers usually really want to do some damage.  Then, as soon as the 
wire transfer has cleared, Harry can close his account and move on to the next victim.

Those who have been around networks know the concept of a frame checksum 
or one-way hash.  The checksum is a fi xed number of extra bits appended to a frame 
(message) to verify that no bits have been altered by errors on the network while the 
frame is in transit. Even the checksum itself is included in the “protection.”  The modern 
equivalent of the checksum hash, extended to many more bits and applied to the mes-
sage text itself (or layers of the message plus headers added), is called a message digest. 
A message digest is just a big one-way hash, which means that the original text cannot 
be recovered from the hash value. On the other hand, the changes made might just 
yield the same hash value as the original message. Message digests understand this and 
are mathematically designed to make sure the chances of this happening are very slim, 
on the order of one chance in a million or better.

An associated use of message digests is as a digital signature.  After all, the message 
digest hash only says that the message to MyBank arrived unaltered. It doesn’t guaran-
tee that the message really came from me.  Anyone in the middle knowing the message 
digest algorithm can simply substitute the entire message, append the proper message 
digest, and sent it on to the bank.

But a digital signature involves more than just a hash on the message.  A digital 
 signature is used with public key encryption to encrypt not only the text and hash value 
but other information (such as a sequence number) with my private key.  The  digital 
signature is appended to the encrypted message and is valid only for that  message.  The 
digital signature can be decrypted with my public key, which might sound like defeat-
ing the purpose—but the point is that only you can create a digital signature using the 
message digest, and no one can change the digest and still sign it as you have (as long as 
my private key remains private, of course). No one else can use this signature later, for 
the same reason. Digital signatures provide the receivers with nonrepudiation, mean-
ing that MyBank can be sure that you sent the message and that it’s really the message 
you sent (again, as long as you protect your private key).

Authentication
There is only one more concept that remains in understanding how SSL and TLS work. 
This is the idea of a certifi cate.  Thus far, we have developed a way for an individual to 
send encrypted, unalterable, signed messages to MyBank at www.mybank.com.  We do 
this using the bank’s public key, available to anyone. (Of course, the digital signature 
depends on the public key—although the certifi cate concept applies here as well.) But 
how do you know that the public key provided is really the bank’s key? Where does 
MyBank’s public key come from?

It comes from a certifi cate, of course.  The bank provides me with a certifi cate con-
fi rming the public key and the identity of the holder of the key. How do you know the 
certifi cate is real? After all, all forms of encryption and authentication are susceptible 
to the “man-in-the-middle” exploit—where someone is busily intercepting messages 
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between client and server and substituting their own certifi cates (with their own keys) 
to both parties. One solution would be to hardcode the certifi cates into every browser, 
but this solution does not scale.

A more practical answer to the “man-in-the-middle” threat is that you know the cer-
tifi cate is real because you got it from a certifi cate authority (CA).  The CA is a trusted 
third-party agency whose job it is to distribute certifi cates, usually on behalf of com-
mercial enterprises that pay for their services. Certifi cates associate a public key with 
the identity of a subject (server or user), along with the public key.  The CA issuer digital 
signature is included, as well as a period of validity (start and end), version and serial 
number of the certifi cate, and sometimes “extension” information.

CAs often require that certifi cate information be delivered in person by more than 
one validated representative of the company being “certifi ed.” This root level CA is also 
covered by a certifi cate, but one that is self-signed. Even on the Internet, someone has 
to be trusted implicitly. Other CAs can issue the certifi cate in a certifi cate chain. Some 
certifi cation users refuse to accept a certifi cate if the chain is too long (the longer the 
chain, the greater the risk that one certifi cate in the chain might be bad).

Before central bank regulation became common, anyone could found a bank just by 
getting people to trust them with their money.  Today, anyone can follow a few rules and 
be a CA and issue certifi cates—and that is especially true for private intranets in a large 
organization.  Among the rules are procedures for validating, managing, and revoking cer-
tifi cates through certifi cate revocation lists (CRLs). CRLs are needed because certifi cates 
are passed around a lot and it is impossible to tell just by examination that a certifi cate is 
no longer valid because things have changed or it has been compromised or abused.

If the concepts of public key encryption, message digests, digital signatures, and cer-
tifi cates still seem somewhat vague and abstract, that’s only to be expected.  These are 
diffi cult concepts that take time to assimilate.  The IPSec chapter revisits the concepts 
in more detail, and gives examples of how these concepts all work together.

PUBLIC KEY ENCRYPTION
Public key encryption, using a private key to recover what is encrypted with a public key, 
is based on complex mathematical principles. But that doesn’t mean that the use of pub-
lic key encryption is all that diffi cult to perform.  After all, computers do it with ease.

Let’s use something no more complex than an ordinary pocket calculator to per-
form this type of encryption.  Along the way, several important points about public key 
encryption will be uncovered.

Pocket Calculator Encryption at the Client
The security that public key encryption provides is a consequence of the diffi culty 
of factoring large numbers, not the complexity of the method. You can do PKI on 
any pocket calculator.  The “how” is shown in the “Three Magic Numbers” sidebar and 
explained in material following.
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We have to start with three “magic” numbers, and two of them must be prime numbers. 
Usually, you choose two large primes fi rst (hundreds of digits) and derive a third huge 
number called N (for “normalizer”) through a very complex process. N is never called a 
key in the documentation, but N is necessary for both encrypting and decrypting.  The 
security comes from the fact that given a large N and one of the keys, it is next to impos-
sible to derive the second prime key number. In this example, N 5 33, and the two 
primes are 3 and 7.  There is no obvious relationship between 33 and 3 and 7, although 
with these small numbers, a code cracker could fi gure it out in a minute or two.

One of the two primes becomes the public key (it doesn’t matter which), and the 
other becomes the private key. Never consistently assign the smaller number as the 
public key.  This speeds up client encryption, but is a security risk if people know one 
factor must be larger than the other. In this example, N 5 33, the public encryption key 
E 5 3, and the private decryption key D 5 7.

Example
To encrypt the plain-text letter “O,” fi rst convert it to a number. “O” is the 15th letter of 
the alphabet; we can use that. Of course, we have to obtain the values of the server’s 
N and E values.  We can get those from a certifi cate, in that the values of N and E must 
match up properly with the D that the receiver retains.

Now write down the “O” value E times and multiply, using any suitable calculator 
with at least eight (8) positions. So, 15 3 15 3 15 5 3375.  This is not too large, so the 
encryption does not need N yet.

Divide by N and compute remainder.  This is just 3375/33 5 102.27272.  The frac-
tion is there because calculators do not give remainders directly.  We can get it by sub-
tracting 102, leaving 0.27272.  Then, 0.27272 3 33 5 8.99976 5 9. We have to round a 
little due to the limited precision of the decimal fraction. The client sends 9, which is 
the cipher text for the 15 (“O”) plain text, over the network.

Three Magic Numbers

1.  Start with three magic numbers: Public “normalizer” N 5 33, public
 encryption key E 5 3, and private decryption key D 5 7.

2.  Encrypt plain-text letter “O” (15th letter of the alphabet) from certifi cate 
N and E values.

3. Write down “O” value E times and multiply:
 15 3 15 3 15 5 3375

4.  Divide by N and compute remainder:
 3375/33 5 102.27272…
 0.27272… 3 33 5 8.99976 5 9

5. Send 9, the cipher text for plain-text 15, over the network.
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At the Server

1.  Get back “O” without using E, but only N 5 33 and D 5 7. The receiver 
gets cipher-text 9 over the network.

2. Write down cipher-text value D (7) times and multiply, applying 
“normalizer” whenever number gets large:

  9 3 9 3 9 3 9 3 9 3 9 3 9 5 (531,441) 3 9
 But 531,441/33 = 16,104.272 and 0.272 3 33 5 8.976 5 9.
  So, (9) 3 9 5 81.
 Divide the fi nal result by N and compute the remainder:
  81/33 5 2.4545454…
  0.4545454 3 33 5 14.99998 5 15

3. Thus, 15 plain text is the letter “O” sent securely.

Pocket Calculator Decryption at the Server
Thus far, the client has used the proper N and E from the server to encrypt “O” (15) 
as cipher-text 9.  This is what is sent on the network.  The magic of PKI is being able 
to get back “O” without using E, only N and D. (Because N is known to and used 
by both parties, it is never called a key itself.) In this example, N 5 33, E 5 3, and 
D 5 7.  The following is how to get back “P” using only N 5 33 and D 5 7 at the 
server end.

1. Write down the cipher-text value (9) D times and multiply. If the number 
gets too large for the calculator, we can apply N to get back a more useable 
number.

  9 3 9 3 9 3 9 3 9 3 9 3 9 5 (531,441) 3 9
 If we don’t want to risk overfl owing the calculator, we can apply N at 

any time as follows:
  531,441/33 5 16,104.272 (subtract 16,104) and 0.272 3 33 5 8.976 5 9 

 (Again, rounding is needed to deal with the annoying decimal fractions 
 that calculators insist on providing.)

 So, (9) 3 9 5 81. Note how the single (9) replaces 531,441. It is just a 
coincidence that this turned out to be 9 also.

2. Divide the fi nal result by N and compute remainder:
 81/33 5 2.4545454, so subtract 2
 0.4545454 3 33 5 14.99998 5 15
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The security in PKI is in the diffi culty of fi nding D given the values of E and N.  This 
example is mathematically trivial to hackers and crackers. But try N 5 49,048,499 and 
E 5 61.  The answer is D 5 2,409,781. Usually, N, E, and D are anywhere from 140 to 156 
or more digits long.  To deal with text messages, strings of letters can be thought of as 
numbers. So, “OK” becomes 1511.  ASCII is typically used.

Digital signatures employ the same public keys as well. Either key, E or D, can be 
used to encrypt or decrypt. You just need to use the other to reverse the process (try it 
with “O”). So, any message encrypted with D can only be decrypted with E (my public 
key). So, any text that can be decrypted with E (and N) had to come from me as long 
as my private key D remains secure.

PUBLIC KEYS AND SYMMETRICAL ENCRYPTION
As has just been pointed out, public key encryption is done routinely by computers—
but it’s not an easy task, even for modern processors. Computers are really an engi-
neering tool and were generally scorned by mathematicians until relatively recently. 
In fact, sometimes a mathematician will ask a computer scientist what value of p is 
used in computations.  Any value that contains less than an infi nite number of digits is 
incorrect, of course.  At some point the loss of accuracy is fi ne for engineers, but not for 
“pure” mathematicians.

So, the length of the strings encrypted with public keys must be limited to what a 
computer can handle.  We have to admit, the fi rst time we heard about “128-bit encryp-
tion,” we thought it would be interesting because no programming languages at the 
time supported “integers” longer than 64 bits—let alone powers involving 128-bit 
 numbers. Normalization helps, of course, but the computational drain of public keys 
on general processors is substantial.

For this reason, SSL uses public key encryption as little as possible—typically only to 
establish symmetrical keys that can be used much more effi ciently with existing algo-
rithms and processors. Naturally, the symmetrical keys are much less secure than public 
key encryption, but they are changed more often and used for shorter periods of time.

SSL AS A PROTOCOL
SSL is a protocol layer all on its own that is placed between a connection-oriented, 
network layer protocol (almost always TCP) and the application layer protocol 
(such as HTTP) or program. Connections are useful to provide a convenient way to 

3. Thus, the plain-text 15 is the letter “O” sent securely using PKI.  That’s all 
there is to it! Of course, usually it’s a number that’s encrypted—but so 
what? Try the number 19 for yourself. You might have to “normalize” on the 
encryption side as well, but it still works.
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 associate security parameters with a specifi c fl ow of packets. SSL uses certifi cates for 
 authentication, digital signatures and message digests for integrity, and encryption for 
privacy. Each of the three security areas has a range of choices allowed in order to 
respect local laws regarding cryptographic algorithms and new technologies to be 
included as developed. Specifi c choices in each area are negotiated when a protocol 
session (connection) is set up.

SSL Protocol Stack
The SSL protocol stack is shown in Figure 23.7.  TLS can be regarded as an enhanced 
version of the SSL protocol stack, but the components are essentially the same.

SSL usually uses Diffi e-Hellman (a secure key exchange method used on unsecure 
networks) to exchange the keys.  The handshake procedure itself uses three SSL pro-
tocol processes: the SSL Handshake Protocol for the overall process, the SSL Change 
Cipher Spec Protocol for Cipher Suite specifi cation and negotiation, and the SSL Alert 
Protocol for error messages.

All three of these protocols use the SSL Record Protocol to encapsulate their mes-
sages, as well as the application data fl owing on the session once established.  The nice 
thing about the SSL Record Protocol is that it provides a way to renegotiate active 
session parameters or establish a new session using a secure path. Initial session hand-
shakes without a functioning and secure SSL Record Protocol must use a NULL Cipher 
Suite (plain text), which is of course a risk.

SSL Session Establishment
Established SSL sessions can be reused, which is good because the SSL session 
 establishment process requires the exchange of many messages. Sessions are estab-
lished after a complex handshake routine between client and server.  There are many 

SSL
Handshake
Protocol

SSL Change
Cipher Spec

SSL Alert
Protocol

SSL Record Protocol

TCP

IP Layer

Network

HTTP (Others...)

FIGURE 23.7

The SSL protocol stack in detail showing its relationship to HTTP and other protocols.
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 variations in the details of SSL session establishment, but Figure 23.8 shows one of the 
most  common.

By default, SSL uses TCP port 443. Of course, a user typically just uses http:// (or 
nothing at all) when accessing a Web page. Rather than making users remember to 
type in the port number at the end of the URL, SSL is invoked with a URL starting with 
https://.  This should not be confused with Web pages distinguished by the .shtml 
ending, which means that the Server Side Includes (SSIs) are in use for that page.  There 
are four major phases to the SSL session establishment process.

1. Initial Hello exchange
2. Optional server certifi cate presentation and request (authentication of server to 

client)
3. Presentation of client certifi cate if requested (authentication of client to server)
4. Finalize Cipher Suite negotiation and fi nish session establishment handshake

Usually, only the server presents its certifi cate to the client (user). Most users don’t 
have certifi cates to authenticate themselves to the server, but this will change with TLS. 
Regarding Cipher Suite negotiation, SSL 3.0 defi nes 31 Cipher Suites consisting of a 
key exchange method, the cipher (encryption method) to use for data transfer, and the 

Client Server

Client Hello

Server Hello

Establishes SSL version, session ID,
Cipher Suite, compression method,
and exchanges random values

Optionally sends server certificate
and requests client certificate

Sends client certificate to server
if requested

Change Cipher Suite if necessary
and complete handshake process

Certificate

Certificate Request

Server Hello Done

Certificate

Certificate Verify

Change Cipher Spec

Finished

Change Cipher Spec

Finished

FIGURE 23.8

One form of SSL session establishment. There can be others, but this form is very common.
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message digest method to use to create the SSL Message Authentication Code (MAC). 
There are nine choices for the traditional shared secret key encryption used in SSL.

■ No encryption
■ 40-bit key RSA Data Security, Inc. Code (RC4) stream cipher
■ 128-bit key RC4 stream cipher
■ 40-bit key RC2 Cipher Block Chaining (CBC)
■  The venerable Data Encryption Standard (DES), DES40, and Triple DES (3DES), 

all with CBC
■ Idea
■ Fortezza

CBC uses a portion of the previously encrypted cipher text to encrypt the next block 
of text.  There are three choices of message digest.

■ No message digest
■ 128-bit hash Message Digest 5 (MD5)
■ 160-bit hash Secure Hash Algorithm (SHA)

SSL Data Transfer
All application data and SSL control data use the SSL Record Protocol for message trans-
fer. Details vary, but usually the SSL Record Protocol will fragment the application data 
stream (perhaps a Web page) into record protocol units. Each unit is  typically compressed 
(compression adds a layer of complexity to unauthorized decryption attempts), and the 
MAC is computed before the entire unit is encrypted.  The end result is tucked into a TCP 
segment and IP packet and sent on its way.  This process is  illustrated in Figure 23.9.

SSL Implementation
Few programmers write an SSL implementation from scratch. SSL is usually imple-
mented as a toolkit library, and patented cryptographic functions must be licensed 
anyway. Public key packages are patented as well, and there are export restrictions on 
cryptographic algorithms in the United States.  All of these factors combine to discour-
age individuals from implementing SSL (as opposed to plain sockets) on their own.

Two public key toolkits are popular. RSARef is the RSA “reference” public key 
package, including RSA encryption and Diffi e-Hellman key exchange. It also features 
unsupported, but free, source code and is to be used for noncommercial applications. 
BSAFE3.0 (“Be-safe,” not an acronym) is the commercial version of RSARef.  The public 
key toolkits can be combined with any SSL toolkits, including:

SSLRef—An example SSL 3.0 implementation from Netscape Communications 
Corp.

SSLava—An SSL 3.0 toolkit from Phaos Technology written in Java.
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OpenSSL—A free noncommercial implementation of SSL 3.0 (and 2.0) and TLS 
2.0) that can be used outside the United States. In the United States, patent 
restrictions require use of RSARef or BSAFE3.0.

SSL Issues and Problems
SSL is not perfect, of course. SSL suffers from a number of limitations, most of which 
can be overcome with careful planning and attention to detail.  The sections that follow 
discuss a representative list of SSL issues.

Computational Complexity
As we’ve seen, public key encryption is so processor intensive that we avoid it  whenever 
we can.  And because the server must perform the SSL handshake for every connection, 
OpenSSL struggles under heavy workloads. Hardware acceleration with special cards 
helps, and load balancing among multiple servers all representing the same Web site 
helps as well.

Clear Private Keys
The server has to store the private key somewhere, and usually in clear form  (otherwise, 
we just move the issue to the next key, or the next, and restarts become a real problem 
unless the actual key is somewhere on the system).  The point is, of course, that data 
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FIGURE 23.9

The SSL record protocol showing how protocol units are compressed and encrypted.
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might be transmitted over the network in encrypted form but it is seldom stored on 
the server in an encrypted form.  The physical security of the server is essential, and 
a technique called perfect forward secrecy is also helpful.  We’ll meet forward secrecy 
again in a discussion of IPSec.

Stolen Credentials
Certifi cate revocation lists are fi ne, but if a private key or certifi cate is stolen it can 
take a while for the organization to fi gure out that there is a bogus www.example.com 
site out there stealing people’s money and identities. It’s better to query the CA with 
a special protocol, such as the Online Certifi cate Status Protocol (OCSP)—defi ned in 
RFC 2560—but that’s not common (and may never be).  Again physical security is of 
paramount importance.

Pseudorandom Numbers and “Entropy”
In SSL, clients and servers both have to generate random numbers and data to use for 
session keys.  The problem is that most computers’ pseudorandom number genera-
tors (PRNGs) are not adequate for true security because they are predictable (one of 
the reasons they are pseudorandom in the fi rst place).  The seed number used as input 
to the PRNG must itself be as random as possible, and many SSL implementations use 
seeds that do not have enough “entropy” (a measure of disorder or randomness).  There 
are software-based workarounds for this.

Works Only with TCP
SSL only protects applications that use TCP.  This is fi ne for HTTP, but more and more 
critical data on the Internet uses UDP and not TCP.  We’ve already noted that multicast 
uses UDP, and we’ll see that VoIP does as well.  These data streams need protection, but 
SSL cannot currently provide it.

Inadequate Nonrepudiation 
Suppose you purchase a product over the Internet that has a rebate. You have to send 
proof that you are the person that purchased the product to the rebate “fulfi llment cen-
ter” to receive the rebate.  This is nonrepudiation in the sense that the company cannot 
say to the rebate center you didn’t purchase the product. However, SSL cannot provide 
this nonrepudiation.  The workaround, which involves the company and you having 
certifi cates, is relatively easy (but this will take a while to become the standard).

When using any security method, all of the system’s “vulnerabilities” are diffi cult to 
seal. It’s just diffi cult to detect and patch up all cracks in a complex system.

I once worked in an organization with a coworker who was famous for “playing” 
with the servers and their users by simply intercepting messages on the LAN.  When the 
organization switched to encrypted communications, I tried to console him, thinking 
his hacking days were over. “That’s all right,” he told me, “I know where the backups 
are.  Those aren’t encrypted.”

Where are those frequent backups of the Web servers’ information? How secure 
are they? Security is always a never-ending battle where one side or the other seems 
to gain an advantage for a while, but never for long. Many of the limitations of SSL are 
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addressed in TLS 1.1, but TLS is new and most clients are not as sophisticated as servers 
when it comes to security.

A Note on TLS 1.1
The biggest shortcoming of SSL is the fact that as typically implemented only the server 
is authenticated to the user.  That is, the server certifi cate with the server’s public key 
and other information is presented to the client. But clients such as Web browsers sel-
dom have certifi cates to present to the server to authenticate the user. Server authenti-
cation is fi ne for Internet commerce (encrypted personal and credit card information 
is sent to the server) but not so good for on-line banking and other applications where 
mutual authentication is desired, if not indispensable.

Implementation of TLS 1.1 (RFC4346) allows clients (users) to use the full capabili-
ties of the standardized PKI.  This topic is explored more fully in the chapter on IPSec.

SSL and Certifi cates
Let’s take a close look at how SSL handles certifi cates. Ordinarily, once SSL is installed 
on a server you have to generate a certifi cate request to one of the major CAs (such as 
VeriSign).  There are many types of certifi cates available, such as personal (mainly for 
email), code signing (for downloaded programs), and Web site (which is what we’re 
talking about here).

Of course, the certifi cate has to be distributed by a CA, which also has to be set up. 
In OpenSSL, most CA operations can be done at the CLI, but this method is not really 
suitable for a production environment.

No matter which SSL server software is used, they all tell you how to generate a 
certifi cate signing request (CSR). Once this is done, the software generates a public/pri-
vate key pair. You send the public key and the CSR to the certifi cate-issuing authority.

If all is in order when reviewed, including related documentation, the response is 
emailed to the applicant and loaded into the server SSL software. You usually get three 
things in the response:

■ The CA’s certifi cate containing the public key
■ The local certifi cate identifying the server
■ A certifi cate revocation list with a list of certifi cates revoked by the CA

For testing purposes, it is not necessary in most cases to obtain a “real” certifi cate. 
OpenSSL, for example, includes the testing certifi cate from the Snake Oil CA that is 
functional but not intended for use (hopefully, the “snake oil” name, used for useless 
tonics or medications, will be a tip-off to users).
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QUESTIONS FOR READERS
Figure 23.10 shows some of the concepts discussed in this chapter and can be used to 
answer the following questions.

1. Which port is used by https?

2. Which version of SSL is used at the record layer?

3. The capture says the “version” of SSL used is TLS 1.0.  Why is that?

4. Which message should be sent in response to a Client Hello?

5. Is SSLv2 DES encryption with SHA supported by the client?

FIGURE 23.10

Ethereal capture of an SSL Client Hello frame. Note the list of encryption methods and details in 
the cipher suite.
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Network management is an important aspect of networking, and the Internet is 
no exception. This part of the book explores SNMP, RMON, and the MIB.
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CHAPTER

What You Will Learn
In this chapter, you will learn how SNMP is used to manage devices on a TCP/
IP network. We’ll explore the SNMP model with many servers (agents) and few 
 clients (managers).

You will learn about MIBs and the SMI tree for designating management 
 information. We also briefl y discuss RMON (remote monitor) and private manage-
ment information bases (MIBs).

Simple Network 
Management Protocol 24

Network management, like network security, is often treated like an adjunct to the true 
task of networking, which is to relentlessly shuttle bits about (i.e., until something goes 
wrong). Then everyone wonders why it couldn’t be easier to fi gure out what went hay-
wire. Without network management facilities, the network is like driving a car without 
fuel-level, water-temperature, or oil-pressure gauges. When the car slowly glides to a 
halt, there are few clues of even where to start looking.

The Internet outgrew the humble go-have-a-look-at-it school of network manage-
ment by the late 1980s, when it seemed like colleges and universities were sticking 
routers in every other building around the campus and then fi nding someone who 
would not object to being placed in charge of the devices. Little did they realize that 
they would be expected to ensure that the out-of-the-way device was functional day 
and night, 365 days a year. They ran their portion of the Internet on a PING and a 
prayer.

It’s not that management of network devices was unknown at the time, or deemed 
unnecessary. Vendors always had some sort of management functions tucked away in 
their software. The problem was that each vendor’s interface was different (sometimes 
in the same product line), the client software expensive and proprietary, and the net-
work operations centers (NOCs) that existed tended to consist of rooms full of equip-
ment that no one knew how to operate equally well.

But knowing that network management was essential and creating a standard for 
network management on the Internet were two different things. The international 
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FIGURE 24.1

SNMP on the Illustrated Network, showing the hosts used as SNMP clients and the router with SNMP 
enabled.
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standard for network management, itself a new creation at the time, was the Com-
mon Management Information Services/Common Management Information Protocol 
(CMIS/CMIP). However, this standard (geared to the needs of public telephony car-
riers) was loaded with features unnecessary to the Internet at the time. So, Internet 
administrators took what they could from the ISO specifi cations and created SNMP 
fairly independently.

SNMP CAPABILITIES
The need for network management information has to be weighed against the need for 
security. Yet many organizations routinely run SNMPv1 on their network nodes, hubs, 
or routers, and seldom take advantage of the heightened security available in many 
SNMPv1 implementations or consider SNMPv2. Organizations routinely block Telnet 
access to their routers, yet allow SNMP access without too much worry.

Just how much information can be gathered from a router running SNMPv1when 
no steps have been taken to protect information? Quite a bit, actually.

Let’s enable SNMP on one of our routers, CE6, attached to LAN2, and use  bsdclient 
on LAN1 and bsdserver on LAN2 to see what we can do with SNMP. There are many 
nifty GUIs available for SNMP, but we’ll use FreeBSD’s scli application to maximize 
information and minimize clutter on the screen. We won’t be interested in traffi c 
 histograms or historical data anyway. The equipment used in this chapter is shown in 
Figure 24.1.

Enabling SNMP on a Juniper router is very straightforward (just setting values to 
the proper variables) and need not be shown. The following is the result of our initial 
confi guration.

admin@CE6# show snmp
name Router_CE6;
description M71-Router;
contact WalterG;

There is much more we could have confi gured, and in fact this is really more than 
we need. But it will allow us to ensure that it’s the right router. Now we can run a Unix 
command-line management application on bsdclient called scli to router CE6. (We 
haven’t put the routers in DNS, and many organizations don’t for security purposes, so 
we’ll access the router by an interface IP address instead of by name.)

bsdclient# scli 10.10.12.1
100-scli version 0.2.12 (c) 2001-2002 Juergen Schoenwaelder
100-scli trying SNMPv2c ... good
(10.10.12.1) scli >

We are now running SNMPv2 to the router. Note that scli is an interactive applica-
tion with its own > prompt, like nslookup, so we can execute all types of commands 
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(known through help) at this point until an exit takes us out to the shell again. Let’s 
ensure that we have the right router and examine the system information.

(10.10.12.1) scli > show system info
Name:             Router_CE6   
Address:          10.10.12.1:161
Description:      M7i-router
Contact:           WalterG
Location:        
Vendor:           unknown (enterprises.2636)
Services:         network
Current Time:     2008-02-28 20:11:36 -07:00
Agent Boot Time:  2008-02-21 20:44:12 -08:00
System Boot Time: 2008-02-21 20:43:27 -08:00
System Boot Args: /kernel
Users:            3
Processes:        61 (532 maximum)
Memory:           256M
Interfaces:       50
Interface Swap:   2008-02-21 20:45:31 -08:00
(10.10.12.1) scli > 

That’s the router all right. Note that we get a lot more information than we entered. 
And some people would be very nervous about the system details that SNMP has gath-
ered from this router. But let’s look at SNMP in action fi rst. Figure 24.2 shows the SNMP 
messages and details. One response is of particular interest—the one that has the infor-
mation we entered on the router. Most of the information displayed at the start of the 
show command can be picked out of the lower pane in the figure.

FIGURE 24.2

SNMP session to router CE6.
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Let’s see what harm we can cause with SNMP by changing something.

(10.10.12.1) scli > set system contact NotMe
500 noResponse 1.00 vpm
(10.10.12.1) scli >

The noResponse tells us that our request was ignored by CE6. Most devices will enable 
SNMP with read-only access unless told otherwise. Still, there’s a lot of information 
available about good old router CE6, such as the following:

(10.10.12.1) scli > show interface
# show interface info [10.10.12.1] [2008-02-28 20:43:38 -07:00]

INTERFACE STATUS  MTU TYPE              SPEED NAME       DESCRIPTION
        1  UUCN  1514 ethernetCsmacd     100m fxp0       fxp0
        2  UUCN  1514 ethernetCsmacd     100m fxp1       fxp1
        4  UUNN  1496 mplsTunnel            0 lsi        lsi
        5  UUNN 2147483647 other                 0 dsc        dsc
        6  UUNN 2147483647 softwareLoopback      0 lo0        lo0
        7  UUNN 2147483647 other                 0 tap        tap
        8  UUNN 2147483647 tunnel                0 gre        gre
        9  UUNN 2147483647 tunnel                0 ipip       ipip
       10  UUNN 2147483647 tunnel                0 pime       pime
       11  UUNN 2147483647 tunnel                0 pimd       pimd
       12  UUNN 2147483647 tunnel                0 mtun       mtun
       13  UUNN  1500 propVirtual        100m fxp0.0     fxp0.0
       14  UUNN  1514 propVirtual        100m fxp1.0     fxp1.0
       16  UUNN 2147483647 softwareLoopback      0 lo0.0      lo0.0
       21  UUCN  4474 sonet              155m so-0/0/0   so-0/0/0
       22  UUNN  4470 ppp                155m so-0/0/0.0 so-0/0/0.0
       23  UUCN  4474 sonet              155m so-0/0/1   so-0/0/1
       24  UUNN  4470 ppp                155m so-0/0/1.0 so-0/0/1.0
       25  UUCN  4474 sonet              155m so-0/0/2   so-0/0/2
       26  UUNN  4470 ppp                155m so-0/0/2.0 so-0/0/2.0
       27  UUCN  4474 sonet              155m so-0/0/3   so-0/0/3
       28  UUNN  4470 ppp                155m so-0/0/3.0 so-0/0/3.0
       29  UUNN 2147483647 softwareLoopback      0 lo0.16385  lo0.16385
       30  UUNN 2147483647 tunnel        800m pd-1/2/0   pd-1/2/0
       31  UUNN 2147483647 tunnel        800m pe-1/2/0   pe-1/2/0
       32  UUNN 2147483647 tunnel        800m gr-1/2/0   gr-1/2/0
       33  UUNN 2147483647 tunnel        800m ip-1/2/0   ip-1/2/0
       34  UUNN 2147483647 tunnel        800m vt-1/2/0   vt-1/2/0
       35  UUNN 2147483647 tunnel        800m mt-1/2/0   mt-1/2/0
       36  UUNN     0 tunnel             800m lt-1/2/0   lt-1/2/0
       37  UUCN  1514 ethernetCsmacd     100m fe-1/3/0   fe-1/3/0
       38  UDCN  1514 ethernetCsmacd     100m fe-1/3/1   fe-1/3/1
       39  UUNN 2147483647 tunnel        800m pd-0/3/0   pd-0/3/0
       40  UUNN 2147483647 tunnel        800m pe-0/3/0   pe-0/3/0
       41  UUNN 2147483647 tunnel        800m gr-0/3/0   gr-0/3/0
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       42  UUNN 2147483647 tunnel        800m ip-0/3/0   ip-0/3/0
       43  UUNN 2147483647 tunnel        800m vt-0/3/0   vt-0/3/0
       44  UUNN 2147483647 tunnel        800m mt-0/3/0   mt-0/3/0
       45  UUNN     0 tunnel             800m lt-0/3/0   lt-0/3/0
       46  UDCN  1504 e1                   2m e1-0/2/0   e1-0/2/0
       47  UDCN  1504 e1                   2m e1-0/2/1   e1-0/2/1
       48  UDCN  1504 e1                   2m e1-0/2/2   e1-0/2/2
Byte 2969

And this is only part of it. Just imagine if someone managed to break in and . . . but 
wait: All we did is use a router interface’s IP address. No breaking in was needed.

What can we do to tighten things up? Let’s limit SNMP access to a single interface 
on the router, and a single host reachable through the interface. The interface will be 
LAN2, on fe-1/3/0, not surprisingly. We’ll use the LAN2 host bsdserver so that we can 
still use scli. We’ll also let an administrator with root privileges on bsdserver make 
changes with the set request in the SNMP community (a sort of SNMP “password,” but 
it’s really not) called locallan. Almost all of this is confi gured on the router, not the 
host. The scli limitation to execute a remote set command is a function of the applica-
tion. The following presents the new router confi guration.

set snmp name Router_CE6;
set snmp description M7i-router;
set snmp contact WalterG;
set snmp interface fe-1/3/0.0; # restrict SNMP to the LAN2 interface
set snmp view syscontact oid sysContact include; # let the manager change 
   the sysContact
set snmp community locallan view sysContact; # establish new community 
   string and add sysContact to view. . .
set snmp community locallan authorization read-write; # . . .and let it be 
   read and write access. . .
set snmp community locallan clients 10.10.12.77/32; # . . .but only from 
   bsdserver for the locallan community string

We have to explicitly add the sysContact object ID to a “view” for the community 
string locallan if we are going to allow the network manager on bsdserver to change 
the value of that object. Back on bsdclient, the effects of these changes are immediate.

(10.10.12.1) scli >  show ip
500 noResponse
500 noResponse
500 noResponse
500 noResponse
500 noResponse
(10.10.12.1) scli >

But things are different once we switch to bsdclient (and remember to use the com-
munity string locallan).
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> bsdserver# scli
100-scli version 0.2.12 (c) 2001-2002 Juergen Schoenwaelder
scli > open 10.10.12.1 locallan
100-scli trying SNMPv2c ... good
(10.10.12.1) scli > set system contact NotMe
(10.10.12.1) scli > show system   
# show system info [10.10.12.1] [2008-02-28 21:02:07 -07:00]

Address:          10.10.12.1:161
Contact:          NotMe
(10.10.12.1) scli >

If we forget to add the object explicitly to the community on the router, bsdserver 
still has access but will not be able to write to the object.

(10.10.12.1) scli > set system contact NotMe
500 noAccess @ varbind 1
(10.10.12.1) scli >

By now it should be obvious that SNMP can be a powerful network management 
tool, independent of remote-access or vendor-specifi c management techniques. How-
ever, all of this talk about objects, community strings, SNMPv1, and v2 can be confusing. 
SNMP introduces a lot of terms and concepts. Let’s start at the beginning and see just 
what SNMP can do and how it does it.

THE SNMP MODEL
This section takes a more detailed look at how SNMP, versions 1 and 2, works. This 
chapter identifi es the shortcomings of SNMPv1 that led to the creation of SNMPv2, and 
then shows what SNMPv3 will add to SNMP. SNMP remains the most popular and most 
viable method of managing networks today, let alone the Internet.

All network management standards, not just SNMP, work by means of what is known 
as the agent/manager model.   This is not really a new term or concept.   The term “agent/
manager model” is essentially the client/server model idea extended to network man-
agement. A manager is just a management console in the NOC running the network 
management software, not an actual human being. An agent is software that runs on all 
manageable devices on the network. As in the client/server model, managers “talk” and the 
agents  “listen.” So, managers are clients for network management purposes and agents are 
servers for network management purposes. Obviously, a major difference in the agent/
manager model from traditional client/server is that in a network management situation, 
there are many servers (agents) and generally only a few clients (management consoles).

The manager running in the network management station (or any host setup to run 
it) sends commands to the agent software on the managed device using a network man-
agement protocol that both the manager and agent understand. The agent responds and 
then waits (or “listens”) for a further command, and so on. The command may be gener-
ated by the manager software periodically, without human intervention, and the results 
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stored in a manager console database for future reports or reference. Alternatively, the 
commands may be generated by NOC personnel using the manager console to solve 
outstanding network problems, perform routine testing, and so forth. In the case of a 
serious event, such as major link failure, an alarm (called a trap in SNMP) is generated 
without anyone asking. Most servers, hubs, routers, and even  end-user devices sold 
today have built-in SNMP agent software that does not usually have to be purchased 
separately.   The SNMP model of network management is shown in Figure 24.3.

Note that network managers can both monitor the status of the device and actu-
ally change the confi guration (a dangerous capability that requires careful consider-
ations if it is to be allowed at all). The network management station typically keeps 
the historical information about the network device (devices have better things to 
do), and has a number of applications whose main goal is to provide detailed reports 
about the network’s performance, often in a graphical format designed for visual 
impact.

In addition, all network management standards provide for a special type of agent 
(known as the proxy agent) to provide the manager console with management informa-
tion about network devices that do not understand the network management protocol. 
Of course, the network devices must understand some type of network management 
protocol or they would not be manageable at all. But the proxy agent performs a type 
of gateway function to translate back and forth between the network manager console 
protocol and the different network management protocol, often proprietary, under-
stood by the network devices accessed by the proxy agent.

FIGURE 24.3

SNMP model, showing that an agent has access to a MIB in the managed devices.
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The MIB and SMI
The agent software has access to the current value of various objects in the managed 
device. The exact function and meaning of an object, and the relationship of one object 
to another, is described in the MIB for the managed device. The MIB is a crucial con-
cept in all network management standards, not only in SNMP, although there are many 
MIBs for devices used on the Internet.

The MIB is a database description of all fi elds (objects) that make up the totality 
of information an agent can furnish to a manager console when requested. So, a MIB is 
most often just a piece of paper (RFC) that says things such as “the fi rst fi eld is alphanu-
meric, 20 characters long, and contains the name of the vendor” and “the fi fth fi eld is an 
integer and contains the number of bad packets received.” Not that this is rendered in 
plain English. A special ISO “language” called ASN.1 (Abstract Syntax Notation version 
1) is used to represent all fi elds of the MIB database in very terse and cryptic language 
that all MIB implementers understand.

The SMI
The problem with trying to manage all possible network device agents with a single 
management protocol is that there are so many different types of network devices. 
Some deal with packets (routers), and some with frames (bridges). Some are quite 
simple (hubs), and some are very complex (switches). The challenge is to fi nd a way to 
sort out all of the possible MIB variables in a standard fashion so that any implementa-
tion of the network manager console protocol will be able to request the value of any 
particular object accessible by any agent. Fortunately, standards organizations have all 
agreed on and defi ned a standard structure for network management information.

The SNMP developers defi ned a Structure of Management Information (SMI) tree 
in RFC 1155. The same SMI is defi ned in ISO 10165, where it is called the Management 
Information Model (MIM), and in ITU-T X.720, X.721, and X.722.

MIB information is structured through the use of a naming tree known as the SMI 
conceptual tree. Figure 24.4 shows the SMI conceptual tree with the emphasis on 
SNMP MIB defi nitions.

The root of the tree is unlabeled. All branches of the tree from the root have both 
labels and numbers associated with them. All SNMP MIB objects are under the branch 
that leads from ISO (1) to Identifi ed Organizations (3) to the Department of Defense 
(DoD) (6) to the Internet (1). At the lowest branches of the tree are the MIB objects 
themselves. These are organized into MIB-I (the original SNMP defi nitions) and MIB-II 
(extended SNMP defi nitions).

The system group of MIB-II is probably the most commonly used and easily under-
stood of all MIB objects in SNMP.   The System(1) group contains seven objects that 
provide a general description of the network device. The seven objects are:

■ sysDescr(1)—A description of the network device (“router,” “hub,” etc.)
■  sysObjectID(2)—The identifi er of the device’s private MIB location, if any 

 (discussed more fully in material following)
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■  sysUpTime(3)—The time, measured in 100ths of a second, since the network 
management software (not necessarily the device!) was reinitialized

■  sysContact(4)—The name of the local contact person responsible for the 
 network device

■ sysName(5)—The name of the manufacturer of the network device
■ sysLocation(6)—The physical location of the network device
■ sysServices(7)—The services the network device is capable of rendering

The importance of MIBs in network management should not be overlooked. From 
a single console, a network manager can merely point a mouse at an icon and with a 
click determine that the device is a router located at 1194 North Mathilda Avenue in 
Sunnyvale, California; that the person responsible for the device is Walter Goralski; and 
so on. All of this information is provided over the network, on the fl y, from the device 
itself (as long as it is entered and maintained on the device, of course).

The numbers and labels referred to previously are technically called object identi-
fi ers and object descriptors in SMI. The SMI tree is used by the network management 
protocol to designate objects in the MIB. Object identifi ers are numeric, and all SNMP 
manageable devices commonly found on a network begin with 1.3.6.1... (shown in 
Figure 24.4). Identifi ers are used by the network management software. Object descrip-
tors, on the other hand, are labels, and all SNMP manageable devices also begin with 
ISO.ORG.DOD.INTERNET..., which is the exact equivalent of the numeric string. This 
view of the MIB tree is shown in Figure 24.5.
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MIB-2
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Transport
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SNMP
Proxies

Module
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EXP
3

PRIVATE
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SECURITY
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6
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1

ORG
3

DOD
6

Internet
1

FIGURE 24.4

SMI tree, showing how the names are organized.
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As an example of the use of object identifi ers, consider the case in which a net-
work manager may need to change the system contact for a particular network device. 
An SNMP command, in this case a get request, is used to retrieve the current value 
of the sysDescr object. The SNMP message requests the current value of the object 
1.3.6.1.2.1.1.1, which is the object identifi er equivalent of the object descriptor 
iso.org.dod.internet.mgmt.mib-2.system.sysDescr.   The device knows to reply with 
the current value of the sysDescr object and no other. If permitted, the network man-
ager can even use the SNMP set command to replace to current value of the sysDescr 
object with the name of the new local contact for the network device (if there is a 
reason to change it, perhaps to refl ect an upgrade).

The MIB
All of the MIB objects in SNMP are defi ned in ISO ASN.1, a presentation layer (OSI-RM 
Layer 6) standard syntax. The defi nition of a managed object in a network device’s 
agent MIB consists of the following seven fi elds.

■  Syntax—An ASN.1 data type such as integer, time ticks (hundredths of a 
 second), string, and so on.

1.3.6.1.2.1.1.1 � iso.org.dod.internet.mgmt.mib-2.system.sysDescr

ISO.ORG.DOD.INTERNET
1.3.6.1

DIRECTORY
1.3.6.1.1

MGMT
1.3.6.1.2

MIB-2
1.3.6.1.2.1

SYSTEM
1.3.6.1.2.1.1

AT
1.3.6.1.2.1.3

ICMP
1.3.6.1.2.1.5

UDP
1.3.6.1.2.1.7

P
1.3.6.1.2.1.4

sysDescr
1.3.6.1.2.1.1.1

sysObjectID
1.3.6.1.2.1.1.2

sysUptime
1.3.6.1.2.1.1.3

INTERFACES
1.3.6.1.2.1.2

TCP
1.3.6.1.2.1.6

EGP
1.3.6.1.2.1.8

EXP
1.3.6.1.3

ENTERPRISES
1.3.6.1.4.1

Vendor
Objects

PRIVATE
1.3.6.1.4

FIGURE 24.5

MIB tree by number and name. The numeric strings can quickly become very long.
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■ Access—If the object is read-write, read-only, not-accessible, and so on.
■  Status—Objects may be mandatory, optional, obsolete, or deprecated (replaced 

by newer).
■ Description—An optional text string describing the object type.
■  Reference—An optional cross reference to another MIB defi nition (e.g., a CMIP 

branch).
■ Index—If the object is a table, this defi nes how SNMP access a unique logical row.
■ Defval—An optional default value assigned to the object.

In the following are two sample MIB object defi nitions in ASN.1, ifMTU and 
 sysUpTime.

OBJECT:  ifMtu { ifEntry 4 }
Syntax:  INTEGER
Definition:  The size of the largest IP datagram that can be sent/received
   on the interface, specified in octets.
Access:  read-only.
Status:  mandatory.

OBJECT:  sysUpTime { system 3 }
Syntax:  TimeTicks
Definition:  The time (in hundredths of a second) since the network
   management portion of the system was last reinitialized.
Access:  read-only.
Status:  mandatory.

The ifMtu object is from the interface (ifEntry) group, and gives the maximum 
transmission unit size, a key TCP/IP parameter. The object is the fourth entry in the 
group (an integer); may only be read by the network manager software, not changed; 
must be in all SNMP compliant equipment that uses TCP/IP; and gives the size in bytes 
of the largest IP datagram that can be sent or received by this network device on this 
particular interface (port).

The sysUpTime object is the third in the system group, and gives the time the net-
work management agent software has been running. The units are a special type of 
integer called time ticks. The object is read-only, and must be present.

MIBs are technically just pieces of paper, like a customer database data fi eld descrip-
tion. MIBs must be coded and implemented in the agent software and installed in the 
network device before the network device can be managed by a manager console. 
Typically, a MIB is coded by the programmers of the network device’s software in 
a C-language module and compiled into an object-code module with a special com-
piler known (not surprisingly) as a MIB compiler. The MIB object-code module is then 
linked with the SNMP protocol model to yield the entire executable module, which 
can be installed in the memory of the network device. All of this is usually done before 
the network device is sold, of course.

There are exceptions to this rule, however. MIBs exist for a variety of purposes and net-
work types. For instance, a router may have both an Ethernet MIB and a SONET/SDH 
MIB if the router supports both types of network connections, and even a   frame-relay 
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MIB on the SONET/SDH port of the router. Sometimes, though, a network device may 
be sold with only an Ethernet port (for example) and then upgraded to provide SONET/
SDH connectivity as well, usually through the addition of a new interface card. In this 
case, the router may have included only the Ethernet MIB because no SONET/SDH MIB 
was needed. When the new SONET/SDH card is added, the SONET/SDH MIB must be 
added as well.

Not all modifi cations to network devices involve hardware. In some cases, a new 
MIB may have to be installed when a new software feature is activated on the net-
work device. In many SNMP implementations, the extensible MIB may be activated or 
installed over the network without even being present at the network device site.

RMON
One additional aspect of SNMP MIBs should be discussed, in that this concept is 
extremely helpful in managing large networks. There is a potential problem with man-
aging SNMP devices on a network over the network itself (security is another matter). 
The problem is simply this: What if the link to the network device is down? How is the 
status of the network device to be determined under these conditions? The answer is 
provided by means of a special optional MIB: the RMON MIB. RMON stands for “remote 
monitor,” and this MIB provides for a dial-in port to the network device that may be 
used by the manager console to communicate with the network device regardless of 
other network link availability.

RMON may also be used with leased lines to provide another benefi t for large 
IP networks. The larger the enterprise network, the more network devices there are that 
need managing. Network managers will try to monitor network device  performance 
and workload to prevent congestion on the network. The problem is that all of these 
SNMP messages fl owing over the network back and forth to all of the network devices 
can add a considerable load to a network at the worst possible time, when things are 
going suspiciously wrong. If RMON is confi gured to run on separate leased lines to criti-
cal network devices, the SNMP messages add no load at all to the enterprise  network 
itself.

Unfortunately, not many organizations can afford the additional expense of the nec-
essary leased lines to many of these important network devices (usually the routers). 
Still, RMON remains a useful option for heavily loaded or delay-sensitive IP networks.

The Private MIB
Standard MIB objects are designed for a wide variety of technologies and network 
devices. These MIB objects cover a large range of possibilities, but there are always 
situations and conditions that a network manager should be aware of that are not 
covered by a standard MIB object. These are usually very low-level, device-specifi c hard-
ware functions, such as whether a network device’s cooling fan has failed, whether the 
device has battery backup or a redundant power supply, or any of a number of other 
vendor hardware-implementation choices and options.
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To cover all of these vendor-specifi c situations, the SMI conceptual tree includes a 
branch for private MIB extensions. The SMI path to the private MIB is 1.3.6.1.4.1. This 
leads to the enterprise branch of the SMI tree, where each vendor may obtain a branch 
number (identifi er) and label (descriptor) from the Internet Assigned Number Author-
ity (IANA) for the vendor’s private MIB. For example, all IBM private MIB objects reside 
at 1.3.6.1.4.1.2... on the SMI tree because “2” is IBM’s enterprise number. Cisco 
routers use 1.3.6.1.4.1.9..., Hewlett-Packard has 1.3.6.1.4.1.11..., and so forth. 
More than 700 enterprise code numbers have been assigned by the IANA, showing the 
wide availability of SNMP-compliant products.

This system of private MIBs makes sense because only the manufacturer of the net-
work device could possibly know whether the device even has a cooling fan, battery 
backup, or other hardware feature. Obviously, a network manager would like to know 
if a device’s fan has failed, especially if the device is in a closet where it may overheat 
and fail after a few hours. The private MIB offers a way of allowing this information to 
be accessed by the network manager.

SNMP manager software will generally have no concept of just where the private 
MIB objects are and what these objects represent. Some vendors would actually “hide” 
their private MIB descriptions by limiting their availability, and just what the number 2 in 
a private MIB fi eld might mean (Status code? Error code? Two minutes to failure?) often 
remained a mystery. In most cases, this means that this vendor’s network device could 
only be completely manageable using that vendor’s network manager software, which 
would have a built-in description of this private MIB. Private MIBs are an effective way 
to “lock in” a company to using only a specifi c vendor’s SNMP software as a network 
manager.

Few companies go to that extent anymore. But the problem of how any particular 
manager console software could know just where any vendor’s private MIB is located 
and what the vendor’s private MIB means still exists. This is where the system group 
sysObjectID object can be helpful. Accessing the object 1.3.6.1.2.1.1.2 (the second 
object in the system group: sysObjectID) from the management console will return a 
string such as 1.3.6.1.4.1.999.1.1.... This is, of course, the location of the private 
MIB objects for the vendor of the particular device. Further requests to that SMI tree 
location might yield the private MIB description implemented by that vendor (1 means 
fan failure, 2 means fan normal).

Manufacturers may extend private MIBs with as many objects in whatever structure 
they desire. Many vendors publish (on the Internet) their private MIB descriptions so 
that makers of SNMP management console software can easily build in private MIB 
support without having to follow sysObjectID links.

SNMP OPERATION
All of the foregoing discussion on SMI, MIBs, and private MIBs applies equally to 
any standard network management package that may be used on a network. Granted, 
there are a few differences between SNMP network management terminology and the 
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others. Specifi cally, the SMI objects in network management protocols other than SNMP 
may not all necessarily start with 1.3.6.1... because these are by defi nition TCP/IP 
Internet objects and the MIB in CMIP is referred to as MIM (Management Information 
Model). There are other minor differences as well, but the point is that all of the previ-
ous material and concepts apply to network management in general.

However, this section will deal entirely with the specifi cs of SNMP as the most wide-
spread, cost-effi cient, and viable network management standard for IP networks in use 
today. For the remainder of this section, SNMP without qualifi cation means SNMPv1. 
SNMPv2 and SNMPv3 will always be qualifi ed with the version number.

SNMP was invented to manage routers on the Internet, and early versions of SNMP 
had few MIB objects suitable for managing other network devices. The latest SNMP MIB 
defi nitions have been extended to include objects defi ned for most LAN and WAN tech-
nologies, even ATM and frame relay. SNMP was initially intended as an interim solution 
until ISO’s CMIP network management standard was completed, at which time SNMP 
was supposed to merge with CMIP. But SNMP has had such success independently of 
CMIP that this is unlikely to happen.

SNMP is part of the TCP/IP protocol stack and is considered a standard TCP/IP appli-
cation like FTP or Telnet. Of course, SNMP is a very special type of application, one that 
is seldom bundled with TCP/IP software as FTP and Telnet are. Due to its TCP/IP ori-
gins, the original SNMP did suffer from one annoying limitation that severely hampers 
the use of SNMP for managing mission-critical networks that should not fail.

The limitation is bound up with the fact that SNMP is defi ned as a request–response 
protocol, similar to DNS. Each message sent was expected to generate a reply before 
the next request was sent. This made perfect sense for SNMP: Why send a stream of 
messages to a device that has failed? And like any request–response protocol, SNMP 
used speedy and connectionless UDP for its messages.

But there is a price to be paid for connectionless speed. What if an SNMP message 
is sent and no reply received? There can be at least three causes. First, the data may 
have been lost by the network on the way to the destination (due to network faults or 
congestion). Second, the destination network device itself may be down or powered 
off. Third, the data may have been lost by the network on the way back from the desti-
nation (for the same reasons as the fi rst two causes).

On the other hand, connection-oriented networks and applications that fi rst estab-
lish a connection across the network with a remote device have a better chance of 
fi guring out just what is wrong if a reply to a particular message is not received. If a 
device accepts a connection request, it means the device is turned on and ready to 
communicate and the network between the two devices linked by the connection is 
up and running. It is important to realize that this knowledge is established even before 
any messages have been sent from a source to a destination.

Obviously, toward obtaining a more robust and effective network management pro-
tocol network, managers would rather that SNMP be connection oriented, as is clear 
from the previous discussion.   A lot could be found out just from establishing a connec-
tion between a manager console and a network device’s agent. However, SNMPv1 was 
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a connectionless TCP/IP application, which limited its effectiveness on many enter-
prise networks. The operation of the SNMPv1 protocol is shown in Figure 24.6.

SNMP is an extremely simple protocol. There are only fi ve types of messages 
defi ned: GetRequest (or Get) to ask an agent to return the current value of an object 
(based on the SMI tree), GetNextRequest (or GetNext) to ask an agent to return the 
current value of the very next object, GetResponse (or Response) to return the cur-
rent value of an object to the manager, SetRequest (or Set) to tell an agent to replace 
the current value of an object with a new value, and Trap to allow an agent to send a 
 message to a manager without being asked.

The agent device accepts SNMP requests on port 161 and replies using that port. 
The manager chooses a source port from a pool, often restricted to SNMP only. Traps 
are sent via port 162 on the manager, also using a source port chosen from a pool.

Traps are used to address another quirk of SNMP. Generally, agents tell the manager 
console absolutely nothing without being asked. In view of this, it is normal for the 
SNMP manager software to periodically generate GetRequest messages to every man-
ageable device’s agent on the network just to ensure that everything is all right. This 
process is known as SNMP polling, and not only adds traffi c to the network, but means 
that long periods of time may elapse between successive polls on a complex SNMP 
enterprise network.

FIGURE 24.6

SNMPv1 protocol operation, showing ports for the fi ve SNMP message types.
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Traps help to remedy this situation. These are messages sent from the agent to 
the manager without waiting for a poll. There are seven generic trap types that 
include such events as link failures and the fact that the agent network device is 
being reinitialized, and so on. An enterprise-specific trap type is included to allow 
vendors to extend traps to include other events (such as fan failure, battery backup 
activated, etc.).

All SNMPv1 messages consist of a message header and the actual SNMP protocol 
data unit (PDU). The header only contains the version number (1) and the community 
string (default is public).

The PDUs contain the command specifi cs and their operands. The fi elds are variable 
in length, and end with strings of variable bindings, which are the pairs of objects and 
their current values the network management system has asked to see. On the way to 
the managed device, these bindings are typically fi lled in with the zero or blanks, and 
naturally they come back with the current values fi lled in. The structure of the SNMPv1 
PDU is shown in Figure 24.7.

■ PDU Type—Specifi es the PDU Type: GetRequest, GetNextRequest, GetResponse, and 
Setrequest.

■ Request ID—A fi eld used to associate SNMP requests with the proper response.
■ Error Status—Only a GetResponse sets a numeric error code in this fi eld. Other-

wise, the fi eld is zero.
■ Error Index—Associates the error code with a particular object in the bindings. 

Only a GetResponse sets a numeric index in this fi eld. Otherwise, the fi eld is zero.
■ Variable Bindings—The data fi eld of the Simple Network Managment Protocol 

PDU. Each pair associates the object with its current value, except of course in 
the GetRequest and  GetNextRequest.

Traps are not included in the fi gure because in SNMPv1 they have a distinctive 
(and annoying) structure all their own. In the previous discussion, at least two limita-
tions of SNMPv1 have been identifi ed. First, SNMPv1 is connectionless, which means 
that SNMP is much less effective than it could be. Second, SNMP must poll devices in 
most cases for effective network management because the traps are few and not very 
helpful.

There is a third aspect of SNMP that makes the protocol less effective than it could 
be for managing large IP networks, especially portions of the Internet. This is the fact 

PDU
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Error
Status

Error
Index

Object 1:
Value 1

Object 2:
Value 2

Object n:
Value n

Variable Bindings

FIGURE 24.7

SNMPv1 PDU. Variable bindings allow the response to deliver a lot of information in one message.
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that SNMPv1 had only rudimentary password and authentication features and even 
lacked a good encryption technique.

The greatest threat that network management poses to a network, ironically, comes 
from exploiting remote confi guration capabilities, one of the most useful things in 
network management. Activating additional ports on hubs and routers, changing IP 
addresses, and modifying other operational functions over the network rather than by 
actually having a technician present at the network device location is a much sought-
after feature of network management. But the routine practice of remote confi guration 
is tied up with the establishment on the network of secure network management pro-
tocols to prevent hackers and other unauthorized persons from making such changes 
to these devices.

SNMPv1 has only rudimentary features that can be used to try to prevent this from 
happening. The SNMP protocol does include the use of a simple password scheme, 
known as the community string. All SNMP messages from a management console to 
an agent must include a community string fi eld that is compared by the agent with the 
community string confi gured at installation in the network device. If the community 
strings do not match, the agent presumes that the message is not from the legitimate 
network management console software and discards the message.

The problem with expecting SNMP community strings to provide adequate password 
protection against unauthorized agent access is twofold. First, many agents are simply 
confi gured to respond to the community string public, which is essentially the SNMP 
default and might not be changed. Of course, hackers will quickly determine this fact and 
make immediate use of this. Second, even if the community string is altered to a more 
enterprise-specifi c string such as Example Inc., the SNMP messages exchanged constantly 
on the enterprise network due to the SNMP polling process will make no effort to hide 
this fact:   The community strings are not encrypted in SNMP but sent in plain text.

The problem of authentication is related to the use of passwords for network man-
agement. All SNMPv1 agents accept any SNMP messages and commands if the commu-
nity string is correct. With an authentication scheme for network management, more 
should be needed for an agent to accept messages as proper commands sent from a 
valid network management console. Matching passwords is not enough: The message 
must come from the IP address of the network management console or consoles.

SNMPv2 Enhancements
SNMPv2 was widely anticipated in the network management community since its initial 
proposals. SNMPv1 also suffered from an annoying problem with the request–response 
system of polling. If one variable was not in the agent’s database, the entire operation 
failed. In addition, as MIB grew and grew, SNMPv1 responses often exceeded the maxi-
mum size of a message (UDP doesn’t fragment) and the operation failed.

To address these issues, SNMPv2 added a GetBulk message to the SNMP repertoire, 
which allowed the device to supply as much information as it could in response to 
the request. There was also a greatly expanded list of error codes used when an SNMP 
request failed.
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Inform allows one network management system to trap information sent by another 
network management system and then get a response. In addition, the format of the 
Trap was changed to make it more like the other PDU type.

SNMPv2 can still run as a connectionless UDP application on IP networks. But imple-
menters have the option of making SNMPv2 a connection-oriented TCP application. In 
addition, SNMPv2 includes very robust and standardized methods for true passwords, 
authentication, and encryption.

Yet the use of SNMPv1 remains common on the Internet. The problem with SNMPv2 
is exactly the opposite of the simplicity of SNMPv1: SNMPv2 is very complex. This com-
plexity translates to implementation expense, not only in the management console 
software but in the agent software installed by every vendor of SNMP-manageable net-
work equipment. For very simple networks, SNMPv2 is overkill.

In addition, SNMPv2 is incompatible with SNMPv1. The message formats are differ-
ent, and there are two new message types (GetBulk and Inform). RFC 1908 recommends 
the use of proxy agents, or simply running both when this incompatibility becomes an 
issue. Many Internet devices, such as routers, make use of SNMPv1 or SNMPv2 (or both) 
as a confi guration option.

SNMPv3
A few words should be said about SNMPv3. SNMPv1 had little or no security to speak of, 
and SNMPv2 adds security to the basic operation of SNMP. However, SNMPv3 will essen-
tially make network management and SNMP part of the overall security framework for 
a network. SNMP will have very strict requirements for authentication, encryption, and 
privacy of information. Discussions of SNMPv3 are best handled by texts devoted to 
the topic of security.
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QUESTIONS FOR READERS
Figure 24.8 shows some of the concepts discussed in this chapter and can be used to 
answer the following questions.

FIGURE 24.8

Ethereal capture of an SNMP response message. Note the object identifi ers.

 1. Which version of SNMP is used here?

 2. Which router IP address and port are responding?

 3.  Express the SMI tree to the sysDescr group in English instead of numbers. It 
starts with “iso.org...”

 4.  The actual time ticks value of 1209176765 is interpreted. What does this 
value represent?

 5.  Where is the response telling the management application to go for more 
device-specifi c information?
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Security is a major concern in networking today.  This part of the book  continues 
the theme begun with SSL, and explores the basic aspects of security used on 
the Internet today.
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CHAPTER

What You Will Learn
In this chapter, you will learn how the secure shell (SSH) is used as a more secure 
method of remote access than Telnet.  We’ll talk about the SSH model, features, and 
architectures.

You will learn how the SSH protocols operate and how keys are distributed. 
We’ll do a simple example of Diffi e-Hellman key distribution using only a pocket 
calculator and no advanced mathematics.

Secure Shell 
(Remote Access) 25

Not too long ago, most TCP/IP books would routinely cover Telnet as the Internet 
 application for remote access. But today, with the focus on security the Telnet daemon 
is considered just too dangerous to leave running on hosts and routers, mainly because 
it is such a tempting target even when password encryption is mandated.  There are 
ways to “enhance” Telnet with security mechanisms, much as the control connection 
used for FTP (which is little more than a Telnet session) has done.

This is not to say that remote access itself is not an essential Internet and TCP/IP 
tool.  This book could not have been written without Telnet remote access. But more 
and more today, the preferred application for remote access is SSH.

Windows users should not let the use of the Unix term “shell” scare them. SSH is 
not really a Unix shell, such as the Bourne shell or other Unix interfaces. It’s really a 
protocol that runs, like most things, over IPv4 or IPv6. Yet the use of the word “shell” in 
SSH is a good one because there is a lot more to SSH than just remote access. Perhaps 
the term “secure suite” would have been better, but SSH is what it is.

USING SSH
Most people know SSH as just another way to access the remote host of a router. For 
example, to access router CE0 from host bsdclient and log in as admin, we would use 
the –l option as follows:
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FIGURE 25.1

Using SSH on the Illustrated Network showing the host used as the SSH client and the target router 
used as the SSH server for remote access.
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bsdclient# ssh -l admin 10.10.11.1

admin@10.10.11.1's password: (not shown)
--- JUNOS 8.4R1.3 built 2007-08-06 06:58:15 UTC

admin@CE0>

You might notice a longer wait after issuing the ssh command than other  commands 
before being asked for the password, but if the network is fast enough this delay is mar-
ginal. In fact, a blizzard of messaging is crisscrossing the network between command 
and password requests, and even more before the remote device prompt appears. With-
out some explanation, these messages are completely opaque to users. So, let’s use 
bsdclient and CE0 (as shown in Figure 25.1) to explore SSH a little before looking at 
the messages in detail.

SSH Basics
Although not technically a shell, SSH lets a user do all of the things Unix commands 
such as rsh, rlogin, and rcp do. (SSH is sometimes implemented as slogin.) SSH is an 
application that allows users to log on to another host over the network, execute com-
mands on the remote host, and move fi les around. But unlike the older “r commands” 
it is intended to replace, SSH provides secure communication over unsecure channels, 
strong authentication and encryption, and other security features.

The “r commands” were vulnerable to many different types of attacks.  Anyone with-
out root access to the hosts or access to the packets on the network can gain unau-
thorized access to the hosts in several ways. Malicious users can also log all traffi c to 
and from the host, including other users’ passwords. (In contrast, SSH never sends 
passwords in clear text.)

The popular X Windows GUI for Unix is also vulnerable in many ways. SSH allows 
the creation of secure remote X Windows sessions that are transparent to the user. In 
fact, using SSH for remote X Window clients is easier for users. Users can still use their 
old rhosts and /etc/hosts fi les for this type of remote access, and if a remote host does 
not support SSH there is a way for the session to fall back to rsh.

SSH is a traditional client/server protocol.  The SSH server process waits for com-
mands (requests) from SSH clients, executes the command if allowed, and returns the 
result (reply) to the client. Users are often authenticated with an encrypted key and 
passphrase instead of a password, and these public key fi les are placed on the remote 
computers users can access.  The overall use of SSH is shown in Figure 25.2.

SSH consists of several client programs and a few confi guration fi les.  The programs 
the user runs are ssh or slogin (both essentially the same) and scp or sftp (also the 
same), depending on implementation. Secure shell keys are managed with ssh-keygen, 
ssh-agent, and ssh-add.

There have been two major versions of SSH. SSH1 was developed by Tatu Ylonen at 
the Helsinki University of Technology in Finland in 1995 after a network attack. It was 
released as free software and source code. It also became an Internet draft, but several 
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issues with the original (which was not systematically developed) were addressed as 
SSH2 in 1996. SSH2 has new methods and is not compatible with SSH1. Unfortunately, 
users still liked a lot of the features of SSH1 that were lacking in SSH2, and because 
some security is better than none, they felt little reason to switch (licensing played a 
role as well).

OpenSSH is now available as a free implementation of the SSH2 protocol, and it is 
this version that has been ported to many operating systems. People still talk about the 
“Ylonen SSH,” “SSH1.5,” or “OpenSSH” implementations of the basic SSH protocol. SSH 
was an Internet draft status for a long time, and this chapter describes SSH2. SSH is now 
defi ned in a series of RFFCs from RFC 4250 through RFC 4256.  This group of RFCs 
details various aspects of SSH operation.

SSH Features
SSH has excellent protection features.  The major ones follow:

Secure client/server communication—All data are encrypted on the network.

Varied authentication—Users can be authenticated by password (encrypted), 
the host, or a public key.

SSH
Client

SSH
Server

SSH
Client

SSH
Client

SSH
Client

Access
denied!

Copy file

FileSuccess!

Log-in
request

Log-in
request

Command
output

Run
command

FIGURE 25.2

SSH model. Note that a way to run commands and copy fi les is included in the model.
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Authentication integration—SSH can be optionally integrated (and often is) with 
other authentication systems such as Kerberos, PAM, PGP, and SecureID.

Security add-on—SSH can be used to add security to applications such as NNTP, 
Telnet, VNC, and a lot of other TCP/IP protocols and applications.

Transparency and versatility—SSH can be transparent to the user and there are 
implementations for almost all operating systems (including Windows with 
OpenSSH implementations).

SSH protects users against:

IP spoofing—A remote host can send IP packets pretending to come from some-
where else, such as a trusted host. Spoofers on LANs can even pretend to be 
the local routers to the outside world, which SSH protects against as well.

IP source routing—This is another way for hackers to claim that a packet came 
from another host.

DNS spoofing—Hackers can forge name server records supplied to a host.

Intermediate device control—This is an old favorite.  A hacker can take control of 
a router or host between hosts and execute many types of data manipulation.

Clear text interception—Data or passwords sent in clear text are always targets 
for hackers.

X Windows attacks—Hackers can listen to X Windows authentication exchanges 
and spoof server connections.

SSH never trusts the network. Even if hackers took over the entire network, all that 
can happen is that SSH is forced to disconnect. Hackers cannot decrypt, play back, or 
compromise data on the connection.

This is not to say that the SSH is perfect. Like any other tool, SSH is only as good as 
those setting it up and using it. For example, SSH does have an option for encryption 
type (none), but this is only to be used for testing purposes. (There is no real enforce-
ment of this, of course.) And SSH does nothing to prevent someone who had gained 
access to the host another way (perhaps by sitting down in front of the unprotected 
host itself) from doing a lot of damage with root access. In that case, SSH is often the 
fi rst target of a local hacker.

In addition, a lot of organizations with their own fi rewall devices are nervous 
when users rely on SSH to connect to hosts. Remember, everything in the SSH stream 
is encrypted, and fairly well at that.  What SSH does is offer users a direct pipeline 
to their internal machines right through the fi rewall, an invisible tunnel into the 
 organization.

There are ways to work around this through a SSH proxy gateway, including the 
“mute shell” and “SSH-in-SSH” approaches. But nothing is ever perfect or 100% secure.
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SSH Architecture
Many SSH components interact to allow secure client–server exchanges.  These 
 components, not all of which are distinct programs or processes, are shown in 
 Figure 25.3.

The following is a brief overview of the major components of SSH.

Server—The program that authenticates and authorizes SSH connections, usually 
sshd.

Client—The program run on the client (user) device, often ssh, but also scp, sftp, 
and so on.

Session—The client/server connection, which can be interactive or batch.  The 
session begins after successful authentication to the server and ends when the 
connection terminates.

Key generator—A program (usually ssh-keygen) that generates persistent keys. 
(Key types are discussed later in this chapter.)

Known hosts—A database of host keys.  This is the major authentication  mechanism 
in SSH.

Client Server

Known
hosts

Host key1
Host key2
Host key3

.

.

. Session
Key

Session
Key

User Account

User Key
Public/
Private

Host Key
Public/
Private

User Key
Public

Identify file or agent

Channels for:
interactive

forwarded ports
remote key agents

other. . .

Target Account

Authorization file

FIGURE 25.3

An overview of the SSH architecture. Note that a lot of space is devoted to the distribution and use 
of encryption keys.
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Agent—A caching program for user keys to spare users the need to repeat 
passphrases.  The agent is only a convenience and does not disclose the keys. 
The usual agent is ssh-agent, and ssh-add loads and unloads the key cache.

Signer—This program signs the host-based authentication packets used instead of 
password authentication.

Random seed—Random data used by SSH components to initialize the pseudo-
random number generators (PRNG) used in SSH.

Configuration files—Settings to determine the behavior of SSH clients and 
 servers.

SSH Keys
Keys are a crucial part of SSH.  Almost everything that SSH does involves a key, and often 
more than one key. SSH keys can range from tens of bits to almost 2000. Keys are used 
as parameters for SSH algorithms such as encryption or authentication. SSH keys are 
used to bind the operation to a particular user.

There are two types of SSH keys: symmetric (shared secret keys) and asymmetric 
(public and private key pairs).  As in all public key systems, asymmetric keys are used to 
establish and exchange short-duration symmetric keys.  The three types of keys used in 
SSH are outlined in Table 25.1.  As mentioned, user and host keys are typically created 
by the ssh-keygen program.

User key—This persistent asymmetric key is used by the SSH clients to validate 
the user’s identity.  A single user can have multiple keys and “identities” on a 
network.

Host key—This persistent asymmetric key is used by the SSH servers to validate 
their identity, as well as the client if host-based authentication is used. If the 
device runs a single SSH server process, the host key uniquely identifies the 
device. Devices running multiple SSH servers can share a key or use different 
host keys.

Session key—This transient symmetric key is generated to encrypt the data sent 
between client and server. It is shared during the SSH connection setup to use 

Table 25.1 SSH Key Name Types and Major Characteristics

Key Name Lifetime Creator Type Purpose

User key Persistent User Public Identify user to server

Host key Persistent Administrator Public Identify a server or device

Session key One session Client and server Secret Secure communications
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for encrypted data streams during the session.  When the session ends, the key 
is destroyed.  There are several session keys, actually—one in each direction 
and others to check integrity of communications.

SSH Protocol Operation
This section describes the operations of SSH2 and not the older, and incompatible, 
SSH1.  There are four major pieces to SSH, and they are documented separately and 
theoretically have nothing whatsoever to do with one another. In practice, they all 
function together to provide the set of features and functions that make up SSH. Each 
is still an Internet draft, but these should all become RFCs some day.

There are some other documents that extend these four protocols, but these make 
up the heart of SSH.  The major protocols follow:

■ SSH Transport Layer Protocol (SSH-TRANS)
■ SSH Authentication Protocol (SSH-AUTH)
■ SSH Connection Protocol (SSH-CONN)
■ SSH File Transfer Protocol (SSH-SFTP)

The relationships between the protocols, and their major functions, are shown in 
 Figure 25.4.

Application Software (ssh, sshd, scp, sftp, sftp-server, etc.)

SSH-AUTH

SSH-TRANS

client authentication
    public key
    host-based
    password
    (many others)

algorithm negotiation
session key exchange
session ID
server authentication
privacy
integrity
data compression

TCP Layer

SSH-CONN SSH-SFTP
multiplexing
flow control
subsystems
pseudo-terminals
signal propagation
remote program execution
authentication agent forwarding
TCP port and X windows forwarding
terminal handling

remote filesystem access
file transfer

FIGURE 25.4

SSH protocols, showing how they relate to one another and the TCP transport layer.
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All critical parameters used in all of the protocols are negotiated.  These parameters 
include the ways and algorithms used for:

■ User authentication
■ Server authentication
■ Session key exchange
■ Data integrity and privacy
■ Data compression

In most categories, clients and servers are required to support one or more methods, 
thereby promoting interoperability. Support is not the same as implementation, however, 
and specifi c clients and servers still have to fi nd a “match” to accomplish their goals.

Initial connections (including server authentication, basic encryption, and integrity 
services) are established with SSH-TRANS, which is the fundamental piece of SSH.  An 
SSH-TRANS connection provides a single and secure data stream operating full-duplex 
between client and server.

Once the SSH-TRANS connection is made, the client can use SSH-AUTH for authenti-
cation to the server. Multiple authentication methods can be used, and SSH-AUTH estab-
lishes things such as the format and order of requests, conditions of success or failure, 
and so on. Protocol extensions are defi ned to allow the methods to be extended in the 
future as other authentication methods are developed. Only one method is required in 
SSH-AUTH: public key using the digital signature standard (DSS).  Two more methods are 
defi ned: password and host-based (but we’ll concentrate on public key in this chapter).

Once authenticated, SSH clients use the SSH-CONN protocol over the “pipe” estab-
lished by SSH-TRANS.  There are multiple interactive or batch (noninteractive) sessions 
over SSH channels.  The sessions include things such as X Windows and TCP forward-
ing (tunneling), control signaling (such as ^C) over the connection, data compression, 
and related activities.

If fi le transfer or remote fi le manipulation is needed, this is provided by the SSH-SFTP 
protocol.  The sequence of invoking these protocols is not rigid, and there is consider-
able variation in implementation, mostly in “nonstandard” or customized environments 
where global client access is neither needed nor desired.

Note that the SSH protocols only defi ne what should happen on the network. 
Internals such as how keys are stored on the local disk, user authorization, and 
key forwarding (which most people think of as intimate parts of SSH), are really 
implementation-dependent pieces that are usually completely incompatible.  The following 
sections describe some of the key aspects of protocol operation.

Transport Layer Protocol
Clients normally access the SSH process on the server at well-known TCP port 22.  The 
server announces the SSH version in a text string, and there are certain conventions 
built into this string. For example, SSH version “1.99” means that the server supports 
both SSH1 and SSH2, and the client can choose to use either one from then on. Of 
course, if the client and server are not compatible, either can break the connection at 
that point.
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If the connection goes forward, SSH-TRANS shifts into the binary packet  protocol—
a record-oriented non-text protocol defi ned for SSH-TRANS.  The fi rst activity here is 
key exchange, which precedes the negotiation of the basic security properties of the 
SSH session.

The key exchange often employs some form of the Diffi e-Hellman procedure for 
key agreement, although there are others. Diffi e-Hellman describes a way to securely 
exchange information (such as a shared secret key) over an unsecured network such 
as the Internet by using asymmetric public/private keys established beforehand.  The 
key exchange itself should be authenticated to guard against “man-in-the-middle” 
attacks. 

Pocket Calculator Diffi e-Hellman
In the SSL chapter, we did an exercise in “pocket calculator public key  encryption” 
to show that although the mathematical theory behind the use of asymmetric 
 public/private key encryption was complex its use was not. We’ve mentioned 
Diffi e-Hellman several times, and when fi rst popularized in 1976 Diffi e-Hellman 
was so revolutionary some doubted it actually worked (not mathematicians, of 
course!). How could secure shared secret keys possibly be sent over an unsecure 
network where anyone can make copies of the packets?

Let’s show how Diffi e-Hellman can be used to allow users to share a secret 
key and yet no one else knows what the key is (even the “man-in-the-middle” 
vulnerability does not really “crack” the key, just hijacks it).   Again, we’ll use small 
non–real-world numbers just to make the math easy enough to do on a pocket 
calculator. We’ve already shown how to raise the numbers to a power, and to com-
pute the modular remainder from division, so that is not repeated.

Like public key encryption, Diffi e-Hellman depends on properties of prime 
numbers. There are two important ones: the very large prime itself (P) and a 
related number (derived by formula) called the “primitive root of P,” which is usu-
ally called Q.   A large prime P will have many primitive roots, but only one is used. 
For this example, let’s use P 5 13 and Q 5 11 (I didn’t use a formula: There are 
tables on primes and primitive roots all over the Internet).

According to usual security example practice, let’s call our two correspondents 
Alice (A) and Bob (B).   A and B exchange these two numbers publicly over the net-
work, without worrying if anyone else knows them (they have no choice, because 
the network is by defi nition unsecure anyway).

A and B each pick, independently, a random number (naturally, in reality this 
is done by software without users “picking” anything). Let’s use A 5 4 and B 5 7 
(they can even pick the same number by chance, of course). Now each calculates 
A* and B* according to the following formulas:

■ A computes A* 5 QA mod (P) 5 114 mod (13) 5 14,641 mod 13 5 3
■ B computes B* 5 QB mod (P) 5 117 mod (13) 5 19,487,171 mod 13 5 2
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The key exchange is usually repeated during a session because “stale” keys that are 
used too long might allow a malicious user to break the encryption that much faster. 
The more often the keys are changed the less likely this becomes, and even if broken 
only that portion of the session is compromised. Usually SSH key exchanges occur 
every hour or after every gigabyte of data.

The use of the “null” cipher, which means no encryption at all, is a valid choice 
for SSH clients and servers, but this is only to be used for testing. However, many SSH 
administrators never disable it.  A favorite OpenSSH trick is to gain root access to a 
host and edit the user’s confi guration fi le (~/.ssh/config) so that all hosts use the null 
cipher only. If client or server do not support “null,” this evil trick is not possible.

Key exchange and encryption choice are followed by more security parameter 
choices. Methods of integrity, server authentication, and compression (a marginal fea-
ture still considered part of SSH security) are agreed on. Public key systems are popular 
choices, but the issue is always how to verify proper ownership of the public key, as 
discussed in Chapter 23, where certifi cates were introduced as a way to provide server 
authentication.  At the end of the process, methods for cipher/integrity/compression 
are established for client-to-server and server-to-client exchanges.

Authentication Protocol
SSH-AUTH is simpler than SSH-TRANS.  The authentication protocol defi nes a frame-
work for these exchanges, defi nes a number of actual mechanisms (but only a few of 
them), and allows for extensions.  The three defi ned methods are public-key, password, 
and host-based authentication.

The authentication process is framed by client requests and server responses.  The 
“authentication” request actually includes elements of authorization (access rights are 
checked as well).  A request contains:

Now, all A and B have to do is exchange their A* and B* numbers over the 
network—not caring who sees them (which they can’t help anyway). But wait, 
couldn’t someone easily fi gure out the A and B values in the example? Yes, of 
course, with the small numbers used here. But when large enough primes and 
well-chosen primitive roots are selected, and A and B choose random enough num-
bers (one reason you don’t let A and B pick their own numbers), there are many 
numbers that give the values 3 and 2.

Now A and B simply calculate the shared secret key to use:

■ A’s secret key 5 (B*)A mod (P) 5 24 mod (13) 5 16 mod 13 5 3
■ B’s secret key 5 (A*)B mod (P) 5 37 mod (13) 5 2187 mod 13 5 3

Given enough time, the shared secret key can be broken. So, the Diffi e-Hellman 
process is repeated constantly (at fi xed intervals), recomputing new keys, some-
times every few seconds. By the time the key is broken, a new one is in use.
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Username, U—The claimed identity of the user. On Unix systems, this is typically 
the user account. However, the interpretation context is not defined by the 
protocol.

Server name, S—The user is requesting access to a “server,” which is really the 
protocol to run on the SSH-TRANS connection after authentication finishes. 
This is usually “ssh-connection,” which represents all services (remote log-in, 
command execution, etc.) provided by the SSH-CONN protocol.

Method name, M, and method-specific data, D—The particular authentication 
method used for the request and any data needed with it. For example, if the 
method is password, the data provided are the password itself.

There can be other messages exchanged, depending on the authentication request. 
But ultimately the server issues an authentication response. The response can be 
 SUCCESS or FAILURE, and the success message has no other content.  The failure response 
includes

■ a list of the authentication methods that can continue the process
■ a “partial success” fl ag

The FAILURE response can be misleading. If the partial success fl ag is not set (false), 
the message means that the preceding authentication method has failed for some rea-
son (incorrect password, invalid account, and so on). However, if the partial success 
fl ag is set (true), the message means that the method has succeeded (odd in a failure 
message!), but the server requires that additional methods also succeed before access 
is granted. In other words, the server can require multiple successful authentication 
methods. OpenSSH does not support this feature.

But how does the client know which methods to start with? The client starts with 
a “none” authentication request, which prompts the server to reply with a list of the 
authentication methods the client can choose to continue the process. In other words, 
if the server requires any authentication at all, the “none” method fails. If not, a SUCCESS 
is immediate and a lot of time is saved.

The Connection Protocol
Clients usually request to use “ssh-connection” after a successful authentication 
exchange. Once the server starts the service, SSH uses the SSH-CONN protocol.  This is 
really when SSH starts to do things.

The basic SSH-CONN service is multiplexing: the creation of dynamic logical chan-
nels over the SSH-TRANS connection. Channels are identifi ed by numbers and can be 
created and destroyed by either side of the connection. Channels are fl ow controlled 
and have a type, which are also extensible.  The defi ned channels types follow:

Session—These are for the remote execution of a program. Opening a channel 
does not start a program, but when started several session channels can be in 
operation at once.
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x11—These channels are for X Windows operations.

forwarded-tcpip—These inbound channels are for forwarded TCP ports. (Port 
 forwarding in SSH just means that SSH transparently encrypts and decrypts 
data on a TCP port.) The server opens this channel type back to the client to 
carry remotely forwarded TCP port data.

direct-tcpip—These outbound TCP channels are used to connect to a socket.  The 
client simply starts listening on the port indicated.

SSH-CONN defi nes a set of channel or global requests in addition to traditional channel 
operations such as open, close, send, and so on.  The global requests follow:

tcpip-forward—Used to request remote TCP port forwarding.  This feature is not 
yet supported by Open SSH.

cancel-tcpip-forward—Used to cancel remote TCP port forwarding.

The channel requests are more elaborate and are only summarized in the following. 
Most refer to the remote side of the session channel.

pty-req—Requests a pseudo-terminal for the channel (usually for interactive appli-
cations). Includes window size and terminal mode information.

x11-req—Requests X Window forwarding.

Env—Sets an environmental variable. This can be risky, so it is carefully 
 controlled.

shell, exec, subsystem—Run the default shell for the account, a program, or  service. 
This connects the channel to the standard input and output and error streams. 
A “subsystem” is used, for example, with file transfers, and the subsystem name 
is SFTP in this case.

window-change—Changes the terminal window size.

xon-xoff—Uses client ^S/^Q flow control.

Signal—Sends a signal (such as the Unix kill command) to the remote side.

exit-status—Returns the program’s exit status.

exit-signal—Returns the signal that terminated the program.

Although these channel requests can technically be sent from server to client, the 
use of SSH as a remote access tool means that most of these requests are issued by the 
client and expect the server to perform in a certain way. Clients usually ignore these 
requests from a server, just for security reasons.
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The File Transfer Protocol
The last piece of the SSH protocol “suite” is SSH-SFTP. Oddly, SSH-SFTP does not really 
implement any fi le transfers at all because it has no fi le transfer capability.  What the 
protocol does is to use SSH to start a remote fi le transfer agent and then work with it 
over the secure connection.

Initially, SSH used a secure version of the remote copy (rcp) Unix program to imple-
ment secure copy (scp).  As rcp ran the remote shell (rsh), so scp ran the secure shell 
(SSH). But rcp was a very limited program compared to FTP.  A session only transferred 
a group of fi les in one direction, and it did not allow directory listings, browsing, or any 
of the other features associated with FTP.

Thus, SSH2 eventually incorporated the idea of SFTP to secure the fi le transfer 
process.  The SSH-SFTP protocol describes how this happens. Unfortunately, SFTP isn’t 
just using SSH to connect to a remote FTP server. SFTP has absolutely nothing to do 
with the FTP protocol described in an earlier chapter of this book.

SSH and FTP are not a good match, one reason being that separate connections 
are used in FTP for control and data transfer. FTP itself (like Telnet) can be made more 
secure with SSL, but few FTP servers provide these functions. So, an FTP server can also 
be an SSH server (providing fi les in unsecure and secure manners)—and that’s about a 
close as SSH and FTP can get.

How does SSH-SFTP work? Well, there are really two ways to transfer fi les over an 
SSH connection: with scp or with sftp (the names might be different, but it’s the proce-
dure that’s important).

When a client uses scp, the transfer begins by running ssh with certain options, 
such as when a forwarding agent is in use.  This process in turn runs another ver-
sion on the remote host, which is, of course, running sshd.  That copy of scp is run 
with its own (undocumented) options, such as “to” (-t) and “from” (-f). SSH then 
uses scp, now running on client and server, to transfer the fi le over the secure SSH 
connection.

Figure 25.5 shows how SSH uses scp to transfer a fi le called mywebpage.html to a 
server and rename it index.html. Naturally, the transfer is encrypted and secure.

SSH can even do a trick that FTP does not allow. SSH can be used for “third-party” 
transfers, a capability never implemented in FTP beyond the testing phase (for security 
reasons). In other words, when run locally, SSH can transfer a fi le between two remote 
hosts (as long as the authentication succeeds).

Consequently, users can perform the Web page transfer to the server even if the 
page is on their offi ce desktop and they are sitting with a laptop at an airport gate wait-
ing for a fl ight.

scp lnxclient:mywebpage.html lnxserver:index.html

Using sftp is similar, but the syntax and options for the command are different.  This 
method starts an SSH subsystem, and that means that the SSH server must be spe-
cifi cally confi gured to run the SFTP protocol. Figure 25.6 shows how the same fi le 
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Client

scp mywebpage.html webserver:index.html

run “ssh -x -a ...webserver scp -t index.html”

FILE SCP

ssh

mywebpage.html

Server

index.html

run “scp -t index.html”

SCP

sshd

FILE

SCP Protocol

FIGURE 25.5

Transferring fi les with SCP, showing how SSH is used with the fi le copy.

Client

run “ssh2 -x-a ...webserver -s sftp”

FILE
SFTP/
SCP2

ssh

mywebpage.html

Server

index.html

run “sftp webserver”

SFTP
Server

sshd

FILE

SFTP Protocol

sftp webserver
sftp>put mywebpage.html index.html

or

scp2 mywebpage,html webserver:index.htm

FIGURE 25.6

A fi le transfer with SFTP, showing the same results as when using SCP.
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transfer would be done with sftp (in the SSH implementation known as Tectia, sftp is 
 confusingly invoked with the command scp2).

The point here is that both methods will transfer the fi le as long as every thing else 
is set up correctly.  The best book on SSH—SSH: The Secure Shell, by Daniel J. Barrett, 
Richard E. Silverman, and Robert G. Byrnes (O’Reilly Media)—is about as long as this 
one. Interested readers are referred to this text for more detailed information on SSH.

SSH IN ACTION
If there is one thing that was used more than FTP to produce this book, it’s SSH. In fact, all 
of the fi le transfers used to consolidate output for these examples could just as easily have 
been done with SCP or SFTP.  This is especially true when routers are the remote systems: 
Only in special circumstances will organizations allow or use Telnet for router access.

Let’s use SSH to contact the routers on the Illustrated Network. Naturally, the rout-
ers have been set up ahead of time to allow administrator access from certain hosts on 
LAN1 and LAN2 and are running sshd. But on the client side, we’ll run ssh “out of the 
box” and see what happens.

Ethereal captures are not the best way to look at SSH in action.  The secure and 
encrypted transfers make packet analysis diffi cult (and often impossible). Fortunately, 
we can use the debug feature of SSH itself to analyze the exchange in very verbose 
form (using the –vv option).

Let’s see if we can catch SSH-TRANS, SSH-AUTH, and SSH-CONN in action when we 
access router TP2 (10.10.11.1) from bsdclient.  We’ll log in (the -l option) as admin.

bsdclient# ssh -vv -l admin 10.10.11.1
OpenSSH_3.5p1 FreeBSD-20030924, SSH protocols 1.5/2.0, OpenSSL 0x0090704f
debug1: Reading configuration data /etc/ssh/ssh_config
debug1: Rhosts Authentication disabled, originating port will not be trusted.
debug1: ssh_connect: needpriv 0
debug1: Connecting to 10.10.11.1 [10.10.11.1] port 22.
debug1: Connection established.
debug1: identity file /root/.ssh/identity type -1
debug1: identity file /root/.ssh/id_rsa type -1
debug1: identity file /root/.ssh/id_dsa type -1
debug1: Remote protocol version 1.99, remote software version OpenSSH_3.8
debug1: match: OpenSSH_3.8 pat OpenSSH*
debug1: Enabling compatibility mode for protocol 2.0
debug1: Local version string SSH-2.0-OpenSSH_3.5p1 FreeBSD-20030924
debug1: SSH2_MSG_KEXINIT sent
debug1: SSH2_MSG_KEXINIT received
debug2: kex_parse_kexinit: diffie-hellman-group-exchange-sha1,diffie-
hellman-
 group1-sha1

debug2: kex_parse_kexinit: ssh-dss,ssh-rsa
debug2: kex_parse_kexinit: aes128-cbc,3des-cbc,blowfish-cbc,cast128-cbc,
arcfour,aes192-cbc,aes256-cbc,rijndael-cbc@lysator.liu.se
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debug2: kex_parse_kexinit: aes128-cbc,3des-cbc,blowfish-cbc,cast128-cbc,
arcfour,aes192-cbc,aes256-cbc,rijndael-cbc@lysator.liu.se

debug2: kex_parse_kexinit: hmac-md5,hmac-sha1,hmac-ripemd160,hmac-ripemd160@
openssh.com,hmac-sha1-96,hmac-md5-96

debug2: kex_parse_kexinit: hmac-md5,hmac-sha1,hmac-ripemd160,hmac-ripemd160@
openssh.com,hmac-sha1-96,hmac-md5-96

debug2: kex_parse_kexinit: none,zlib
debug2: kex_parse_kexinit: none,zlib
debug2: kex_parse_kexinit:
debug2: kex_parse_kexinit:
debug2: kex_parse_kexinit: first_kex_follows 0
debug2: kex_parse_kexinit: reserved 0
debug2: kex_parse_kexinit: diffie-hellman-group-exchange-sha1,diffie-
hellman-
group1-sha1

debug2: kex_parse_kexinit: ssh-rsa,ssh-dss
debug2: kex_parse_kexinit: aes128-cbc,3des-cbc,blowfish-cbc,cast128-cbc,
arcfour,aes192-cbc,aes256-cbc,rijndael-cbc@lysator.liu.se,aes128-
ctr,aes192-ctr,aes256-ctr

debug2: kex_parse_kexinit: aes128-cbc,3des-cbc,blowfish-cbc,cast128-
cbc,arcfour,aes192-cbc,aes256-cbc,rijndael-cbc@lysator.liu.se,aes128-
ctr,aes192-ctr,aes256-ctr

debug2: kex_parse_kexinit: hmac-md5,hmac-sha1,hmac-ripemd160,hmac-ripemd160@
openssh.com,hmac-sha1-96,hmac-md5-96

debug2: kex_parse_kexinit: hmac-md5,hmac-sha1,hmac-ripemd160,hmac-ripemd160@
openssh.com,hmac-sha1-96,hmac-md5-96

debug2: kex_parse_kexinit: none,zlib
debug2: kex_parse_kexinit: none,zlib
debug2: kex_parse_kexinit:
debug2: kex_parse_kexinit:
debug2: kex_parse_kexinit: first_kex_follows 0
debug2: kex_parse_kexinit: reserved 0
debug2: mac_init: found hmac-md5
debug1: kex: server->client aes128-cbc hmac-md5 none
debug2: mac_init: found hmac-md5
debug1: kex: client->server aes128-cbc hmac-md5 none
debug1: SSH2_MSG_KEX_DH_GEX_REQUEST sent
debug1: expecting SSH2_MSG_KEX_DH_GEX_GROUP
debug1: dh_gen_key: priv key bits set: 136/256
debug1: bits set: 1042/2049
debug1: SSH2_MSG_KEX_DH_GEX_INIT sent
debug1: expecting SSH2_MSG_KEX_DH_GEX_REPLY
debug1: Host '10.10.11.1' is known and matches the DSA host key.
debug1: Found key in /root/.ssh/known_hosts:1
debug1: bits set: 1049/2049
debug1: ssh_dss_verify: signature correct
debug1: kex_derive_keys
debug1: newkeys: mode 1
debug1: SSH2_MSG_NEWKEYS sent
debug1: waiting for SSH2_MSG_NEWKEYS
debug1: newkeys: mode 0
debug1: SSH2_MSG_NEWKEYS received
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debug1: done: ssh_kex2.
debug1: send SSH2_MSG_SERVICE_REQUEST
debug1: service_accept: ssh-userauth
debug1: got SSH2_MSG_SERVICE_ACCEPT
debug1: authentications that can continue: publickey,password,keyboard-
interactive

debug1: next auth method to try is publickey
debug1: try privkey: /root/.ssh/identity
debug1: try privkey: /root/.ssh/id_rsa
debug1: try privkey: /root/.ssh/id_dsa
debug2: we did not send a packet, disable method
debug1: next auth method to try is keyboard-interactive
debug2: userauth_kbdint
debug2: we sent a keyboard-interactive packet, wait for reply
debug1: authentications that can continue: publickey,password,keyboard-
interactive

debug2: we did not send a packet, disable method
debug1: next auth method to try is password
admin@10.10.11.1's password: (not shown)
debug2: we sent a password packet, wait for reply
debug1: ssh-userauth2 successful: method password
debug1: channel 0: new [client-session]
debug1: send channel open 0
debug1: Entering interactive session.
debug2: callback start
debug1: ssh_session2_setup: id 0
debug1: channel request 0: pty-req
debug1: channel request 0: shell
debug1: fd 3 setting TCP_NODELAY
debug2: callback done
debug1: channel 0: open confirm rwindow 0 rmax 32768
debug2: channel 0: rcvd adjust 131072
--- JUNOS 8.4R1.3 built 2007-08-06 06:58:15 UTC
admin@CE0>

The substantial output captures all three phases of SSH protocol operation (all but SSH-
SFTP). Let’s see what the major portions of this listing are saying.

Roughly speaking, the fi rst half of the output is SSH-TRANS negotiation to estab-
lish the methods to use for key exchange, and what to use for cipher, integrity, and 
compression.  The next quarter is used for SSH-AUTH to decide on a user authentication 
method to be used (its password).  The last quarter, after the password is entered, is SSH-
CONN (setting up SSH channel 0 from router to client).

It’s not necessary to parse this line by line. Generally, the exchange starts by pars-
ing the version string supplied by the router and starting the negotiation.  The router 
announces support for SSH1 or SSH2 (version 1.99).

debug1: Remote protocol version 1.99, remote software version OpenSSH_3.8
debug1: match: OpenSSH_3.8 pat OpenSSH*
debug1: Enabling compatibility mode for protocol 2.0
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The client announces OpenSSH support as well.

debug1: Local version string SSH-2.0-OpenSSH_3.5p1 FreeBSD-20030924

Now the process shifts to binary packet mode and begins in earnest.  The next major 
section presents the router and client support set for key exchange, cipher, integrity, 
and compression.

debug1: SSH2_MSG_KEXINIT sent
debug1: SSH2_MSG_KEXINIT received
debug2: kex_parse_kexinit: diffie-hellman-group-exchange-sha1,diffie-
hellman-group1-sha1

debug2: kex_parse_kexinit: ssh-dss,ssh-rsa
debug2: kex_parse_kexinit: aes128-cbc,3des-cbc,blowfish-cbc,cast128-
cbc,arcfour,aes192-cbc,aes256-cbc,rijndael-cbc@lysator.liu.se

debug2: kex_parse_kexinit: aes128-cbc,3des-cbc,blowfish-cbc,cast128-
cbc,arcfour,aes192-cbc,aes256-cbc,rijndael-cbc@lysator.liu.se

debug2: kex_parse_kexinit: hmac-md5,hmac-sha1,hmac-ripemd160,hmac-ripemd160@
openssh.com,hmac-sha1-96,hmac-md5-96

debug2: kex_parse_kexinit: hmac-md5,hmac-sha1,hmac-ripemd160,hmac-ripemd160@
openssh.com,hmac-sha1-96,hmac-md5-96

debug2: kex_parse_kexinit: none,zlib
debug2: kex_parse_kexinit: none,zlib

The fi rst two lines exchange the messages, which are parsed in pairs in the 
following.  The fi rst pair establishes the key exchange algorithms that the client under-
stands (diffie-hellman-group-exchange-sha1,diffie-hellman-group1-sha1), and the 
second establishes the key types (ssh-dss, ssh-rsa).  The other three pairs show that the 
client and server both support the same methods in the other three categories. (It’s not 
unusual for servers to support methods more than clients.) A long section of back-and-
forth negotiation takes place to pare down the possibilities, and fi nally the client and 
server agree on what three methods to use for cipher, integrity, and compression.

debug1: kex: server->client aes128-cbc hmac-md5 none
debug1: kex: client->server aes128-cbc hmac-md5 none

Still, in SSH-TRANS, the actual key exchange and server authentication now begin. 
Fortunately, it’s really the correct router.

debug1: SSH2_MSG_KEX_DH_GEX_REQUEST sent
debug1: expecting SSH2_MSG_KEX_DH_GEX_GROUP
debug1: dh_gen_key: priv key bits set: 136/256
debug1: bits set: 1042/2049
debug1: SSH2_MSG_KEX_DH_GEX_INIT sent
debug1: expecting SSH2_MSG_KEX_DH_GEX_REPLY
debug1: Host '10.10.11.1' is known and matches the DSA host key.
debug1: Found key in /root/.ssh/known_hosts:1
debug1: bits set: 1049/2049
debug1: ssh_dss_verify: signature correct
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The router is known because we’ve accessed it before (many times, in fact). If we 
go somewhere we’ve never been before, we have the option to break off the session 
because the server cannot be authenticated.

debug1: SSH2_MSG_KEX_DH_GEX_REQUEST sent
debug1: expecting SSH2_MSG_KEX_DH_GEX_GROUP
debug1: dh_gen_key: priv key bits set: 145/256
debug1: bits set: 1006/2049
debug1: SSH2_MSG_KEX_DH_GEX_INIT sent
debug1: expecting SSH2_MSG_KEX_DH_GEX_REPLY
debug2: no key of type 0 for host 10.10.12.1
debug2: no key of type 1 for host 10.10.12.1
The authenticity of host '10.10.12.1 (10.10.12.1)' can't be established.
DSA key fingerprint is 51:5f:da:41:41:9d:b1:c0:3f:a7:d0:a8:b9:7c:99:aa.
Are you sure you want to continue connecting (yes/no)?

At last we’re fi nished with SSH-TRANS. Now SSH-AUTH is used to authenticate the 
“user account” to the server.  We derive some new keys for the process, and fi nally 
(because nothing else “works”) allow the user to type in a password for the router.

debug1: kex_derive_keys
debug1: newkeys: mode 1
debug1: SSH2_MSG_NEWKEYS sent
debug1: waiting for SSH2_MSG_NEWKEYS
debug1: newkeys: mode 0
debug1: SSH2_MSG_NEWKEYS received
debug1: done: ssh_kex2.
debug1: send SSH2_MSG_SERVICE_REQUEST
debug1: service_accept: ssh-userauth
debug1: got SSH2_MSG_SERVICE_ACCEPT
debug1: authentications that can continue: publickey,password,keyboard-
interactive

debug1: next auth method to try is publickey
debug1: try privkey: /root/.ssh/identity
debug1: try privkey: /root/.ssh/id_rsa
debug1: try privkey: /root/.ssh/id_dsa
debug2: we did not send a packet, disable method
debug1: next auth method to try is keyboard-interactive
debug2: userauth_kbdint
debug2: we sent a keyboard-interactive packet, wait for reply
debug1: authentications that can continue: publickey,password,keyboard-
interactive

debug2: we did not send a packet, disable method
debug1: next auth method to try is password
admin@10.10.11.1's password:

Although it is diffi cult to tell from the debug messages, there is a signifi cant wait 
after the password is typed in while SSH-CONN sets up channel 0 over the SSH-TRANS 
connection. But fi nally we’re in an interactive session and all set to go.
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debug2: we sent a password packet, wait for reply
debug1: ssh-userauth2 successful: method password
debug1: channel 0: new [client-session]
debug1: send channel open 0
debug1: Entering interactive session.
debug2: callback start
debug1: ssh_session2_setup: id 0
debug1: channel request 0: pty-req
debug1: channel request 0: shell
debug1: fd 3 setting TCP_NODELAY
debug2: callback done
debug1: channel 0: open confirm rwindow 0 rmax 32768
debug2: channel 0: rcvd adjust 131072
--- JUNOS 8.4R1.3 built 2007-08-06 06:58:15 UTC
admin@CE0>

Note that SSH does not bypass the router’s own authentication method (log-in ID and 
password) in any way. But it does ensure that what the user types in is not sent in plain 
text over the network.

Let’s quickly show sftp in action to fetch a fi le called tp2 from the router.  This 
shows obvious similarities with FTP use, but is much more secure.

bsdclient# sftp admin@10.10.11.1
Connecting to 10.10.11.1...
admin@10.10.11.1’s password: (not shown) 
sftp> ls
.
..
.ssh
CE0-base
mw-graceful-restart
richard-ASP-manual-SA
richard-base
tp2
wjg-ORA-base
wjg-bgp-try
wjg-ipv6-mcast
wjg-with-ipv6
sftp> get tp2
Fetching /var/home/remote/tp2 to tp2
sftp> quit
bsdclient#

The SSH debug sequence for Linux is almost identical to the one for FreeBSD, and 
also uses OpenSSH.  Although not used here, OpenSSH for Windows XP exists and is 
called PuTTY.
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FIGURE 25.7

SSH capture with Ethereal, showing how the packet content is encrypted and therefore not parsed 
by the utility.

What does SSH look like “on the wire”? Figure 25.7 shows what Ethereal sees at the 
start of SSH-TRANS, including a look at an encrypted packet.
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QUESTIONS FOR READERS
Figure 25.8 shows some of the concepts discussed in this chapter and can be used to 
answer the following questions.

1.  Which devices are communicating here? Is this message from the server to the 
client or in the opposite direction?

2. Which ports are used on the devices? Is one the usual SSH server port?

3. Which version of SSL is used? What type of message is parsed in the fi gure?

4. Which two server host key algorithms are supported?

5. How many compression algorithms are supported?

FIGURE 25.8

SSH capture with Ethereal.
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CHAPTER

What You Will Learn
In this chapter, you will learn one type of virtual private network architecture: the 
MPLS-based VPN, and in particular, a Layer 2 VPN (L2VPN).  We’ll also briefl y look at 
using PPTP over DSL for remote access, another type of arrangement that is often 
considered a VPN.

You will learn how an L2VPN can make CE1 and CE2 appear to be connected 
by a single LAN, creating a virtual private LAN service (VPLS) between them.  We’ll 
also confi gure a complete VPLS based on L2VPNs.

MPLS-Based Virtual 
Private Networks 26

In Chapter 17 on Internet Protocol (IP) switching, we introduced the idea of Multi-
protocol Label Switching (MPLS) and confi gured a static label-switched path (LSP).  That 
chapter showed how the LSP could be used for traffi c engineering (TE) to steer transit 
traffi c away from the least-cost hops traversed by local traffi c.  This chapter builds on 
those concepts and explores the security provided by one type of Virtual Private Net-
work (VPN) Protocol, the Point-to-Point Tunneling Protocol (PPTP), and one type of 
VPN architecture, the MPLS-based VPN.

This chapter creates an L2VPN supporting VPLS. It does not create what is known 
as an L3VPN or BGP/MPLS IP VPN, which is actually more common.  There are a few 
reasons we will describe an L3VPN but not confi gure it. Many introductions to VPNs 
start with L2VPNs before moving on the more complex L3VPNs. In addition, there is 
a much more complete book written about BGP/MPLS VPNs available: MPLS-Enabled 
Applications, 2nd edition, by Ina Minei and Julian Lucek (Wiley).  We urge all interested 
readers to obtain this book after completing this one.

This chapter deals with more general aspects of security (and privacy) on the Inter-
net, as companies, individuals, and government organizations blend increasingly sensi-
tive traffi c onto a single global public network. PPTP allows workers in home offi ces 
to access remote corporate resources such as servers and fi les over a public ISP’s unse-
cure network. MPLS-based VPNs allow ISP to offer “private” (virtually private) networks 
to customers, while maintaining the global reachabilty and universal connectivity that 
Internet users have come to take for granted.
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FIGURE 26.1

VPNs on the Illustrated Network. MPLS-based VPNs are based on routers (not hosts), whereas PPTP 
can be used with DSL.
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Before we build an L2VPN for LAN1 and LAN2, let’s take a quick look at remote 
access using PPTP while employing a popular adjunct device, the RSA SecureID.  That’s 
how we access the Illustrated Network from the comfort of our home offi ces.

So, we’re really doing two types of VPN at once in this chapter (as shown in Figure 
26.1). Both the home DSL link and the routers are highlighted, because this is where 
we’ll be building our VPNs (we’ll route LAN1 to LAN2 traffi c away from the links to 
the Internet on P4 and P2).  Another change is necessary (one we’ve seen before), and 
this time the change will be in effect through the end of the book.  Ace and Best ISPs 
have merged to become Best-Ace ISP, and the network now has only one AS number 
(65127).  This will simplify the confi gurations used in the rest of the book, starting with 
our MPLS-based VPN.

PPTP FOR PRIVACY
The RSA SecurID that one is issued for remote access to the corporate network requires 
one to copy the six random numbers that appear on its screen at log-in.  There’s also 
a four-digit static prefi x that does not change, but the last six digits change every 30 
seconds.  This has been challenging for some users, who cannot copy the digits cor-
rectly and exceed their retry count (usually three).  After that, the account is locked 
until an administrator releases it. Newer SecurID tokens plug right into the USB port of 
the computer, so no typing is required.

Even though our home offi ce access is using PPP over DSL, the PPTP connection 
still has to send the PPP and PPTP control messages to the corporate network device, 
the L2TP Access Concentrator (LAC). (We’ll talk about the relationship between PPTP 
and L2TP later.) These messages indicate that a connection request is being made with 
the PPP Link Control Protocol (LCP).  The packet exchange at the beginning of the 
connection is shown in Figure 26.2.  The actual data are sent inside packets formatted 
according to the generic routing encapsulation (GRE) method, which basically adds 
another IP header to the existing one.

For the fi rst time in this book, this Ethereal capture fi le has been edited to substitute 
the actual addresses used for “Martian” addresses for reasons of security.  The client PC 
is using 169.254.99.1 and the server is using 250.99.111.4.

The fi rst GRE packet does not come until packet 20. In fact, there are many more 
compressed PPP packets than those using GRE. Figure 26.3 shows this relationship in 
the packet sequence taken from later in the same session.  We’ll talk more about these 
PPP and GRE packets later in this chapter.

Types of VPNs
A VPN is a private communications network most often used within a single orga-
nization to communicate over a public network. VPN traffi c is carried over a public 
network infrastructure, such as the Internet, using standard and unsecure protocols. 
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FIGURE 26.2

Start of a PPTP over DSL session, showing the content of the fi rst GRE packet.

FIGURE 26.3

PPP and GRE packets, showing GRE encapsulation of PPP in IP.
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However, the VPN mechanisms make the network look and feel like a private network 
composed of network nodes owned and operated by the organization and the leased 
lines connecting them, which carry the organization’s traffi c only.

In truth, the “private” network was never really as private as customers thought. 
Carriers did a good marketing job, but in fact every customer’s bits were freely mixed 
on high-bit-rate backbones, although users could not tell whether this was the case. 
But when a massive microwave link was compromised in some way, hundreds or thou-
sands of customers’ data were at risk. Once the carriers all became ISPs, the marketing 
material for private circuits was retooled to support the use of virtual circuits over the 
public network.

Chapter 17, on frame relay and ATM networks, which also covered MPLS, mentioned 
the idea of a virtual circuit (or channel or connection) as something that is “not really a 
private circuit/channel/connection, but acts just like one,” at least as far as the customer 
is concerned.  This chapter extends that concept into the general area of VPNs.

The chapter on MPLS introduced the idea of using MPLS LSP “tunnels” as the basis 
for a VPN, because MPLS LSPs are pretty much invisible to IP hackers on the network. 
This chapter elaborates on that idea.

Are MPLS LSP Tunnels?
Sometimes MPLS LSPs are loosely called “MPLS tunnels,” and most people will not 
object, knowing that LSPs are intended. But some object strenuously, claiming that 
the term tunnel is more properly reserved for different types of encapsulation 
than in MPLS—such as frame in frame, packet in packet, or some others. MPLS 
merely adds a small “shim header” between L3 packet and L2 frame, they claim, 
and therefore is not a full encapsulation (some call it “Layer 2.5”).

Of course, if tunneling is defi ned as a “violation of the normal data-packet-frame 
encapsulation sequence at some endpoint devices,” MPLS LSPs are certainly tun-
nels. Then again, VLAN tagging (the Layer 2 analog to MPLS labeling) is not called 
“VLAN tunneling,” even though it could be.

In this chapter, we’ll use the terms MPLS LSP and VLAN tagging, while avoid-
ing the term tunnel.

Security and VPNs
On modern networks, a fi rewall of some type is used as a security device and sits 
between clients and servers.  The fi rewall can pass authentication data to an authenti-
cation service for the local network, such as RADIUS.  A trusted person with privileged 
access (such as root, often only using trusted devices that are physically secure) is 
allowed to access resources not available to general users, such as the routers and the 
fi rewall itself.
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We’ll talk more about fi rewalls in Chapter 28. For now, we’ll just mention them and 
note that VPNs can use fi rewalls, and indeed they can be built up from fi rewalls but 
don’t have to be. For many people, any type of VPN implies the purchase and use of 
specialized devices that form the endpoints of the VPN.  To these users, the VPN is 
 created by the customer; in brief, it is not offered as a service by the ISP.  The  exception, 
of course, is MPLS-based VPNs, which we will explore in this chapter.

VPNs do not have to be secure.  An organization that uses MPLS to create the appear-
ance of the virtual-circuit, network-like frame relay or ATM might call the result a VPN, 
but this is not really more secure than any other type of network. Secure VPNs use 
encrypted tunneling protocols to add confi dentiality (a counter-sniffi ng notion), user 
and resource authentication (to prevent spoofi ng), and message integrity (to detect mes-
sage alteration) to achieve the levels of security and privacy desired (or affordable).

It should be noted that no code is unbreakable (rumors persist to the contrary); no 
network is entirely protected against hackers; and some simple attacks, such as denial-
of-service (DOS) attacks, are still painfully effective.  What network security seeks to do 
is raise the work factor for the bad guys to the point where it takes so long to break 
the code that the information is useless and it’s easier to attack another network whose 
administrators are less diligent in security areas.

If this sounds too defeatist, consider the fact that Kevin Mitnick (a hacker guru) 
admitted in his book, The Art of Intrusion, that most of his exploits relied on manipu-
lating people (“social engineering”) and not frontal attacks on equipment and software 
(“I’m with security.  We have to change your password.  What is it again?”).  A lot of secu-
rity dollars are spent protecting users from themselves.

VPNs and Protocols
There are several types of VPNs that can be built, and the choice of which type to use 
is not trivial. Many VPN schemes have a lot to do with security. But secure VPN tech-
nologies can be the basis for a security overlay and used to enhance security on the 
network.

We’ll just talk generally about all types of VPNs, create an MPLS-based VPN on the 
Illustrated Network at the end of the chapter, and consider ways to “harden” it in the 
next few chapters.  All VPNs are in some sense “trusted” more than simple IP router 
 networks. Secure VPN protocols include the following:

IPSec (IP security)—IPSec has been aptly described as “a piece of IPv6 that fell 
into IPv4.” A mandatory part of IPv6, IPSec was rushed into the IPv4 world as 
an advanced security measure.

SSL—SSL can be used to tunnel the entire network stack, as in the OpenVPN 
approach, or to create an SSL VPN to secure certain pieces of the network.

PPTP—A tunneling method developed by Microsoft for remote access to network 
resources through a special server.
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L2F (Layer 2 forwarding)—Another secure remote-access method developed by 
Cisco.

L2TP (Layer 2 tunneling protocol)—A sort of “compromise” method that includes 
contributions by both Cisco and Microsoft.  Today, L2TP has pretty much 
replaced L2F.

VPNs do not rely on one protocol or another for everything. For example, networks 
dominated by Windows software generally use VPNs that employ PPTP and L2TP (along 
with IPsec) to construct a secure VPN.

We’ve already talked about SSL, and IPSec is covered (and featured) in the next chap-
ter. Let’s take a look at PPTP and L2TP methods, which are for securing inter mittent 
remote user access through dial-up links or (increasingly) from home offi ces over DSL.

PPTP
PPTP was developed by Microsoft as an extension to PPP and is now defi ned in RFC 
2637. It is a Layer 2 tunneling protocol, meaning that the payload is the Layer 2 frame 
itself, encrypted and preceded by a small PPTP header based on extensions to the 
generic routing encapsulation (GRE) header described in RFC 2784.  This frame, with 
header and trailer, is placed inside another packet and sent over the network between 
what PPTP calls a PPTP access concentrator (PAC) and a PPTP network server (PNS).

PPTP is a client/server protocol with the PAC as the client and the PNS as the server. 
Control messages are exchanged over TCP port 1723. Encryption is provided by under-
lying PPP mechanisms. Encryption keys are generated from the authentication process, 
which normally uses the Challenge Handshake Authentication Protocol (CHAP)—a 
three-way handshake using encrypted passwords (defi ned in RFC 1994).

In PPTP, PPP uses compressed data, which is not a form of encryption but does 
present an obstacle to unsophisticated hackers who only dabble in eavesdropping.  The 
GRE encapsulated data are secure. PPTP is still widely used today, often in conjunction 
with some type of user authentication token such as an RSA SecurID numerical pass-
code generator. Users dial in to the PAC and log in using the passcode, which changes 
every 30 seconds. Dial-in connections are usually very secure because they can follow 
any path over the PSTN and use any PAC port available. PPTP covers communication 
between the PAC (which might be supporting traveling sales agents on the east coast) 
and the main network with the PNS (which might be on the west coast). In addition to 
controlling costs, PPTP used this way can use a VPN setup for that purpose.

Today, home workers with DSL often use PPTP to tunnel through the ISP’s unse-
cure network to reach the relative security of the organization’s more protective 
environment.  Additional security is needed to reach the PAC from the user location. 
Between PAC and PNS, a VPN tunnel itself can be built using double encryption; that is, 
taking the PPTP data and encrypting it once again. It all depends on how paranoid the 
organization is (as the doomed Kurt Cobain noted, just because you’re paranoid doesn’t 
mean they’re not out to get you).
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L2TP
Cisco fi rst used their L2F as an alternative to Microsoft’s PPTP. But eventually both 
companies combined the best of both worlds to produce L2TP, a more fl exible version 
of PPTP. L2TP is also a way to send encrypted frames between client and server over 
the Internet, and again the client is a remote access point and the server on a protected 
network. In L2TP, these are now the L2TP access concentrator (LAC) and L2TP network 
server (LNS).

L2TP is designed to work with more than dial-in users seeking Internet connectivity. 
The LAC and LNS can be linked not only over the Internet but over frame relay and ATM 
networks (L2TP calls them “non-IP WAN technologies”).  A special L2TP device, the LAC 
client, can attach to the LNS directly without going through the dial-in LAC device.  The 
overall architecture is shown in Figure 26.4.

Encryption in L2TP is provided with IPSec (why always reinvent the wheel?). 
There is a two-step L2TP encapsulation.  An initial L2TP frame encapsulation with PPP 
is used to build a new IP packet using UDP port 1701 on the server side and an L2TP 
header.  This step is followed by the IPSec encapsulation.  Although it is technically 
allowed to send L2TP data without this step, it defeats the purpose. L2TP is defi ned 
in RFC 2661.

LAC Client

Home
Gateway

LNSLAC

Remote System

Remote
Resources

Smartcard
or SecurID

Internet, Frame
Relay, ATM

PPTP Runs Here

Smartcard
or SecurID

PSTN

FIGURE 26.4

PPTP architecture, showing how PPTP runs between LAC and LNS.
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PPTP and L2TP Compared
There are many differences between PPTP and L2TP, but the following comprise the 
main ones.

■  PPTP cannot support a non-IP network directly, whereas L2TP works with any 
network that can provide point-to-point connectivity.

■  PPTP supports only a single tunnel from client to server, whereas L2TP can 
 support multiple tunnels—perhaps used as part of a multilevel security and QoS 
scheme.

■  PPTP does not support header compression, whereas L2TP can compress its 
header for effi ciency purposes.

Nevertheless, PPTP remains more popular than L2TP, and organizations that sup-
port many remote users (traveling or at home) with Windows-based laptops or PCs 
generally still use PPTP.  The main alternative to PPTP and L2TP to add security to a VPN 
connecting an organization’s sites is IPSec. IPSec is discussed in the next chapter.

TYPES OF MPLS-BASED VPNs
Now that MPLS and security protocols have been defi ned, let’s look at the types of 
VPNs that can be built from these pieces.  There are two major types of VPN: Those that 
operate at Layer 3 (the same layer as the routers that make up the network), and those 
that operate at Layer 2, the level of LANs linked over the VPN.

Which is “better”? There is no easy answer, and even the question should be framed 
more clearly in terms of what is meant by “better.” Better in terms of cost, complexity 
(or simplicity), cryptographic sophistication, or something else altogether?

This section describes the major characteristics of each and confi gures one type on 
the Illustrated Network, not as an endorsement, but just as an example.  The often bewil-
dering terminology applied to VPN types has now been standardized in RFC 4364.

Layer 3 VPNs
Consider an organization with two widely separated sites with LANs running the TCP/IP 
protocol suite and using all of the techniques and applications we’ve described earlier in 
this book.  What would a totally private IP network connecting the two sites look like? 
Well, the organization could contract with a carrier for a long link connecting the sites 
and install customer routers at each location. Security is provided by the isolated nature 
of the traffi c on the leased private line (although that isolation is rarely absolute, as has 
been pointed out) and restricted access at the sites themselves.  There is no Internet 
access, of course, unless a separate router or port is provided for this purpose.

But many carriers have evolved beyond the stage of mere “bandwidth mongers” and 
want to provide more sophisticated services as ISPs. Private lines are usually paid for 
by the mile as well as by bandwidth, and the bandwidth use for bursty IP  applications 
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is wildly erratic and thus wasted much of the time. Private networks are designed for 
peak loads, such as end-of-month or end-of-quarter frenzies, and sit idle most of the 
time.  The PSTN is no exception, by the way, and is designed (in the United States) 
for the 5 days of maximum calling volume: Mother’s Day, Christmas, New Year’s Day, 
Thanksgiving, and Father’s Day. Only unpredictable major disasters can swamp the 
PSTN at other times.

Adding sites can be a problem in this scenario. Organizations with many sites can 
always contract fl oor space at some central point and install their own routers and 
leased lines there in a hub confi guration instead of a mesh to cut down on point-to-
point mileage costs and the number of ports required on each router.

Of course, the isolation of the private network is always attractive to customers. 
But what if the ISP can promise a network that looks like the rented-fl oor-space router 
hub solution with leased private line connectivity? In other words, the ISP provides 
a solution that looks like a private router network to the customer—complete with 
what appear to be dedicated links and routers that contain routing information for that 
customer and that customer only.  This is, of course, a VPN.

But what we have described is not just any type of VPN—it’s a Layer 3 VPN (L3VPN) 
because the virtual nature of the network is apparent at Layer 3 (the IP layer). It’s really a 
network of virtual routers because in reality the ISP is selling the same router resources 
to hundreds and even thousands of customers if the router and links are hefty enough 
to handle the loads.  The different L3VPN customers cannot see each other at all, or 
even communicate unless special arrangements are made (this is sometimes called an 
“extranet,” the closed VPN being an “intranet”). Each can only see the information in its 
own virtual routing and forwarding (VRF) tables, as if the router were divided into 
many tiny logical pieces.

L3VPNs are one of the most complicated entities that can be set up on a router 
network.  They are built on MPLS LSPs, as might be expected, and carefully distribute 
routing information only to the VRFs that should receive it. (There is still a “master” rout-
ing table that receives all routing information: Someone has to run the L3VPN itself.)

Basic L3VPN connectivity is bad enough. It is much worse when multicast capabili-
ties must be added to the tunnels, which are essentially point-to-point connections that 
do not easily replicate packets.

The RFCs and drafts for L3VPNs, which are numerous, use MPLS and BGP as the 
foundations for these types of VPNs—also called PPVPNs (provider-provisioned VPNs). 
They also introduce a distinctive architecture and terminology, as shown in Figure 26.5. 
The fi gure shows a simple two-site arrangement, but the same terms apply to more 
complicated confi gurations.

Customer Edge
Each site has a customer-edge (CE) router, designated CE1, CE2, ... CEn as needed.  These 
routers are owned and operated by the customer and are at the “edge” of the VPN.  At 
least one link runs to the ISP and carries customer data to and from the ISP’s network. 
The data on the link can be in plain text (the link is generally short, point to point, and 
not considered a high security risk) or encrypted with IPSec, SSL, or some other VPN 
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protocol.  The CEs still run a routing protocol, but only to gather information about 
other CE routers belonging to their own L3VPN.

Provider Edge
Each customer site connects to a provider-edge (PE) router, designated PE1, PE2, ... PEn 
as necessary.  These are owned and operated by the ISP and are at the provider “edge” 
of the VPN.  A PE router can carry traffi c to and from many CE routers, and even carry 
“regular” Internet traffi c for other customers.  These are routers with the VRFs and run 
MPLS to the other PE routers and BGP to carry customer routing information. In MPLS 
terms, these are the ingress and egress routers, but a PE router on one VPN can be a 
transit (P) router on another.

Provider
The provider (P) routers are the MPLS transit routers that carry VPN traffi c through the 
provider “core” or backbone.  As in MPLS, there must be at least one P router, but there 
are usually quite a few, depending on the popularity of the L3VPN service.  As with PE 
routers, the P routers can carry general ISP traffi c that has nothing to do with VPNs.

The major L3VPN is RFC 4364, and Internet drafts are important for understanding 
how MPLS and BGP combine to make an L3VPN. MPLS LSPs connect the PE routers 
through the P routers, and BGP is used with route distinguishers to ensure that routing 
updates go into the proper VRFs.

The routing tables on the CE routers are generally quite simple.  They contain just 
a few routes to the other CE router sites and a default for generic Internet access, 
which might be through a separate router or through the VPN itself (one tunnel leads 
to an Internet router “gateway”). If the Internet access (few VPNs can afford to cut 
themselves off from the Internet entirely) is on another router at the customer site, a 
fi rewall is typically used to protect this “back door” to the VPN. Firewalls are discussed 
in the next chapter.

FIGURE 26.5

Basic MPLS-based VPN architecture and terminology. Note that we’ve been using this terminology 
all along.

PEs have VRF for each L3VPN

CE PE PE CEInternet

MPLS LSP

PEs use BGP to carry VRF routes

P
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Layer 2 VPNs
In an L3VPN, the two CE routers are still on two separate networks—just like LAN1 and 
LAN2 on the Illustrated Network. CE0 and CE6 use different IP network addresses, such 
as 10.0.50.2/24 and 10.0.16.2/24, on their links to PE5 and PE1 toward the network 
backbone.

LANs are Layer 2 constructs at heart. Ethernet frames only care about MAC layer 
addresses, not IP addresses.  Why not just build the VPN at Layer 2 and connect the two 
CE routers into one big “virtual” LAN that seems to be as private as both LANs would 
be separately? This is the idea behind an L2VPN.

Even though an L2VPN service is delivered over an ISP’s collection of routers (just 
like an L3VPN), the end result is much simpler than an L3VPN.  This is because there 
is no need to maintain separate virtual routing information for each customer. Both 
customer routers can use one IP address space (perhaps 10.99.99.0/24), and do not 
need to run a routing protocol between the CE routers at all because they appear to be 
directly connected and at opposite ends of the same “link.”

The L2VPN architecture still uses the CE-PE-P terminology and uses MPLS LSPs, 
but the basic content of the tunnels are Ethernet frames (other “emulated” LANs are 
sometimes supported).  The backbone routers in an L2VPN are essentially transformed 
into LAN bridges.  The VPLS tables on the PE routers are now long lists of MAC layer 
addresses more similar to ARP caches than to routing tables.

L2VPN service offerings have a variety of names.  A popular offering from many ISPs 
is some form of virtual private LAN service (VPLS).  The LANs are now virtual LANs 
(VLANs), and the Ethernet frames between CE and PE routers must employ VLAN tag-
ging to allow the ISP to tell the frames apart at Layer 2.  The PE routers are confi gured 
with a VPLS virtual port that forms the endpoint of the MPLS tunnel (LSP) that carries 
the frames from one LAN to the other.

There are many other variations on the basic VPN types described here. RFC 4026 
lists (in addition to L3VPNs, L2VPNs, and VPLS) seven other types of VPN, mostly varia-
tions on the L2VPN theme.

■ Virtual Private Wire Service (VPWS)
■ IP-only LAN-like Service (IPLS)
■ Pseudo Wire (PW)
■ Transparent LAN Service (TLS)
■ Virtual LAN (VLAN)
■ Virtual Private Switched Network (VPSN)

Why all the interest in linking CE routers over Layer 2 through an ISP’s router net-
work? The trend today is to extend Ethernet’s reach and speed to incredible distances 
(about 25 miles) and bandwidths (10 Gbps). Some see Ethernet as the ultimate “univer-
sal” network, and one without all the risks inherent in IP-based router networks. How 
many malicious users are busily crafting phony Ethernet frames?

Of course, malicious users followed networking from the PSTN (where they were 
fi rst active in securing free long-distance service) onto the Internet, and there is no 
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reason to think they won’t follow the action anywhere else. But VPNs and virtual LANs 
are at least prepared to address security issues from the start.

VPLS: AN MPLS-BASED L2VPN
To make a good confi guration for VPLS, we’ll have to get a little creative with our 
 network.  The two routers attached to LAN1 and LAN2, customer-edge routers CE1 and 
CE2, will now support VLAN tagging (not diffi cult to do).  With VPLS confi gured, both 
LANs still use addresses 10.10.11.0/24 and 10.10.12.0/24. (In other words, we’ll start 
the VPLS at the ISP, not at the customer routers—not all users want to renumber all of 
their IP devices.)

But now it will look like the CE routers are directly connected with a gigabit 
Ethernet LAN sharing a common IP network address. In this example, that address 
is 10.99.99.0/24 (which should be distinctive enough to easily pick out). So, this 
is where the “virtual LAN” comes in—on the link between CE1 and CE2.  We’ve also 
merged Best-Ace ISP into one AS (the number is not important) so that we can use 
IBGP to distribute the routes and avoid more complex confi gurations.

The simplifi ed Illustrated Network confi guration for VPLS, along with interface 
designations and IP addresses, is shown in Figure 26.6.  The fi gure also shows an 
example of the VPLS table on router PE1.  This table shows how the MAC addresses 
on the interfaces to the CE routers map to MPLS labels instead of IP addresses, as in 
an L3VPN.

The VPLS virtual port interfaces on PE1 and PE2 are designated with the vt-  (virtual 
tunnel) prefi x.  These are not physical interfaces on the routers, of course, but logical 
interfaces that form the endpoints of the MPLS LSP connecting the routers over the ISP 
core backbone.  This interface is not confi gured directly, but is the result of the VPLS 
confi guration steps.

Router-by-Router VPLS Confi guration
Let’s look at each router individually and show the sections of the confi guration fi les 
that directly create the VPLS service between LAN1 and LAN2. Keep in mind that there 
could be much more to the confi guration than just these statements.

CE0 Router
All that is needed on the CE0 router is the interface to the PE router and the VLAN iden-
tifi er and IP address associated with it.  These values must match the confi guration on 
router CE0. (The LAN1 interface is still fe-1/3/0 and is still using 10.10.11.1/24.)

set interfaces ge-0/0/3 vlan-tagging;
set interfaces ge-0/0/3 unit 0 vlan-id 600; # the VLAN ID must must match
 throughout the configurations
set interfaces ge-0/0/3 unit 0 family inet address 10.99.99.1/24;
 # this address space must match the CE6 link address we use
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FIGURE 26.6

Illustrated Network topology for the VPLS confi guration. Note the “new” address space.

PE5 Router
The PE router confi gurations are the most elaborate among the VPLS routers.  These 
confi gurations are rather lengthy, so comments are used throughout.  The PE routers 
need BGP, MPLS, OSPF, and RSVP to be confi gured properly for the LSP to work cor-
rectly. RSVP sets up the MPLS LSPs, OSPF handles routine routing chores, and BGP is 
used to carry the VPLS MAC layer information between the PE routers.

The PE routers also need to confi gure VLAN tagging and VPLS encapsulation on the 
interfaces (physical and logical) to the CE routers.  The VLAN ID must match as well, but 
no IP address is needed for this “Layer 2” interface.  There is a space between major sec-
tions of the confi guration and liberal comments to help track what is being confi gured.

set interfaces ge-0/0/3 vlan-tagging; #interface to CE0
set interfaces ge-0/0/3 encapsulation vlan-vpls;
set interfaces ge-0/0/3 unit 0 encapsulation vlan-vpls;
set interfaces ge-0/0/3 unit 0 vlan-id 600; # must match across the network
set interfaces so-0/0/0 unit 0 family inet address 10.0.59.1; # interface to P9
set interfaces so-0/0/0 unit 0 family mpls;
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set routing-options autonomous-system 65127;
set routing-options forwarding-table export exp-to-fwd;
 # used to distinguish VPLS "routes"

set protocols rsvp interface all; # turn on RSVP

set protocols mpls label-switched-path PE5-to-PE1 to 192.168.1.1;
 # The LSP to connect VPLS routers thru loopback addresses
set protocols mpls interface all; 
set protocols bgp group vpls-pe type internal;
set protocols bgp group vpls-pe local-address 192.168.5.1;
set protocols bgp group vpls-pe family l2vpn unicast; 
 # this VPLS is an L2VPN type and only cares about unicast traffic
set protocols bgp group vpls-pe neighbor 192.168.9.1;
 # IBGP peer router P9
set protocols bgp group vpls-pe neighbor 192.168.7.1;
 # IBGP peer router P7
set protocols bgp group vpls-pe neighbor 192.168.1.1;
 # IBGP peer router PE1

set protocols ospf traffic-engineering;
set protocols ospf area 0.0.0.0;
set protocols ospf interface all; # run OSPF to all routers

set policy-options policy-statement exp-to-fwd term A
 from community green-community;
 # policy to load forwarding table – the community must also match
set policy-options policy-statement exp-to-fwd term A
 then install-nexthop lsp PE5-to-PE1;
 # makes this LSP the next hop for the VPLS
set policy-options policy-statement exp-to-fwd term A 
 then accept;
 # accepts only community = green-community

set policy-options community green-community;
 # sets the community value on BGP routes for the VPLS

set routing-instances green instance-type vpls;
 # creates a special forwarding table for VPLS traffic
set routing-instances green interface fe-0/1/0.0;
set routing-instances green route-distinguisher 10.10.10.1;
set routing-instances green vrf-target target:11111:1;
 # this value must match the community 
set routing-instances green protocols vpls site-range 10;
 # this starts the main VPLS configuration
set routing-instances green protocols vpls site greenPE1 site-identifier 1;
 # after the protocols, communities, and the rest, this is simple... 

P Router (P9)
The P routers still need the same BGP, MPLS, OSPF, and RSVP to become a transit router 
between PE5 and PE1. But at least no major policies need to be applied or tables  created. 
The confi guration shown, on P9, is mirrored by the one on P7 (which is not shown).
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set interfaces so-0/0/1 unit 0 family inet address 10.0.79.2; # interface to P7
set interfaces so-0/0/1 unit 0 family mpls; #needed for the VPN  
set interfaces so-0/0/2 unit 0 family inet address 10.0.59.2; # interface to PE5
set interfaces so-0/0/1 unit 0 family mpls; #needed for the VPN  

set protocols rsvp interface all; # turn on RSVP for signaling
set protocols mpls interface all; # turn on MPLS for packet parsing
set protocols bgp group vpls-pe type internal; # create IBGP group for VPLS
set protocols bgp group vpls-pe local-address 192.168.9.1 # P9 router 
 address
set protocols bgp group vpls-pe family l2vpn unicast # VPLS is for unicast 
 traffic
set protocols bgp group vpls-pe neighbor 192.168.5.1 # IBGP peer router PE5
set protocols bgp group vpls-pe neighbor 192.168.7.1 # IBGP peer router P7
set protocols bgp group vpls-pe neighbor 192.168.1.1 # IBGP peer router PE1

set protocols ospf traffic-engineering; # needed to divert VPN packets
set protocols ospf area 0.0.0.0 interface all;  # run OSPF everywhere

Note that we’ve added the P routers to the IBGP mesh.  Technically, the P routers do 
not need to be part of the BGP mesh for the VPN, although the P routers might need to 
run BGP for other purposes (which is why we are running it here).  All that is needed 
for the VPN is a full mesh between the PE routers.  This confi guration does no harm on 
this little network, but when PEs have thousands of VPNs the signaling and information 
moved by BGP can create resource issues. In these cases, it is advisable to have a BGP-
free core (unless, of course, BGP is needed on the P routers for other non–VPN-related 
purposes).

PE1 Router
The VPLS confi guration on the PE1 router mirrors the confi guration on the PE5 router. 
It is shown because of its importance in the VPLS confi guration.

set interfaces ge-0/0/3 vlan-tagging; #interface to CE6
set interfaces ge-0/0/3 encapsulation vlan-vpls;
set interfaces ge-0/0/3 unit 0 encapsulation vlan-vpls;
set interfaces ge-0/0/3 unit 0 vlan-id 600; # must match across the network
set interfaces so-0/0/2 unit 0 family inet address 10.0.17.1; # interface to P7
set interfaces so-0/0/2 unit 0 family mpls;

set routing-options autonomous-system 65127;
set routing-options forwarding-table export exp-to-fwd;
 # used to distinguish VPLS "routes"

set protocols rsvp interface all; # turn on RSVP

set protocols mpls label-switched-path PE1-to-PE5 to 192.168.5.1;
 # The LSP to connect VPLS routers thru loopback addresses
set protocols mpls interface all; 

set protocols bgp group vpls-pe type internal;
set protocols bgp group vpls-pe local-address 192.168.5.1;
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set protocols bgp group vpls-pe family l2vpn unicast; 
 # this VPLS is an L2VPN type and only cares about unicast traffic
set protocols bgp group vpls-pe neighbor 192.168.9.1;
 # IBGP peer router P9
set protocols bgp group vpls-pe neighbor 192.168.7.1;
 # IBGP peer router P7
set protocols bgp group vpls-pe neighbor 192.168.5.1;
 # IBGP peer router PE5

set protocols ospf traffic-engineering;
set protocols ospf area 0.0.0.0;
set protocols ospf interface all; # run OSPF to all routers

set policy-options policy-statement exp-to-fwd term A
 from community green-community;
 # policy to load forwarding table – the community must also match
set policy-options policy-statement exp-to-fwd term A
 then install-nexthop lsp PE5-to-PE1;
 # makes this LSP the next hop for the VPLS
set policy-options policy-statement exp-to-fwd term A 
 then accept;
 # accepts only community = green-community

set policy-options community green-community;
 # sets the community value on BGP routes for the VPLS

set routing-instances green instance-type vpls;
 # creates a special forwarding table for VPLS traffic
set routing-instances green interface fe-0/1/0.0;
set routing-instances green route-distinguisher 10.10.10.4;
set routing-instances green vrf-target target:11111:1;
 # this value must match the community 
set routing-instances green protocols vpls site-range 10;
 # this starts the main VPLS configuration
set routing-instances green protocols vpls site greenPE1 site-identifier 2;
 # after the protocols, communities, and the rest, this is simple...

CE6 Router
Finally, the router that connects to LAN2 mirrors the confi guration of the CE0 router. 
(The LAN2 interface is still fe-1/3/0 and is still using 10.10.12.1/24.)

set interfaces ge-0/0/3 vlan-tagging;
set interfaces ge-0/0/3 unit 0 vlan-id 600; # the VLAN ID must must match
 throughout the configurations
set interfaces ge-0/0/3 unit 0 family inet address 10.99.99.2/24;
 # this address space must match the CE0 link address we use
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DOES IT REALLY WORK?
Complex confi gurations always pose challenges for verifi cation. How do we know this 
VPLS is really working? Well, one way is to see whether the PE routers are learning MAC 
addresses.

admin@PE5> show system statistics vpls | match mac
6 mac route learning requests
6 mac router learnt
0 mac routers aged
0 mac router moved

There are many other commands that show VPLS information. But the most impor-
tant information is from the hosts on LAN1 and LAN2 themselves, which now think 
their site routers are connected by a single Ethernet LAN instead of six routers.

bsdclient# traceroute 10.10.12.77
traceroute to 10.10.12.77 (10.10.12.77), 64 hops max, 44 byte packets
 1  10.10.11.1 (10.10.11.1)  0.419 ms  0.256 ms  0.343 ms
 2  10.99.99.2 (10.99.99.2)  0.328 ms  0.294 ms  0.346 ms
 3  10.10.12.77 (10.10.12.77)  0.331 ms  0.297 ms  0.346 ms
bsdclient#

The bsdclient and all the other hosts on LAN1 now think that the bsdserver on 
LAN2 is only three hops away, although we know there are actually six routers between 
the source and destination! The only intermediate address that shows up is the IP 
address on the link address on CE6, which is where the MPLS LSP ends.
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QUESTIONS FOR READERS
Figure 26.7 shows some of the concepts discussed in this chapter and can be used to 
answer the following questions.

1. How many LSPs are used to connect the two routers at the ends of the VPLS?

2. Where does the LSP connecting the site router CE0 to CE6 begin and end?

3. Why is the confi guration on the PE router so complex?

4. What is the function of the VPLS virtual port?

5.  What if a third site router using the 10.99.99.2/24 address space joined the 
network? Could the VPLS be extended to that site as well? If so, how?

FIGURE 26.7

Topology for the VPLS confi guration.
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CHAPTER

What You Will Learn
In this chapter, you will learn how NAT (originally used to address the shortage of 
IPv4 addresses) is now used to conceal public IPv4 addresses.  We’ll talk about the 
advantages and disadvantages of using NAT for this purpose.

You will learn that there are four types of NAT and fi nd that using NAT for secu-
rity is not the best use of NAT.  We’ll also confi gure the popular NATP and see how 
and where the IPv4 addresses on the Illustrated Network are translated.

Network Address 
Translation 27

This chapter deals with a common TCP/IP practice, network address translation (NAT). 
NAT is used to conceal the true public IPv4 addresses of a device by using substitute 
IPv4 addresses in packet headers. NAT is usually performed by customer-edge (site) 
routers or hubs, and is more sophisticated today than the older methods of simply 
using private RFC 1918 addresses whenever one liked.

Although often presented as a security feature, NAT (properly called “IP NAT” because 
there are many types of network addresses that can be translated) was invented in RFC 
1631 to address the shortage of IPv4 addresses while the world waited for IPv6. NAT is 
still not an offi cial Internet standard, but it is a very common practice and a feature of 
many routers, hubs, and remote access devices.

When NAT was introduced, it was immediately embraced to address the simple 
fact that IPv4 addresses were limited.  Any organization that had only a Class C address 
(back then) would be attracted to a way to allow more than 250 or so devices to access 
the Internet at the same time.

In this chapter, we’ll be using the equipment shown in Figure 27.1.  We’ll confi g-
ure the CE0 at the edge of the network router to do NAT for the clients on LAN1 
(bsdclient and wincli1). Before we confi gure NAT, we’ll have to explore all of the 
types of NAT we could use and then confi gure one of these types for LAN1.
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FIGURE 27.1

NAT on the Illustrated Network showing NAT confi gured on CE0 for the use of two hosts on LAN1.
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USING NAT
With NAT, a network could support 500 or so hosts with private addresses, and the NAT 
router could translate these to the public IP address range when the client needed Inter-
net access.  After all, the remote server replied blindly to the source IP address, which 
only needed to be routable and not private. NAT devices could even allow ports to be 
part of the process (and know that a server’s reply to 10.10.11.177:30567 is different 
from a reply to 10.10.11.177:31420), even though the IP addresses were the same. 

Many DSL access devices (“DSL routers”) still use this “trick” to allow multiple home 
computers to share a single IP address from the ISP. Many ISPs are careful to point out 
that this arrangement is often not supported, which always boils down to two things: 
They won’t tell you how to confi gure it and you can’t report a problem on it if you do 
confi gure it and it doesn’t work. Modern NAT devices know which addresses belong to 
servers (and should be translated consistently so that clients can fi nd them, or not be 
translated at all) and which are clients (and can be changed with abandon).

NAT and IPv6
Why does this chapter only talk about NAT and IPv4? What happened to IPv6? 
What happened is that RFC 4864 released in May 2007 contained more than 
30 pages in which it was patiently explained that NAT is not a security feature (as 
pointed out in this chapter) and should be thought of solely as a way to extend the 
availability of IPv4 address space. Once the huge address space in IPv6 is available, 
there is no need for NAT.

    RFC 4864 points out that everything NAT does can be done in IPv6 without 
any additional protocols. These native IPv6 features include the use of privacy 
addresses (RFC 3041), unique local addresses (ULAs, as described in RFC 4193), 
the use of DHCPv6, and so on. In other words, they are things that we have already 
talked about which can enable internal addressing masking from the global net-
work. For these reasons, as well as the limitations of space, we will not deal with 
IPv6 in this chapter.

Advantages and Disadvantages of NAT
Today, NAT still offers advantages, but these often have to be balanced against some 
 disadvantages, especially when coupled with current security practices.  The advan-
tages to using NAT follow:

Address sharing—A small number of IP addresses can support a larger pool of 
devices.

Ease of expansion—If the number of hosts grows beyond the public IPv4 space 
assigned, it’s easy to add hosts.
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Local control—Administrators essentially run their own private piece of the 
 public Internet.

Easy ISP changeover—When host addresses are private, public ISP addresses can 
be changed more easily.

Mainly transparent—Usually, only a handful of devices have to know the NAT 
rules for a site.

Security—Oversold, but still seen as an advantage. Hackers don’t know the “real” 
client’s IP address, true, but the true targets are often servers and the NAT 
“firewalls” themselves.

These NAT pluses have to be balanced against the current list of disadvantages.

Complexity—NAT adds management complexity and makes even routine trouble-
shooting more difficult.

Public address sensitivity—Private addresses are favored by hackers. Some appli-
cations and devices raise flags when presented with private addresses. (One 
FTP application used for this book insisted on needing to know the “real” 
 public network IP address of the host before it would work properly!)

Application compatibility issues—NAT is not totally transparent. Applications 
such as FTP, which embed IP addresses and port numbers in data (such as 
the PASV and PORT messages), must be handled with special care by NAT 
 routers.

Poor host accessibility—NAT makes it difficult to contact local devices from the 
outside world. NAT is not a good solution for Web sites, FTP servers, or even 
peer protocols (VoIP) running on a local LAN.

Performance concerns—The burden of hundreds of simultaneous Internet access 
users today often degrades NAT router performance for its main task: routing 
packets.

Security—Both a plus and a minus. Modern protocols such as IPSec raise alarms 
when packet fields are changed between end systems. You can still combine 
NAT and IPsec (carefully), but keeping NAT as a “security feature” in addition 
to IPSec can be tricky.

Four Types of NAT
NAT is still a popular thing to do on a network.  There are even the following four 
slightly different versions of NAT that are supported in many routers, and most are 
known by a number of unoffi cial names.
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■ Unidirectional NAT (outbound or “traditional” NAT)
■ Bidirectional NAT (inbound or “two-way” NAT)
■ Port-based (“overloaded” NAT, or NAPT or PAT)
■ Overlapping NAT (“twice NAT”)

All of these methods are a little different, but all involve use of the same terms to 
describe the addresses that are translated.  An address can be inside or outside, based 
on whether it is used on the local LAN (inside) or on the Internet (outside).  Addresses 
can also be local or global, based on whether they are drawn from the private RFC 1918 
address ranges (local) or publicly registered or obtained from an ISP (global).

NAT therefore encompasses about four address  “types,”  which are listed in 
Table 27.1. In the table, the Martian address ranges 169.254.0.0/16 (used for IPv4 auto-
confi guration) and 250.0.0./8 (experimental) are used as “public” addresses to pre-
serve the Illustrated Network’s policy of never using public IP addresses as examples.

In addition, the translational mappings that NAT performs can be static or dynamic. 
Static translations establish a fi xed relationship between inside and outside addresses, 
whereas dynamic mappings allow this relationship to change between one translation 
and another.  These can be mixed, using static mapping for servers (for example) and 
dynamic for clients, much like DHCP. DNS can be used for NAT purposes as well. Let’s 
look at how each NAT variation uses these address translation terms and procedures.

Table 27.1 Address Types Used in NAT with Chapter’s Example Values

Type of Address Example Common Use

Inside local 10.100.100.27 Client’s “native” address used as source in outbound 
packets and destination inbound

Outside local 172.16.100.13 Destination address used by client

Inside global 169.254.99.1 Client’s public address, range assigned by ISP

Outside global 250.99.111.4 Source and destination address used on Internet

Unidirectional NAT
Let’s examine an example for outbound or traditional NAT that will repeat addresses 
from one NAT type to the other as we show how they differ.  Assume that the LAN 
has 250 hosts that use private (inside local) addresses in the 10.100.100.0/24 range. 
These hosts use dynamic NAT to share a pool of 20 inside global addresses in the range 
169.254.99.1 through 169.254.99.20.

Suppose client host 10.100.100.27 accesses the Web server at public address 
250.99.111.4 using unidirectional NAT.  What will the router do to the packet addresses 
and what will the addresses look like at each step along the way—inside to NAT, NAT to 
outside, outside to NAT, and NAT to inside? Figure 27.2 shows the four steps.
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The client’s packet to the server at 250.99.111.4 has its source address changed from 
10.100.100.27 (inside private) to 169.254.99.1 (outside global, which must be a routable 
address).  The server replies by swapping source and destination address, and the reply 
(matching up in the NAT device to the request) is translated back to 10.100.100.27. 
No one outside the organization knows which host “really” has address 10.100.100.27, 
although dynamic NAT is better at this concealment than a static NAT mapping.

It might seem that dynamic mapping would always be the proper NAT choice. How-
ever, a complication arises when there are two site routers (as is often the case). If the 
request is sent by one NAT router and the reply received by another NAT router, the 
translation tables must be the same or chaos will result. Unless the routers constantly 
communicate NAT information (how?), this makes it diffi cult to use dynamic  mapping.

NAT also handles adjustments other than address translation.  The IP checksum must 
be changed, as well as UPD/TCP checksums. FTP embeds address and port information 
in data, and these should be changed as well. Finally, ICMP messages include initial 
header bytes, and even these should be changed when an ICMP message is the reply 
to a request.

Traditional NAT only handles this type of outbound translation. It cannot  handle 
requests from a device on the public Internet to access a server on the private 
 network (LAN).

Bidirectional NAT
Let’s use the same basic scenario that we employed in the unidirectional NAT example, 
but upgrade the NAT router to use inbound or two-way NAT.  The major difference is 
that bidirectional NAT allows requests to be initiated from the global public Internet to 
hosts on the private inside LAN.

“Inside” LAN “Outside” Internet

Host HostNAT
Device

Request

Dest: 250.99.111.4

Source: 10.100.100.27

Reply

Dest: 10.100.100.27

Source: 250.99.111.4

Reply

Dest: 169.254.99.1

Source: 250.99.111.4

10.100.100.27

Request

Dest: 250.99.111.4

Source: 169.254.99.1

4. NAT on destination 3. Server sends reply

1. Client sends request 2. NAT on source address

250.99.111.4

FIGURE 27.2

Unidirectional NAT. Note that only the LAN source address is translated, and in one direction.
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This type of NAT is more diffi cult to implement because, whereas inside users 
 generally know the public addresses of Internet devices, outside devices have no idea 
what private addresses represent the device on the LAN.  And even if they did know 
them, private RFC 1918 addresses are not routable, so there would be no way to get a 
packet there anyway. (Home DSL routers, which normally all use NAT by default, have 
led to an explosion of 10.0.0.0/8 and 192.168.0.0/16 devices around the world—yet 
another reason ISPs refuse to support home servers unless covered by the service 
offering.)

Static NAT mapping, one for one from local device to public address, is one way to 
handle the “outside request” issue. Of course, this defeats the more-than-public-address-
space support that NAT offers, and makes any security claims hollow. (Packets are 
blindly forwarded to the target anyway.)

The other solution is to use DNS.  As long as the outside request is by name and not 
IP address, DNS can provide the current private global address of the host (it must be 
global because it must be routable). In other words, DNS and NAT can work together 
(as described in RFC 2694), which adds extensions for NAT to DNS.  This solution uses 
dynamic NAT and is a four-step process.  The outside client sends a request to DNS to 
get the IP address that goes, for instance, with www.natusedhere.com.

The authoritative DNS server for the natusedhere.com domain resolves the name 
into an inside local (private) address for the host, perhaps 10.100.100.27,  as before.  The 
inside local address is now sent to the local NAT device to create a dynamic mapping 
between this private address and an inside global (public and routable) address.  This 
mapping is used in the NAT translation table. For this example, we’ll use 169.254.99.1, 
as before.

“Inside” LAN “Outside” Internet

Host HostNAT
Device

Request

Dest: 10.100.100.27

Source: 250.99.111.4

Reply

Dest: 250.99.111.4

Source: 10.100.100.27

Reply

Dest: 250.99.111.4

Source: 169.254.99.1

10.100.100.27

Request

Dest: 169.254.99.1

Source: 250.99.111.4

3. Server sends reply 4. NAT on source

2. NAT on destination 1. Client sends request

250.99.111.4

FIGURE 27.3

Bidirectional NAT, showing the direction in reverse from the previous fi gure. Note the reversal 
of number sequence and initiating client location.
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The DNS server replies not with the private (nonroutable) address, but with the 
mapped address in the NAT reply (in this case, 169.254.99.1), as established in the 
 previous step. Once this DNS/NAT procedure is complete, the transaction in bidirec-
tional NAT continues (as shown in Figure 27.3).

Naturally, requests from local LAN devices are still handled as in unidirectional NAT.

Port-Based NAT
In both unidirectional and bidirectional NAT, the address translation is always one to 
one. Even when dynamic mapping is used, the entire inside address is always swapped 
out for an outside address. But we set up our examples by saying that 250 LAN hosts 
are going to share only 20 public IP addresses.

Unidirectional and bidirectional NAT handles 20 or fewer simultaneous Internet 
users on the LAN. But what happens when more than 20 hosts are trying to access the 
Internet all at the same time?

That’s where port-based NAT, also called overloaded NAT, comes in. Some devices 
even advertise this as network/port address translation (NAPT) or port address transla-
tion (PAT), but we’ll just call it port-based NAT.

We are now essentially translating sockets from inside to outside.  With port-based 
NAT, we can easily have all 250 devices with outstanding requests on the Internet all at 
the same time and never come close to running out of port numbers (which run from 
0 to 65,535).

Let’s say that one host on the LAN is already using private address 10.100.100.27 
and source port 17000 (perhaps the browser always uses that source port number) to 
contact a Web site. No problem. Port-based NAT just translates both IP address and port, 
as shown in Figure 27.4.

“Inside” LAN “Outside” Internet

Host Host
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Device
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Source: 10.100.100.27:17000

Reply
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Source: 250.99.111.4:        80

Reply

Dest: 169.254.99.1:     18395

Source: 250.99.111.4:       80

10.100.100.27

Request

Dest: 250.99.111.4:           80

Source: 169.254.99.1:  18395

4. NAT on dest addr and port 3. Server sends reply

1. Client sends request 2. NAT on source addr and port

250.99.111.4

FIGURE 27.4

Port-based NAT, showing translation on both address and port.
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Port-based NAT is usually how DSL routers share a single ISP address among four 
or more home PCs. Most NAT implementations today are capable of port-based opera-
tion. However, this does not mean it’s always done when available. Not all applications 
or their packets use UDP or TCP ports, and port-based NAT cannot be done on these 
packets.

Overlapping NAT
This last type of NAT, also called “Twice NAT,” is quite different from the three other 
types.  All three previous types used private nonroutable IP addresses as a “substitute” 
for global routable IP addresses. NAT routers immediately assume that any packets 
drawn from the local LAN’s private IP address space are a reference to a host within 
the local LAN.  Anything else belongs to the outside world.

But what if the inside addresses overlap entirely or in part with addresses used in 
the outside world? In other words, what if there is another 10.100.100.0/24 address 
range on the “outside” that the local device using that private address space must com-
municate with? There are three major cases where inside addresses on a LAN might be 
duplicated in the outside world.

Private network to private network—NAT routers tend to use the same pri-
vate address ranges, such as 10.0.0.0/8 (Cisco DSL routers and more) or 
192.168.0.0/16 (Linksys products and others). So, this situation arises in DSL 
router configurations (such as neighbor to neighbor) all the time.  And organi-
zations often merge and find two sites now using the same private IP address 
ranges.

Reassigned addresses—Many customers get their IP address space from their ISP. 
But what if they change ISPs? The ISP is certainly free to offer that space to 
someone else. Instead of flash-cutting every IP address on the network, NAT 
can be used for the new ISP until cut-over is complete.  And even if customers 
pay for their own address spaces, these can be reassigned if the payment is not 
up to date.

Private IP networks going “public”—This does not occur as often, but it was once 
common to have huge IP networks within an organization with no Internet access 
at all. (Networks are for work, the Internet is for play, or so the philosophy went.) 
So who cared what IP addresses were used on the private network? But if a space 
such as 9.0.0.0/8 is used (which belonged to IBM) something must be done when 
Internet connections become essential.

Thus, when a host on the local LAN sends a packet from 10.100.100.27 going to 
10.100.100.10, how does it know whether the address is truly local or not? Local 
frames have local MAC addresses, but “outside” packets are sent in MAC frames that are 
sent to the router.

Someone has to know where the other address is or there will be no solution.  As 
before, DNS will coordinate with NAT to supply the answer. Overlapping NAT trans-
lates both source and destination address.
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Let’s consider a new example. Our local host is on a LAN that uses the public IP 
address space 9.0.0.0/8 as a private address. Local host 9.0.0.27 needs to send to a 
server that turns out to be at IBM and is also 9.0.0.2.  The following is what happens.

Local client 9.0.0.27 sends a DNS request to get the address of the Web server at 
www.twicenatusedhere.com.  The NAT router (which must support overlapping NAT, of 
course) on the local network intercepts the DNS request and uses a table to construct a 
special mapping for this query. Let’s assume that it will translate www.twicenatusedhere.
com into address 172.16.32.47 (another private IP address space).  The NAT router knows 
the real public address of the IBM server, of course.

The NAT router returns this private address to the client, which uses it as the desti-
nation address.  The NAT router now knows that packets sent to this IP address are for 
the Web server outside the LAN.

The NAT operation now functions as shown in Figure 27.5. Note the use of the 
169.254.99.1 address, which is within the public IP address space of the local LAN.

The NAT is still useful for port-based operations where overloading makes sense (as 
with home LANs and DSL) and overlapping IP address spaces. However, NAT should 
never be used as a security method, if only because it gives a false sense of security to 
users and network administrators.

NAT IN ACTION
What type of NAT should we confi gure for the Illustrated Network? This could get 
tricky because we’ve been using private IP addresses as public addresses all along.  To 
make it clear what we’re doing, we’ll limit our NAT activities to LAN1 and use part of 

“Inside” LAN “Outside” Internet

Host Host
NAT

Device

Request

Dest: 172.16.32.47

Source: 9.0.0.27

Reply

Dest: 9.0.0.27

Source: 172.16.32.47

Reply

Dest: 169.254.99.1

Source: 9.0.0.2

9.0.0.27

Request

Dest: 9.0.0.2

Source: 169.254.99.1

4. NAT on destination 3. Server sends reply

1. Client sends request 2. NAT on source and dest

9.0.0.2

FIGURE 27.5

Overlapping NAT showing how a large corporation can use this form with public and private 
addresses.
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the 172.16.0.0/16 private address space as a public address space for our NAT pool 
(which we’ve not used much so far). Because some applications are more sensitive to 
substituted addresses than others (such as FTP), we’ll limit our NAT implementation 
to clients. Because the servers are affected, we’ll use dynamic source NAT. Finally, we’ll 
confi gure the popular port-based NAT (NATP).

First, we have to confi gure a pool of addresses called NATP-address-pool to use for 
NAT on CE0.  We’ll map our 10.10.11.0/24 address space to the range from 172.16.11.0 
to 172.16.11.255.  We’ll set port selection to automatic so that we don’t have to worry 
about the port range used.  We also have to create the “rule” that subjects’ packets arriv-
ing on the LAN1 interface to NAT.

The AS PIC is smart enough to match up returning traffi c. (We apply the rule in 
both the input and output direction for LAN1.) In others words, NAT is applied in both 
directions for NATP.

set services nat pool NATP-address-pool address-range low 172.16.11.0
 high 172.16.11.255; # establish to address range to use
set services nat pool NATP-address-pool port automatic;
 # port translaton will be done automatically
set services nat rule SOURCE-NAT match-direction input-output;
 # NATP will be applied to all packets in either direction 
set services nat rule SOURCE-NAT term NO-NAT-FOR-SERVERS from 
 source-address 10.10.11.66;  # lnxserver should not be translated
set services nat rule SOURCE-NAT term NO-NAT-FOR-SERVERS from 
 source-address 10.10.11.111;  # winsrvr1 should not be translated
set services nat rule SOURCE-NAT term NO-NAT-FOR-SERVERS then 
 no-translation;  # this is a keyword for this action
set services nat rule SOURCE-NAT term SOURCE-NAT then translated 
 translation-type source dynamic;  # if not a server, translate
set services nat rule SOURCE-NAT term SOURCE-NAT then translated 
 source-pool NATP-address-pool;  # use automatic port assignments

The absence of a from clause in the term SOURCE-NAT means that the then clause 
actions are applied to all packets that do not match the term NO-NAT-FOR-SERVERS, 
which is what we want to do. On the Juniper Networks router model used on our net-
work, NAT (and several other specialized services) is performed by a special internal 
interface card called an Adaptive Service Physical Interface Card (AS PIC).  This archi-
tecture allows the router to forward packets as fast as it can and off-loads any special 
packet processing to this service’s interface.

Once confi gured, packets arriving on the LAN1 interface that are subject to NAT 
are not forwarded right away but sent to the AS PIC interface, which has an internal IP 
address. Once NAT has been performed, the packets are sent back into the main part of 
the router for normal table lookups and forwarding.

To get the packet to the AS PIC interface (sp–0/2/0 on CE0), we give the internal 
interface an IP address (just as any other interface).  Then we apply the confi gured NAT 
“service set” (which we’ll call SOURCE–NATP) to the LAN interface we want to apply NAT 
source address translation to.  Another static “next-hop” routing rule gets the translated 
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packets back to the forwarding portion of the router. (We also have to advertise a 
static route for the NAT address space so that the other routers know where to send 
packets sent back to the 172.16.11.0/24 address space, but the complete CE0 router 
confi guration for NAT is not shown.) The interface to LAN1 and the AS PIC interface 
are confi gured as follows.

set interface fe-1/3/0 unit 0 family inet service input service-set 
 SOURCE-NATP;
    # lconfiguration of the SOURCE-NATP service set is not shown
set interface fe-1/3/0 unit 0 family inet service output service-set 
 SOURCE-NATP;
set interface fe-1/3/0 unit 0 family inet address 10.10.11.1/24;
    # this is a regular LAN1 interface address

set interface sp-0/2/0 unit 0 family inet address 172.16.1.1/24;
    # the sp- interface needs and IP address too

We’ll say a little more about the “next-hop” confi guration and service sets in 
 Chapter 28 (on stateful fi rewalls). How do we know that the NAT translation is work-
ing? Let’s use our little echo test program from the UDP chapter to send packets from 
bsdclient on LAN1 at IP address 10.10.11.177 to lnxclient on LAN2 at IP address 
10.10.12.166. We’ll capture the packets on lnxclient with tethereal.  As expected, the 
source address has been translated to one in the 172.16.11.0/24 range.

[root@lnxclient admin]# /usr/sbin/tethereal -V 
Capturing on eth0
Frame 1 (60 bytes on wire, 60 bytes captured)
 Arrival Time: Feb  6, 2008 11:16:03.822845000
 Time delta from previous packet: 0.000000000 seconds
 Time relative to first packet: 0.000000000 seconds
 Frame Number: 1
 Packet Length: 60 bytes
 Capture Length: 60 bytes
Ethernet II, Src: 00:0e:0c:3b:8f:94, Dst: 00:b0:d0:45:34:64
 Destination: 00:b0:d0:45:34:64 (Intel_45:34:64)
 Source: 00:0e:0c:3b:8f:94 (Intel_3b:8f:94)
 Type: IP (0x0800)
 Trailer: 0000000000000000000000000000
Internet Protocol, Src Addr: 172.16.11.177 (172.16.11.177), Dst Addr: 
 10.10.12.166 (10.10.12.166)
 Version: 4
 Header length: 20 bytes
...

However, LAN1 traffi c from the servers is not translated.  This time, we’ll run the echo 
test program from lnxserver on LAN1 at IP address 10.10.11.66 to lnxclient on LAN2 
at IP address 10.10.12.166.  We’ll capture the packets on lnxclient with tethereal.  As 
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expected, the source address has not been translated to one in the 172.16.11.0/24 
range.

[root@lnxclient admin]# /usr/sbin/tethereal -V 
Capturing on eth0
Frame 1 (60 bytes on wire, 60 bytes captured)
 Arrival Time: Feb  6, 2008 14:37:24.487934000
 Time delta from previous packet: 0.000000000 seconds
 Time relative to first packet: 0.000000000 seconds
 Frame Number: 1
 Packet Length: 60 bytes
 Capture Length: 60 bytes
Ethernet II, Src: 00:d0:b7:1f:fe:e6, Dst: 00:b0:d0:45:34:64
 Destination: 00:b0:d0:45:34:64 (Intel_45:34:64)
 Source: 00:05:85:88:cc:db (Intel_1f:fe:e6)
 Type: IP (0x0800)
 Trailer: 0000000000000000000000000000
Internet Protocol, Src Addr: 10.10.11.66 (10.10.11.66), Dst Addr: 
 10.10.12.166 (10.10.12.166)
 Version: 4
 Header length: 20 bytes
...
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QUESTIONS FOR READERS
The captured listing here shows some of the concepts discussed in this chapter and 
can be used to answer the following questions.

[root@lnxclient admin]# /usr/sbin/tethereal -V port 7
Capturing on eth0
Frame 1 (60 bytes on wire, 60 bytes captured)
 Arrival Time: Feb  6, 2008 16:43:22.458233000
 Time delta from previous packet: 0.000000000 seconds
 Time relative to first packet: 0.000000000 seconds
 Frame Number: 1
 Packet Length: 60 bytes
 Capture Length: 60 bytes
Ethernet II, Src: 00:d0:b7:1f:fe:e6, Dst: 00:b0:d0:45:34:64
 Destination: 00:b0:d0:45:34:64 (Intel_45:34:64)
 Source: 00:05:85:88:cc:db (Intel_1f:fe:e6)
 Type: IP (0x0800)
 Trailer: 0000000000000000000000000000
Internet Protocol, Src Addr: 176.16.11.78 (176.16.11.78), Dst Addr: 
 10.10.12.166 (10.10.12.166)
 Version: 4
 Header length: 20 bytes
...

1. Which host has this capture been run on?

2. Which host is responding to the echo?

3. What is the translated address used on the LAN1 host that responded to the 
echo?

4. What is the host name of the device on LAN1 that responded to the echo?

5.  The port numbers are not displayed in the listing. Based on the NAT confi gura-
tion on CE0, should the port number be translated as well?
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CHAPTER

What You Will Learn
In this chapter, you will learn how fi rewalls add security to TCP/IP networks.  We’ll 
be working with both kinds of router-based fi rewalls: packet fi lters and stateful 
inspection.

You will learn about the types of dedicated fi rewalls that run on purpose-built 
hardware.  We’ll also examine fi rewall architectures and the use of DMZs.  And 
because fi ltering works exactly the same with IPv6 as with IPv4, we will not have 
a special section on IPv6 fi rewalls.

Firewalls 28

If all data traveled the Internet encrypted inside VPNs, and all hosts only sent or 
received such data, the Internet would be a safer place. But the reality is messy—very 
messy—and denial of service attacks, hacker raids, spyware, spam, viruses, and worms 
make life interesting for everyone on-line.

As we write these words, teams are assembled in Las Vegas, Nevada, for the annual 
Defcon “contest.” The name derives from Cold War “defense condition” levels and 
implies that hackers could have broken into military computers and started WW III, a 
plot device in several movies and books.  Teams pay a small entry fee and compete in 
local and regional contests, all culminating in the fi nale in Las Vegas.  The idea is to cap-
ture the secure “fl ags” or tokens on target systems set up for Defcon.  All competitors’ 
tokens are fair game, but, of course, you have to protect your own. (Taking over a com-
peting team’s network or Web server is considered a great coup.) Points are awarded 
for various successful exploits, and the winner is admired by all.

A certain percentage of people learning about networks and TCP/IP seem to indulge 
in some form of hacking at one time or another. It seems to be a rite of passage, like 
clubbing and drug experimentation. But most slackers eventually settle down and get 
real jobs, whereas a few others continue their dissolute ways. Some even make a career 
of their activities, as “white” or “black” hackers, and show up at places like Defcon. 
Hackers should never be judged solely on their appearance or demeanor, but only on 
their actions, which usually have consequences for everyone—intended or not.



FIGURE 28.1

Firewalls on the Illustrated Network, showing how the fi rewall fi ltering is performed on the site routers.
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This chapter takes a look at fi rewalls, one technique for adding security to TCP/IP 
and the Internet. Firewalls can be hardware or software designed to protect individual 
hosts, clients, and servers or entire LANs from the one or more of the threats previously 
cited.  We’ll implement a couple of types of fi rewalls on our site routers, as shown in 
Figure 28.1.

WHAT FIREWALLS DO
Although the Illustrated Network has no dedicated fi rewall device (often called a 
 fi rewall appliance), there are fairly sophisticated fi rewall capabilities built into our 
routers. So, we will confi gure fi rewall protection with two types of router-based fi re-
wall rules: packet fi lters and stateful inspection.

A Router Packet Filter
Let’s do something fairly simple yet effective with a fi rewall packet fi lter on the Juni-
per Networks router on LAN2, CE6.  Assume that malicious users on LAN1 are trying 
to harm bsdserver (10.10.12.77) on LAN2.  We’ll have to “protect” it from some of the 
hosts on LAN1.

We’ll allow remote access with Telnet (this is just an example) or SSH from 
the  bsdclient (10.10.11.177),  and allow similar access attempts from wincli1 
(10.10.11.51), but log them. ( What do those Windows guys want on the Free-
BSD server?) We’ll deny and log access from lnxserver (10.10.11.66) and winsrv1 
(10.10.11.111) because security policy for the organization has decided that users 
attempting remote access from servers are not allowed to do so.

The following is the fi rewall fi lter confi gured on CE6 and applied to the LAN2 
interface.  This fi lters IPv4 addresses, but we could easily make another to do the same 
thing for these hosts’ IPv6 addresses. It is a good idea to keep in mind that from is more 
in the sense of “out of all packets,” especially when the fi lter is applied on the output 
side of an interface.  We also have to apply the fi lter to the fe-1/3/0 interface, but this 
confi guration snippet is not shown.  There is a space between the three major terms 
of the remote-access-control fi lter: allow-bsdclient, log-wincli, and deny-servers. 
These names are strictly up to the person confi guring the fi rewall fi lter.

set firewall family inet filter remote-access-control term
    allow-bsdclient from address 10.10.11.177/32; # bsdclient
set firewall family inet filter remote-access-control term
    allow-bsdclient from protocol tcp; # telnet and ssh use tcp
set firewall family inet filter remote-access-control term
    allow-bsdclient from port [ ssh telnet ]; # we could use numbers too
set firewall family inet filter remote-access-control term
    allow-bsdclient then accept; # allow bsdclient access

set firewall family inet filter remote-access-control term
    log-wincli1 from address 10.10.11.51/32; # wincli1
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set firewall family inet filter remote-access-control term
    log-wincli1 from protocol tcp; # telnet and ssh use tcp
set firewall family inet filter remote-access-control term
    log-wincli1 from port [ ssh telnet ]; # we could use numbers too
set firewall family inet filter remote-access-control term
    log-wincli1 then log; # log wincli1 access attempts...
set firewall family inet filter remote-access-control term
    log-wincli then accept; # ...and allow wincli1 access

set firewall family inet filter remote-access-control term
    deny-servers from address 10.10.11.66/32; # lnxserver
set firewall family inet filter remote-access-control term
    deny-servers from address 10.10.11.111/32; # winsrv1
set firewall family inet filter remote-access-control term
    deny-servers from protocol tcp; # telnet and ssh use tcp
set firewall family inet filter remote-access-control term
    deny-servers from port [ ssh telnet ]; # we could use numbers too
set firewall family inet filter remote-access-control term
    deny-servers then log; # log server access attempts...
set firewall family inet filter remote-access-control term
    deny-servers then discard; # ...and silently discard those packets

When we try to remotely log in from bsdclient or wincli1, we succeed (and 
 wincli1 is logged). But when we attempt access from the servers, the following is what 
happens.

lnxserver# ssh 10.10.12.77

Nothing! We set the action to discard, which silently throws the packet away.  
A reject action at least sends an ICMP destination unreachable message back to 
the host.  When we examine the fi rewall log on CE6, this is what we see.  Action "A" 
is accept, and "D" is discard.  We didn’t log bsdclient, but caught the others. (The 
 fi lter name is blank because not all fi lter names that are confi gured are available for 
the log.)

admin@CE6> show firewall log
Time     Filter     A Interface     Pro Source address   Destination Address
08:36:09 -          A fe-1/3/0.0    TCP 10.10.11.51      10.10.12.77
08:37:24 -          D fe-1/3/0.0    TCP 10.10.11.66      10.10.12.77

Stateful Inspection on a Router
Simple packet fi lters do not maintain a history of the streams of packets, nor do they 
know anything about the relationship between sequential packets.  They  cannot 
detect fl ows or more sophisticated attacks that rely on a sequence of packets with 
specifi c bits set.  This degree of intelligence requires a different type of fi rewall, 
one that performs stateful inspection. (There are three types of fi rewall, as we’ll 
see later.)
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In contrast to a stateless fi rewall fi lter that inspects packets singly and in isolation, 
stateful fi lters consider state information from past communications and applications 
to make dynamic decisions about new communications attempts.  To do this, stateful 
fi rewall fi lters look at fl ows or conversations established (normally) by fi ve properties 
of TCP/IP headers: source and destination address, source and destination port, and 
protocol.  TCP and UDP conversations consist of two fl ows: initiation and responder. 
However, some conversations (such as with FTP) might consist of two control fl ows 
and many data fl ows.

On a Juniper Networks router, stateful inspection is provided by a special hardware 
component: the Adaptive Services Physical Interface Card (AS PIC).  We’ve already used 
the AS PIC to implement NAT in the previous chapter.  This just adds some confi gura-
tion statements to the services (such as NAT) provided by the special internal sp- (ser-
vices PIC) interface.

Stateful fi rewalls do not just check a few TCP/IP header fi elds as packets fl y by on 
the router. Stateful fi rewalls are intelligent enough that they can recognize a series of 
events as anomalies in fi ve major categories.

1. IP packet anomalies
■ Incorrect IP version
■ Too-small or too-large IP header length fi eld
■ Bad header checksum
■ Short IP total packet-length fi eld
■ Incorrect IP options
■ Incorrect ICMP packet length
■ Zero TTL fi eld

2. IP addressing anomalies
■ Broadcast or multicast packet source address
■ Source IP address identical to destination address (land attack)

3. IP fragmentation anomalies
■ Overlapping fragments
■ Missing fragments
■ Length errors
■ Length smaller or larger than allowed

4. TCP anomalies
■ Port 0
■ Sequence number 0 and fl ags fi eld set to 0
■ Sequence number 0 with FIN/PSH/RST fl ags set
■ Disallowed fl ag combinations [FIN with RST, SYN/(URG/FIN/RST)]
■ Bad TCP checksum
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5. UDP anomalies
■ Port 0
■ Bad header length
■ Bad UDP checksum

In addition, stateful fi rewall fi lters detect the following events, which are only 
detectable by following a fl ow of packets.

■ SYN followed by SYN-ACK packets without an ACK from initiator
■ SYN followed by RST packets
■ SYN without SYN-ACK
■ Non-SYN fi rst packet in a fl ow
■ ICMP unreachable errors for SYN packets
■ ICMP unreachable errors for UDP packets

Stateful fi rewall fi lters, like other fi rewall fi lters, are also applied to an interface in the 
outbound or inbound direction (or both). However, the traffi c on the interface must be 
sent to the AS PIC in order to apply the stateful fi rewall fi lter rules. 

The AS PIC’s sp- interface must be given an IP address, just as any other interface on 
the router.  Traffi c then makes its way to the AS PIC by using the AS PIC’s IP address as a 
next hop for traffi c on the interface.  The next hop for traffi c leaving the AS PIC (assuming 
the packet has not been fi ltered) is the “normal” routing table for transit traffi c, inet0.

Stateful fi rewall fi lters follow the same from and then structure of other fi rewall 
fi lters. Keep in mind that from is more in the sense of “out of all packets,” especially 
when the fi lter is applied on the output side of an interface.  When applied to the LAN1 
interface on the CE0 interface, in addition to detecting all of the anomalies previously 
listed, this stateful fi rewall fi lter will allow only FTP traffi c onto the LAN unless it is from 
LAN2 and silently discards (rejects) and logs all packets that do not conform to any of 
these rules.

set stateful-firewall rule LAN1-rule match direction input-output;
set stateful-firewall rule LAN1-rule term allow-LAN2
   from address 10.10.12.0/24; # find the LAN2 IP address space
set stateful-firewall rule LAN1-rule term allow-LAN2
    then accept; # ...and allow it

set stateful-firewall rule LAN1-rule term allow-FTP-HTTP
    from application ftp; # find ftp flows
set stateful-firewall rule LAN1-rule term allow-FTP-HTTP
    then accept; #  ...and allow them

set stateful-firewall rule LAN1-rule term deny-other
    then syslog; # no ‘from’ matches all packets
set stateful-firewall rule LAN1-rule term deny-other
    then discard; # ...and syslogs and discards them
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In the term deny-other, the lack of a from means that the term matches all pack-
ets that have not been accepted by previous terms.  The syslog statement is the way 
that the stateful fi rewalls log events.  We’ve also confi gured the interface sp-1/2/0 and 
applied our stateful rule as stateful-svc-set (but the details are not shown).

Now when we try to run FTP to (for example) lnxserver from bsdclient or wincli1, 
we succeed. But watch what happens when we attempt to run FTP from one of the 
routers (the routers all support both FTP client and server software).

admin@CE6> ftp 10.10.11.66

Nothing! As before, this packet is silently discarded. But the stateful fi rewall fi lter gath-
ers statistics on much more than simply “captured” packets.

admin@CE0> show services stateful-firewall statistics extensive
Interface: sp-1/2/0
  Service set: stateful-svc-set
    New flows:
      Accept: 7, Discard: 1, Reject: 0
    Existing flows:
      Accept: 35, Discard: 0, Reject: 0
    Drops:
      IP option: 0, TCP SYN defense: 0
      NAT ports exhausted: 0
    Errors:
      IP: 0, TCP: 0
      UDP: 0, ICMP: 0
      Non-IP packets: 0, ALG: 0
    IP errors:
      IP packet length inconsistencies: 0
      Minimum IP header length check failures: 0
      Reassembled packet exceeds maximum IP length: 0
      Illegal source address: 0
      Illegal destination address: 0
      TTL zero errors: 0, IP protocol number 0 or 255: 0
      Land attack: 0, Smurf attack: 0
      Non IP packets: 0, IP option: 0
      Non-IPv4 packets: 0, Bad checksum: 0
      Illegal IP fragment length: 0
      IP fragment overlap: 0
      IP fragment reassembly timeout: 0
TCP errors:
      TCP header length inconsistencies: 0
      Source or destination port number is zero: 0
      Illegal sequence number, flags combination: 0
      SYN attack (multiple SYNs seen for the same flow): 0
      First packet not SYN: 0
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      TCP port scan (Handshake, RST seen from server for SYN): 0
      Bad SYN cookie response: 0
    UDP errors:
      IP data length less than minimum UDP header length (8 bytes): 0
      Source or destination port is zero: 0
      UDP port scan (ICMP error seen for UDP flow): 0
    ICMP errors:
      IP data length less than minimum ICMP header length (8 bytes): 0
      ICMP error length inconsistencies: 0
      Ping duplicate sequence number: 0
      Ping mismatched sequence number: 0

ALG drops:
      BOOTP: 0, DCE-RPC: 0, DCE-RPC portmap: 0
      DNS: 0, Exec: 0, FTP: 1
      H323: 0, ICMP: 0, IIOP: 0
      Login: 0, Netbios: 0, Netshow: 0
      Realaudio: 0, RPC: 0, RPC portmap: 0
      RTSP: 0, Shell: 0
      SNMP: 0, Sqlnet: 0, TFTP: 0
      Traceroute: 0

In the last section, ALG drops stands for application-level gateway drops, and we fi nd 
the dropped FTP fl ow we attempted from the CE6 router.  This shows the power and 
scope of stateful fi rewall fi lters.

TYPES OF FIREWALLS
Whether implemented as application software or as a special combination of hardware 
and software, fi rewalls are categorized as one of three major types, all of which have 
variations. Software fi rewalls can be loaded onto each host, but this only protects the 
individual host. Other software-based fi rewalls can be loaded onto a generic platform 
(Windows or Unix based) and used in conjunction with routers to protect the entire 
site.  Alternatively, routers can be confi gured with policies (similar to routing policies), 
but designed to protect the networks attached to the router.

Most effective are very sophisticated packages of specialized hardware and state- 
of-the-art software, such as Juniper Networks Security Products.  These dedicated devices 
are often called appliances, and operate much faster and scale much better than their 
general-purpose relatives. Software is updated frequently, as often as every 2 weeks, to 
ensure that customers have the latest capabilities for the effort to secure a site.

The three major types of fi rewall are the packet fi lter, application proxy, and stateful 
inspection.  We’ve seen examples of packet fi lters and stateful fi rewalls, but each type 
has distinctive properties that should be described in some detail.
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Packet Filters
Packet fi lters are the oldest and most basic form of fi rewall. Packet fi lters establish 
site security access rules (or policies) that examine the TCP/IP header of each packet 
and decide if it should be allowed to pass through the fi rewall. Policies can differ for 
inbound and outbound packets, and usually do. Many of the fi elds of the IP,  TCP, or UDP 
header can be examined, but there is no concept of a session or fl ow of packets in this 
type of fi rewall.

Even basic DSL routers do a good job of implementing packet fi lters. For home 
networks, this might be adequate. But packet fi lters do not know much about the appli-
cation that the packet represents or look at the value of the TCP fl ags. Packet  fi lters 
 cannot dynamically create access rules that allow responses which are associated 
with specifi c requests, for example.

Application Proxy
An application proxy is one of the most secure fi rewall types that can be deployed.  The 
proxy sits between the protected network and the rest of the world. Every packet sent 
outbound is intercepted by the proxy, which initiates its own request and processes 
the response. If benign, the response is relayed back to the user.  Thus, clients and serv-
ers never interact directly and the entire content of the packet can be inspected byte 
by byte if necessary. Even tricky applications such as Java code can be checked in a 
Java sandbox to assess effects before passing the applet on to a host.

Yet many organizations do anticipate employing application proxies today, and 
many that once did have abandoned them.  Why? Well, proxies do not scale well and 
must handle twice the number of connections (“inside” and “outside”) as all simultane-
ous users on the protected network.  The obvious solution to all network load-related 
issues—multiple proxies—do not work well because there is no way to guarantee that 
a response is handled by the same proxy that handled the request.

The proxy also has trouble with proprietary or customized TCP/IP applications, 
where threats are not obvious or even well defi ned. But for limited use, such as protect-
ing a Web site, an application proxy is a very attractive solution.

Stateful Inspection
A stateful inspection fi rewall is the choice for network protection today. Stateful inspec-
tion is really a very sophisticated version of a packet fi lter.  All packets can be fi ltered, 
and almost every fi eld and fl ag of the header at the IP and TCP layers can be inspected 
in a policy.

Moreover, this form of fi rewall understands the concept of the state of the session. 
So, when a client accesses a Web server, the fi rewall recognizes the response and can 
associate all of the packets sent in reply.  This is a dynamic or refl exive fi rewall opera-
tion, and all reputable fi rewall products use this approach.
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Of course, there are TCP/IP protocols, such as UDP or ICMP (and connectionless 
protocols in general), that have no defi ned “state” associated with them. Firewall ven-
dors are free to be creative with how they handle these protocols, but the results have 
been remarkably consistent.

Many stateful inspection fi rewalls employ a form of application proxy for cer-
tain applications. For example, if the fi rewall is set to do URL fi ltering, an application 
proxy function can be coupled with this.  This approach is often used with email today 
because many attachments are malicious either by accident or on purpose. However, as 
with any application proxy, this solution is diffi cult to scale or generalize (email attach-
ment scanning is typically done apart from the fi rewall).

Today, some fi rewalls can also perform deep inspection of packet fl ows.  These rules 
dig deep into the content of the packet, beyond the IP and TCP/UDP headers, and per-
form application-level scanning. If a fi rewall allows access to port 80 because there is a 
Web server on site, hackers will quickly fi nd out that these packets pass right through 
the fi rewall.  These fi rewalls not only protect Web sites, but can fi nd email worms quickly 
and create regular expression (regex) rules to keep them from spreading.  The general 
architecture of a stateful inspection fi rewall implemented as specialized hardware and 
software (an appliance) is shown in Figure 28.2.

An example of this architecture is the fi rewall product from Juniper Networks 
 Security Products. It had been developed from the start with performance in mind, 
and runs an integrated security application to provide VPN, fi rewall, denial-of-service 
countermeasures, and traffi c management.

The operating system is a specialized real-time OS that can preallocate memory 
to speed up task execution and help maintain a given rate of service.  And in contrast 

Integrated Security Application 

Security-Specific Real-time OS

RISC CPU Memory ASICs Interfaces 

VPNs Firewall
Denial of Service Protection

Traffic Management

High Availability
Central Management

Purpose-Built Hardware Platform

Routing
Virtual Devices

FIGURE 28.2

Firewall appliance general architecture, showing how special hardware and software is used.
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to packages built on an open-source Unix-based OS no one can review the source 
code looking for vulnerabilities.  The OS is not distributed as widely as popular propri-
etary packages, and can support routing and virtual device multiplication—along with 
 central management and high availability. (Larger fi rewalls pretty much have to support 
virtual devices, so this is really making a virtue out of a necessity.) The hardware is RISC 
based, with very fast memory (SDRAM) and ASICs—all designed to keep up with the 
interfaces’ traffi c fl ows.

DMZ
The biggest question facing fi rewall deployment is how to place the device to best 
 protect publicly accessible servers. Cost and number of fi rewalls are related to  decisions 
made in this area.

The answer to this location question usually involves the construction of a network 
DMZ (“demilitarized zone,” another term like many others in the security fi eld borrowed 
from the military).  The DMZ is most useful when site protection is not  absolute—that 
is, when it is not possible to deny all probes into the site from outside on the Internet 
(such as when a Web server or FTP server is available for general use).  Without this 
requirement, the position of the fi rewall is almost always simply behind the router (as 
shown in Figure 28.3).

Even without a DMZ, it is possible to protect servers that require general Inter-
net access. However, this protection is usually placed on the server itself, which then 
becomes a bastion host, which is still an untrusted host from the viewpoint of the 
internal network.  A bastion host and fi rewall are shown in Figure 28.4.

It might sound odd that the bastion host, which might be the public Web server 
for the organization, needs a fi rewall to protect the internal network from the  bastion 
host itself. But this is absolutely essential, and the bastion host should never be 
 considered part of the internal network. Otherwise, if this host were compromised, 
the entire internal network would be at risk. For this reason, the bastion host in this 
confi guration is not a good candidate for an e-commerce Web site or the endpoint 
of a VPN.

Internet 
(or untrusted 

network) 
Router 

Firewall 

Protected 
Resources 

FIGURE 28.3

A single fi rewall positioned between router and LAN.
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FIGURE 28.4

A fi rewall with bastion host between router and fi rewall (and therefore untrusted).
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Protected 
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FIGURE 28.5

Firewall with bastion host and DMZ. Note the bastion host relation to the fi rewall.

The DMZ concept has the ability to offer multiple types of protection—all in a 
 fl exible, scalable, and robust package. (DMZs can be designed with failover capabilities 
as well.) DMZs can be constructed with one or two fi rewalls, and two are better for 
security purposes.

With one fi rewall, the bastion host is reached only through the fi rewall itself, usually 
on a separate interface.  The fi rewall can screen outside traffi c (a “screened subnet”), 
perhaps allowing only access to port 80 for a Web server. Nothing is allowed in, of 
course, except in reply to an internal query (and even that is typically allowed only 
from specifi c hosts or on certain ports).  This arrangement is shown in Figure 28.5.

The dual-fi rewall DMZ is the most sophisticated arrangement.  There are both inner 
and outer fi rewalls, and the LAN between them is a true DMZ. Multiple servers, such as 
an anonymous FTP download server and a public Web server, can be protected in many 
ways.  These devices can still be bastion hosts, but the protection on the DMZ servers 
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FIGURE 28.6

Dual fi rewalls with DMZ, showing how the bastion host is positioned on the DMZ.

Table 28.1 Advantages and Disadvantages of the Basic Firewall Designs

Type Advantages Disadvantages Good for…

Single fi rewall Inexpensive, easy to 
confi gure and maintain

Low security level, 
 diffi cult to scale

Home or small offi ce, 
no servers

Single fi rewall and 
 bastion host

Lower cost than most 
alternatives

Bastion host  vulner-
able, diffi cult to 
scale

Small business with 
static content

Single fi rewall with 
screened subnet

Protects both local 
network and bastion 
host to some extent 

Single point of failure, 
uses public addresses 
in some cases

Networks that need 
protected access to 
bastion host

Dual fi rewall and DMZ Best control and very 
robust, scales nicely

More hardware and 
software, more work

Larger organizations

themselves can be minimal because they all have the full protection of a fi rewall in 
whatever direction the traffi c comes from or goes to.  The dual-fi rewall DMZ is shown 
in Figure 28.6.  The characteristics of these four basic fi rewall positions are compared 
in Table 28.1.
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QUESTIONS FOR READERS
The f ilter listing that follows shows some of the concepts discussed in this chapter and 
can be used to answer the following questions.

set firewall family inet filter TEST term A from address 10.10.11.0/24;
set firewall family inet filter TEST term A from address 10.10.12.0/24;
set firewall family inet filter TEST term A from protocol [ udp tcp ];
set firewall family inet filter TEST term A from port [ 20 21 22 ];
set firewall family inet filter TEST term A then log;
set firewall family inet filter TEST term A then reject;

1.  In the listing, which IP address will be selected out of all packets seen by the 
f ilter?

2. Which transport layer protocols will be selected by the f ilter?

3. Which applications are selected based on the port numbers given?

4. Will a log be kept of the selected packets?

5.  Will the sender receive any notice that the packets have been blocked by a 
 fi rewall f ilter?
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CHAPTER

What You Will Learn
In this chapter, you will learn how IPSec adds another level of security to a TCP/IP 
network by adding IPSec to the MPLS-based VPN that we built in Chapter 26. We’ll 
investigate the IPSec architecture and how its features are usually implemented.

You will learn about security associations and how authentication and encap-
sulation work in IPSec. We’ll briefl y mention the Internet key exchange (IKE) as 
a secure way to move keys around the network.

IP Security 29

IPSec, as has been pointed out, is really a piece of IPv6 that was pressed into service for 
IPv4, mostly out of desperation after businesses began to use the Internet for more than 
just amusement. The formats for IPv4 and IPv6 IPSec are different, given the difference 
in header and address formats, but they are still very similar. Optional in IPv4, support for 
IPSec is mandatory in IPv6. IPSec is part of a public key infrastructure (PKI) architecture 
based on several things that we’ve talked about before: public key encryption, secure 
key exchange for the Internet (IKE), and several related concepts and protocols.

There are several key concepts in IPSec, as with anything else in TCP/IP. We’ll talk 
about IPSec modes fi rst, followed by security associations (SAs) and a closely related 
concept, the security parameter index (SPI). Then we’ll focus on the three main “pro-
tocols” that make up IPSec: the authentication header (AH), the encapsulating security 
payload (ESP), and the IKE.

IPSec consists of two main “core protocols”—AH and ESP—although it is often 
pointed out that they are not really protocols at all because they cannot function on 
their own. AH allows a receiver to verify that the claimed originator of the message 
actually did send it, and that none of the data has been altered while in transit. It also 
prevents captured messages from being used again in the future (e.g., when a hacker 
cannot read the password but knows that this packet will log in the user when sent). 
This is called a replay attack.



FIGURE 29.1

IPSec on the Illustrated Network, showing how IPSec adds security to the site routers connected 
by the MPLS-based VPN.
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ESP encrypts the payload of the message itself.  It might sound odd that  authentication 
and encryption are separate processes in IPSec, and in practice both are  normally used 
together. Separating the processes allows them to evolve independently, however, so 
advances in encryption do not require changes in authentication (and vice versa).

We’ll add IPSec to the MPLS-based VPN we created in the VPN chapter, as shown in 
Figure 29.1. We’ll still use that same confi guration on the routers, but add to it.

IPSEC IN ACTION
As with NAT and stateful fi rewalls, the implementation of IPSec on the Juniper Net-
works routers used on the Illustrated Network depends on a special “internal interface” 
supported by an adaptive services physical interface card (AS PIC). All of the routers 
have these PICs, so we can build IPSec onto the confi guration used for the MPLS-based 
VPN that we built for VPLS in Chapter 26.

Our goal here will be to add an IPSec tunnel using ESP between the CE0 and CE6 
routers attached to LAN1 and LAN2, and at the same time preserve the VPLS VPN 
between routers PE5 at LAN1 and PE1 at LAN2. The packets fl owing between LAN1 and 
LAN2 on the links between routers PE5 and PE1 will be encapsulated and encrypted 
(with IPSec), and then encapsulated again (for VPLS). Is this paranoia? Perhaps. But the 
idea is to raise the hacker work factor on these packets high enough so that the hack-
ers give up and move on to less protected traffi c.

We could confi gure manual SAs on each router and confi gure IKE to carry this 
information over the network, but such a procedure is overly complex for this chapter. 
We have to confi gure the SAs anyway, so we’ll just (securely) confi gure manual SAs on 
routers CE0 and CE6 to run IPSec with ESP in tunnel mode between them, thereby 
dispensing with IKE. The VPLS is still there, but transparent to IPSec. The network topol-
ogy appears as shown in Figure 29.2.

Then we’ll show that the IPSec is up and running. (We could show some garbled 
Ethereal captures between the routers showing that IPSec encryption is in use, but 
these are not very enlightening.) Again, we’ll show the confi guration on each router, 
with comments.

CE0
This router has normal interface confi gurations, naturally. But we’ll defi ne a bidirec-
tional manual SA in a “rule” called rule-manual-SA-BiESP and reference it to a “service 
set” associated with the interface. We’ll use ESP, and a value of 261 for the SPI. We’ll talk 
more about security algorithms later, but we’ll also use HMAC-SHA1-96 for authentica-
tion, DES-CBC for encryption, a 20-bit ASCII authentication key for SHA-1, and an 8-bit 
ASCII key for DES-CBC authentication.

To get traffi c onto the PIC and the IPSec tunnel, we have to match the LAN traffi c 
with our IPSec VPN selector rule. Fortunately, this rule is already referenced in the 
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FIGURE 29.2

IPSec topology, showing how it relates to the MPLS LSP and VPLS.

 service set from the VPN confi guration. We’ll also use a fi rewall fi lter to count the pack-
ets entering the IPSec tunnel.

set interfaces ge-0/0/3 vlan-tagging;
set interfaces ge-0/0/3 unit 0 vlan-id 600;
set interfaces ge-0/0/3 unit 0 family inet
 service input service-set service-set-manual-BiESP; 
set interfaces ge-0/0/3 vlan-tagging unit 0 family inet
 service output service-set service-set-manual-BiESP; 
 # applies the BiESP service set to input and output traffic
set interfaces ge-0/0/3 unit 0 family inet address 10.99.99.1/24;

set interface sp-1/2/0 unit 0 family inet filter input ipsec-tunnel;
 # configure the internal IPSec tunnel interface
set firewall filter ipsec-tunnel term 1 then count ipsec-tunnel;
set firewall filter ipsec-tunnel term 1 then accept;
 # configure a filter to count and process traffic

set services service-set service-set-manual-BiESP interface-service 
 service-interface sp-1/2/0;
 # defines the main IPSec tunnel service set applied above
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set services service-set service-set-manual-BiESP ipsec-vpn-options 
 local-gateway 10.99.99.1; # the local IPSec tunnel addr
set services service-set service-set-manual-BiESP ipsec-vpn-rules 
 rule-manual-SA-BiESP; # references the IPSec rule defined below 

set services ipsec-vpn rule rule-manual-SA-BiESP term term-manual-SA-BiESP
 from source address 10.10.11.0/24; # find LAN1 traffic for IPSec
set services ipsec-vpn rule rule-manual-SA-BiESP term term-manual-SA-BiESP
 then remote-gateway 10.99.99.2; # far-end IPSec tunnel address
set services ipsec-vpn rule rule-manual-SA-BiESP term term-manual-SA-BiESP
 then manual direction bidirectional protocol esp; # use ESP for IPSec
set services ipsec-vpn rule rule-manual-SA-BiESP term term-manual-SA-BiESP
 then manual direction bidirectional spi 261; # the SPI is 261
set services ipsec-vpn rule rule-manual-SA-BiESP term term-manual-SA-BiESP
 then manual direction bidirectional authentication algorithm hmac-sha1-96;
set services ipsec-vpn rule rule-manual-SA-BiESP term term-manual-SA-BiESP
 then manual direction bidirectional authentication key ascii-text 
 "$9$v.s8xd24Zk.5bs.5QFAtM8XNVYLGifT3goT369OBxNdw2ajHmFnCZUnCtuEh";
 # the authentication key was enters as 'juniperjuniperjunipe' (20 chars)
set services ipsec-vpn rule rule-manual-SA-BiESP term term-manual-SA-BiESP
 then manual direction bidirectional encryption algorithm des-cbc;
set services ipsec-vpn rule rule-manual-SA-BiESP term term-manual-SA-BiESP
 then manual direction bidirectional encryption key ascii-text
 "$9$3LJW/A0EclLxdBlxdbsJZn/CpOR"; # entered as juniperj (8 characters) 
set services ipsec-vpn rule rule-manual-SA-BiESP match-direction output;} 

We need a manual SA key entry because this example is not using IKE. Note that 
although we type the key in plain text, the result is always displayed in encrypted 
form.

CE6
We can use exactly the same confi guration on router CE6 by just swapping the local 
and remote gateway addresses on the ge-0/0/3 interface and under ipsec-vpn-
options and ipsec-vpn, so that 10.99.99.1 and 10.99.99.2 are swapped, and chang-
ing the fe-1/3/0 address to 10.10.12.1. So, in the interest of brevity, we won’t show 
the CE6 listing.

How do we know that the IPSec VPN tunnel is working? Everything works as 
before, but that proves nothing. How do we know that traffi c between LAN1 and LAN2 
is now encrypted? An Ethereal trace can verify that, and we can display the value of 
the traffi c counter (as long as it is non-zero) on the fi rewall fi lter we set up on the CE 
routers.

admin@CE6> show firewall filter ipsec-tunnel
Filter: ipsec-tunnel
Counters:
Name Bytes Packets
ipsec-tunnel 252 3
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These counts refl ect three pings that were sent from LAN1 to LAN2 over the IPSec 
 tunnel. Other commands can be used to give parameters and details of the SA itself, but 
the latter just repeats information stored in the confi guration fi le.

Let’s see what the major portions of the confi guration listing are accomplishing. 
To do that, we’ll have to consider some concepts used in IPSec.

INTRODUCTION TO IPSEC

There are three IPSec support components in addition to the transport services pro-
vided by AH and ESP. One of these components is a set of encryption and hashing 
algorithms, most of which we’ve met already in the SSL and SSH chapters. AH and ESP 
are generic and do not mandate the use of any specifi c mechanism. IPSec endpoints on 
a secure path negotiate the ones they will use, as does SSH. For example, two common 
hashing methods are Message Digest 5 (MD5) and Secure Hash Alogrithm 1 (SHA-1), 
and the endpoints decide which to use with IPSec.

Other important support pieces are the security policies and the SAs that embody 
them. The fl exibility allowed in IPSec still has to be managed, and security relationships 
between IPSec devices are tracked by the SA and its security policy.

Finally, an IPSec key exchange framework and mechanism (IKE) is defi ned so that 
endpoints can share the keys they need to decrypt data. A way to securely send SA 
information is provided as well. In summary, IPSec provides the following protection 
services at the IP layer itself:

■  Authentication of message integrity to detect changes of the content on the 
network

■ Encryption of data for privacy
■ Protection against some forms of attacks, such as replay attacks
■ Negotiation of security methods and keys used between devices
■ Differing security modes, called transport and tunnel, for fl exibility

IPSec RFCs
When it comes to RFCs, aspects of IPSec are covered in a collection of RFCs that defi ne 
the architecture, services, and protocols used in IPSec. These are listed in Table 29.1.

IPSec Implementation
Okay, IPSec is wonderful and we all should have it and use it. But how? Where? There 
are two places (at least) and three ways that IPSec can be implemented on a network.

First, IPSec can be implemented host to host or end to end. Every host has IPSec 
capabilities, and no packets enter or leave the hosts with encryption and authentica-
tion. This seems like an obvious choice; however, the fact is that there are many hosts 
and, as with “personal” fi rewalls, this can be a maintenance and management nightmare. 
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And because most data are stored on servers in “plain text” formats, all of this work is 
often in vain if there is a way into the server itself.

IPSec can also be implemented from router to router, and this approach makes a lot 
of sense. There are few routers compared to hosts, and perhaps offsite packets are the 
only ones that really need protection. On the local LAN, the network risks are lower 
(or should be!), and more damage is caused by users leaving themselves logged in and 
leaving their work locations for breaks or lunch than sniffi ng “on the wire.” When used 
in combination, IPSec VPNs are a formidable barrier to attacks originating on the Inter-
net. (This is not to say that site security can be ignored when IPSec and VPNs are used 
between routers, but it certainly can be different.)

Ideally, in a host or a router, IPSec would be integrated into the architecture of the 
device. Where IPv6 is concerned, this is exactly the case. But IPSec is still an IPv4 “add-
on” and so can be implemented in hosts and routers in different ways that mainly con-
cern where in the network the actual IPSec protection actually kicks in.

There are two common ways to look at IPSec architecture in IPv4. These are some-
times called “bump in the stack” (BITS) and “bump in the wire” (BITW).

In the BITS architecture, IPSec bits are a separate layer between the IP layer and the 
frames. IPSec “intercepts” the IP packets inbound and outbound and processes them. 
The nice thing about this approach is that it can be easily added to (and upgraded on) 
IPv4 hosts.

The BITW technique is common when IPSec is implemented site to site by routers, 
and devices located next to routers. This architecture is shown in Figure 29.3.

Table 29.1 IPSec RFCs with Title and Purpose

RFC Name Purpose

2401 Security Architecture for the Internet 
Protocol

Main document, describes architecture and 
how components fi t together

2402 IP Authentication Header AH “protocol” for integrity

2403 The Use of HMAC-MD5-96 within ESP 
and AH

Describes a popular algorithm for use in AH 
and ESP

2404 The Use of HMAC-SHA-1-96 within ESP 
and AH

Describes another popular algorithm for use 
in AH and ESP

2406 IP Encapsulating Security Payload The ESP “protocol” for privacy

2408 Internet Security Association and Key 
Management Protocol (ISAKMP)

Defi nes ISAKMP methods for key exchange 
and negotiating SAs

2409 The Internet Key Exchange (IKE) Describes IKE as ISAKMP method

2412 The OAKLEY Key Determination Protocol Describes a generic protocol for key 
exchange, which is used in IKE
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The IPSec “device” can be implemented in router software or as a separate appli-
ance. The secure packets can be sent over a VPN or simply routed through the Internet, 
although a VPN adds another layer of protection to the data stream. The two approaches 
are similar, but have a different impact on each of the two IPSec modes.

IPSec Transport and Tunnel Mode
IPSec modes defi ne the changes IPSec can make to a packet when it is processed for 
delivery. Modes in turn affect SAs, so the difference is not trivial by any means.

Transport mode—In this mode, the packet is handled as a unit from the transport 
layer (TCP/UDP). The segment is processed by AH/ESP and the appropriate 
header added along with a “normal” IP header before being passed down to the 
frame layer. The main point is that in transport mode, the IP header itself is not 
part of the AH/ESP process.

Tunnel mode—In this mode, IPSec performs its magic on an entire IP packet (original 
header included). The IPSec headers are placed in front of the encrypted IP packet 
and then a new IP header is placed in front of the entire construction. A nice feature 
is that the original IP address is encrypted and the new address can be seen as a 
form of NAT.

Transport mode is feasible only for host-to-host IPSec operation because only hosts 
have easy access to the transport layer segments. On the other hand, router implemen-
tations make use of tunnel mode because routers handle entire IP packets, tunnels are 
a familiar concept in the router world, and this form of IPSec works well with VPNs. 
(Some equipment vendors say that tunnel mode is “better” than transport mode, but 
that is really making a virtue out of necessity.)

Router
IPSec IPSec

Secure IP Packets

Network 1 Network 2

Internet Router

FIGURE 29.3

IPSec and routers, showing how separate devices can be used to apply IPSec to a network.
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SECURITY ASSOCIATIONS AND MORE
An IPSec device negotiates the precise methods and manages keys used for packets 
sent and received. Here comes a packet from somewhere else. So how will we decrypt 
it? What is its precise structure (mode)? The same issues come up with outbound pack-
ets. How do we know what was negotiated (or possible) for the partner at the other 
end of the secure path? This is turning out to be much more diffi cult in practice than 
in theory. We need help to keep it all straight. The following material describes how it’s 
done in IPSec.

Security Policies
Security policies are general rules that tell IPSec how it can process packets. The 
 security policy can also allow packets to pass untouched or link to places where yet 
more detail is provided. Security policies are stored in the device’s security policy 
database (SPD).

SAs—This is a set of security information describing a particular type of secure 
path between one specific device and another. It is a type of “contractual agree-
ment” that defines the security mechanisms used between the two endpoints. 
SAs are unidirectional, so there is one for each direction (inbound and out-
bound). So, there are at least four (and often eight!) SAs that apply to commu-
nications between a pair of devices. The SAs are kept in the device’s security 
association database (SAD).

Selectors—Which packets does a given SA apply to? The rule sets are called selec-
tors. A selector might be configured that applies a certain SA to a packet from 
a particular range of source IP addresses, or that is going to a certain destina-
tion network. SAs don’t have names, however. SAs are indexed by number, and 
the number is really a representation (a “triple”) of three parameters and not 
just the SPI.

Security parameter index—The SPI is a 32-bit number picked to uniquely iden-
tify an SA for a connected device. The SPI is placed in the AH or ESP headers 
and links the packet to a particular SA. Once the receiver knows some general 
information about the packet content, the SPI provides a clue to the rest of it.

IP destination address—The IP address of the device at the “other end” of the 
SA path.

Security protocol identifier—Tells whether this SA is for AH or ESP. If both are 
used, they need separate SAs.

The nice thing about using this combination is that any one of the parameters can 
change to form a “new” entity based on existing pieces. But it can still be confusing.
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Authentication Header
AH authenticates by associating a header with a piece of data. The scope of the opera-
tion, and the exact placement of the header, depends on the IP version (IPv4 or IPv6) 
and mode (transport or tunnel). As with many other authentication schemes, AH relies 
on a hash operation similar in concept to the CRC used on frames. The specifi c hash 
(called an integrity check value [ICV]) used is stored in the SA and is known only to 
source and destination. The AH provides authentication, but not privacy. No direct con-
tent encryption is used in the AH operation.

AH authentication is simpler for IPv6 than for IPv4 because it was designed for 
IPv6. In IPv6, the AH is inserted as an extension header using the usual rules for 
extension header linking. The AH value of 51 is inserted into the IPv6 Next Header 
field. In transport mode, the AH is in the main IP header and precedes any desti-
nation options and follows an ESP header (if present). In tunnel mode, the AH is 
an extension header in the new IP packet header. These differences are shown in 
Figure 29.4, with routing (43) and destination option (60) headers in use with a 
TCP segment.
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FIGURE 29.4

IPv6 AH packet formats, showing how the various fi elds and headers relate to one another.
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FIGURE 29.5

IPv4 AH packet formats showing how the various fi elds and headers relate to one another.

In IPv4, the AH has to follow the IPv4 header one way or the other (as shown in 
Figure 29.5). The fi elds of the AH itself are described next and shown in Figure 29.6.

Next Header—This 1-byte field gives the protocol number of the next header 
after the AH, not the protocol number of the current one.

Payload Length—This 1-byte field measures the length of the AH itself, not really 
the “payload.” It is expressed in 32-bit units, minus 2 for consistency with other 
IPv6 header calculations.

Reserved—These 2 bytes must be set to all zeros.

Security Parameter Index (SPI)—A 32-bit number that combines with the des-
tination address and type (AH in this case) to identify the SA used for this 
packet.

Sequence Number—A 32-bit counter that starts at zero when the SA is formed and 
increments with each packet sent using that SA. This prevents replay attacks 
with captured packets.
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Authentication Data—This is the ICV hash and varies in size depending on hash-
ing algorithm used. It must end on a 32-bit (IPv4) or 64-bit (IPv6) boundary, 
and so is padded with zeros as needed.

Encapsulating Security Payload
ESP encrypts data and adds a header and trailer to the result. ESP has its own optional 
authentication scheme, and can be used in conjunction with AH or not. Unlike the AH 
“unit,” ESP is split up into three distinct pieces. The ESP header precedes the encrypted 
data, and its placement depends on whether IPv6 or IPv4 is used and on mode. The 
ESP trailer follows the encrypted data because some encryption algorithms require 
that any needed padding follow the encryption. The ESP authentication data with ICV 
is optional (and redundant when AH is used), so its separation makes sense. It authen-
ticates the ESP header and trailer (and so cannot appear in them). This fi eld follows 
everything else.

Placing the ESP headers is different in IPv6 and IPv4, but similar to AH. The trick is 
fi nding the ESP trailer because there is no fi eld in the ESP header to give length to or 
location of the ESP trailer. If it sounds diffi cult to fi gure out where the trailer is, that’s 
one of the points. But it can be done, given the correct SA, and the ESP trailer does have 
a next header fi eld to “point back” to the front of the data. Figure 29.7 might make this 
clearer for IPv6. In transport mode, the ESP trailer value of 60 “points” (it’s really in no 

32 bits

Authentication Data
(integrity check value)

Sequence Number

Security Parameter Index

Next Header Payload Length Reserved (all zeroes)

1 byte 1 byte 1 byte 1 byte

FIGURE 29.6

IPSec AH fi elds.
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FIGURE 29.7

IPv6 ESP packet formats, showing how the various fi elds and headers relate to one another.
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sense a pointer) to the Destination Options fi eld (value 60) and from there to the TCP 
header (IP protocol value 6). In tunnel mode, the ESP trailer next header value is 41 and 
indicates that an IPv6 header comes next.

Figure 29.8 shows the same process for IPv4. In this case, the ESP trailer next header 
value is 6 for transport mode (TCP header comes next). The value is 4 in tunnel mode, 
to indicate that an Ipv4 packet is between the ESP header and trailer.

How it all fi ts together in ESP is shown in Figure 29.9. Note that several fi elds are 
only authenticated and not encrypted.

SPI—This 32-bit number is part of the ESP header and is used with destination 
address and type (ESP, in this case) to be used for this packet.

Sequence Number—This 32-bit number is part of the ESP header and is initialized 
to zero when the SA is formed and incremented to prevent replay attacks (the 
same is true in AH).

Payload Data—This is the encrypted data itself and varies in size. Sometimes it 
contains an initialization vector, depending on encryption method.
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IPv4 ESP packet formats, showing how the various fi elds and headers relate to one another.

32 bits

Sequence Number

Security Parameter Index

1 byte 1 byte 1 byte 1 byte

Padding

ESP Authentication Data

Pad Length Next Header

ESP Payload Data

A
ut

he
nt

ic
at

ed

E
nc

ry
pt

ed

FIGURE 29.9

IPSec ESP fi elds, showing which fi elds are authenticated and encrypted.
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Padding—This field, from 0 to 255 bytes long, is part of the ESP trailer and is used 
to align the data as needed.

Pad Length—This 1-byte field is part of the ESP trailer and gives the length of the 
padding.

Next Header—This 1-byte field is part of the ESP trailer and often “points” to the 
TCP header (6).

ESP Authentication Data—A variable-length ICV (authentication is optional).

Internet Key Exchange
Our journey through IPSec is almost complete. We’ve found a way for the endpoints to 
decide what the formats of the IPSec packets are (the SAs). But what about the keys? 
Like SSH, IPSec depends on shared secret keys for encryption and decryption. Obvi-
ously, the entire method is as secure as the steps taken to secure the keys. That’s what 
IKE is for.

IPSec was actually used before IKE was implemented. So how did the keys get into 
the SAs and the SAs get everywhere they were needed? An “off-Net” method had to be 
used. Large organizations used to fl y everyone who needed them to a central location and 
simply hand them out (in sealed envelopes, of course). Smaller organizations used FedEx 
or some other delivery service. Usually multiple keys, often a great many, were distributed 
this way, and they changed on a basis known only to those who had to change them.

This method of manual SA defi nition is still valid and widely used. Sometimes secu-
rity personnel fl y around the country confi guring the SAs locally on each router. Few 
trust “secure” remote access methods for this sensitive task because many millions in 
fi nancial resources might be at risk. For example, IPSec might have to protect corporate 
payroll records sent to the banks for employee direct deposit.

IKE is one of the most baffl ing protocols to understand and explain without a 
 fairly deep knowledge of mathematics and cryptography. Some pieces are not that bad: 
Diffi e-Hellman is the obvious choice for shared secret key exchange, although it says 
nothing about private/public key distribution. But other components are far beyond 
the abilities of generalists to understand, let alone know how to explain easily. And 
there are those who say that you don’t really understand something until you can 
explain it in simple terms to someone else. If that is true, I have yet to fi nd anyone who 
really understands IKE.

IKE allows IPSec devices to simply send their SAs securely over the Internet to each 
other. In other words, IKE populates the SAD so that both ends know what to do to 
send and receive with IPSec. IKE combines (and adds to) the functions of three other 
protocols.

ISAKMP—The Internet Security Association and Key Management Protocol is a 
general framework protocol for exchanging SAs and key information by nego-
tiation and in phases. Many different methods can be used.
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OAKLEY—This extends ISAKMP by describing a specific mechanism for key 
exchange through different defined “modes.” Most of IKE’s key exchange is 
directly based on OAKLEY.

SKEME—This defines a key exchange process different from that of OAKLEY. IKE 
uses some SKEME features, such as public key encryption methods and the 
“fast rekeying” feature.

IKE takes ISAKMP and adds the details of OAKLEY and SKEME to perform its magic. 
IKE has the two ISAKMP phases.

Phase 1—The first stage is a “setup” process in which two devices agree on how 
they will exchange further information securely. This creates an SA for IKE 
itself, although it’s called an ISAKMP SA. This special bidirectional SA is used 
for Phase 2.

Phase 2—Now the ISAKMP SA is used to create the other SAs for the two devices. 
This is where the parameters such as secret keys are negotiated and shared.

Why two phases? Phase 1 typically uses public key encryption and is slow, but 
technically only has to be done once. Phase 2 is faster and can conjure different but 
very secure secret keys every hour or every 10 minutes (or more frequently for very 
sensitive transactions).
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QUESTIONS FOR READERS
Figure 29.10 shows some of the concepts discussed in this chapter and can be used to 
answer the following questions.

1. Which IPSec ESP mode is used in the fi gure—transport or tunnel?

2. Which IP protocol is being tunneled?

3. What does the ESP trailer next header value of 4 indicate?

4.  Could NAT also be used with IPSec to substitute the IPv4 addresses and 
encrypt them?

5. Is the SPI fi eld encrypted? Is it authenticated?

FIGURE 29.10

IPSec ESP used with an IPv4 packet.
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Media

PART

VII
The Internet is not just for data anymore.  This part of the book examines how 
voice communication has transitioned to the Internet.

■ Chapter 30—Voice over Internet Protocol





CHAPTER

What You Will Learn
In this chapter, you will learn how VoIP is becoming more and more popular as 
an alternative to the traditional public switched telephone network (PSTN).  We’ll 
look at one form of “softphone” that lets users make “voice” calls (voice is really 
many things) over an Internet connection to their PC.

You will learn about the protocols used in VoIP, especially for the “data” (RTP 
and RTCP) and for signaling (H.323 and SIP).  We’ll put it all together and look at a 
complete architecture for carrying media other than data on the Internet.

Voice over Internet 
Protocol 30

In November 2006, when a person in Cardiff,  Wales, made a local telephone call, no 
part of the British Telecom (BT) PSTN was involved. Only the “last mile” of the circuit 
was the same: No telephone central offi ce, voice switches, or channelized trunks were 
used to carry the voice call. Instead, the calls were handled by multiservice access 
nodes (MSANs) and carried with IP protocols over the same type of network that 
handles BT’s Internet traffi c.

BT was so happy with the results that by 2011 they say their entire PSTN will be 
replaced with an IP network using MPLS to both secure and provide QoS for the calls. 
Many countries use IP voice on their backbones (such as Telecom Italia), but this is 
the fi rst time a national system has decided to spend a huge amount of money (almost 
US$20 billion, BT says) to convert everything.

It’s old news that many people, both around the world and in the United States, use 
the Internet to talk over the telephone. Not many of these customers know it, however, 
because various factors combine to make the use of voice over IP (VoIP) technology 
a sensitive subject.  There are those who intentionally use the Internet for voice calls, 
and many software packages (such as those from Vonage and Avaya) are available. But 
not many people know that a percentage of calls (perhaps the majority) made over the 
PSTN are carried for part of their journey over the Internet using VoIP.  The cellular tele-
phone network is converging on IP protocols even faster than the landline network.
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FIGURE 30.1

VoIP setup on the Illustrated Network, showing the host using an Internet telephony package.
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The exact percentage of PSTN traffi c using VoIP is very diffi cult to pin down because 
some telephony carriers are relatively open about this fact and others are not, and all 
are as wary of their competitors as they ever were.  The use of VoIP is also controversial 
because not too long ago the voice quality of such calls was (might as well admit it) 
horrible.

This chapter concerns voice, not audio, a distinction often glossed over by users 
but never by engineers. Voice is concerned primarily with comprehension of the 
spoken word, that is, of what is said rather than how it “sounds.” Audio is generally 
a stereo representation of more than just speech.  Think of audio as a motion picture 
soundtrack.  The telephone system is “tuned” to the frequencies used in human speech, 
not music or special effects explosions.  And that makes all the difference.

VOIP IN ACTION
It’s a little too much to expect seeing a full-blown VoIP server and gateway on the 
Illustrated Network, although Juniper Networks does indeed make such software. 
 Nevertheless, we can “borrow” an Avaya IP Softphone server for our network and install 
the client software on wincli2 (10.10.112.222).  Then we can use the VoIP software to 
place a call to a desk phone and capture the exchange of signaling and voice packets. 
This is shown in Figure 30.1.

Naturally, the server can place the call anywhere in the world, but having a con-
versation with a telephone in a local cubicle makes it easier to complete the call, talk, 
hang up, and so on. Figure 30.2 shows the main screen for the Avaya VoIP software. It 
doesn’t look much like a phone, and some VoIP clients make an effort to make the user 

FIGURE 30.2

Avaya IP Softphone client interface. Note that this is not very “phone-like.”
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interface look like a “real” telephone.  The best that Avaya does is place a small “keypad” 
on the screen so that you don’t have to type the numbers in.

Before you can make a call, you have to log in to the server.  A simple log-in ID and 
password is used, and then the screen shown in Figure 30.3 appears. It shows the 
extension the computer is acting as, its IP address (this capture is not from wincli2, so 
the addresses have been changed to the private range), the VoIP server’s IP address, and 
the gateway “VoIP” address.  The call status is shown also, and this screen was captured 
while the call was in progress.

The fi rst thing that becomes obvious when capturing VoIP sessions is the blizzard 
of packets presented.  The actual session, from “dialing” through conversation to “hang-
up”) lasted less than 30 seconds, and the log-in process, registration, and call setup took 
only a few seconds of that time. Yet in this 30-second window, some 756 packets passed 
back and forth from the VoIP client to server.

Most of them were small packets using the Real-Time Protocol (RTP), which 
 carries 20 bytes of voice coded at 8 Kbps (the G.729 standard).  A portion of the 

FIGURE 30.3

Avaya log-on screen with a call in progress.
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 conversation between client and gateway is shown in Figure 30.4. (The gateway 
address 172.24.45.65 is now accessed from wincli2, and therefore different from that 
shown in Figure 30.3.)

In addition to the TCP packets (which are used to set up the connection to the 
server), and the RTP packets carrying the voice bits (and the RTCP packets with status 
information), there are other control packets that serve to remind us that we are not in 
the data world anymore.  The voice world uses a unique language, and an often obscure 
one at that.  This VoIP implementation speaks H.323, a signaling protocol family for 
voice.  The main signaling protocols seen during the call follow.

H.225.0 RAS packets—These are the registration, admission, and status packets 
used to register the VoIP host on the VoIP server and allow it to use the system 
to make calls.

H.225.0 CS packets—The call status packets trace the progress of the call. (Is the 
other phone ringing? Did someone answer?)

Q.931 signaling packets—These are not strictly H.323 signaling packets. Q.931 
is the “normal” signaling method with packets used on the PSTN.  These are 
passed from the VoIP client to the server by this VoIP implementation.

Some packets of each type are shown in Figure 30.5, which only shows the expanded 
upper pane of a full Ethereal capture window. Signaling protocols in VoIP, as opposed 
to the voice “data” itself, use TCP for its sequencing and resending features.

FIGURE 30.4

RTP packets carrying 20 bytes of voice, shown highlighted in the bottom pane.
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We’ve done little more than scratch the surface of  VoIP, but it is enough to show 
that VoIP is acceptable and commercially viable today. Let’s see why, and explore some 
of the architectures and protocols in a little more detail.

The Attraction of VoIP
In a very short period of time, we’ve transitioned from a world where data rode on 
links optimized for voice by masquerading as sound (that’s what a modem is for) to a 
world where voice rides on links optimized for data (unchannelized) by masquerading 
as data packets. VoIP is a grand scheme to make this process as easy as possible.

The trick is to have the voice packets preserve the quality-of-service parameters that 
regulated telephone companies always have to keep an eye on (or their next request 
for a rate increase might be rejected, and some companies have even been forced to 
send customers rebates due to poor voice service). In the discussion that follows in this 
chapter, it will be a good thing to remember that when engineers say “voice” they really 
mean four things (and no, one of them is not audio).

What Is “Voice”?
The PSTN can carry one of four types of “voice” traffi c.

1. Two people talking—This is what most people think of when they say “voice.”
2.  Fax—Fax machines use low-speed modems to make digital representations of 

images look like sound.  And fax traffi c is growing like never before as a result 
of several social factors (faxes have higher legal standing than email, for one 

FIGURE 30.5

H.225 and Q.931 signaling packets. Note the presence of TCP packets for signaling.

CHAPTER 30 Voice over Internet Protocol 741



thing) and the fact that many languages are still not particularly email and key-
board friendly.

3.  Modem data—Not everyone is on DSL, and a good percentage of users around 
the world (and, sadly, in the United States) still use analog modems to push 
perhaps 30 to 50 Kbps back and forth to their ISP.

4.  Touch tone—Offi cially, these are the dual-tone multifrequency (DTMF) sounds 
you hear when you press buttons on a telephone keypad.  The familiar beeps 
are analog (sound) representations of the numbers (digits) pressed.

There are also some economic factors pertinent to VoIP, and VoIP is one reason that 
premium long-distance telephone calls (which used to cost many dollars per minute) are 
seldom an issue in anyone’s budget. (  You used to ask before making a long-distance call 
from someone else’s phone, and people rushed out of the shower dripping wet to take 
a long-distance call because the rates were higher initially.) The use of VoIP as a PSTN 
bypass method has become less attractive, but the goal of convergence remains strong.

VoIP is also attractive to carriers if what is often called in the United States “toll-
quality voice” can be delivered at a reduced bit rate as a stream of TCP/IP packets. 
Bandwidth savings directly translates into network savings, which is something anyone 
can understand.

The Problem of Delay
Voice quality is tied to more than just bit rate.  Two key parameters in assessing voice 
quality are latency (delay) and jitter (delay variation). Voice is much more sensitive to 
the values of these two network parameters, much more so than the most rigid interac-
tive data requirements.  This is because data are usually not processed until the “whole” 
of something has arrived, and it makes no difference if the fi rst packets that represent 
a fi le arrive faster than the last few packets (this is the jitter).  And as long as the delay 
remains below a certain timeout threshold the application will work fi ne (this is the 
overall delay).

Delay and latency are often used interchangeably, and they will be here. End-to-end 
network delays consist of two components: serial delay and nodal processing delay.

Nodal processing delay is the amount of time it takes for the bits that enter a net-
work node (end node or intermediate node alike) to emerge. End nodes can measure 
this between application and link, and intermediate nodes as link-to-link delays.  Today’s 
routers operate in many cases at “line speeds,” but this is a relatively recent develop-
ment. Early routers operated at much too leisurely a pace to route voice packets at 
anywhere near the pace required for telephony services (that’s what circuit-switched 
voice switches were for), which basically had to span the globe in about one-quarter of 
a second.  And this had to include the serial delay.

Nodal processing delay also occurs when the analog voice is fi rst digitized.  The algo-
rithm used to digitize voice might be complex, adding delay to the entire process.  And 
the more bits needed to be gathered into a packet (bigger packets mean fewer packets 
than can get lost), the higher the nodal processing delay.  This initial delay is often called 
the packetization delay, but it is just another form of nodal delay.
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Serial delay is simply an acknowledgment of the fact that bits are sent on a link one 
by one, so it takes a certain amount of time to send a given number of bits at a given 
bit rate. If the serial delay is too high for a given application, there are only two ways to 
lower it: Put fewer bits in a packet or raise the link bit rate. Of course, you can do both. 
You can put fewer bits in voice packet by lowering the bit rate of the voice inside (or 
sending more packets—it’s a tradeoff).

Jitter is the variation of the end-to-end delay across the network.  As the delay varies, 
bits arrive either early or late at the destination. If they arrive too quickly, bits might 
overfl ow a buffer. If they arrive too late, silence results. Gaps in the conversation occur 
either way.  And even less extreme jitter can distort the analog voice that results from 
the bits.  To smooth out arriving voice, a “jitter buffer” is used to add the delay necessary 
to make the voice sound like it all arrives with the same delay.

The delay issues in VoIP are shown in Figure 30.6. Naturally, the same process works 
in the other direction.

Just like overall delay, and apart from jitter buffers, jitter can be handled in a couple 
of ways. Delay variations usually result from nodal processing load variations and buf-
fer queue depth. In other words, when the node is busy, things slow down.  This effect 
can be minimized by splitting off the voice for special handling, getting faster network 
nodes, or by increasing link bandwidth. (Note that constant appearance of “increased 
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Speech Direction

Serial Link Transmission
Delays

Encoding below 64
Kbps, Packetization
(processing delay)

VoIP

Internet
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Transmission delays

Decoding to
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Digital-to-Analog
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FIGURE 30.6

VoIP processing and transmission delays. Note that the jitter buffer compensates for differences 
in delays during different parts of the call.
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link bandwidth” as a solution to networking problems, a fact that has slowed develop-
ment of alternative solutions to many issues.)

The key to VoIP is not so much digitizing voice at a low bit rate, but rather TCP/IP 
and the Internet carrying packetized voice with acceptable latency and jitter as per-
ceived by the humans using it. (Related issues, such as replacing silence with “comfort 
noise” and detecting “voice activation,” are beyond the scope of this chapter.)

Packetized Voice
Voice on the PSTN is usually a streaming bidirectional connection at a fi xed 64 Kbps. 
Once digitized, there was little incentive to play around with voice too much because 
any reduction in bit rate was offset by a loss in voice quality. Regulated carriers had 
to maintain certain voice quality levels or risk customers not having to pay for the 
call. However, if the “slope” of the decline of voice could be leveled so that quality at 
16 Kbps or even 8 Kbps was not that much different than at 64 kbps, more calls 
could be carried over the same facilities. Not only that, but any bandwidth not used for 
 carrying voice calls could be used for data (packets).

However, low-bit-rate voice with acceptable quality—something achieved with 
modern digital signal processing (DSP) chips—is not the same as packetized voice. 
Using “spare” voice bandwidth for data was the idea behind ISDN and eventually DSL. 
But the voice stayed on the voice channel and the data stayed on the data channel. Only 
by truly packetizing voice can voice and data be combined in an effi cient manner.

A “voice” service really consists of two major components: content—which can 
take on four different meanings (as we have seen)—and signaling.  This signaling is not 
the same as touch tones, although the intent is similar.  This signaling is already pack-
etized, and is how the number you dial and other information (such as the number you 
dialed from) makes its way through the voice signaling network.

This signaling network is as packetized as TCP/IP, uses special network nodes 
(which still route), and is known as Signaling System 7 (SS7).  The real issue in VoIP is 
not so much how to packetize the voice content (gather bits and stick a header on 
them and send them out) but how the SS7 signaling packets relate to the Internet and 
TCP/IP.

The main stumbling block to universal VoIP service today is not so much that there 
are many ways to packetize voice content (there are options in many other TCP/IP 
 protocols) but that there are many ways (and many architectures) to carry voice signal-
ing information in a TCP/IP environment.  These VoIP protocol controversies are impor-
tant enough for a detailed look.

PROTOCOLS FOR VOIP
Voice, like audio and video, is a “real-time” application.  And, as in multicast TCP is a poor 
choice for voice connections over the Internet.  This sounds odd because voice is as 
connection oriented as TCP and requires handshaking overhead to complete a “call.” 
(Humans handshake with a ring and a vocalized shared “Hello.”)
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The problem is not just TCP overhead, it’s the fact that TCP will always resend 
 missing data units.  That’s what it’s for. However, the meaningful resending of voice 
bits is impossible in VoIP given the real-time nature of voice. So, UDP (which blithely 
accepts lost data units with a shrug) is used in VoIP—just as in multicast.

But TCP headers contain a number of fi elds that are very helpful for end-to-end 
communications, which are fi elds lost in UDP, such as a sequence number to detect 
lost voice packets. So we’ll have to take what fi elds we need from TCP and stick them 
inside (after) the UDP header.  This new header will have to have a name and a place in 
the TCP/IP protocol stack.  We’ll call it the Real-Time Protocol (RTP) and use it for the 
transport of digitized voice inside our IP packets.

Signaling, however, is another matter.  We might want to keep TCP for that because 
resending lost signaling packets is actually a good idea (calls that are not completed do 
not generate revenue for metered service or friends in the user community). In addi-
tion, the delays for signaling in regulated voice services are much less stringent than the 
delays for voice packets, which make TCP connection overhead tolerable. So, in some 
cases (especially over a WAN), TCP is acceptable for voice signaling.

But what form should TCP/IP voice signaling packets take? How should voice-
 capable TCP/IP devices fi nd each other by IP address? How are VoIP calls handed off 
to (or received from) the PSTN network with SS7? Where are the voice gateways? Who 
runs the gateways—the customer or the service provider? In other words, what is the 
overall architecture of the TCP/IP voice-signaling network?

Unfortunately, we live in a world where there are competing answers to all of these 
signaling questions. Let’s start by looking at RTP and then examining the major differ-
ences between the various systems of VoIP signaling.

RTP for VoIP Transport
RTP grew out of efforts to improve the Streams 2 (ST2) protocol defi ned in RFC 1819. 
ST2 was known as IPv5 and is why IPv4 evolved into IPv6. RTP was defi ned in RFC 
1889 and deliberately left open-ended to allow room for the protocol to evolve.

RTP is really a framework using application layer framing and was initially aimed 
at audio (and video) multicast sessions. However, two-way phone calls are just special 
cases of audio multicast, so RTP is a good fi t for VoIP.

RTP can replace TCP for many applications, but in VoIP it is used with UDP.  The RTP 
architecture also includes another protocol, the Real-Time Control Protocol (RTCP), which 
uses IP directly to monitor the job RTP is doing in terms of delay and voice  quality.

IP port numbers 5004 and 5005 are used for RTP and RTCP, respectively, and the 
ports are the same on both ends of the connection.  The overall RTP architecture is 
shown in Figure 30.7.

There are many audio and video codecs supported by RTP, but not all of them are 
needed for VoIP (especially video codecs, naturally). In addition, the RTP architecture 
establishes devices called mixers (to mix multiple sources for conferences) and trans-
lators (to compensate for low and high bit-rate links and LANs).  These functions can 
be implemented in some type of “voice and audio server” on a LAN, but are not used 
in VoIP.
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FIGURE 30.7

RTP and RTCP protocol stack, showing how these protocols use UDP instead of TCP.

The structure of the basic RTP header is shown in Figure 30.8. Only the fi elds that 
apply to two-party calls (point to point) are fully described.

V (version)—This 2-bit field gives the current version of RTP.

Pad (padding)—This 2-bit field aligns the packet to a specific boundary.  The 
actual padding byte count is given in the last byte of the RTP data.

E (extension)—This 1-bit field extends the length of the RTP header, mostly for 
experimental purposes, and is almost always set to zero.

M (marker)—This 1-bit field is used in the first packet sent after a period of 
silence.

Payload type—This 7-bit field is used to define 128 types of RTP payloads. Some 
are static, and can only be used for the defined type, but newer ones are 
dynamic and are assigned by the control protocol (such as SIP).

Sequence number—This 16-bit field increases by one for each RTP packet sent. 
Receivers can use this field to detect missing or out-of-sequence packets.

Timestamp—This 32-bit field is most useful for video (all bits from the same frame 
have the same timestamp), but it is used for the voice sampling rate as well.

The count fi eld gives the number of “contributors” to a conference. For multiparty 
calls, the synchronization source identifi er (SSRC) and a series of contributing source 
identifi ers (CSRC) matching the count are not used.  The VoIP RTP header adds 8 bytes 
to the voice stream.  The format of the payload in the RTP data fi eld is determined by 
the values in the categories listed in Table 30.1.

746 PART VII Media



V

H
e
a
d
e
r

E M Payload Type Sequence Number

Timestamp

32 bits

Payload

RTP header for VoIP is 8 bytes long

Synchronization Source Identifier (SSRC)

Contributing Source Identifier(s) (CSRC, matches count)

Pad

1 byte 1 byte 1 byte 1 byte

Count

RTP is a pure transport mechanism. Feedback on quality and immediate network 
conditions is provided by the receiver to the sender with RTCP. RTCP doesn’t say what 
senders should do with this information, such as the revelation that a router is becom-
ing overloaded and dropping more packets than it is sending, but at least the ability to 
detect problems is there.

RTP generates periodic “reports” about the RTP session.  There are fi ve RTCP mes-
sage types.

1.  Sender report—Contains transmission and reception statistics from conference 
participants that are active senders.

FIGURE 30.8

RTP header fi elds, which preserve some aspects of TCP fi elds.

Table 30.1 RTP Payload Formats and Their Meanings

Type Meaning

0–34 Static assignment (most popular bit rates and formats here)

35–71 Unassigned

72–76 Reserved

77–95 Unassigned

96–127 Dynamic assignment (under the control of a call control protocol)
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2.  Receiver report—Reception statistics from conference participants that are not 
active senders.

3.  Source description—Items relating to the source, including the canonical DNS 
name.

4. Bye—Used to end a session.
5.  Application specifi c—Contains any information that the applications agree to 

share.

The possible payload formats that can be used to carry voice bits following the RTP 
header are complex, seemingly fi endishly so.  These are defi ned in RFC 2833. Fortu-
nately, they are usually of interest only to telephony engineers.

Signaling
I fi rst encountered voice over IP around the same time I encountered the Web, in the 
early 1990s. It was in a university setting, where the absolute utility and cost effective-
ness of things are not as rigid as in the business world. In the fl uid environment of 
an educational institution, many things happen because they are instructive, ground-
breaking, and just, well, cool.

A graduate student of mine was in the lab one day, busily chattering into a micro-
phone hooked up to a PC and intently listening to the garbled voice coming out of the 
PC’s speakers. Much of the conversation consisted of “What?” and “Huh?”

When I asked, he informed me that he was talking over the Internet to an old friend 
in a similar lab at RPI in Troy, New York, about 150 miles north of us—and in those days 
usually an expensive long-distance call away (especially for graduate students). I asked 
him how the friend in Troy knew to be in the lab at the right time to answer his PC. “Oh,” 
my student said, “I called his dorm room from your offi ce and told him to go there.”

Things have come a long way since the early 1990s.  The trouble back then was 
that the world of Internet telephony was a closed world, limited to Internet-attached 
devices.  There were no signaling gateways to translate phone numbers to IP addresses 
and back, and so no way to enable calls with one end on the Internet and the other end 
in the PSTN to complete calls.

This is not to say that there were not VoIP gateways.  There were. But these used pro-
prietary protocols for the most part, and only connected to their cousin devices from 
the same vendor. So, there was a need to create standard signaling protocols for VoIP.

Today, the issue seems to be not a lack of proposed standard protocols for VoIP 
but their proliferation.  There are three general protocol stacks that can be used for 
VoIP.  These are shown in Figure 30.9.

Note that the third stack combines two methods known as the Multimedia Gateway 
Control Protocol (MGCP) and Megaco/H.248 into a single stack.  The two are similar 
enough to allow this.

However, things are not as bad as they might seem at fi rst.  All three of the signaling 
protocols could have a role in the “converged” VoIP architecture of Internet and PSTN. 
Before we see how this is possible, let’s take a look at each of the protocols in turn.
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FIGURE 30.9

Three VoIP signaling architectures.

H.323, the International Standard
The H.323 signaling protocol framework is the international telephony standard for 
all telephony signaling over the packet network (not just the Internet).  When work on 
H.323 began, the packet network most commonly mentioned for H.323 was X.25, then 
ATM, and not the Internet. In a sense, H.323 doesn’t care—it’s just an umbrella term for 
what needs to be done.

Like RTP, H.323 was designed for audio and video conferencing, not just point-to-
point voice conversations.  A LAN with devices that support H.323 capabilities (H.323 
terminals, which have many different subtypes) also has an H.323 multipoint control 
unit (MCU) for conference coordination.  The LAN includes an H.323 gateway to send 
bits to other H.323 zones and an H.323 gatekeeper.  The gatekeeper is optional, and is 
needed only if the terminals are so underpowered they cannot generate or understand 
H.323 messages on their own. (Most can, although H.323 is not trivial.) The H.323 
gateway is essentially a router, but with the ability to support packetized voice to PSTN 
connections (and the terminals are computers, of course).

The main H.323 signaling protocols used with VoIP are H.225 RAS (Registration, 
Admission, and Status), which is used to register the VoIP device with the gatekeeper, 
and H.255 CS (call status), which is used to track the progress of the call.  The structure 
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of a typical H.323 zone is shown in Figure 30.10. H.323 signaling uses both UDP and 
TCP when run on an IP network, and uses RTP and RTCP for transport. Components 
that are not strictly needed for VoIP are shown in italics.

H.323 supports not only audio and video conferencing but also data conferenc-
ing, where users can all see the same information on their PCs and changed data are 
updated across the network. Cursors are usually distinguished by distinctive colors.

The trouble with H.323 was that it is complete overkill for VoIP. Data and video sup-
port are not needed for VoIP, and some wondered why H.323 was needed in VoIP at all 
given its telephony roots and the hefty amount of power needed to run it. Maybe the 
Internet people could come up with something better.

SIP, the Internet Standard
The Session Initiation Protocol (SIP), defi ned in RFC 3261, is the offi cial Internet sig-
naling protocol for IP networks. Each session can also include audio and video con-
ferencing, but right now SIP is mainly used for simple voice over the Internet. SIP is 
a text-based protocol similar to HTTP and SMTP, uses multicast Session Description 
Protocol (SDP) for the characteristics of the media, and is technically independent of 
any particular packet protocol.

Both H.323 and SIP defi ne mechanisms for the formal processes of call signaling, 
call routing (the path the voice bits will follow), capabilities exchange (the bit rate that 
should be used), and supplementary services (such as collect calling). However, SIP 
attempts to perform these functions in a more streamlined fashion than H.323.

H.323
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H.323
Terminal
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H.323
Terminal

(user)

H.323
Terminal

(user)

H.323
Multipoint

Control Unit
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FIGURE 30.10

H.323 zone components. (Optional components are shown in italic.)
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VoIP combines the worlds of the telephony carriers (H.323) and the Internet (SIP). 
Not surprisingly, both telephony carriers and Internet people see their way as the best 
way for a unifi ed signaling protocol suitable for both environments.

The SIP architecture is client–server in nature, as expected, but with adaptation for 
the peer-to-peer nature of telephony.  The main SIP components are the user agent (the 
“endpoint” device), the “intermediate servers” (which can be proxy servers or redirect 
servers), and the registrar.

Proxy servers forward SIP requests from the user agent to the next SIP server or 
user agent and retain accounting and billing information. User agents can be clients 
(UACs) when they send SIP requests, and servers (UASs) when they receive them. SIP 
redirect servers respond to client requests and tell the UACs the requested server’s 
address.

The SIP registrar stores information about user agents, such as their location.  This 
information is not maintained or accessed by SIP, but by a separate “location service” 
that is still part of the SIP framework. SIP is fl exible enough to support stateless requests 
or to remember them, and is not tied to any one directory method to locate SIP users 
and components.

The general SIP architecture is shown in Figure 30.11.  The only piece that is missing 
is the registrar, which takes the SIP register request information and uses it to update 
the information stored in the location server.  The fi gure shows the sequence of SIP 
requests and responses to establish a session (call).  The details of each step are beyond 
the scope of this chapter, but the point is that a lot of messages are required to com-
plete the call. Once the called party is found and alerted in Step 8, however, the call is 
quickly completed from proxy to proxy and back to the calling party.
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FIGURE 30.11

SIP session initiation steps.
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There are six basic types of SIP requests.

1. Invite—Start a session.
2. ACK—Confi rms that the client has received a fi nal response to an invitation.
3. Options—Provides capabilities information, such as voice bit rates supported.
4. BYE—Release a call.
5. Cancel—Cancel a pending request.
6. Register—Sends information about a user’s location to the SIP registrar server.

SIP responses follow the familiar three-digit codes used in many other TCP/IP 
protocols.  The major response categories in SIP follow:

■ 1xx Provisional, used for searching, ringing, queuing, and so on
■ 2xx Success
■ 3xx Redirection, forwarding
■ 4xx Server failure
■ 5xx Global failure

SIP even allows PSTN signaling messages (packets) to use the Internet to set up 
calls that use the PSTN on both ends, so telephony carriers can send calls directly over 
the Internet.  This version of SIP is called SIP-T (SIP for Telephony).

MGCP and Megaco/H.248
It’s one thing to describe a network of media gateways leading to the PSTN (as in 
H.323), or a series of servers that relay call setup packets across the Internet, as in SIP. 
But these elements do not function independently, despite the fact that H323 Media 
gateways and SIP proxy servers are on the customer premises and on LANs. If VoIP 
must handle the most general situations with endpoints anywhere on the Internet or 
PSTN, some type of overall control protocol must be developed.

That’s what the Media Gateway Control Protocol (MGCP) is for. Despite the H.323 
terminology, MGCP was defi ned in RFC 2705 as a way to control VoIP gateways from 
“external call control elements.” In other words, MGCP allows the service providers 
(telephony carriers or ISPs) to control the VoIP aspects of the customer’s network, 
whether it uses H.323 or SIP.  These control points are known as call agents, and MGCP 
only defi nes how a call agent talks to the media gateway—not how the call agents talk 
to each other. Call agent communication uses H.323 or SIP, so this is not a limitation.

The terminology for all of these signaling protocols is starting to get confusing. Let’s 
back up and see what we’ve got so far.

Media gateways—The H.323 component that handles all voice bits sent to and 
from the “zone” (usually a LAN).

Proxy servers—The SIP components that handle requests for SIP-capable user 
agents on the LAN.
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Call agents—The MGCP components that control the media gateways and can do 
so over the Internet link itself.

But wait, didn’t SIP have a media gateway? No, SIP defi nes a signaling framework 
that can tell you where the gateway is, but doesn’t include that device in its framework. 
If you think about it, it all makes sense and all of the pieces are needed to make VoIP 
as useful as possible.

The biggest clash is between parts of H.323 and SIP. You don’t need to have both 
running on the “terminals” or “user agents,” no matter which terminology you use. How-
ever, many vendors are hedging their bets and supporting both H.323 and SIP right 
now.  The funny thing is that they usually don’t support MGCP.

How’s that? Well, MGCP was modifi ed into something called Megaco to make it 
more palatable to the telephone carriers. Megaco was standardized as H.248, so the 
result often appears as Magaco/H.248.  The architecture of Megaco/H.248 is very simi-
lar to that of MGCP.

PUTTING IT ALL TOGETHER
How do H.323, SIP, and Megaco/H.248 relate to one another today? Well, they all have a 
place in a VoIP network that can place or take calls to and from the PSTN and handle IP 
transport of what appear to customers to be PSTN calls. Figure 30.12 shows the overall 
architecture of such a converged VoIP network.
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FIGURE 30.12

VoIP converged network architecture, showing how VoIP protocols can work together.
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We’ve seen ISDN and SS7 signaling before, and channel-associated signaling (CAS) is 
used on aggregate circuits with many voice channels. Pulse code modulation (PCM) is a 
common way to carry the voice bits on the PSTN.  Therefore, the “upper” path through 
the fi gure describes the signaling, and the “lower” path shows the “media” channel 
using RTP and RTCP over the Internet (or private IP network).
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QUESTIONS FOR READERS
Figure 30.13 shows some of the concepts discussed in this chapter and can be used to 
answer the following questions.

1. What are the four types of “voice” carried by VoIP?

2. In the fi gure, is wincli2 sending (talking) or receiving (listening)?

3. Which UDP port is the client using for the call?

4. Which international standard protocol is used to set up the stream?

5. Which voice coding standard is used for the “data” in the voice packet?

FIGURE 30.13

Frame 282 using RTP captured from a VoIP call.
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AA Authoritative Answer
AAAA IPv6 DNS record
ABR Area Border Router
ACD Automatic Call Distribution
ACELP Algebraic-Code-Excited Linear Prediction
ACK Acknowledgment
AD Active Directory
ADPCM Adaptive Differential Pulse Code Modulation
ADSL Asymmetric Digital Subscriber Loop
AF Address Family
AFI Address Family Identifi er (RIP); Authority and Format Identifi er (IS–IS)
AfriNIC African Network Information Center
AH Authentication Header
AIX Advanced Interactive Executive (IBM’s Unix)
AMI Alternate Mark Inversion
ANS Advanced Network Service
ANSI American National Standards Institute
AOL America On-Line
API Application Program Interface
APNIC Asian Pacifi c Network Information Center
APPC Advanced Program-to-Program Communications
APPN Advanced Peer-to-Peer Networking
ARIN American Registry for Internet Numbers
ARP Address Resolution Protocol
ARPA Advanced Research Projects Agency
AS Autonomous System
ASBR Autonomous System Boundary Router
ASCII American Standard Code for Information Interchange (IA-5)
ASIC Application Specifi c Integrated Circuit
ASM Any Source Multicast
ASN.1 Abstract Syntax Notation 1
ASP Active Server Page
AT Advanced Technology
ATM Asynchronous Transfer Mode
ATT Attach segment
AUI Attachment Unit Interface
AUP Acceptable Use Policy
AUX Auxiliary

BBN Bolt, Baranek, and Newman, Inc.
BBS Bulletin Board System
BDR Backup Designated Router
BECN Backward Explicit Congestion Notifi cation
BER Bit Error Rate
BGP Border Gateway Protocol
BIND Berkeley Internet Name Domain
BIOS Basic Input/Output System
B-ISDN Broadband Integrated Services Digital Network
BITNET Because It’s Time Network
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BITS Bump in the Stack
BITW Bump in the Wire
BOOTP Bootstrap Protocol
BPSK Binary Phase Shift Keying
BRI Basic Rate Interface
BSD Berkeley Systems (or Software) Distribution

CA Certifi cate Authority
CABS Carrier Access Billing System
CAR Committed Access Rate
CAS Channel Associated Signaling
CBC Cipher Block Chaining
CBGP Confederation Border Gateway Protocol
CBT Core-Based Tree
CCITT  Consultative Committee on International Telegraphy and Telephony (French 

original)
CCS Common Channel Signaling
CD Call Disconnect; Collision Detection
CDMA Code Division Multiple Access
CDR Call Detail Record
CE Customer Edge
CED Called Station Identifi cation
CELP Code Excited Linear Prediction
CERN European Council for Nuclear Research
CGI Common Gateway Interface
CHAP Challenge Handshake Authentication Protocol
CIA Central Intelligence Agency
CIDR Classless Interdomain Routing
CIP Connector Interface Panel
CIR Committed Information Rate
CIX Commercial Internet Exchange
CLEC Competitive Local Exchange Carrier
CLI Command Line Interface
CLNP Connectionless Network Protocol
CLNS Connectionless Network Service
CLP Cell Loss Priority
CLV Code/Length/Value
CMIP Common Management Information Protocol
CMIS Common Management Information Services
CMOT Common Management Information Services and Protocol Over TCP/IP
CNAME Canonical Name
CNG Calling Number
CO Central Offi ce
CoS Class of Service
CPU Central Processing Unit
CRC Cyclical Redundancy Check
CRL Certifi cate Revocation List
CRM Customer Relationship Management
CS Call Status
CSLIP Compressed Serial Line Interface Protocol
CSMA Carrier Sense Multiple Access
CSNP Complete Sequence Number PDU
CSR Certifi cate Signing Request
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CSRC Contributing Source Identifi er
CSU Channel Service Unit
CTI Computer Telephony Integration

DAM Diagnostic Acceptability Measure
DARPA Defense Advanced Research Project Agency
DC Direct Current; Demand Circuit
DCA Defense Communication Agency
DCE Data Circuit-terminating Equipment; Distributed Computing Environment
DD Database Description
DDDS Dynamic Delegation Discovery System
DDN Defense Data Network
DE Discard Eligible
DES Data Encryption Standard
DF Don’t Fragment
DHAAD Dynamic Home Agent Address Discovery
DHCP Dynamic Host Confi guration Protocol
DIS Designated Intermediate System
DNA Digital Network Architecture
DIX Digital, Intel, and Xerox Ethernet
DLCI Data Link Connection Identifi er
DLL Dynamic Link Library
DLP Data Link Protocol
DM Delta Modulation
DM Dense Mode
DME Distributed Management Environment
DMZ Demilitarized Zone
DNS Domain Name System
DNSSEC Domain Name System Security
DoD Department of Defense
DOS Disk Operating System
DPCM Differential Pulse Code Modulation
DR Designated Router
DRAM Dynamic Random Access Memory
DRT Diagnostic Rhyme Test
DS Digital Signal
DSAP Destination Service Access Point
DSL Digital Subscriber Line
DSP Digital Signal Processor
DSU Digital Service Unit
DTE Data Terminal Equipment
DTMF Dual Tone Multifrequency
DVMRP Distance Vector Multicast Routing Protocol
DWDM Dense Wavelength Division Multiplexing

EA External Attributes; Extended Address
EBGP External Border Gateway Protocol
ECC Error Correction Code
ECM Error Correction Mode
ECN Explicit Congestion Notifi cation
EGP Exterior Gateway Protocol
EIGRP Enhanced Interior Gateway Routing Protocol
EIR Excess Information Rate
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EoF End of File
EoR End of Record
ES End System
ESMTP Extensions to Simple Mail Transfer Protocol
ESF Extended Superframe Format
ESP Encapsulating Security Payload
EUI Extended Unique Identifi er
EXEC Executive (mode)

FA Foreign Agent
FAQ Frequently Asked Questions
FCC Federal Communication Commission
FCS Frame Check Sequence
FDDI Fiber Distributed Data Interface
FDM Frequency Division Multiplexing
FE Fast Ethernet
FEB Forwarding Engine Board
FEC Forward Error Correction, Fast EtherChannel
FECN Forward Explicit Congestion Notifi cation
FEIP Fast Ethernet Interface Processor
FIN Final segment
FIX Federal Internet Exchange
FM Frequency Modulation
FPC Flexible PIC Concentrator
FQDN Fully Qualifi ed Domain Name
FRAD Frame Relay Access Device
FT Forwarding Table
FTAM File Transfer,  Access, and Management
FTP File Transfer Protocol

GBE Gigabit Ethernet
GE Gigabit Ethernet
GEO Geosynchronous Earth Orbit
GFC Generic Flow Control
GGP Gateway-to-Gateway Protocol
GIF Graphics Interchange Format
GIP Gateway Interface Protocol
GLP Gateway Location Protocol
GPS Global Positioning System
GRE Generic Routing Encapsulation
GSM Global System for Mobile
GSTN Global Switched Telephone Network
GTLD Generic Top Level Domain
GUI Graphical User Interface

HA Home Agent
HDLC High-Level Datalink Control
HEC Header Error Control
HF High Frequency
HMAC Hashed Message Authentication Check
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol

IA Implementation Agreement; International Alphabet (ASCII is IA.5); Inter-Area
IAB Internet Activities Board; Internet Architecture Board
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IANA Internet Assigned Numbers Authority
ICANN Internet Corporation for Assigned Names and Numbers
ICMP Internet Control Message Protocol
ICV Integrity Check Value
ID Identifi er
IDNS Internationalization of the Domain Name Space
IDRP Inter-domain Routing Protocol
IEEE Institute of Electrical and Electronics Engineers
IEN Internet Engineering Notes
IESG Internet Engineering Steering Group
IETF Internet Engineering Task Force
IGMP Internet Group Management Protocol
IGP Interior Gateway Protocol
IGRP Interior Gateway Routing Protocol
IKE Internet Key Exchange
ILEC Incumbent Local Exchange Carrier
IMAP Internet Mail Access Program
IMP Interface Message Processor
IN Intelligent Network
InARP Inverse Address Resolution Protocol
IOS Internetwork Operating System
IP Internet Protocol
IPLS IP-only LAN-like Service
IPSec IP Security
IRC Internet Relay Chat
IRR Internet Routing Registry
IRTF Internet Research Task Force
IS Information Systems
ISAKMP Internet Security Association and Key Management Protocol
ISATAP Intra-site Automatic Tunnel Addressing Protocol
ISBN International Standard Book Number
ISDN Integrated Services Digital Network
IS–IS Intermediate System to Intermediate System
ISN Initial Sequence Number
ISO International Organization for Standardization (ISO means “equal”)
ISP Internet Service Provider
IT Information Technology
ITU International Telecommunication Union
ITSP Internet Telephony Service Provider
ITU International Telecommunications Union
IVR Interactive Voice Response

JPEG Joint Photographic Experts’ Group

KB Kilobyte

L2F Layer 2 Forwarding
L2TP Layer 2 Tunneling Protocol
LAC L2TP Access Concentrator
LAN Local Area Network
LAPB Link Access Procedure Balanced
LAPD Link Access Procedure on the D-channel
LATA Local Access and Transport Area
LCD Liquid Crystal Diode
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LCP Link Control Protocol
LDAP Lightweight Directory Access Protocol
LDP Label Distribution Protocol
LEC Local Exchange Carrier
LLC Logical Link Control
LNS L2TP Network Server
LOC Location
LPC Linear Predictive Coding
LS Link State
LSA Link State Advertisement
LSB Least Signifi cant Bit (Byte)
LSP Label Switched Path; Link State PDU

MAC Media Access Control
MAN Metropolitan Area Network
MAU Media Access Unit
MB Megabytes
MBGP Multiprotocol Border Gateway Protocol
MBONE Multicast Backbone
MC Multipoint Controller; Multicast
MCS Miscellaneous Control System
MCU Multipoint Control Unit
MD5 Message Digest 5
MED Multi-Exit Discriminator
MF More Fragments
MGCP Multimedia Gateway Control Protocol
MIB Management Information Base
MIME Multipurpose Internet Mail Extensions
M-ISIS Multicast IS–IS
MLD Multicast Listener Discovery
MN Mobile Node
MOSPF Multicast OSPF
MP-BGP Multiprotocol BGP (sometimes)
MPLS Multiprotocol Label Switching
MSDP Multicast Source Discovery Protocol
MSS Maximum Segment Size
MTA Mail Transfer Agent
MTU Maximum Transmission Unit
MUA Mail User Agent
MX Mail Exchange

NAP Network Access Point
NAPT Network Address Port Translation
NAT Network Address Translation
NBMA Non-Broadcast, Multi-Access
NCP Network Control Protocol
NCSA National Center for Supercomputing Applications
ND Neighbor Discovery
NDP Neighbor Discovery Protocol
NET Network Entity Title
NFS Network File System
NIC Network Interface Card/Network Information Center
NID Network Intrusion Detection
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NLA Next Level Aggregator
NLRI Network Layer Reachability Information
NOC Network Operations Center
NSAP Network Service Attachment Point
NSF National Science Foundation
NSP Network Service Provider
NSSA Not-So-Stubby-Area
NVRAM Non-Volatile Random Access Memory
NVT Network Virtual Terminal

OACK Option Acknowledgment
OAM&P Operations,  Administration, Maintenance & Provisioning
OC Optical Carrier
OFDM Orthogonal Frequency Division Multiplexing
OL OverLoad
ONC Open Network Computing
OSI Open Systems Interconnection
OSI-RM Open Systems Interconnection Reference Model
OSPF Open Shortest Path First
OUI Organizationally Unique Identifi er

P Provider
PAC PPTP Access Concentrator
PARC Palo Alto Research Center
PAT Port Address Translation
PC Personal Computer
PCG PFE Clock Generator
PCI Peripheral Component Interconnect
PCM Pulse Code Modulation
PD Packet Director
PDA Personal Digital Assistant
PDU Protocol Data Unit
PE Provider Edge
PFE Packet Forwarding Engine
PGM Pretty Good Multicast
PHP Penultimate Hop Popping
PIC Physical Interface Card
PIM Protocol Independent Multicast
PKI Public Key Infrastructure
PLCP Physical Layer Convergence Protocol
PLP Packet Layer Protocol
PNS PPTP Network Server
POP Point of Presence/Post Offi ce Protocol
POS Packet over SONET/SDH
PPDU Physical Protocol Data Unit
PPP Point-to-Point Protocol
PPPoE PPP over Ethernet
PPTP Point-to-Point Tunneling Protocol
PSDU Physical Layer Service Data Unit
PSH Push
PSNP Partial Sequence Number PDU
PSTN Public Switched Telephone Network
PTI Payload Type Indicator
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PTR Pointer
PW Pseudo-Wire

QoS Quality of Service
QR Query Response

RA Routing Arbiter/Recursion Available (DNS)
RADIUS Remote Access Dial-In User Service
RAM Random Access Memory
RARP Reverse Address Resolution Protocol
RAS Registration,  Admission, and Status
RD Recursion Desired
RE Routing Engine or Regular Expression
RFC Request for Comment
RIB Routing Information Base
RIP Routing Information Protocol
RIPE NCC Reséaux IP Européens Network Coordination Center
RISC Reduced Instruction Set Computing
ROMMON Read-Only Memory Monitor
RMON Remote Monitor
RP Rendezvous Point (PIM)/Responsible Person (DNS)
RPC Remote Procedure Call
RPF Reverse Oath Forwarding
RPT Rendezvous Point Tree
RQ Request
RR Route Refl ector (BGP)/Resource Records (DNS)
RRQ Read Request
RST Reset
RSVP Resource Reservation Protocol
RT Routing Table
RTCP Real-Time Control Protocol
RTMP Routing Table Maintenance Protocol
RTP Real-time Protocol or Reliable Transport Protocol (Cisco)
RTT Round Trip Time

SA Security Association
SAP Service Access Point/Session Announcement Protocol
SASL Simple Authentication and Security Layer
SCB System Control Board (M40)
scp secure copy
SDH Synchronous Digital Hierarchy
SDK Software Development Kit
SDLC Synchronous Data Link Control
SDP Session Description Protocol
SDU Service Data Unit
SFM Switching and Forwarding Module (M160)
SFTP Secure File Transfer Protocol
SGML Standard Generalized Markup Language
SHA Secure Hash Algorithm
SIG Signature
SIP Session Initiation Protocol
SKA Sender Keeps All
SKIP Simple Key Management for Internet Protocols
SLIP Serial Line Interface Protocol
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SM Sparse Mode
SMDS Switched Multimegabit Data Services
SMI Structure of Management Information
S/MIME Multipurpose Internet Mail Extensions Security
SMTP Simple Mail Transfer Protocol
SNA Systems Network Architecture
SNAP Sub-Network Access Protocol
SNMP Simple Network Management Protocol
SNP Sequence Number PDU
SNPA Subnetwork Point of Attachment
SOHO Small Offi ce/Home Offi ce
SONET Synchronous Optical Network
SPF Shortest Path First
SPI Security Parameter Index
SPT Shortest Path tree
SRV Services
SS7 Signaling System 7
SSAP Source Service Access Point
SSB System Switching Board (M20)
SSH Secure Shell
SSM Source-Specifi c Multicast
SSRC Synchronization Source Identifi er
STP Signaling Transfer Point
SYN Synchronize

TACACS1 Terminal Access Controller Access Control Systems Plus
TC Truncated
TCP Transmission Control Protocol
TE Traffi c Engineering
TFTP Trivial File Transfer Protocol
TGZ tar and gzip
TLA Top Level Aggregator
TLI Transport Layer Interface
TLV Type/Length/Value
TLS Transparent LAN Service
ToS Type of Service
TTL Time To Live
TTY Teletype
TXT Text

UA User Agent
UAC User Agent Client
UAS User Agent Server
UDP User Datagram Protocol
UI Unnumbered Information
UIUC University of Illinois Urbana/Champaign
URG Urgent
URI Uniform Resource Identifi er
URL Universal (or Uniform) Resource Locator
URN Uniform Resource Name
UTP Unshielded Twisted Pair

VCI Virtual Channel Identifi er
VLAN Virtual Local Area Network



766 List of Acronyms

VLSM Variable-Length Subnet Masking
VoIP Voice over IP
VPI Virtual Path Identifi er
VPLS Virtual Private LAN Service
VPN Virtual Private Network
VPSN Virtual Private Switched Network
VPWS Virtual Private Wire Service
VRF Virtual Routing and Forwarding table
VTY Virtual Teletype

WAN Wide Area Network
WEP Wired Equivalent Privacy
WiFi Wireless Fiber/Wireless Fidelity
WRQ Write Request

XDR External Data Representation
XML eXtensible Markup Language
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 Sequence Number fi eld, 724
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 remote access for, 10
 reply codes, 520–21
 RFCs, 518
 servers, 304, 519
 sessions, 297, 520
 sockets applied to, 305
 SONET, 32
 SSH and, 647
 stream mode with fi le-structure, 527
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 design advantages/disadvantages, 710
 DMZ, 708–10
 functions, 700–705
 hardware, 700, 705
 ICMP messages and, 195
 Illustrated Network, 698–99
 packet fi lters, 700–701, 706
 as router packet fi lter, 700–701
 software, 700, 705
 stateful inspection, 701–5, 706–8
 types of, 705–10
Flow caching, 124
Flow control, 40, 274
 confusion, 275
 implementation, 292

 TCP, 292–94
 UDP, 274–75
Forwarding, 217, 237–57
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 SSL, 586–87
 TCP, 280–81
 UDP, 260–61
 VLANs, 660–61
 VoIP, 736–37
 VPLS, 673
 Web servers, 560–61
 Web sites, 586–87
 wireless link display, 81–83
In-band management, 248
Independent basic service set (IBSS), 98
Indirect delivery, 229
 packet destination address, 232–33
 router and, 231–34
Informational RFCs, 20
Ingress routers, 446, 450
Institute of Electrical and Electronics 

Engineers (IEEE). See IEEE 802.11; 
IEEE 802.3

Integrated Information Services (IIS),
562

Integrated Services Digital Network (ISDN), 
85, 90

 DSL as extension, 94
Integrity, 593–94
Integrity check value (ICV), 723
Inter-Domain Routing Protocol (IDRP), 379
Interface addresses, 212–13
Interfaces, 27–28
 application layer, 52
 GRE, 241
 for packets, 84
 routers, 233–34
 TCP/IP application, 11
Interior BGP (IBGP), 382, 389–90
 full mesh, 392
 need for, 390
 peers, 391
 sessions, 389
 uses, 389
 See also Border Gateway Protocol (BGP)
Interior gateway protocols (IGPs), 

342, 345
 bootstrapping themselves, 354
 next hops, 390
 shortcuts, 447
 types of, 354

Interior Gateway Routing Protocol (IGRP), 
355

 Enhanced (EIGRP), 355, 364–65
 RIP improvement, 365
Intermediate device control, 638
Intermediate System–Intermediate System 

(IS–IS), 345, 354
 areas, 374
 attraction, 373
 backbone area, 373
 DIS, 375
 IPv6, 376
 as link-state protocol, 354
 LSP handling, 375
 metrics, 375
 M-ISIS, 413
 network addresses, 375
 network types, 375
 OSPF and, 373–74
 OSPF differences, 374–75
 OSPF similarities, 374
 route leaking, 374
 routers, 373
Intermediate systems, 6
 as TCP/IP device category, 26
Internal representation conversion, 

41–42
International Standards Organization (ISO), 

17–18
International Telecommunications Union - 

Telecommunications sector (ITU-T), 
18

Internet
 administration, 21–22
 autonomous system and, 332–34
 backbone routers, 246
 connectivity check, 195
 drafts, 18, 19, 21
 standards, 18, 20
 today, 334–36
 zones, 489
Internet Architecture Board (IAB), 22
Internet Assigned Numbers Authority (IANA), 

421
Internet Control Message Protocol (ICMP), 

189–215
 Destination Unreachable codes, 200
 Destination Unreachable errors, 199, 201
 Illustrated Network, 190–91
 IP packets, 165
 packets, 193
 ping and, 192–96
 round-trip time, 192

Index 779



Internet Control Message Protocol 
(cont’d)

 sequence numbers, 192
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IPv4-compatible IPv6 address, 256
IPv4-mapped IPv6 address, 256
IPv4 packet headers, 170–79
 Ethereal interpretation of fi elds, 

169
 fi elds, 168, 169
 Flags fi eld, 171
 Fragment Offset fi eld, 171
 Header Checksum fi eld, 172
 Header Length fi eld, 171
 Identifi cation fi eld, 171
 illustrated, 170
 Illustrated Network, 166–67
 IPv6 header comparison, 182–84
 multicast, converting, 421
 Options fi eld, 172
 Padding fi eld, 172
 Protocol fi eld, 172
 Source and Destination Address fi eld, 

172
 Total Packet Length fi eld, 171
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Real-Time Protocol (RTP), 59, 739
 application layer framing, 745
 architecture, 745
 header, 746
 header fi elds, 747
 packets, 740
 payload formats, 747
 protocol stack, 746
 reports, 747–48
 as transport mechanism, 747
 for VoIP transport, 745–78
Reassembly, 176, 178
Recursive queries, 490–91
Regional Internet Registries (RIRs),

138
Registered ports, 271
Relay agents, 464–65
 BOOTP, 464, 471, 472
 DHCP, 464–65
Reliable fl ooding, 366
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 Comments fi eld, 495
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RIPE NCC (Reseaux IP European Network 

Coordination Center), 138
RIPng, 345, 352, 362–64
 confi guring, 348, 350
 for IPv6 packet fi elds, 363
 multicast addresses, 350
 next hop, 364
 updates, 364
 See also Routing Information Protocol (RIP)
RIPv1, 355, 358–59
 limitations, 358–59
 metrics, 359
 packets, 358
 subnet masks, 359
 update timer, 358
 wasted space, 358
 See also Routing Information Protocol 

(RIP)
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 hardware-based, 243, 246–48
 network processor engines (NPEs), 244
 software-based, 243, 244
Router-assigned prefi xes, 113
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 OpenSSH, 637
 protocol operation, 641–42
 protocol relationships, 641
 proxy gateway, 638
 random seeds, 640
 as remote access application, 633
 secure client–server communication, 637
 security add-on, 638
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