

The Illustrated Network

The Morgan Kaufmann Series in Networking
Series Editor, David Clark, M.I.T.

The Illustrated Network
Walter Goralski

P2P Networking and Applications
John Buford, Heather Yu, and Eng Lua

Broadband Cable Access Networks: The HFC
Plant
David Large and James Farmer

Technical, Commercial, and Regulatory
Challenges of QoS: An Internet Service Model
Perspective
XiPeng Xiao

MPLS: Next Steps
Bruce S. Davie and Adrian Farrel

Wireless Networking
Anurag Kumar, D. Manjunath, and Joy Kuri

Bluetooth Application Programming with the
Java APIs, Essentials Edition
Timothy J. Thompson, Paul J. Kline, and C Bala
Kumar

Internet Multimedia Communications Using
SIP
Rogelio Martinez Perea

Information Assurance: Dependability and
Security in Networked Systems
Yi Qian, James Joshi, David Tipper, and Prashant
Krishnamurthy

Network Simulation Experiments Manual,
Second Edition
Emad Aboelela

Network Analysis, Architecture, and Design,
Third Edition
James D. McCabe

Wireless Communications & Networking: An
Introduction
Vijay K. Garg

Ethernet Networking for the Small Offi ce and
Professional Home Offi ce
Jan L. Harrington

IPv6 Advanced Protocols Implementation
Qing Li, Tatuya Jinmei, and Keiichi Shima

Computer Networks: A Systems Approach,
Fourth Edition
Larry L. Peterson and Bruce S. Davie

Network Routing: Algorithms, Protocols, and
Architectures
Deepankar Medhi and Karthikeyan Ramaswami

Deploying IP and MPLS QoS for Multiservice
Networks: Theory and Practice
John Evans and Clarence Filsfi ls

Traffi c Engineering and QoS Optimization of
Integrated Voice & Data Networks
Gerald R. Ash

IPv6 Core Protocols Implementation
Qing Li, Tatuya Jinmei, and Keiichi Shima

Smart Phone and Next-Generation Mobile
 Computing
Pei Zheng and Lionel Ni

GMPLS: Architecture and Applications
Adrian Farrel and Igor Bryskin

Network Security: A Practical Approach
Jan L. Harrington

Content Networking: Architecture, Protocols,
and Practice
Markus Hofmann and Leland R. Beaumont

Network Algorithmics: An Interdisciplinary
 Approach to Designing Fast Networked Devices
George Varghese

Network Recovery: Protection and Restoration
of Optical, SONET-SDH, IP, and MPLS
Jean Philippe Vasseur, Mario Pickavet, and Piet
Demeester

Routing, Flow, and Capacity Design in
 Communication and Computer Networks
Michał Pióro and Deepankar Medhi

Wireless Sensor Networks: An Information
 Processing Approach
Feng Zhao and Leonidas Guibas

Communication Networking: An Analytical
Approach
Anurag Kumar, D. Manjunath, and Joy Kuri

The Internet and Its Protocols: A Comparative
Approach
Adrian Farrel

Modern Cable Television Technology: Video,
Voice, and Data Communications, 2e
Walter Ciciora, James Farmer, David Large, and
Michael Adams

Bluetooth Application Programming with the
Java APIs
C Bala Kumar, Paul J. Kline, and Timothy
J. Thompson

Policy-Based Network Management: Solutions
for the Next Generation
John Strassner

MPLS Network Management: MIBs, Tools, and
Techniques
Thomas D. Nadeau

Developing IP-Based Services: Solutions for
Service Providers and Vendors
Monique Morrow and Kateel Vijayananda

Telecommunications Law in the Internet Age
Sharon K. Black

Optical Networks: A Practical Perspective,
 Second Edition
Rajiv Ramaswami and Kumar N. Sivarajan

Internet QoS: Architectures and Mechanisms
Zheng Wang

TCP/IP Sockets in Java: Practical Guide for
Programmers
Michael J. Donahoo and Kenneth L. Calvert

TCP/IP Sockets in C: Practical Guide for
 Programmers
Kenneth L. Calvert and Michael J. Donahoo

Multicast Communication: Protocols,
 Programming, and Applications
Ralph Wittmann and Martina Zitterbart

MPLS: Technology and Applications
Bruce Davie and Yakov Rekhter

High-Performance Communication Networks,
Second Edition
Jean Walrand and Pravin Varaiya

Internetworking Multimedia
Jon Crowcroft, Mark Handley, and Ian Wakeman

Understanding Networked Applications: A First
Course
David G. Messerschmitt

Integrated Management of Networked Systems:
Concepts, Architectures, and Their Operational
 Application
Heinz-Gerd Hegering, Sebastian Abeck, and
 Bernhard Neumair

Virtual Private Networks: Making the Right
Connection
Dennis Fowler

Networked Applications: A Guide to the New
Computing Infrastructure
David G. Messerschmitt

Wide Area Network Design: Concepts and Tools
for Optimization
Robert S. Cahn

For further information on these books and for a
list of forthcoming titles, please visit our Web site
at http://www.mkp.com.

This page intentionally left blank

 The Illustrated Network
How TCP/IP Works in a

Modern Network

Walter Goralski

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO
Morgan Kaufmann is an imprint of Elsevier

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

Morgan Kaufmann Publishers is an imprint of Elsevier.
30 Corporate Drive, Suite 400
Burlington, MA 01803

This book is printed on acid-free paper. ̀

Copyright © 2009 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as
 trademarks or registered trademarks. In all instances in which Morgan Kaufmann
 Publishers is aware of a claim, the product names appear in initial capital or all capital
letters. Readers, however, should contact the appropriate companies for more complete
information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, scanning, or otherwise,
without prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
 Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333,
e-mail: permissions@elsevier.com. You may also complete your request on-line via the
 Elsevier homepage (http://elsevier.com), by selecting “Support & Contact” then
“Copyright and Permission” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data

Goralski, Walter.
The illustrated network: how TCP/IP works in a modern network/Walter Goralski.

p. cm.—(The Morgan Kaufmann series in networking)
Includes bibliographical references and index.
ISBN 978-0-12-374541-5 (alk. paper)
 1. TCP/IP (Computer network protocol) 2. Computer networks. I. Title.
TK5105.585.G664 2008
004.6’2--dc22
 2008046728

For information on all Morgan Kaufmann publications,
visit our Website at www.mkp.com or www.books.elsevier.com

Printed in the United States
08 09 10 11 12 10 9 8 7 6 5 4 3 2 1

Contents

Foreword .. xxi
Preface .. xxiii
About the Author .. xxx

PART I Networking Basics
CHAPTER 1 Protocols and Layers .. 3
 The Illustrated Network ... 7
 Remote Access to Network Devices 8
 File Transfer to a Router ... 10
 CLI and GUI .. 11
 Ethereal and Packet Capture .. 12
 First Explorations in Networking 14
 Protocols .. 14
 Standards and Organizations .. 16
 Request for Comment and the Internet Engineering
 Task Force .. 18
 Internet Administration ... 21
 Layers ... 22
 Simple Networking .. 23
 Protocol Layers ... 24
 The TCP/IP Protocol Suite ... 25
 The TCP/IP Layers ... 26
 Protocols and Interfaces ... 27
 Encapsulation ... 28
 The Layers of TCP/IP .. 30
 The Physical Layer .. 30
 The Data Link Layer .. 32
 The Network Layer ... 35
 The Transport Layer .. 38
 The Application Layer ... 41
 Session Support .. 41
 Internal Representation Conversion 41
 Applications in TCP/IP .. 42
 The TCP/IP Protocol Suite ... 43
 Questions for Readers ... 45

CHAPTER 2 TCP/IP Protocols and Devices 47
 Protocol Stacks on the Illustrated Network 50
 Layers, Protocols, Ports, and Sockets 51
 The TCP/IP Protocol Stack ... 54
 The Client–Server Model ... 55
 TCP/IP Layers and Client–Server ... 55
 The IP Layer ... 57
 The Transport Layer ... 58
 Transmission Control Protocol ... 58
 User Datagram Protocol ... 59
 The Application Layer .. 59
 Bridges, Routers, and Switches ... 60
 Segmenting LANs ... 61
 Bridges ... 63
 Routers ... 63
 LAN Switches ... 64
 Virtual LANs .. 65
 VLAN Frame Tagging ... 66
 Questions for Readers .. 69

CHAPTER 3 Network Link Technologies ... 71
 Illustrated Network Connections ... 74
 Displaying Ethernet Traffi c ... 74
 Displaying SONET Links ... 76
 Displaying DSL Links .. 78
 Displaying Wireless Links ... 81
 Frames and the Link Layer.. 83
 The Data Link Layer ... 84
 The Evolution of Ethernet .. 86
 Ethernet II and IEEE 802.3 Frames 88
 MAC Addresses ... 89
 The Evolution of DSL ... 90
 PPP and DSL ... 91
 PPP Framing for Packets ... 92
 DSL Encapsulation .. 93
 Forms of DSL .. 94
 The Evolution of SONET .. 96
 A Note about Network Errors .. 96
 Packet over SONET/SDH .. 97
 Wireless LANS and IEEE 802.11.. 98
 Wi-Fi .. 98

viii Contents

 IEEE 802.11 MAC Layer Protocol 100
 The IEEE 802.11 Frame ... 102
 Questions for Readers .. 105

Part II Core Protocols
CHAPTER 4 IPv4 and IPv6 Addressing .. 109
 IP Addressing .. 112
 The Network/Host Boundary .. 117
 The IPV4 Address .. 118
 Private IPv4 Addresses .. 122
 Understanding IPv4 Addresses ... 122
 The IPv6 Address .. 123
 Features of IPv6 Addressing ... 124
 IPv6 Address Types and Notation 125
 IPv6 Address Prefi xes ... 126
 Subnetting and Supernetting ... 127
 Subnetting in IPv4 .. 127
 Subnetting Basics ... 128
 CIDR and VLSM .. 131
 IPV6 Addressing Details .. 135
 IP Address Assignment .. 138
 Questions for Readers .. 141

CHAPTER 5 Address Resolution Protocol... 143
 ARP and LANs .. 146
 ARP Packets ... 153
 Example ARP Operation ... 155
 ARP Variations .. 157
 Proxy ARP ... 157
 Reverse ARP ... 158
 ARPs on WANs .. 158
 ARP and IPv6 ... 159
 Neighbor Discovery Protocol .. 160
 ND Address Resolution ... 161
 Questions for Readers .. 163

CHAPTER 6 IPv4 and IPv6 Headers .. 165
 Packet Headers and Addresses ... 168
 The IPv4 Packet Header ... 170
 Fragmentation and IPv4 ... 172
 Fragmentation and MTU .. 175

Contents ix

 Fragmentation and Reassembly .. 176
 Path MTU Determination ... 176
 A Fragmentation Example .. 177
 Limitations of IPv4 ... 179
 The IPv6 Header Structure ... 179
 IPv4 and IPv6 Headers Compared 182
 IPv6 Header Changes ... 183
 IPv6 and Fragmentation ... 184
 Questions for Readers .. 187

CHAPTER 7 Internet Control Message Protocol 189
 ICMP and Ping ... 192
 The ICMP Message Format... 196
 ICMP Message Fields .. 197
 ICMP Types and Codes ... 198
 Sending ICMP Messages ... 203
 When ICMP Must Be Sent ... 204
 When ICMP Must Not Be Sent .. 204
 Ping .. 204
 Traceroute .. 205
 Path MTU ... 206
 ICMPv6... 208
 Basic ICMPv6 Messages .. 209
 Neighbor Discovery and Autoconfi guration 211
 Routers and Neighbor Discovery 212
 Interface Addresses .. 212
 Neighbor Solicitation and Advertisement 213
 Questions for Readers .. 215

CHAPTER 8 Routing .. 217
 Routers and Routing Tables .. 220
 Hosts and Routing Tables ... 222
 Direct and Indirect Delivery .. 226
 Routing ... 229
 Direct Delivery without Routing...................................... 230
 Indirect Delivery and the Router 231
 Questions for Readers .. 235

CHAPTER 9 Forwarding IP Packets ... 237
 Router Architectures .. 242
 Basic Router Architectures ... 243
 Another Router Architecture .. 246

x Contents

 Router Access ... 248
 The Console Port .. 248
 The Auxiliary Port ... 248
 The Network .. 248
 Forwarding Table Lookups ... 249
 Dual Stacks, Tunneling, and IPV6 .. 251
 Dual Protocol Stacks .. 252
 Tunneling .. 252
 Tunneling Mechanisms .. 255
 Transition Considerations .. 256
 Questions for Readers .. 257

CHAPTER 10 User Datagram Protocol .. 259
 UDP Ports and Sockets ... 262
 What UDP Is For .. 266
 The UDP Header .. 267
 IPv4 and IPv6 Notes ... 268
 Port Numbers ... 269
 Well-Known Ports ... 269
 The Socket .. 273
 UDP Operation .. 274
 UDP Overfl ows .. 274
 Questions for Readers ... 277

CHAPTER 11 Transmission Control Protocol 279
 TCP and Connections .. 282
 The TCP Header ... 282
 TCP Mechanisms .. 285
 Connections and the Three-Way Handshake 286
 Connection Establishment ... 288
 Data Transfer ... 289
 Closing the Connection ... 291
 Flow Control .. 292
 TCP Windows ... 293
 Flow Control and Congestion Control 294
 Performance Algorithms .. 294
 TCP and FTP .. 296
 Questions for Readers .. 299

CHAPTER 12 Multiplexing and Sockets ... 301
 Layers and Applications ...301
 The Socket Interface ..304

Contents xi

 Socket Libraries ..305
 TCP Stream Service Calls ..306
 The Socket Interface: Good or Bad?307
 The “Threat” of Raw Sockets ...308
 Socket Libraries ..309
 The Windows Socket Interface ..309
 TCP/IP and Windows ..310
 Sockets for Windows ..310
 Sockets on Linux ..311
 Questions for Readers ..317

Part III Routing and Routing Protocols
CHAPTER 13 Routing and Peering ... 321
 Network Layer Routing and Switching 324
 Connection-Oriented and Connectionless Networks 325
 Quality of Service ... 326
 Host Routing Tables ... 328
 Routing Tables and FreeBSD ... 329
 Routing Tables and RedHat Linux 330
 Routing and Windows XP ... 331
 The Internet and the Autonomous System 332
 The Internet Today ... 334
 The Role of Routing Policies .. 336
 Peering ... 338
 Picking a Peer... 340
 Questions for Readers .. 343

CHAPTER 14 IGPs: RIP, OSPF, and IS–IS .. 345
 Interior Routing Protocols ... 353
 The Three Major IGPs .. 354
 Routing Information Protocol .. 355
 Distance-Vector Routing... 355
 Broken Links .. 356
 Distance-Vector Consequences .. 357
 RIPv1 .. 358
 RIPv2 .. 359
 RIPng for IPv6 .. 362
 A Note on IGRP and EIGRP.. 364
 Open Shortest Path First .. 365
 Link States and Shortest Paths .. 365

xii Contents

 What OSPF Can Do ... 366
 OSPF Router Types and Areas ... 368
 OSPF Designated Router and Backup
 Designated Router ... 370
 OSPF Packets .. 371
 OSPFv3 for IPv6 ... 372
 Intermediate System–Intermediate System 372
 The IS–IS Attraction .. 373
 IS–IS and OSPF ... 373
 Similarities of OSPF and IS–IS .. 374
 Differences between OSPF and IS–IS 374
 IS–IS for IPv6 .. 376
 Questions for Readers .. 377

CHAPTER 15 Border Gateway Protocol .. 379
 BGP as a Routing Protocol ... 379
 Confi guring BGP .. 382
 The Power of Routing Policy .. 384
 BGP and the Internet ... 386
 EGP and the Early Internet ... 386
 The Birth of BGP .. 387
 BGP as a Path-Vector Protocol ... 388
 IBPG and EBGP .. 389
 IGP Next Hops and BGP Next Hops 390
 BGP and the IGP .. 391
 Other Types of BGP .. 392
 BGP Attributes .. 393
 BGP and Routing Policy ... 395
 BGP Scaling .. 395
 BGP Message Types .. 396
 BGP Message Formats .. 397
 The Open Message ... 397
 The Update Message ... 397
 The Notifi cation Message ... 399
 Questions for Readers .. 401

CHAPTER 16 Multicast ... 403
 A First Look at IPV4 Multicast .. 406
 Multicast Terminology .. 408

Contents xiii

 Dense and Sparse Multicast ... 410
 Dense-Mode Multicast .. 410
 Sparse-Mode Multicast.. 410
 Multicast Notation.. 411
 Multicast Concepts .. 411
 Reverse-Path Forwarding .. 411
 The RPF Table ... 412
 Populating the RPF Table .. 412
 Shortest-Path Tree ... 413
 Rendezvous Point and Rendezvous-Point Shared Trees 414
 Protocols for Multicast ... 415
 Multicast Hosts and Routers ... 415
 Multicast Group Membership Protocols 416
 Multicast Routing Protocols ... 417
 Any-Source Multicast and SSM .. 418
 Multicast Source Discovery Protocol 419
 Frames and Multicast .. 420
 IPv4 Multicast Addressing .. 421
 IPv6 Multicast Addressing .. 423
 PIM-SM ... 425
 The Resource Reservation Protocol and PGM 425
 Multicast Routing Protocols ... 426
 IPv6 Multicast ... 428
 Questions for Readers .. 429

CHAPTER 17 MPLS and IP Switching ... 431
 Converging What? .. 435
 Fast Packet Switching ... 435
 Frame Relay .. 435
 Asynchronous Transfer Mode .. 438
 Why Converge on TCP/IP? .. 441
 MPLS .. 442
 MPLS Terminology .. 446
 Signaling and MPLS .. 447
 Label Stacking .. 448
 MPLS and VPNs... 449
 MPLS Tables .. 449
 Confi guring MPLS Using Static LSPs 450
 The Ingress Router ... 450
 The Transit Routers ... 450
 The Egress Router ... 451

xiv Contents

 Traceroute and LSPs ... 452
 Questions for Readers .. 455

Part IV Application Level
CHAPTER 18 Dynamic Host Confi guration Protocol 459
 DHCP and Addressing .. 462
 DHCP Server Confi guration ... 462
 Router Relay Agent Confi guration 464
 Getting Addresses on LAN2 .. 465
 Using DHCP on a Network .. 466
 BOOTP ... 468
 BOOTP Implementation ... 469
 BOOTP Messages.. 469
 BOOTP Relay Agents .. 471
 BOOTP “Vendor-Specifi c Area” Options 471
 Trivial File Transfer Protocol ... 472
 TFTP Messages .. 473
 TFTP Download .. 473
 DHCP ... 475
 DHCP Operation .. 475
 DHCP Message Type Options ... 478
 DHCP and Routers ... 479
 DHCPv6 .. 479
 DHCPv6 and Router Advertisements................................ 479
 DHCPv6 Operation .. 480
 Questions for Readers .. 481

CHAPTER 19 The Domain Name System ... 483
 DNS Basics ... 486
 The DNS Hierarchy ... 486
 Root Name Servers ... 487
 Root Server Operation ... 487
 Root Server Details ... 489
 DNS in Theory: Name Server, Database, and Resolver 489
 Adding a New Host ... 490
 Recursive and Iterative Queries 490
 Delegation and Referral .. 491
 Glue Records .. 493
 DNS in Practice: Resource Records and
 Message Formats ... 493
 DNS Message Header ... 496

Contents xv

 DNSSec ... 496
 DNS Tools: nslookup, dig, and host 497
 DNS in Action ... 498
 Questions for Readers .. 507

CHAPTER 20 File Transfer Protocol ... 509
 Overview ... 512
 PORT and PASV .. 513
 FTP and GUIs ... 516
 FTP Basics .. 518
 FTP Commands and Reply Codes 519
 FTP Data Transfers .. 521
 Passive and Port .. 524
 File Transfer Types .. 526
 When Things Go Wrong ... 526
 FTP Commands .. 527
 Variations on a Theme .. 529
 A Note on NFS .. 530
 Questions for Readers .. 533

CHAPTER 21 SMTP and Email ... 535
 Architectures for Email .. 538
 Sending Email Today ... 540
 The Evolution of Email in Brief ... 544
 SMTP Authentication .. 544
 Simple Mail Transfer Protocol ... 545
 Multipurpose Internet Mail Extensions 547
 MIME Media Types ... 548
 MIME Encoding .. 548
 An Example of a MIME Message 549
 Using POP3 to Access Email ... 550
 Headers and Email ... 552
 Home Offi ce Email ... 555
 Questions for Readers .. 557

CHAPTER 22 Hypertext Transfer Protocol .. 559
 HTTP in Action ... 562
 Uniform Resources ... 565
 URIs .. 565
 URLs ... 566

xvi Contents

 URNs .. 568
 HTTP .. 569
 The Evolution of HTTP ... 570
 HTTP Model ... 571
 HTTP Messages .. 572
 Trailers and Dynamic Web Pages .. 573
 HTTP Requests and Responses .. 573
 HTTP Methods ... 575
 HTTP Status Codes ... 576
 HTTP Headers .. 576
 General Headers ... 577
 Request Headers .. 577
 Response Headers .. 578
 Entity Headers .. 579
 Cookies .. 580
 Questions for Readers .. 583

CHAPTER 23 Securing Sockets with SSL ... 585
 SSL and Web Sites ... 585
 The Lock ... 591
 Secure Socket Layer ... 592
 Privacy, Integrity, and Authentication 593
 Privacy .. 593
 Integrity .. 593
 Authentication .. 594
 Public Key Encryption ... 595
 Pocket Calculator Encryption at the Client...................... 595
 Example ... 596
 Pocket Calculator Decryption at the Server 597
 Public Keys and Symmetrical Encryption 598
 SSL as a Protocol .. 598
 SSL Protocol Stack .. 599
 SSL Session Establishment .. 599
 SSL Data Transfer .. 601
 SSL Implementation ... 601
 SSL Issues and Problems ... 602
 A Note on TLS 1.1 ... 604
 SSL and Certifi cates .. 604
 Questions for Readers .. 605

Contents xvii

Part V Network Management
CHAPTER 24 Simple Network Management Protocol 609
 SNMP Capabilities .. 612
 The SNMP Model ... 616
 The MIB and SMI .. 618
 The SMI ... 618
 The MIB .. 620
 RMON .. 622
 The Private MIB .. 622
 SNMP Operation .. 623
 SNMPv2 Enhancements ... 627
 SNMPv3 .. 628
 Questions for Readers .. 629

Part VI Security
CHAPTER 25 Secure Shell (Remote Access) 633
 Using SSH ... 633
 SSH Basics .. 636
 SSH Features ... 637
 SSH Architecture ... 639
 SSH Keys ... 640
 SSH Protocol Operation ... 641
 Transport Layer Protocol .. 642
 Authentication Protocol ... 644
 The Connection Protocol ... 645
 The File Transfer Protocol ... 647
 SSH in Action .. 649
 Questions for Readers .. 657

CHAPTER 26 MPLS-Based Virtual Private Networks 659
 PPTP for Privacy .. 662
 Types of VPNs ... 662
 Security and VPNs .. 664
 VPNs and Protocols .. 665
 PPTP ... 666
 L2TP ... 667
 PPTP and L2TP Compared ... 668
 Types of MPLS-Based VPNs .. 668
 Layer 3 VPNs ... 668

xviii Contents

 Layer 2 VPNs ... 671
 VPLS: An MPLS-Based L2VPN ... 672
 Router-by-Router VPLS Confi guration 672
 P Router (P9) .. 674
 CE6 Router ... 676
 Does It Really Work? ... 677
 Questions for Readers .. 679

CHAPTER 27 Network Address Translation ... 681
 Using NAT .. 684
 Advantages and Disadvantages of NAT 684
 Four Types of NAT .. 685
 NAT in Action ... 691
 Questions for Readers .. 695

CHAPTER 28 Firewalls .. 697
 What Firewalls Do .. 700
 A Router Packet Filter ... 700
 Stateful Inspection on a Router .. 701
 Types of Firewalls .. 705
 Packet Filters .. 706
 Application Proxy ... 706
 Stateful Inspection ... 706
 DMZ ... 708
 Questions for Readers .. 711

CHAPTER 29 IP Security .. 713
 IPSec in Action ... 716
 CE0 ... 716
 CE6 ... 718
 Introduction to IPSec ... 719
 IPSec RFCs.. 719
 IPSec Implementation .. 719
 IPSec Transport and Tunnel Mode 721
 Security Associations and More .. 722
 Security Policies ... 722
 Authentication Header ... 723
 Encapsulating Security Payload .. 725
 Internet Key Exchange ... 728
 Questions for Readers .. 731

Contents xix

Part VII Media
CHAPTER 30 Voice over Internet Protocol .. 735
 VOIP in Action .. 738
 The Attraction of VoIP ... 741
 What Is “Voice”? .. 741
 The Problem of Delay ... 742
 Packetized Voice ... 744
 Protocols for VOIP .. 744
 RTP for VoIP Transport ... 745
 Signaling ... 748
 H.323, the International Standard 749
 SIP, the Internet Standard ... 750
 MGCP and Megaco/H.248 .. 752
 Putting It All Together .. 753
 Questions for Readers .. 755

List of Acronyms 757

Bibliography 767

Index 769

xx Contents

Foreword

Network consolidation has been an industry trend since the turn of the century.
 Reducing capital investment by converging data, voice, video, virtual private
 networks (VPNs), and other services onto a single shared infrastructure is fi nan-
cially attractive; but the larger benefi t is in not having to maintain and operate
multiple, service-specifi c infrastructures. Fundamental to network consolidation—
 supporting a diverse set of services with a single infrastructure—is a common
 encapsulating protocol that accommodates different service transport require-
ments. The Internet protocol (IP) is that protocol.

Everything over IP
Things move fast in the networking industry; technologies can go from cutting
edge to obsolete in a decade or less (think ATM, frame relay, token ring, and FDDI
among others). It is therefore amazing that TCP/IP is 35 years old and evolved from
ideas originating in the early 1960s.

Yet while the protocol invented by Vint Cerf and Bob Kahn in 1973 has
 undergone—and continues to undergo—hundreds of enhancements and one ver-
sion upgrade, its core functions are essentially the same as they were in the mid
1980s. TCP/IP’s antiquity, in an industry that unceremoniously discards technolo-
gies when something better comes along, is a testament to the protocol’s elegance
and fl exibility.

And there is no sign that IP is coming to the end of its useful life. To the contrary,
so many new IP-capable applications, devices, and services are being added to net-
works every day that a newer version, IPv6, has become necessary to provide suf-
fi cient IP addresses into the foreseeable future. As this foreword is written, IPv6 is
in the very early stages of deployment; readers will still be learning from this book
when IPv6 is the only version most people know.

The story of how TCP/IP came to dominate the networking industry is well
known. Cerf, Kahn, Jon Postel, and many others who contributed to the early
 development of TCP/IP did so as a part of their involvement in creating ARPANET,
the predecessor of the modern Internet. The protocol stack became further
 embedded in the infant industry when it was integrated into Unix, making it popu-
lar with developers.

But its acceptance was far from assured in those early years. Organizations such
as national governments and telcos were uncomfortable with the informal “give
it a try and see what works” process of the Working Groups—primarily made up
of enthusiastic graduate students—that eventually became the Internet Engineer-
ing Task Force (IETF). Those cautious organizations wanted a networking protocol
 developed under a rigorous standardization process. The International Organization
for Standardization (ISO) was tapped to develop a “mature” networking protocol
suite, which was eventually to become the Open Systems Interconnection (OSI).

The ISO’s modus operandi of establishing dense, thorough standards and
 releasing them only in complete, production-ready form took time. Even strong OSI
advocates began using TCP/IP as a temporary but working solution while waiting
for the ISO standards committees to fi nish their work. By the time OSI was ready,
TCP/IP was so widely deployed, proven, and understood that few network opera-
tors could justify undertaking a migration to something different.

OSI survives today mainly in a few artifacts such as IS–IS and the ubiquitous OSI
reference model. TCP/IP, in the meantime, is becoming an almost universal com-
munications transport protocol.

The Illustrated Network
I am a visual person. I admire the capability of my more verbally oriented colleagues
to easily discuss, in detail, a networking scenario, but I need to draw pictures to
keep up.

When the fi rst volume of the late W. Richard Stevens’s TCP/IP Illustrated was
released in 1994, it immediately became one of my favorite books, and continues to
be at the top of my list of recommended books both for the student and for the ref-
erence shelf. Stevens’s use of diagrams, confi gurations, and data captures to teach
the TCP/IP protocol suite makes the book not just a textbook but a comprehensive
set of case studies. It’s about as visual as you can get without sitting in front of a
protocol analyzer and watching packets fl y back and forth.

But while the Stevens book has always been excellent for illustrating the behav-
ior of individual TCP/IP components, it does not step back from that narrow focus
to show you how these components interact at a large scale in a real network.

This is where Walt Goralski steps up. The book you are holding takes the same
bottom-up approach (Stevens’ words) to teaching the protocol suite: Each chapter
builds on the previous, and each chapter gives you an intimate look at the proto-
col in action. But through an unprecedented collaboration with Juniper Networks,
Goralski shows you not just interactions between a few devices in a lab but a
 production-scale view of a modern working network. The result is a practical, real-
life, highly visual exploration of TCP/IP in its natural state.

The Illustrated Network: How TCP/IP Works in a Modern Network is destined
to become one of the classics on practical IP networking and a cornerstone of the
required reading lists of students and professionals alike.

Jeff Doyle
Westminster, Colorado

xxii Foreword

This is not a book on how to use the Internet. It is a book about how the Internet
is made useful for you. The Internet is a public global network that runs on TCP/
IP, which is frequently called the Internet Protocol Suite. A networking protocol
is a set of rules that must be followed to accomplish something, and TCP/IP is
actually a synthesis of the fi rst two protocols that launched the Internet in its
infancy, the Transmission Control Protocol (TCP) and the Internet Protocol (IP),
which of course, allowed the transmission of information across the then youthful
Internet. TCP/IP is the heart and soul of modern networks, and this book illustrates
how that is accomplished. By using TCP/IP, we can observe how modern networks
 operate by following the transmission of modern data across all sorts of Internet
 connections.

Audience
This book is intended as a technical introduction into networking in general and
the Internet in particular. I will not pretend that someone who has had no previous
experience with either can easily plow through the entire book. But anyone who
is experienced enough to check their email online, browse a Web site, download a
movie or song, or chat with people around the world should have no trouble tack-
ling the content of this book.

There are questions at the end of each chapter, but this is not a textbook per
se. It can be used as a textbook as a fi rst course in computer networking at the
high school or undergraduate level. It will fi t in with the computer science and
electrical engineering departments. It is also explicitly intended for those enter-
ing the telecommunications industry or working for a company where the Inter-
net is an essential part of the business plan (of which there are more and more
each day).

Only one chapter uses C language code, and that only to provide information for
the reader. Mathematical concepts that are not taught in high school are not used.
There is no calculus, probability theory, and stochastic process concepts used in
any chapter. The “pocket calculator” examples of public key encryption and Diffi e-
Hellman key distribution were carefully designed to illustrate the concepts, and yet
make the mathematics as simple as possible.

What Is Unique about This Book?
What’s in this book that you won’t fi nd in a half-dozen other books about TCP/IP?
The list is not short.

1. This book uses the same network topology and addresses for every example
and chapter.

Preface

2. This book treats IPv4 and IPv6 as equals.
3. This book covers the routing protocols as well as TCP/IP applications.
4. This book discusses ISPs as well as corporate LANs.
5. This book covers services provided as well as the protocols that provide them.
6. This book covers topics (MPLS, IPSec, etc.) not normally covered in other

books on TCP/IP.

Why was the book written this way? Even in the Internet-conscious world we live
in today, few study the entire network, the routers, TCP/IP, the Internet, and a host
of related topics as part of their general education. What they do learn might seem
like a lot, but when considered in relation to the enormous complexity of each of
these topics, what is covered in general computer “literacy” or basic programming
courses is really only a drop in the bucket.

As I was writing this book, and printing it out at my workplace, a silicon chip
engineer-designer found a few chapters on top of the printer bin, and he began
reading it. When I came to retrieve the printout, he was fascinated by the sample
chapters. He wanted the book then and there. And as we talked, he made me real-
ize that thousands of people are entering the networking industry every day, many
from other occupations and disciplines. As the Internet grows, and society’s depen-
dence on the digital communication structure continues, more and more people
need this overview of how modern networks operate.

The intellectually curious will not be satisfi ed with this smattering of and
condensation of networking knowledge in a single volume. I’m hoping they
will seek ways to increase their knowledge in specifi c areas of interest. This
book covers hundreds of networking topics, and volumes have been written
devoted to the intricacies of each one. For example, there are 20 to 30 solid
books written on MPLS complexities and evolution, while the chapter here runs
at about the same number of pages. My hope is that this book and this method
of “illustrating” how a modern network works will contribute to more people
seeking out those 20 to 30 books now that they know how the overall thing
looks and works.

Like everyone else, I learned about networks, including routers and TCP/IP,
 mostly from books and from listening to others tell me what they knew. The miss-
ing piece, however, was being able to play with the network. The books were great,
the discussions led to illumination of how this or that operated, but often I never
“saw” it working. This book is a bit of a synthesis of the written and the seen. It
attempts to give the reader the opportunity to see common tasks in a real, work-
ing, hands-on environment of the proper size and scale, and follow what happens
behind the scenes. It’s one thing to read about what happens when a Web site is
accessed, but another to see it in action.

The purpose of this book is to allow you to see what is happening on a modern
network when you access a Web site, write an email, download a song, or talk on
the phone over the Internet. From that observation you will learn how a modern
network works.

xxiv Preface

What You Won’t Find in This Book
It might seem odd to list things that the book does not cover. But rather than have
readers slog through and then fi nd they didn’t fi nd what they were after, here’s
what you will not fi nd in this edition of the book.

You will fi nd no mention of the exciting new peer-to-peer protocols that distrib-
ute the server function around the network. There is no mention of the protocols
used by chat rooms or services. The book does not explore music or movie down-
load services. In other words, you won’t fi nd YouTube, IRC, iTunes, or even eBay
mentioned in this book.

These topics are, of course, interesting and/or important. But the limitations of
time and page count forced me to focus on essential topics. The other topics could
easily form the foundation for The Illustrated Network, Volume II: Beyond the
Basics.

The Illustrated Network
Many people frustrated with simple lab setups and restricted “live” networks have
wished for a more complex and realistic yet secure environment where they can
feel free to explore the TCP/IP protocols, layers, and applications without worrying
that what they are seeing is limited to a quiet lab, or what they do might bring the
whole network to its knees.

The days are long gone when an interested party could take over the whole
network, from clients to servers to routers, and play with them at night or over the
weekend. Networks are run on a normal business-hour schedule, especially now
that the Web makes “prime time” on one side of the world when the other half is
trying to get some sleep.

Many times I have encountered a new feature or procedure and said to myself,
“I wish I could play with this and see what happens.” But only after nearly 40 years
of networking experience (I hooked up my fi rst modem, about the size of a micro-
wave oven, in 1966), have I fi nally arrived at the point where I could say, “I want to
do this . . .,” and someone didn’t tell me it could not be done.

Juniper Networks Inc., my employer, was in a unique position to help me with
my plans to not merely talk about TCP/IP, or show contrived examples of the proto-
cols in action, but to “illustrate” each piece with a series of clients, servers, routers,
and connections (including the public Internet). They had the routers and links,
and employed all the Unix and Windows-based hosts that I could possibly need.
(In retrospect, there was probably some overkill in the network, as most chapters
used only a couple of routers.) We decided not to upgrade the XP hosts to Vista,
which was relatively new at the time, and I kept Internet Explorer 6 active, more
or less out of convenience.

In any case, with the blessings of Juniper Networks, I set about creating the
kind of network I needed for this book. It took a while, but in the end it was well
worth it. We assembled a collection of fi ve routers connected with SONET links,

Preface xxv

FIGURE P.1

The illustrated Network.

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80:205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65459

Wireless
in Home

Solid rules � SONET/SDH
Dashed rules � Gig Ethernet
Note: All links use 10.0.x.y
addressing...only the last
two octets are shown.

xxvi Preface

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80:205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC: 00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

ge-0/0/3

16.2

ge-0/0/3

16.1

Best ISP

AS 65127

Global Public
Internet

Preface xxvii

two Ethernet LANs, two pairs of Windows XP clients and servers (Home and Pro
editions), one pair of Red Hat Linux hosts (running the RH 9 kernel 2.4.20-8), and
a pair of FreeBSD (release 4.10) hosts.

Figure P.1 shows the network that we built and that is used in every chapter of
this book to illustrate the networking concepts discussed.

Using This Book
This book is designed to be read from start to fi nish, chapter by chapter,
 sequentially. It seems funny to say this, because a lot of technical books these
days are not meant to be “read” in the same way as a novel or a biography. Readers
tend to look things up in books like this, and then browse from the spot they land
on, which you can certainly do with this book, but probably more on a chapter-
by-chapter level.

But I hope that the story in this book is as coherent as a mystery, if not as excit-
ing as an adventure tale. From the fi rst chapter, which offers readers a unique look
at layered protocols, to the last, this book presents a story that proceeds in a logi-
cal fashion from the bottom of the Internet protocol suite to the top (and beyond,
in some cases). So if you can, read from start to fi nish, as the chapters depend on
previous ones. If you are new to networking concepts, or just beginning, I recom-
mend this consecutive approach. For those more experienced, bobbing in and out
is just fi ne, but remember that all emphasis is equal in The Illustrated Network,
and sometimes you may question a topic’s coverage, when the item questioned is
covered in an earlier chapter.

As you’re reading, you’ll discover that generally, each chapter has the same
structure. The beginning chapters, however, diverge from this format more than
the later chapters do, as they require general exploration of the protocol, applica-
tion, or concept. After the fi rst few chapters, I begin the tasks of illustrating how it
all works. In some cases, this involves not only the network built for this book, but
the global Internet as well. Note that network confi guration specifi cs, especially
those involving the routers, vary somewhat, but these changes are completely
 detailed as they occur.

The companion Web site for this book is www.elsevierdirect.com/companions/
9780123745415. There you will fi nd many of the capture fi les to explore some of
the protocols on your own.

Source Code
Chapter 3 on network technologies uses examples from wireless network captures
supplied by Aeropeek. Chapter 12 on sockets uses listings from utility programs
written by Michael J. Donahoo and Kenneth L. Calvert for their excellent book,
TCP/IP Sockets in C (Morgan Kaufmann, 2001). Thanks to both groups for letting
me use their material in this book.

xxviii Preface

ACKNOWLEDGMENTS
I would like to thank various leaders in their respective fi elds who have given
me their time and read and reviewed selected chapters of this work. Their com-
ments have made this a much better book than it would have been without their
 involvement. Any errors that remain are mine.

I would like to thank colleagues at Juniper Networks, Inc., who gave their time
and effort to create this network. In many cases, they also helped with the book. It
starts at the top with Scott Kriens, who has created an environment where creativ-
ity and exploration are encouraged. Thanks, Scott!

The list goes on to include June Loy, Aviva Garrett, Michael Tallon, Patrick Ames,
Jason Lloyd, Mark Whittiker, Kent Ketell, and Jeremy Pruitt.

Finally I would like to thank my lead technical reviewers, Joel Jaeggli and Robin
Pimentel, for the careful scrutiny they gave the book and the many fi ne corrections
and comments they provided.

Lead Technical Reviewers
Joel Jaeggli works in the security and mobile connectivity group within Nokia.
His time is divided between the operation of the nokia.net (AS 14277) research
network and supporting the strategic planning needs of Nokia’s security business.
Projects with former employer, the University of Oregon, included the Network
Startup Resource Center, Oregon Route views project, the Beyond BGP Project, and
the Oregon Videolab. He is an active participant in several industry-related groups
including the IETF (working group chair) and NANOG (two terms on the program
committee). Joel frequently participates as an instructor or presenter at regional and
international network meetings on Internet services and security-related topics.

Robin Pimentel is currently a network engineer at Facebook, where he helps
the production network sustain growth alongside Facebook’s user and application
growth. Previously, Robin worked on the production network teams at Google and
Yahoo. Robin also spent 6 years at Teradyne where he performed many network-
ing, security, and Unix infrastructure engineering roles. Prior to his career in com-
puter networks, Robin worked at Cadence Design Systems and Intel Corporation.
While working in the chip sector, Robin specialized in silicon place and route,
VHDL-based behavioral logic validation, and gate-level logic validation for on-chip
memories.

Preface xxix

Walter Goralski has worked in the telecommunications and networking industry
since 1970. He spent 14 years in the Bell System. After that he worked with mini-
computers and LANs at Wang Laboratories and with the Internet at Pace Univer-
sity, where he was a graduate professor for 15 years. He joined Juniper Networks
as a senior staff engineer in 2000 after 8 years as a technical trainer. Goralski is
the author of 10 books about networking, including the bestselling SONET/SDH
(now in its third edition). He has a master’s degree in computer science from Pace
 University.

About the Author

PART

I
All networks, from the smallest LAN to the global Internet, consist of similar
components. Layered protocols are the rule, and this part of the book examines
protocol suites, network devices, and the frames used on links that connect the
devices.

■ Chapter 1—Protocols and Layers

■ Chapter 2—TCP/IP Protocols and Devices

■ Chapter 3—Network Link Technologies

Networking
Basics

CHAPTER

What You Will Learn
In this chapter, you will learn about the protocol stack used on the global public
Internet and how these protocols have been evolving in today’s world. We’ll
review some key basic defi nitions and see the network used to illustrate all of the
examples in this book, as well as the packet content, the role that hosts and rout-
ers play on the network, and how graphic user and command line interfaces (GUI
and CLI, respectively) both are used to interact with devices.

You will learn about standards organizations and the development of TCP/IP
RFCs. We’ll cover encapsulation and how TCP/IP layers interact on a network.

Protocols and Layers 1

This book is about what actually happens on a real network running the protocols and
applications used on the Internet today. We’ll be looking at the entire network—every-
thing from the application level down to where the bits emerge from the local device
and race across the Internet. A great deal of the discussion will revolve around the
TCP/IP protocol suite, the protocols on which the Internet is built. The network that
will run these protocols is shown in Figure 1.1.

Like most authors, I’ll use TCP/IP as shorthand for the entire Internet protocol stack,
but you should always be aware that the suite consists of many protocols, not just
TCP and IP. The protocols in use are constantly growing and evolving as the Internet
adapts to new challenges and applications. In the past few years, four trends have
become clear in the protocol evolution:

Increased use of multimedia —The original Internet was not designed with
proper quality of service assurances to support digital voice and video. How-
ever, the Internet now carries this as well as bulk and interactive data. (In this
book, “data” means non-voice and non-video applications.) In the future, all
forms of information should be able to use the Internet as an interactive distri-
bution medium without major quality concerns.

Increasing bandwidth and mobility—The trend is toward higher bandwidth
(capacity), even for mobile users. New wireless technologies seem to promise

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80:205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

Ethernet LAN Switch with Twisted Pair-Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65459

Wireless
in Home

Solid rules � SONET/SDH
Dashed rules � Gig Ethernet
Note: All links use 10.0.x.y
addressing...only the last
two octets are shown.

FIGURE 1.1

The Illustrated Network, showing the routers, links, and hosts on the network. Many of the layer
addresses used in this book appear in the fi gure as well.

4 PART I Networking Basics

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80:205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted Pair-Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC: 00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

ge-0/0/3

16.2

ge-0/0/3

16.1

Best ISP

AS 65127

Global Public
Internet

CHAPTER 1 Protocols and Layers 5

the “Internet everywhere.” Users are no longer as restricted to analog telephone
network modem bit rates, and new end-electronics, last-mile technologies, and
improved wiring and backbones are the reason.

Security—Attacks have become much more sophisticated as well. The use of
 privacy tools such as encryption and digital signatures are no longer an option,
but a necessity. E-commerce is a bigger and bigger business every year, and
on-line banking, stock transactions, and other financial manipulations make
strong security technologies essential. Identity verification is another place
where new applications employ strong encryption for security purposes.

New protocols—Even the protocols that make up the TCP/IP protocol suite
change and evolve. Protocols age and become obsolete, and make way for
newer ways of doing things. IPv6, the eventual successor for IPv4, is showing
up on networks around the world, especially in applications where the supply
of IPv4 addresses is inadequate (such as cell phones). In every case, each
 chapter attempts to be as up-to-date and forward-looking as possible in its
particular area.

We will talk about these trends and more in later chapters in this book. For now, let’s
take a good look at the network that will be illustrated in the rest of this book.

Key Defi nitions
Any book about computers and networking uses terminology with few fi rm defi -
nitions and rules of usage. So here are some key terms that are used over and over
throughout this book. Keep in mind that these terms may have varying interpreta-
tions, but are defi ned according to the conventions used in this book.

■ Host: For the purposes of this book, a host is any endpoint or end system
device that runs TCP/IP. In most cases, these devices are ordinary desktop and
laptop computers. However, in some cases hosts can be cell phones, handheld
personal digital assistants (PDAs), and so on. In the past, TCP/IP has been made
to run on toasters, coffee machines, and other exotic devices, mainly to prove
a point.

■ Intermediate system: Hosts that do not communicate directly pass informa-
tion through one or more intermediate systems. Intermediate systems are
often generically called “network nodes” or just “nodes.” Specifi c devices are
labeled “routers,” “bridges,” or “switches,” depending on their precise roles in the
network. The intermediate nodes on the Illustrated Network are routers with
some switching capabilities.

■ System: This is just shorthand for saying the device can be a host, router, switch,
node, or almost anything else on a network. Where clarity is important, we’ll
always specify “end system” or “intermediate system.”

6 PART I Networking Basics

THE ILLUSTRATED NETWORK
Each chapter in this book will begin with a look at how the protocol or chapter contents
function on a real network. The Illustrated Network, built in the Tech Pubs department
of Juniper Networks, Inc., in Sunnyvale, California, is shown in Figure 1.1.

The network consists of systems running three different operating systems (Windows
XP, Linux, and FreeBSD Unix) connected to Ethernet local area networks (LANs). These
systems are deployed in pairs, as either clients (for now, defi ned as “systems with users
doing work in front of them”) and servers (for now, defi ned as “systems with admin-
istrators, and usually intended only for remote use”). When we defi ne the client and
server terms more precisely, we’ll see that the host’s role at the protocol level depends
on which host initiates the connection or interaction. The hosts can be considered to
be part of a corporate network with offi ces in New York and Los Angeles.

Addressing information is shown for each host, router, and link between devices. We’ll
talk about all of these addresses in detail later, and why the hosts in particular have
several addresses in varying formats. (For example, the hosts only have link-local IPv6
address, and not global ones.)

The LANs are attached to Juniper Networks’ routers (also called intermediate nodes,
although some are technically gateways), which in turn are connected in our network
to other routers by point-to-point synchronous optical network (SONET) links, a type
of wide area network (WAN) link. Other types of links, such as asynchronous transfer
mode (ATM) or Ethernet, can be used to connect widely separated routers, but SONET
links are very common in a telecommunications context. There is a link to the global
Internet and to a home-based wireless LAN as well. The home offi ce link uses digital

Major Parts of the Illustrated Network
The Illustrated Network is composed of four major components. At the top are two
Ethernet LANs with the hosts of our fi ctional organization, one in New York and
one in Los Angeles. The offi ces have different ISPs (a common enough situation),
and the site routers link to Ace ISP on the West Coast and Best ISP on the East
Coast with Gigabit Ethernet links (more on links in the next chapter). The two
ISPs link to each other directly and also link to the “global public Internet.” Just
what this is will be discussed once we start looking at the routers themselves.

One employee of this organization (the author) is shown linking a home
 wireless network to the West Coast ISP with a high-speed (“broadband”) digital
subscriber line (DSL) link. The rest of the links are high-speed WAN links and two
Gigabit Ethernet (GE) links. (It’s becoming more common to use GE links across
longer distances, but this network employs other WAN technologies.)

The Illustrated Network is representative of many LANs, ISPs, and users around
the world.

CHAPTER 1 Protocols and Layers 7

subscriber line (DSL), a form of dedicated broadband Internet access, and not dial-up
modem connectivity.

This network will be used throughout this book to illustrate how the different
TCP/IP protocols running on hosts and routed networks combine to form the Internet.
Some protocols will be examined from the perspective of the hosts and LAN (on the
local “user edge”) and others will be explored from the perspective of the service
 provider (on the global “network edge”). Taken together, these viewpoints will allow
us to see exactly how the network works, inside and out.

Let’s explore the Illustrated Network a little, from the user edge, just to demonstrate
the conventions that will be used at the beginning of each chapter in this book.

Remote Access to Network Devices
We can use a host (client or server system running TCP/IP) to remotely access another
device on the local network. In the context of this book, a host is a client or server
system. We can loosely (some would say very loosely) defi ne clients as typically the
PCs on which users are doing work, and that’s how we’ll use the term for now. On the
other hand, servers (again loosely) are devices that usually have administrators tending
them. Servers are often gathered in special equipment racks in rooms with restricted
access (the “server room”), although print servers are usually not. We’ll be more pre-
cise about the differences between clients and servers as the “initiating protocol” later
in this book.

Let’s use host lnxclient to remotely access the host bsdserver on one of the LANs.
We’ll use the secure shell application, ssh, for remote access and log in (the –l option)
as remote-user. There are other remote access applications, but in this book we’ll use
ssh. We’ll use the command-line interface (CLI) on the Linux host to do so.

[root@lnxclient admin]# ssh -l remote-user@bsdserver
Password:
Last login: Sun Mar 17 16:12:54 2008 from securepptp086.s
Copyright (c) 1980, 1983, 1986, 1988, 1990, 1991, 1993, 1994
The Regents of the University of California. All rights reserved.
FreeBSD 4.10-RELEASE (GENERIC) #0: Tue May 25 22:47:12 GMT 2004
Welcome to FreeBSD!...

We can also use a host to access a router on the network. As mentioned earlier, a
router is a type of intermediate system (or network node) that forwards IP data units
along until they reach their destination. A router that connects a LAN to an Internet
link is technically a gateway. We’ll be more precise about these terms and functions in
later chapters dealing with routers and routing specifi cally.

Let’s use host bsdclient to remotely access the router on the network that is directly
attached to the LAN, router CE0 (“Customer Edge router #10”). Usually, we’d do this to
confi gure the router using the CLI. As before, we’ll use the secure shell application, ssh,
for remote access and log in as remote-user. We’ll again use the CLI on the Unix host
to do so.

8 PART I Networking Basics

bsdclient> ssh -l remote-user@CEO
remote-user@ce0’s password:
--- JUNOS 8.4R1.3 built 2007-08-06 06:58:15 UTC
remote-user@CEO>

These examples show the conventions that will appear in this book when com-
mand-line procedures are shown. All prompts, output, and code listings appear like
this. Whenever a user types a command to produce some output, the command typed
will appear like this. We’ll see CLI examples from Windows hosts as well.

Illustrated Network Router Roles
The intermediate systems or network nodes used on the Illustrated Network are
routers. Not all of the routers play the same role in the network, and some have
switching capabilities. The router’s role depends on its position in the network.
Generally, smaller routers populate the edge of the network near the LANs and
hosts, while larger routers populate the ISP’s network core. The routers on our
network have one of three network-centric designations; we have LAN switches
also, but these are not routers.

■ Customer edge (CE): These two routers belong to us, in our role as the customer
who owns and operates the hosts and LANs. These CE routers are smaller than
the other routers in terms of size, number of ports, and capabilities. Technically,
on this network, they perform a gateway role.

■ Provider edge (PE): These two routers gather the traffi c from customers
(typically there are many CE routers, of course). They are not usually accessible
by customers.

■ Provider (P): These six routers are arranged in what is often called a “quad.” The
two service providers on the Illustrated Network each manage two providers’
routers in their network core. Quads make sure traffi c fl ows smoothly even if
any one router or one link fails on the provider’s core networks.

■ Ethernet LAN switches: The network also contains two Ethernet LAN
switches. We’ll spend a lot of time exploring switches later. For now, consider that
 switches operate on Layer 2 frames and routers operate on Layer 3 packets.

Now, what is this second example telling us? First of all, it tells us that routers,
just like ordinary hosts, will allow a remote user to log in if they have the correct
user ID and password. It would appear that routers aren’t all that much different from
hosts. However, this can be a little misleading. Hosts generally have different roles in a
 network than routers. For now, we’ll just note that for security reasons, you don’t want
it to be easy for people to remotely access routers, because intruders can cause a lot
of damage after compromising just a single router. In practice, a lot more security than
just passwords is employed to restrict router access.

CHAPTER 1 Protocols and Layers 9

Secure remote access to a router is usually necessary, so not running the process or
entity that allows remote access isn’t an option. An organization with a large network
could have routers in hundreds of locations scattered all over the country (or even the
world). These devices need management, which includes tasks such as changing the con-
fi guration of the routers. Router confi guration often includes details about the protocols’
operation and other capabilities of the router, which can change as the network evolves.
Software upgrades need to be distributed as well. Troubleshooting procedures often
require direct entry of commands to be executed on the router. In short, remote access
and fi le transfer can be very helpful for router and network management purposes.

File Transfer to a Router
Let’s look at the transfer of a new router confi guration fi le, for convenience called
routerconfig.txt, from a client host (wincli2) to router CE0. This time we’ll use a GUI
for the fi le transfer protocol (FTP) application, which will be shown as a fi gure, as in
Figure 1.2. First, we have to remotely access the router.

The main window section in the fi gure shows remote access and the fi le listing of
the default directory on the router, which is /var/home/remote (the router uses the
Unix fi le system). The listing in the lower right section is the contents of the default

FIGURE 1.2

Remote access for FTP using a GUI. Note how the different panes give different types of
 information, yet bring it all together.

10 PART I Networking Basics

directory, not part of the command/response dialog between host and router. The
lower left section shows the fi le system on the host, which is a Windows system. Note
that the fi le transfer is not encrypted or secured in any way.

Most “traditional” Unix-derived TCP/IP applications have both CLI and GUI interfaces
available, and which one is used is usually a matter of choice. Older Unix systems, the
kind most often used on the early Internet, didn’t typically have GUI interfaces, and
a lot of users prefer the CLI versions, especially for book illustrations. GUI applica-
tions work just as well, and don’t require users to know the individual commands
well. When using the GUI version of FTP, all the user has to do is “drag and drop” the
local routerconfig.txt fi le from the lower left pane to the lower right pane of the
window to trigger the commands (which the application produces “automatically”) for
the transfer to occur. This is shown in Figure 1.3.

With the GUI, the user does not have to issue any FTP commands directly.

CLI and GUI
We’ll use both the CLI and GUI forms of TCP/IP applications in this book. In a nod to
tradition, we’ll use the CLI on the Unix systems and the GUI versions when Windows
systems are used in the examples. (CLI commands often capture details that are not
easily seen in GUI-based applications.) Keep in mind that you can use GUI applications

FIGURE 1.3

File transfer with a GUI. There are commands (user mouse clicks that trigger messages), responses
(the server’s replies), and status lines (reports on the state of the interaction).

CHAPTER 1 Protocols and Layers 11

on Unix and the CLI on Windows (you have to run cmd fi rst to access the Windows
CLI). This listing shows the router confi guration fi le transfer of newrouterconfig.txt
from the Windows XP system to router CE6, but with the Windows CLI and using the
IP address of the router.

C:\Documents and Settings\Owner> ftp 10.10.12.1
Connected to 10.10.12.1.
220 R6 FTP server (version 6.00LS) ready.
User (10.10.12.1:none)):walterg
331 Password required for walterg.
Password: ********
ftp> dir
200 PORT command successful.
150 Opening ASCII mode data connection for '/bin/ls'.
total 128
drwxr-xr-x 2 remote staff 512 Nov 20 2004 .ssh
-rw-r--r-- 1 remote staff 4316 Mar 25 2006 R6-base
-rw-r--r-- 1 remote staff 4469 May 11 20:08 R6-cspf
-rw-r--r-- 1 remote staff 4316 Jun 3 18:46 R6-rsvp
-rw-r--r-- 1 remote staff 4242 Jun 16 14:44 R6-rsvp-message
-rw-r----- 1 remote staff 559 Feb 3 2005 juniper.conf
-rw-r--r-- 1 remote staff 4081 Dec 2 2005 merisha-base
-rw-r--r-- 1 remote staff 2320 Dec 3 2005 richard-ASP-manual-SA
-rw-r--r-- 1 remote staff 2358 Dec 2 2005 richard-base
-rw-r--r-- 1 remote staff 7344 Sep 30 11:28 routerconfig.txt
-rw-r--r-- 1 remote staff 4830 Jul 13 17:04 snmp-forwarding
-rw-r--r-- 1 remote staff 3190 Jan 7 2006 tp6
-rw-r--r-- 1 remote staff 4315 May 5 12:49 wjg-ORA-base-TP6
-rw-r--r-- 1 remote staff 4500 May 6 09:47 wjg-tp6-with-ipv6
-rw-r--r-- 1 remote staff 4956 May 8 13:42 wjg-with-ipv6
226 transfer complete
ftp: 923 bytes received in 0.00Seconds 923000.00Kbytes/sec.
ftp> bin
200 Type set to I
ftp> put newrouterconfig.text
200 PORT command successful.
150 Opening ASCII mode data connection for "newrouterconfig.txt".
226 Transfer complete.
ftp: 7723 bytes received in 0.00Seconds 7344000.00Kbytes/sec.
ftp>_

In some cases, we’ll list CLI examples line by line, as here, and in other cases we will
show them in a fi gure.

Ethereal and Packet Capture
Of course, showing a GUI or command line FTP session doesn’t reveal much about
how the network functions. We need to look at the bits that are fl owing through the

12 PART I Networking Basics

network. Also, we need to look at applications, such as the fi le transfer protocol, from
the network perspective.

To do so, we’ll use a packet capture utility. This book will use the Ethereal packet
capture program in fact and by name throughout, although shortly after the project
began, Ethereal became Wireshark. The software is the same, but all development will
now be done through the Wireshark organization. Wireshark (Ethereal) is available free
of charge at www.wireshark.org. It is notable that Wireshark, unlike a lot of similar
applications, is available for Windows as well as most Unix/Linux variations.

Ethereal is a network protocol analyzer program that keeps a copy of every packet
of information that emerges from or enters the system on a particular interface. Ethe-
real also parses the packet and shows not only the bit patterns, but what those bit
groupings mean. Ethereal has a summary screen, a pane for more detailed informa-
tion, and a pane that shows the raw bits that Ethereal captured. The nicest feature of
Ethereal is that the packet capture stream can be saved in a standard libpcap format
fi le (usually with a .cap or .pcap extension), which is common among most protocol
analyzers. These fi les can be read and parsed and replayed by tcpdump and other appli-
cations or Ethereal on other systems.

Figure 1.4 shows the same router confi guration fi le transfer as in Figure 1.2 and 1.3,
and at the same time. However, this time the capture is not at the user level, but at the
network level.

FIGURE 1.4

Ethereal FTP capture of the fi le transfer shown earlier from the user perspective.

CHAPTER 1 Protocols and Layers 13

Each packet captured is numbered sequentially and given a time stamp, and its
source and destination address is listed. The protocol is in the next column, followed
by the interpretation of the packet’s meaning and function. The packet to request the
router to STOR routerconfig.txt is packet number 26 in the sequence.

Already we’ve learned something important: that with TCP/IP, the number of
 packets exchanged to accomplish even something basic and simple can be surpris-
ingly large. For this reason, in some cases, we’ll only show a section of the panes of the
full Ethereal screen, only to cut down on screen clutter. The captured fi les are always
there to consult later.

With these tools—CLI listings, GUI fi gures, and Ethereal captures—we are prepared
to explore all aspects of modern network operation using TCP/IP.

First Explorations in Networking
We’ve already seen that an authorized user can access a router from a host. We’ve
seen that routers can run the ssh and ftp server applications sshd and ftpd, and the
 suspicion is that they might be able to run even more (they can just as easily be ssh
and ftp clients). However, the router application suite is fairly restrictive. You usually
don’t, for example, send email to a router, or log in to a router and then browse Web
sites. There is a fundamental difference in the roles that hosts and routers play in a
network. A router doesn’t have all of the application software you would expect to
fi nd on a client or server, and a router uses them mainly for management purposes.
However, it does have all the layers of the protocol suite.

TCP/IP networks are a mix of hosts and routers. Hosts often talk to other devices
on the network, or expose their applications to the network, but their basic function
is to run programs. However, network systems like routers exist to keep the network
 running, which is their primary task. Router-based applications support this task,
although in theory, routers only require a subset of the TCP/IP protocol suite layers to
perform their operational role. You also have to manage routers, and that requires some
additional software in practice. However, don’t expect to fi nd chat or other common
client applications on a router.

What is it about protocols and layers that is so important? That’s what the rest of
this chapter is about. Let’s start with what protocols are and where they come from.

PROTOCOLS
Computers are systems or devices capable of running a number of processes. These
 processes are sometimes referred to as entities, but we’ll use the term processes.
 Computer networks enable communication between processes on two different
devices that are capable of sending and receiving information in the form of bits
(0s and 1s). What pattern should the exchange of bits follow? Processes that exchange
bit streams must agree on a protocol. A protocol is a set of rules that determines all
aspects of data communication.

14 PART I Networking Basics

A protocol is a standard or convention that enables and controls the connec-
tion, communication, and transfer of information between two communications
endpoints, or hosts. A protocol defi nes the rules governing the syntax (what can
be communicated), semantics (how it can be communicated), and synchroniza-
tion (when and at what speed it can be communicated) of the communications
 procedure. Protocols can be implemented on hardware, software, or a combination
of both.

Protocols are not the same as standards: some standards have never been imple-
mented as workable protocols, while some of the most useful protocols are only
loosely defi ned (this sometimes makes interconnection an adventure). The protocols
discussed in this book vary greatly in degree of sophistication and purpose. However,
most of the protocols specify one or more of the following:

Physical connection—The host typically uses different hardware depending on whether
the connection is wired or wireless, and some other parameters might require man-
ual confi guration. However, protocols are used to supply details about the network
connection (speed is part of this determination). The host can usually detect the
presence (or absence) of the other endpoint devices as well.

Handshaking—A protocol can define the rules for the initial exchange of infor-
mation across the network.

Negotiation of parameters—A protocol can define a series of actions to establish
the rules and limits used for communicating across the network.

Message delimiters—A protocol can define what will constitute the start and end
of a message on the network.

Message format—A protocol can define how the content of a message is struc-
tured, usually at the “field” level.

Error detection—A protocol can define how the receiver can detect corrupt mes-
sages, unexpected loss of connectivity, and what to do next. A protocol can
simply fail or try to correct the error.

Error correction—A protocol can define what to do about these error situations.
Note that error recovery usually consists of both error-detection and error-
 correction protocols.

Termination of communications—A protocol can define the rules for gracefully
stopping communicating endpoints.

Protocols at various layers provided the abstraction necessary for Internet suc-
cess. Application developers did not have to concern themselves overly with the
physical properties of the network. The expanded use of communications protocols
has been a major contributor to the Internet’s success, acceptance, fl exibility, and
power.

CHAPTER 1 Protocols and Layers 15

Standards and Organizations
Anyone can defi ne a protocol. Simply devise a set of rules for any or all of the phases
of communication and convince others to make hardware or software that imple-
ments the new method. Of course, an implementer could try to be the only source
of a given protocol, a purely proprietary situation, and this was once a popular way
to develop protocols. After all, who knew better how to network IBM computers
than IBM? Today, most closed protocols have given way to open protocols based on
published standards, especially since the Internet strives for connectivity between
all types of computers and related devices and is not limited to equipment from
a certain vendor. Anyone who implements an open protocol correctly from public
documents should in most cases be able to interoperate with other versions of the
same protocol.

Standards promote and maintain an open and competitive market for network
 hardware and software. The overwhelming need for interoperability today, both
nationally and internationally, has increased the set of choices in terms of vendor and
capability for each aspect of data communications. However, proprietary protocols
intended for a limited architecture or physical network are still around, of course. Pro-
prietary protocols might have some very good application-specifi c protocols, but could
probably not support things like the Web as we know it. Making something a standard
does not guarantee market acceptance, but it is very diffi cult for a protocol to succeed
without a standard for everyone to follow. Standards provide essential guidelines to
manufacturers, vendors, service providers, consultants, government agencies, and users
to make sure the interconnectivity needed today is there.

Data communication standards fall into two major categories: de jure (“by rule or
regulation”) and de facto (“by fact or convention”).

De jure—These standards have been approved by an officially recognized body
whose job is to standardize protocols and other aspects of networking. De jure
standards often have the force of law, even if they are called recommenda-
tions (for these basic standards, it is recommended that nations use their own
enforcement methods, such as fines, to make sure they are followed).

De facto —Standards that have not been formally approved but are widely followed
fall into this category. If someone wants to do something different, such as
a manufacturer of network equipment, this method can be used to quickly
establish a new product or technology. These types of standards can always be
proposed for de jure approval.

When it comes to the Internet protocols, things are a bit more complicated. There
are very few offi cial standards, and there are no real penalties involved for not follow-
ing them (other than the application not working as promised). On the Internet, a
“de facto standard” forms a reference implementation in this case. De facto standards
are also often subportions or implementation details for formal standards, usually when

16 PART I Networking Basics

the formal standard falls short of providing all the information needed to create a work-
ing program. Internet standard proposals in many cases require running code at some
stages of the process: at least the de facto code will cover the areas that the standard
missed.

The standards for the TCP/IP protocol suite now come from the Internet Engineer-
ing Task Force (IETF), working in conjunction with other Internet organizations. The
IETF is neither strictly a de facto nor de jure standards organization: There is no force
of law behind Internet standards; they just don’t work the way they should if not done
correctly. We’ll look at the IETF in detail shortly. The Internet uses more than protocol
standards developed by the IETF. The following organizations are the main ones that
are the sources of these other standards.

Institute of Electrical and Electronics Engineers
This international organization is the largest society of professional engineers in the
world. One of its jobs is to oversee the development and adaptation of international
standards, often in the local area network (LAN) arena. Examples of IEEE standards are
all aspects of wireless LANs (IEEE 802.11).

American National Standards Institute
Although ANSI is actually a private nonprofi t organization, and has no affi liation with the
federal government, its goals include serving as the national institution for coordinating
voluntary standardization in the United States as a way of advancing the U.S. economy
and protecting the public interest. ANSI’s members are consumer groups, government
and regulatory bodies, industry associations, and professional societies. Other countries
have similar organizations that closely track ANSI’s actions. The indispensable American
Standard Code for Information Interchange (ACSII) that determines what bits mean is
an example of an ANSI standard.

Electronic Industries Association
This is a nonprofi t organization aligned with ANSI to promote electronic manufactur-
ing concerns. The EIA has contributed to networking by defi ning physical connection
interfaces and specifying electrical signaling methods. The popular Recommended
Jack #45 (RJ-45) connector for twisted pair LANs is an example of an EIA standard.

ISO, or International Standards Organization
Technically, this is the International Organization for Standardization in English, one of
its offi cial languages, but is always called the ISO. “ISO” is not an acronym or initialism
for the organization’s full name in either English or French (its two offi cial languages).
Rather, the organization adopted ISO based on the Greek word isos, meaning equal.
Recognizing that the organization’s initials would vary according to language, its found-
ers chose ISO as the universal short form of its name. This, in itself, refl ects the aim of
the organization: to equalize and standardize across cultures. This multinational body’s
members are drawn from the standards committees of various governments. They are

CHAPTER 1 Protocols and Layers 17

a voluntary organization dedicated to agreement on worldwide standards. The ISO’s
major contribution in the fi eld of networking is with the creation of a model of data
networking, the Open Systems Interconnection Reference Model (ISO-RM), which also
forms the basis for a working set of protocols. The United States is represented by ANSI
in the ISO.

International Telecommunications Union–Telecommunication Standards Sector
A global economy needs international standards not only for data networks, but for
the global public switched telephone network (PSTN). The United Nations formed a
committee under the International Telecommunications Union (ITU), known as the
Consultative Committee for International Telegraphy and Telephony (CCITT), that was
eventually reabsorbed into the parent body as the ITU-T in 1993. All communications
that cross national boundaries must follow ITU-T “recommendations,” which have
the force of law. However, inside a nation, local standards can apply (and usually do).
A network architecture called asynchronous transfer mode (ATM) is an example of an
ITU-T standard.

In addition to these standards organizations, networking relies on various forums to
promote new technologies while the standardization process proceeds at the national
and international levels. Forum members essentially pledge to follow the specifi ca-
tions of the forum when it comes to products, services, and so forth, although there
is seldom any penalty for failing to do so. The Metro Ethernet Forum (MEF) is a good
example of the modern forum in action.

The role of regulatory agencies cannot be ignored in standard discussions. It makes
no sense to develop a new service for wireless networking in the United States, for
example, if the Federal Communications Commission (FCC) has forbidden the use of
the frequencies used by the new service for that purpose. Regulated industries include
radio, television, and wireless and cable systems.

Request for Comment and the Internet Engineering Task Force
What about the Internet itself? The Internet Engineering Task Force (IETF) is the
 organization directly responsible for the development of Internet standards. The
IETF has its own system for standardizing network components. In particular, Inter-
net standards cover many of the protocols used by devices attached to the Internet,
 especially those closer to the user (applications) than to the physical network.

Internet standards are formalized regulations followed and used by those who
work on the Internet. They are specifi cations that have been tested and must be
 followed. There is a strict procedure that all Internet components follow to become
standards. A specifi cation starts out as an Internet draft, a working document that
often is revised, has no offi cial status, and has a 6-month life span. Developers often
work from these drafts, and much can be learned from the practical experience of
 implementation of a draft. If recommended, the Internet authorities can publish the
draft as a request for comment (RFC). The term is historical, and does not imply that

18 PART I Networking Basics

feedback is required (most of the feedback is provided in the drafting process). Each
RFC is edited, assigned a number, and available to all. Not all RFCs are standards, even
those that defi ne protocols.

This book will make heavy use of RFCs to explain all aspects of TCP/IP and the
Internet, so a few details are in order. RFCs have various maturity levels that they go
through in their lifetimes, according to their requirement levels. The RFC life-cycle
maturity levels are shown in Figure 1.5. Note that the timeline does not always apply,
or is not applied in a uniform fashion.

A specifi cation can fall into one of six maturity levels, after which it passes to his-
torical status and is useful only for tracking a protocol’s development. Following intro-
duction as an Internet draft, the specifi cation can be a:

Proposed standard—The specification is now well understood, stable, and
 sufficiently interesting to the Internet community. The specification is now
usually tested and implemented by several groups, if this has not already
 happened at the draft level.

Draft standard—After at least two successful and independent implementations,
the proposed standard is elevated to a draft standard. Without complications,
and with modifications if specific problems are uncovered, draft standards nor-
mally become Internet standards.

Internet Draft

Internet
Standard

Historic RFCs

Informational
RFCs

Experimental
RFCs

Proposed
Standard

Draft Standard

Six months

Four months

FIGURE 1.5

The RFC life cycle. Many experimental RFCs never make it to the standards track.

CHAPTER 1 Protocols and Layers 19

Internet standard—After demonstrations of successful implementation, a draft
standard becomes an Internet standard.

Experimental RFCs—Not all drafts are intended for the “standards track” (and
a huge number are not). Work related to an experimental situation that does
affect Internet operation comprise experimental RFCs. These RFCs should not
be implemented as part of any functional Internet service.

Informational RFCs—Some RFCs contain general, historical, or tutorial informa-
tion rather than instructions.

RFCs are further classifi ed into one of fi ve requirement levels, as shown in Figure 1.6.

Required—These RFCs must be implemented by all Internet systems to ensure
minimum conformance. For example, IPv4 and ICMP, both discussed in detail in
this book, are required protocols. However, there are very few required RFCs.

Recommended—These RFCs are not required for minimum conformance, but are
very useful. For example, FTP is a recommended protocol.

Elective—RFCs in this category are not required and not recommended. However,
systems can use them for their benefit if they like, so they form a kind of
“option set” for Internet protocols.

Limited Use—These RFCs are only used in certain situations. Most experimental
RFCs are in this category.

RFC Requirement Levels

Required: All systems must implement

Recommended: All systems should implement

Elective: Not required nor recommended

Limited Use: Used in certain situations, such as experimental

Not Recommended: Systems should not implement

FIGURE 1.6

RFC requirement levels. There are very few RFCs that are required to implement an Internet
protocol suite.

20 PART I Networking Basics

Not Recommended—These RFCs are inappropriate for general use. Most historic
(obsolete) RFCs are in this category.

RFCs can be found at www.rfc-editor.org/rfc.html. Current Internet drafts can be found
at www.ietf.org/ID.html. Expired Internet drafts can be found at www.watersprings.
org/pub/id/index-all.html.

INTERNET ADMINISTRATION
As the Internet has evolved from an environment with a large student user population
to a more commercialized network with a broad user base, the groups that have guided
and coordinated Internet issues have evolved. Figure 1.7 shows the general structure
of the Internet administration entities.

Internet Society (ISOC)—This is an international nonprofit organization formed in
1992 to support the Internet standards process. ISOC maintains and supports
the other administrative bodies described in this section. ISOC also supports
research and scholarly activities relating to the Internet.

Internet Society

Internet Architecture Board

Internet Engineering Task Force

IESG

AreaArea

IRSG

Research
Group

Working
Group

Working
Group

Working
Group

Working
Group

Research
Group

Internet Research Task Force

FIGURE 1.7

Internet administration groups, showing the interactions between the major components.

CHAPTER 1 Protocols and Layers 21

Internet Architecture Board (IAB)—This group is the technical advisor to
ISOC. The IAB oversees the continued development of the Internet protocol
suite and plays a technical advisory role to members of the Internet commu-
nity involved in research. The IAB does this primarily through the two organi-
zations under it. In addition, the RFC editor derives authority from the IAB, and
the IAB represents the Internet to other standards organizations and forums.

Internet Engineering Task Force (IETF)—This a forum of working groups
 managed by the Internet Engineering Steering Group (IESG). The IETF identi-
fies operational problem areas and proposes solutions. They also develop and
review the specifications intended to become Internet standards. The working
groups are organized into areas devoted to a particular topic. Nine areas have
been defined, although this can change: applications, Internet protocols,
 routing, operations, user services, network management, transport, IPv6, and
security. The IETF has taken on some of the roles that were invested in ISOC.

Internet Research Task Force (IRTF)—This is another forum of working groups,
organized directly under the Internet Research Steering Group (IESG) for
management purposes. The IRTF is concerned with long-term research topics
related to Internet protocols, applications, architecture, and technology.

Two other groups are important for Internet administration, although they do not
appear in Figure 1.7.

Internet Corporation for Assigned Names and Numbers (ICANN)—This is a
private nonprofit corporation that is responsible for the management of all
Internet domain names (more on these later) and Internet addresses. Before
1998, this role was played by the Internet Assigned Numbers Authority (IANA),
which was supported by the U.S. government.

Internet Network Information Center (InterNIC)—The job of the InterNIC, run
by the U.S. Department of Commerce, is to collect and distribute information
about IP names and addresses. They are at http://www.internic.net.

LAYERS
When it comes to communications, all of these standard organizations have one
 primary function: the creation of standards that can be combined with others to create
a working network. One concern is that these organizations be able to recommend
solutions that are both fl exible and complete, even though no single standards entity
has complete control over the entire process from top to bottom. The way this is done
is to divide the communications process up into a number of functional layers.

Data communication networks rely on layered protocols. In brief, processes run-
ning on a system and the communication ports that send and receive network bits are
logically connected by a series of layers, each performing one major function of the
networking task.

22 PART I Networking Basics

The key concept is that each layer in the protocol stack has a distinct purpose and
function. There is a big difference between the application layer protocols we’ve seen,
such as FTP and SSH, and a lower-level protocol such as Ethernet on a LAN. Each proto-
col layer handles part of the overall task.

For example, Ethernet cards format the bits sent out on a LAN at one layer, and
FTP client software communicates with the FTP server at a higher layer. However, the
Ethernet card does not tell the FTP application which bits to send out the interface.
FTP addresses the higher-end part of the puzzle: sending commands and data to the
FTP server. Other layers take care of things like formatting, and can vary in capability
or form to address differences at every level. You don’t use different Web browsers
depending on the type of links used on a network. The whole point is that not all
 networks are Ethernet (for example), so a layered protocol allows a “mix and match” of
whatever protocols are needed for the network at each layer.

Simple Networking
Most programming languages include statements that allow the programmer to send
bits out of a physical connector. For example, suppose a programming language allowed
you to program a statement like write(port 20$, "test 1"). Sure enough, when com-
piled, linked, and run, the program would spit the bits representing the string “test 1”
out the communications port of the computer. A similar statement like read(port 20$,
STUFF) would, when compiled, linked, and run, wait until something appeared in the
buffer of the serial port and store the bits in the variable called STUFF.

A simple network using this technique is shown in Figure 1.8. (There is still some
software in use that does networking this way.)

However, there are some things to consider. Is there anything attached to the port at
all? Or are the bits just falling into the “bit bucket”? If there was a link attached, what if
someone disconnected it while the bits are in fl ight? What about other types of errors?
How would we know that the bits arrived safely?

Even assuming that the bits got there, and some listening process received them,
does the content make sense? Some computers store bits differently than others, and
“test 1” could be garbled on the other system. How many bits are sent to represent the

System A
(sender)

System B
(receiver)

read (port 20$, STUFF)write (port 20$, “test 1”)

Bits

FIGURE 1.8

An extremely simple network with a distinctly non-layered approach to networking.

CHAPTER 1 Protocols and Layers 23

number 1? How do we know that a “short integer” used by the sender is the same as
the “short integer” used by another? (In fairness, TCP/IP does little to address this issue
directly.)

We see that the networking task is not as simple as it seems. Now, each and every
networked application program could conceivably include every line of code that is
needed to solve all of these issues (and there are even others), but that introduces
another factor into the networking equation. Most hosts attached to a network have
only one communications port active at any one time (the “network interface”). If an
“all-in-one” network application is using it, perhaps to download a music fi le, how can
another application use the same port for email? It can’t.

Besides the need to multiplex in various ways, another factor infl uencing layers
is that modern operating systems do not allow direct access to hardware. The need to
go through the operating system and multiplex the network interface leads to a cen-
tralization of the networking tasks in the end system.

Protocol layers make all of these issues easier to deal with, but they cannot be added
haphazardly. (You can still create a huge and ugly “layer” that implements everything
from hardware to transport to data representation, but it would work.) As important
as the layers are, the tasks and responsibilities assigned to those layers are even more
important.

Protocol Layers
Each layer has a separate function in the overall task of moving bits between
processes. These processes could be applications on separate systems, but on modern
systems a lot of process-to-process communication is not host-to-host. For example, a
lot of printer management software runs as a Web browser using a special loopback
TCP/IP address to interface with the process that gathered status information from the
printer.

As long as the boundary functions between adjacent layers are respected, layers
can be changed or even completely rewritten without having to change the whole
application. Layers can be combined for effi ciency, “mixed-and-matched” from different
vendors, or customized for different circumstances, all without having to rework the
entire stack from top to bottom.

Nearly every layer has some type of multiplexing fi eld to allow the receiver to
determine the type of payload, or content of the data unit at a particular layer. A key
point in networking is that the payload and control information at one layer is just a
“transparent” (meaningless) payload to the layer below. Transparent bits, as the name
implies, are passed unchanged to the next layer.

How can protocol layers work together? Introducing a bunch of new interfaces and
protocols seems to have made the networking task harder, not easier. There is a sim-
ple method called encapsulation that makes the entire architecture workable. What
is encapsulation? Think of the layers of the protocol suite in terms of writing a letter
and the systems that are involved in letter delivery. The letter goes inside an envelope
which is gathered with others inside a mailbag which is transported with others inside

24 PART I Networking Basics

a truck or plane. It sounds like a very complicated way to deliver one message, but
this system makes the overall task of delivering many messages easier, not harder. For
example, there now can be facilities that only deal with mailbags and do not worry
about an individual letter’s language or the transportation details.

THE TCP/IP PROTOCOL SUITE
The protocol stack used on the Internet is the Internet Protocol Suite. It is usually
called TCP/IP after two of its most prominent protocols, but there are other proto-
cols as well. The TCP/IP model is based on a fi ve-layer model for networking. From
bottom (the link) to top (the user application), these are the physical, data link, net-
work, transport, and application layers. Not all layers are completely defi ned by the
model, so these layers are “fi lled in” by external standards and protocols. The layers
have names but no numbers, and although sometimes people speak of “Layer 2” or
“Layer 3,” these are not TCP/IP terms. Terms like these are actually from the OSI Refer-
ence Model.

The TCP/IP stack is open, which means that there are no “secrets” as to how it
works. (There are “open systems” too, but with TCP/IP, the systems do not have to be
“open” and often are not.) Two compatible end-system applications can communicate
regardless of their underlying architectures, although the connections between layers
are not defi ned.

The OSI Reference Model
The TCP/IP or Internet model is not the only standard way to build a protocol suite
or stack. The Open Standard Interconnection (OSI) reference model is a seven-
layer model that loosely maps into the fi ve layers of TCP/IP. Until the Web became
widely popular in the 1990s, the OSI reference model, with distinctive names and
numbers for its layers, was proposed as the standard model for all communication
networks. Today, the OSI reference model (OSI-RM) is often used as a learning tool
to introduce the functions of TCP/IP.

The TCP/IP stack is comprised of modules. Each module provides a specifi c
 function, but the modules are fairly independent. The TCP/IP layers contain relatively
independent protocols that can be used depending on the needs of the system to
provide whatever function is desired. In TCP/IP, each higher layer protocol is sup-
ported by lower layer protocols. The whole collection of protocols forms a type of
hourglass shape, with IP in the middle, and more and more protocols up or down
from there.

CHAPTER 1 Protocols and Layers 25

The TCP/IP Layers
The TCP/IP protocol stack models a series of protocol layers for networks and systems
that allows communications between any types of devices. The model consists of fi ve
separate but related layers, as shown in Figure 1.9. The Internet protocol suite is based
on these fi ve layers. TCP/IP says most about the network and transport layers, and a
lot about the application layer. TCP/IP also defi nes how to interface the network layer
with the data link and physical layers, but is not directly concerned with these two
layers themselves.

The Internet protocol suite assumes that a layer is there and available, so TCP/IP
does not defi ne the layers themselves. The stack consist of protocols, not implementa-
tions, so describing a layer or protocols says almost nothing about how these things
should actually be built.

Not all systems on a network need to implement all fi ve layers of TCP/IP. Devices
using the TCP/IP protocol stack fall into two general categories: a host or end system
(ES) and an intermediate node (often a router) or an intermediate system (IS). The

User Application Programs

Application Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Network Link(s)

FIGURE 1.9

The fi ve layers of TCP/IP. Older models often show only four layers, combining the physical and
data link layers.

Suite, Stack, and Model
The term “protocol stack” is often used synonymously with “protocol suite” as an
implementation of a reference model. However, the term “protocol suite” properly
refers to a collection of all the protocols that can make up a layer in the reference
model. The Internet protocol suite is an example of the Internet or TCP/IP refer-
ence model protocols, and a TCP/IP protocol stack implements one or more of
these protocols at each layer.

26 PART I Networking Basics

intermediate nodes usually only involve the fi rst three layers of TCP/IP (although many
of them still have all fi ve layers for other reasons, as we have seen).

In TCP/IP, as with most layered protocols, the most fundamental elements of the
process of sending and receiving data are collected into the groups that become the
layers. Each layer’s major functions are distinct from all the others, but layers can
be combined for performance reasons. Each implemented layer has an interface with
the layers above and below it (except for the application and physical layers, of course)
and provides its defi ned service to the layer above and obtains services from the layer
below. In other words, there is a service interface between each layer, but these are not
standardized and vary widely by operating system.

TCP/IP is designed to be comprehensive and fl exible. It can be extended to meet
new requirements, and has been. Individual layers can be combined for implementation
purposes, as long as the service interfaces to the layers remain intact. Layers can even
be split when necessary, and new service interfaces defi ned. Services are provided to
the layer above after the higher layer provides the lower layer with the command, data,
and necessary parameters for the lower layer to carry out the task.

Layers on the same system provide and obtain services to and from adjacent layers.
However, a peer-to-peer protocol process allows the same layers on different systems to
communicate. The term peer means every implementation of some layer is essentially
equal to all others. There is no “master” system at the protocol level. Communications
between peer layers on different systems use the defi ned protocols appropriate to the
given layer.

In other words, services refer to communications between layers within the same
process, and protocols refer to communications between processes. This can be con-
fusing, so more information about these points is a good idea.

Protocols and Interfaces
It is important to note that when the layers of TCP/IP are on different systems, they
are only connected at the physical layer. Direct peer-to-peer communication between
all other layers is impossible. This means that all data from an application have to fl ow
“down” through all fi ve layers at the sender, and “up” all fi ve layers at the receiver to
reach the correct process on the other system. These data are sometimes called a ser-
vice data unit (SDU).

Each layer on the sending system adds information to the data it receives from the
layer above and passes it all to the layer below (except for the physical layer, which
has no lower layers to rely on in the model and actually has to send the bits in a form
appropriate for the communications link used).

Likewise, each layer on the receiving system unwraps the received message, often
called a protocol data unit (PDU), with each layer examining, using, and stripping off
the information it needs to complete its task, and passing the remainder up to the next
layer (except for the application layer, which passes what’s left off to the application
program itself). For example, the data link layer removes the wrapper meant for it, uses
it to decide what it should do with this data unit, and then passes the remainder up to
the network layer.

CHAPTER 1 Protocols and Layers 27

The whole interface and protocol process is shown in Figure 1.10. Although TCP/IP
layers only have names, layer numbers are also used in the fi gure, but only for illustra-
tion. (The numbers come from the ISO-RM.)

As shown in the fi gure, there is a natural grouping of the fi ve-layer protocol stack
at the network layer and the transport layer. The lower three layers of TCP/IP, some-
times called the network support layers, must be present and functional on all systems,
regardless of the end system or intermediate node role. The transport layer links the
upper and lower layers together. This layer can be used to make sure that what was
sent was received, and what was sent is useful to the receiver (and not, for example,
a stray PDU misdirected to the host or unreasonably delayed).

The process of encapsulation makes the whole architecture workable. Encapsu-
lation of one layer’s information inside another layer is a key part of how TCP/IP
works.

Encapsulation
Each layer uses encapsulation to add the information its peer needs on the receiving
system. The network layer adds a header to the information it receives from the trans-
port at the sender and passes the whole unit down to the data link layer. At the receiver,

Intermediate
System (node)

Intermediate
System (node)

Device BDevice A

Application

Transport

Network Network
L3

L2

L1

L3

L2

L1

L3

L2

5

4

3

2

1

5
4–5 Interface

3–4 Interface

2–3 Interface

1–2 Interface

4

3

2

1
L1

Data Link Data Link

Physical

Application

Transport

Network

Data Link

Physical

Network

Data Link

PhysicalPhysical

Peer-to-Peer Protocol at Layer 5

Physical Communication Links

2–3 Interface 2–3 Interface

4–5 Interface

3–4 Interface

2–3 Interface

1–2 Interface1–2 Interface 1–2 Interface

Peer-to-Peer Protocol at Layer 4

FIGURE 1.10

Protocols and interfaces, showing how devices are only physically connected at the lowest layer
(Layer 1). Note that functionally, intermediate nodes only require the bottom three layers of the
model.

28 PART I Networking Basics

the network layer looks at the control information, usually in a header, in the data it
receives from the data link layer and passes the remainder up to the transport layer for
further processing. This is called encapsulation because one layer has no idea what the
structure or meaning of the PDU is at other layers. The PDU has several more or less
offi cial names for the structure at each layer.

The exception to this general rule is the data link layer, which adds both a header
and a trailer to the data it receives from the network layer. The general fl ow of encap-
sulation in TCP/IP is shown in Figure 1.11. Note that on the transmission media itself
(or communications link), there are only bits, and that some “extra” bits are added by
the communication link for its own purposes. Each PDU at the other layers is labeled
as data for its layer, and the headers are abbreviated by layer name. The exception is the
second layer, the data link layer, which shows a header and trailer added at that level
of encapsulation.

Although the intermediate nodes are not shown, these network devices will only
process the data (at most) through the fi rst three layers. In other words, there is no
transport layer to which to pass network-layer PDUs on these systems for data com-
munications (management is another issue).

Device A

Data from Application

Device B

Data to Application

Application Layer Data

Transport Layer Data

Application Layer Data

TH

Network Layer Data

Data Link Layer Data

NH

Hdr

Network Layer Data NH

Transport Layer Data TH

Trl Data Link Layer Data HdrTrl

Transmission Media

010101010101011100101010101010101011110 110 010101010101011100101010101010101011110 110

FIGURE 1.11

TCP/IP encapsulation and headers. The unstructured stream of bits represents frames with
 distinct content.

CHAPTER 1 Protocols and Layers 29

THE LAYERS OF TCP/IP
TCP/IP is mature and stable, and is the only protocol stack used on the Internet. This
book is all about networking with TCP/IP, but it is easy to get lost in the particulars of
TCP/IP if some discussion of the general tasks that TCP/IP is intended to accomplish is
not included. This section takes a closer look at the TCP/IP layers, but only as a general
guide to how the layers work.

TCP/IP Layers in Brief

■ Physical Layer: Contains all the functions needed to carry the bit stream over a
physical medium to another system.

■ Data Link Layer: Organizes the bit stream into a data unit called a “frame” and
delivers the frame to an adjacent system.

■ Network Layer: Delivers data in the form of a packet from source to destina-
tion, across as many links as necessary, to non-adjacent systems.

■ Transport Layer: Concerned with process-to-process delivery of information.

■ Application Layer: Concerned with differences in internal representation, user
interfaces, and anything else that the user requires.

The Physical Layer
The physical layer contains all the functions needed to carry the bit stream over a
 physical medium to another system. Figure 1.12 shows the position of the physical layer
to the data link layer and the transmission medium. The transmission medium forms a
pure “bit pipe” and should not change the bits sent in any way. Now, transmission “on
the wire” might send bits through an extremely complex transform, but the goal is to
enable the receiver to reconstruct the bit stream exactly as sent. Some information in
the form of transmission framing can be added to the data link layer data, but this is
only used by the physical layer and the transmission medium itself. In some cases, the
transmission medium sends a constant idle bit pattern until interrupted by data.

Physical layer specifi cations have four parts: mechanical, electrical or optical,
 functional, and procedural. The mechanical part specifi es the physical size and shape of
the connector itself so that components will plug into each other easily. The electrical/
optical specifi cation determines what value of voltage or line condition determines
whether a pin is active or what exactly represents a 0 or 1 bit. The functional specifi -
cation specifi es the function of each pin or lead on the connector (fi rst lead is send,
second is receive, and so on). The procedural specifi cation details the sequence of
actions that must take place to send or receive bits on the interface. (For Ethernet, the
send pair is activated, then a “preamble” is sent, and so forth.) The Ethernet twisted-
pair interfaces from the IEEE are common implementations of the physical layer that
includes all these elements.

30 PART I Networking Basics

There are other things that the physical layer must determine, or be confi gured to
expect.

Data rate—This transmission rate is the number of bits per second that can be
sent. It also defines the duration of a symbol on the wire. Symbols usually
represent one or more bits, although there are schemes in which one bit is
represented by multiple symbols.

Bit synchronization—The sender and receiver must be synchronized at the sym-
bol level so that the number of bits expected per unit time is the same. In other
words, the sender and receiver clocks must be synchronized (timing is in the
millisecond or microsecond range). On modern links, the timing information is
often “recovered” from the received data stream.

Configuration—So far we’ve assumed simple point-to-point links, but this is not
the only way that systems are connected. In a multipoint configuration, a link
connects more than two devices, and in a multisystem bus/broadcast topol-
ogy such as a LAN, the number of systems can be very high.

Topology—The devices can be arranged in a number of ways. In a full mesh topol-
ogy, all devices are directly connected and one hop away, but this requires a
staggering amount of links for even a modest network. Systems can also be
arranged as a star topology, with all systems reachable through a central system.
There is also the bus (all devices are on a common link) and the ring (devices
are chained together, and the last is linked to the first, forming a ring).

Mode—So far, we’ve only talked about one of the systems as the sender and the
other as the receiver. This is operation in simplex mode, where a device can
only send or receive, such as with weather sensors reporting to a remote

Data Link Layer

Physical
Layer

Physical
Layer

Data Link Layer

Transmission
Framing

Transmission Media

“bit pipe”

010101011100101010101010101011110 10110 010101011100101010101010101011110 10110

FIGURE 1.12

The physical layer. The transmission framing bits are used for transmission media purposes only,
such as low-level control.

CHAPTER 1 Protocols and Layers 31

weather station. More realistic devices use duplex mode, where all systems
can send or receive with equal facility. This is often further distinguished as
half-duplex (the system can send and receive, but not at the same time) and
full-duplex (simultaneous sending and receiving).

The Data Link Layer
Bits are just bits. With only a physical layer, System A has no way to tell System B, “Get
ready some bits,” “Here are the bits,” and “Did you get those bits okay?” The data link
layer solves this problem by organizing the bit stream into a data unit called a frame.

It is important to note that frames are the data link layer PDUs, and these are not the
same as the physical layer transmission frames mentioned in the previous section. For
example, network engineers often speak about T1 frames or SONET frames, but these
are distinct from the data link layer frames that are carried inside the T1 or SONET
frames. Transmission frames have control information used to manage the physical link
itself and has little to do directly with process-to-process communications. This “dou-
ble-frame” arrangement might sound redundant, but many transmission frames origi-
nated with voice because digitized voice has no framing at the “data link” layer.

The data link layer moves bits across the link and can add reliability to the raw com-
munications link. The data link layer can be very simple, or make the link appear error-
free to the layer above, the network layer. The data link layer usually adds both a header
and trailer to the data presented by the network layer. This is shown in Figure 1.13.

The frame header typically contains a source and destination address (known as the
“physical address” since it refers to the physical communication port) and some con-
trol information. The control information is data passed from one data link layer to the

From Network Layer

To Physical Layer From Physical Layer

To Network Layer

Frame
Trailer

Frame
Header

Trl HdrData Link Layer Data Trl HdrData Link Layer Data

Frame

FIGURE 1.13

The data link layer, showing that data link layer frames have both header and trailer.

32 PART I Networking Basics

other data link layer, and not user data. The body of the frame contains the sequence of
bits being transferred across the network. The trailer usually contains information used
in detecting bit errors (such as cyclical redundancy check [CRC]). A maximum size is
associated with the frame that cannot be exceeded because all systems must allocate
memory space (buffers) for the data. In a networking context, a buffer is just special
memory allocated for communications.

The data link layer performs framing, physical addressing, and error detection
(error correction is another matter entirely, and can be handled in many ways, such
as by resending a copy of the frame that had the errors). However, when it comes to
frame error detection and correction in the real world, error detection bits are some-
times ignored and frames that defy processing due to errors are simply discarded. This
does not mean that error detection and correction are not part of the data link layer
 standards: It means that in these cases, ignoring and discarding are the chosen meth-
ods of implementation. In discard cases, the chore of handling the error condition is
“pushed up the stack” to a higher layer protocol.

This layer also performs access control (this determines whose turn it is to send
over or control the link, an issue that becomes more and more interesting as the
number of devices sharing the link grows). In LANs, this media access control (MAC)
forms a sublayer of the data link layer and has its own addressing scheme known (not
surprisingly) as the MAC layer address or MAC address. We’ll look at MAC addresses
in the next chapter. For now, it is enough to note that LANs such as Ethernet do not
have “real” physical layer addresses and that the MAC address performs this addressing
function.

In addition, the data link layer can perform some type of fl ow control. Flow control
makes sure senders do not overwhelm receivers: a receiver must have adequate time
to process the data arriving in its buffers. At this layer, the fl ow control, if provided, is
link-by-link. (We’ll see shortly that end-to-end—host-to-host—fl ow control is provided
by the transport layer.) LANs do not usually provide fl ow control at the data link layer,
although they can.

Not all destination systems are directly reachable by the sender. This means that
when bits at the data link layer are sent from an originating system, the bits do not arrive
at the destination system as the “next hop” along the way. Directly reachable systems
are called adjacent systems, and adjacent systems are always “one hop away” from the
sender. When the destination system is not directly reachable by the sender, one or
more intermediate nodes are needed. Consider the network shown in Figure 1.14.

Now the sender (System A) is not directly connected to the receiver (System B).
Another system, System 3, receives the frame and must forward it toward the
destination. This system is usually called a switch or router (there are even other names),
depending on internal architecture and network role. On a WAN (but not on a LAN),
this second frame is a different frame because there is no guarantee that the second
link is identical to the fi rst. Different links need different frames. Identical frames are
only delivered to systems that are directly reachable, or adjacent, to the sender, such as
by an Ethernet switch on a LAN.

CHAPTER 1 Protocols and Layers 33

Frames

Bits

Data Link

Physical

End System A

End System B

Intermediate
System 1

Intermediate
System 2

Intermediate
System 3

Hop-by-Hop
Forwarding

Hop-by-Hop
Forwarding

Hop-by-Hop
Forwarding

End System C

FIGURE 1.15

Hop-by-hop forwarding of frames. The intermediate systems also have a Layer 3, but this is not
shown in the fi gure for clarity.

Networking with intermediate systems is called hop-by-hop delivery. A “hop” is the
usual term used on the Internet or a router network to indicate the forwarding of a
packet between one router or another (or between a host and router). Frames can “hop”
between Layer 2 switches, but the term is most commonly used for Layer 3 router hops
(which can consist of multiple switch-to-switch frame “hops”). There can be more than
one intermediate system between the source and destination end systems, of course,
as shown in Figure 1.15. Consider the case where End System A is sending a bit stream
to End System C.

System A
(sender)

System 3
(switch/router)

System B
(receiver)

A Frame A Different
Frame

Send “STUFF”
to System B

Intermediate
System

I got “STUFF”
from System A

FIGURE 1.14

A more complex network. Note that the frames are technically different even if the same medium
is used on both links.

34 PART I Networking Basics

Note that the intermediate systems (routers) have two distinct physical and data link
layers, refl ecting the fact that the systems have two (and often more) communication
links, which can differ in many ways. (The fi gure shows a typical WAN confi guration
with point-to-point links, but routers on LANs, and on some types of public data service
WANs, can be deployed in more complicated ways.)

However, there is something obviously missing from this fi gure. There is no con-
nection between the data link layers on the intermediate systems! How does the
router know to which output port and link to forward the data in order to ultimately
reach the destination? (In the fi gure, note that Intermediate System 1 can send data to
either Intermediate System 2 or Intermediate System 3, but only through Intermediate
 System 3, which forwards the data, is the destination reachable.)

These forwarding decisions are made at the TCP/IP network layer.

The Network Layer
The network layer delivers data in the form of a packet from source to destination,
across as many links as necessary. The biggest difference between the network layer
and the data link layer is that the data link layer is in charge of data delivery between
adjacent systems (directly connected systems one hop away), while the network layer
delivers data to systems that are not directly connected to the source. There can be
many different types of data link and physical layers on the network, depending on the
variety of the link types, but the network layer is essentially the same on all systems,
end systems, and intermediate systems alike.

Figure 1.16 shows the relationship between the network layer and the transport
layer above and the data link layer below. A packet header is put in place at the sender
and interpreted by the receiver. A router simply looks at the packet header and makes
a forwarding decision based on this information. The transport layer does not play a
role in the forwarding decision.

From Transport Layer

To Data Link Layer From Data Link Layer

Network Layer Data Network Layer Data

Packet
Header

NH NH

Packet

To Transport Layer

FIGURE 1.16

The network layer. These data units are packets with their own destination and source address
formats.

CHAPTER 1 Protocols and Layers 35

How does the network layer know where the packet came from (so the sender can
reply)? The key concept at the network layer is the network address, which provides
this information. In TCP/IP, the network address is the IP address.

Every system in the network receives a network address, whether an end system
or intermediate system. Systems require at least one network address (and sometimes
many more). It is important to realize that this network address is different from, and
independent of, the physical address used by the frames that carry the packets between
adjacent systems.

Why should the systems need two addresses for the two layers? Why can’t they
just both use either the data link (“physical”) address or the network address at
both layers? There are actually several reasons. First, LAN addresses like those used
in Ethernet come from one group (the IEEE), while those used in TCP/IP come
from another group (ICANN). Also, the IP address is universally used on the Inter-
net, while there are many types of physical addresses. Finally, there is no systematic
assignment of physical addresses (and many addresses on WANs can be duplicates
and so have “local signifi cance only”). On the other hand, IP network addresses are
globally administered, unique, and have a portion under which many devices are
grouped. Therefore, many devices can be addressed concisely by this network por-
tion of the IP address.

A key issue is how the network addresses “map” to physical addresses, a process
known generally as address resolution. In TCP/IP, a special family of address resolution
protocols takes care of this process.

The network address is a logical address. Network addresses should be organized so
that devices can be grouped under a part of that address. In other words, the network
address should be organized in a fashion similar to a telephone number, for example,
212-555-1212 in the North American public switched telephone network (PSTN). The
sender need only look at the area code or “network” portion of this address (212) to
determine if the destination is local (area codes are the same) or needs to be sent to
an intermediate system to reach the 212 area code (source and destination area codes
differ).

For this scheme to work effectively, however, all telephones that share the 212 area
code should be grouped together. The whole telephone number beginning with 212
therefore means “this telephone in the 212 area code.” In TCP/IP, the network address
is the beginning of the device’s complete IP address. A group of hosts is gathered under
the network portion of the IP address. IP network addresses, like area codes, are glob-
ally administered to prevent duplication, while the rest of the IP address, like the rest
of the telephone number, is locally administered, often independently.

In some cases, the packet that arrives at an intermediate system inside a frame is too
large to fi t inside the frame that must be sent out. This is not uncommon: different link
and LAN types have different maximum frame sizes. The network layer must be able
to fragment a data unit across multiple frames and reassemble the fragments at the
destination. We’ll say more about fragmentation in a later chapter.

36 PART I Networking Basics

End System A

End System B

Hop-by-Hop
Forwarding

Hop-by-Hop
Forwarding

Network Packets

Frames

Bits

Data Link

Physical

Hop-by-Hop
Forwarding

Intermediate
System 1

Intermediate
System 2

Intermediate
System 3

End System C

End-to-End
Delivery

The network layer uses one or more routing tables to store information about
reachable systems. The routing tables must be created, maintained, and purged of old
information as the network changes due to failures, the addition or deletion of systems
and links, or other confi guration changes. This whole process of building tables to pass
data from source to destination is called routing, and the use of these tables for packet
delivery is called forwarding. The forwarding of packets inside frames always takes
place hop by hop. This is shown in Figure 1.17, which adds the network layer to the
data link layers already present and distinguishes between hop-by-hop forwarding and
end-to-end delivery.

On the Internet, the intermediate systems that act at the packet level (Layer 3)
are called routers. Devices that act on frames (Layer 2) are called switches, and some
older telephony-based WAN architectures use switches as intermediate network nodes.
Whether a node is called a switch or router depends on how they function internally.

FIGURE 1.17

Source-to-destination delivery at the network layer. The intermediate systems now have all three
required layers.

CHAPTER 1 Protocols and Layers 37

In a very real sense, the network layer is at the very heart of any protocol stack, and
TCP/IP is no exception. The protocol at this layer is IP, either IPv4 or IPv6 (some think
that IPv6 is distinct enough to be known as TCPv6/IPv6).

The Transport Layer
Process-to-process delivery is the task of the transport layer. Getting a packet to the
destination system is not quite the same thing as determining which process should
receive the packet’s content. A system can be running fi le transfer, email, and other
network processes all at the same time, and all over a single physical interface. Natu-
rally, the destination process has to know on which process the sender originated the
bits inside the packet in order to reply. Also, systems cannot simply transfer a huge
 multimegabit fi le all in one packet. Many data units exceed the maximum allowable
size of a packet.

This process of dividing message content into packets is known as segmentation. The
network layer forwards each and every packet independently, and does not recognize
any relationship between the packets. (Is this a fi le transfer or email packet? The net-
work layer does not care.) The transport layer, in contrast, can make sure the whole
message, often strung out in a sequence of packets, arrives in order (packets can be
delivered out of sequence) and intact (there are no errors in the entire message). This
function of the transport layer involves some method of fl ow control and error con-
trol (error detection and error correction) at the transport layer, functions which are
absent at the network layer. The transport-layer protocol that performs all of these
functions is TCP.

The transport-layer protocol does not have to do any of this, of course. In many
cases, the content of the packet forms a complete unit all by itself, called a datagram.
(The term “datagram” is often used to refer to the whole IP packet, but not in this book.)
Self-contained datagrams are not concerned with sequencing or fl ow control, and these
functions are absent in the User Datagram Protocol (UDP) at the transport layer.

So there are two very popular protocol packages at the transport layer:

■ TCP—This is a connection-oriented, “reliable” service that provides ordered
 delivery of packet contents.

■ UDP—This is a connectionless, “unreliable” service that does not provide
ordered delivery of packet contents.

In addition to UDP and TCP, there are other transport-layer protocols that can be used
in TCP/IP, all of which differ in terms of how they handle transport-layer tasks. Devel-
opers are not limited to the standard choices for applications. If neither TCP nor UDP
nor any other defi ned transport-layer service is appropriate for your application, you
can write your own transport-layer protocols and get others to adapt it (or use your
application package exclusively).

38 PART I Networking Basics

In TCP/IP, it is often said that the network layer (IP itself) offers an “unreliable” or
“best effort” service, while the transport layer adds “reliability” in the form of fl ow and
error control. Later in this book, we’ll see why these terms are unfortunate and what
they really mean.

The network layer gets a single packet to the right system, and the transport
 layer gets the entire message to the right process. Figure 1.18 shows the transport
layer breaking up a message at the sender into three pieces (each labeled “TL data” for
 transport-layer data and “TH” for transport-layer header). The fi gure then shows the
transport layer reassembling the message at the receiver from the various segments that
make up a message. In TCP/IP, there are also data units known as datagrams, which are
always handled as self-contained units. There are profound differences between how
the transport layer treats segments and datagrams, but this fi gure is just a general illus-
tration of segment handling.

The functions that the transport layer, which in some protocols is called the end-to-
end layer, might have to include follow:

Process addressing and multiplexing—Also known as “service-point addressing,”
the transport layer has to decide which process originated the message and to
which process the message must be delivered. These are also known as port
addresses in TCP/IP. Port addresses are an important portion of the application
socket in TCP/IP.

Segment handling—In cases where each message is divided into segments, each
segment has a sequence number used to put the message back together at the
destination. When datagrams are used, each data unit is handled independently
and sequencing is not necessary.

From Application Layer To Application Layer

To Network Layer

TL data TH

Segments

TL data TL dataTH TH TL data

Chunk of Data

TH

2

From Network Layer

Chunk of Data

TL data TH

3
TL data TH

1

FIGURE 1.18

The transport layer, showing how data are broken up if necessary and reassembled at the
 destination.

CHAPTER 1 Protocols and Layers 39

Connection control—The transport layer can be connectionless or connec-
tion-oriented (in fact, several layers can operate in either one of these ways).
 Connectionless (CL) layers treat every data unit as a self-contained, independent
unit. Connection-oriented (CO) layers go through a three-phase process every
time there is data to send to a destination after an idle period (connection
durations can vary). First, some control messages establish the connection,
then the data are sent (and exchanged if replies are necessary), and finally the
connection is closed. Many times, a comparison is made between a telephone
conversation (“dial, talk, hang up”) with connections and an intercom (“push
and talk any time”) for connectionless communications, but this is not precise.
Generally, segments are connection-oriented data units, and datagrams are con-
nectionless data units.

Flow control—Just as with the data link layer, the transport layer can include flow
control mechanisms to prevent senders from overwhelming receivers. In this
case, however, the flow control is end-to-end rather than link-by-link. Data-
grams do not require this service.

Error control—This is another function that can be performed at the data link
layer, but again end-to-end at the transport layer rather than link-by-link. Com-
munications links are not the only source of errors, which can occur inside a
system as well. Again, datagrams do not require this service.

Figure 1.19 shows the relationship between the network layer and transport layer
more clearly. The network layer operates from network interface to network interface,
while the transport layer is more specifi c and operates from process to process.

Process on System A Process on System B

Internetwork
(for example, the Internet)

Network Layer
End-to-End Delivery

Transport Layer
 Process-to-Process Delivery

FIGURE 1.19

Reliable process-to-process delivery with the transport layer.

40 PART I Networking Basics

The Application Layer
It might seem that once data are transferred from end-system process to end-system
process, the networking task is pretty much complete. There is a lot that still needs
to be done at the application level itself. In models of protocol stacks, it is common
to place another layer between the transport layer and the user, the application layer.
However, the TCP/IP protocol stack really stops at the transport layer (where TCP and
UDP are). It is up to the application programmer to decide what should happen at the
client and server level at that point, although there are individual RFCs for guidance,
such as for FTP.

Although it is common to gather these TCP/IP applications into their own layer,
there really is no such thing in TCP/IP as an application layer to act as some kind of
“glue” between the application’s user and the network.

In nearly all TCP/IP stacks, the application layer is part of the application process.
In spite of the lack of a defi ned layer, a TCP/IP application might still have a lot to do,
and in some ways the application layer is the most complex “layer” of all.

There are two major tasks that the application often needs to accomplish: session
support and conversion of internal representation. Not all applications need both, of
course, and some applications might not need either, but this overview includes both
major functions.

Session Support
A session is a type of dialog controller between two processes that establishes, main-
tains, and synchronizes (controls) the interaction (dialog). A session decides if the com-
munication can be half-duplex (both ends take turns sending) or full-duplex (both
ends can send whenever they want). It also keeps a kind of “history” of the interaction
between endpoints, so that when things go wrong or when the two communicate
again, some information does not have to be resent.

In practical terms, the session consists of all “state variables” necessary to construct
the history of the connection between the two devices. It is more diffi cult, but not
impossible, to implement sessions in a connectionless environment because there is
no easy way to associate the variables with a convenient label.

Internal Representation Conversion
The role of internal representation conversion is to make sure that the data exchange
over the network is useful to the receivers. If the internal representation of data dif-
fers on the two systems (integer size, bit order in memory, etc.), the application layer
translates between the formats so the application program does not have to. This layer
can also provide encryption and compression functions, although it is more common
to implement these last two functions separately from the network.

Standard protocol specifi cations can use the Abstract Syntax Notation 1 (ASN.1)
defi nitions for translation purposes. ASN.1 can be used in programming, network

CHAPTER 1 Protocols and Layers 41

 management, and other places. ASN.1 defi nes various things such as which bit is “fi rst
on the wire” regardless of how it is stored internally, how many bits are to be sent for
the numbers 0 through 255 (8), and so on. Everything can be translated into ASN.1, sent
across the network, and translated back to whatever internal format is required at the
destination.

The role of internal representation conversion is shown in Figure 1.20. The fi gure
shows four sequential memory locations, each storing the letter “a” followed by the
integer 259. Note that not only are there differences between the amount of memory
addressed at once, but also in the order of the bits for numerics.

In some protocol stacks, the application program can rely on the services of a fully
functional conversion for internal representation to perform these services. However,
in TCP/IP, every network application program must do these things for itself.

Applications in TCP/IP
TCP/IP does not provide session or presentation services directly to an application.
Programmers are on their own, but this does not mean they have to create everything
from scratch. For example, applications can use a character-based presentation ser-
vice called the Network Virtual Terminal (NVT), part of the Internet’s telnet remote
access specifi cation. Other applications can use Sun’s External Data Representation
(XDR) or IBM’s (and Microsoft’s) NetBIOS programming libraries for presentation
services. In this respect, there are many presentation layer services that TCP/IP can
use, but there is no formal presentation service standard in TCP/IP that all applica-
tions must use.

Host TCP/IP implementations typically provide a range of applications that provide
users with access to the data handled by the transport-layer protocols. These appli-
cations use a number of protocols that are not part of TCP/IP proper, but are used
with TCP/IP. These protocols include the Hyper-Text Transfer Protocol (HTTP) used by
Web browsers, the Simple Message Transfer Protocol (SMTP) used for email, and many
 others.

Architecture A

a

00000001

00000011

a

00000001

text “a”

integer 259
00000011

Architecture B

FIGURE 1.20

Internal representation differences. Integers can have different bit lengths and can be stored
 differently in memory.

42 PART I Networking Basics

In TCP/IP, the application protocol, the application service, and the user application
itself often share the same name. The fi le transfer protocol in TCP/IP, called FTP, is at
once an application protocol, an application service, and an application run by a user.
It can sometimes be confusing as to just which aspect of FTP is under discussion.

The role of TCP/IP applications is shown in Figure 1.21. Note that this “layer” sits on
top of the TCP/IP protocol stack and interfaces with programs or users directly.

Some protocols provide separate layers for sessions, internal representation
 conversion, and application services. In practice, these are seldom implemented
 independently. It just makes more sense to bundle them together by major application,
as in TCP/IP.

THE TCP/IP PROTOCOL SUITE
To sum up, the fi ve layers of TCP/IP are physical, data link, network, transport, and
application. The TCP/IP stack is a hierarchical model made up of interactive mod-
ules. Each module provides a specifi c function. In TCP/IP, the layers contain rela-
tively independent protocols that can be “mixed and matched” depending on the
needs of the system to provide whatever function is desired. TCP/IP is hierarchical
in the sense that each higher layer protocol is supported by one or more lower layer
 protocols.

Figure 1.22 maps some of the protocols used in TCP/IP to the various layers of TCP/IP.
Every protocol in the fi gure will be discussed in this book, most in chapters all their own.

From User

HTTP NVT (others) HTTP NVT (others)

Application Data

Content of Segment or Datagram

To Transport Layer From Transport Layer

To User

Application Data

SMTPSMTP

FIGURE 1.21

TCP/IP applications, showing how multiple applications can all share the same network
 connection.

CHAPTER 1 Protocols and Layers 43

FTP DNS SSH SNMP

DHCPTFTPHTTP

Application

Transport

Network

IPv4

IPv6 IPSec

ARP RARP

Protocols and Links Determined by Underlying Network
(includes SLIP and PPP)

Data Link

Physical

IP NAT IP Support
Protocols:
ICMPv4
ICMPv6
Neighbor
Discovery

Routing
Protocols:
RIP, OSPF,

BGP

UDP TCP Others

SMTP

FIGURE 1.22

TCP/IP protocols and layers. Note the position of some protocols between layers.

With few exceptions, the TCP/IP protocol suite does not really defi ne any low-level
protocols below the network layer. TCP/IP usually specifi es how to put IP packets into
frames and how to get them out again. Many RFCs defi ne IP mapping into these lower-
layer protocols. We’ll talk more about this mapping process in Chapter 2.

44 PART I Networking Basics

QUESTIONS FOR READERS
Refer to Figure 1.23 to help you answer the following questions.

Device A

5 Application

4-5 Interface

3-4 Interface

2-3 Interface

1-2 Interface

2-3Interface

1-2Interface

2-3Interface

1-2Interface

Transport

Application

Transport

Network

Data Link

Physical

Network

Representation Differences Addressed

Process-to-Process Communication

Physical Communication Links Supporting Communication between Peer Processess

Data Link

Physical

Network

Data Link

Physical

Network

Data Link

Physical

4

3
L3

L2

L1

L3

L2

L1

2

1

5

4

3

2

1

Device B

Intermediate
System (node)

Intermediate
System (node)

L3

L2

L1

4-5Interface

3-4Interface

2-3Interface

1-2Interface

FIGURE 1.23

Summary of layered communications.

1. What are the differences between network-layer delivery and transport-layer
delivery?

2. What are the main characteristics of a peer-to-peer process?

3. What are port addresses, logical addresses, and physical addresses?

4. What are the functions of the data link layer in the Internet model?

5. Which two major types of services can be provided at the application “layer”?

45

CHAPTER

What You Will Learn
In this chapter, you will learn more about the TCP/IP protocol stack and the tools
used in this book to investigate the Illustrated Network. We’ll look at more details of
TCP/IP and explore how TCP/IP devices provide internetworking from LAN to LAN.

You will learn about the types of devices used to connect LANs (such as
bridges and routers) and conclude with the concept of VLANs and Metro Ethernet
 services.

TCP/IP Protocols
and Devices 2

The LANs on the Illustrated Network, including the LAN in the home offi ce, are
 connected using routers as the network nodes. Each LAN forms a discrete network by
itself, with its own clients and servers. When previously separate LANs are connected,
or a previously complete LAN is segmented, the result is often called an internetwork.

Routers can be used to build an internetwork of LANs, but this is not the only way.
Routers operate at the packet layer (Layer 3 of the TCP/IP model), and LANs can be
linked or segmented at other layers of a protocol stack as well. Some routers can also
function at these other layers, as the routers on the Illustrated Network can (i.e., rout-
ers often include functions other than pure routing). However, in many cases, different
devices are used to link and segment LANs, devices that are not really routers at all.

This chapter will take a closer look at the Illustrated Network in several areas. First,
we’ll take a closer look at the individual layers and protocols that make up the TCP/IP
protocol stack. Then, we’ll investigate how devices handle internetworking from LAN
to LAN at each protocol layer. Finally, we’ll describe some other devices or methods
that can be used between LANs, ending with a concept known as a virtual LAN or
VLAN. VLANs are used by service providers to support a service known as Metropoli-
tan Ethernet or Metro Ethernet.

Figure 2.1 shows the areas of the Illustrated Network we will be investigating in this
chapter. The protocol stacks and layers run mainly on the host clients and servers, so
the devices on the two LANs are shaded, along with the customer edge routers. We’ll
also mention the Gigabit Ethernet links and a Metro Ethernet, so those are highlighted
as well.

FIGURE 2.1

Internetworking on the Illustrated Network LAN. Note that there are two geographically
separate LANs in New York and Los Angeles that must communicate.

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80:205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65459

Wireless
in Home

Solid rules � SONET/SDH
Dashed rules � Gig Ethernet
Note: All links use 10.0.x.y
addressing...only the last
two octets are shown.

48 PART I Networking Basics

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80:205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC: 00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

ge-0/0/3

16.2

ge-0/0/3

16.1

Best ISP

AS 65127

Global Public
Internet

CHAPTER 2 TCP/IP Protocols and Devices 49

Each host in Figure 2.1 has three types of addresses associated with the interface
 connected to the LAN. The fi rst is the IPv4 address. For example, the LAN interface on
host lnxserver is eth0 and the IPv4 address is 10.10.11.66. The next address is the
hardware address, or MAC address on a LAN: 00:d0:b7:1f:fe:e6. Finally, each host
lists the link-local IPv6 address based on this MAC address, or fe80::2d0:b7ff:fe1f:
fee6 for lnxserver. We’ll talk more about IPv4 and IPv6 addressing and packets in
Chapters 4 through 6.

PROTOCOL STACKS ON THE ILLUSTRATED NETWORK
LANs on the Illustrated Network send and receive frames, mainly Ethernet II frames.
Inside the frames are the packets that fl ow from source to destination. The packets, and
the messages inside the packets, are formatted according to the individual protocols
that make up the TCP/IP protocol stack.

What major TCP/IP protocols are used on the Illustrated Network? Ethereal has a
convenient summary screen that displays whenever Ethereal is capturing packets. Let’s

FIGURE 2.2

Ethereal capture summary, showing the number of packets used by different protocols. Often a
very few types predominate.

50 PART I Networking Basics

run Ethereal on wincli2 and see what kind of protocols we capture when we remotely
access router CE6 and fi nd the IP address associated with winsrv1. The summary screen
is shown in Figure 2.2.

Most of the packets we have captured contain TCP. There are a couple from the
User Datagram Protocol (UDP) and Address Resolution Protocol (ARP). The relation-
ship between Ethernet II frames, IP packets, and these protocols is clearer when we
look at the Ethereal protocol hierarchy statistics screen, as shown in Figure 2.3.

It is easy to see in the fi gure that all of the frames are Ethernet (II) frames, and that
all but 3 of the 73 packets captured are IP packets. The 70 IP packets include 67 TCP
packets and 3 UDP packets. We’ll explore more about how all of these protocols fi t
together in this chapter.

LAYERS, PROTOCOLS, PORTS, AND SOCKETS
We’ll take a closer look at frames in Chapter 3. For now, all we need to know is that
layered protocols like TCP/IP function in a specifi c way. Frames are sent on LANs and
inside the frame are packets. The packets carry the information from device to device.
This information can be application data, but there are also packets that perform con-
trol and administrative tasks as well as data transfer.

Layering is not a magical solution to network protocol implementation. There
is usually only one network interface on a host, so all applications must share this
 common interface, which has the network (IP) address. But how are arriving packets
distributed to the proper application? The packets are all for this IP address, but which
application layer process gets the information inside the packet?

The transport-layer protocol that should process the information inside the packet
is indicated by the value in the protocol fi eld of the IPv4 header. (We’ll talk about IPv4
now, and detail the fi elds in the IPv4 and IPv6 headers in a later chapter.)

FIGURE 2.3

Ethereal protocol hierarchy statistics. We’ll be working almost exclusively with Ethernet frames
on the Illustrated Network, but not always.

CHAPTER 2 TCP/IP Protocols and Devices 51

Inside the transport layer data unit, the receiving application is indicated by the
port number in the transport layer header (again, we’ll discuss these header fi elds in
full in later chapters). By looking at the protocol and port fi elds, the TCP/IP stack at the
destination knows which application gets the information. If two applications try to
use the same port at the same time, this is an error condition.

Another important application layer concept in TCP/IP is the socket. A socket is the
combination of the IP address and port number. We’ve already seen that this combina-
tion will uniquely identify an application. The socket is also the way that programmers
often write networking application, using the socket as a kind of entry point to the
other layers of the protocol stack. Often, sockets are built into the application program-
ming interface (API).

An API is an important part of the application layer interface, but not all APIs are
socket-based. Sockets are not even tied to the protocols themselves. Sockets and ports
are important enough in TCP/IP to merit a detailed examination in a later chapter
of this book. For now, we’ll just look where the port number is carried and how the
socket identifi er is determined.

How can we fi nd the port and socket in an IP packet inside an Ethernet frame? Let’s
use Ethereal to fi nd them.

First, we’ll use a little “echo” client and server utility on the Linux hosts to generate
the frames for this exercise. (Note: This “echo” utility is not the same as the /bin/echo
program on Linux systems.) We can invoke the server on the lnxserver host and use
the client to send a simple string to be echoed back by the server process. We’ll use
Tethereal (the text version of Ethereal) this time, just to show that the same information
is available in either the graphical or text-based version.

First, we’ll run the Echo server process, which normally runs on port 7, on port 55555.
This will help us easily locate the data we are looking for in the Ethereal capture.

[root@lnxserver admin]# . /echo 55555

We have to run Tethereal on each end as well, if we want to compare frames. The
command is the same on the client and server. We’ll use the verbose (–V) switch to see
the MAC layer information as packets arrive.

[root@lnxclient admin]# /usr/sbin/tethereal –V
Capturing on eth0

Now we can invoke the Echo client to bounce the string TESTING123 off the server
process.

[root@lnxclient admin]# . /echo 10.10.11.66 TESTING123 55555
Received: TESTING123
[root@lnxclient admin]#

52 PART I Networking Basics

What did we get? Let’s look at the frames leaving the client. We only need to examine
the information pertaining to the port and socket. Only one of the frames captured is
shown.

[root@lnxclient admin]# /usr/sbin/tethereal –V
Capturing on eth0

. . .

Frame 4 (52 bytes on wire, 52 bytes captured)
 Arrival Time: May 16, 2008 13:32:59.702046000
 Time delta from previous packet: 57.243134000 seconds
 Time relative to first packet: 62.239970000 seconds
 Frame Number: 4
 Packet Length: 52 bytes
 Capture Length: 52 bytes
Ethernet II, Src: 00:b0:d0:45:34:64, Dst: 00:05:85:8b:bc:db
 Destination: 00:05:85:8b:bc:db (Juniper__8b:bc:db)
 Source: 00:b0:d0:45:34:64 (Dell_45:34:64)
 Type: IP (0x0800)
Internet Protocol, Src Addr: 10.10.12.166 (10.10.12.166), Dst Addr: 10.10.11.66
(10.10.11.66)
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
 0000 00.. = Differentiated Services Codepoint: Default (0x00)
0. = ECN-Capable Transport (ECT): 0
0 = ECN-CE: 0
 Total Length: 38
 Identification: 0x0000
 Flags: 0x04
 .1.. = Don't fragment: Set
 ..0. = More fragments: Not set
 Fragment offset: 0
 Time to live: 64
 Protocol: UDP (0x11)
 Header checksum: 0x0ecc (correct)
 Source: 10.10.12.166 (10.10.12.166)
 Destination: 10.10.11.66 (10.10.11.66)
User Datagram Protocol, Src Port: 32825 (32825), Dst Port: 55555 (55555)
 Source port: 32825 (32825)
 Destination port: 55555 (55555)
 Length: 18
 Checksum: 0x1045 (correct)
Data (10 bytes)
0000 54 45 53 54 49 4e 47 31 32 33 TESTING123

CHAPTER 2 TCP/IP Protocols and Devices 53

Let’s look at the fi elds that are emphasized. First, we have captured an Ethernet II
frame with an IPv4 packet inside. The frame’s type fi eld value of 0x800 determines this.
In the IP packet, the message from the client to the server, which starts on the next
line, the source address is 10.10.12.166 (lnxclient) and the destination address is
10.10.11.66 (lnxserver), as they should be.

We can ignore the rest of the IP header fi elds for now, and skip down to where the
source and destination port are highlighted. The source port chosen by the client is
32825 and the port on the server that will receive the data is 55555. We decided that
55555 would be the server port, and the client chose a port number to use based on
certain rules, which we will talk about in a later chapter.

Now that we know the IP addresses and ports used, we can determine the socket
at each host. This is shown in Table 2.1.

THE TCP/IP PROTOCOL STACK
The layering of TCP/IP is important if IP packets are to run on almost any type of
 network. The IP packet layer is only one layer, and from the TCP/IP perspective, the
layer or layers below the IP layer are not as important as the overall fl ow of packets
from one host (end system) to another across the network.

Layering means that you only have to adapt one type of packet to an underlying net-
work type to get the entire TCP/IP suite. Once the packet has been “framed,” you need
not worry about TCP/UDP, or any other protocol: they come along for the ride with the
layering. Only the IP layer has to deal with the underlying hardware.

All that really matters is that the device at the receiving end understands the type of
IP packet encapsulation used at the sending end. If only one form of packet encapsula-
tion was used, the IP packets could remain inside the frame with a globally unique MAC
address from source to destination. Network nodes could forward the frame without
having to deal with the packet inside. We’ll talk more about the differences between
forwarding frames and forwarding packets later on in this book.

TCP/IP is considered to be a peer protocol stack, which means that every implemen-
tation of TCP/IP is considered to have the same capabilities as every other. There are
no “restricted” or “master” versions of TCP/IP that anyone need be concerned about. So,
for example, there is no special server stack needed.

However, this does not mean that all protocol stacks function in precisely the same
way. TCP/IP, like many other protocol stacks, is implemented according to a model
known as the client–server model.

Table 2.1 Port and Sockets

Value Inxclient lnxserver

IP address 10.10.12.166 10.10.11.66

Port 32825 55555

Socket 10.10.12.166:32825 10.10.11.66:55555

54 PART I Networking Basics

THE CLIENT–SERVER MODEL
The hosts that run TCP/IP usually fall into one of two major categories: The host
could be client or the host could be a server. However, this is mostly an application-
layer model issue because most computers are fully multitasking-capable today. It
is possible that the same host could be running the client version of a program for
one application (e.g., the Web browser) and the server version of another program
(e.g., a fi le transfer server) at the same time. Dedicated servers are most common
on the Internet, but almost all client computers can act as servers for a variety of
 applications. The details are not as important as the interplay among layers and
 applications.

Peer-to-Peer Models
The client–server model is not the only way to implement a protocol stack. Many
applications implement a peer-to-peer model. Peer applications have exactly the
same capabilities whether used as a client or as a server. Distributed fi le-sharing
systems on the Internet typically function as both client (fetching fi les for the
user) and as a server (allowing user fi les to be shared by others).

The differences between client–server and peer-to-peer models are mainly appli-
cation layer differences. A desktop computer that runs a Web browser and has fi le
sharing turned on is both client and server, but is not now peer-to-peer. As an aside,
in X-windows, which is not discussed in this book, the terms “client” and “server”
are actually reversed and users sit in front of “X-servers” and access “X-clients.”

TCP/IP LAYERS AND CLIENT–SERVER
TCP/IP has fi ve layers. The bottom layers are the physical layer and underlying net-
work layer. The underlying network technologies at the network layer are the topic of
the next chapter. Above the data link layer is the IP layer itself. The IP layer forms and
routes the IP packet (also called a datagram in a lot of documentation) and IP is the
major protocol at this layer.

The transport layer of TCP/IP consists of two major protocols: the Transmission
Control Protocol (TCP) and the User Datagram Protocol (UDP). TCP is a reliable layer
added on top of the best-effort IP layer to make sure that even if packets are lost in
transit, the hosts will be able to detect and resend missing information. TCP data units
are called segments. UDP is as best-effort as IP itself, and UDP data units are called
datagrams. The messages that applications exchange are made up of strings of seg-
ments or datagrams. Segments and datagrams are used to chop up application content,
such as huge, multimegabyte fi les, into more easily handled pieces.

TCP is reliable in the sense that TCP always resends corrupt or lost segments. This
strategy has many implications for delay-sensitive applications such as voice or video.

CHAPTER 2 TCP/IP Protocols and Devices 55

TCP is a connection-oriented layer on top of the connectionless IP layer. This means
that before any TCP segment can be sent to another host, a TCP connection must be
established to that host. Connectionless IP has no concept of a connection, and simply
forwards packets without any understanding if the packets ever really got where they
were going.

In contrast to TCP, UDP is a connectionless transport layer on top of connectionless
IP. UDP segments are simply forwarded to a destination under the assumption that
sooner or later a response will come back from the remote host. The response forms
an implied or formal acknowledgment that the UDP segment arrived.

At the top of the TCP/IP stack is the application, or application services, layer. This is
where the client–server concept comes into play. The applications themselves typically
come in client or server versions, which is not true at other layers of TCP/IP. While a
host computer might be able to run client processes and server processes at the same
time, in the simplest case, these processes are two different applications.

Client–server application implementation can be extremely simple. A server process
can start and basically sit and “listen” for clients to “talk” to the server. For example, a
Web server is brought up on a host successfully whether there is a browser client
pointed at it or not. The Web server process issues a passive open to TCP/IP and essen-
tially remains idle on the network side until some client requests content. However,
the Web browser (the client) process issues an active open to TCP/IP and attempts to

Other
TCP

Client–
Server

Applica-
tions

FTP

Some
Routing
Protocols

TCP
Connection-Oriented, Reliable

UDP
Connectionless, Best-Effort

SMTP SSH NFS* SNMP DNS*
Other
UDP

Client–
Server

Applica-
tions

File
Transfer Email

Remote
Access

Remote
File

Access

Network
Manage-

ment

Name
Lookup
Service

IP (Best-effort) ICMP ARPs

Network Access and Physical Layer
(Etherent LANs or other)

*In some instances, NFS and DNS use TCP.

FIGURE 2.4

The TCP/IP protocol stack in detail. The many possible applications on top and many possible
network links on the bottom all funnel through the IP “hourglass.”

56 PART I Networking Basics

send packets to a Web site immediately. If the Web site is not reachable, that causes an
error condition.

To sum up the simplest application cases: Clients talk and servers listen (and usu-
ally reply). It is very easy to program an application that either talks or listens, although
TCP/IP specifi cations allow for the transition of passive and active open from one state
to another. We’ll talk more about client and server application and passive and active
opens in the chapter on sockets.

A more detailed look at the TCP/IP protocol stack is shown in Figure 2.4. The
TCP/IP stack bridges the gap between interface connector on the network side (hard-
ware) and the memory address space of the application on the host (software).

The names of the protocol data units used at each layer are worth reviewing. The
unit of the network layer is the frame. Inside the frame is the data unit of the IP layer,
the packet. The unit of the transport layer is the segment in TCP and datagram in
UDP. The segment or datagram by defi nition is the content of the information-bear-
ing packet. Finally, applications exchange messages. Segments and datagrams taken
together form the messages that the applications are sending to each other.

This is a good place to explore some of the operational aspects of the TCP/IP
 protocol stack above the network access (or data link) layer.

THE IP LAYER
The connectionless IP layer routes the IP packets independently through the collection
of network nodes such as routers that make up the “internetwork” that connects the
LANs. Packets at the IP layer do not follow “paths” or “virtual circuits” or anything else
set up by signaled or manually defi ned connections for packet fl ow in other types of
network layers. However, this also means that the packets’ content might arrive out of
sequence, or even with gaps in the sequence due to lost packets, at the destination.

IP does not care to which application a packet belongs. IP delivers all packets with-
out a sense of priority or sensitivity to loss. The whole point of IP is to get packets from
one network interface to another. IP itself is not concerned with the lack of guaranteed
quality of service (QoS) parameters such as bandwidth availability or minimal delay,
and this is characteristic of all connectionless, best-effort networks. Even the basics,
such as sequenced delivery of packet content, priorities, and guaranteed delivery in the
form of acknowledgments (if these are needed by the application), must be provided
by the higher layers of the TCP/IP protocol stack. These reliable transport functions are
not functions of the IP layer, and some are not even functions of TCP.

Two other major protocols run at the IP layer besides IPv4 or IPv6 (or both). The
routers that form the network nodes in a TCP/IP network must be able to send error
messages to the hosts if a router must discard a packet (e.g., due to lack of buffer
space because of congestion). This protocol is known as the Internet Control Message
 Protocol (ICMP). ICMP messages are sent inside IP packets, but ICMP is still considered
a different protocol and not a separate layer.

CHAPTER 2 TCP/IP Protocols and Devices 57

The other major protocol placed at the IP layer has many different functions
depending on the type of network that IP is running on. This is the Address Resolu-
tion Protocol (ARP). The main function of ARP is to provide a method for IPv4, which
technically knows only about packets, to fi nd out the proper network layer address to
place in the frame header destination fi eld. On LANs, this is the MAC address. Without
this address, the network beneath the IP layer could not deliver the frame containing
the IP packet to the proper destination. (IPv6 does not use ARP: IPv6 uses multicast for
this purpose.)

On a LAN, ARP is a way for IPv4 to send a broadcast message onto the LAN asking,
in effect, “Who has IP address 192.168.13.84?” Each system, whether host or router, on
the LAN will examine the ARP message (all systems must pay attention to a broadcast)
and the system having the IP address in question will reply to the sender’s MAC address
found in the source fi eld of the frame. This target system will also cache the IP address
information so that it knows the MAC address of the sender (this cuts down on ARP
traffi c on the network). The MAC layer address needed by the sending system is found
in the source address fi eld of the frame carrying the ARP reply packet.

ARP messages are broadcast to every host in what is called the network layer broad-
cast domain. The broadcast domain can be a single physical group (e.g., all hosts
attached to a single group of hubs) or a logical grouping of hosts forming a virtual LAN
(VLAN). More will be said about broadcast domains and VLANs later in this chapter.

THE TRANSPORT LAYER
The two main protocols that run above the IP layer at the transport layer are TCP and
UDP. Lately, UDP has been assuming more and more prominence on the Internet, espe-
cially with applications such as voice and multicast traffi c such as video. One reason is
that TCP, with its reliable resending, is not particularly well suited for real-time applica-
tions (real time just means that the network delays must be low and stable or else the
application will not function properly). For these applications, late-arriving data are
worse than data that do not arrive at all, especially if the late data cause all the data
“behind” it to also arrive late. (Of course, in spite of these limitations, TCP is still widely
used for audio streaming and similar applications.)

Transmission Control Protocol
TCP’s built-in reliability features include sequence numbering with resending, which
is used to detect and resend missing or out-of-sequence segments. TCP also includes
a complete fl ow control mechanism (called windowing) to prevent any sender from
overwhelming a receiver. Neither of these built-in TCP features is good for real-time
audio and video on the Internet. These applications cannot “pause” and wait for miss-
ing segments, nor should they slow down or speed up as traffi c loads vary on the
Internet. (The fact that they do just points out the incomplete nature of TCP/IP when
it comes to quality of service for these applications and services.)

58 PART I Networking Basics

TCP contains all the functions and mechanisms needed to make up for the
best-effort connectionless delivery provided by the IP layer. Packets could arrive at a
host with errors, out of their correct sequence, duplicated, or with gaps in sequence
due to lost (or discarded) packets. TCP must guarantee that the data stream is delivered
to the destination application error-free, with all data in sequence and complete. Fol-
lowing the practice used in connection-oriented networks, TCP uses acknowledgments
that periodically fl ow from the destination to the source to assure the sender that all is
well with the data received to that point in time.

On the sending side, TCP passes segments to the IP layer for encapsulation in
 packets, which the IP layer in hosts and routers route connectionlessly to the destina-
tion host. On the receiving side, TCP accepts the incoming segments from the IP layer
and delivers the data they represent to the proper application running above TCP in
the exact order in which the data were sent.

User Datagram Protocol
The TCP/IP transport layer has another major protocol. UDP is as connectionless as IP.
When applications use UDP instead of TCP, there is no need to establish, maintain, or
tear down a connection between a source and destination before sending data. Connec-
tion management adds overhead and some initial delay to the network. UDP is a way to
send data quickly and simply. However, UDP offers none of the reliability services that
TCP does. UDP applications cannot rely on TCP to ensure error-free, guaranteed (via
acknowledgments), in-sequence delivery of data to the destination.

For some simple applications, purely connectionless data delivery is good enough.
Single request–response message pairs between applications are sent more effi ciently
with UDP because there is no need to exchange a fl urry of initial TCP segments to
establish a connection. Many applications will not be satisfi ed with this mode of opera-
tion, however, because it puts the burden of reliability on the application itself.

UDP is often used for short transactions that fi t into one datagram and packet.
Real-time applications often use UDP with another header inside called the real-time
transport protocol (RTP). RTP borrows what it needs from the TCP header, such as a
sequence number to detect (but not to resend) missing packets of audio and video, and
uses these desirable features in UDP.

THE APPLICATION LAYER
At the top of the TCP/IP protocol stack, at the application layer, are the basic applica-
tions and services of the TCP/IP architecture. Several basic applications are typically
bundled with the TCP/IP software distributed from various sources and, fortunately, are
generally interoperable.

The standard application services suite usually includes a fi le transfer method
(File Transfer Protocol: FTP), a remote terminal access method (Telnet, which is not
 commonly used today, and others, which are), an electronic mail system (Simple Mail

CHAPTER 2 TCP/IP Protocols and Devices 59

Transfer Protocol: SMTP), and a Domain Name System (DNS) resolver for domain name
to IP address translation (and vice versa), and more. Many TCP/IP implementations also
include a way of accessing fi les remotely (rather than transferring the whole fi le to the
other host) known as the Network File System (NFS). There is also the Simple Network
Management Protocol (SNMP) for network operations. For the Web, the server and
browser applications are based on the Hypertext Transfer Protocol (HTTP). Some of
these applications are defi ned to run on TCP and others are defi ned to run on UDP, and
in many cases can run on either.

BRIDGES, ROUTERS, AND SWITCHES
The TCP/IP protocol stack establishes an architecture for internetworking. These
 protocols can be used to connect LANs in the same building, on a campus, or around
the world. Not all internetworking devices are the same. Generally, network architects
seeking to extend the reach of a LAN can choose from one of four major interconnec-
tion devices: repeaters, bridges, routers, and switches.

Not long ago, the network confi guration and the available devices determined
which type of internetworking device should be used. Today, network confi gurations
are growing more and more complex, and the devices available often combine the fea-
tures of several of these devices. For example, the routers on the Illustrated Network
have all the features of traditional routers, plus some switching capabilities.

In their simplest forms, repeaters, bridges, and routers operate at different layers of
the TCP/IP protocol stack, as shown in Figure 2.5. Roughly, repeaters forward bits from
one LAN segment to another, bridges forward frames, and routers forward packets.

Layer 4

Layer 5

Layer 3

Layer 2

Layer 1

Host

Application Layer

Physical Layer

Data Link Layer

Network Layer

Transport Layer

Host

Application Layer

Physical Layer

Data Link Layer

Network Layer

Transport Layer

Bridge

Repeater

Router

FIGURE 2.5

Repeater, bridge, and router. A repeater “spits bits,” while a bridge deals with complete frames.
A router operates at the packet level and is the main mode of the Internet.

60 PART I Networking Basics

Switches are important enough to deserve a separate discussion at the end of this
 section.

This section will explore the major characteristics of internetworking with bridges,
routers, and switches. It will show how the LAN collision and broadcast domains are
defi ned. This section will also show how the IP layer in particular and other protocols
in TCP/IP interact in a routing environment.

Segmenting LANs
Network administrators and designers are often faced with a need to increase the
amount of bandwidth available to users, increase the number of users supported, or
extend the coverage of a LAN. The good news is that this means that the network is
popular and useful, but the bad news is that there are lots of ways that these goals can
be accomplished, some better than others.

Sometimes the answer is relatively straightforward. If a 100-Mbps Fast Ethernet is
congested, moving everyone to Gigabit Ethernet will provide an instant increase in
bandwidth (close to the theoretical tenfold increase with lots of tuning). However, this
also usually means replacing adapter cards and replacing the “hubs” to support the new
bandwidth and frames. This type of wholesale upgrade can be very expensive.

Hub
We avoid the use of the term “hub” in this book. Repeaters were called hubs when
there were no others types of hubs. When bridges and switches and other LAN
devices came along, it was better to call a repeater a repeater. Today the term “hub”
can mean a repeater, bridge, switch, or a hybrid device like a multispeed repeater
(which is really many single-speed repeaters connected by a bridge). The term
“hub” never had a specifi c meaning.

Another way to give each user more bandwidth (and at the same time increase
users and coverage) is to segment the LAN. Segmenting does not require replacing all
of the user equipment. As the name implies, segmenting breaks the LAN into smaller
portions and then reconnects them with an internetworking device.

Another consequence of the different protocol layers at which the various inter-
networking devices function is the number of LAN collision and broadcast domains
created. Ethernet’s CSMA/CD access method can result in collisions when stations on
the LAN try to send at almost the same time. Collisions “waste” bandwidth because they
destroy the frames, and the colliding stations must wait and try to send again. (Actually,
unless they are oversubscribed, CSMA/CD systems offer better performance than token-
passing or other methods.) Even when Ethernets do not generate collisions, broadcast

CHAPTER 2 TCP/IP Protocols and Devices 61

frames must be examined by each receiver because the destination address cannot be
used to determine interest in content. Bandwidth is wasted if broadcast frames are sent
to systems that have no interest in the content of the broadcast message. (In TCP/IP,
ARPs are the major type of broadcast frames that systems send and receive.)

It should be noted that although CSMA/CD is part of Gigabit Ethernet, it is essen-
tially nonexistent and not present at all in 10-Gigabit Ethernet.

Extending a LAN by forward bits still creates a single collision and broadcast domain.
The number of collision and broadcast domains created by all the internetworking
devices discussed is shown in Table 2.2. We’ll look at why this is true of each device in
detail shortly.

The use of these devices is not mutually exclusive. In other words, a router can be
used to segment a LAN into two (or more) segments, and each resulting segment can
be divided further with bridges. In an extreme case, each individual user or system has
the full media bandwidth available. This is what switches can do.

Repeaters are a type of special case in that they do not segment a LAN at all. Repeat-
ers do not furnish more bandwidth for users; they just extend the reach of the LAN.
Repeaters are included in the table as a “baseline” for comparison. Repeaters forward
bits from one segment to another and have no intelligence with regard to data format.
If the frame contains errors, violates rules about minimum or maximum frame sizes, or
anything else is wrong, the repeaters forward the frame anyway.

Note that wireless LAN devices connected to an attachment point share the same
properties as a repeater network. And repeaters, technically obsolete on wired net-
works, have renewed life on wireless networks, especially what are called “ad hoc”
wireless networks.

A 100BaseT Ethernet LAN consists of at least one multiport repeater (often called
a “hub”) with twisted-pair wires connected directly to each system. All systems see all
frames, for better or worse. There are strict limits to the size to which a network made
up of repeater-connected LAN segments can grow. The more systems there are that
can send, the less of the total shared bandwidth each system has. Ethernet limits the
number of systems that each LAN segment can have (the number varies by specifi c
Ethernet type). Finally, there are distance limits to the electrical signals that repeaters
propagate.

Table 2.2 Collision and Broadcast Domains

Internetwork Device Collision Domains Broadcast Domains

Repeater One One

Bridge Many One

Router Many Many

Switch Many Depends on VLAN confi guration

62 PART I Networking Basics

Bridges
Ethernet specifi cations limit the number of systems on a LAN segment and the overall
distance spanned. To add devices to a LAN that has reached the maximum in one or both
of these categories, a bridge can be used to connect LAN segments. Bridged networks
normally fi lter frames and do not forward all frames onto all segments connected to the
bridge. This is why bridges create more than one collision domain. However, the LAN
segments linked by the bridge still normally form one broadcast domain. Although the
word “bridge” is often applied to products, pure bridges are at least as obsolete as hubs.

The fi ltering process employed by a bridge differs according to specifi c LAN
 technology. Ethernet uses transparent bridging to connect LAN segments. A transparent
bridge looks at the destination MAC address to decide if the frames should be:

■ Forwarded—The frame is sent only onto the LAN segment where the destination is
located. The bridge examines the source MAC address fi elds to fi nd specifi c device
locations.

■ Filtered—The frame is dropped by the bridge. No message is sent back to the
source.

■ Flooded—The frame is sent to every LAN segment attached to the bridge. This is
done for broadcast and multicast traffi c.

When bridges are used to connect LAN segments, the media bandwidth is shared
only by the devices on each segment. Because the broadcast domain is preserved, the
bridged LANs still function as one big LAN. Bridges also discard frames with errors, as
well as frames that violate LAN protocol length rules, and thus protect the other LAN
segments when things go wrong.

Bridges are certainly an improvement over repeaters, but still have a number of
issues. The common ARPs used to associate IP addresses at Layer 3 with LAN MAC
addresses at Layer 2 pass through all bridges, but broadcasts due to protocols are not
usually the issue. However, multicast traffi c is also fl ooded, and multimedia applications
such as videoconferences can easily overwhelm a bridged network. Some issues are
more mundane: printers, which generate very little traffi c, sometimes remain invisible
in a bridged network.

Ethernet bridges must also be spanning tree bridges. These bridges can detect
loops in the interconnected topology of LAN segments and bridges. Loops are a prob-
lem in bridged networks because some frames are always fl ooded onto all segments.
Flooding multiplies the total number of frames on the network. Loops multiply frames
over and over until a saturation point is reached.

Routers
Bridges add functions to an interconnected LAN because they operate at a higher layer
of the protocol stack than repeaters. Bridges run at Layer 2, the frame layer, and can do

CHAPTER 2 TCP/IP Protocols and Devices 63

everything a repeater can do, and more, because bridges create more collision domains.
In the same way, routers add functionality to bridges and operate at Layer 3, the packet
layer. Routers not only create more collision domains, they create more LAN broadcast
domains as well.

In a LAN with repeaters or bridges, all of the systems belong to the same subnet
or subnetwork. Layer 3 addresses in their simplest form—and IP addresses are a good
example of this—consist of a network and system (host) portion of the address. LANs
connected by routers have multiple broadcast domains, and each LAN segment belongs
to a different subnetwork.

Because of the presence of multiple subnets, TCP/IP devices must behave differently
in the presence of a router. Bridges connecting TCP/IP hosts are transparent to the
systems, but routers connecting hosts are not. At the very least, the host must know
the address of at least one router, the default router, to send packets beyond the local
subnet. As we’ll soon see, use of the default router requires the use of a default route, a
route that matches all IPv4/IPv6 packets.

Bridges are sometimes called “protocol independent” devices, which really means
that bridges can be used to connect LAN segments regardless of whether TCP/IP is
used or not. However, routers must have Layer 3 software to handle whichever Layer 3
protocols are in use on the LAN. Many routers, especially routers that connect to the
Internet, can and do understand only the IP protocol. However, many routers can han-
dle multiple Layer 3 protocols, including protocols that are not usually employed with
routed networks.

LAN Switches
The term “switch” in networking has threatened to become as overused as “hub.” When
applied to LANs, a switch is still a device with a number of common characteristics that
can be compared to bridges and routers.

The LAN switch is really a complex bridge with many interfaces. LAN switching
is the ultimate extension of multiport bridging. A LAN switch has every device on its
own segment, giving each system the entire media bandwidth all for itself. Multiple
systems can transmit simultaneously as long as there are no “port collisions” on the
LAN switch. Port collisions occur when multiple source ports try to send a frame to the
same output port at the same time.

All of the ports on the switch establish their own broadcast domain. However,
when broadcast frames containing ARPs or multicast traffi c arrive, the switch fl oods
the frames to all other ports. Unfortunately, this makes LAN switching not much better
than a repeater or a bridge when it comes to dealing with broadcast and multicast
 traffi c (but there is an improvement because broadcast traffi c cannot cause collisions
that would force retransmissions).

To overcome this problem, a LAN switch can allow multiple ports to be assigned to
a broadcast domain. The broadcast domains on a LAN switch are confi gurable and each
fl oods broadcast and multicast traffi c only within its own domain. As a matter of fact,

64 PART I Networking Basics

it is not possible for any frames to cross the boundary of a broadcast domain: Another
external device, such as a router, is always required to internetwork the domains.

When LAN switches defi ne multiple broadcast domains they are creating virtual
LANs (VLANs). Not all LAN switches can defi ne VLANs, especially smaller ones, but
many can. A VLAN defi nes membership to a LAN logically, through confi guration, not
physically by sharing media or devices.

On a WAN, the term “switch” means a class of network nodes that behave very differ-
ently than routers. We’ll look more closely at how “fast packet network” devices, such as
Frame Relay and ATM switches as network nodes, differ from routers in a later chapter.

Virtual LANs
A VLAN, according to the offi cial IEEE defi nition, defi nes broadcast domains at Layer 2.
VLANs, as a Layer 2 entity, really have little to do with the TCP/IP protocol stack,
but VLANs make a huge difference in how switches and routers operate on a TCP/IP
network.

Routers do not propagate broadcasts as bridges do, so a router automatically defi nes
broadcast domains on each interface. Layer 2 LAN switches logically create broadcast
domains based on confi guration of the switch. The confi guration tells the LAN switch
what to do with a broadcast received on a port in terms of what other ports should
receive it (or if it should even be fl ooded to all other ports).

When LAN switches are used to connect LAN segments, the broadcast domains
cannot be determined just by looking at the network diagram. Systems can belong to
different, the same, or even multiple, broadcast domains. The confi guration fi les in the

LAN Switch

Cli

VLAN 1

Cli

VLAN 2
Broadcast messages from VLAN 1

devices are sent only to the
VLAN 1 broadcast domain.

Broadcast messages from VLAN 2
devices are sent only to the
VLAN 2 broadcast domain.

Cli

VLAN 1

Cli

VLAN 2

Cli

VLAN 1

Cli

VLAN 2

Svr

VLAN 1

Svr

VLAN 2

FIGURE 2.6

VLANs in a LAN switch. Broadcast domains are now logical entities connected by “virtual bridges”
in the device.

CHAPTER 2 TCP/IP Protocols and Devices 65

LAN switches determine the boundaries of these domains as well as their members.
Each broadcast domain is a type of “virtual bridge” within the switch. This is shown in
Figure 2.6.

Each virtual bridge confi gured in the LAN switch establishes a distinct broadcast
domain, or VLAN. Frames from one VLAN cannot pass directly to another VLAN on the
LAN switch (or else you create one big VLAN or broadcast domain). Layer 3 internet-
working devices such as routers must be used to connect the VLANs, allowing inter-
networking and at the same time keeping the VLAN broadcast domains distinct. All
devices that can communicate directly without a router (or other Layer 3 or higher
device) share the same broadcast domain.

VLAN Frame Tagging
VLAN devices can come in all shapes and sizes, and confi guration of the broadcast
domains can be just as variable. Interoperability of LAN switches is compromised when
there are multiple ways for a device to recognize the boundaries of broadcast domains.
To promote interoperability, the IEEE established IEEE 802.1Q to standardize the cre-
ation of VLANs through the use of frame tagging.

Some care is needed with this aspect of VLANs. VLANs are not really a formal net-
working concept, but they are a nice feature that devices can support. One key VLAN
feature is the ability to place switch ports in virtual broadcast domains. The other key
feature is the ability to tag Ethernet frames with a VLAN identifi er so that devices can
easily distinguish the boundaries of the broadcast domains. These devices and tags are
not codependent, but you have to use both features to establish a useful VLAN.

Multiple tags can be placed inside Ethernet frames. There is also a way to assign
priorities to the tagged frames, often called IEEE 802.1p, but offi cially known as
IEEE 802.1D-1998. Internetworking devices, not just LAN switches, can read the tags
and establish VLAN boundaries based on the tag information.

VLAN tags add 4 bytes of information between the Source Address and Type/Length
fi elds of Ethernet frames. The maximum size of the modifi ed Ethernet frame is increased
from 1518 to 1522 bytes, so the frame check sequence must be recalculated when the
VLAN tag is added. VLAN identifi ers can range from 0 to 4095.

The use of VLAN “q in q” tags increases the available VLAN space (ISPs often assign
each customer a VLAN identifi er, and customers often have their own VLANs as well).
In this case, multiple tags are placed in an Ethernet frame. The format and position of
VLAN tags according to IEEE 802.3ac are shown in Figure 2.7.

VLANs are built for a variety of reasons. Among them are:

Security—Frames on an Ethernet segment are delivered everywhere, and devices
only process (look inside) MAC frames that are addressed to them. Nothing
stops a device from monitoring everything that arrives on the interface (that’s
essentially how Ethereal works). Sensitive information, or departmental traffic,
can be isolated with virtual LANs.

66 PART I Networking Basics

Cutting down on broadcasts—Some network protocols are much worse than
others when it comes to broadcasts. These broadcast frames can be an issue
because they rarely carry user data and each and every system on the segment
must process the content of a broadcast frame. VLANs can isolate protocol
broadcasts so that they arrive only at the systems that need to hear them. Also,
a number of hosts that might otherwise make up a very large logical network
(e.g., Page 19 what we will call later a “/19-sized wireless subnet”) could use
VLANs because they can be just plain noisy.

Router delay—Older routers can be much slower than LAN switches. VLANs can
be used to establish logical boundaries that do not need to employ a router to
get traffic from one LAN segment to another. (In fairness, many routers today
route at “wire speed” and do not introduce much latency into a network.)

The Illustrated Network uses Gigabit Ethernet links to connect the customer-edge
routers to the ISP networks. Many ISPs would assign the frame arriving from LAN1 and
LAN2 a VLAN ID and tag the frames at the provider-edge routers. If the sites are close

Ethernet Frame Structure

Destination
Address
6 bytes

Source
Address
6 bytes

Tag
4 bytes

Type
2 bytes

Information
46–1500 bytes

FCS
4 bytes

Tag Protocol ID
16 bits

Priority
3 bits

CFI
1 bit

VLAN ID
12 bits

VID (unique):
0 to 4095

Ethernet q-in-q VLAN tags

Original Ethernet Frame

802.1q Tagged Frame

Doubly-Tagged Frame

802.1p
priority levels
(027)

(Canonical Format Indicator: 0 5 canonical MAC, 1 5 noncanonical MAC)

TPID:
038100 (defaut),
039100,
039200

DA SA Type

Type

Type

Data FCS

DA SA Tag Data FCS

DA SA Tag Tag Data FCS

FIGURE 2.7

VLAN tags and frames. Note that frames can contain more than one tag, and often do.

CHAPTER 2 TCP/IP Protocols and Devices 67

enough, some form of Metro Ethernet could be confi gured using the tag information.
However, the sites are far enough apart that we would have to use some other method
to create a single LAN out of LAN1 and LAN2.

In a later chapter, we’ll use VLAN tagging, along with some other router switching
features, to create a “virtual private LAN” between LAN1 and LAN2 on the Illustrated
Network, mainly for security purposes.

68 PART I Networking Basics

QUESTIONS FOR READERS
Figure 2.8 shows some of the concepts discussed in this chapter and can be used to
help you answer the following questions.

Client Client

Client ClientServer Server

VLAN 1

Broadcast messages
sent only to the VLAN 1

broadcast domain
(and router).

Broadcast messages
sent only to the VLAN 2

broadcast domain
(and router).

VLAN 2

Server

Router

Transparent
Bridge

Hub

Hub

ARP on LAN segement
before sending frame

Use UDP for connectionless,
TCP for connection-oriented

LAN Switch

Hub

FIGURE 2.8

Hubs, bridges, and routers can connect LAN segments to form an internetwork.

1. What is the main function of the ARP message on a LAN?

2. What is the difference between TCP and UDP terms of connection overhead and
reliability?

3. What is a transparent bridge?

4. What is the difference between a bridge and a router in terms of broadcast
domains?

5. What is the relationship between a broadcast domain and a VLAN?

69

CHAPTER

What You Will Learn
In this chapter, you will learn more about the links used to connect the nodes of
the Illustrated Network. We’ll investigate the frame types used in various technolo-
gies and how they carry packets. We’ll take a long look at Ethernet, and mention
many other link types used primarily in private networks.

You will learn about SONET/SDH, DSL, and wireless technologies as well as
Ethernet. All four link types are used on the Illustrated Network.

Network Link Technologies 3

This chapter explores the physical and data link layer technologies used in the Illus-
trated Network. We investigate the methods used to link hosts and intermediate nodes
together over shorter LAN distances and longer WAN distances to make a complete
network.

For most of the rest of the book, we’ll deal with packets and their contents. This is
our only chance to take a detailed look at the frames employed on our network, and
even peer inside them. Because the Illustrated Network is a real network, we’ll empha-
size the link types used on the network and take a more cursory look at link types that
might be very important in the TCP/IP protocol suite, but are not used on our network.
We’ll look at Ethernet and the Synchronous Optical Network/Synchronous Digital Hier-
archy (SONET/SDH) link technologies, and explore the variations on the access theme
that digital subscriber line (DSL) and wireless technologies represent.

We’ll look at public network services like frame relay and Asynchronous Transfer
Mode (ATM) in a later chapter. In this book, the term private network is used to char-
acterize network links that are owned or directly leased by the user organization, while
a public network is characterized by shared user access to facilities controlled by a
service provider. The question of Who owns the intermediate nodes? is often used as
a rough distinguisher between private and public network elements.

Because of the way the TCP/IP protocol stack is specifi ed, as seen in Chapter 1, we
won’t talk much about physical layer elements such as modems, network interface
cards (NICs), and connectors. As important as these aspects of networking are, they

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80:205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65459

DSL Link

Wireless
in Home

Solid rules � SONET/SDH
Dashed rules � Gig Ethernet
Dotted rules � DSL
Note: All links use 10.0.x.y
addressing...only the last
two octets are shown.

FIGURE 3.1

Connections used on the Illustrated Network. SONET/SDH links are indicated by heavy lines,
 Ethernet types by dashed lines, and DSL is shown as a dotted line. The home wireless network
is not given a distinctive representation.

72 PART I Networking Basics

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80:205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC: 00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

ge-0/0/3

16.2

ge-0/0/3

16.1

Best ISP

AS 65127

Global Public
Internet

CHAPTER 3 Network Link Technologies 73

have little to do directly with how TCP/IP protocols or the Internet operates. For exam-
ple, a full exploration of all the connector types used with fi ber-optic cable would take
many pages, and yet add little to anyone’s understanding of TCP/IP or the Internet.
Instead, we will concentrate on the structure of the frames sent on these link types,
which are often important to TCP/IP, and present some operational details as well.

ILLUSTRATED NETWORK CONNECTIONS
We will start by using Ethereal (Wireshark), the network protocol analyzer introduced
in the last chapter, to investigate the connections between systems on the Illustrated
Network. It runs on a variety of platforms, including all three used in the Illustrated
Network: FreeBSD Unix, Linux, and Windows XP. Ethereal can display real-time packet
interpretations and, if desired, also save traffi c to fi les (with a variety of formats) for
later analysis or transfer to another system. Ethereal is most helpful when examining all
types of Ethernet links. The Ethernet links are shown as dashed lines in Figure 3.1.

The service provider networks’ SONET links are shown as heavy solid lines, and the
DSL link to the home offi ce is shown as a dotted line. The wireless network inside the
home is not given a distinctive representation in the fi gure. Note that ISPs today typi-
cally employ more variety in WAN link types.

Displaying Ethernet Traffi c
On the Illustrated Network, all of the clients and servers with detailed information
listed are attached to LANs. Let’s start our exploration of the links used on the Illus-
trated Network by using Ethereal both ways to see what kind of frames are used on
these LANs.

Here is a capture of a small frame to show what the output looks like using tethe-
real, the text-based version of Ethereal. The example uses the verbose mode (–V) to
force tethereal to display all packet and frame details. The example shows, highlighted
in bold, that Ethernet II frames are used on LAN1.

 [root@lnxserver admin]# /usr/sbin/tethereal –V
 Frame 2 (60 bytes on wire, 60 bytes captured)
 Arrival Time: Mar 25, 2008 12:14:36.383610000
 Time delta from previous packet: 0.000443000 seconds
 Time relative to first packet: 0.000591000 seconds
 Frame Number: 2
 Packet Length: 60 bytes
 Capture Length: 60 bytes
Ethernet II, Src: 00:05:85:88:cc:db, Dst: 00:d0:b7:1f:fe:e6
 Destination: 00:d0:b7:1f:fe:e6 (Intel_1f:fe:e6)
 Source: 00:05:85:88:cc:db (Juniper__88:cc:db)
 Type: ARP (0x0806)
 Trailer: 00000000000000000000000000000000...

74 PART I Networking Basics

Address Resolution Protocol (reply)
 Hardware type: Ethernet (0x0001)
 Protocol type: IP (0x0800)
 Hardware size: 6
 Protocol size: 4
 Opcode: reply (0x0002)
 Sender MAC address: 00:05:85:88:cc:db (Juniper__88:cc:db)
 Sender IP address: 10.10.11.1 (10.10.11.1)
 Target MAC address: 00:d0:b7:1f:fe:e6 (Intel_1f:fe:e6)
 Target IP address: 10.10.11.66 (10.10.11.66)

Many details of the packet and frame structure and content will be discussed in
later chapters. However, we can see that the source and destination MAC addresses
are present in the frame. The source address is 00:05:85:88:cc:db (the router), and
the destination (the Linux server) is 00:d0:b7:1f:fe:e6. Ethereal even knows which
organizations have been assigned the fi rst 24 bits of the 48-bit MAC address (Intel and
Juniper Networks). We’ll say more about MAC addresses later in this chapter.

Figure 3.2 shows the same packet, and the same information, but in graphical for-
mat. Only a small section of the entire window is included. Note how the presence of
Ethernet II frames is indicated, parsed on the second line in the middle pane of the
window.

Why use text-based output when a graphical version is available? The graphical out-
put shows the raw frame in hex, something the text-based version does not do, and the
interpretation of the frame’s fi elds is more concise.

However, the graphical output is not always clearer. In most cases, the graphical rep-
resentation can be more cluttered, especially when groups of packets are involved. The
graphical output only parses one packet at a time on the screen, while a whole string
of packets can be parsed with tethereal (but printouts of graphical information can be
formatted like tethereal).

FIGURE 3.2

Graphical interface for Ethereal. There are three main panes. Top to bottom: (1) a digest of the
packets header and information, (2) parsed details about frame and packet contents, and (3) the
raw frame captured in hexadecimal notation and interpreted in ASCII.

CHAPTER 3 Network Link Technologies 75

In addition, many network administrators of Internet servers do not install or use
a graphical interface, and perform their tasks from a command prompt. If you’re not
sitting in front of the device, it’s more expedient to run the non-GUI version. Tethereal
is the only realistic option in these cases. We will use both types of Ethereal in the
examples in this book.

In our example network, what about LAN2? Is it also using Ethernet II frames? Let’s
capture some packets on bsdserver to fi nd out.

bsdserver# tethereal –V
Capturing on em0
Frame 1 (98 bytes on wire, 98 bytes captured)
 Arrival Time: Mar 25, 2008 13:05:00.263240000
 Time delta from previous packet: 0.000000000 seconds
 Time since reference or first frame: 0.000000000 seconds
 Frame Number: 1
 Packet Length: 98 bytes
 Capture Length: 98 bytes
Ethernet II, Src: 00:0e:0c:3b:87:32, Dst: 00:05:85:8b:bc:db
 Destination: 00:05:85:8b:bc:db (Juniper__8b:bc:db)
 Source: 00:0e:0c:3b:87:32 (Intel_3b:87:32)
 Type: IP (0x0800)
Internet Protocol, Src Addr: 10.10.12.77 (10.10.12.77), Dst Addr: 10.10.12.1
(10.10.12.1)
 Version: 4
 Header length: 20 bytes

Yes, an Ethernet II frame is in use here as well. Even though we’re running Ethereal
(tethereal) on a different operating system (FreeBSD) instead of on Linux, the output is
nearly identical (the differences are due to a slightly different version of Ethereal on the
servers). However, LANs are not the only type of connections used on the Illustrated
Network.

Displaying SONET Links
What about link types other than Ethernet? ISPs in the United States often use SONET
fi ber links between routers separated by long distance. In most other parts of the world,
SDH is used. SONET was defi ned initially in the United States, and the specifi cation was
adapted, with some changes, for international use by the ITU-T as SDH.

The Illustrated Network uses SONET, not SDH. There are small but important differ-
ences between SONET and SDH, but this book will only reference SONET. Line moni-
toring equipment that allows you to look directly at SONET/SDH frames is expensive
and exotic, and not available to most network administrators. So we’ll take a different
approach: We’ll show you the information that’s available on a router with a SONET
interface. This will show the considerable bandwidth available even in the slowest of
SONET links, which runs at 155 Mbps and is the same as the basic SDH speed.

76 PART I Networking Basics

Admin>ssh ce0
adminCE6’s password: *********
--- JUNOS 8.4R1.3 built 2007-08-06 06:58:15 UTC
admin@ce0> monitor interface so-0/0/1
R2 Seconds: 59 Time: 13:36:05
 Delay: 2/0/3
Interface: so-0/0/1, Enabled, Link is Up
Encapsulation: PPP, Keepalives, Speed: OC3
Traffic statistics: Current delta
 Input bytes: 166207481 (576 bps) [2498]
 Output bytes: 171979817 (48 bps) [2713]
 Input packets: 2868777 (0 pps) [39]
 Output packets: 2869671 (0 pps) [39]
Encapsulation statistics:
 Input keepalives: 477607 [6]
 Output keepalives: 477717 [7]
 LCP state: Opened
Error statistics:
 Input errors: 0 [0]
 Input drops: 0 [0]
 Input framing errors: 0 [0]

SONET and SDH
The SONET fi ber-optic link standard was developed in the United States and is
mainly used in places that follow the digital telephony system used in the United
States, such as Canada and the Philippines. SDH, on the other hand, is used in
places that follow the international standards developed for the digital telephony
system in the rest of the world. SDH must be used for all international links, even
those that link to SONET networks in the United States.

The differences between SONET and SDH transmission frame structures,
nomenclature, alarms, and other details are relatively minor. In most cases, equip-
ment can handle SONET/SDH with equal facility.

Routers and Users
Usually, network administrators don’t let ordinary users casually log in to routers,
even edge routers, and poke around. Even if they were allowed to, the ISP’s core
routers would still remain off limits. But this is our network, and we can do as we
please, wherever we please.

We can log in to router CE0 and monitor a SONET interface for a minute or so and
see what’s going on.

CHAPTER 3 Network Link Technologies 77

 Input runts: 0 [0]
 Input giants: 0 [0]
 Policed discards: 0 [0]
 L3 incompletes: 0 [0]
 L2 channel errors: 0 [0]
 L2 mismatch timeouts: 0 [0]
 Carrier transitions: 1 [0]
 Output errors: 0 [0]
 Output drops: 0 [0]
 Aged packets: 0 [0]
Active alarms : None
Active defects: None
SONET error counts/seconds:
 LOS count 1 [0]
 LOF count 1 [0]
 SEF count 3 [0]
 ES-S 1 [0]
 SES-S 1 [0]
SONET statistics:
 BIP-B1 0 [0]
 BIP-B2 0 [0]
 REI-L 0 BIP-B3 Z [0]

Not much is happening yet on our network in terms of traffi c, but the output is
still informative. The fi rst column shows cumulative values and the second column
shows the change since the last monitor “snapshot” on the link. “Live” traffi c during
these 59 seconds, in this case mostly a series of keepalive packets, is shown in paren-
theses, both in bytes per second and in packets per second (the example rounds the
39 packets in 59 seconds, or 0.66 packets per second, down to 0 packets per second).
The frames carried on the link, listed as encapsulation, belong to a protocol called
Point-to-Point Protocol (PPP). Six PPP keepalives have been sent in the 59-second
window, and seven have been received (they are exchanged every 10 seconds), add-
ing to the total of more than 477,000 since the link was initialized. The cumulative
errors also occurred as the link was initializing itself, and it is reassuring that there are
no new errors.

Displaying DSL Links
The Illustrated Network also has a broadband DSL link from an ISP that is used to allow
a home offi ce to attach to the router network. This link is shown in red in Figure 3.1.
If the permissions are set up correctly, the home user will be able to access network
resources on LAN1 and LAN2. DSL links are much faster than ordinary dial-up lines and
are always available, just like a leased access line. The DSL link terminates at home in a
DSL router (more properly, a residential gateway), and the distribution of information
to devices in the home can be by wired or wireless LAN.

78 PART I Networking Basics

FIGURE 3.3

Ethernet frames on a wired LAN at the end of a DSL link. Capturing raw DSL frame “on the wire”
is not frequently done, and is diffi cult without very expensive and specialized equipment.

On the network end of the DSL link, the link terminates at a DSL access multiplexer
(DSLAM), typically using IP or ATM technology.

At the user end of the DSL link on the Illustrated Network, the offi ce in the home
uses both a wired and a wireless network. This is a common arrangement today: Peo-
ple with laptops can wander, but desktop PCs usually stay put. The wireless network
encapsulates packets and sends them to a special device in the home (a wireless access
point, often built into a DSL router).

What kind of frames does the DSL link use? That’s hard to determine, because the
DSL modem is upstream of the DSL router in most cases (sometimes on the side of the
house, sometimes closer to the service provider). The wired LAN between DSL router
and computer uses the same type of Ethernet frames we saw on LAN1 and LAN2. On a
wired LAN, Ethereal will always capture Ethernet II frames, as shown in Figure 3.3.

What can we learn about DSL itself? Well, we can access the DSL router using a Web
browser and see what kinds of information are available. Figure 3.4 shows the basic
setup screen of the Linksys DSL router (although it’s really not doing any real routing,
just functioning as a simple gateway between ISP and home LAN).

Because this is a working LAN, I’ve restored the default names and addresses for
this example. The router itself is WRT54G (a product designation), and the ISP does not
expect only one host to use the DSL link, so no host or domain name is required. We’ll
talk about the maximum transmission unit (MTU) size later in this chapter. This is set
automatically on the link.

The DSL router itself uses IPv4 address 192.168.1.1. We’ll talk about what the sub-
net mask does in Chapter 4. The router hands out IP addresses as needed to devices on
the home network, starting with 192.168.1.100, and it uses the Dynamic Host Confi gu-
ration Protocol (DHCP) to do this. We’ll talk about DHCP in Chapter 18.

CHAPTER 3 Network Link Technologies 79

FIGURE 3.4

Basic setup screen for a DSL link. We’ll talk about all of these confi guration parameters and
 protocols, such as subnet masks and DHCP, in later chapters.

What kinds of statistics are available on the DSL router? Not much on this model.
There are simple incoming and outgoing logs, but these capture only the most basic
information about addresses and ports. A small section of the outgoing log is shown in
Table 3.1.

These are all Web browser entries that were run with names, not IP addresses (Yahoo
is one of them). The table lists the addresses because the residential gateway does not
bother to look the names up. However, instead of presenting the port numbers, the log
interprets them as a service name (www is port 80 on most servers).

We’ll take a more detailed look at DSL later in this chapter. Now, let’s take a look at
the fourth and last link type used on the Illustrated Network: the four available wireless
links used to hook a laptop and printer up to the home offi ce DSL router.

The wireless implementation is a fairly straightforward bridging exercise. A single
wireless interface is bridged in software with the Ethernets in the box. The wireless
network is a single broadcast/collision domain.

80 PART I Networking Basics

Displaying Wireless Links
The physical arrangement of the home offi ce equipment used on the Illustrated Net-
work is shown in Figure 3.5. In addition to the three wired PCs (used for various
equipment confi gurations), there are two wireless links. One is used by the laptop for
mobility, and the other is used to share a color laser printer. The DSL router does not
have “ports” in the same sense as wired network devices, but it only supports up to four
wireless devices.

The wireless link from the laptop to the DSL router, which uses something called
IEEE 802.11g (sometimes called Wireless-G), is a distinct Layer 2 network technology
and should not use Ethernet II frames. Let’s make sure.

Capturing traffi c at the wireless frame level requires special software and special
drivers for the wireless network adapter card. The examples in this chapter use infor-
mation from a wireless packet sniffer called Airopeek NX from Wildpackets.

Table 3.1 Outgoing Log Table from DSL Router

LAN IP Destination URL/IP Service/Port Number

192.168.1.101 202.43.195.13 www

192.168.1.101 64.86.142.99 www

192.168.1.101 202.43.195.52 www

192.168.1.101 64.86.142.120 www

DSL Link to ISP
(4 Ethernet ports)

PC 1

PC 2

PC 3

DSL
Router

(4 wireless ports)

Laptop Color Laser
Printer

FIGURE 3.5

The home offi ce network for the Illustrated Network. Devices must have either Ethernet ports or
wireless interfaces (some have both). Not all printers are network-capable or wireless.

CHAPTER 3 Network Link Technologies 81

A sample capture of a data packet and frame from a wireless link is shown in
Figure 3.6.

Wireless LANs based on IEEE 802.11 use a distinct frame structure and a complex
data link layer protocol. We’ll talk about 802.11 shortly, but for now we should just note
that the Illustrated Network uses USB-attached wireless NICs, and few wireless sniffers
support these types of adapters.

The frame addressing and encapsulation on wireless LANs is much more compli-
cated than Ethernet. Note that the 802.11 MAC frame has three distinct MAC addresses,
labeled Destination, BSSID, and Source. The wireless LAN has to keep track of source,
destination, and wireless access point (Base Station System ID, or BSSID) addresses. Also
note that these are not really Ethernet II frames. The frames on the wireless link are
structured according to the IEEE 802.2 LLC header. These have “SNAP SAP, ” indicated
by 0xAA, in the frame, in contrast to Ethernet II frames, which are indicated by 0x01.

FIGURE 3.6

Data frame and packet on a wireless link. Note that the IEEE 802.11 MAC header is different
from the Ethernet in many ways and uses the IEEE 802.2 LLC inside.

82 PART I Networking Basics

The address fi elds in 802.11 also “shift” their meaning, as shown in Figure 3.7. The
fi elds are now BSSID, Source, and Destination. This is another capture from Airopeek
NX, showing the next data frame sent in the captured exchange. The address fi elds
have different meanings based on whether they are sent to the wireless router or are
received from the wireless router.

Frames and the Link Layer
In summary, we have seen that the connections on the Illustrated Network consist of
several types of links. There are wired Ethernet LANs and Gigabit Ethernet links, SONET
links and DSL links, and even a wired LAN in the home network. We’ve looked at some
of the frame types that carry information back and forth on the network connections.

FIGURE 3.7

The next data frame in the sequence, showing how the contents of the address fi elds shift based
on direction and type of wireless frame.

CHAPTER 3 Network Link Technologies 83

RFCs and Physical Layers
Internet RFCs usually describe not how the physical (or data link) layers in a
TCP/IP network should function, but how to place packets inside data link frames
and get them out again at the other end of the link to the adjacent system. It is
always good to remember that frames fl ow between adjacent (directly connected
or reachable) systems on a network.

THE DATA LINK LAYER
Putting the world of connectors, modems, and electrical digital signal levels of the
physical layer aside, let’s go right to the data link layer of the TCP/IP protocol stack. It’s
not that these things are not important to networking; it’s just that these things have
nothing directly to do with TCP/IP.

The data link layer of TCP/IP takes an IP packet at the source and puts it inside
whichever frame structure is used between systems (e.g., an Ethernet frame). The data
link layer then passes the frame to the physical layer, which sends the frame as a series
of bits over the link itself. At the receiver, the physical and data link layers recover the
frame from the arriving sequence of bits and extract the packet. The packet is then
passed to the receiving network (IP) layer.

Interfaces for IP packets have been defi ned for all of the following network types,
for both LAN and WAN:

Ethernet—Originally from Digital Equipment Corporation, Intel, and Xerox (some-
times called DIX Ethernet).

IEEE (Institute of Electrical and Electronics Engineers) 802.3—Ethernet-based
LANs, including all its variations, such as Gigabit Ethernet.

Synchronous Optical Network, Synchronous Digital Hierarchy (SONET/SDH)—
A high-speed, optical WAN transport.

IEEE 802.11 Wireless LANs—Includes any technology, such as WiFi, based on vari-
ations of this.

Token Ring—LANs from IBM, the same as IEEE 802.5.

Point-to-Point Protocol (PPP)—This protocol is from the IP developers them-
selves, and is not limited to carrying IP packets.

X.25—An international standard, public, switched, connection-oriented network
protocol.

There are many more types of frames that can carry IP packets between systems
at the data link layer. The rest of this chapter will explore the data link layer in a little
more depth.

84 PART I Networking Basics

Frame Relay—An international standard, public, switched, connection-oriented
network protocol based on X.25.

Asynchronous Transfer Mode (ATM)—An international standard, public, switched,
connection-oriented network protocol based on cells instead of frames.

Fiber Distributed Data Interface (FDDI)—A LAN-like network ring running at
100 Mbps.

Switched Multimegabit Data Services (SMDS)—A high-speed, connectionless,
LAN-like, public network service.

Integrated Services Digital Network (ISDN)—A public switched network similar
to X.25.

Digital Subscriber Line (DSL)—Based on some older Integrated Services Dig-
ital Network (ISDN)–related technologies and used for high-speed Internet
access.

Serial Line Interface Protocol (SLIP) and Compressed SLIP (CSLI)—An older
way of sending IP packets over a dial-up, asynchronous modem arrangement
(also from the IP developers).

Cable Modems (CMODEMs)—A method of sending IP packets over a cable TV
infrastructure.

IPoFW IP over Firewire (IEEE 1394)—A popular PC interface for peripheral
devices. There are other interfaces as well, such as ARCnet and IEEE 802.4
LANs, but the point is that TCP/IP is not tied to any specific type of network
at the lower layers. The TCP/IP protocol stack is very flexible and encompass-
ing, much more so than almost anything else that could be used on a global
network.

In the future, this list will get even longer as newer transports for IP packets are
standardized and older ones remain (in spite of diminishing interest, standards like
these tend to stay in place because no one cares enough to move them to “historic”
RFCs). Some of the newer network types that might fi nd their way onto many networks
in the future follow:

VDSL—VDSL is a “very-high-speed” form of DSL that uses fiber feeders to reach
less than a mile from the home (often called fiber to the neighborhood, or
FTTN). Most VDSL service offerings deliver television, telephone, and high-
speed Internet access over a unified residential cabling system through a spe-
cial residential gateway box. On the Illustrated Network, the home office DSL
link is actually VDSL, but this service is not as widely available as other forms
of DSL.

GE-PONS—These Gigabit Ethernet Passive Optical Network (GE-PONS) nodes are
part of a global push toward Fiber to the Home (FTTH), an approach that has
been—somewhat ironically—slowed by the popularity of DSL over copper

CHAPTER 3 Network Link Technologies 85

wires. Based on IEEE 802.3ah standards, this technology can support gigabit
speeds in both directions and might take advantage of the popularity of voice
over IP (VoIP).

BPL—In some places, high-speed Internet access is provided by the electric
 utility as part of broadband power line (BPL) technology. Delivered over the
same socket as power, BPL services might form a nice adjunct to wireless ser-
vices, which are hard to cost-justify in sparsely populated areas and over rough
 terrain.

The advantage of not tying the network layer to any specifi c type of links at the
lower layers is fl exibility (IP can run on anything). A new type of network interface can
be added without great effort. Also, it makes linking these various network types into
an internetwork that much easier.

All TCP/IP implementations must be able to support at least one of the defi ned
interface types. Most implementations of TCP/IP will do fi ne today with only a handful
of interface types, and, as we have seen, Ethernet frames are perhaps the most common
of all data-link frame formats for IP packets, especially at the endpoints of the network.

The rest of this chapter provides a closer look at the four link types used on the
Illustrated Network, as well as PPP, the major IEFT data-link protocol that we saw used
on SONET. The coverage is not intended to be exhaustive, but will be enough to intro-
duce the technologies.

Although all four link types are covered, the coverage is not equal. There is much
more information about Ethernet and wireless than SONET or DSL. The main reason
is that expensive and exotic line monitoring equipment is needed in order to burrow
deep enough in the lower layers of the protocol stacks used in SONET and DSL to show
the transmission frames. End users, and even many smaller ISPs, do just fi ne diagnosing
problems on SONET and DSL links with basic Ethernet and IP monitoring tools. Then
again, point-to-point links are a bit easier to diagnose than shared media networks. (Is
the line protocol up in both directions? Is the distance okay? Is the bit error rate accept-
able? Okay, it’s not the link layer . . .)

SONET and DSL are distinguished from Ethernet and wireless LANs with regard to
addressing. SONET and DSL are point-to-point technologies and use much simpler link-
level addressing schemes than LAN technologies. There are only two ends in a point-
to-point connection, and you always know which end you are. Anything you send is
intended for the other end of the link, and anything you receive comes from the other
end as well.

THE EVOLUTION OF ETHERNET
The original Ethernet was developed at the Xerox Palo Alto Research Center (PARC)
in the mid-1970s to link the various mainframes and minicomputers that Xerox used
in their offi ce park campus environment of close-proximity buildings. The use of WAN

86 PART I Networking Basics

protocols to link all of these buildings did not appeal to Xerox for two reasons. First, an
effi cient WAN infrastructure would have demanded a mesh of leased telephone lines,
which would have been enormously expensive given the number of computers. Sec-
ond, leased telephone lines did not have the bandwidth (usually these carried only up
to 9600 bps, and at most 56 Kbps, in the late 1970s) needed to link the computers.

Their solution was to invent the local area network, the LAN. However, Xerox was
not interested in actually building hardware and chipsets for their new invention,
which was named Ethernet. Instead, Bob Metcalf, the Ethernet inventor, left Xerox and
recruited two other companies, one to make chipsets for Ethernet and the other to
make the hardware components to employ these chipsets. The two companies were
chip-maker Intel and computer-maker Digital Equipment Corporation (DEC). Ethernet
v1.0 was rolled out in 1980, followed by Ethernet v2.0 in 1982, which fi xed some
annoying problems in v1.0. This is why, in our examples, Ethereal keeps showing that
IP packets are inside Ethernet II frames when they leave and arrive at hosts.

DIX Ethernet, the proprietary version, ran over a single, thick coaxial cable “bus” that
snaked through a building or campus. Transmitting and receiving devices (transceivers)
were physically clamped to the coaxial cable (with “vampire taps”) at predetermined
intervals. Transceivers usually had multiple ports for attaching the transceiver cables
that led to the actual PC or minicomputer linked by the Ethernet LAN. The whole LAN
ran at an aggregate speed of 10 Mbps, an unbelievable rate for the time. But Ethernet
had to be fast, because up to 1024 computers could share this single coaxial cable bus
to communicate using a media access method known as carrier-sense multiple access
with collision detection (CSMA/CD). DIX Ethernet had to be distinguished from all
other forms of Ethernet, which were standardized by the IEEE starting in 1984.

The IEEE fi rst standardized a slightly different arrangement for 10-Mbps CSMA/CD
LANs (IEEE 802.3) in 1984. Why the IEEE felt compelled to change the proprietary Ether -
net technology during the standardization process is somewhat of a puzzle. Some said
the IEEE always did this, but around the same time the IEEE essentially rubberstamped
IBM’s proprietary Token Ring LAN specifi cation as IEEE 802.5. The changes to the hard-
ware of DIX Ethernet were minor. There was no v1.0 support at all (i.e., all IEEE 802.3
LANs were DIX Ethernet v2.0) and the terminology was changed slightly. The DIX
transceiver became the IEEE 802.3 “media attachment unit” (MAU), and so on.

However, throughout the 1980s and into the 1990s, as research into network
 capabilities matured, the IEEE added a number of variations to the original IEEE 802.3
CSMA/CD hardware specifi cation. The original specifi cation became 10Base5 (which
meant 10-Mbps transport, using baseband signaling, with a 500-meter LAN segment). This
was joined by a number of other variants designed to make LAN implementation more
fl exible and—especially—less expensive. New IEEE 802.3 variations included 10Base2
(with 200-meter segments over thin coaxial cable), the wildly popular 10BaseT (with
hubs instead of segments linked to PCs by up to 100 meters of unshielded twisted-
pair copper wire), and versions that ran on fi ber-optic cable. Eventually, all of these
technologies except those on coaxial cable went fi rst to 100 Mbps (100BaseT), then
1000 Mbps (Gigabit Ethernet), which run over twisted pair for short spans and can use
fi ber for increasingly long hauls, now in the SONET/SDH ranges.

CHAPTER 3 Network Link Technologies 87

Today, IEEE 802.3ae 10G-base-er (extended range) LAN physical layer links can span
40 km. Another, “zr,” is not standardized, but can stretch the span to 80 km. And interest-
ingly, 10-Gbps Ethernet is back on coaxial cable as “10Gbps cx4.”

Ethernet II and IEEE 802.3 Frames
Today, of course, the term “Ethernet” essentially means the same as “IEEE 802.3 LAN.” In
addition to changing the hardware component names and creating IEEE 802.3 10BaseT,
the IEEE also changed the Ethernet frame structure for reasons that remain obscure. It
was this development that had the most important implication for those implementing
the TCP/IP protocol stack on top of Ethernet LANs.

The DIX Ethernet II frame structure was extremely simple. There were fi elds in the
frame header for the source and destination MAC (the upper part of the data link layer,
used on LANs) address, a type fi eld to defi ne content (packet) structure, a variable-
length data fi eld, and an error-detecting trailer. The source and destination addresses
were required for the mutually adjacent systems on a LAN (a point-to-point-oriented
data link layer with just a “destination” address would not work on LANs: Who sent this
frame?). The type fi eld was required so the recipient software would know the struc-
ture of the data inside the frame. That is, the destination NIC could examine the type
fi eld and determine if the frame contents were an IP packet, some other type of packet,
a control frame, or almost anything else. The destination NIC card could then pass the
frame contents to the proper software module (the network layer) for further process-
ing on the frame data contents. The type fi eld value for IP packets was set as 0x0800,
the bit string 00001000 00000000.

However, the IEEE 802 committee changed the simple DIX Ethernet II frame struc-
ture to produce the IEEE 802.3 CSMA/CD frame structure. Gone was the DIX Ethernet II
type (often called “Ethertype”) fi eld, and in its place was a same-sized length fi eld. This
action somewhat puzzled observers of LAN technology. DIX Ethernet II frames worked
just fi ne without an explicit length fi eld. The total frame length was determined by the
positions of the starting and ending frame delimiters. The data were always after the
header and before the trailer. Simple enough for software to fi gure out.

Now, with IEEE 802.3 it was even easier to fi gure out the length of a received frame
(the software just had to look at the length fi eld value). However, it was now impos-
sible for the receiving software to fi gure out just what the structure of the frame data
was by looking only at the frame header. Clearly, a place in the IEEE 802.3 CSMA/CD
frame had to be found to put the DIX Ethernet II type fi eld, since receivers had to have
a way to fi gure out which software process understood the frame content’s data struc-
ture. Other protocols did not understand IP packet structures, and vice versa.

The IEEE 802.3 committee “robbed” some bytes from the payload area, bytes which
in DIX Ethernet were data bytes. Since the overall length of the frame was already fi xed,
and this set the length of the frame data to 1500 bytes (the same as in DIX Ethernet),
the outcome was to reduce the allowed length of the data contents of an IEEE 802.3
frame. A simplifi ed picture of the two frame types indicating the location of the 0x0800
type fi eld and the length of the data fi eld is shown in Figure 3.8.

88 PART I Networking Basics

MAC Addresses
The MAC addresses used in 802 LAN frames are all 48 bits (6 bytes) long. The fi rst
24 bits (3 bytes) are assigned by the IEEE to the manufacturer of the NIC (manufactur-
ers pay for them). This is the Organizationally Unique Identifi er (OUI). The last 24 bits
(3 bytes) are the NIC manufacturer’s serial number for that NIC. Some protocol ana-
lyzers know the manufacturer’s ID (which is not public but seldom suppressed) and
display this along with the address. This is how Ethereal displays MAC addresses not
only in hex but starting with “Intel_” or “Juniper_.”

Note that both frame types use the same, familiar source and destination MAC
address, and use a 32-bit (4-byte) frame check sequence (FCS) for frame-level error
detection. The FCS used in both cases is a standard, 32-bit cyclical redundancy check
(CRC-32). The important difference is that the DIX Ethernet frame indicates informa-
tion type (frame content) with a 2-byte type fi eld (0x0800 means there is an IPv4 packet
inside and 0x86DD means there is an IPv6 packet inside) and the IEEE 802.3. CSMA/CD
frame places this Ethertype fi eld at the end of an additional 8 bytes of overhead called
the Subnetwork Access Protocol (SNAP) header. Another 3 bytes are the OUI given to
the NIC vendor when they registered with the IEEE, but this fi eld is not always used
for that purpose.

The 802.3 frame must subtract these 8 bytes from the IP packet length so that the
overall frame length is still the same as for DIX Ethernet II. This is because the max-
imum length of the frame is universal in almost all forms of Ethernet. The maximum

Destination Address
6 bytes

Source Address
6 bytes

Type
2 bytes

Information
46–1500 bytes

Type 5 030800 for IP packets

FCS
4 bytes

Destination Address
6 bytes

8 bytes of added overhead
Logical Link Control (LLC)
Destination Service Access Point (DSAP) 5 03AA (“SNAP SAP”)
Source Service Access Point (SSAP) 5 03AA
Control 5 0303 (same as in PPP)
Subnetwork Access Protocol (SNAP)
Organizationally Unique ID 5 3‘0000 0000’ (usually)
Type 5 030800 for IPv4 packets, 0308DD for IPv6, etc.

Source Address
6 bytes

Length
2 bytes

Information
48–1492 bytes

FCS
4 bytes

DIX Ethernet Frame Structure

IEEE 802.3 LANs Frame Structure

FIGURE 3.8

Types of Ethernet frames. The frames for Gigabit and 10 Gigabit Ethernet differ in detail, but
follow the same general structure.

CHAPTER 3 Network Link Technologies 89

IEEE 802.3 frame data is 1492 due to the 8 extra bytes needed to represent the
type fi eld. Any IP packet larger than this will not fi t in a single frame, and must frag-
ment its payload into more than one frame and have the payload reassembled at the
receiver.

That’s not all there is to it. LAN implementers and vendors quickly saw that the
IEEE 802.3 hardware arrangement was more fl exible (and less expensive) than DIX
Ethernet. They also saw that the DIX Ethernet II frame structure was simpler and could
carry slightly more user data than the complex IEEE 802.3 frame structure. Being prac-
tical people, the vendors simply used the fl exible IEEE 802.3 hardware with the simple
DIX Ethernet II frame structure, creating the mixture that is commonly seen today on
most LANs.

Today, just because the hardware is IEEE 802.3 compliant (e.g., 100BaseT), does not
mean that the frame structure used to carry IP packets is also IEEE 802.3 compliant. The
frame structure is most likely Ethernet II, as we have seen. (It’s worth pointing out that
Ethernet frame content other than IP usually uses the 802.3 frame format. However, the
Illustrated Network is basically an IP-only network.)

THE EVOLUTION OF DSL
IP packet interfaces have been defi ned for many LAN and WAN network technologies.
As soon as a new transport technology reaches the commercial-deployment stage, IP
is part of the scheme, if for no other reason than regardless of what is in the middle,
TCP/IP in Ethernet frames is at both ends. DSL technologies are a case in point. Origi-
nally designed for the “national networks” that would offer everything that the Internet
does today, but from the telephone company as part of the Integrated Services Digital
Network (ISDN) initiatives of the 1980s, DSL was adapted for “broadband” Internet
access when the grand visions of the telephone companies as content providers were
reduced to the reality of a restricted role as ISPs and little more. (Even the term “broad-
band” is a topic of much debate: A working defi nition is “speeds fast enough to allow
users to watch video without getting a headache or becoming disgusted,” speeds that
keep dropping as video coding and compression techniques become better.)

DSL once included a complete ATM architecture, with little or no TCP/IP. Practical
considerations forced service providers to adapt DSLs once again, this time for the real
consumer world of Ethernet LANs running TCP/IP. And a tortured adaptation it proved
to be. The problem was deeper than just taking an Ethernet frame and mapping it to a
DSL frame (even DSL bits are organized into a distinctive transport frame). Users had to
be assigned unique IP addresses (not necessary on an isolated LAN), and the issues of
bridging versus routing versus switching had to be addressed all over again. This was
because linking two LANs (the home user client LAN, even if it had but one PC, and the
server LAN) over a WAN link (DSL) was not a trivial task. The server LAN could be the
service provider’s “home server” or anyplace else the user chose to go on the Internet.

Also, ATM logical links (called permanent virtual circuits, or PVCs) are normally
provisioned between the usual local exchange carrier’s DSLAM and the Internet access

90 PART I Networking Basics

provider’s aggregation router. This can be very costly because IP generally has much
better statistical multiplexing properties and there can be long hauls through the ATM
networks before the ATM link is terminated.

The solution was to scrap any useful role for ATM (and any non-TCP/IP infrastruc-
ture) except as a passive transport for IP packets. This left ATM without any rationale
for existence, because most of the work was done by running PPP over the DSL link
between a user LAN and a service provider LAN.

PPP and DSL
Why is PPP used with DSL (and SONET)? The core of the issue is that ISPs needed some
kind of tunneling protocol. Tunneling occurs when the normal message-packet-frame
encapsulation sequence of the layers of a networking protocol suite are violated. When
a message is placed inside a packet, then inside a frame, and this frame is placed inside
another type of frame, this is a tunneling situation. Although many tunneling methods
have been standardized at several different TCP/IP layers, tunneling works as long as
the tunnel endpoints understand the correct sequence of headers and content (which
can also be encrypted for secure tunnels).

In DSL, the tunneling protocol had to carry the point-to-point “circuits” from the
central networking location to the customer’s premises and across the shared media

Networking Visions Today and Yesterday
Today, when anyone can start a Web site with a simple server and provide a service
to one and all over the Internet, it is good to remember that things were not always
supposed to be this way. Not so long ago, the control of services on a public global
network was supposed to be fi rmly under the control of the service provider.
Many of these “fast-packet” networking schemes were promoted by the national
telephone companies, from broadband ISDN to ATM to DSL. They all envisioned a
network much like the Internet is today, but one with all the servers “in the cloud”
owned and operated by the service providers. Anyone wanting to provide a ser-
vice (such as a video Web site) would have to go to the service provider to make
arrangements, and average citizens would probably be unable to break into that
tightly controlled and expensive market.

This scheme avoided the risk of controversial Web site content (such as copy-
righted material available for download), but with the addition of restrictions and
surveillance. Also, the economics for service providers are much different when
they control content from when they do not.

Today, ISPs most often provide transport and connectivity between Web
sites and servers owned and operated by almost anyone. ISP servers are usually
restricted to a small set of services directly related to the ISP, such as email or
account management.

CHAPTER 3 Network Link Technologies 91

LAN to the end user device (host). There are many ways to do this, such as using IP-in-
IP tunneling, a virtual private network (VPN), or lower level tunneling. ISPs chose PPP
as the solution for this role in DSL.

Using PPP made perfect sense. For years, ISPs had used PPP to manage their WAN
dial-in users. PPP could easily assign and manage the ISP’s IP address space, compart-
mentalize users for billing purposes, and so on. As a LAN technology, Ethernet had none
of those features. PPP also allowed user authentication methods such as RADIUS to be
used, methods completely absent on most LAN technologies (if you’re on the LAN, it’s
assumed you belong there).

Of course, keeping PPP meant putting the PPP frame inside the Ethernet frame, a
scheme called Point-to-Point Protocol over Ethernet (PPPoE), described in RFC 2516.
Since tunneling is just another form of encapsulation, all was well.

PPP is not the only data link layer framing and negotiation procedure (PPP is not a
full data link layer specifi cation) from the IETF. Before PPP became popular, the Serial
Line Internet Protocol (SLIP) and a closely related protocol using compression (CSLIP,
or Compressed SLIP) were used to link individual PCs and workstations not connected
by a LAN, but still running TCP/IP, to the Internet over a dial-up, asynchronous analog
telephone line with modems. SLIP/CSLIP was also once used to link routers on widely
separated TCP/IP networks over asynchronous analog leased telephone lines, again
using modems. SLIP/CSLIP is specifi ed in RFC 1055/STD 47.

PPP Framing for Packets
PPP addresses many of the limitations of SLIP, and can run over both asynchronous
links (as does SLIP) and synchronous links. PPP provides for more than just a simple
frame structure for IP packets. The PPP standard defi nes management and testing func-
tions for line quality, option negotiation, and so on. PPP is described in RFC 1661, is
protocol independent, and is not limited to IP packet transport.

The PPP control signals, known as the PPP Link Control Protocol (LCP), need not
be supported, but are strongly recommended to improve performance. Other control
information is included by means of a Network Control Protocol (NCP), which defi nes
management procedures for frame content protocols. The NCP even allows protocols
other than IP to use the serial link at the same time. The LCP and NCP subprotocols are
a distinguishing feature of PPP.

The use of LCP and NCP on a PPP link on a TCP/IP network follows:

■ The source PPP system (user) sends a series of LCP messages to confi gure and
test the serial link.

■ Both ends exchange LCP messages to establish the link options to be used.
■ The source PPP system sends a series of NCP messages to establish the Network

Layer protocol (e.g., IP, IPX, etc.).
■ IP packets and frames for any other confi gured protocols are sent across the

link.
■ NCP and LCP messages are used to close the link down in a graceful and

structured manner.

92 PART I Networking Basics

Flag
037E

Address
03FF

Control
0303

Protocol
2 bytes

Information
(variable)

FCS
2 bytes

Flag
037E

0111
1110

Protocol field values:
03C021 5 Link Control Protocol (LCP)
038021 5 Network Control Protocol (NCP)
030021 5 IP Packet inside

0111
1110

1111
1111

0000
0011

The benefi ts are to create a more effi cient WAN transport for IP packets. The structure
of a PPP frame is shown in Figure 3.9.

The Flag fi eld is 0x7E (0111 1110), as in many other data link layer protocols. The
Address fi eld is set to 0xFF (1111 1111), which, by convention, is the “all-stations” or
broadcast address. Note that none of the other fi elds in the Point-to-Point Protocol header
have a source address for the frame. Point-to-point links only care about the destination,
which is always 0xFF in PPP and essentially means “any device at the other end of this
link that sees this frame.” This is one reason why serial interfaces on routers sometimes
do not have IP addresses (but many serial interfaces, especially to other routers, have
them anyway—this is the only way to make the serial links “visible” to the IP layer and
network operations).

The Control fi eld is set to 0x03 (0000 0011), which is the Unnumbered Information
(UI) format, meaning that there is no sequence numbering in these frames. The UI for-
mat is used to indicate that the connectionless IP protocol is in use. The Protocol fi eld
identifi es the format and use of the content of the PPP frame itself. For LCP messages,
the Protocol fi eld has the value 0xC021 (1100 0000 0010 0001), for NCP the fi eld has the
value 0x8021 (1000 0000 0010 0001), and for IP packets the fi eld has the value 0x0021
(0000 0000 0010 0001).

Following the header is a variable-length Information fi eld (the IP packet), followed
by a PPP frame trailer with a 16-bit, frame check sequence (FCS) for error control, and
fi nally an end-of-frame Flag fi eld.

PPP frames may be compressed, fi eld sizes reduced, and used for many specifi c
tasks, as long as the endpoints agree.

DSL Encapsulation
How are IP packets encapsulated on DSL links? DSL specifi cations establish a basic DSL
frame as the physical level, but IP packets are not placed directly into these frames. IP
packets are placed inside PPP frames, and then the PPP frames are encapsulated inside
Ethernet frames (this is PPP over Ethernet, or PPPoE). Finally, the Ethernet frames are

FIGURE 3.9

The PPP frame. The fl ag bytes (037E) essentially form an “idle pattern” on the link that is
 “interrupted” by frames carrying information.

CHAPTER 3 Network Link Technologies 93

placed inside the DSL frames and sent to the DSL Access Module (DSLAM) at the tele-
phone switching offi ce.

Once at the switching offi ce, it might seem straightforward to extract the Ethernet
frame and send it on into the “router cloud.” But it turns out that almost all DSLAMs are
networked together by ATM, a technology once championed by the telephone compa-
nies. (Some very old DSLAMs use another telephone company technology known as
frame relay.) ATM uses cells instead of frames to carry information.

So the network/data-link/physical layer protocol stack used between DSLAMs and
service provider routers linked to the Internet usually looks like fi ve layers instead of
the expected three:

■ IP packet containing user data, which is inside a PPP frame, which is inside an
■ Ethernet frame running to the DSL router (PPPoE), which is inside a series of
■ ATM cells, which are sent over the physical medium as a series of bits.

We’ll take a closer look at frame relay and ATM in a later chapter on public network
technologies that can be used to link routers together.

Forms of DSL
Entire books are devoted to the variations of DSL and the DSL protocol stacks used by
service providers today. Instead of focusing on all the details of these variations, this
section will take a brief look at the variation of DSL that can be used when IP packets
make their way from a home PC onto the Internet.

DSL often appears as “xDSL” where the “x” can stand for many different letters. DSL
is a modern technology for providing broadband data services over the same twisted-
pair (TP), copper telephone lines that provide voice service. DSL services are often
called “last-mile” (and sometimes “fi rst-mile”) technologies because they are used only
for short connections between a telephone switching station and a home or offi ce. DSL
is not used between switching stations (SONET is often used there).

DSL is an extension of the Integrated Services Digital Network (ISDN) technology
developed by the telephone companies for their own set of combined voice and data
services. They operate over short ranges (less than 18 kilofeet) of 24 American Wire
Gauge (AWG) voice wire to a telephone central offi ce. DSLs offer much higher speeds
than traditional dial-up modems, up to 52 mbps for traffi c sent “downstream” to the
user and usually from 32 kbps to 1 Mbps from traffi c sent “upstream” to the central
offi ce. The actual speed is distance limited, dropping off at longer distances.

At the line level, DSLs use one of several sophisticated modulation techniques run-
ning in premises DSL router chipsets and DSLAMs at the telephone switching offi ce.
These include the following:

■ Carrierless Amplitude Modulation (CAP)
■ Discrete Multitone Technology (DMT)
■ Discrete Wavelet Multitone (DWM)
■ Simple Line Code (SLC)
■ Multiple Virtual Line (MVL)

94 PART I Networking Basics

DSL can operate in a duplex (symmetrical) fashion, offering the same speeds
upstream and downstream. Others, mainly targeted for residential Internet browsing
customers, offer higher downstream speeds to handle relatively large server replies to
upstream mouse clicks or keystrokes. However, standard VDSL and VDSL2 have much
less asymmetry than other methods. For example, 100-Mbps symmetric operation is
possible at 0.3 km, and 50 Mbps symmetric at 1 km.

The DSLAMs connect to a high-speed service provider backbone, and then the
Internet. DSLAMs aggregate traffi c, typically for an ATM network, and then connect to a
router network. On the interface to the premises, the DSLAM demultiplexes traffi c for
individual users and forwards it to the appropriate users.

In order to support traditional voice services, most DSL technologies require a sig-
nal fi lter or “splitter” to be installed on the customer premises to share the twisted-pair
wiring. The DSLAM splits the signal off at the central offi ce. Splitterless DSL is very
popular, however, in the form of “DSL Lite” or several other names.

In Table 3.2, various types of DSL are compared. The speeds listed are typical, as
are the distance (there are many other factors that can limit DSL reach) and services
offered.

VDSL requires a fi ber-optic feeder system to the immediate neighborhood, but VDSL
can provide a full suite of voice, video, and data services. These services include the
highest Internet access rates available for residential services, and integration between
voice and data services (voice mail alerts, caller ID history, and so on, all on the TV

Table 3.2 Types of DSL

Type Meaning Typical Data Rate Mode Distance Applications

IDSL ISDN DSL 128 Kbps Duplex 18k ft on 24
AWG TP

ISDN services: voice and
data; Internet access

HDSL High-speed
DSL

1.544 to
42.048 Mbps

Duplex 12k ft on 24
AWG TP

T1/E1 service, feeder,
WAN access, LAN con-
nections, Internet access

SDSL Symmetric
DSL

1.544 to
2.048 Mbps

Duplex 12k ft on 24
AWG TP

Same as HDSL

ADSL Asymmetric
DSL

1.5 to 6 Mbps
16 to 640 kbps

Down

Up

18k ft on 24
AWG TP

Internet access, remote
LAN access, some video
applications.

DSL Lite
(G.Lite)

“Splitterless”
ADSL

1.5 to 6 Mbps
16 to 640 kbps

Down

Up

18k ft on 24
AWG TP

Same as ADSL, but does
not require a premises
“splitter” for voice services

VDSL Very-high-
speed DSL

13 to 52 Mbps
1.5 to 2.3 Mbps

Down

Up

1k to 4.5k ft
depending
on speed

Same as ADSL plus full
voice and video services,
including HDTV

CHAPTER 3 Network Link Technologies 95

screen). VDSL is used on the Illustrated Network to get packets from the home offi ce’s
PCs to the ISP’s router network (the overall architecture is not very different from DSL
in general). From router to router over WAN distances, the Illustrated Network uses a
common form of transport for the Internet in the United States: SONET.

THE EVOLUTION OF SONET
SONET is the North American version of the international SDH standard and defi nes
a hierarchy of fast transports delivered on fi ber-optic cable. One of the most exciting
aspects of SONET when it fi rst appeared around 1990 was the ability to deploy SONET
links in self-healing rings, which nearly made outages a thing of the past. (The vast
majority of link failures today involve signal “backhoe fade,” a euphemism for accidental
cable dig-ups.)

Before networks composed almost entirely of fi ber-optic cables came along, net-
work errors were a high-priority problem. Protocols such as IP and TCP had extensive
error-detection and error-correction (the two are distinct) methods built into their
operation, methods that are now quietly considered almost a hindrance in modern
networks.

Now, SONET rings do not inherently protect against the common problem of a lack
of equipment or route diversity, but at least it’s possible. Not all SONET links are on
rings, of course. The links on the Illustrated Network are strictly point-to-point.

A Note about Network Errors
Before SONET, almost all WAN links used to link routers were supplied by a telephone
company that subscribed to the Bell System standards and practices, even if the phone
company was not part of the sprawling AT&T Bell System. In 1984, the Bell System
engineering manual named a bit error rate (BER) of 10–5 (one error in 100,000 bits
sent) as the target for dial-up connections, and put leased lines (because they could be
“tuned” through predictable equipment) at 10 times better, or 10–6 (one error in every
1,000,000 bits).

SONET/SDH fi ber links typically have BERs of 1000 (103) to 1 million (106) times
better than those common in 1984. Since 1000 days is about 3 years, converting a cop-
per link to fi ber meant that all the errors seen yesterday are now spread out over the
next 3 years (a BER of 10–9) to 3000 years (10–12). LAN error rates, always much lower
than those of WANs due to shorter spans and less environmental damage, are in about
the same range. Most errors today occur on the modest-length (a kilometer or mile)
access links between LAN and WAN to ISP points of presence, and most of those errors
are due to intermittently failing or faulty connectors.

The only real alternatives for SONET/SDH high-speed WAN links are newer ver-
sions of Ethernet, especially in a metropolitan Ethernet context. The megabit-speed
T1 (1.544 Mbps) or E1 (2.048 Mbps) links are used for the local loop. However, even
those copper-based circuits are usually serviced by newer technologies and carried
over SONET/SDH fi ber on the backbone.

96 PART I Networking Basics

How are IP packets carried inside SONET frames? The standard method is called
Packet over SONET/SDH (POS). The procedures used in POS are defi ned in three RFCs:

■ RFC1619, PPP over SONET/SDH
■ RFC1661, the PPP
■ RFC1662, PPP in HDLC-like framing

Packet over SONET/SDH
SONET/SDH frames are not just a substitute for Ethernet or PPP frames. SONET/SDH
frames, like T1 and E1 frames, carry unstructured bit information, such as digitized
voice telephone calls, and are not usually suitable for direct packet encapsulation. In
the case of IP, the packets are placed inside a PPP frame (technically, a type of High-
Level Data Link Control [“HDLC-like”] PPP frame with some header fi elds allowed to
vary in HDLC fi xed for IP packet payloads). The PPP frame, delimited by a stream of
special 0x7E interframe fi ll (or “idle” pattern) bits, is then placed into the payload area
of the SONET/SDH frame.

Figure 3.10 shows a series of PPP frames inside a SONET frame running at 51.84
Mbps. Although SONET (and SDH) frames are always shown as two-dimensional arrays

SONET
Frame 1

SONET
Frame

Overhead

SONET
Frame 2

SONET
Frame

Overhead

SONET
Frame 3

SONET
Frame

Overhead

SONET
Frame 4

SONET
Frame

Overhead

7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E
7E 7E 7E | PPP Hdr | IP packet.... | IP trailer | 7E
7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E
7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E
7E 7E 7E | PPP Hdr | IP packet

... | IP trailer | 7E
7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E
7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E
7E 7E 7E | PPP Hdr | IP packet
 ... | IP trailer | 7E 7E

... | IP trailer | 7E
7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E
7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E
7E 7E 7E | PPP Hdr | IP packet
 ... | IP trailer | 7E 7E

7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E
7E 7E 7E | PPP Hdr | IP packet | IP trailer | 7E
7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E
7E 7E 7E | PPP Hdr | IP packet
 ...

SONET Frame Payload Area

FIGURE 3.10

Packet over SONET, showing how the idle pattern of 0x7E surrounds the PPP frames with IP
packets inside.

CHAPTER 3 Network Link Technologies 97

of bits, the fi gure is not very accurate. It doesn’t show any of the SONET framing bytes,
and IP packets are routinely set to around 1500 bytes long, so they would easily fi ll an
entire 774-byte, basic SONET transmission-frame payload area. Even the typical network
default maximum IP packet size of 576 bytes is quite large compared to the SONET
payload area. However, many packets are not that large, especially acknowledgments.

One other form of transport used on the Illustrated Network is common on IP net-
works today. Wireless links might some day be more common than anything else.

WIRELESS LANS AND IEEE 802.11
Wireless technologies are the fastest-growing form of link layer for IP packets, whether
for cell phones or home offi ce LANs. Cell phone packets are a bit of a challenge, and
wireless LANs are evolving rapidly, but this section will focus on wireless LANs, if only
because wireless LANs are such a good fi t with Ethernet. This section will be a little
longer than the others, only because the latest wireless LANs are newer than the previ-
ous methods discussed.

The basic components of the IEEE 802.11 wireless LAN architecture are the wire-
less stations, such as a laptop, and the access point (AP). The AP is not strictly necessary,
and a cluster of wireless stations can communicate directly with each other without
an AP. This is called an IEEE 802.11 independent, basic service set (IBSS) or ad hoc
network. One or more wireless stations form a basic service set (BSS), but if there is
only one wireless station in the BSS, an AP is necessary to allow the wireless station to
communicate. An AP has both wired and wireless connections, allowing it to be the
access “point” between the wireless station and the world. In a typical home wireless
network (an arbitrarily low limit), one BSS supports up to four wireless devices, and
the AP is bundled with the DSL router or cable modem with the high-speed link for
Internet access. (The DSL router or cable modem can have multiple wired connections
as well.) In practice, the number of systems you can connect to a given type of AP
depends on your performance needs and the traffi c mix.

A wireless LAN can have multiple APs, and this arrangement is sometimes called
an infrastructure wireless LAN. This type of LAN has more than one BSS, because each
AP establishes its own BSS. This is called an extended service set (ESS), and the APs are
often wired together with an Ethernet LAN or an Ethernet hub or switch. The three
major types of IEEE 802.11 wireless LANs—ad hoc (IBSS), BSS, and ESS—are shown in
Figure 3.11.

Wi-Fi
An intended interoperable version of the IEEE 802.11 architecture is known as Wi-Fi,
a trademark and brand of the Wi-Fi Alliance. It allows users with properly equipped
wireless laptops to attach to APs maintained by a service provider in restaurants, book-
stores, libraries, and other locations, usually to access the Internet. In some places, espe-
cially downtown urban areas, a wireless station can receive a strong signal from two or

98 PART I Networking Basics

Wireless Laptop
Station

Wireless Laptop
Station

Wireless Laptop
Station

Wireless Laptop
Station

Wireless Laptop
Station

Wireless Laptop
Station

Wireless Laptop
Station

Wireless Laptop
Station

Wireless Laptop
Station

Wireless Laptop
Station

Wireless Laptop
Station

Access Point
for BSS 1

Access Point

Access Point
for BSS 2

Internet

Internet

BSS with AP
BSS without AP

(ad hoc network)

ESS

Wireless Laptop
Station

Wireless Laptop
Station

Wireless Laptop
Station

more APs. While a wireless station can belong to more than one BSS through its AP at
the same time, this is not helpful when the APs are offering different network addresses
(and perhaps prices for attachment). This collection of Wi-Fi networks is sometimes
called the “Wi-Fi jungle,” and will only become worse as wireless services turn up more
and more often in parks, apartment buildings, offi ces, and so on. How do APs and wire-
less stations sort themselves out in the Wi-Fi jungle?

If there are APs present, each wireless station in IEEE 802.11 needs to associate
with an AP before it can send or receive frames. For Internet access, the 802.11 frames
contain IP packets, of course. The network administrator for every AP assigns a Service
Set Identifi er (SSID) to the AP, as well as the channels (frequency ranges) that are associ-
ated with the AP. The AP has a MAC layer address as well, often called the BSSID.

The AP is required to periodically send out beacon frames, each including the
AP’s SSID and MAC layer address (BSSID), on its wireless channels. These channels are
scanned by the wireless station. Some channels might overlap between multiple APs,
because the “jungle” has no central control, but (hopefully) there are other channels
that do not. In practice, interference between overlapping APs is not a huge problem

FIGURE 3.11

Wireless LAN architectures. Most home networks are built around an access point built into a
DSL router/gateway.

CHAPTER 3 Network Link Technologies 99

in the absence of a high volume of traffi c. When you “view available networks” in
 Windows XP, the display is a list of the SSIDs of all APs in range. To get Internet access,
you need to associate your wireless station with one of these APs.

After selecting an AP by SSID, the wireless host uses the 802.11 association protocol
to join the AP’s subnet. The wireless station then uses DHCP to get an IP address, and
becomes part of the Internet through the AP.

If the wireless Internet access is not free, or the wireless LAN is intended for
restricted use (e.g., tenants in a particular building), the wireless station might have
to authenticate itself to the AP. If the pool of users is small and known, the host’s MAC
address can be used for this purpose, and only certain MAC addresses will receive IP
addresses.

Once the user is on the wireless network, many hotels use the captive portal form of
authentication. The captive portal technique makes the user with a Web browser (HTTP
client) to see a special Web page before being granted normal Internet access. The
captive portal intercepts all packets regardless of address or port, until the browser is
used as a form of authentication device. Once the acceptable use terms are viewed or
the payment rates are accepted and arranged, “normal” Internet access is granted for
a fi xed period of time. It should be noted that captive portals can be used to control
wired access as well, and many places (hotel rooms, business centers) use them in this
fashion. In many cases, the normal device “fi rewall” capabilities must be turned off or
confi gured to allow the captive portal Web page to appear.

Another post-access approach employs usernames and passwords—these are popu-
lar at coffee shops and other retail establishments. In both cases, there is usually a central
authentication server used by many APs, and the wireless host communicates with this
server using either RADIUS (RFC 2138) or DIAMETER (RFC 3588). Once authenticated,
the users’ traffi c is commonly encrypted to preserve privacy over the airwaves, where
signals can usually be picked up easily and without the knowledge of end users.

When accessing the offi ce remotely, even if captive portal or some other method is
used, most organizations add something to secure tunneling based on PPTP (Microsoft’s
Point-to-Point Tunneling Protocol) or PPPoE to run proprietary VPN client software. We’ve
already mentioned PPPoE, and PPTP with VPNs will be explored later in this book.

IEEE 802.11 MAC Layer Protocol
IEEE 802.11 defi nes two MAC sublayers: the distributed coordination function (DCF)
and the point coordination function (PCF). The PCF MAC is optional and runs on top
of the DCF MAC, which is mandatory. PCF is used with APs and is very complex, while
DCF is simpler and uses a venerable access method known as carrier sense multiple
access with collision avoidance (CSMA/CA). Note that while Ethernet LANs detect
collisions between stations sending at the same time with CSMA/CD, wireless LANs
avoid collisions. Collision detection is not appropriate for wireless LANs for a number
of reasons, the most important being the hidden terminal problem.

To understand the hidden terminal problem, consider the two wireless laptops and
AP shown in Figure 3.12. (The problem does not only occur with an AP, but the fi gure

100 PART I Networking Basics

shows this situation.) Both laptops are within range of the AP, but not of each other
(there are many reasons for this, from distance to signal fading). Obviously, if L1 is send-
ing a frame to the AP, L2 could also start sending a frame, because the carrier sensing
shows the network as “clear.” However, a collision occurs at the AP and both frames
have errors, although both L1 and L2 think their frames were sent just fi ne.

Now, the AP clearly knows what’s going on. It just needs a way to tell the wireless
stations when it’s okay to send (or not). CSMA/CD can use an optional method known
as request to send (RTS) and clear to send (CTS) to avoid these types of undetected
collisions. When a sender wants to send a data frame, it must fi rst reserve the channel
by sending a short RTS frame to the AP, telling the AP how long it will take to send the
data, and receive an acknowledgement frame (ACK) that all went well. If the sender
receives a short CTS control frame back, then it can send. Other stations hear the CTS
as well, and refrain from sending during this time period.

The way that RTS/CTS works for sending data to an access point is shown in
 Fig ure 3.13.

There are two time notations in the fi gure: DIFS and SIFS. The distributed inter-
frame space (DIFS) is the amount of time a wireless station waits to send after sensing
that the channel is clear. The station waits a bit “just in case” because wireless LANs,
unlike Ethernet, do not detect collisions and cease sending, so collisions are very debili-
tating and must be avoided at all costs. The short inter-frame spacing (SIFS) is also
used between frames for collision avoidance. There is also a duration timer in all 802.11
frames, measured in microseconds, that tells the other stations how long it will take to
send the frame and receive a reply. Stations avoid link access during this time period.

While RTS/CTS does reduce collisions, it also adds delay and reduces the available
bandwidth on a channel. In practice, each wireless station sets an RTS threshold so that
CTS/RTS is used only when the frame is longer than this value. Many wireless stations
set the threshold so high that the value is larger than the maximum frame length, and
the RTS/CTS is skipped for all data.

Wireless Laptop
L2

Access Point
Wireless Laptop

L1

FIGURE 3.12

Hidden terminals on wireless LANs. This can be a problem in larger home networks, and special
“LAN extender” devices can be used to prevent the problem.

CHAPTER 3 Network Link Technologies 101

Source

Access Point

All Other NodesDestination

DIFS

SIFS

SIFS

SIFS

Defer Access

DATA

ACK

CTS

RTS

Reservation
Time

FIGURE 3.13

RTS and CTS in wireless LANs showing how all other nodes must defer access to the medium.
The CTS is heard by all other nodes, although this is not detailed in the fi gure.

The IEEE 802.11 Frame
Although the IEEE 802.11 frame shares a lot with the Ethernet frame (which is one rea-
son some packet sniffers can parse wireless frames as if they were Ethernet), there are
a number of unique fi elds in 802.11. There are nine main fi elds, and the frame control
(FC) fi eld has 10 fi elds. The nine major fi elds of the IEEE 802.11 MAC frame are shown
in Figure 3.14. The only fi elds in the two FC bytes that we will talk about are the From
DS and To DS fi elds. (In some cases, the fi rst three fi elds of the 802.11 MAC frame, the
version, type, and subtype, are presented separately from the frame control fl ags, which
are all bits.)

FIGURE 3.14

IEEE 802.11 frame structure. Note the potential number of address fi elds (four) in contrast to the
two used in Ethernet II frames.

Frame
Control

2 bytes 2 bytes 6 bytes 6 bytes 6 bytes 6 bytes 0–2312
bytes

4
bytes

2 bytes

Duration Address 1 Address 2 Address 3 Address 4 Payload
F
C
S

Seq.
Control

102 PART I Networking Basics

Frame control (FC)—This field is 2 bytes long and contains, among other things,
two important flag bits: To DS (distribution system) and From DS.

Duration—This byte gives the duration of the transmission in all frame types
except one. In one control frame, this “D” byte gives the ID of the frame.

Addresses—There are four possible address fields, each 6 bytes long and struc-
tured the same as Ethernet MAC addresses. The fourth field is only present
when multiple APs are in use in an ESS. The meaning of each address field
depends on the value of the DS flags in the FC field, discussed later.

Sequence control—This 2-byte field gives the sequence number of the frame and
is used in flow control.

Payload—This field can be from 0 to 2312 bytes long. Usually it is fewer than
1500 bytes and holds an IP packet, but there are other types of payloads. The
precise type and subtype of the content is determined by the content of the
FC field.

CRC—The frame cyclical redundancy check is a 4-byte CRC-32, used to determine
the nature of the acknowledgement sent.

Why does the wireless frame need to defi ne four address fi elds? Mainly because the
arrangements of wireless stations can be complicated. Is there an AP in the BSS? Is there
more than one AP? What type of frame is being sent? Data? Control? Management? The
number of address fi elds present, and what they represent, depend on the answers to
these questions.

How do receivers know exactly how many addresses are used and what they repre-
sent? That’s where the two DS fl ags in the FC fi eld come in. The meaning of the address
fi elds (and possible presence of the Address 4 fi eld) depends on the values of these two
bits. Actually, there are fi ve types of MAC addresses used in wireless LANs:

BSSID—This is usually the MAC address of the AP, but it is generated randomly in
an IBSS or ad hoc network.

Transmitter Address (TA)—The TA is the MAC address of the individual station
that has just sent the frame.

Receiver Address (RA)—The RA is the MAC address of the immediate receiver of
the frame. This can be a group or broadcast address.

Source Address (SA)—The SA is the MAC address of the individual station that
originated the frame. Due to the possible role played by the AP, the SA is not
necessarily the same as the TA.

Destination Address (DA)—The DA is the MAC address of the final destination of
the frame, and can also be a group or broadcast as well as an individual station.
Again, due to the AP(s), this address might not match the RA.

CHAPTER 3 Network Link Technologies 103

The interplay among these address types and the meaning of the two DS fl ags for
data frames is shown in Table 3.3.

A look back at Figures 3.6 and 3.7 will show that these address patterns are refl ected
in the screen captures. The last two bits of the frame control fl ags are the DS bits,
which are 01 (To AP) and 10 (From AP), respectively. The Proxima AP is passing the
frame between the Cisco and Farallon wireless stations.

The Address 4 fi eld appears only when there are multiple APs. Usually, data frames
in a simple BSS with AP use DS bit combinations 01 and 10 to make their way through
the AP from one wireless station to another.

Table 3.3 DS Bits and Wireless LAN Data Frame Address Fields

Type of Network From DS To DS Address 1 Address 2 Address 3 Address 4

Ad hoc (IBSS) 0 0 DA (5 RA) SA BSSID N/A

To AP 0 1 RA (5 BSSID) SA DA N/A

From AP 1 0 DA (5 RA) BSSID SA N/A

ESS (multiple
APs)

1 1 RA TA DA SA

104 PART I Networking Basics

QUESTIONS FOR READERS
Figure 3.15 shows some of the concepts discussed in this chapter and can be used to
help you answer the following questions.

Hub

Client

Hub

Ethernet || Frames
Carrying IP Packets

Client Server

LAN 1

LAN 2

Router

IP Packet over
SONET (POS) on
SONET/SDH (with

added frame
overhead)

Client

Home FTTN

Home

Router

Wireless
AP

Wireless Network Carrying
IP Packets inside
802.11 Frames

Client Server Router

Fiber Carrying IP Packets
inside DSL Frames

FIGURE 3.15

IP packets are carried in many different types of frames, and some of those frames are tucked
inside lower level transmission frames.

1. Both LAN1 and LAN2 use Ethernet II frames. What would happen if frame types
on the two LANs were different?

2. SONET/SDH still has its own overhead bytes when IP packets are carried inside
the SONET/SDH frames. Why is the SONET/SDH overhead still necessary?

3. What is the captive portal method of wireless access permission and how does
it work?

4. Ethernet LANs can extend to metropolitan area distances and perhaps beyond.
If Metro Ethernet evolved to remove all distance limits, what are the advantages
and disadvantages of always using Ethernet frames for IP packets?

5. Why are more than two addresses used in wireless frames in some cases? Which
cases require more than two addresses?

105

PART

IICore Protocols

All hosts attached to the Internet run certain core protocols to enable their
 applications to function properly. This part of the book examines these
 protocols and shows how the router forms the glue that holds the Internet
together.

■ Chapter 4—IPv4 and IPv6 Addressing

■ Chapter 5—Address Resolution Protocol

■ Chapter 6—IPv4 and IPv6 Headers

■ Chapter 7—Internet Control Message Protocol

■ Chapter 8—Routing

■ Chapter 9—Forwarding IP Packets

■ Chapter 10—User Datagram Protocol

■ Chapter 11—Transmission Control Protocol

■ Chapter 12—Multiplexing and Sockets

CHAPTER

What You Will Learn
In this chapter, you will learn about the addressing used in IPv4 and IPv6. We’ll
assign addresses of both types to various interfaces on the hosts and routers of the
Illustrated Network. We’ll mention older classful IPv4 addressing and the current
classless system. We will start to explore the differences between IPv4 and IPv6
addressing and why both exist.

You will learn about the important concept of subnetting and supernetting
and other aspects of IP addressing. We’ll detail the IP subnet mask as well.

IPv4 and IPv6
Addressing 4

In many ways, IPv4 and IPv6 are distinct protocols with important differences. Never-
theless, both IPv4 and IPv6 are valid IP layer addresses, some networks use both IPv4
and IPv6, and the packet data content is the same in both. Network engineers often
deal with both every day, and we will too. In the future, the importance of IPv6 will
only grow.

IPv4 addressing was fairly straightforward to understand before the Internet
exploded all over the world. Then the original (“classful”) rules for assigning networks
IPv4 addresses didn’t work as well, and routers were getting overwhelmed by the size
and resources needed to maintain routing and forwarding tables.

This chapter investigates both IPv4 and IPv6 addressing, and the host and router
interfaces on the Illustrated Network have both IPv4 and IPv6 addresses (see
 Figure 4.1). We’ll assign these addresses manually in this chapter.

We’ll start the discussion by describing the classless Internet routing (CIDR) rules
created so that we did not run out of IPv4 addresses in 1994, shortly after the Web
exploded onto the scene. Then we’ll describe the older classful system, and, fi nally,
we’ll talk about IPv6 addressing. This chapter also explores important aspects of IP
addressing subnetting and supernetting.

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80:205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-0
/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65459

DSL Link

Wireless
in Home

Solid rules � SONET/SDH
Dashed rules � Gig Ethernet
Note: All links use 10.0.x.y
addressing...only the last
two octets are shown.

FIGURE 4.1

The Illustrated Network IP addressing, showing the interfaces on the LANs and customer-edge
routers that we will be working with. Note that in most cases, all of the network interfaces will
have both IPv4 and IPv6 addresses.

110 PART II Core Protocols

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80:205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC: 00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

ge-0/0/3

16.2

ge-0/0/3

16.1

Best ISP

AS 65127

Global Public
Internet

CHAPTER 4 IPv4 and IPv6 Addressing 111

IP ADDRESSING
In Chapter 2 we worked a lot with the Linux and Windows clients and servers. Let’s
start with our FreeBSD hosts and routers to look at IPv4 and IPv6 addresses on the
device’s interfaces.

Figure 4.1 shows through shading the portion of the network we’ll be working
with in this chapter. All of the ISP routers have IP addresses, of course, both IPv4 and
IPv6, but we’ll only look at the addressing of the customer routers. Although it can be
important, we won’t worry about the addressing used internally by service providers.
The things that can go wrong there are far beyond this introductory discussion.

When the Illustrated Network was fi rst confi gured, we manually assigned an IPv4
address to the bsdserver Ethernet interface (em0) with ifconfig. The only tricky part
was translating the prefi x length used on our network (/24) to a decimal network mask
for this host (this was done only to show this common method). We could have used
10.10.12.77/24 as well, or even hex (0xffffff00). We’ll talk about prefi x lengths and
network masks later on in this chapter. The ifconfig command generates no output,
but we can look at the result using ifconfig without any parameters.

bsdserver# ifconfig em0 inet 10.10.12.77 netmask 255.255.255.0
bsdserver# ifconfig
em0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 options=3<RXCSUM,TXCSUM>
 inet6 fe80::20e:cff:fe3b:8732%em0 prefixlen 64 scopeid 0x1
 inet 10.10.12.77 netmask 0xffffff00 broadcast 10.10.12.255
 ether 00:0e:0c:3b:87:32
 media: Ethernet autoselect (100baseTX <full-duplex>)
 status: active

Automatic IP Addressing
This chapter assigns IPv4 and IPv6 addresses manually on each device. This is still
done, but it is more common by far to assign IP addresses automatically with the
Dynamic Host Confi guration Protocol, or DHCP. Routers can use DHCP as well.
We’ll look at DHCP in a later chapter.

The interface fl ags are interpreted on the fi rst line of the output. Interface em0 is up
and running, and can send or receive, but not at the same time (simplex). It can send
and receive broadcasts and multicast, and has a Maximum Transmission Unit (MTU)
of 1500 bytes (a normal Ethernet frame). If a packet is queued for output and is too
large for this 1500-byte frame, then the packet content must be fragmented into mul-
tiple frames, each in its own packet. We’ll talk about fragmentation in detail in a later
chapter. The option line says that the frame check sequence is generated when trans-
mitting and checked when receiving.

112 PART II Core Protocols

Note that we got an IPv6 address (the inet6 line) as well. This is called the link-
local (0xfe80) IPv6 address. It is based on the MAC address and generated automati-
cally, with a prefi x length (prefixlen) of /64. Newer versions of FreeBSD function
this way, as long as the local router is properly confi gured to run IPv6. You can use
the ifconfig command with the inet6 option to assign a specifi c IPv6 address to the
interface. (There’s a lot more to IPv6 addressing, such as router-assigned prefi xes, but
we’re keeping it very basic here.)

The next line lists the IPv4 address, netmask, and the address used as an IP broad-
cast address to send packets to every device on the network. The MAC address has a
line all its own, followed by the type of media: 100-Mbps, twisted-pair Ethernet, capable
of sending and receiving (full-duplex) at the same time (but em0 will not do that). The
interface is active as well as up, which means that it is sending and receiving bits.

Linux uses slightly different syntax to assign IPv4 addresses to interfaces. Let’s assign
an IPv4 address to the lnxclient Ethernet interface (eth0) using ifconfig. In this case,
the network mask format is easier to read. We’ll look at the interface before the address
is assigned, and then after, and fi nd something very different from FreeBSD with regard
to the network broadcast address.

[root@lnxclient admin]# ifconfig
eth0 Link encap:Ethernet HWaddr 00:B0:D0:45:34:64
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:43993 errors:0 dropped:0 overruns:1 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:100
 RX bytes:7491082 (7.1 Mb) TX bytes:0 (0.0 b)
 Interrupt:5 Base address:0xec00
[root@lnxclient admin]# ifconfig eth0 10.10.12.166 netmask 255.255.255.0
[root@lnxclient admin]# ifconfig
eth0 Link encap:Ethernet HWaddr 00:B0:D0:45:34:64
 inet addr:10.10.12.166 Bcast:10.255.255.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:44000 errors:0 dropped:0 overruns:1 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:100
 RX bytes:7492614 (7.1 Mb) TX bytes:0 (0.0 b)
 Interrupt:5 Base address:0xec00

This output gives much the same information as FreeBSD, but provides more details
for traffi c statistics and error conditions. The last line of output gives details about how
the interface card communicates with the operating system and has nothing directly
to do with the network. Note that no automatic IPv6 addresses are generated. All ver-
sions of the Linux kernel newer than 2.2, regardless of distribution, now support ways
to give an interface an IPv6 address, but we will not do that.

However, Linux has also done something very odd with the broadcast address. We’ll
talk more about broadcast address formats later in this chapter, but it is supposed to be
formed by setting all of the host bits that follow the network bits in the IP address to 1.

CHAPTER 4 IPv4 and IPv6 Addressing 113

Now, we set a network mask for 24 bits (255.255.255.0), but Linux has set all the bits in
the fi eld to a string of 1 bits in the broadcast mask to the last 24 bits of the IPv4 address,
or 10.255.255.255. As we saw with FreeBSD, the correct broadcast address for this net-
work mask should be 10.10.12.255.

This means, as we’ll soon discover, that this older version of Linux expects classful
IPv4 addresses, and today we mostly use classless IPv4 addresses. (There was some
debate as to whether this was a “broken” version or install, but the behavior is consis-
tent and all else seems well.)

To fi x the broadcast address so that the network functions properly (yes, it mat-
ters), we’ll have to specify a broadcast address for lnxclient (and do the same for
lnxserver).

[root@lnxclient admin]# ifconfig eth0 broadcast 10.10.12.255
[root@lnxclient admin]# ifconfig
eth0 Link encap:Ethernet HWaddr 00:B0:D0:45:34:64
 inet addr:10.10.12.166 Bcast:10.10.12.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:44000 errors:0 dropped:0 overruns:1 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:100
 RX bytes:7492614 (7.1 Mb) TX bytes:0 (0.0 b)
 Interrupt:5 Base address:0xec00

Let’s move on to the Windows devices. In Windows, IPv4 and IPv6 address assign-
ment can be awkward. In Windows XP, you typically use the graphical interface to assign
IPv4 addresses, subnet masks, and default gateways. The method is well-documented
in many places and need not be detailed here. You can easily view the current IP
addresses by running the Windows ipconfig command. Here’s the result on wincli2.

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.
C:\Documents and Settings\Owner>ipconfig
Windows IP Configuration
Ethernet adapter Local Area Connection:
 Connection-specific DNS Suffix . :
 IP Address : 10.10.12.222
 Subnet Mask : 255.255.255.0
 Default Gateway : 10.10.12.1

Unlike the Unix-based output, Windows XP associates a default gateway with the
interface. This information is properly part of the host routing and forwarding routing
table, and we’ll talk more about default gateways in a later chapter on routing.

How can we give the LAN interface an IPv6 address? In XP, the graphical version
depends on the service packs installed. The easiest way is to use the command prompt
to fi rst install the IPv6 protocol stack as a dual stack on the host. XP can generate
a series of IPv6 addresses automatically as well (you can also set them manually). It
should be noted that in Vista, IPv6 is typically turned on by default.

114 PART II Core Protocols

C:\Documents and Settings\Owner>ipv6 install
Installing. . .
Succeeded.
C:\Documents and Settings\Owner>

Once IPv6 support is available, the output of the ipconfig command shows some
very interesting things.

C:\Documents and Settings\Owner>ipconfig
Windows IP Configuration
Ethernet adapter Local Area Connection:
 Connection-specific DNS Suffix . :
 IP Address : 10.10.12.222
 Subnet Mask : 255.255.255.0
 IP Address : fe80::202:b3ff:fe27:fa8c%4
 Default Gateway : 10.10.12.1

Tunnel adapter Automatic Tunneling Pseudo-Interface:

 Connection-specific DNS Suffix . :
 IP Address : fe80::5efe:10.10.12.222%2
 Default Gateway :

Not only has the IPv6 installation created an IPv6 address for the LAN interface, it is a
site-local address based on the MAC address of the interface (see Chapter 3). The “%”
number is just an index for the order in which certain types of IPv6 addresses were
generated by the IPv6 installation.

On working networks, more than just the automatic tunnel IPv6 address is usually
created. It is not unusual to see a Tunnel adapter Teredo Tunneling Pseudo-Interface.
Teredo is a Microsoft initiative, defi ned in RFC 3904, that allows devices to reach the
IPv6 Internet from behind a network address translation (NAT) device. There is often
a Tunnel adapter 6to4 Tunneling Pseudo-Interface as well, depending on how the
routers are confi gured. A full discussion of these Windows IPv6 interfaces is beyond the
scope of this book, but we’ll discuss IPv6 tunneling in more detail in Chapter 9.

The customer edge routers are Juniper Networks routers. The confi guration fi les on
these routers look very different from those on a Cisco router. Juniper Networks router
confi gurations are more like C language programs and are organized with braces in
indented stanzas. However, Juniper Networks router confi gurations can be rendered
in “set” language that looks more like Cisco’s style. For example, on router CE0, the
addressing on interface fe-1/3/0 is more complex than on a host:

admin@CE0> show interface fe-1/3/0
unit 0 {
 family inet {
 address 10.10.11.1/24;
 }

CHAPTER 4 IPv4 and IPv6 Addressing 115

 family inet6 {
 address FC00:ffb3:d5:b:205:85ff:fe88:ccdb/64;
 }
}
user@CE0>

In this format, all statements confi gured under another statement (indented) apply
to that higher level statement. Thus, both family inet and family inet6 apply to
unit 0, but only the address 10.10.11.1/24 applies to family inet. The form is used
often in this book, and becomes more familiar with repetition.

This form can also be shown in the following more compact format, which is the
style we will use in this book:

admin@CE0> set interface fe-1/3/0 unit 0 family inet address 10.10.11.1/24;
admin@CE0> set interface fe-1/3/0 unit 0 family inet6 address
 FC00:ffb3:d5:b:205:85ff:fe88:ccdb/64;

This output is for logical unit 0, the simplest case. Juniper Networks router interfaces
can have logical units numbered from 0 to 65535, and each can have more than one
IPv4 or IPv6 address. The LAN interface on CE6 looks very much the same, except for
the address specifi cs.

We’ll talk about the specifi cs of the IPv4 and IPv6 address formats, network marks,
and prefi x lengths, and other topics, in the rest of this chapter. At the end, we’ll see just
what the complex IPv6 address format is telling us about the Illustrated Network.

One type of address we won’t be exploring in this chapter is the anycast address.
To understand anycast addresses, consider that there are three major types of IP
addresses.

Unicast—This type of IP address is used to identify a single network interface.
It establishes a one-to-one relationship between the network address and
 network endpoint (interface). So each unicast address uniquely identifies a
network source or destination.

Broadcast/Multicast—This type of IP address is used to identify a changeable
group of interfaces. Broadcast addresses are used to send a message to every
reachable interface, and broadcast domains are typically defined physically.
Multicast addresses are not limited to a single domain and multicast groups
are established logically. IPv6 relies on multicast addresses for many of the
 discovery features of IPv6 and things that are done with broadcasts in IPv4.
In both multicast and broadcast, there is a many-to-one association between
 network address and network endpoints. Consequently, one address identifies
a group of network endpoints, and information is replicated by routers to
reach them all.

Anycast—This type of IP address, formally defined in IPv6, is used to identify a
defined set of interfaces, usually on different devices. Anycast addresses are

116 PART II Core Protocols

used to deliver packets to the “nearest” interface, where nearness is defined
as a routing parameter. The same can be done in IPv4, but not as elegantly.
However, multicasts deliver to many interface destinations, while anycasts
deliver to only one, although many might be reachable. Anycasts are useful for
redundancy purposes, so servers can exist around the world, all with the same
address, but traffic is only sent to the one that is the “closest” to the source.

This book uses mainly unicast IP addresses. Multicast and anycast addresses will be
introduced and used as necessary.

THE NETWORK/HOST BOUNDARY
We just saw that the mask determines where the boundary between the network
and host portions of the IP address lies. This boundary is important: If it is set too far
to the right, there are lots of networks, but none of them can have many hosts. If it
is set too far to the left, then there are plenty of hosts allowed, but fewer networks
overall.

In IP, the address boundary is moveable, and always has been. But in the past, right
through the big Internet explosion in the mid-1990s, the network/host boundary in
IPv4 could only be in one of three places. This produced lots of networks that were too
small in terms of hosts, and many that were far too large, capable of holding millions
of hosts. Not only that, but there were so many small networks, each of which needing
a separate routing table entry in each and every core Internet router, that the Internet
threatened to drown under its own weight.

In a nutshell, the inability to aggregate Class C blocks drove routing table pressure
and the unsustainable rate of allocation of Class A and Class B addresses. This would
have caused IPv4 exhaustion by 1994 to 1995, as projected in 1990.

So the rules were changed to allow the network/host boundary in IPv4 and IPv6
addresses to be set almost anywhere (there are still some basic rules). When applied
to the former, fi xed, IPv4 octet boundaries, if you moved the “natural” boundary
of the mask to the right of its normal position, this was called subnetting and
the address space gets smaller. (Actually, even the older “natural” IPv4 addresses
could always be subnetted.) And if you moved the “natural” boundary of the mask
to the left of its normal position, this was called supernetting and the address space
became larger.

In this chapter, we will talk about subnetting and supernetting in detail. Supernet-
ting is more commonly called “aggregation” today, but we’ll call it supernetting in this
chapter just to make the contrast with subnetting explicit. We will also talk about the
current system of rules for hosts and routers concerning the positioning of the bound-
ary between the network and host portion of the IP address, variable-length subnet
masking (VLSM), and classless interdomain routing (CIDR). But fi rst, let’s look at the
IPv4 address in detail.

CHAPTER 4 IPv4 and IPv6 Addressing 117

THE IPV4 ADDRESS
The IPv4 address is a network layer concept and has nothing to do with the addresses
that the data link layer uses, often called the hardware address on LANs. IPv4 addresses
must be mapped to LAN hardware addresses and WAN serial link addresses. However,
there is no real relationship between LAN media access control (MAC) or WAN serial
link addresses in the frame header and the IPv4 addresses used in the packet header,
with the special exception of multicast addresses.

The original IPv4 addressing scheme established in RFC 791 is known as classful
addressing. The 32 bits of the IPv4 address fall into one of several classes based on
the value of the initial bits in the IPv4 address. The major classes used for addresses
were A, B, and C. Class D was (and is) used for IPv4 multicast traffi c, and Class E was
“reserved” for experimental purposes. Each class differs in the number of IPv4 address
bits assigned to the network and the host portion of the IP address. This scheme is
shown in Figure 4.2.

Note that with Class A, B, and C, we are referring to the size of the blocks being allo-
cated as well as the region from which they were allocated by IANA. However, Classes
D and E refer to the whole respective region. Multicast addresses, when they were
assigned for applications, for example, were assigned one at a time like (for instance)
port numbers. (We’ll talk about port numbers in a later chapter.) In the rest of this
chapter, references to Classes A, B, and C are concerned with address space sizes and
not locations.

The 4 billion (actually 4,294,967,296) possible IPv4 addresses are split up into fi ve
classes. The fi ve classes are not equal in size, and Class A covers a full half of the whole

32-bit Address Starts with:

Class A

Class B

Class C

Class D

Class E

0 (0–127)

10 (128–191)

110 (192–223)

1110 (224–239)

1111 (240–255)

First
byte

Second
byte

Third
byte

Fourth
byte

Number of
Addresses:

% of
Address Space

23152,147,483,648

23051,073,741,824

2295536,870,912

2285268,435,456

2285268,435,456

50

25

12.5

6.25

6.25

FIGURE 4.2

Classful IPv4 addressing, showing the number of addresses possible and percentage of the total
address space for each class. Class D is still the valid IPv4 address range used for multicasting.

118 PART II Core Protocols

IPv4 address space. Class E addresses are “experimental” and some of them have been
used for that purpose, but they are seldom seen today.

In practice, only the Class D addresses are still used on the Internet in a classful man-
ner. Class D addresses are the IPv4 multicast addresses (224.0.0.0 to 239.255.255.255),
and we’ll talk about those as needed. We will nonetheless talk about classful IPv4
addressing in this book, especially later on in this chapter when subnetting is consid-
ered and when mentioning the routing protocol RIPv1. However, the signifi cance of
classful IPv4 addressing is strictly historical. Classful addressing comes up occasionally,
and at least some introduction is necessary.

This chapter, and this book, emphasizes classless IP addresses, the current way of
interpreting the 32-bit IPv4 address space. This scheme assumes that no classes exist
and is how routers on the Internet interpret IPv4 addresses. In classless addressing,
the IPv4 network mask or prefi x determines the boundary between the network and
host portion of the IP address instead of the initial IP address bits. On a host, it is still
often called a network mask, because hosts don’t care about classful or classless, but it
is called a prefi x on a router.

Hosts really don’t deal with the differences between classful and classless IP
addresses. Routers, on the other hand, must. Because this book deals with networks
as a whole, including routers, some understanding of both classful and classless IPv4
addressing is benefi cial.

Dotted Decimal
IPv4 addresses are most often written in dotted decimal notation. In this format,
each 8-bit byte in the 32-bit IPv4 address is converted from binary or hexadeci-
mal to a decimal number between 0 (0000 0000 or 0x00) and 255 (1111 1111 or
0xFF). The numbers are then written as four decimal numbers with dots between
them: W.X.Y.Z.

For example, 1010 1100 0001 0000 1100 1000 0000 0010 (0xAC 10 C8 02)
becomes 172.16.200.2. And 1011 1111 1111 1111 0000 1110 0010 1100 (0xBF FF
0E 2C) becomes 191.255.14.44, and so on.

Hosts on the same network (essentially a LAN) must have the prefi x (network por-
tion) of their IP addresses (IPv4 or IPv6) be the same. This is how routers route packets
between networks that form the Internet: by the network portion of the IP address.
The whole IP address specifi es the host on the network, and the network portion
 identifi es the LAN. The boundary between network and host IP address bits is move-
able for either classful or classless IP addresses. An IP address can be expressed in
dotted decimal, binary, octal, or hexadecimal. While all are correct and mean the same
thing, it’s most common to use dotted decimal notation for IPv4 and hexadecimal
(hex) for IPv6. (In fact, some RFCs, such as those for HTTP [covered in Chapter 22],
require dotted decimal for IPv4 addresses.)

CHAPTER 4 IPv4 and IPv6 Addressing 119

The basic concepts of classful IPv4 addressing are shown in Figure 4.3 for the three
most common classes—A, B, and C. The fi gure shows the Internet name assigned to the
IPv4 address, the default network mask and prefi x length for each of the three com-
mon classes, and the IPv4 address in dotted decimal.

Note that when no network mask is given, the class of the address is determined by
the value of the initial bits of the address, as already described. The network mask can
move this boundary, but in practice only to the right in classful addressing.

Classless IPv4 addressing, on the other hand, as used on routers, does not derive a
default subnet mask or prefi x length. The prefi x length for classless IPv4 addressing
must be given (by the netmask) to properly place the boundary between NetID and
HostID portions of the IPv4 address.

IP addresses, both IPv4 and IPv6, can be public or private. Public network address
spaces are assigned by a central authority and should be unique. Private network
addresses are very useful, but are not guaranteed to be unique. Therefore, the use of
private network address spaces has to be carefully managed, because routers on the
Internet would not work properly if a LAN showed up in two places at the same time.
Nevertheless, the use of private address spaces in IP is popular for perceived security
reasons. The security aspects are often overemphasized: The expansion of the locally
available address space is the key reason for private address use. (If you have one
IP address and three hosts, you have a problem without private addressing.) But private
address spaces must be translated to public addresses whenever a packet makes it way
onto the global public Internet.

Class A

Class B

Class C

First
byte

Second
byte

Third
byte

Fourth
byte

NetID HostID

NetID HostID

NetID HostID

8 bits for NetID, 24 bits for HostID

16 bits for NetID, 16 bits for HostID

24 bits for NetID, 8 bits for HostID

FIGURE 4.3

The classful IPv4 address for classes A, B, and C. Note how the boundary between network
 identifi er and host identifi er moves to the right, allowing more networks and fewer hosts in each
class.

120 PART II Core Protocols

Moreover, private IP addresses are not routable outside a local network, so a router
is not allowed to advertise a route to a private address space onto the public Inter-
net. Note that private addresses are just as routable as public ones within your own
 network (as on the Illustrated Network), or by mutual consent with another party. They
are not generally routable on the global public Internet due to their lack of uniqueness
and usual practices.

Almost all networks today rely on private network addresses to prevent public IPv4
address exhaustion, so these addresses are not just to test networks and labs any longer.
Customer-edge routers often translate between a large pool of private (internal) and a
smaller pool of public (external) addresses and insulate the local LAN from the outside
world. We’ll talk more about private IPv4 address in the next section of this chapter.

When obtaining a public IP address, a user or organization receives an address
space that should be globally unique on the Internet. (Sadly, you often fi nd yourself
“blackholed” to nowhere for some ISP to route your packets because someone else
used your address space internally for some private network without permission!) This
fi rst piece is the network portion (prefi x) of an IP address space, such as 191.255.0.0.
This example uses a so-called “Martian” IPv4 address, which is a valid IP address, but not
used on the Internet. Technically, the address space beginning with 191.255 is reserved,
but could be assigned in the future. The 0.0 ending means an IP network is referenced,
and not a host (in this case, but hosts sometimes have IPv4 addresses that end with
0). Some TCP/IP protocol stacks struggle with IPv4 addresses ending in 0 or 255, so it
is best to avoid them. The host portion of the IPv4 address is assigned locally, usually
by the LAN network administrator. For example, a host could be assigned IPv4 address
191.255.14.44.

The examples in this chapter use the manual, static IP address assignment method.
When this method is used with public IP addresses, the organization still either obtains
the IP network address range on its own, or uses the range of IP addresses assigned to
the organization by its ISP. The Dynamic Host Confi guration Protocol (DHCP) makes it
possible to assign IP addresses to devices in a dynamic fashion. DHCP is the method
many organizations use either for security reasons (to make it harder to fi nd device IP
addresses) or to assign a unique IP address to a device only when it actually needs to
access the Internet. There are many more uses for dynamic IP address allocations on
the Internet, and much more to discuss, and DHCP will be explored in a later chapter.

When the topic is routers, IP addresses are often written in the <netid, hostid/
prefix> form to determine the netid/hostid boundary. To completely identify a par-
ticular host on a particular network, the whole address is needed. When all 32 bits
of the IPv4 address are given, and the prefi x is not, this is called a host address on a
router. In classless routing, there is no fi xed separation point between the network and
host portion of the IP address: It is completely determined by the prefi x, which must
be known. In dotted decimal notation, the full range of possible IP addresses can run
from 0.0.0.0 to 255.255.255.255. Prefi xes can run from /0 (a special, but useful, case)
to /31. Until recently, the /31 prefi x was often useless to routers, as we will see in a later
chapter, and the /32 prefi x is the same as the host address.

CHAPTER 4 IPv4 and IPv6 Addressing 121

Private IPv4 Addresses
RFC 1918 established private address spaces for Classes A, B, and C to be used on pri-
vate IP networks, and these are still respected in classless IP addressing. Books such as
this one, where it is not desirable to use public IP addresses for examples, use RFC 1918
addresses throughout, much like using “555” telephone numbers in movies and on TV.
The private IP address ranges follow:

■ Class A: 10.0.0.0 through 10.255.255.255 (10.0.0.0/8, or just 10/8)
■ Class B: 172.16.0.0 through 172.31.255.255 (172.16.0.0/12, or just

172.16/12)
■ Class C: 192.168.0.0 through 192.168.255.255 (192.168.0.0/16, or just

192.168/16)

There are three very important points that should always be kept in mind regarding
private addresses. First, these addresses should never be announced by a routing pro-
tocol on a local router to the public Internet. However, these addresses are frequently
assigned and used when they are isolated or translated. We’ll look at network address
translation (NAT) in a later chapter. In summary,

■ Private IP addresses are not routable outside the local network (they cannot be
advertised to the public Internet).

■ They are widely used on almost all networks today (even our small home
network with DSL uses private IP addresses).

■ Private addresses are usually translated with NAT at an edge router to map the
private addresses used on a LAN to the public address space used by the ISP.

Understanding IPv4 Addresses
IP addresses and their prefi xes are read in a certain way and have special meanings
depending on how they are written and used. For example, the classful IPv4 address
192.168.19.48 is read as “host 48 on IP network 192.168.19.0.” In a classless envi-
ronment, as on a router, the prefi x length, in this case /24, must be known. Routers
often drop trailing zeros, 192.168.19.0/24 is the same as 192.168.19/24. All IP network
addresses must have the bits in the host address fi eld set to 0 and this address cannot
be assigned to any host. (Typically, nothing on a host prevents this address assignment.
It just won’t work properly.) Note that while the table is describing a particular /24
address in the examples, it’s not the address itself but its location in the fi eld specifi ed
by the mask that is critical.

Table 4.1 lists some specifi c forms of IPv4 addresses, what they look like, and whether
they can be used as a source or destination address or have some other special use.

IPv4 addresses in example formats such as 0.0.0.46 and 192.168.14.0 are never
actually seen as packet header addresses. Loopback addresses are used on hosts and
routers for testing and aren’t even numbered on the interface. All systems “know” that
packets sent to the loopback addresses (any IPv4 address starting with 127) are not
sent out the network interface.

122 PART II Core Protocols

When these forms are not used in their defi ned roles (e.g., when something like
172.16.255.255 is used as a packet source address instead of a destination), the result
is usually an error.

THE IPv6 ADDRESS
In addition to IPv4 (often written as just IP), there is IP version 6 (IPv6). IPv6 was devel-
oped as IPng (“IP: The Next Generation” because the developers were supposedly fans
of the TV show “Star Trek: The Next Generation”). (IPv5 existed and is defi ned in RFC
1819 as the Streams 2 [ST2] protocol.)

This section is not intended to be an exhaustive investigation of IPv6. The empha-
sis here is on the IPv6 header and address, and how IPv6 will affect router operation.
IPv6 has been around since about 1995, but pressure to transition from IPv4 to IPv6
is mostly recent. (The exhaustion of the IPv4 address space has been delayed mainly
through the use of NAT and DHCP.) Today, the pressure for transition from IPv4 to IPv6
comes mainly from network service providers and operators and other groups with
large internal networks, such as cellular telephone network operators.

In some applications, major IPv6 addresses are confi ned to the core of large IP
networks, and customers and users still see only IPv4 addresses. Nevertheless, there is
nothing to fear about learning IPv6, and some familiarity with IPv6 will probably be
expected in the future.

Table 4.1 Special Forms of IPv4 Addresses, Showing How Some Are Limited
in Application to Source or Destination

Special Address NetID HostID Example Use

Network itself Non-0 All zeros
(0s)

192.168.14.0 Used by routers: on a host,
means “some host,” but it is
not used.

Directed broadcast Non-0 All ones
(1s)

192.168.14.255 Destination only: used by
 routers to send to all host on
this network.

Limited broadcast All 1s All 1s 225.255.255.255 Destination only: direct broad-
cast when NetID is not known.

This host on this
network

All 0s All 0s 0.0.0.0 Source only: used when host
does not know its IPv4 address.

Specifi c host on
this network

All 0s Non-0 0.0.0.46 Destination only: defi ned, but
not used

Loopback 127 Any 127.0.0.0 Destination only: packet is not
sent out onto network.

CHAPTER 4 IPv4 and IPv6 Addressing 123

Features of IPv6 Addressing
The major features of IPv6, such as IPSec, have nearly all been back-ported into IPv4.
However, the major design features of IPv6 follow:

■ An increase in the size of the IP address from 4 bytes (32 bits) to 16 bytes
(128 bits).

■ An increase in the size of the IP header from 24 bytes (192 bits) to 40 bytes
(320 bits). (Although aside from the address fi elds, the header is actually smaller
than in IPv4.)

■ Enhanced security capabilities using IPSec (if needed).
■ Provision of special “mobile” and autoconfi guration features.
■ Provision for support of fl ows between routers and hosts for interactive

multimedia.
■ Inclusion of header compression and extension techniques.

The IPv6 address increases the size of the IP address from 4 bytes (32 bits) to 16
bytes (128 bits). For backward compatibility, all currently assigned public IP addresses
are supported as a subset of the IPv6 address space. The IPv6 address size increases
the overall IP packet header size (and total TCP/IP overhead) from the current 24 bytes
(192 bits) to 40 bytes (320 bits). However, the IPv6 header is much simpler than the
IPv4 header.

IPv6 includes autoconfi gured address and special support for mobile (not always
wireless) users. A new mobile feature called chained headers might allow the faster
forwarding of IPv6 packets through routers, and forbids intermediate fragmentation of
IPv6 packets in routers. The path MTU size must always be respected in IPv6 routers.

IPv6 features support for what are called “fl ows.” Flows were included in IPv6
because forwarding packets at wirespeed was originally considered impossible. Flow
caching (the association of IPv6 packets into fl ows with similar TCP/IP header fi elds)
was thought to be the workaround. However, fl ow caching is now widely discredited
in the IPv4 world and fl ows are now established and applied to stateful fi rewall fi lters
(Chapter 28). The fl ow fi eld in IPv6 is normally set to all 0s.

IPv6 is a good fi t for a dynamic environment. There are many address discovery
options bundled with IPv6, including support for autoconfi guration, fi nding the maxi-
mum path MTU size (to avoid the need for fragmentation, which IPv6 routers will not
do), fi nding other hosts’ MAC addresses without ARP broadcasts, and fi nding routers
other than the default.

The last major feature in IPv6 is a standard for header compression and extension.
At fi rst, these two features may seem contradictory, but they are actually complemen-
tary. Header compression addresses situations where the 40 bytes of the IPv6 header
 consists mostly of “empty” or repeated fi elds (like all-0 bit fi elds). In IPv6, there is a
standard way of compressing the 40 bytes of the header down to 20 or so. There is also
a way to extend these IPv6 header fi elds for future new features (IPv4 also has header
extension options).

124 PART II Core Protocols

Most networks with a choice will be content to sit and wait before making a
 transition to IPv6. Naturally, networks concerned with IPv4 address exhaustion (such
as huge, IP-based cell telephone networks) will convert to IPv6 right away, as large net-
works in China have. For the vast majority of TCP/IP users, IPv6 is a long way off, and
IPv4 will be around for many years.

IPv6 Address Types and Notation
There are no broadcast addresses at all in IPv6, even directed broadcasts (these were
favorites of IPv4 hackers). In IPv6, multicast addresses serve the same purpose as broad-
casts do in IPv4. The difference between IPv6 anycast and multicast is that packets sent
to an anycast IPv6 address are delivered to one of several interfaces, while packets sent
to a multicast IPv6 address are delivered to all of many interfaces.

There is no such thing as dotted decimal notation for IPv6. All IPv6 addresses are
expressed in hexadecimal. They could be expressed in binary as well, but 128 0s and
1s are tedious to write down. IPv6 addresses are written in 8 groups of 16 bits each,
or 8 groups of 4 hexadecimal numbers, separated by colons. Some examples of IPv6
addresses (which appear over and over) follow:

FEDC:BA98:7654:3210:FEDC:BA98:7654:3210
1080:0000:0000:0000:0008:0800:200C:417A

Because this is still a lot to write or type, there are several ways to abbreviate IPv6
addresses. For example, any group can leave out leading 0s, and all-0 groups can be
expressed as just a single 0. A long string of leading 0s can simply be replaced by a
double colon (::). In fact, as long as there is no ambiguity, groups of 0s anywhere in the
IPv6 address can be expressed as ::. The double colon can only be used once in an IPv6
address.

Even with these conventions, the fi rst IPv6 address given earlier cannot be com-
pressed at all. The second address can be expressed as

1080::8:800:200C:417A

This is better than writing out all 128 bits, even as hexadecimal. Because only one set
of double colons can ever be used inside an IPv6 address,

1080:0000:0000:9865:0000:0000:0000:4321

could be written as

1080:0:0:9865::4321

or

1080::9865:0:0:0:4321

CHAPTER 4 IPv4 and IPv6 Addressing 125

but never as

1080::9865::4321

(How big are the missing groups of 0s to the left or right of 9865?)
A special case in IPv6 is made for using IPv4 addresses as IPv6 addresses. For exam-

ple, the IPv4 address 10.0.0.1 could be written in IPv6 as

0:0:0:0:0:0:A00:1

or even

::A00:1

IPv4 addresses in IPv6 can still be written in dotted decimal as

::10.0.0.1

The double colon at the start is the sign that this is an IPv6 address even though it looks
just like an IPv4 address. Many routers and other devices allow this convention.

IPv6 Address Prefi xes
The fi rst few bits of an IPv6 address do reveal something about the IPv6 address,
although IPv6 addressing is in no way classful. IPv6 addresses have an address type, and
the type is determined by the format prefi x of the IPv6 address. There are reserved
addresses in IPv6 as well, for things like loopback (::1), multicast (starting with FF),
and so on. There is also an unspecifi ed address consisting of all 0s (0:0:0:0:0:0:0:0,
compressed as just ::) that can be used as a source address by an IPv6 device that
has not yet been assigned an IPv6 address. IPv6 address space is also reserved for OSI-
RM Network Service Attachment Point (NSAP) addresses, and IPX addresses used with
Novell NetWare.

All of these format prefi xes are supposed to be given in hexadecimal, not binary. An
IPv6 address that begins with 1101 means 0001 0001 0000 0001, and is the same as
11::1.... An IPv6 multicast address begins with FF and means 1111 1111:1111 1111.

There are several basic forms of IPv6 address. Like many IPv4 addresses, IPv6
address spaces are often handed out by ISPs to their customers, usually starting with
200x. There are also ways to assign variable-length fi elds for the registry identifi er (the
authority that assigned this IPv6 address space to the ISP), provider identifi er (the ISP),
subscriber identifi er (the customer), subnet identifi er (a group of physical links), and
the interface identifi er (such as the MAC address). However, most ISPs will assign IPv6
addresses just as they do IPv4 addresses (i.e., as a network address space and prefi x
length). Provider independent IPv6 addresses are not handed out by ISPs.

There used to be two types of local IPv6 addresses: site-local and link-local. Local
IPv6 addresses are addresses without global signifi cance, and they can be used over and

126 PART II Core Protocols

over again as long as they do not cause confusion to hosts or routers. Local addresses
start with the same 7 bits: 1111 111 or FE in hexadecimal (overall, the fi rst 10 bits are
important). Site-local addresses are now deprecated (the Internet word for “more than
obsolete”). Link-local addresses can be used between two devices that are part of the
same broadcast domain or on a point-to-point link.

Private IPv6 addresses usually begin with FC00 (the full form is FC00::/7) and are
called unique local-unicast addresses (ULA or ULA local or even ULA-L). Usually, link-
local IPv6 addresses end with a 64-bit representation (called EUI-64 by the IEEE) of
the 48-bit MAC address. The EUI-64 is a concatenation of the 24-bit OUI used in the
MAC address with the 40-bit extension formed by prepending the 16 bits 0xFFFE to the
lower 24 bits of the MAC address.

SUBNETTING AND SUPERNETTING
Let’s take a look at all aspects of fi nding and moving the boundary between network
and host bits in the IP address. The moveable boundary is an important one, because
routers performing indirect delivery generally only need to look at the NetID or prefi x
of the entire IP address to determine the next hop and then fi nd the output interface
to send the packet on its way. Of course, direct delivery requires both prefi x and host
addressing examination, which is why the location of the NetID/HostID boundary is
so important.

How do routers and hosts know precisely where the boundary between prefi x and
host address is in the IP address? Only when this prefi x/host boundary is known will
the device know if the next hop is a router. And that, as we’ll see in a later chapter,
makes all the difference.

In the following discussions, the examples used are chosen for their simplicity, not
for completeness.

Subnetting in IPv4
The IP address space was originally classful. (Of course, they didn’t know it was classful
back then—it was just the IP address space). As such, it contained a number of special
purpose and private addresses. These characteristics of the fi rst three classes, which
have already been discussed, are summarized in Table 4.2.

Even before the Web exploded and everyone needed an IP network address for
their PCs and Web sites, it was obvious that Class A and B addresses would quickly
become exhausted, leaving only Class C addresses for most networks. However, these
addresses only allow 254 hosts per IP network (0 and 255 were for the network and
broadcast addresses). Many networks quickly exceeded this limit.

Also, Internet core routers must have a separate routing table entry for every reach-
able IP network. If most IP networks are Class C networks, then all Internet core routers
would potentially have to hold in memory (and maintain!) a list of more than 2 mil-
lion entries. Even with inexpensive memory, routing and forwarding tables of this size

CHAPTER 4 IPv4 and IPv6 Addressing 127

pose challenges. For example, in 1993 there were fewer than 10,000 routes on most
 backbone routers, and this did not grow to 100,000 until about 2001. Now, it is not
uncommon to add 2000 routes per week.

Subnetting Basics
IP address subnetting applies to any IP address. The original application of subnetting
was so that point-to-point links between routers did not require a full /24 address for
each link. Subnetting also allowed a single Class C IP address to be used on small LANs
having fewer than 254 hosts connected by routers instead of bridges. Bridges would
simply shuttle frames among all of the ports on the bridge, but routers, as packet layer
devices, determine the output interface for a packet based on the network portion of
the IP address. If only one address is assigned to the entire site, but two LANs on the
site are connected through a router, then the address must be subnetted so that the
router functions properly. Basically, you need to create two distinct address spaces, and
the IP host addresses assigned on each LAN segment must be correct as well. The LAN
segments now become subnets of the main IP address space.

Subnetting is done using an IP address mask. The mask is a string of bits as long as
the IP address (32 bits in the case of IPv4). If the mask bit is a 1 bit, the correspond-
ing bit in the IP address is part of the network portion of the IP address. If the address
bit is part of the host portion, the corresponding mask bit is set to a 0 bit. A mask
of 255.255.0.0 means that the fi rst 16 bits of the IP address are part of the network
address and the last 16 bits are part of the host portion of the address.

All subnet masks must end in 0, 128, 192, 224, 240, 248, 252, 254, or 255—the values
of each bit position as they are “turned on” left to right in any octet. Strangely, subnet
masks were once allowed to turn on bits that were “noncontiguous” (not starting at
the left of the address without gaps). This is no longer true, and the effect is to restrict
masks to the ending values listed. Note that 255.224.0.0 is a valid subnet mask, as is
255.255.248.0 and 255.255.255.252. Once the 1 bits stop, the rest of the subnet mask
must be set to all 0 bits.

Subnet masks can be written in as many forms as there are for IP addresses: dotted
decimal notation, bit string, octal, or hexadecimal. Seeing subnet masks in either dotted
decimal or hexadecimal notation, or the newer prefi x “slash” notation, also known as

Table 4.2 Classful IPv4 Addresses and Default Masks

Class Initial Bits Range Default Mask

A 0 0 to 127 255.0.0.0

B 10 128 to 191 225.255.0.0

C 110 192 to 223 255.255.255.0

Note: The value of the initial bits automatically limits the range of addresses possible in each class.

128 PART II Core Protocols

CIDR notation, are the most common. Sometimes the default mask for an IP address
class is called the “natural mask” for that type of address. In all cases it is possible to
change the default mask to move the boundary between the network and host por-
tions of the IP address to wherever the device needs to see it. All devices, whether
hosts or routers, which need to route the packets within the subnetted network, must
have identical masks. All routing protocols in wide use today exchange subnet mask
information together with routing information.

The use of the default masks for the original classful IP address space is shown in
Table 4.3. The more bits, the more network identifi ers, and the fewer bits, the fewer
host identifi ers possible.

Subnetting moves the boundary between the network and host for a particular
classful IP address to the right of the position where the boundary is normally found.
We will see later that supernetting moves the boundary between network and host for
a particular classful IP address to the left of this position. CIDR (which uses VLSM) can
move the boundary anywhere.

It is important to realize that subnetting does not change anything with respect to
the outside world. Internet routers still deliver the packets as before. It is the customer
or site router that applies the subnet mask and delivers packets to the subnets. Instead
of the usual two parts of the IP address, network, and host, we now have network, sub-
net, and host. However, even at the beginning of the classful era, Class A blocks were
subnetted into /16s and /24s internally as appropriate.

Look at a simple LAN (192.168.15.0) before and after subnetting, as shown in
 Figure 4.4. The subnet creates two equal-sized subnets, but the Internet routers deliver
packets as before. The subnet adds one “extra” bit to the default Class C mask. If this bit
is 0, the fi rst subnet is intended, and if the bit is 1, then the second subnet is intended.
The hosts must be numbered according to the subnet, naturally, and all have the same
subnet mask so they can determine which addresses are still on their subnet (same
NetID) and which are not (different NetID).

Many implementations will not allow the assignment of the fi rst subnet address (the
network) or the last (broadcast). A LAN with 254 hosts subnetted into two subnets
only yields 126 host addresses per subnet, not 127.

Table 4.3 Use of Default or “Natural” Subnet Masks*

Original Class Default Mask Network/Host Bits Example Interpretation

A 255.0.0.0 8/24 (/8 prefi x) 10.24.215.86 is host 0.24.215.86 on
network 10.0.0.0

B 255.255.0.0 16/16 (/16 prefi x) 172.17.44.200 is host 0.0.44.200 on
network 172.17.0.0

C 255.255.255.0 24/8 (/24 prefi x) 192.168.27.3 is host 0.0.0.3 on network
192.168.27.0

*The more bits, the more network identifi ers; the fewer bits, the fewer host identifi ers possible.

CHAPTER 4 IPv4 and IPv6 Addressing 129

A sometimes tricky subnet issue is determining exactly what the subnet address (all
0 bits after the mask) and broadcast address (all 1 bits after the mask) are for a given IP
address and subnet mask. This can be diffi cult because subnet masks do not always fall
on byte boundaries as do classful addresses. An IP address like 172.31.0.128 might not
look like the address of the network itself, but it might be. A network address, in some
implementations of TCP/IP, cannot be assigned to a host. (172.31.0.128 with a subnet
mask of 255.255.255.128 is a network address.)

Consider the address 172.18.0.126 with a subnet mask of 255.255.255.192. What
is the subnet and broadcast address for this subnet? What range of host addresses can
be assigned to this subnet? These questions come up all the time, and there are utilities
available on the Internet that do this quickly. But here’s one way to do it by hand.

The fi rst thing to do is to mask out the network portion of the IP address with the
subnet mask by writing down the mask bits. Then the subnet portion of the address
can be easily marked off by “turning on” the masked bits. Next, it is easy to form the sub-
net and broadcast address for the subnet by setting the rest of the bits in the address
(the host bits) fi rst to all 0 bits (network) and then to all 1 bits (broadcast). The result-
ing address range forms the limits of the subnet.

Hosts

Router

Internet

192.168.15.0
network

192.168.15.255
broadcast

255.255.255.0
mask

Before Subnetting

192.168.15.1 192.168.15.2 192.168.15.129 192.168.15.253 192.168.15.254

Hosts

Router

Internet

192.168.15.0
network

192.168.15.127
broadcast

192.168.15.128
network

192.168.15.255
broadcast

255.255.255.128
mask

After Subnetting

192.168.15.1 192.168.15.126 192.168.15.129 192.168.15.253 192.168.15.254

FIGURE 4.4

Subnetting a LAN, showing how the value of the initial bits determines the subnet. Host addresses,
if assigned manually, must follow the subnet mask convention.

130 PART II Core Protocols

–>
–>

–>
–>

–>

–>

IP Address
Subnet Mask

Subnet Address
(Host � all 0s)

Broadcast
Address
(Host � all 1s)

Many TCP/IP implementations allow assignment of
172.18.0.64 and 172.18.0.127, but not all!

The valid host address range on subset
172.18.0.64 is 172.18.0.65 through

172.18.0.126 (62 hosts).

Mark out
subnet...

Then get the:

172.18. 0.126
255.255.255.192

172.18. 0.126
255.255.255.192

172.18. 0.64

172.18. 0.127

10101010
11111111

00010010
11111111

00000000
11111111

10101010
11111111

00010010
11111111

00000000
11111111

10101010

10101010 00010010

00010010 00000000

00000000

Natural Class B Mask Subnet Host

Prefix (network portion)

01111110
11000000

01111111

01000000

01111110
11000000

Let’s look at an example. Figure 4.5 shows how to derive the network and broadcast
address answers for IP address 172.18.0.126 with the subnet mask 255.255.255.192.

These answers are important when subnetting the IP address space because care is
needed to assign host addresses to the proper subnets (and router interfaces). Having
a “discontiguous” classful major network that has been subnetted so that part of the
space is reached through one interface of the router (“10.24.0.0 over here...”), and
the other part of the subnetted major network is reached through another interface
(“10.25.0.0 over there . . .”) can be a problem unless care is taken with the subnets and
the masks that establish them.

CIDR and VLSM
Today, the standard methods for moving the network/host address boundary are
 variable-length subnet masking (VLSM) for host addressing and routing inside a rout-
ing domain, and classless interdomain routing (CIDR) for routing between routing
domains. (We’ll talk more about routing domains later in this book. For now, think of
a routing domain as an ISP’s collection of routers.) And although treated separately
here for introductory reasons, it is important to realize that VLSM is the fundamental
mechanism of CIDR.

FIGURE 4.5

Finding subnet host address range, showing those available for host assignment. Many routers
allow the use of subnet and broadcast addresses as if they were host addresses.

CHAPTER 4 IPv4 and IPv6 Addressing 131

CIDR (defi ned in RFC 1519) and VLSM (defi ned in RFC 1860) address more general
issues than simple subnetting. We’ve been looking at addresses from the host perspec-
tive in this chapter so far. Let’s discuss CIDR from the router perspective.

CIDR was an immediate answer to two problems: fi rst, the impending exhaustion of
the Class A and Class B address space, and second, the rapid increase in Internet core
routing table sizes to handle the many Class C addresses required to handle new users.

In CIDR, a block of contiguous IP addresses from the former classful address space
are assigned in a group, such as groups of Class C addresses. This allows a service
provider or large customer to confi gure IP networks from a few hosts up to 16,384
hosts. The number of contiguous addresses needed is determined by a simple count
of the number of host addresses required. The original CIDR plan, applied to Class C
addresses, is shown in Table 4.4. Contiguous address numbers fl ow seamlessly between
former class boundaries, allowing assignment of address “chunks” for larger networks.

The CIDR RFC does not “subtract” two host addresses for the network itself (fi nal
bits all 0s) and a broadcast address (fi nal bits all 1s). CIDR applies mainly to router
operation, and routers do not assume any structure of the IP addresses in the packets
they route. The limitation on assigning the high and low IP addresses to a host interface
is a function of the host TCP/IP implementation (and some, like routers, do not enforce
any limitations at all).

CIDR changed the terminology that applied to IP addresses. Routes to IP networks
are now represented by prefi xes. A prefi x consists of an IP network address, followed
by a slash (/), and followed with an indication of how many of the leftmost contigu-
ous bits in the address are part of the network mask applied for routing purposes. For
example, before CIDR, the Class C address 192.168.64.0 would ordinarily have a mask
of 255.255.255.0. Subnetting could add bits to this major network mask, but only in the
fi xed patterns and values outlined in the previous section. CIDR enabled a “CIDR-ized”
network address to be represented as 192.168.64.0/18, and that was all the informa-
tion needed. Sometimes this is abbreviated even further to just 192.168.64/18, but the

Table 4.4 Address Grouping under CIDR*

Number of Hosts Needing Addresses Class C Addresses Given by Registry

Fewer than 256 1 Class C network

Fewer than 512 but more than 256 2 contiguous Class C networks

Fewer than 1024 but more than 512 4 contiguous Class C networks

Fewer than 2048 but more than 1024 8 contiguous Class C networks

Fewer than 4096 but more than 2048 16 contiguous Class C networks

Fewer than 8192 but more than 4096 32 contiguous Class C networks

Fewer than 16,384 but more than 8192 64 contiguous Class C networks

*Contiguous address numbers fl ow seamlessly between former class boundaries, allowing assignment of
address “chunks” for larger networks.

132 PART II Core Protocols

two forms are equivalent. The notation just means that a “subnet mask 18 bits long
should be applied to 192.168.64.0.” This is the same as writing “192.168.64.0 with
mask 255.255.192.0” but in more compact form.

Table 4.5 shows all possible prefi x lengths, their netmasks in dotted decimal, and
the number of classful networks the prefi x represents. It also shows the number of
usable IPv4 addresses that can be assigned to hosts once the network address itself and
the directed broadcast address are subtracted. We’ll talk about the special 0/0 address
and prefi x length in Chapter 8. All possible mask lengths are shown for /1 to /32. The
/0 mask matches the whole Internet and is discussed in the routing chapters.

Even when CIDR was used, all bits after the IP network address had to be zero, an
aspect of IP addressing that did not change. For example, 192.168.64.0/18 was a valid
IP network address, but 192.168.64.0/17 was not (due to the presence of the “1” bit
for the “64” in the 17th bit position). This aspect of CIDR is shown in Figure 4.6. The IP
network 192.168.64.0/18 is a CIDR “supernet” because the mask contained fewer bits
than the natural mask in classful IP addressing.

Table 4.5 CIDR Prefi xes and Addressing*

Prefi x Length Dotted Decimal
Netmask

Number of Classful
Networks

Number of Usable IPv4
Addresses

/1 128.0.0.0 128 Class A’s 2,147,483,646

/2 192.0.0.0 64 Class A’s 1,073,741,822

/3 224.0.0.0 32 Class A’s 536,870,910

/4 240.0.0.0 16 Class A’s 268,435,454

/5 248.0.0.0 8 Class A’s 134,217,726

/6 252.0.0.0 4 Class A’s 67,108,862

/7 254.0.0.0 2 Class A’s 33,554,430

/8 255.0.0.0 1 Class A or 256 Class B’s 16,777,214

/9 255.128.0.0 128 Class B’s 8,388,606

/10 255.192.0.0 64 Class B’s 4,194,302

/11 255.224.0.0 32 Class B’s 2,097,150

/12 255.240.0.0 16 Class B’s 1,048,574

/13 255.248.0.0 8 Class B’s 524,286

/14 255.252.0.0 4 Class B’s 262,142

/15 255.254.0.0 2 Class B’s 131,070

/16 255.255.0.0 1 Class B or 256 Class C’s 65,534

/17 255.255.128.0 128 Class C’s 32,766

(Continued)

CHAPTER 4 IPv4 and IPv6 Addressing 133

Table 4.5 CIDR Prefi xes and Addressing* (Continued)

Prefi x Length Dotted Decimal
Netmask

Number of Classful
Networks

Number of Usable IPv4
Addresses

/18 255.255.192.0 64 Class C’s 16,382

/19 255.255.224.0 32 Class C’s 8,190

/20 255.255.240 16 Class C’s 4,094

/21 255.255.248.0 8 Class C’s 2,046

/22 255.255.252.0 4 Class C’s 1,022

/23 255.255.254.0 2 Class C’s 510

/24 255.255.255.0 1 Class C 254

/25 255.255.255.128 1/2 Class C 126

/26 255.255.255.192 1/4 Class C 62

/27 255.255.255.224 1/8 Class C 30

/28 255.255.255.240 1/16 Class C 14

/29 255.255.255.248 1/32 Class C 6

/30 255.255.255.252 1/64 Class C 2

/31 255.255.255.254 1/128 Class C 0

/32 255.255.255.255 1/256 Class C (1 host) – (1 host route)

*All possible mask lengths are shown, for /1 to /32. The /0 mask matches the whole Internet and will be
discussed in the routing chapters.

The /31 Prefi x
In many cases, a /31 prefi x that allows only two IPv4 addresses on a subnet is use-
less. Hosts are not normally assigned addresses that indicate the network itself (the
lowest address on the subnet) or the directed broadcast (the highest address on
the subnet). Because a /31 prefi x only allows the fi nal bit to be 0 or 1, this prefi x is
not useful for a subnet with hosts. Most subnets normally use a /30 prefi x at most,
which yields two useful host addresses in addition to the low and high addresses.

However, many router networks employ the /31 prefi x to address the end-
points of a point-to-point link such as SONET/SDH. There are no hosts to worry
about, and only the router network need worry about the use of internal address
spaces. With /31 prefi xes, a single Class C address space can be used to provide
addresses for 128 (256 divided by 2) point-to-point inter-router links, not just 64
(256 divided by 4).

134 PART II Core Protocols

CIDR allowed the creation of a network such as 192.168.64.0/18 with 16,384 hosts
(14 bits remain for the host portion of the 192.168.64.0 network) instead of requiring
64 separate IP network addresses to be assigned and confi gured. CIDR did more than
allow the grouping of contiguous Class C addresses into bigger networks than possible
before. Once the principle was established, CIDR allowed the aggregation of all pos-
sible IP addresses under the specifi ed prefi x into this one compact notation. This kept
routing table sizes under control in the late 1990s.

Where does VLSM fi t in? As mentioned, VLSM applied more to hosts and a single
routing domain. Basically, in the days of classful IP addressing, all subnets of the same
address had to have the same mask length. So you could, for example, subnet 10.0.0.0/8
into 10.0.0.0/16 subnets, but every device on every subnet had to have the same /16
mask. This could be okay if all the subnetted LANs had roughly the same number of
hosts, but what about point-to-point links between routers on the subnet? They could
get by with a /31 or /30 mask because there were only two endpoints, but they had to
have room for the same thousands of hosts as the rest of the /16.

Note that the Illustrated Network is an offender: The links between our routers use
/24 masks for point-to-point links. We would not do this in the real world, but it will help
our understanding of simple examples when we turn to routing later in this book.

IPV6 ADDRESSING DETAILS
Let’s take a quick look at some of the differences between IPv4 and IPv6 addressing.
The use of the IPv6 address space is determined by the value of the fi rst few bits of an
IPv6 address. Routing in IPv6 is similar to IPv4 with CIDR and VLSM, but there are a few
points to be made to clarify this.

IP Address

Natural Mask

CIDR Mask Bits

This method allows
64 Class C networks
to be gathered into
one routing table entry:
192.168.64/18.

00000000

00000000

00000000

11111111 11111111 11111111

111111111111111111111111

11000000 10101000 01000000

Supernet Portion

Natural Class C Mask

Natural mask:
192.168.64.05192.168.64/24

CIDR mask:
192.168.64.05192.168.64/18

192.168.64.0/18

255.255.255.0

255.255.192.0(/18)

FIGURE 4.6

CIDR in operation. Basically, supernetting moves the natural mask to the left while subnetting
moves it to the right.

CHAPTER 4 IPv4 and IPv6 Addressing 135

IPv6 addresses can be provider based, provider independent, or for local use. All
provider-based IPv6 addresses for “aggregatable” global unicast packets begin with
either 0010 (2) or 0011 (3) in the fi rst four bit positions of the 128-bit IPv6 address.

Typical IPv6 address prefi xes would look like:

2001:0400::/23
2001:05FF::/29
2001:0408::/35

and so on.
The 64 bits that make up the low-order bits of the IPv6 address must be in a

 format known as the EUI-64 (64-bit Extended Unique Identifi er). Normally, the 48-bit
MAC address consists of 3 bytes (24 bits) assigned to the manufacturer and 3 bytes
(24 bits) for the serial number of the NIC itself. A typical MAC address would look like
0000:900F:C27E. The next to the last bit in the fi rst byte of this address is the global/
local bit, and is usually set to a 0 bit (global). This means that the MAC address is glob-
ally assigned and is using the native address assigned by the manufacturer. In EUI-64 for-
mat, this bit is fl ipped and usually ends up being set to a 1 bit (the meaning is fl ipped
too, so in IPv6, 1 here means global). This would make the fi rst byte 02 instead of 00.
For example, 0000:900F:C27E becomes 0200:900F:C27E (not always, but this is just a
simple example).

To convert a MAC address to a 64-bit address that can be used on an interface for
the host portion of an IPv6 address, we insert the string FFFE between the manufac-
turer and the serial number fi elds of the MAC address (between the fi rst and the last
3 bytes). The MAC address becomes 0200:90FF:FE0F:C27E. This is more easily shown
as follows:

■ MAC address: 0200:900F:C27E
■ Split in half: 0200:90 0F:C27E
■ Insert FFFE: FF FE
■ Form EUI-64: 0200:90FF:FE0F:C27E

Link-local IPv6 addresses begin with 1111 1110 1000 (FE80 in hexadecimal, mak-
ing the fi rst two bytes FE80 if all of the trailing 6 bits in the second byte are 0 bits).
ULA local addresses are in the form FC00::/7. In IPv6, interfaces are expected to have
multiple addresses, a shift from IPv4. It’s common to fi nd three IPv6 addresses on an
interface: global, link local, and site local. It is also common to use multiple link-local
addresses, one based on the MAC and the other based on random numbers.

Both forms usually end with the 48-bit IEEE MAC address, but again with the added
FFFE bits to form the EUI-64 identifi er. The FC00 ULA address forms are used as the
private addresses in IPv6 (just as 10.0.0.0 and the others in IPv4), and that’s how they
are used in this book.

IPv6 addresses appear in sources and outputs about equally with capitals (FE80) or
lower case (fe80), and we’ll see both. (In the RFCs, however, these are universally capi-
talized.) The major formats of the IPv6 address are shown in Figure 4.7.

136 PART II Core Protocols

Two routers connected by a small LAN can use the link-local IPv6 address of
FE80::<EUI-64 formatted MAC address> on their interfaces. This type of address is
never advertised by an IPv6 router attached to the Internet, and it cannot be used
across subnets. On point-to-point links, a distinguishing identifi er of the interface card
other than the MAC address can be used at the end of the link-local address.

ULA-L addresses can include a 16-bit subnet fi eld, so these forms of private IPv6
addresses can be used across subnets (through routers), but these addresses are not
usually advertised onto the Internet. Using link-local and ULA-local IPv6 addresses, an
organization can build an entire global network, but usually only if none of the traffi c
tries to travel across the Internet. If it does, IPv6 provider–based addresses are needed.
This is similar to building a complete corporate network in IPv4 using the 10.0.0.0
private address space, but using Network Address Translation (NAT) for traffi c that must
travel across the Internet. However, in IPv6, hosts are assigned multiple addresses, some
global and some local. In this case, the lower order bits (80 bits) of the site-local address
(subnet and interface) are just pasted onto the higher fi elds (48 bits) of the provider-
based forms of the IPv6 address.

What about private masks and routing in IPv6? As shown above, prefi x masks in IPv6
have the same general form as prefi x masks in IPv4. Here is a sample IPv6 link-local

128 bits

Provider Site

16 bits

Host

64 bits48 bits

16 bits 64 bits38 bits

0 Interface ID

7 bits

Global Routing Prefix

001 Global Unicast Address Format

Private ULA Unicast Address Format

Link-Local Unicast Address Format

Subnet ID Interface ID

Subnet ID

0

1111110110000
FC00::/7

11111110100000
FE80::/10

10 bits 54 bits 64 bits

Interface ID

FIGURE 4.7

Major IPv6 address formats, showing how the value of the initial bits determine format. The
FC00 address format is often used as private IPv6 address.

CHAPTER 4 IPv4 and IPv6 Addressing 137

host address (this time in lower case hex notation) and one possible network prefi x
for it:

fe80::90:69ff:fea0:8000/128
fe80:: /64

As in keeping with all of the addresses used in this book, this IPv6 address is a pri-
vate address. The /64 mask tells the router that the fi rst 64 bits of the address are to be
used for routing purposes.

IP Address Assignment
Most people get IP addresses from their ISP. But where do ISPs get their IP addresses?
Large organizations can still apply for their own IP addresses independent from any ISP.
To whom do they apply?

IP addresses (and the Internet domain names associated with them) were initially
handed out by the Internet Assigned Number Authority (IANA). Today the Internet Cor-
poration for Assigned Names and Numbers (ICANN), an international nonprofi t organi-
zation, oversees the process of assigning IP addresses.

Actual IP addresses are handed out by the following Regional Internet Registries
(RIRs):

■ ARIN (American Registry for Internet Numbers) at www.arin.net—ARIN has handed
out IP addresses for North and South America, the Caribbean, and Africa below the
Sahara since 1997.

■ RIPE NCC (Reseaux IP European Network Coordination Center) at www.ripe.net—
RIPE assigns IP addresses in Europe and surrounding areas.

■ APNIC (Asian Pacifi c Network Information Center) at www.apnic.net—APNIC
assigns IP addresses in 62 countries and regions in Central Asia, Southeast Asia,
 Indochina, and Oceania.

■ LACNIC (Latin American and Caribbean Network Information Center) at www.lacnic.
net—LACNIC assigns IP addresses from ARIN in 38 countries, including Mexico.

■ AfriNIC (African Network Information Center) at www.afrinic.net—AfriNIC took
over assignment of African IP addresses from ARIN.

All of these Internet Registries databases (who has what IP address space?) combined
are known as the Internet Routing Registry (IRR). Internet domain names comprise a
related activity, but (like IP addresses) names must be globally unique and (unlike IP
addresses) can be almost anything.

For the latest information on IP address assignment, which is always subject to
change, see www.icann.org.

When it comes to IPv6, in particular, IANA still hands out addresses to the registries,
which pass them along to IPv6 ISPs, who allocate IPv6 addresses to their customers.

138 PART II Core Protocols

The current policy is given at www.arin.net/policy. An older policy is used in this
chapter (see www.arin.net/policy/ipv6_policy.html) and uses these prefi xes at each
step of the process:

■ 2001::/16 is reserved for IANA.
■ IANA hands out a /23 prefi x to each registry.
■ Registry hands out a /32 or shorter prefi x to an IPv6 ISP.
■ ISP allocates a /48 prefi x for each customer site.
■ Local administrators add 16 bits for each LAN on their network, for a /64

prefi x.

This scheme is shown in Figure 4.8. When the LAN is included, most IPv6 addresses
have /64 network masks. This is the prefi x length used on the Illustrated Network. IPv6
routers can perform the following tasks:

■ Route traffi c to a particular ISP based on the fi rst 32 bits of the IPv6
destination address.

■ Route traffi c to a particular site based on the fi rst 48 bits of the IPv6
destination address.

■ Route traffi c to a particular LAN based on the fi rst 64 bits of the IPv6
 destination address.

In practice, IPv6 core routers can look at (and build forwarding tables based on)
/32 or shorter prefi xes, routers inside a particular AS (routing domain) can look at /48
prefi xes, and site routers on the customer edge can look at /64 prefi xes to get traffi c
right to the destination LAN.

Registry

ISP Prefix

Site Prefix

LAN Prefix

/23

/32

/48

/64

One IPv6 Address Allocation Policy

128 bits

2001 Interface ID

FIGURE 4.8

IPv6 address allocation, showing how various bits should be assigned by different entities. In
some places, mobile phone providers are heavy users of IPv6 addresses.

CHAPTER 4 IPv4 and IPv6 Addressing 139

Now we can better understand the IPv6 address assigned to CE0 that we saw at the
beginning of the chapter:

FC00:ffb3:d5:b:205:85ff:fe88:ccdb

or

FC00:FFB3:00D5:000B:0205:75FF:FE88:CCDB

Let’s break it down one element at a time and see where it all comes from:

■ Registry—We use FC00 instead of 2001 to indicate a private ULA-local IPv6
address.

■ ISP—We add Best ISP’s AS number of 65459 (0xFFB3) for LAN 1 or Ace ISP’s AS
number 65127 (0xFE67) for LAN2.

■ Site—We add telephony area code 213 (0x00D5) for the Los Angeles or 212
(0x00D4) for New York sites. (We could always use more of the phone number,
but this is enough.)

■ LAN—We add 11 (0x000B) for LAN1 or 12 (0x000C) for LAN 2. These are
 borrowed from the IPv4 addresses.

■ EUI-64—We add 0x0205 85FF FE88 CCDB for the hardware MAC address.

The mask is /64, naturally. Keep in mind that in the real world, none of this complex
coding would be done.

140 PART II Core Protocols

QUESTIONS FOR READERS
Figure 4.9 shows some of the concepts discussed in this chapter and can be used to
help you answer the following questions.

1. How many bits make up IPv4 and IPv6 addresses?

2. Which special address formats make up the IPv4 network itself and directed
broadcast (all hosts on the subnet) addresses?

3. How many hosts can be confi gured with an IPv4 network mask of
255.255.255.240?

4. What are the differences in format and use between IPv6 link-local and private
ULA-local addresses?

5. How many “double colons” (::) can appear in an IPv6 address?

IPv4

IPv6

Private ULA Unicast Address Fromat

Global Unicast Address Format

Link-Local Unicast Address Fromat

First byte

Class A NetID
HostID

8 bits for NetID, 24 bits for HostID

NetID
16 bits for NetID

NetID
24 bits for NetID, 8 bits for HostID

HostID
16 bits for NetIDClass B

128 bits

48 bits

001

10 bits 38 bits

0

10 bits 54 bits 64 bits

Interface ID0

FE80::/10

FC00::/7

Subnet ID Interface ID

16 bits 64 bits

16 bits 64 bits

Global Routing Prefix Subnet ID Interface ID

Class C

Second byte Third byte Fourth byte

HostID

FIGURE 4.9

Some major IPv4 and IPv6 address formats, showing classes in IPv4 and FE80 FC00 IPv6
addresses.

141

CHAPTER

What You Will Learn
In this chapter, you will learn about the hardware addressing used in the data link
layer frame and how it is found by the sender. We’ll talk a lot about the hardware
addresses used on LANs, the MAC addresses.

You will learn about the ARP protocol, which is how IP stacks on LANs identify
the hardware address that the destination fi eld of the frame should use.

Address Resolution
Protocol 5

The Internet, or any internetwork, is made up of a combination of physical networks
such as LANs and internetworking devices such as routers. A packet sent by a host
might pass through several different physical networks before fi nally reaching its
 destination.

The hosts and routers at the network layer are identifi ed by their network addresses
(also called logical addresses). In TCP/IP, the network or logical address is the IP address,
as we saw in the last chapter. These addresses are usually implemented in software,
and must be globally unique on the Internet. At the data link layer, the interface that
sends and receives frames is identifi ed by the physical or hardware address. An exam-
ple of a hardware address is the 48-bit MAC address we have been seeing at the frame
level. (See Figure 5.1.)

The hardware address and the network address are two different identifi ers with
different sizes, but we need both of them. Layered protocol stacks can use different
types of packets (such as IPv4 and IPv6) on the same Ethernet. Also, IPv4 packets can
be sent over an Ethernet link and then over a point-to-point link with a very different
frame structure.

However, we need some way to map back and forth between addresses at the net-
work and hardware levels. In TCP/IP, this mapping is provided by the address resolution
protocols (the technical term is bindings). ARP results are stored in an ARP cache on
a host so that the entire process does not have to be constantly repeated.

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80:205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-
0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65459

DSL Link

Wireless
in Home

Solid rules � SONET/SDH
Dashed rules � Gig Ethernet
Note: All links use 10.0.x.y
addressing...only the last
two octets are shown.

FIGURE 5.1

ARP on the Illustrated Network, showing that devices on the LANs employ ARP to determine
hardware (MAC) addresses.

144 PART II Core Protocols

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80:205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC: 00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

ge-0/0/3

16.2

ge-0/0/3

16.1

Best ISP

AS 65127

Global Public
Internet

CHAPTER 5 Address Resolution Protocol 145

The main address resolution protocol is the Address Resolution Protocol (ARP) itself,
but there are also Reverse ARP (RARP), proxy ARP, Inverse ARP (InARP), and ARP for
ATM networks (ATMARP). Other ARPs have been proposed as well (such as a generic
“WARP” for ARPs on a wide area network). In many ways, the various ARP fl avors are
not really separate protocols. For that reason, only the main ARP will be described in
detail in this chapter. The purposes of the other members of the ARP family will be
mentioned, but they are not used very often, and not at all on the Illustrated Network.

Most implementations allow the static entry of ARP IP-address-to-physical-address
information as permanent entries into the ARP cache. However, this poses an admin-
istrative nightmare (many organizations have a hard enough time keeping track of IP
addresses alone) and is seldom done today. Most ARP tables today are built and main-
tained dynamically.

ARP AND LANs
Let’s see how the Illustrated Network uses ARP to map IPv4 addresses to physical
addresses. We can look at some ARPs sent by FreeBSD, Linux, and Windows XP, and see
what they look like. Then we can examine the ARP caches and see what information is
kept and how it is stored.

Figure 5.1 shows the devices on the Illustrated Network that we’ll be working with
in this chapter. This time we’ll be using the hosts on each LAN and a pair of routers.

We’ll use these hosts and routers to look at four different cases where ARP is used,
as shown in Figure 5.2.

Host to host—The ARP sender is a host and wants to send a packet to another host
on the same LAN. In this case, the IP address of the destination is known and
the MAC address of the destination must be found.

Host to router—The ARP sender is a host and wants to send a packet to another
host on a different LAN. A forwarding (routing) table is used to find the IP
address of the router. In this case, the IP address of the router is known and the
MAC address of the router must be found.

What Layer Is ARP?
Although often shown at the same layer as IP because the messages ride inside
frames, as in this book, the ARPs are really in a class all by themselves. Some authors
describe them as a “high” data link layer function, but they are more of a boundary
function between the logical network and its physical hardware. Also, ARPs are
not really protocols, but rather mapping methods (bindings).

146 PART II Core Protocols

Router to router—The ARP sender is a router and wants to forward a packet to
another router on the same LAN. A forwarding (routing) table is used to find
the IP address of the router. In this case, the IP address of the router is known
and the MAC address of the destination router must be found.

Router to host—The ARP sender is a router and wants to forward a packet to a
host on the same LAN. In this case, the IP address of the host is known (from
the IP destination address on the packet) and the MAC address of the host
must be found.

Let’s look at Case 1 in detail because the others are more or less variations on this
basic theme. In Case 1, ARP is used when a host wants to send to another host on the
same IP subnet and the MAC address of the destination is not already known. We’ll
start the LAN2 host lnxclient sending a short message to winsrv2 (it doesn’t really
matter what the message is). Because this is the fi rst time that these devices have
 communicated in a long time, an ARP request is broadcast on LAN2 and the sender
waits for a reply.

Case 1: Find the address
of a host on the same
subnet as the source.

Case 2: Find the address
of a router on the same
subnet as the source.

Case 4: Find the address
of a host on the same

subnet as the source router.

Case 3: Find the address
of a router on the same

subnet as the source router.

Sending Host Sending Host

Sending RouterSending Router

bsdclient

bsdserver

LAN

ARP

ARPARP

ARP

LAN

LANLAN

CEO

PE5

CE6CE0

Inxserver

Receiving Host

Receiving HostReceiving Router

Receiving Router

Wincli1

FIGURE 5.2

Four ARP scenarios. Note that routers employ ARP just as hosts do, and that an ARP stays on the
same subnet as the sender.

CHAPTER 5 Address Resolution Protocol 147

Now let’s capture the ARP request and response pair on the lnxclient host at IPv4
address 10.10.12.166. We’ll set a fi lter to only capture and display ARP packets.

root@lnxclient admin]# /usr/sbin/tethereal -V arp
Capturing on eth0
Frame 1 (42 bytes on wire, 42 bytes captured)
 Arrival Time: May 5, 2008 22:13:40.148457000
 Time delta from previous packet: 0.000000000 seconds
 Time relative to first packet: 0.000000000 seconds
 Frame Number: 1
 Packet Length: 42 bytes
 Capture Length: 42 bytes
Ethernet II, Src: 00:b0:d0:45:34:64, Dst: ff:ff:ff:ff:ff:ff
 Destination: ff:ff:ff:ff:ff:ff (Broadcast)
 Source: 00:b0:d0:45:34:64 (Dell_45:34:64)
 Type: ARP (0x0806)
Address Resolution Protocol (request)
 Hardware type: Ethernet (0x0001)
 Protocol type: IP (0x0800)
 Hardware size: 6
 Protocol size: 4
 Opcode: request (0x0001)
 Sender MAC address: 00:b0:d0:45:34:64 (Dell_45:34:64)
 Sender IP address: 10.10.12.166 (10.10.12.166)
 Target MAC address: 00:00:00:00:00:00 (00:00:00_00:00:00)
 Target IP address: 10.10.12.52 (10.10.12.52)
Frame 2 (106 bytes on wire, 106 bytes captured)
 Arrival Time: May 5, 2008 22:13:40.148642000
 Time delta from previous packet: 0.000185000 seconds
 Time relative to first packet: 0.000185000 seconds
 Frame Number: 2
 Packet Length: 106 bytes
 Capture Length: 106 bytes
Ethernet II, Src: 00:0e:0c:3b:88:56, Dst: 00:b0:d0:45:34:64
 Destination: 00:b0:d0:45:34:64 (Dell_45:34:64)
 Source: 00:0e:0c:3b:88:56 (00:0e:0c:3b:88:56)
 Type: ARP (0x0806)
 Trailer: 00000000000000000000000000000000...
Address Resolution Protocol (reply)
 Hardware type: Ethernet (0x0001)
 Protocol type: IP (0x0800)
 Hardware size: 6
 Protocol size: 4
 Opcode: reply (0x0002)
 Sender MAC address: 00:0e:0c:3b:88:56 (00:0e:0c:3b:88:56)
 Sender IP address: 10.10.12.52 (10.10.12.52)
 Target MAC address: 00:b0:d0:45:34:64 (Dell_45:34:64)
 Target IP address: 10.10.12.166 (10.10.12.166)

148 PART II Core Protocols

We’ll look at the fi elds of an ARP in detail later. For now, note that the ARP request,
indicated by a 0x0806 in the Ethertype fi eld goes out as a broadcast frame with an
all-zero MAC address fi eld. It’s looking for the MAC address that goes with IP address
10.10.12.52 (winsrv2), the target IP address. The ARP reply frame returns the reply
with the correct MAC address plugged into the all-zero fi eld (and with the MAC address
as the source address in the frame).

The results of an ARP pair between the bsdclient host (10.10.11.177) and the
 lnxserver host (10.10.11.66) is almost the same, but not quite. The frame sent in reply
to the ARP is smaller than before.

bsdclient# tethereal -V arp
Capturing on em0
Frame 1 (42 bytes on wire, 42 bytes captured)
 Arrival Time: May 5, 2008 22:24:04.518213000
 Time delta from previous packet: 0.000000000 seconds
 Time since reference or first frame: 0.000000000 seconds
 Frame Number: 1
 Packet Length: 42 bytes
 Capture Length: 42 bytes
Ethernet II, Src: 00:0e:0c:3b:8f:94, Dst: ff:ff:ff:ff:ff:ff
 Destination: ff:ff:ff:ff:ff:ff (Broadcast)
 Source: 00:0e:0c:3b:8f:94 (10.10.11.177)
 Type: ARP (0x0806)
Address Resolution Protocol (request)
 Hardware type: Ethernet (0x0001)
 Protocol type: IP (0x0800)
 Hardware size: 6
 Protocol size: 4
 Opcode: request (0x0001)
 Sender MAC address: 00:0e:0c:3b:8f:94 (10.10.11.177)
 Sender IP address: 10.10.11.177 (10.10.11.177)
 Target MAC address: 00:00:00:00:00:00 (00:00:00_00:00:00)
 Target IP address: 10.10.11.66 (10.10.11.66)
Frame 2 (60 bytes on wire, 60 bytes captured)
 Arrival Time: May 5, 2008 22:24:04.518421000
 Time delta from previous packet: 0.000208000 seconds
 Time since reference or first frame: 0.000208000 seconds
 Frame Number: 2
 Packet Length: 60 bytes
 Capture Length: 60 bytes
Ethernet II, Src: 00:d0:b7:1f:fe:e6, Dst: 00:0e:0c:3b:8f:94
 Destination: 00:0e:0c:3b:8f:94 (10.10.11.177)
 Source: 00:d0:b7:1f:fe:e6 (10.10.11.66)
 Type: ARP (0x0806)
 Trailer: 000000000000000000000000000000000000
Address Resolution Protocol (reply)
 Hardware type: Ethernet (0x0001)

CHAPTER 5 Address Resolution Protocol 149

 Protocol type: IP (0x0800)
 Hardware size: 6
 Protocol size: 4
 Opcode: reply (0x0002)
 Sender MAC address: 00:d0:b7:1f:fe:e6 (10.10.11.66)
 Sender IP address: 10.10.11.66 (10.10.11.66)
 Target MAC address: 00:0e:0c:3b:8f:94 (10.10.11.177)
 Target IP address: 10.10.11.177 (10.10.11.177)

The reply from the Linux system is only 60 bytes, 46 bytes less than the response
from the Windows XP server in the fi rst example. That’s interesting; let’s take a closer
look at what Windows XP is doing. Figure 5.3 shows a graphical capture of the reply
from winsrv2 (10.10.12.52) to an ARP request from wincli2 (10.10.12.222).

The reply is indeed 106 bytes long, but the extra bits are all zeros. The only differ-
ence in the replies is the number of trailing zeroes in the frame. And we can also see
that the ARP software can deal with these easily.

We’ve already mentioned that ARP results are cached. The devices that send the
ARP requests cache the results, and the device that receives the ARP usually also caches
the MAC address in the arriving ARP request. The idea is that if one device in a pair

FIGURE 5.3

Windows XP ARP reply capture. The ARP message, in this case an ARP reply, is encapsulated
directly inside the Ethernet frame.

150 PART II Core Protocols

sends in one direction, the other device in the pair will probably send in the opposite
 direction as well.

Let’s look at the ARP cache on the bsdserver host (10.10.12.77) using the –a (all)
option.

bsdserver# arp -a
? (10.10.12.1) at 00:05:85:8b:bc:db on em0 [ethernet]
? (10.10.12.52) at 00:0e:0c:3b:88:56 on em0 [ethernet]
? (10.10.12.166) at 00:b0:d0:45:34:64 on em0 [ethernet]
? (10.10.12.222) at 00:02:b3:27:fa:8c on em0 [ethernet]

All four other devices on LAN2 are represented. The question marks are there
because we have no DNS running at the moment. Let’s see if we can add to the cache
by sending a ping to the Windows XP server (winsrv1) on LAN1.

bsdserver# ping 10.10.11.111
PING 10.10.11.111 (10.10.11.111): 56 data bytes
64 bytes from 10.10.11.111: icmp_seq=0 ttl=126 time=0.403 ms
64 bytes from 10.10.11.111: icmp_seq=1 ttl=126 time=0.413 ms
64 bytes from 10.10.11.111: icmp_seq=2 ttl=126 time=0.376 ms
^C
--- 10.10.11.111 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.376/0.397/0.413/0.016 ms
bsdserver# arp -a
? (10.10.12.1) at 00:05:85:8b:bc:db on em0 [ethernet]
? (10.10.12.52) at 00:0e:0c:3b:88:56 on em0 [ethernet]
? (10.10.12.166) at 00:b0:d0:45:34:64 on em0 [ethernet]
? (10.10.12.222) at 00:02:b3:27:fa:8c on em0 [ethernet]

Nothing was added to the ARP cache on the FreeBSD server. Why should it be? The
other host is only reachable through a router, and the router’s ARP entry is already there
(10.10.12.1). These types of ARPs, the most common, are only used when the destina-
tion is on the same LAN subnet as the source.

Usually, entries in the ARP cache are deleted when no communication occurs with
another device, usually after 300 seconds (5 minutes) of silence between the devices.
We can force the ARP cache to empty by using the –d (delete) option.

bsdserver# arp -d -a
10.10.12.1 (10.10.12.1) deleted
10.10.12.52 (10.10.12.52) deleted
10.10.12.166 (10.10.12.166) deleted
10.10.12.222 (10.10.12.222) deleted

In Linux, the command to display the ARP cache is the same (arp), but the –e
option displays the result in the “default” Linux format (using no option gives the same
result). The “C” means that the entry is “complete.”

CHAPTER 5 Address Resolution Protocol 151

[root@lnxserver admin]# /sbin/arp
Address HWtype HWaddress Flags Mask Iface
10.10.11.1 ether 00:05:85:88:CC:DB C eth0
10.10.11.111 ether 00:0E:0C:3B:88:3C C eth0
10.10.11.177 ether 00:0E:0C:3B:8F:94 C eth0
10.10.11.51 ether 00:0E:0C:3B:87:36 C eth0
[root@lnxserver admin]# /sbin/arp -e
Address HWtype HWaddress Flags Mask Iface
10.10.11.1 ether 00:05:85:88:CC:DB C eth0
10.10.11.111 ether 00:0E:0C:3B:88:3C C eth0
10.10.11.177 ether 00:0E:0C:3B:8F:94 C eth0
10.10.11.51 ether 00:0E:0C:3B:87:36 C eth0

In Linux, use of the –a option displays the results in “BSD” style. The output is still
slightly different, however.

[root@lnxserver admin]# /sbin/arp -a
? (10.10.11.1) at 00:05:85:88:CC:DB [ether] on eth0
? (10.10.11.111) at 00:0E:0C:3B:88:3C [ether] on eth0
? (10.10.11.177) at 00:0E:0C:3B:8F:94 [ether] on eth0
? (10.10.11.51) at 00:0E:0C:3B:87:36 [ether] on eth0

Windows XP displays the ARP cache with arp –a as well. This output is from winsrv2
on LAN2.

C:\Documents and Settings\Owner>arp -a
Interface: 10.10.12.52 --- 0x1003
 Internet Address Physical Address Type
10.10.12.1 00-05-85-8b-bc-db dynamic
10.10.12.77 00-0e-0c-3b-87-32 dynamic
10.10.12.166 00-b0-d0-45-34-64 dynamic
10.10.12.222 00-02-b3-27-fa-8c dynamic

The term dynamic distinguishes these entries from statically defi ned entries.
There is no separate ARP for IPv6. MAC addresses can be embedded in the IPv6

addresses, but this does not solve the problem of a source host knowing the physical
address of a destination host or router. When a host uses IPv4-derived IPv6 addresses,
such as ::10.10.11.111, IPv4 ARP information can be used to supply the MAC addresses
for IPv6.

The address resolution process in IPv6 uses ICMPv6 messages and is part of the
Neighbor Discovery (ND) process. Generally, a multicast Neighbor Solicitation message
is sent and a unicast Neighbor Advertisement message is received in reply. We’ll talk
more about this process in the chapter on ICMPv6. For now, let’s just verify that IPv6
address resolution uses ICMPv6 messages.

Ethereal can capture and display IPv6 traffi c as well as IPv6. Let’s send a test message
using the link-local IPv6 addresses from winsrv1 to wincli1, and capture the address
resolution in action. We’ll capture everything but only display ICMPv6 messages. The
result is shown in Figure 5.4.

152 PART II Core Protocols

Figure 5.4 shows the details of the Neighbor Solicitation message. The frame des-
tination address is highlighted in the fi gure, showing that a special multicast frame
address is used instead of the ARP broadcast frame address. The major differences
between this procedure and the ARP process in IPv4 are that ICMPv6 is used in IPv6,
and the solicitation message is sent to the IPv6 multicast group address associated with
the target address.

ARP PACKETS
ARP uses packets, but these are not IP packets. ARP messages ride inside Ethernet
frames, or any LAN frame, in exactly the same way as IP packets. There is no need to
use an IP address here anyway: ARP frames are valid only for a particular LAN segment
and never leave the local LAN (i.e., ARP messages cannot be routed). The structure of
an ARP message is shown in Figure 5.5.

FIGURE 5.4

IPv6 address resolution with ICMPv6, showing that the Neighbor Solicitation frame is sent to the
special IPv6 Neighbor Discovery address.

CHAPTER 5 Address Resolution Protocol 153

FIGURE 5.5

The ARP message’s fi elds. The message is placed directly inside a frame, such as an Ethernet
frame.

Type of Hardware Type of Protocol

Protocol
Size

Sender’s Ethernet

Sender’s IP Address

Sender’s IP Address (cont)

Address

Operation

Target’s

(Trailing 0s)

4 bytes

Target’s IP Address

Ethernet Address

Hardware
Size

This fi gure is because the 28-byte ARP message includes fi elds 1, 2, 4, and 6 bytes in
length, and does not readily lend itself to “normal” 32-bit representation. The fi rst fi ve
fi elds form a type of message header. The next four fi elds are the sender’s and target’s
IP and MAC addresses. Usually, it’s the target’s MAC address that needs to be found with
the ARP process. And as we have already seen, the ARP message can end with a variable
number of trailing zeros.

On an Ethernet LAN, ARP messages have their own Ethertype value (0x0806). How-
ever, some ARP implementations used the “regular” Ethertype for IP packets (0x0800)
because the IP implementation itself can easily decide if the information inside the
frame is IPv4 (packet starts with 0x04) or an ARP message (packet starts with 0x0001
for Ethernet).

The main fi elds are present in both ARP request and ARP reply messages:

Type of Hardware—This 2-byte field is used to identify the style of hardware
address. (The Ethernet-style MAC address, with value = 1, is the most common,
of course.)

Type of Protocol—This 2-byte field identifies the type of Layer 3, or network layer,
protocol that is being queried. (ARP messages, because they are not IP packets,
can be used for more than IP addresses.) This uses the same set of values as the
Ethertype field, so IP is 0x0800.

154 PART II Core Protocols

Hardware Size—This byte identifies the size, in bytes, of the hardware address.
The Ethernet MAC address is 6 bytes long.

Protocol Size—This byte identifies the size, in bytes, of the Layer 3 protocols. IPv4
addresses are 4 bytes long.

Operation—This 2-byte field identifies the ARP message’s intent. For example, an
ARP request (“Who has this IPv4 address?”) has the operation value of 1 and
a reply value of 2.

The rest of the fi elds do not have a fi xed size. Their size is determined by the value
in the Hardware Size and Protocol Size fi elds. On our Ethernet LANs, the hardware
address size is 6 bytes (MAC) and the protocol address size is 4 bytes (IPv4). In that
case, the sizes and functions of these fi elds are as follows.

Sender’s Ethernet Address—This 6-byte field holds the sender’s Ethernet address.
It should be the same as the source address in the Ethernet frame.

Sender’s IP Address—This 4-byte field holds the sender’s Ethernet address. (This
is how targets fill in their own ARP caches without requiring more ARPs.)

Target’s Ethernet Address—This 6-byte field holds the target’s Ethernet address.
This field in set to all 0 bits in a request. The reply will have this field filled in
and the operation changed to “reply.”

Target’s IP Address—This 4-byte field holds the target’s IPv4 address.

EXAMPLE ARP OPERATION
What the ARP process adds to TCP/IP is a mechanism for a source device to ask, “Who
has IP address 10.10.12.52 (this was our fi rst example from the Illustrated Network)
and what is the physical (hardware) address associated with it?”

ARP messages are broadcast frames sent to all stations. The proper destination IP
layer realizes that the destination IP address in the packet matches its own and replies
directly to the sender. The target device replies by simply reversing the source and
destination IP address in the ARP packet. The target also uses its own hardware address
as the source address in the frame and message.

The ARP process is shown in Figure 5.6. The steps are numbered and taken from
the example earlier in this chapter, where lnxclient ARPs to fi nd the MAC address of
winsvr2.

1. The system lnxclient (10.10.12.166) assembles an ARP request and sends it as a
broadcast frame on the LAN. Because it is unknown, the requested MAC address fi eld
in the ARP message uses all zeros (0s), which are placeholders.

CHAPTER 5 Address Resolution Protocol 155

1

4

3

2

What’s the MAC address of 10.10.12.52?
Tell 10.10.10.166, okay?

Here’s my MAC address...

Ethernet LAN

ARP
Request

Broadcast

ARP Request
Sent and Reply

Processed

Not me!
(request
ignored)

Not me!
(request
ignored)

Not me!
(request
ignored)

Hey!
That’s me!
(reply sent
unicast)

(These two devices can cache the
sender’s MAC and IP addresses.)

Inxclient
10.10.12.166

bsdserver
10.10.12.77

wincli2
10.10.12.222

CE6
10.10.12.1

winsvr2
10.10.12.52

2. All devices attached to the LAN receive and process the broadcast, even the router
CE6. But only the device with the target’s IP address in the ARP message (winsvr2
at 10.10.12.52) replies to the ARP. The target also caches the MAC address associ-
ated with 10.10.12.166 (the source address in the broadcast frame).

3. The target system winsvr2 sends a unicast ARP reply message back to lnxclient.
The reply has the MAC address requested both in the frame (as a source address)
and in the ARP message fi eld sent as 0s.

The originating source system and the target system will cache the hardware
address of the destination and proceed to send “live” IP packets with the information,
at the same time supplying the proper frame address as a parameter to the network
access layer software.

Figure 5.7 shows how the ARP request and reply message shown at the beginning
of this chapter look like “on the wire.” The fi eld values can be compared to the ARP
 message format shown in Figure 5.5. Again, the lnxclient to winsrv2 ARP pair are
used as the example. Trailing zeros are not shown.

ARP operation is completely transparent to the user. ARP operation is usually
 triggered when a user runs some TCP/IP application, such as FTP, and the frame’s desti-
nation MAC address is not in the ARP cache.

FIGURE 5.6

The ARP request and reply process. The message asks for the MAC address associated with the
destination, and the sender’s address that should receive the reply. Other devices that hear the
reply can cache the information.

156 PART II Core Protocols

Inxclient
10.10.12.166

00:b0:dO:45:34:64

0�0001
0�00001
0�0800

0�0001 0�0800

0�00B0D0453464
0�0A0A0CA6

0�000000000000
0�0A0A0C34 (10.10.12.52)

(10.10.12.166)

(10.10.12.166)

(10.10.12.52)

Source
0�00B0D0453464

Destination

0�06 0�04

0�000020�06 0�04

winsvr2

LAN2

Source

CRC

CRC

Data (28 bytes)

Data (28 bytes)

10.10.12.52
00:0e:0c:3b:88:56

ARP Request

0�FFFFFFFFFFFF

0�00E0C3B8856
0�0A0A0C34

0�00B0D0453464
0�0A0A0CA6

ARP Reply

0�00B0D0453464

Destination

0�0806

0�00E0C3B8856 0�0806

ARP VARIATIONS
ARP is a fairly straightforward procedure to determine the LAN hardware address that
goes with a given IP address. However, there are more network types than LANs and
there are more “addresses” that need to be associated with IP addresses than “hard-
ware” addresses. Consequently, there are a few other types of ARPs that have evolved to
deal with other IP network situations.

Proxy ARP
Proxy ARP is an older technique (it was called the “ARP Hack”) that was used in early
routers, and is still supported in some routers today. LANs connected by bridges had
hosts that did not (and could not) use different IP network addresses. The same IP

FIGURE 5.7

ARP exchange example, showing how the requested information is provided by the destination’s
reply.

CHAPTER 5 Address Resolution Protocol 157

 network address is used on both sides of a bridge, so there is one broadcast domain, and
ARPs are shuttled back and forth. This practice wasted bandwidth on the LANs (and on
any WAN link between the bridges). Proxy ARP allowed the router that replaced the
bridge to respond to ARP requests directly with its own MAC address, without having
to propagate the ARP packets onto the other LAN segment. Hosts then sent frames
to the router, but acted as if they were sending the frames directly to the destination
host. Proxy ARP makes sure that the router received the frame, just as with indirect
delivery.

Routers normally require that the same IP subnet address not be confi gured on
more than one router port. Proxy ARP was a method of assigning a single Class A, B, or
C address to both sides of router without using subnet masking, allowing the router to
function as a bridge. Proxy ARP was useful as networking transitioned from bridges to
routers.

Proxy ARP is still often used in Mobile IP networks, which often bridge between
devices.

Reverse ARP
Reverse ARP (RARP) is used in cases where a device on a TCP/IP network knows its
physical (hardware) address but must determine the IP address associated with it.
A RARP request (“I have MAC address X . . . What’s my IP address?”) is sent to a device
running the RARP server process. The RARP server replies with the IP address of the
device. The RARP server should be located on the local LAN segment, but it does not
have to be.

RARP messages use the same packet format as ARP, but the Ethertype is 0x0835, and
the operation fi eld is 3 for a RARP request and 5 for a RARP reply. Of course, the infor-
mation to be supplied is the IP address. As with ARP, the request is broadcast and the
reply is unicast. RARP is defi ned in RFC 903.

RARP was frequently used for diskless network devices on TCP/IP networks such
as workstations, X-terminals, routers, and hubs. These devices needed to obtain vari-
able confi guration information such as the IP address for an external source whenever
they were rebooted or powered on. In addition, the amount of confi guration informa-
tion you could obtain through RARP was very limited. Today, with almost every device
 having fl ash memory to store confi guration information during reboot when power is
off, the need for RARP is greatly diminished.

Even in cases where confi guration information or IP addresses need to be assigned
dynamically, there are better ways to achieve the same result than with RARP, such as
BOOTP and DHCP. Both will be discussed in Chapter 18 of this book.

ARPs on WANs
On most WANs, ARP is still used, but as a limited multicast rather than a broadcast. ARP
has a couple of variations used to address WAN environments such as frame relay
and ATM networks. These public network technologies use virtual circuits (a type

158 PART II Core Protocols

Router 1 Frame
Relay

Network

Router 3

Router 2

DLCI 519

DLCI 518
InARP message 1:

“Which IP address is at
the end of DLCI 18?”

InARP message 2:
“Which IP address is at
the end of DLCI 19?”

Reply to InARP message 2:
“My IP address is in the ARP

reply ... use this in the
routing table.”

Reply to InARP message 1:
“My IP address is in the ARP

reply ... use this in the
routing table.”

of logical connection) at the frame (frame relay) or cell (ATM) level instead of MAC
addresses. The issue in frame relay and ATM (both called non-broadcast multiaccess
[NBMA] link networks) is to fi nd the virtual circuit number, such as the Data Link Con-
nection Identifi er (DLCI) in frame relay, associated with a particular IP address.

InARP (Inverse ARP) was developed for use on frame relay networks. Instead of using
ARP to determine MAC-layer LAN addresses, TCP/IP networks linked by frame relay net-
works use InARP to determine the IP address at the other end of a frame relay DLCI
number to use when sending IP packets. InARP is used as soon as frame relay DLCI are
created. The replies are used to build the routing table in the frame relay access device
(router). The InARP process is shown in Figure 5.8. InARP is essentially an adaptation of
the reverse ARP (RARP) process used on LANs.

ATMARP is a similar method used to fi nd the ATM virtual path identifi er (VPI) and/
or virtual channel identifi er (VCI) over an ATM network.

ARP AND IPv6
IPv6 really has no need for a separate ARP function. Instead, the Neighbor Discovery
protocol (ND, sometimes NDP) described in RFC 2461 performs the functions of the
IPv4 ARP in IPv6.

ND is really a superset of most of the functions of IPv4’s ARP, ICMP Redirect, and
ICMP Router Discovery features. This section will discuss some of the features of NDP,
but most of this will be covered in the chapter on ICMP.

FIGURE 5.8

Inverse ARP (InARP) exchange over a frame relay network. In this case, the hardware address
(DLCI) is known and the sender needs to determine the IP address.

CHAPTER 5 Address Resolution Protocol 159

Neighbor Discovery Protocol
The Neighbor Discovery protocol is the way that IPv6 hosts and routers fi nd things
out about their immediate neighborhood, typically the LAN segment. A lot of effort
was expended in IPv4 to fi nd out confi guration necessities such as default routers,
any alternate routers, MAC addresses of adjacent hosts, and so on. In some cases, these
addresses could not be found automatically with IPv4 and had to be entered manually
(the default router). IPv6 was designed to be almost automatic in this regard.

When an IPv6 host comes up for the fi rst time, the host advertises its MAC layer
address and asks for neighbor and router information. Because these messages are in
the form of ICMPv6 messages, only the basics will be presented here.

Why Neighbor and Router Discovery?
Why does IPv6 have separate neighbor and router discovery messages? After all,
IPv4 did fi ne using a single broadcast frame structure for host–host and router–
host address discovery.

IPv6 is more sophisticated than IPv4 when it comes to devices and networks.
In IPv6, devices can be located on a local multiple access link (LAN), which are
considered on link, or off link. Generally, there are a lot more hosts on a network
than routers. IPv6 directs messages that discover host addresses only to the local
hosts, while messages to discover one or more default routers are processed only
by the routers.

Instead of a single mass broadcast, neighbor discover in IPv6 is done with
 multicast groups. We’ll talk about multicast in more detail in a later chapter.

Many routers today forward packets in hardware, but broadcasts have to be
processed by software. IPv6 routers can ignore the numerous messages sent from
host to host on a LAN. This makes the use of the network resources with IPv6
more effi cient.

The ARP function in IPv6 is performed by four messages in ND. The Router
 Solicitation/Router Advertisement mechanism is noteworthy in that it provides the key
for host IPv6 address confi guration, default route selection, and potentially even boot-
strap confi guration information.

Neighbor Solicitation—This message is sent by a host to find out the MAC layer
address of another host. It is also used for Duplicate Address detection (Does
another host have the same IPv6 address?) and for Neighbor Unreachability
Detection (Is the other host still there?). The receiving host must reply with a
Neighbor Advertisement.

160 PART II Core Protocols

Neighbor Advertisement—This message contains the MAC layer address of the
host and is sent in reply to a Neighbor Solicitation message. Hosts also send
unsolicited Neighbor Advertisement when they first start up or if any of the
advertised information changes.

Router Solicitation—This message is sent by a host to find routers. The receiving
router must reply with a Router Advertisement.

Router Advertisement—This message contains the MAC layer address of the
router and is sent in reply to a Router Solicitation message. Routers also send
an unsolicited Router Advertisement when they first start up if any of the
advertised information changes.

ND Address Resolution
ND functions are performed only for local IPv6 addresses (the hop limit is set
to 1 for these messages). ND messages, unlike ARP, are not broadcast (“Everyone
pay attention to this”) but rather multicast (“Only those interested pay attention
to this”).

When an IPv6 host or router starts up, it joins several multicast groups. The IPv6
mode must join the all-nodes group. It must also join a solicited-node group for each
interface running IPv6 or IPv6 address that the node has. Joining these groups allows
the device to receive packets without having all the details of its address established.
This is a much more sophisticated arrangement than the ARP method used in IPv4. The
IPv6 device must keep these multicast groups active until all of its addressing details
have been resolved.

When an IPv6 device needs to resolve the MAC layer address of another host on the
LAN, a Neighbor Solicitation message is sent to the solicited-node multicast address.
The IPv6 solicited-node multicast address is formed by taking the low-order 24 bits of
the IPv6 address and adding the 104-bit prefi x FF02::1 to it. Thus, for the link-local IPv6
address fe80::20e:cff:fe3b:883c, the IPv6 multicast group address used is fe02::1:
fe3b:883c.

But what multicast address should the message use in the Ethernet frame? That
 multicast address is formed by prepending 33:33 to the lower 24 bits of the IPv6
address. Each device with an IP address registers this form with the local NIC and
expects to receive ND messages this way initially. For the IPv6 multicast group address
fe02::1:fe3b:883c, the multicast address used in the Ethernet destination fi eld is
33:33:fe:3b:88:3c.

An example of the address resolution pair capture earlier in this chapter is shown
in Figure 5.9. Note the use of multicast IPv6 and frame addresses in the Neighbor
Solicitation request and the way the information is supplied in the unicast Neighbor
Announcement reply.

CHAPTER 5 Address Resolution Protocol 161

wincli1 winsvr1

LAN1

IPv6 source address:

IPv6 destination address:

IPv6 source address:

For target address:

IPv6 destination address:

ND target address is:

fe80::20e:cff:fe3b:883c

fe80::20e:cff:fe3b:8736

fe80::20e:cff:fe3b:883c

ff80::20e:cff:fe3b:8736
MAC is: 00:0e:0c:3b:87:36

ff80::20e:cff:fe3b:8736
(find physical address)

ff02::1:fe3b:883c

10.10.11.51
00:0e:0c:3b:88:3c

fe80::20e:cff:fe3b:883c

10.10.11.111
00:0e:0c:3b:88:56

fe80::20e:cff:fe3b:8736

Neighbor
Solicitiation

(multicast request)

Neighbor
Annoucement
(unicast reply)

Source

SourceDestination

Neighbor Solicitation 0�33FE3B8736

0�000E0C3B88736

0�000E0C3B883C

0�000E0C3B883C

Destination

Neighbor Announcement

FIGURE 5.9

IPv6 neighbor discovery and address resolution, showing how the request uses multicast frame
and packet addresses.

If no response is received, the sender can generate the Neighbor Solicitation
 message several times. When a Neighbor Advertisement message is received by the
sender, the content is used to update the IPv6 Neighbor cache (the equivalent of the
IPv4 ARP cache).

More details on ND message formats and operation are discussed in the ICMP
 chapter.

162 PART II Core Protocols

QUESTIONS FOR READERS
Figure 5.10 shows some of the concepts discussed in this chapter and can be used to
help you answer the following questions.

IP Layer
(32-bit address)

IP Layer
(32-bit address)

MAC Layer
(48-bit address)

MAC Layer
(48-bit address)

Bridge

Ethernet LAN Ethernet LAN

To Another
Broadcast
Domain

(Nontarget destinations parse, but ignore, broadcast ARP messages.)

Router

One Broadcast Domain

FIGURE 5.10

ARP messages are used to coordinate IP addresses with lower layer addressing.

1. Why can’t the same address structure and value be used for network layer and
hardware addresses?

2. Why do ARPs have to pass through bridges, but should not pass through
 routers?

3. Why does a receiver place the sender’s MAC address in its own ARP cache?

4. What is Proxy ARP used for?

5. What is the advantage of using multicast groups instead of broadcasts for address
resolution?

163

CHAPTER

What You Will Learn
In this chapter, you will learn about the IP layer. We’ll start with the fi elds in the
IPv4 and IPv6 packet headers. We’ll discuss most of the fi elds in detail and show
how many of them relate to each other.

You will learn about fragmentation, and how large content is broken up, spread
across a sequence of many packets, and reassembled at the destination. We’ll also
talk about some of the perceived hazards of this fragmentation process.

IPv4 and IPv6 Headers 6

Thus far, we’ve created a network of hosts and routers, linked them with a variety of
architectures and link types (LANs and WANs), and discussed the frame formats and
methods used to distribute packets among the nodes. We’ve considered the IPv4 and
IPv6 address formats, and the ways that they map to lower, link layer addresses. Now
it’s time to concentrate on the IP layer itself.

Even casual users of the TCP/IP protocol suite are familiar with the basic IP packet,
or, as it was initially called (and still often is) the datagram. An IP datagram or packet
is the connectionless IP network-layer protocol data unit (PDU). When TCP/IP came
along, packets were often associated with connection-oriented data networks such
as X.25, the international packet data network standard. To emphasize the connec-
tionless nature of IP, then a radical approach to network layer operation, the TCP/IP
developers decided to invent a new term for the IP packet. Through analogy with the
telegram (a terse message sent hop by hop through a network of point-to-point links),
they came up with the term “datagram.”

The IP layer of the whole TCP/IP protocol stack is the very heart of TCP/IP. The
frames that are sent and delivered across the network from host to router and router
to host contain IP packets. However, like almost all statements about nearly any net-
work protocol, there are exceptions to the general “frames contain IP packets” rule. As
shown in the last chapter, an important class of IP layer protocols known as the Address
Resolution Protocols (ARPs) does not technically use IP packets, but ARP messages
are very close in structure to IP packets. Also, the Internet Control Message Protocol
(ICMP) uses IP packets and is included in the IP layer. We’ll look at ICMP in the next
chapter.

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80:205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65459

DSL Link

Wireless
in Home

Solid rules � SONET/SDH
Dashed rules � Gig Ethernet
Note: All links use 10.0.x.y
addressing...only the last
two octets are shown.

FIGURE 6.1

The LANs on the Illustrated Network use both IPv4 and IPv6 packets. We’ll be looking at the
 headers generated by the hosts on the LANs.

166 PART II Core Protocols

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80:205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC: 00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

ge-0/0/3

16.2

ge-0/0/3

16.1

Best ISP

AS 65127

Global Public
Internet

CHAPTER 6 IPv4 and IPv6 Headers 167

Both IPv4 and IPv6 packet structures will be detailed in this chapter. However, for
the sake of simplicity, whenever the term “IP” is used without qualifi cation, “IPv4” is
implied.

PACKET HEADERS AND ADDRESSES
Let’s take a close look at the packets used on the Illustrated Network. We’ll look at the
IPv4 header and addresses fi rst. We worked with the Windows clients and servers a
lot in the last few chapters, and we’ll work with them again in this chapter. But we’ll
also work with the Unix devices and tethereal captures in this chapter, especially for
fragmentation and IPv6. And, as we’ll soon see, one of the biggest differences between
IPv4 and IPv6 is how fragmentation is handled.

Fragmentation
People talk loosely about the pros and cons of “IP packet fragmentation,” but this
terminology is not correct. It is not the IP packet itself that is fragmented, but
the packet content. If the payload is too large to fi t inside a single IP packet (as
determined by the IP layer implementation), the content is spread across several
packets, each with its own IP header.

In some cases, as we will see in this chapter, the content of an IP packet must
be further broken up to traverse the next link on the network. However, it’s not
really the IP packet that is fragmented. The original packet is discarded, and a
string of IP packets is created that preserves the packet content and overall header
fi elds, but changes specifi cs. When we say that “the packet is the data unit that
fl ows end-to-end through the network,” it is not the packet that is unchanged, but
the content.

Naturally, if packet content is kept small enough, no fragmentation is necessary.

Figure 6.1 shows the parts of the Illustrated Network that we’ll be using for our
investigation of IP headers and fragmentation. The LAN clients and servers are high-
lighted, as are the local customer-edge routers.

Let’s start with IPv4. We can just start a fl ow of IPv4 packets between a client and
server and capture them. Then we can parse the packets until we fi nd something of
interest.

Let’s take a good look at all the fi elds in an IPv4 packet header. We’ve already captured
plenty of them. This example is from the FTP transfer from host (wincli2, with address
10.10.12.222) to router (CE6, with address 10.10.12.1) that we fi rst saw in Chapter 2.
Figure 6.2 shows a frame from the actual data transfer itself, frame 35, in fact.

The Ethernet frame is of type 0x0800 to show it carries an IPv4 packet. All of the lines
from “Internet Protocol” to the line before “Transmission Control Protocol” interpret

168 PART II Core Protocols

fi elds in the IPv4 header. The source and destination addresses are listed fi rst. Although
we’ll see that they are not the fi rst fi elds in the header, they are defi nitely the fi elds that
most frequently are of interest.

Ethereal interprets a fi eld in the IPv4 header called the Type of Service (TOS) fi eld
according to something called Differentiated Services (DiffServ). DiffServ is only one
way to interpret these fi elds. The fi gure shows that there are three things indicated by
the 8 bits in the TOS fi eld:

Differentiate Services Code Point (DSCP)—The default is zero, which means this
packet does not require special handling by any router or host other than IP’s
normal best-effort service.

Explicit-Congestion-Notification Capable Transport (ECT)—This bit is set by
devices when the transport is able to provide an indication of network conges-
tion to network-attached devices. The value of zero shows that Ethernet is not
an ECT, so packets cannot tell devices when the LAN is congested.

ECN Congestion Explicit (ECT-CE)—On transport that can report conges-
tion, this bit is set when some predefined criteria for network congestion is
met. This is often a percentage of output buffer fullness. On Ethernet this bit
is always zero.

FIGURE 6.2

Capture of IPv4 header fi elds. The frame is broken out to show the content and meaning of every
fi eld in the IPv4 header. Note that the DF (Don’t Fragment) bit is set on the packet.

CHAPTER 6 IPv4 and IPv6 Headers 169

We’ll say a little more about DSCP and quality of service (QOS) in a later chapter.
However, the incomplete support for and variations in QOS implementations rule out
QOS or DSCP as a topic for an entire chapter.

There are also four fl ag bits shown in the fi gure. The two most important are the
bits that indicate this packet content is not to be fragmented (the DF bit is set to 1)
and that there are no more frames carrying pieces of this packet’s payload (the More
Fragments bit is set to 0).

In the following, we talk about fragmentation in IPv4 in more detail, and then
explore all of the fi elds in the IPv4 header in more detail.

THE IPv4 PACKET HEADER
The general structure of the IPv4 packet is shown in Figure 6.3. The minimum header
(using no options, the most common situation) has a length of 20 bytes (always shown
in a 4-bytes-per-line format), and a maximum length (very rarely seen) of 60 bytes. Some
of the fi elds are fairly self-explanatory, such as the fi elds for the 4-byte (32-bit) IPv4
source and destination address, but others have specialized purposes.

1 byte

Header
Length

Type of Service Total Packet Length

Fragment OffsetIdentification

1 byte

Header Checksum

1 byte

Time to Live Protocol

32-bit IPv4 Source Address

32-bit IPv4 Destination Address

(Options, if present, padded if needed)

1 byte

Flags

DATA

32 bits

Version

H
e
a
d
e
r

FIGURE 6.3

IPv4 Packet and Header

170 PART II Core Protocols

Version—Currently set to 0x04 for IPv4.

Header Length—Technically, this is the Internet header length (IHL). It is the
length of the IP header in 4-byte (32-bit) units known as “words,” and includes
any option fields present and padding needed to align the header on a 32-bit
boundary. In Figure 6.2, this is 20 bytes, which is most common.

Type of Service (TOS)—Contains parameters that affect how the packet is handled
by routers and other equipment. Never widely used, it was redefined as Dif-
ferentiated Services (DiffServ or DS) code points and is still hampered because
of a lack of widespread implementation, especially from one routing domain
to another. The meaning of these bits, which are all set to 0 in Figure 6.2, was
detailed earlier in this chapter.

The next four fi elds, shown in italics in Figure 6.3, fi gure directly in the fragmenta-
tion process. Fragmentation, introduced in Chapter 4, occurs when a packet is for-
warded onto a data link and the packet content will not fi t inside a single frame. In
these cases, the packet content must be fragmented and spread across several frames,
then reassembled at the destination host. Fragmentation will be discussed in detail in
the next section of this chapter.

Total Packet Length—This is the length of the whole packet in bytes. The maxi-
mum value for this two-byte field is 65,535 bytes. This length is approached
by no common TCP/IP implementation or network MTU size. The packet in
Figure 6.2 is 1500 bytes long, the most common length due to the prevalence
of Ethernet LANs.

Identification—A 16-bit number set for each packet to help the destination host
reassemble like-numbered fragments. Even intact, single packets could be frag-
mented by routers (sometimes repeatedly) on their way to a destination, so
this field must be filled in. This field is set to 0x78be (30910) in Figure 6.2.

Flags—Only the first 3 bits of this field are defined. Bit 1 is reserved and must
be set to 0. Bit 2 (DF) is set to 0 if fragmentation is allowed or 1 if fragmen-
tation is not allowed. Bit 3 (MF) is set to 0 if the packet is the last fragment,
or 1 if there are more fragments to come. Note that the MF field does not
imply any sequencing of the arriving fragments, nor does it guarantee that
the set is complete. Other fields are examined to determine sequencing and
completeness. The packet in Figure 6.2 will generate an error when it encoun-
ters a device that wants to fragment the packet content.

Fragment Offset—When a packet is fragmented, the fragments must fall on an 8-byte
boundary. That is, an 800-byte packet can be fragmented into two packets of 400 bytes
each, but not as eight packets of 100 bytes each, since 100 is not evenly divisible by
8. This fi eld contains the number of 8-byte units, or blocks, in the packet fragment. The
offset is 0 in Figure 6.2.

CHAPTER 6 IPv4 and IPv6 Headers 171

The rest of the IP header fi elds do not deal with fragmentation.

Time to Live (TTL)—This 8-bit field value is supposed to be the number of seconds,
up to 255 maximum, that a packet can take to reach the destination. Each
router is supposed to decrement this field by a preconfigured amount which
must be greater than 0. If a packet arriving at a router has this field set to 0, it
is discarded and never routed. Unfortunately, there is no standard way to track
time across a group of routers, so most TCP/IP networks interpret this field as
a simple hop count between routers and simply decrement this field by 1. The
TTL in Figure 6.2 is 128, a fairly typical value.

Protocol—This 8-bit field contains the number of the transport-layer protocol that
is to receive and process the data content of the packet. The protocol number
for TCP is 6 and UDP is 17, but almost 200 have been defined. The packet in
Figure 6.2 carries TCP.

Header Checksum—An error-detection field for the IP header only, not the packet
data fields. If the computed checksum does not match at the receiver, the
header is damaged and not routed. Figure 6.2 not only shows the header
checksum of 0x4f6b, but Ethereal tells us that it is correct.

Source and Destination Addresses—The 32-bit IPv4 addresses of the source
and destination hosts. The packet in Figure 6.2 is sent from 10.10.12.222 to
10.10.12.1.

Options—The IPv4 options are seldom used today for data transfer and will not
be described further, nor do they appear in Figure 6.2.

Padding—When options are used, the padding field makes sure the header ends
on a 32-bit boundary. That is, the header must be an integer number of 4-byte
“words.” The header in Figure 6.2 is not padded, and few are since options use
is unusual.

FRAGMENTATION AND IPv4
Let’s look at IPv4 fragmentation on the Illustrated Network. We can determine how the
MTU size and fragmentation affect IPv4 data transfer rates.

It’s not all that important (and not all that interesting) to show the fragmentation
process with a capture. Moreover, it is diffi cult to convey a sense of what’s going on
with a series of snapshots, even when Ethereal parses the fragmentation fi elds. Appre-
ciating the effects of a small MTU size on data transfers is more important.

Let’s use the bsdclient on LAN1 and bsdserver on LAN2 to show what fragmenta-
tion does to data throughput. We’ll use FTP to transfer a small fi le (about 30,000 bytes)
called test.stuff from the server to the client. Why so small a fi le? Just to show that
if fragmentation plays a role in small transfers, the effects will be magnifi ed with larger
fi les. First, we’ll use the default MTU sizes.

172 PART II Core Protocols

bsdclient# ftp 10.10.12.77
Connected to 10.10.12.77.
220 bsdserver FTP server (Version 6.00LS) ready.
Name (10.10.12.77:admin): admin
331 Password required for admin.
Password:
230 User admin logged in.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> get test.stuff
local: test.stuff remote: test.stuff
150 Opening BINARY mode data connection for 'test.stuff' (29752 bytes).
100%
|***
***********************| 29752 00:00 ETA
226 Transfer complete.
29752 bytes received in 0.01 seconds (4.55 MB/s)

This is about 4.5 MBps (or about 36 Mbps) and transfer time of about 1/100th of
a second. Not too bad. (Keep in mind that 1/100th of a second is about the small-
est interval that can be reported without special hardware.) This is good throughput,
but remember there are only two routers involved, connected by a SONET link at
155 Mbps and the LAN runs at 100 Mbps. There is also no other traffi c on the network,
so the transfer rate is totally dependent on the ability of the host to fi ll the pipe from
server to client.

Now let’s change to Maximum Transmission Unit size at the server connected to
LAN2 (the server LAN) from the default of 1500 to 256 bytes. How much of a differ-
ence will this make?

ftp> get test.stuff
local: test.stuff remote: test.stuff
150 Opening BINARY mode data connection for 'test.stuff' (29752 bytes).
100%
|***
***********************| 29752 00:00 ETA
226 Transfer complete.
29752 bytes received in 1.30 seconds (22.29 KB/s)
ftp>

The transfer time is up to 1.3 seconds, about 130 times longer than before! And the
transfer rate fell from about 36 Mbps to about 184 KILOBITS per second, three orders
of magnitude less than before. This is the “performance penalty” of fragmentation. (It
should be pointed out that these numbers are not precise, and there are many other
reasons that fi le transfers speed up or slow down. However, the point is entirely
valid.)

We can view a lot of packet statistics, including fragment statistics, using the
 netstat utility. With netstat, we can monitor an interface in real time, display the

CHAPTER 6 IPv4 and IPv6 Headers 173

host routing table, observe running network processes, and so on. We’ll do more with
netstat later. For now, we’ll just see how many fragments our 30,000-byte fi le transfer
has generated.

To do this, we’ll look at the IP statistics on the client before and after the fi le transfer
has been run with the small MTU size. We’ll set the counters to zero fi rst.

bsdclient# netstat -sp ip
ip:
 0 total packets received
 0 bad header checksums
 0 with size smaller than minimum
 0 with data size < data length
 0 with ip length > max ip packet size
 0 with header length < data size
 0 with data length < header length
 0 with bad options
 0 with incorrect version number
 0 fragments received
 0 fragments dropped (dup or out of space)
 0 fragments dropped after timeout
 0 packets reassembled ok
 [many more lines deleted for clarity...]

Now we’ll reset the counters, run the transfer again, and check the IP statistics.

bsdclient# netstat -sp ip
ip:
 57 total packets received
 0 bad header checksums
 0 with size smaller than minimum
 0 with data size < data length
 0 with ip length > max ip packet size
 0 with header length < data size
 0 with data length < header length
 0 with bad options
 0 with incorrect version number
 171 fragments received
 0 fragments dropped (dup or out of space)
 0 fragments dropped after timeout
 57 packets reassembled ok
 [many more lines deleted for clarity...]

The fi le was transferred as 171 fragments that were reassembled into 57 packets. Let’s
take a closer look at fragmentation of the MTU size in IPv4.

174 PART II Core Protocols

Fragmentation and MTU
If an IP packet is too large to fi t into the frame for the outgoing link, the packet content
must be fragmented to fi t into multiple “transmission units.” The Maximum Transmis-
sion Unit (MTU) size is a key concept in all TCP/IP networks, often complicated by the
fact that different types of links (LAN or WAN) have very different MTU sizes. Many of
these are shown in Table 6.1. The link protocols shown in italics have “tunable” (con-
fi gurable) MTU sizes instead of defi ned defaults, but almost all interfaces allow you to
lower the MTU size. The fi gures shown are the usual maximums. The 9000-byte packet
size is not standard in Gigabit Ethernet, but common.

Hosts reassemble any arriving fragmented packets to avoid routers pasting together
and then tearing apart packets repeatedly as they are forwarded from link to link. Frag-
ments themselves can even be fragmented further as a packet makes its way from, for
example, Gigabit Ethernet to frame relay to Ethernet.

Fragmentation is something that all network administrators used to try to avoid. As
a famous paper circulated in 1987 asserted bluntly, “Fragmentation [is] considered
harmful.” As recently as 2004, an Internet draft (http://ietfreport.isoc.org/all-ids/draft-
mathis-frag-harmful-00.txt) took this one step further with the title, “Fragmentation
Considered Very Harmful.” The paper asserts that most of the harm occurs when a frag-
ment of packet content, especially the fi rst, is lost on the network. And a number of
older network attacks involved sending long sequences of fragments to targets, never
fi nishing the sequence, until the host or router ran out of buffer space and crashed. Also,

Table 6.1 Typical MTU Sizes*

Link Protocol Typical MTU Limit Maximum IP Packet

Ethernet 1518 1500

IEEE 802.3 1518 1492

Gigabit Ethernet 9018 9000

IEEE 802.4 8191 8166

IEEE 802.5 (Token Ring) 4508 4464

FDDI 4500 4352

SMDS/ATM 9196 9180

Frame relay 4096 4091

SDLC 2048 2046

*Frame overhead accounts for the differences between the theoretic limit and
maximum IP packet size.

CHAPTER 6 IPv4 and IPv6 Headers 175

because of the widespread use of tunnels (see Chapter 26), there are link layers that
really need an MTU larger than 1500 to support encapsulation, and you can’t fragment
MTUs inside a tunnel.

There are several reasons for the quest to determine the smallest of the MTU sizes
on the links between source and destination. This “minimum” MTU size can be used
between a source and destination in order to avoid fragmentation. The main reasons
today follow:

■ Fragmentation is processor intensive. Early routers were hard pressed to both route
and fragment. Even today, high link speeds force routers to concentrate on routing
and minimize “housekeeping” tasks.

■ Many hosts struggle to reassemble fragments. Fragmentation puts the reassembly
burden on the receiving host, which can be a cell phone, watch, or something
else. This requires processing power and delays the processing of the packet.

■ Fragmentation fi elds are favorite targets for hacking. TCP/IP implementation behav-
iors are not spelled out in detail for many situations where the fragmentation fi elds
are set to inconsistent or contradictory values. Many a host and router have been
hung by exploiting this variable behavior.

■ Fragments can be lost, out-of-sequence, or errored. The more pieces there are, the
more things that can go wrong. The worse occurs when the fi rst fragment is lost on
the network.

■ Early IP implementations avoided fragmentation by setting the default IP packet
size very low, to only 576 bytes. All link protocols then in common use could
handle this small packet size, and many IP implementations to this day still use
this default packet size. Naturally, the smaller the MTU size, the greater the num-
ber of packets sent for a given message, and the greater the chances something
can go wrong.

Fragmentation behavior changes in IPv6. In IPv6, routers do not perform fragmentation.

Fragmentation and Reassembly
The point has already been made that fragmentation is a processor-intensive
operation. Naturally, if all hosts sending packets were aware of the minimum MTU size
on a path from source to destination before sending an IP packet, the problem would
be solved. There are ways to determine the path MTU size.

Path MTU Determination
The commonly used method to determine this path MTU is slow, but it works. The
method involves “testing” the path to the destination before sending “live” packets to
a destination system where the path MTU is not known. The source system sends out
an echo packet. (The echo service just bounces back the content of the packet to the
sender.) The echo packet is usually the MTU size of the source system’s own TCP/IP
network, which could be 1500 bytes for Ethernet, 4500 for Token Ring, and so on. This

176 PART II Core Protocols

packet has the DF bit set in the Flags fi eld in the IPv4 header. If the echo packet comes
back successfully, then the MTU size is fi ne and can be used for “live” data.

However, if the current path through the routers includes a smaller MTU size on a
link or network that the packet must traverse as the packet makes its way to the desti-
nation, the router attached to this smaller MTU size network must discard the packet,
since the DF bit is set. The router sends an ICMP error message back to the source
indicating the error condition, which is that the packet was discarded because the DF
bit was set. The source can then adjust the packet size downward and try again. This
process can be repeated several times, trying to fi nd the optimal path MTU.

This path MTU determination method works, but it is awkward and slow. The live
data basically wait until the path MTU size is determined for a destination. And because
each packet is independently routed, if there are multiple paths through the router
network (and there usually are, this being the whole point of using routers), the MTU
size may change with every possible path that an IP packet can take from the source to
the destination. However, this method is better than nothing.

A FRAGMENTATION EXAMPLE
Figure 6.4 shows a router on a TCP/IP network. The arriving IP packet is coming from a
WAN link with a confi gured MTU size of 4500 bytes. The destination system is attached
to the router by means of an Ethernet LAN, which has an MTU size of 1500 bytes.

WAN link:
4500-byte MTU size Router

4488
03E4
LAST
0

Host
(destination)

(187 8-byte blocks 51496 bytes)

Packet from WAN:
Total Packet Length:
Identification:
Flags:
Fragment Offset:
(blocks from start)

Packet from LAN:
Total Packet Length:
Identification:
Flags:
Fragment Offset:
(blocks from start)

Ethernet:
1500-byte MTU size

4488
03E4
MORE
0

4488
03E4
MORE
187

4488
03E4
LAST
374

Frag #1: Frag #2: Frag #3:

FIGURE 6.4

An IPv4 fragmentation example, showing the various header fi eld values for each of the three
 fragments loaded into the frames.

CHAPTER 6 IPv4 and IPv6 Headers 177

Obviously, the 4500-byte packet must be fragmented across three Ethernet frames to
reach the destination host.

Figure 6.4 shows the portions of the IP packet data and the values of the frag-
mentation fi elds for each fragment. The fi gure also shows how the destination system
interprets the fragmentation fi elds to reassemble the entire packet at the destination.

We’ve already looked at the problems with fragmentations from the router and
network perspective. From the perspective of the receiving host, there are two main
reasons that fragmentation should be avoided. One is the need to wait for undelivered
fragments, and the other is the lack of knowledge on the part of a destination of the
reassembled datagram size. Let’s look at the destination host reassembly process to
explore the “performance penalty” that fragmentation involves.

A fragmented packet is always reassembled at the destination host and never by
routers. (Why put together packets that might require fragmentation all over again?)
However, because all packets are independently routed, the pieces of a packet can
arrive out of sequence. When the fi rst fragment arrives, local buffer memory is allo-
cated for the reassembly process. The Fragment Offset of the arriving packet indicates
exactly where in the sequence the newly arrived fragment should be placed.

At a busy destination, such as a Web server, many different packets from several
sources can arrive in fragments. All of these pieces can be subjected to the reassembly
process at the same time. The destination host IP layer software will associate packets
having matching Identifi cation, Source, Destination, and Protocol fi elds as belonging to
the same packet.

However, the Total Length fi eld in a packet fragment’s header only indicates the
length of that particular fragment, not the entire packet before fragmentation. It is only
when the destination system receives the last fragment that the total length of the
original packet can be determined.

If a packet is partially reassembled and the fi nal piece to complete the set has not
arrived, IP includes a tunable reassembly time-out parameter. If the reassembly timer
expires, the remaining packet fragments are discarded. If the fi nal piece of the packet
arrives after the time-out, this packet fragment must be discarded as well.

This description of the reassembly process shows the twin problems of memory allo-
cation woes from packet size uncertainties and delays due to the reassembly time-out.

Arriving IP packets have no way to inform the destination system that “I am the fi rst
of 10 fragments.” If so, it would be easy for the destination system to allocate memory
for reassembly that was the best-fi t for remaining contiguous buffer space. But all packet
fragments can indicate is “I am the fi rst of many,” “I am the second of many,” and so
on, until one fi nally says, “I am the last of many.” This uncertainty of reassembled size
makes many TCP/IP implementations allocate as large a block of memory as available
for reassembly. Obviously, a fragmented packet may have been quite large to begin with,
because it was fragmented in the fi rst place. But the net result is that local buffers
become quite fragmented. And if smaller blocks of memory are allocated, the resulting
non-contiguous pieces must be moved to an adequate sized memory buffer before the
transport layer can process the reassembled datagram.

178 PART II Core Protocols

The reassembly time-out value must have a value low enough to make the recovery
process delay of the transport layer reasonable. The transport layer contains session
(connection) information that will detect a missing packet in a sequence of segments
(the contents of the packets), and TCP always requests missing information to be
resent. Too long a value for the reassembly timer makes this retransmission process
very ineffi cient. Too short a value leads to needlessly discarded packets. In most TCP/
IP implementations, the reassembly timer is set by the software vendor and cannot be
changed. This is yet another reason to avoid fragmentation.

Reassembly “deadlock” used to be a problem as well. When memory was a scarce
commodity in hosts, all available local buffer memory could end up holding partially
assembled fragments. An arriving fragment could not be accepted even if it completed
a set and the system eventually hung. However, in these days of cheap and plentiful
memory, this rarely happens.

Limitations of IPv4
The limitations of IPv4 are often cast solely in terms of address space. As important as
that is, it is only part of the story. Address space is not the only IPv4 limitation. Some
others follow:

■ The fragmentation fi elds are present in every IPv4 packet.

■ Fragmentation is always done with a performance penalty and is best avoided. Yet
the fi elds involved—all 6 bytes worth and more than 25% of the basic 20-byte IPv4
header—must be present in each and every packet.

■ IPv4 Options were seldom used and limited in scope.

■ The IPv4 Type of Service fi eld was never used as intended.

■ The IPv4 Time To Live fi eld was also never used as intended.

■ The 8-bit IPv4 Type fi eld limited IPv4 packet content to 256 possibilities.

All of these factors contributed to the structure of the IPv6 packet header.

The IPv6 Header Structure
Let’s go back to our Windows devices and capture some IPv6 packets. Then we can
examine those headers and compare them to IPv4 headers.

bsdserver# ping6 fc00:fe67:d4:b:205:85ff:fe8b:bcdb
PING6(56=40+8+8 bytes) fc00:fe67:d4:b:20e:cff:fe3b:8732 -->
fc00:fe67:d4:b:205:85ff:fe8b:bcdb
1 6 bytes from fc00:fe67:d4:b:205:85ff:fe8b:bcdb, icmp_seq=0 hlim=64
time=16.027 ms

1 6 bytes from fc00:fe67:d4:b:205:85ff:fe8b:bcdb, icmp_seq=1 hlim=64
time=0.538 ms

1 6 bytes from fc00:fe67:d4:b:205:85ff:fe8b:bcdb, icmp_seq=2 hlim=64
time=0.655 ms

CHAPTER 6 IPv4 and IPv6 Headers 179

1 6 bytes from fc00:fe67:d4:b:205:85ff:fe8b:bcdb, icmp_seq=3 hlim=64
time=0.622 ms

^C
--- fc00:fe67:d4:b:205:85ff:fe8b:bcdb ping6 statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max/std-dev = 0.538/4.461/16.027/6.678 ms

Here is the fi rst packet we captured:

bsdserver# tethereal -V
Capturing on em0
Frame 1 (70 bytes on wire, 70 bytes captured)
 Arrival Time: May 23, 2008 18:39:58.914560000
 Time delta from previous packet: 0.000000000 seconds
 Time since reference or first frame: 0.000000000 seconds
 Frame Number: 1
 Packet Length: 70 bytes
 Capture Length: 70 bytes
Ethernet II, Src: 00:0e:0c:3b:87:32, Dst: 00:05:85:8b:bc:db
 Destination: 00:05:85:8b:bc:db (JuniperN_8b:bc:db)
 Source: 00:0e:0c:3b:87:32 (Intel_3b:87:32)
 Type: IPv6 (0x86dd)
Internet Protocol Version 6
 Version: 6
 Traffic class: 0x00
 Flowlabel: 0x00000
 Payload length: 16
 Next header: ICMPv6 (0x3a)
 Hop limit: 64
 Source address: fc00:fe67:d4:b:20e:cff:fe3b:8732 (fc00:fe67:d4:b:20e:
cff:fe3b:8732)
 Destination address: fc00:fe67:d4:b:205:85ff:fe8b:bcdb (fc00:fe67:d4:
b:205:85ff:fe8b:bcdb)
Internet Control Message Protocol v6
 Type: 128 (Echo request)
 Code: 0
 Checksum: 0x7366 (correct)
 ID: 0x0565
 Sequence: 0x0000
 Data (8 bytes)

0000 6e b9 73 44 43 f4 0d 00 n.sDC...

In contrast to the IPv4 header, there are only eight lines (and eight fi elds) in the IPv6
header. Since the packet is simple enough, let’s look at the header fi elds in detail as we
examine the meaning and values in this IPv6 packet.

The IPv6 header is shown in Figure 6.5. Besides the new expanded, 16-byte IP source
and destination addresses, there are only six other fi elds in the entire IPv6 header. This
simpler header structure makes for faster packet processing in most cases.

180 PART II Core Protocols

IPv6 packets have their own frame Ethertype value, 0x86dd, making it easy for
receivers that must handle both IPv4 and IPv6 on the same interface to distinguish the
frame content.

Version—A 4-bit field for the IP version number (0x06).

Traffic Class—A 12-bit field that identifies the major class of the packet content
(e.g., voice or video packets). Our capture shows this fi eld as the default at 0,
meaning that it is ordinary bulk data (as FTP should carry) and requires no
special handling at devices.

Flow Label—A 16-bit field used to label packets belonging to the same flow
(those with the same values in several TCP/IP header parameters). The flow
label here is 0, but this is common.

Payload Length—A 16-bit fi eld giving the length of the packet in bytes, excluding the
IPv6 header. The payload of this packet, an ICMP message, is 16 bytes long.

1 byte

Version Flow LabelTraffic Class

Next HeaderPayload Length

128-bit IPv6 Source Address

128-bit IPv6 Destination Address

Hop Limit

1 byte 1 byte 1 byte

FIGURE 6.5

The IPv6 header fi elds. Note the reduction in fi eld number of how the address fi elds occupy
most of the header.

CHAPTER 6 IPv4 and IPv6 Headers 181

Next Header—An 8-bit field giving the type of header immediately following the
IPv6 header (this served the same function as the Protocol field in IPv4). This
packet carries an ICMPv3 message, so the value is 0x3a.

Hop Limit—An 8-bit field set by the source host and decremented by 1 at each
router. Packets are discarded if the hop limit is decremented to zero (this
replaces the IPv4 Time To Live field). The hop limit here is 64, half of the FTP
value in our IPv4 example. Generally, implementers choose the default to use,
but values such as 64 or 128 are common.

IPv4 AND IPv6 HEADERS COMPARED
Figure 6.6 shows the fi elds in the IPv4 packet header compared to the fi elds in the
IPv6 header.

1 byte

Hdr
Len

Type of
Service

Time to
Live

Source Address (32-bit IPv4)

Destination Address (32-bit IPv4)

Destination Address (128-bit IPv6)

Source Address (128-bit IPv6)

Field names kept from IPv4 to IPv6

Field name and position changed in IPv6

New field in IPv6

Fields not kept in IPv6

(Options, if present, padded in needed)

Protocol Header Checksum

Identification Fragment OffsetFlags

1 byte

Total Packet Length
Ver-
sion

1 byte 1 byte

Traffic Class

1 byte 1 byte 1 byte 1 byte

Flow Label

Next
Header Hop LimitPlayload Length

Ver-
sion

FIGURE 6.6

IPv4 and IPv6 headers compared, showing how the old fi elds and new fi elds relate to each
other.

182 PART II Core Protocols

IPv6 Header Changes
In summary, the following are some of the most important changes to the IP header in
IPv6.

■ Longer addresses (32 bits to 128 bits). No fragmentation fi elds.

■ No header checksum fi eld. No header length fi eld (there is a fi xed length header).

■ Payload length given in bytes, not “blocks” (32-bit units). Time to Live (TTL) fi eld
becomes Hop Limit.

■ Protocol fi eld becomes Next Header (determines content format). 64-bit alignment
of the packet, not 32-bit alignment. A Flow Label fi eld has been added.

■ No Type of Service bits (which were seldom respected anyway). Many of the IPv4
fi elds vanish completely, especially the fi elds used for packet fragmentation. IPv6
addresses fragmentation performance penalties and problems by forbidding it alto-
gether in routers. Source hosts can still fragment, however, if the source host wants
to send packets larger than the Path MTU size to a destination. In IPv6, as in IPv4,
fragmentation issues can be avoided altogether by making all packets 1280 bytes
long—the minimum established by RFC 2460—but this results in many “extra”
 packets.

■ The IPv4 header Checksum fi eld is absent because destination host error checking
is the preferred method of error detection in today’s more reliable networks, and
almost all transmission frames provide better error detection than the IP layer. There
is no header length fi eld because all IPv6 headers are the same length. The Payload
Length fi eld excludes the IPv6 header fi elds and is measured in bytes, rather than the
awkward 4-byte units of IPv4.

■ The TTL fi eld, never interpreted as time anyway, is gone as well. In its place is the
Hop Limit fi eld, a simple indication of the number of routers that a packet can pass
through before it should reach the destination host. The Protocol fi eld of IPv4 has
become the Next Header fi eld in IPv6. The term “next header” is more accurate
because the information inside the IPv6 packet is not necessarily a higher layer pro-
tocol (e.g., TCP segment) in IPv6. There are many other possibilities.

■ The entire packet must be an integer number of 64-bit (8-byte) units. The 32-bit
unit for IPv4 was established when many high-performance computers were 32-bit
machines, meaning memory access and internal bus operations moved 32-bit units
(called a “word”) around. Today high-performance computers often support 64-bit
words. It only made sense to align the new IPv6 header for ease and speed of pro-
cessing on the newer architecture computers.

■ Finally, in place of the ToS fi eld in IPv4, the IPv6 header defi nes a Flow Label fi eld. Flows
are used by routers to pick out IPv6 packets containing delay-sensitive data such as
voice, video, and multimedia. The Type of Service fi eld was usually ignored by rout-
ers in IPv4, and other uses were not standardized.

CHAPTER 6 IPv4 and IPv6 Headers 183

■ The IPv6 specifi cation includes a concept known as Extension Headers. Extension
Headers essentially take the place of the Options in the IPv4 packet header. IPv6
Extension Headers are only present when necessary and are designed to be exten-
sible (new functions may be defi ned in the future), but the term “extensible Exten-
sion Headers” is awkward.

■ The current Extension Headers include a Hop-by-Hop Option Header, exam-
ined by every router handling the IPv6 packet and an Authentication Header
for enhanced security on TCP/IP networks (these are used in IPv4 as part of
IPSec). There is also a Fragmentation header for the use of the source host when
there is no way to prevent the source from sending packets larger than the path
MTU size (IPv6 routers cannot fragment, but hosts can). Also, there used to be
a Routing Header specifying the IP addresses of the routers on the path from
source to destination (similar to “source routing” in token ring LANs), but this is
deprecated by RFC 5095. There are several others, but these show the kinds of
capabilities included in the IPv6 Extension Headers.

IPv6 AND FRAGMENTATION
What would happen if we put IPv6 into a situation where it has to fragment packet
content to make it fi t into a frame? Let’s use the Illustrated Network to fi nd out. Two
useful ping parameters are the size of the packet to bounce off a remote device and
the count of packets sent. We’ll capture the packets sent when bsdserver sends a 2000-
byte packet (too large for an Ethernet frame) to the router.

bsdserver# ping6 -s 2000 -c 1 fc00:fe67:d4:b:205:85ff:fe8b:bcdb
PING6(2048=40+8+2000 bytes) fc00:fe67:d4:b:20e:cff:fe3b:8732 -->
fc00:fe67:d4:b:205:85ff:fe8b:bcdb
2 008 bytes from fc00:fe67:d4:b:205:85ff:fe8b:bcdb, icmp_seq=0 hlim=64
time=2.035 ms

--- fc00:fe67:d4:b:205:85ff:fe8b:bcdb ping6 statistics ---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max/std-dev = 2.035/2.035/2.035/0.000 ms
bsdserver#

This makes 2008 bytes with the IPv6 header. Here’s what we have (the data fi elds,
which contain test strings, have been omitted):

bsdserver# tethereal -V
Capturing on em0
Frame 1 (1510 bytes on wire, 1510 bytes captured)
 Arrival Time: May 25, 2008 08:39:21.231993000
 Time delta from previous packet: 0.000000000 seconds
 Time since reference or first frame: 0.000000000 seconds
 Frame Number: 1

184 PART II Core Protocols

 Packet Length: 1510 bytes
 Capture Length: 1510 bytes
Ethernet II, Src: 00:0e:0c:3b:87:32, Dst: 00:05:85:8b:bc:db
 Destination: 00:05:85:8b:bc:db (JuniperN_8b:bc:db)
 Source: 00:0e:0c:3b:87:32 (Intel_3b:87:32)
 Type: IPv6 (0x86dd)
Internet Protocol Version 6
 Version: 6
 Traffic class: 0x00
 Flowlabel: 0x00000
 Payload length: 1456
 Next header: IPv6 fragment (0x2c)
 Hop limit: 64

Source address: fc00:fe67:d4:b:20e:cff:fe3b:8732 (fc00:fe67:d4:b:20e:
cff:fe3b:8732)

Destination address: fc00:fe67:d4:b:205:85ff:fe8b:bcdb (fc00:fe67:d4:
b:205:85ff:fe8b:bcdb)

Fragmentation Header
 Next header: ICMPv6 (0x3a)
 Offset: 0
 More fragments: Yes
 Identification: 0x000000e5
Internet Control Message Protocol v6
 Type: 128 (Echo request)
 Code: 0
 Checksum: 0x74df
 ID: 0x0e60
 Sequence: 0x0000
 Data (1440 bytes) (OMITTED)

Frame 2 (622 bytes on wire, 622 bytes captured)
 Arrival Time: May 25, 2008 08:39:21.232007000
 Time delta from previous packet: 0.000014000 seconds
 Time since reference or first frame: 0.000014000 seconds
 Frame Number: 2
 Packet Length: 622 bytes
 Capture Length: 622 bytes
Ethernet II, Src: 00:0e:0c:3b:87:32, Dst: 00:05:85:8b:bc:db
 Destination: 00:05:85:8b:bc:db (JuniperN_8b:bc:db)
 Source: 00:0e:0c:3b:87:32 (Intel_3b:87:32)
 Type: IPv6 (0x86dd)
Internet Protocol Version 6
 Version: 6
 Traffic class: 0x00
 Flowlabel: 0x00000
 Payload length: 568
 Next header: IPv6 fragment (0x2c)
 Hop limit: 64
 Source address: fc00:fe67:d4:b:20e:cff:fe3b:8732 (fc00:fe67:d4:
 b:20e:cff:fe3b:8732)

CHAPTER 6 IPv4 and IPv6 Headers 185

 Destination address: fc00:fe67:d4:b:205:85ff:fe8b:bcdb (fc00:fe67:
 d4:b:205:85ff:fe8b:bcdb)
Fragmentation Header
 Next header: ICMPv6 (0x3a)
 Offset: 1448
 More fragments: No
 Identification: 0x000000e5
Data (560 bytes) (OMITTED)

(Frames 3 and 4, the echoed frames sent back in response, are mirror
images of Frames 1 and 2 and have been omitted for brevity.)

bsdserver#

Because the host cannot pack 2000 bytes into an Ethernet frame, the IPv6 host does
the fragmenting before it sends the bits onto the LAN. There are no fragmentation fi elds
in the IPv6 header, however, so IPv6 includes a second header (next header) that carries
the information needed for the destination to reassemble the fragments (in this case,
two of them). The important fi elds are highlighted in bold in the preceding code.

The fi rst frame (the capture says “packet”) is 1510 bytes long, including 1456 bytes
of payload (given in the Payload Length fi eld). The Next Header value of 0x2c indicates
that the next header is an IPv6 fragment header. The Fragmentation Header fi elds are
listed in full:

■ Next Header (0x3a)—The header following the Fragmentation Header is an
ICMPv6 message header.

■ Offset (0)—This is the fi rst fragment of a series.
■ More Fragments (Yes)—There are more fragments to come.
■ Identifi cation (0x000000e5)—Only reassemble fragments that share this

identifi er value.

The data fi eld in the ICMPv6 message is 1440 bytes long. The rest of the 1510 bytes are
from the various headers pasted onto these bytes.

Frame 2 holds the rest of the 2000 bytes in the ping. This frame is 622 bytes long
and carries 568 bytes of payload. The Next Header is still an IPv6 fragment (0x2c). The
Fragmentation Header fi elds follow:

■ Next header (0x3a)—The header following the Fragmentation Header is an
ICMPv6 message header.

■ Offset (1448)—These bytes start 1448 bytes after the content of the fi rst
frame. (The “extra” 8 bytes are for the ICMPv6 header.)

■ More Fragments (No)—The contents of this packet complete the series.
■ Identifi cation (0x000000e5)—This fragment goes with the previous one with

this identifi er value.

The data fi eld in the ICMPv6 message is 560 bytes long. Along with the 1440 bytes
in the fi rst fragment, these add up to the 2000 bytes sent.

186 PART II Core Protocols

QUESTIONS FOR READERS
Figure 6.7 shows some of the concepts discussed in this chapter and can be used to
help you answer the following questions.

1 byte 1 byte 1 byte 1 byte 1 byte 1 byte 1 byte 1 byte

Hdr
Len

FlagsIdentification

Time to
Live

Protocol Header Checksum

Source Address (32-bit IPv4)

Destination Address (32-bit IPv4)

(Options, if present, padded if needed)

Fragment Offset

Type of
Service Total Packet Length

Ver-
sion Traffic Class

Playload Length

Source Address (128-bit IPv6)

Destination Address (128-bit IPv6)

Flow Label

Next
Header Hop Limit

Ver-
sion

1. Why are diagnostics like ping messages routinely given high hop-count values
such as 64 or 128?

2. Without any IPv4 options in use, what value should be seen in the Header Length
fi eld most of the time?

3. How does an IP receiver detect missing fragments?

4. Is there any way for an IP receiver to determine how many fragments are
 supposed to arrive?

5. Since almost all the IPv4 header fi elds are options in IPv6, is it correct to say that
the IPv6 header is “simplifi ed”?

FIGURE 6.7

The IPv4 and IPv6 packet header fi elds. IPv6 can employ most IPv4 options as “next header”
fi elds following the basic header.

187

CHAPTER

What You Will Learn
In this chapter, you will learn about ICMP messages, their types, and (in many
cases) the codes used in each type. We’ll look at which ICMP messages are routinely
blocked at fi rewalls and which are essential for proper device operation.

You will learn about the common ping utility for determining device accessibility
(“reachability”) on an IP network. We’ll discuss the mechanics of both ping and
traceroute, and use several ping examples to illustrate ICMP on the network.

Internet Control Message
Protocol 7

The only function of the IP layer is to provide addressing for and route the IP packet.
That’s all. Once an IP packet has been dealt with, the IP layer just looks for the next
packet. But IP is a connectionless, “best effort,” or “unreliable” method of packet
delivery. The terms “best effort” and “unreliable” often make it sound like IP is casual
about the delivery of packets, which is why they are in quotes so that no one takes
them too literally. IP’s best effort is usually just fi ne, given the low error rates on modern
transports, and it is mostly unreliable with regard to a lack of guarantees, as has been
pointed out. Besides, there is nothing wrong with letting other layers, such as the TCP
segments or the Ethernet frames, have the major responsibility for error detection and
correction.

This is not to say that IP should be oblivious to errors. The network layer, in its ubiq-
uitous and key position at the heart of the protocol stack, should know about packet
errors and is in a good position to let layers above know what’s going on (although IP
lets the upper layers decide what to do about the condition).

And there’s plenty that can still go wrong, and not just with regard to bit errors.
A packet might wander the router cloud until the TTL fi eld hits zero. A destination
server might be down. A destination server might no longer exist. The “do not frag-
ment” bit might forbid fragmentation when it is needed to send a packet, stopping the
routing process cold. In all of these situations, the sender should be informed of the
condition.

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80:205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65459

DSL Link

Wireless
in Home

Solid rules � SONET/SDH
Dashed rules � Gig Ethernet
Note: All links use 10.0.x.y
addressing...only the last
two octets are shown.

FIGURE 7.1

ICMP is used on all devices on the Illustrated Network, routers, and hosts. In this chapter,
we’ll work with the hosts on the LANs.

190 PART II Core Protocols

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80:205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC: 00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

ge-0/0/3

16.2

ge-0/0/3

16.1

Best ISP

AS 65127

Global Public
Internet

CHAPTER 7 Internet Control Message Protocol 191

Without error condition feedback from the network, the natural response to an
unexpected result (in this case, a reply) is to simply repeat the original message. Some-
times this might work, especially if the condition is transient, but semipermanent or
permanent error conditions must be reported to the source. Otherwise, repetitive
sending might result in an endless error loop, and certainly adds unnecessary traffi c
loads to the network.

This chapter explores aspects of IP’s built-in error reporting protocol, the Internet
Control Message Protocol (ICMP). Note that ICMP does not deal with “error messages,”
but “control messages,” a better term to cover all of the roles that have evolved for
ICMP. We’ll start by looking at one indispensable utility used on all TCP/IP network:
ping. We’ll be using the same LAN-based hosts as in the previous chapter, as shown in
Figure 7.1.

ICMP AND PING
The easiest way to look at ICMP on the Illustrated Network is with ping and traceroute.
Both utilities have been used before in this book, but because traceroute will be used
again in the chapters on routing, this chapter will use ICMP and ping.

The ping utility is just a way to “bounce” packets off a target device and see if it is
there—that is, it has the IP address that was provided, is powered on, and alive. The
device might still not function in the correct way (i.e., the router might not be rout-
ing properly), but at least the device is present and accounted for. It is routine to ping
a newly installed device, host, router, or anything else, just to see if it responds. If it
doesn’t, network administrators have a place to start troubleshooting.

Let’s use ping from the lnxclient to the bsdserver, both on LAN2 to start exploring
ICMP. Windows XP only sends four pings by default, but Unix systems will just keep
going until stopped with ^C (which is what was done here).

[root@lnxclient admin]# ping 10.10.12.77
PING 10.10.12.77 (10.10.12.77) 56(84) bytes of data.
64 bytes from 10.10.12.77: icmp_seq=1 ttl=64 time=0.549 ms
64 bytes from 10.10.12.77: icmp_seq=2 ttl=64 time=0.169 ms
64 bytes from 10.10.12.77: icmp_seq=3 ttl=64 time=0.171 ms
64 bytes from 10.10.12.77: icmp_seq=4 ttl=64 time=0.187 ms
64 bytes from 10.10.12.77: icmp_seq=5 ttl=64 time=0.216 ms
^C

--- 10.10.12.77 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 3996ms
rtt min/avg/max/mdev = 0.169/0.258/0.549/0.146 ms
[root@lnxclient admin]#

The output shows the ICMP sequence numbers and round-trip time (rtt) for the
group in terms of minimum, average, maximum, and even the maximum deviation from
the mean. We do not have DNS on the network, so we have to use IP addresses. Most

192 PART II Core Protocols

ping implementations will accept host names, and some (such as Cisco routers) will
even do a reverse DNS lookup when given an IP address and report the host name
in the result. This can be very helpful when an IP address is entered incorrectly or
assigned to a different device than anticipated.

We can look at the ICMP packets used with ping in more detail. Let’s use both LANs
this time, and ping from wincl1 (10.10.11.51) on LAN1 to wincli2 (10.10.12.222) on
LAN2. With XP, we won’t have to worry about stopping the sequence.

C:\Documents and Settings\Owner> ping 10.10.12.222

Pinging 10.10.12.222 with 32 bytes of data:

Reply from 10.10.12.222: bytes=32 time<1ms TTL=126
Reply from 10.10.12.222: bytes=32 time<1ms TTL=126
Reply from 10.10.12.222: bytes=32 time<1ms TTL=126
Reply from 10.10.12.222: bytes=32 time<1ms TTL=126

Ping statistics for 10.10.12.222:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% less),
Approximate round-trip times in milliseconds:
 Minimum = 0ms, Maximum = 0ms, Average = 0ms

Due to the way the Windows operating systems handle timing, it’s not unusual to have
RTTs of 0.

What does this group of packets look like at the target? Figure 7.2 shows us.
We can see that the four pings are accomplished with eight packets sent over the

network. Look at the last column in the upper part of the fi gure. Ping employs messages
in request–reply pairs using the ICMP protocol. An Echo request is sent out which
 basically tells the receiver to “send an ICMP Echo message back to me, okay?” Once
the reply is received, the next request is sent, statistics compiled as the procedure goes
along, and so on.

The details of Frame 1 show that the ICMP message is carried directly inside an IP
packet (and then Ethernet II frame). But ICMP is not often shown as a transport layer
protocol. That would make ICMP function at the same level as things like TCP and
UDP, and this is simply not true. ICMP, as we will fi nd, is concerned with network layer
problems, so portraying ICMP as a type of special protocol associated with IP is not
really a mistake.

So technically, because IPv4 packets carry ICMP messages as protocol number 1,
ICMP is as valid a layer above IP as TCP or UDP or any other of the 200 or so defi ned
IP protocols that can be carried inside IP packets. But because every IP implementa-
tion must include ICMP (and IPv6 has ICMPv6), it makes sense to bundle ICMP and IP
together. This also implies that ICMP messages do not report their own errors.

What if no reply is received by the source of a ping? The source then times out
and another ICMP Echo request message is sent. Naturally, no statistics can be gener-
ated, and we get a “host unreachable” message in most cases. We can force a timeout
simply by trying to ping a nonexistent address (this could also be the result of a
 simple typo).

CHAPTER 7 Internet Control Message Protocol 193

[root@lnxclient admin]# ping 10.10.12.55
PING 10.10.12.55 (10.10.12.55) 56(84) bytes of data.
From 10.10.12.166 icmp_seq=1 Destination Host Unreachable
From 10.10.12.166 icmp_seq=2 Destination Host Unreachable
From 10.10.12.166 icmp_seq=3 Destination Host Unreachable

--- 10.10.12.55 ping statistics ---
3 packets transmitted, 0 received, +3 errors, 100% packet loss, time 5022ms,
pipe 3
[root@lnxclient admin]#

Many ping implementations report either “unreachable” or “unknown” errors. The
unreachable report implies that the target was once known to the source and reach-
able, but isn’t “reachable” at the moment. The unknown report implies that the source
has never heard of the target address or port. However, unreachable reports are often
returned by a host source pinging a new device, which obviously should be unknown.

FIGURE 7.2

Ping ICMP requests and replies showing details of the ping echo request in the middle pane. Note
that the content of the packet is the ICMP message, not TCP or UDP.

194 PART II Core Protocols

Most network people treat both error condition reports the same way: Something is
just plain wrong.

Ping remains the fi rst choice for checking connectivity on the Internet, between
hosts, and between host and router. On LANs, the fi rst troubleshooting step is “can
you ping it?” If you cannot, there’s no sense of going further. If you can, and things like
applications still do not function as expected, at least the troubleshooting process can
continue productively.

Firewalls sometimes screen out ICMP messages in the name of security. In these
cases, even a failed ping does not prove that a device is not working properly. How-
ever, diagnostics become more complex, although not impossible. Of course, screening
out all ICMP messages from a site usually also eliminates correct error reporting and
proper operation of the device. After we list the ICMP message types, we’ll discuss
which ICMP messages are essential.

Ping works with IPv6, too. On most Unix hosts, it’s called ping6. When used with the
special IPv6 multicast address ff02::1, the %em0 addition probes for the IPv6 address of
every interface on the LAN, a form of forced neighbor discovery in IPv6. Here’s what it
looks like on LAN2 when run from the bsdserver.

bsdserver# ping6 ff02::1%em0
PING6(56=40+8+8 bytes) fe80::20e:cff:fe3b:8732%em0 —> ff02::1%em0
16 bytes from fe80::20e:cff:fe3b:8732%em0, icmp_seq=0 hlim=64 time=0.154 ms
16 bytes from fe80::202:b3ff:fe27:fa8c%em0, icmp_seq=0 hlim=128 time=0.575
ms(DUP!)
16 bytes from fe80::5:85ff:fe8b:bcdb%em0, icmp_seq=0 hlim=64 time=1.192
ms(DUP!)
16 bytes from fe80::20e:cff:fe3b:8856%em0, icmp_seq=0 hlim=64 time=0.097
ms(DUP!)
^C

—- ff02::1%em0 ping6 statistics —-
1 packets transmitted, 1 packets received, +3 duplicates, 0% packet loss
round-trip min/avg/max/std-dev = 0.071/2.520/39.406/8.950 ms
bsdserver#

All four systems on LAN2 are listed, except for lnxclient, which does not have an
IPv6 address. But hosts winsrv2 (fe80::20e:cff:fe3b:8856), wincli2 (fe80::202:b3ff:
fe27:fa8c), router TP6 (fe80::5:85ff:fe8b:bcdb), and even bsdserver (fe80::20e:
cff:fe3b:8732) itself have all replied. Oddly, the Windows XP client replies with a hop
limit of 128.

IPv6 traffi c (and ICMPv6) is also visible to Ethereal, so we can explore the for-
mat of these packets a little further. Figure 7.3 shows how the exchange of the ping6
ff02::1%em0 packets looks like from wincli2 when run from bsdserver. Note that this
only captures the exchange of packets that wincli2 processes.

CHAPTER 7 Internet Control Message Protocol 195

IPv6 uses its own version of ICMP, called (not surprisingly) ICMPv6. The ICMPv6
Echo reply message, sent in response to the ping to multicast group ff02::1, is high-
lighted in the fi gure. From the source address, we can tell this is from wincli2. We
looked at the details of the IPv6 header in the last chapter. Note that the hop limit is
128 in the reply, and that the protocol number for ICMP is 0x3a (58 decimal).

THE ICMP MESSAGE FORMAT
ICMP is usually considered to be part of the IP layer itself, and that is how ICMP is pre-
sented here. Hosts are supposed to set the IPv4 packet header TOS fi eld to 0 if the packet
carries an ICMP message, and routers are supposed to set the precedence fi eld to 6 or 7.

Figure 7.4 shows the format of two ICMP messages. All ICMP messages start with
the same three fi elds: an 8-bit Type and Code, followed by a 16-bit Checksum. Then,
depending on the value of the Type, the details of what follows varies. So to be more
informative, a second ICMP message is shown. The second message displays the format
used for a very common network condition, Destination Unreachable, which we saw
earlier.

FIGURE 7.3

ICMPv6 capture showing the ICMPv6 echo reply message from wincli2. The header details are
shown in the middle pane.

196 PART II Core Protocols

Destinations on a TCP/IP network can be unreachable for a number of reasons. The
host could be down, or have a new IP address that is not yet known to all systems. The
destination’s Internet name could have been typed incorrectly (but still maps to an
existing IP address), the only link to the site could have failed, and so on.

ICMP Message Fields
The fi elds that appear in all ICMP messages follow:

Type—This 8-bit field defines the major purpose of the ICMP message. Most
 indicate error conditions, but two of the most common type values, 8 and 0,
mean Echo Request and Echo Reply, respectively. A Type value of 3 means Des-
tination Unreachable. All Types determine the format of the rest of the ICMP
message beyond the first three fields.

Code—This 8-bit field gives additional information about the condition in the
Type field. This is often not necessary, and many Types have only a Code = 0
defined. Other Types have many Code values defined to allow the source to

1 byte 1 byte 1 byte 1 byte

ChecksumCode

ICMP Data
(content and format depends on Type)

(a)

(b)

Type

ChecksumCode

Unused (all 0 bits)

IP Header (20 bytes)
and

First 8 bytes of Original Packet Data (usually TCP/UDP header)

Type 3

1 byte 1 byte 1 byte 1 byte

FIGURE 7.4

ICMP message format, showing how a specifi c message such as Destination Unreachable uses
the fi elds following the initial three. (a) General format of ICMP message. (b) Format of Destination
Unreachable ICMP message.

CHAPTER 7 Internet Control Message Protocol 197

focus on the real problem. For example, Destination Unreachable (Type = 3)
has 16 codes (0–15) defined.

Checksum—This is the same type of checksum as used for the IP packet header.
This points out that ICMP, although considered part of IP itself, is really just as
much a separate layer as anything else in TCP/IP and so must provide for its
own error checking.

ICMP Types and Codes
There are about 40 defi ned ICMP message types, and message types 41 through 255 are
reserved for future use. Only a handful of the types have more than a Code value of 0
defi ned, but these are the more important ICMP message types.

There are two major categories of ICMP messages: error messages (reports that do
not expect a response) and queries (messages sent with the expectation of a match-
ing response). Some others do not fall neatly into either category. The structure of
the fi elds following the checksum depends on the type of ICMP message. These two
formats are shown in Figure 7.5.

Note that the Destination Unreachable format shown in Figure 7.4 is an ICMP error
message and does not generate a reply. The fi elds that appear following the initial three
in the ICMP Destination Unreachable message are very common.

Unused—This 32-bit field must be set to all 0 bits for Destination Unreachable,
but in other ICMP messages it is often used as a sequence number to allow
requests and responses to be coordinated by senders and receivers.

IP Header and More—The last 28 bytes of the ICMP Destination Unreachable
message consist of the original IP header (usually 20 bytes, but can be up to
60 bytes) and the first 8 bytes of the segment inside the packet. Usually, this
includes the ports used by the TCP or UDP segment. This practice allows send-
ers to realize exactly what field value is objectionable. It’s one thing to say
“Port unreachable,” but better to say “Hey! The port in the UDP segment you
sent, which is port 6735, can’t be reached here right now...”

Usually, the error messages have the all-zero unused byte followed by the 28-byte
header and packet data, but not always. Identifi ers track Query message request/
response pairs, and the sequence numbers help sort out queries sent by the same
process (the process identifi er, the PID, is often the ICMP Query identifi er in Unix
systems).

The suite of the 40 ICMP message types can be implemented by hosts or rout-
ers. Some of the types are mandatory, some are optional, some are for experimental
use, and some are obsolete. In some cases, specifi cations explicitly state that hosts
or routers be able to transmit and receive (process) ICMP messages, but not in all
cases.

198 PART II Core Protocols

Let’s take a look at what the specifi cations say about ICMP messages. First, we’ll look
at error messages, and then query messages, and then all the rest.

ICMP Error Messages
ICMP Error messages report semipermanent network conditions. The fi ve ICMP error
messages are displayed in Table 7.1, which shows how routers and hosts should handle
each type.

Time-exceeded errors result from TTL expiration (Code = 0) or when fragments
cannot be completed quickly enough at a receiver (Code = 1). Parameter problems
are usually sent in regard to IP options. The codes are for a bad IP header (0), missing a
required option fi eld (1), or a bad length (2).

Which of these message types are essential to device operation and should not be
blocked? Generally, the Destination Unreachable is essential (it is used by traceroute),
and used in MTU path calculations. Of the others, the Redirect message is most often

1 byte 1 byte

Code

Content Depends on Type/Code*

ChecksumType

1 byte 1 byte

IP Header (20 bytes)
and

First 8 bytes of Original Packet Data (usually TCP/UDP header)

1 byte 1 byte

Code

Content depends on Query Type

ChecksumType 3

1 byte 1 byte

(a)
*Usually all 0 (unused) except for:
Type 3/Code 4: Destination unreachable, fragmentation needed
 (fields are 2 bytes unused and 2-byte link MTU size)
Type 3/Code 5: Destination unreachable, redirect (field is router IP address)
Type 12/Code 0: Parameter problem (field is 4-bit pointer to parameter, rest all 0)

(b)

Identifier for Request/Response pairs
(usually PID in Unix)

Sequence Number
(set to 0 initially and incremented)

FIGURE 7.5

ICMP error and query messages. Note that error messages include the IP header that generated
the error. (a) ICMP error message. (b) ICMP query message.

CHAPTER 7 Internet Control Message Protocol 199

Table 7.1 ICMP Error Messages

Type Meaning Codes Data
Router
Sends

Router
Receives

Host
Sends

Host
Receives

3 Destination
Unreachable

0–15 IP hdr +
8 bytes

M M M M

4 Source
Quench

0 IP hdr +
8 bytes

Obs Obs Obs Obs

5 Redirect 0–3 IP hdr +
8 bytes

M M Opt Opt

11 Time
Exceeded

0–1 IP hdr +
8 bytes

M M Opt Opt

12 Parameter
Problem

0–2 IP hdr +
8 bytes

M M M M

Obs, obsolete; Opt, optional; M, mandatory.

Table 7.2 ICMP Destination Unreachable Codes

Code Meaning

0 Network is unreachable (the router’s links to it might have failed).

1 Host is unreachable (the router can’t reach the host; it might be turned off).

2 Requested protocol is unreachable (the process might not be running on the host).

3 Port is unreachable (the remote application might not be running on the host).

4 Fragmentation needed at router but DF fl ag is set (used for path MTU determination).

5 Source route has failed (source route path might go through down link or router).

6 Destination network is unknown (different than Code = 0; router can’t fi nd it).

7 Destination host is unknown (different than Code = 1; router can’t fi nd host).

8 Source host is isolated (source host is not allowed to send onto the network).

9 Communication with this network is administratively forbidden (due to fi rewall).

10 Communication with this host is administratively forbidden (due to fi rewall).

11 Network is unreachable with specifi ed Type of Service (router can’t forward).

12 Host is unreachable with specifi ed Type of Service (router can’t forward).

13 Communication administratively prohibited (by route fi ltering).

14 Host precedence violation (the fi rst-hop router does not support this precedence).

15 Precedence cut-off in effect (requested precedence too low for router network).

200 PART II Core Protocols

blocked, because it does just as it says, that is, it tells another device to send packets
somewhere else.

Many ICMP errors are Destination Unreachable errors. The 16 codes for this error
type and their meanings are shown in Table 7.2, which includes a likely cause for the
condition.

The precedence bits are in the TOS fi eld of the IPv4 packet header, and are distinct
from the TOS bits themselves (and are almost universally ignored anyway).

ICMP Query Messages
ICMP Query messages are used to question conditions on the network. These messages
are used in pairs, and each request anticipates a response. The 10 ICMP Query messages
are listed in Table 7.3, which shows how routers and hosts should handle each type.

These ICMP messages in Table 7.3 allow routers and hosts to query for timestamp,
address mask, and domain name information. Echo requests and replies have special
uses described in the section of this chapter on ping.

Table 7.3 ICMP Query Messages

Type Meaning Codes Data
Router
Sends

Router
Receives

Host
Sends

Host
Receives

0 Echo reply 0 Varies M M M M

8 Echo
request

0 Varies M M M M

13 Timestamp
request

0 12 bytes Opt Opt Opt Opt

14 Timestamp
reply

0 12 bytes Opt Opt Opt Opt

15 Information
request

0 0 bytes Obs Obs Obs Obs

16 Information
reply

0 0 bytes Obs Obs Obs Obs

17 Mask
request

0 4 bytes M M Opt Opt

18 Mask reply 0 4 bytes M M Opt Opt

37 Domain
name
request

0 0 bytes M M M M

38 Domain
name reply

0 0 bytes M M M M

Obs, obsolete; Opt, optional; M, mandatory.

CHAPTER 7 Internet Control Message Protocol 201

Which of these should be allowed to pass through fi rewalls? Sites most often allow
Echo messages (used by ping), although some allow only incoming Echo replies but
not Echo requests (which allows my devices to ping yours, but not the other way
around). The timestamp reply is also used by traceroute, and if these messages are
blocked, asterisks (*) appear instead of times in the traceroute report (we’ll look at
traceroute operation in detail in Chapter 9).

Table 7.4 Other ICMP Query Messages

Type Meaning Codes Data
Router
Sends

Router
Receives

Host
Sends

Host
Receives

1 Unassigned NA NA NA NA NA NA

2 Unassigned NA NA NA NA NA NA

6 Alternate host
address

0 (4 bytes) (Prohibited) (Prohibited) Opt Opt

9 Router
 advertisement

0 Varies M Opt Prohibited Opt

10 Router
 solicitation

0 0 bytes M M Opt Opt

19 Reserved–
security

NA NA NA NA NA NA

20–29 Reserved–
robustness

NA NA NA NA NA NA

30 Traceroute 0–1 Varies Opt Opt M M

31 Datagram con-
version error

0–11 Varies ? ? ? ?

32 Mobile host
redirect

0 Varies Opt Opt Opt Opt

33 IPv6
where-are-you

0 ? Opt Opt Opt Opt

34 IPv6 I-am-here 0 ? Opt Opt Opt Opt

35 Mobile regis-
tration request

0, 16 Varies Opt Opt Opt Opt

36 Mobile regis-
tration reply

0, 16 Varies Opt Opt Opt Opt

39 SKIP 0 Varies Opt Opt Opt Opt

40 Photurius 0–3 Varies Exp Exp Exp Exp

Exp, expired; Obs, obsolete; Opt, optional; M, mandatory; NA, not applicable.

202 PART II Core Protocols

Other ICMP Messages
Some ICMP messages do not fall neatly into either the error or query category.
These messages are typically used in specialized circumstances. The other 25 ICMP
 messages are listed in Table 7.4, again showing how routers and hosts should handle
each type.

The messages displayed in Table 7.4 are less intuitive than others. Many of the other
messages are relatively new, apply to special circumstances, and not much has been
published about their use.

Very little has been written on the use of the alternate host address message and
the table is fi lled in with more suggestions than anything else. Router advertisement
and solicitation messages are defi ned in RFC 1256 as part of “neighbor discovery”
for IPv4 and a way around network administrators needing to know local router
addresses.

The traceroute message was introduced in RFC 1393 and was supposed to be
a more formal way to perform a traceroute, but never really caught on. RFC 1393
describes an alternate traceroute method that uses a single packet with an IP header
Traceroute option fi eld and uses the answering ICMP Type = 30 messages from
 routers to gather the same information while using far fewer messages. However, sup-
port for this method is not mandatory on routers, making this form of traceroute
 problematic.

Datagram conversion errors are part of the “Next Generation Internet” protocol
using 64-bit addresses described in RFC 1475 and occurring when packets cannot be
converted to the new format. The mobile-related messages (32, 36, and 37) are part of
Mobile IP (or “IP Mobility”). SKIP is the Simply Key Management for Internet Protocols
and is used for Internet security. So is Photurius, an experimental aspect of IPSec that
has four codes: one reserved (0), one for an unknown IPSec Security Parameter Index
(SPI, 1), one for failed authentication (2), and one for failed decryption (3).

SENDING ICMP MESSAGES
Few TCP/IP protocols have been the subject of as much tinkering and add-on
 functionality as ICMP. The original specifi cation of ICMP was in RFC 792 and refi ned
in RFC 1122 (Host Network Requirements) and RFC 1812 (Router Requirements).
RFC 1191 added path MTU discovery functions to ICMP, RFC 1256 added router dis-
covery, and RFC 1393 extended traceroute functions with a special message type not
often used.

But at heart, ICMP is a collection of predefi ned messages to indicate very specifi c
conditions. If the sender of a packet receives an ICMP message that involves ICMP itself
(the query messages), then ICMP deals with it directly. Otherwise, other protocols are
notifi ed. (Unreachable ports are reported to UDP, which lacks the segment tracking
that TCP has, and so forth.) The precise response of an application to an ICMP message
can vary, but usually the error is reported to the user so that corrective action (even if
it’s just “Stop doing that!”) can be taken.

CHAPTER 7 Internet Control Message Protocol 203

When ICMP Must Be Sent
Systems that detect a packet error and discard the packet may or may not send an
ICMP message back to the originating host. Usually it depends on whether the error is
transient or semipermanent.

Things like invalid checksums are ignored in TCP/IP, because these are considered to
be transient failures that should not persist. The philosophy is that if the data are impor-
tant, the sender will simply resend. Transient errors are unlikely to repeatedly manifest
themselves in a chain of packets, and thus do not indicate a network-wide problem.

However, semipermanent errors such as invalid IP addresses need to be reported
to the originator. These are fundamental problems with the network or in the way that
the application is trying to use the network. The sender must either stop or change the
content of the packets.

It is important to realize that the presence of many ICMP messages on a network
does not mean that things are not working well, nor does the lack of ICMP messages
mean that the network is working fi ne.

Most users see only a handful of ICMP message types, especially those used for ping
and traceroute, such as the Time Exceeded, Timestamp Reply, Destination Unreach-
able, and Echo messages.

When ICMP Must Not Be Sent
ICMP also establishes situations when ICMP messages must not be sent. Transients like
checksum errors or intermittent link-level failures are clear examples, but ICMP goes
further than this. Generally, error messages should not be sent if they will generate
more network traffi c and add little new information to what is obvious to the sender.

For example, RFC 1122 says that ICMP error message should never be sent if a
receiver gets the following:

■ ICMP error message (e.g., errors in ICMP checksums should not be reported as
errors)

■ Internet Group Management Protocol (IGMP) message (IGMP is for multicast, and
multicast traffi c tends to multiply exponentially on the network, and one error could
trigger many error messages)

■ Packet with a broadcast or multicast destination address (another traffi c-oriented
rule)

■ Link-layer frame with broadcast or multicast address

■ Packet with a special source address (all zeros, loopback, and so on)

■ Any fragment other than the fi rst fragment of a fragmented packet

PING
Most people who know little about how TCP/IP works usually know of the ICMP-based
application known as ping. The original metaphor was the “ping” of a naval sonar unit.
Ping is a simple Echo query-and-response ICMP message that is used to see if another

204 PART II Core Protocols

device is up and reachable over the network. A successful ping means that network
administrators looking at problems can relax a great deal: The network routers on the
path and at least two hosts are running just fi ne.

Ping implementations and the parameters supported vary greatly among operating
systems and routers (most routers support ping). Some only send four packets and quit,
unless told to send more. Others send constantly until told to stop. The parameters can
usually set many of the IPv4 packet header fi elds such as TTL, TOS, and so on to specifi c
values.

Usually, Unix versions use the PID as the Identifi er fi eld in the ping message, but
Linux increments this based on application calls. Unix ping messages are usually
56 bytes long, but Windows implementations use only 32 bytes. The payload of the
ping message echoed back to the sender typically consists of an 8-byte timestamp and
a fi ll pattern. The timestamp can be used to roughly calculate round-trip delays through
the network (in milliseconds).

Ping has some quirks that users should be aware of. First, small pings (maybe 56 or
64 bytes in the packet) often work fi ne, while larger pings with more realistic payload
sizes do not go through reliably. That’s what users care about—the network is strug-
gling with real data packets. Seeing a small ping getting through reliably is not always
helpful.

Also, the round-trip times are not often vital information. You expect round-trip
times to go up as packet sizes increase, and that’s typically what is observed. The same
is true if the network is heavily loaded. But this is a relative, not absolute, observation.
Only when round-trip times are longer than expected, or if they vary by huge amounts,
is there an indication that something is wrong.

Part of the reason that round-trip times are not reliable is that routers (in particular)
and even hosts might process ICMP Echo requests at a lower priority than other traffi c.
In fact, in many router architectures, ICMP message processing requires a trip to the con-
trol-plane processor, while transit traffi c is forwarded in the forwarding-plane hardware.

We’ll be using ping extensively in many chapters in this book.

TRACEROUTE
Traceroute is not an ICMP-based network utility in the same sense that ping is. How-
ever, because traceroute uses ICMP messages to perform its functions, and for many
people the next step after ping is traceroute, this is the place to discuss this utility. We’ll
use traceroute heavily in Chapter 9 and throughout the rest of the book.

After ping has been used to verify that an IP address is reachable over the network,
the next logical step is to determine how the packets make their way to the destination
and back. In other words, we would like to trace the route from source to destination
(the reverse path is normally the same). Yes, IP networks route around failures and
routing tables can change, but paths are usually stable on the order of hours if not days
when things are not going completely haywire. Of course, paths might also simply be
asymmetric, yet stable, so it is not only path changes that are challenging for traceroute
interpretation.

CHAPTER 7 Internet Control Message Protocol 205

Traceroute implementations vary even more than those for ping. Some have graphi-
cal displays and use other Internet utilities to display location and administrative
information about the routers and networks uncovered. This in turn has made many
network administrators so nervous that they routinely block traceroute ICMP messages
with fi rewalls or route fi lters to hide topology details. In fairness, the Internet is no
longer a teaching tool or good place to explore the limits of knowledge, and there are
so many disruptive or even malicious people on the Internet, that a certain amount of
anxiety is completely understandable (which is why a network such as the one used
for this book makes so much sense).

On Unix-based systems, traceroute often sends a sequence of three UDP packets (a
typical default is three) to an invalid port on another host (this number starts at 33434).
The utility can also use ICMP Echo requests, which is what the Windows version does.
Some versions even use TCP (a utility called tcptraceroute).

Whatever the type of packet, the TTL fi eld is initially set to 1 in the three packet set,
so the fi rst router along the path should generate an ICMP Time Exceeded message to
the sender. The round-trip delay in the timestamp fi eld and IP address of the router is
recorded by the sender and another set of packets is sent, this time with the TTL set
to 2. These packets are discarded by the second router, and another ICMP message is
sent back. The process is repeated until the destination host is reached and the host
returns a Destination Port Unreachable message, or until a fi rewall is encountered that
blocks the ICMP messages or unsolicited UDP traffi c. (These messages mimic port
scans and are sometimes blocked, as mentioned earlier in this chapter.)

The end result should be a list of the routers on the path from source to destination
(or the fi rewall) that also records round-trip delays. In some cases (sometimes many
cases), some routers will not respond to the TTL “timeout” with an ICMP message, but
simply silently discard the offending packet. If the packet does not return within the
timeout window (Cisco routers use a default timeout of 2 seconds), most traceroute
implementations indicate this with an asterisk (*) or some other placeholder and just
keep going, trying to reach the next router. (The appearance of the asterisk does not
necessarily mean that the packet was lost.)

One nagging traceroute issue is the number of messages exchanged over the
network needed to reveal fairly basic information. RFC 1393 describes an alternate
 traceroute method that uses a single packet with an IP header Traceroute option fi eld
and uses the answering ICMP Type = 30 messages from routers to gather the same
information while using far fewer messages. However, support for this method is not
mandatory on routers.

We’ll use traceroute a lot in many of the chapters of this book too.

PATH MTU
ICMP messages also play a role in path MTU discovery. We’ve already mentioned the
MTU as a critical link parameter determined by the maximum frame size. Packets,
including all headers, that fi t inside the smallest frame size on the path from source to

206 PART II Core Protocols

destination do not have to be fragmented and do not incur any of the penalties that
fragmentation involves.

But tuning the path MTU size to packet size has another network benefi t: This prac-
tice maximizes throughput and minimizes the overhead required to move large mes-
sages from system to system. Overhead bytes are those that do no useful work in terms
of data transfer, but are necessary for the data transfer to take place at all.

Consider a data transfer using 68-byte MTUs, once the smallest size possible. If usual
IP and TCP headers are used, which are 20 bytes each, they will take up 40 bytes of
the packet, leaving only 28 bytes for data. So a whopping 59% (40/68) of the packet
is made of overhead. And a minimum of 35,715 packets need to be sent, routed, and
processed to transfer every megabyte of data. Bumping this MTU size up to 576 bytes
(a typical default value and the functional minimum for IPv4) cuts the overhead down
to about 7% (40/576) and requires only 1866 packets per megabyte of data, about 5%
of the previous number of packets.

Using the typical Internet frame size of 1500, the overhead shrinks to about 2.5%
and the number of packets required for a megabyte of data becomes a respectable
685. Larger MTUs have proportional benefi ts. (It is sometimes pointed out that bigger
packets are not always more effi cient; they can add delay for smaller units of traffi c,
a phenomenon often called “serial delay,” and on high bit error links, larger packets
almost guarantee that a bit error requiring a resend will occur during frame transmis-
sion. On older, more error-prone networks, throughput shrank to zero as packet size
grew.)

The 576-btye MTU size was selected as a compromise between latency (“delay”)
and throughput for modems and low-speed serial SLIP implementation. This is directly
related to the serialization delay discussed below. And use of an MTU size smaller than
512 precludes the use of the Dynamic Host Confi guration Protocol (DHCP).

Now, TCP can adjust this message size, no matter what the default, but UDP traffi c,
which is growing, cannot. Of course, every link from host to router to router to host
can have a different MTU size. That is what path MTU discovery is all about. It works
via the following:

■ Setting the DF fl ag in the IP header to 1 (don’t fragment)
■ Sending a large packet to the destination to which the path MTU is being

 determined
■ Seeing if any router responds with an ICMP Destination Unreachable message

with Code 5 4 (fragmentation required but don’t fragment bit is set)
■ Repeating the fi rst three steps with a smaller packet size

The process stops when a message is received from the destination host, showing
that a path MTU of this size works. Again, paths are fl uid on TCP/IP router networks,
but they are remarkably stable considering all that can go wrong. By the way, it is
assumed that the path MTU for outbound packets is the same as the path MTU size for
inbound packets, but this is not true just often enough to make the process unneces-
sarily haphazard.

CHAPTER 7 Internet Control Message Protocol 207

The path MTU “seed” or probe size and adjustment steps are not randomly chosen.
A series of “plateaus” representing common link MTU limits has been established. Some
of these are shown in Table 7.5.

In practice, as important as the path MTU size is, little is often done about the MTU
size except to change the default to 1500 bytes if the default value is less (it usually
is). This is because most networks that hold the source and destination networks are
 Ethernet LANs that do not support 9000-byte jumbo frames. Between routers, WAN
links typically support larger MTU sizes (around 4500 bytes or larger), but that does
no good if the end system can only handle 1500-byte frames. However, WAN links with
MTUs greater than 1500 bytes allow the use of tunnel encapsulation of 1500-byte MTU
packets without the need for fragmentation, so the larger MTU is not actually wasted.

ICMPV6
A funny thing happened to ICMP on its way to IPv6. It didn’t work. ICMP, now offi cially
called ICMPv4, is built around the IPv4 packet header and things that could go wrong
with it. And not only is the IPv6 packet header different, as well as many fi elds and
address sizes, but many functions added to IPv4 that affected ICMPv4 were scattered in
separate RFCs and implementation varied. These functions are systematized in ICMPv6.

ICMPv6 makes some major changes to ICMPv4:

■ New ICMPv6 messages and procedures replace ARPs.
■ There are ICMPv6 messages to help with automatic address confi guration.

Table 7.5 Path MTU Plateaus for Various Network Link Types

Plateau Size in Bytes Description

65535 Maximum MTU and packet size

32000 A value established “just in case”

17914 16-Mbps IBM token ring LANs

8166 IEEE 802.4 token bus LANs

4352 FDDI (100 Mbps fi ber rings)

2314 Wireless IEEE 802.11b native frame (often “adjusted” to 1492)

2002 4-Mbps IEEE 802.5 token ring (recommended value)

1492 IEEE 802.3 LANs (also used in 802.2)

1006 SLIP

508 Arcnet (proprietary LAN from Datapoint)

296 Some point-to-point links use this value

68 Minimum MTU size

208 PART II Core Protocols

■ Path MTU discovery is automatic, and a new Packet Too Big message is sent
to the source for over-large packets because IPv6 routers do not fragment.

■ There is no Source Quench in ICMPv6 (it is obsolete in ICMPv4, but still
exists).

■ IGMP for multicast is included in ICMPv6.
■ ICMPv6 helps detect nonfunctioning routers and inactive partner hosts.
■ ICMPv6 is so different that it now has its own IP protocol number. IPv6 uses

the next header value of 58 for ICMPv6 messages.

Basic ICMPv6 Messages
The general ICMPv6 message format is similar to ICMPv4, but somewhat simpler.
The structure of a generic ICMPv6 message and the common Destination Unreachable
 message are shown in Figure 7.6. ICMPv6 error messages are in the range 0 to 127.
Some of the most common are shown in the fi gure as well.

1 byte 1 byte 1 byte 1 byte

ChecksumCode

Message Body

(a)

Type

 1 Destination Unreachable
 2 Packet Too Big
 3 Time Exceeded
 4 Parameter Problem
 5 Redirect
128 Echo Request
129 Echo Reply

Basic ICMPv6 Type field values:

1 byte 1 byte 1 byte 1 byte

ChecksumCode

Unused

As Much as Original IPv6 Packet as Will Fit in 576 bytes or Less

Type 1

(b)

FIGURE 7.6

ICMPv6 message formats, which can be compared to the IPv4 versions in Figure 7.4. (a) Generic
ICMPv6 message format. (b) ICMPv6 Destination Unreachable message.

CHAPTER 7 Internet Control Message Protocol 209

Destination Unreachable
In ICMPv6, the Destination Unreachable message type is Type = 1. The codes that can
be compared to Table 7.2 IPv4 codes number only fi ve and are listed in Table 7.6.

Packet Too Big
A router sends an ICMPv6 Packet Too Big message to the source when the packet is big-
ger than the MTU for the next-hop link. The next-hop link’s MTU size is reported in the
message. In ICMPv4, this type of information was supplied in the Destination Unreach-
able message. The format of the Packet Too Big message is shown in Figure 7.7.

Time Exceeded
An ICMPv6 Time Exceeded message is sent by a router when the Hop Limit fi eld of the
IPv6 header reaches 0 (ICMPv6 Code = 0) or when the receiver’s fragment reassembly
timeout (senders can still fragment under IPv6) has expired (ICMPv6 Code = 1). The

Table 7.6 Destination Unreachable Codes for ICMPv6

Code Meaning

0 No route to destination

1 Communication with destination administratively prohibited

2 Next destination in the IPv6 Routing header is not a neighbor, and this is a strict
route (routing headers are not currently supported)

3 Address unreachable

4 Port unreachable

1 byte 1 byte 1 byte 1 byte

ChecksumCode

Next Link MTU

Type

As Much as Original IPv6 Packet as Will Fit in 576 bytes or Less

FIGURE 7.7

ICMPv6 Packet Too Big format, showing details of the fi elds used.

210 PART II Core Protocols

format is the same as for the ICMPv6 Destination Unreachable message, except that
the Type is 3.

Parameter Problem
As in ICMPv4, an ICMPv6 Parameter Problem message is sent by a host or router that
 cannot process a packet due to a header fi eld problem. The codes are listed in Table 7.7.

Echo Request and Reply
Under IPv6, ping becomes “pingv6” (the name is not important) and uses ICMPv6 Echo
Request and Reply messages, but with Type = 128 used for requests and Type = 129
used for replies.

Neighbor Discovery and Autoconfi guration
ICMPv6 provides a number of neighbor discovery functions that help with:

■ Location of routers
■ IPv6 parameter confi guration
■ Location of local hosts
■ Neighbor unreachability detection
■ Automatic address confi guration and duplicate detection

These ICMPv6 functions use the following message types:

Router Solicitation Type 5 133 messages are sent by a host to ask neighbor routers
to make their presence known and provide link and Internet parameters, similar to
the ICMPv4 Router Solicitations. The message is sent to the all-router link-local IPv6
multicast address.

Router Advertisement Type 5 134 messages are sent periodically by every router
and in response to a host’s Router Solicitation, similar to the ICMPv4 Router
Advertisements. The message is sent either to the all-nodes IPv6 multicast
address (unsolicited) or to the querying host (solicited).

Table 7.7 Parameter Problem Codes and Meanings

Code Meaning

0 Erroneous header fi eld encountered

1 Unrecognized next header type encountered

2 Unrecognized IPv6 option encountered

CHAPTER 7 Internet Control Message Protocol 211

Neighbor Solicitation Type 5 135 messages are used, as ARP in IPv4, to fi nd the
link-layer address of a neighbor, verify the neighbor is still reachable with the
cached entry, or check that no other node has this IPv6 address. These messages
also detect unresponsive neighbors.

Neighbor Advertisement Type 5 136 messages are sent in response to Neighbor
Solicitation messages and resemble the ARP response. Nodes can also announce
changes in link-layer addresses by sending unsolicited.

Neighbor Advertisements. Redirect Type 5 137 messages perform the same role
as the ICMPv4 redirect.

Routers and Neighbor Discovery
IPv6 routers provide their hosts with basic confi guration and parameter informa-
tion using Router Advertisement messages sent to the all-hosts link-local IPv6 multi-
cast address. Hosts do not have to wait for these periodic router messages and can
send a Router Solicitation message at startup. This reply is sent to the host’s link-local
address.

Each router will supply data that includes the following:

■ Link-layer router address
■ MTU for any links that have variable MTUs
■ List of all prefi xes and lengths used on the LAN (the specifi cation says “link”)
■ Prefi xes that a host can use to create its addresses
■ Default Hop Limit value to use on packets
■ Values for miscellaneous timers
■ Location of a DHCP server where the host should fetch more information

Note that the Router Advertisement (RA) will indicate the availability of a DHCP
server for stateless confi guration (RA option O), or the requirement to perform state-
ful confi guration (RA option M). The location of the DHCPv6 server is not specifi ed,
merely that it’s available and what the requirements are for use.

Interface Addresses
Each IPv6 interfaces has a list of addresses and prefi xes associated with it, including a
unique link-local address. In theory, this should allow LANs to easily migrate from one
ISP to another simply by changing prefi xes and allowing the older prefi x to age-out of
the host. In practice, migration between IPv6 service providers is not as simple. DNS
entries do not just “fl op over,” and host and router confi guration (and fi rewalls!) have
static confi guration parameters. The point is that router advertisements assign a life-
time, which must be refreshed, to advertised prefi xes. This also makes it easier to move
hosts from LAN to LAN.

212 PART II Core Protocols

Each host can use some of the prefi xes and lengths advertised by the routers (if
they are fl agged for this use) to construct host addresses. A private (ULA local) or
global address can be constructed by appending a unique interface identifi er to the
 advertised prefi x and added to the list of the host’s IPv6 addresses.

Router advertisements can also direct a host to a DHCP server that can assign
addresses chosen by a network administrator.

Neighbor Solicitation and Advertisement
One of the problems with ARP in IPv4 was that it was essentially a frame-level proto-
col that did not fi t in well with the IP layer at all. In IPv6, “ARPs” are ICMPv6 messages.
ICMPv6 packets can be handled easily at the IPv6 layer, and can be authenticated and
even encrypted with IPSec techniques.

In addition to fi nding neighbor link-layer addresses, the Neighbor Solicitation and
Advertisement messages are used to fi nd “dead” routers and partner hosts, and detect
duplicate IPv6 addresses.

Neighbor Solicitation messages are sent to the solicited-node IPv6 multicast address,
which is formed by appending the last 3 bytes of an IPv6 link-local address to a multi-
cast prefi x. The use of the multicast address cuts down on the number of hosts that has
to pay attention to the “ARP” message (in fact, only the target system should process the
request). The sender also includes its own link-layer address with the message.

Duplicate IP addresses are always a problem. Before a system can claim an IPv6
address or any other address not constructed by adding a link-local address to a pre-
fi x, the system sends a Neighbor Solicitation message asking whether any neighbor
already has that IPv6 address. This message uses the special IPv6 Unspecifi ed Source
address as the source address, because you can’t ask about a source address by using
the source address! If the address is in use, the response is multicast to inform all
devices. Addresses that are manually assigned are tested in the same fashion.

Dead routers and hosts are detected by a sending unicast Router and Neighbor
Solicitation message to the device in question.

CHAPTER 7 Internet Control Message Protocol 213

This page intentionally left blank

QUESTIONS FOR READERS
Figure 7.8 shows some of the concepts discussed in this chapter and can be used to
help you answer the following questions.

1. How many types of error-reporting messages are there in ICMP? How many pairs
of query messages are there in ICMP?

2. Which pair of ICMP messages can be used to obtain the subnet mask?

3. Which kind of ICMP message notifi es a host that there is a problem in the packet
header?

4. Which fi elds are used for the ICMP checksum calculation?

5. A ping sent to IP address 10.10.12.77 (the address assigned to bsdserver) on
LAN2 is successful. Later, it turns out that the bsdserver was powered off for
maintenance at the time. What could have happened?

1 byte

Type Code Checksum

Content Depends on Type/Code*

1 byte 1 byte 1 byte

IP Header (20 bytes) and
First 8 bytes of Original Packet Data (usually TCP/UDP header)

(a)

1 byte

Identifier for Request/Response Pairs
(usually PID in Unix)

Type53 Code Checksum

Sequence Number
(set to 0 initially and incremented)

1 byte 1 byte 1 byte

Content Depends on Query Type

(b)

*Usually all 0 (unused) except for:

FIGURE 7.8

ICMP error and query messages in general. (a) Error message. (b) Query message.

215

CHAPTER

What You Will Learn
In this chapter, you will learn how routing works. We’ll look at both direct delivery
of packets to a destination without a router and indirect delivery through a router,
both of which happen all the time. Routers provide indirect delivery between
LANs while bridges essentially provide direct delivery only. Packet switching, on
the other hand, is a related form of indirect delivery that will be explored in a later
chapter.

You will learn about the role of routing tables and forwarding tables in the
routing process. Technically, routers use the information in the routing table to
create a forwarding table to forward packets to the next hop based on a metric,
but many people use the terms routing and forwarding loosely, often using one
term for both. We’ll try to use the terms as defi ned here consistently in this chap-
ter, but there is no real formal defi nition of either term.

Routing 8

The Internet is the largest router-based network in the world. Router-based networks,
as we’ll see in this chapter, are characterized by certain features and methods of
operation. The most obvious feature of a router-based network is that the most essen-
tial network nodes are routers and not bridges or switches or more exotic devices. This
does not mean that there are no bridges, switches, and other types of network devices.
It just means that routing is the most important function in moving packets from source
to destination. This chapter is an introduction to routing as a process.

Figure 8.1 shows the areas of the Illustrated Network we will be investigating in this
chapter. The LANs and customer-edge routers are highlighted, but the other routers
play a large but unseen part in this chapter. We’ll look at the role of the service- provider
routers in the chapters on routing protocols. For now, we’ll focus on how sending
devices decide whether the destination is on their own network or whether the pack-
ets must be sent to a router for forwarding through a routing network.

We’ll talk about forwarding tables in later chapters that investigate routing and rout-
ers more deeply. For now, let’s take a look at the simple routing tables that are used on
the Illustrated Network’s hosts and routers.

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80:205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-0
/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65459

Wireless
in Home

Solid rules � SONET/SDH
Dashed rules � Gig Ethernet
Note: All links use 10.0.x.y
addressing...only the last
two octets are shown.

FIGURE 8.1

The Illustrated Network LAN internetworking, showing how the routers are connected and the links
available to forward (route) packets through the network.

218 PART II Core Protocols

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80:205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC: 00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

ge-0/0/3

16.2

ge-0/0/3

16.1

Best ISP

AS 65127

Global Public
Internet

CHAPTER 8 Routing 219

ROUTERS AND ROUTING TABLES
The router that attaches LAN1 to the world is CE0, a Juniper Networks router. Let’s look
at the information in the routing table on CE0.

admin@CE0> show route
inet.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)
1 5 Active Route, - 5 Last Active, * 5 Both

0.0.0.0/0 *[Static/5] 3d 02:59:20
 > via ge-0/0/3.0
10.0.50.0/24 *[Direct/0] 2d 14:25:52
 > via ge-0/0/3.0
10.0.50.1/32 *[Local/0] 2d 14:25:52
 Local via ge-0/0/3.0
10.10.11.0/24 *[Direct/0] 2d 14:25:52
 > via fe-1/3/0.0
10.10.11.1/32 *[Local/0] 2d 14:25:52
 Local via fe-1/3/0.0

inet6.0: 5 destinations, 6 routes (6 active, 0 holddown, 0 hidden)
1 5 Active Route, - 5 Last Active, * 5 Both

::/0 *[Static/5] 2d 13:50:23
 > via ge-0/0/3.0
fe80::/64 *[Direct/0] 2d 14:25:53
 > via fe-1/3/0.0
fe80::205:85ff:fe88:ccdb/128
 *[Local/0] 2d 14:25:53
 Local via fe-1/3/0.0
fc00:fe67::/32 *[Static/5] 2d 13:50:23
 > via ge-0/0/3.0
fc00:ffb3:d4:b::/64*[Direct/0] 2d 10:45:08
 > via fe-1/3/0.0
fc00:ffb3:d4:b:205:85ff:fe88:ccdb/128
 *[Local/0] 2d 10:45:08
 Local via fe-1/3/0.0

Routing Table and Forwarding Table
There are really two different types of network tables used in routers and hosts,
and we’ll distinguish them in this chapter. The routing table holds all of the infor-
mation that a device knows about network addresses and interfaces, and is usually
held in a fairly user-friendly format such as a standard set of tables or even a data-
base, often with metrics (costs) associated with each route.

A forwarding table, on the other hand, is usually a machine-coded internal one that
contains the routes actually used by the device to reach destinations. In most cases,
the routing one holds more information than is distilled in the forwarding table.

220 PART II Core Protocols

Because both IPv4 and IPv6 addresses are confi gured, we have both IPv4 and IPv6
routing tables. There’s a lot of information here that we’ll detail in later chapters on
routing protocols, so let’s just look at the basics of CE0’s routing tables. Only physical
addresses are used for now, on the LAN1 interface fe-1/3/0 and the Gigabit Ethernet
link to the provider routers, ge-0/0/3. Later, we’ll also assign an address to the router’s
loopback interface, but not in this example.

In both tables, there are local, direct, and static entries. Local entries are the
full 32- or 128-bit addresses confi gured on the interfaces. Direct entries are for the
network portions of the interface address, so they have prefi xes shorter than 32
or 128 bits. For example, the entry for the fe-1/3/0 interface has a local entry of
10.10.11.1/32 and a direct entry of 10.10.11.0/24. Both were derived from the con-
fi guration of the address string 10.10.11.1/24 to the interface (technically, a string
like 10.10.11.1/24 is neither 32-bit host address nor 24-bit network address, but a
concatenation of address and network mask).

Static entries are entries that are placed in the routing table by the network admin-
istrator, and they stay there no matter what else the router learns about the network. In
this case, the static entry is also the default route, a type of “router of last resort” that
is used if no other entry in the routing table seems to represent the correct place to
forward the packet. The default route matches the entire IPv4 address space, so nothing
escapes the default. Note that the highlighted default route for IPv4 is 0.0.0.0/0 (or 0/0)
and sends packets out via interface ge-0/0/3 onto the service provider router network.

The local and direct entries for the ge-0/0/3 interface make up the last two entries
in this simple fi ve-entry routing table. The default entry basically says to the router, “If
you don’t know where else to forward the packet, send it out here.” This seems trivial,
but only because router CE0 has only two interfaces. Backbone routers can have very
complicated routing tables.

Each route in the table has a preference associated with the route. A lower value means
the route is somehow “better” than another route to the same place having a higher
value. The value of 0 associated with local/direct entries means that no other route can be
a better way of reaching the locally attached interface, which only makes sense.

Routing table entries often have a metric associated with them. Why do routes
need both preferences and metrics? Preference indicates how the router knows about
a route; the metric assigns a cost of using the route, no matter how it was learned. Both
preference and metric are considered in determining the active route to a destination.
Generally, only active routes are loaded into the forwarding table. We’ll look at this
process more closely in the later chapters of routing. An asterisk (*) marks routes that
are both currently active and have been active the last time the router recomputed its
routes to use in the forwarding table.

There are no metrics in the CE0 routing tables. Why? Because metrics are usually
assigned by routing protocols and we don’t have any routing protocols running yet on
CE0. Static routes can be confi gured with metrics, but they still work fi ne without them.

The six entries in the IPv6 routing table mimic the fi ve entries in the IPv4 table,
and the default ::0 static route is highlighted. The only unassigned or “extra” entry is
the fe80::/64 direct route (which is generated automatically) for the link-local prefi x
for LAN1.

CHAPTER 8 Routing 221

HOSTS AND ROUTING TABLES
Routers are not the only network devices that have routing tables. Hosts have them
as well. It’s how they know whether to send a packet inside a frame directly to the
destination or to send the packet and frame to a router so it can be forwarded to its
destination.

The following code block shows what the routing table on bsdserver looks like. We
can display it with the netstat –r command (the r option displays network statistics
about the routing table). We’ll use netstat –nr in this chapter because the n option forces
the output to use IP addresses instead of DNS names. This is a good practice because
when trouble strikes the network, chances are that DNS will be down (or provides the
wrong information), so it’s best to get used to seeing IP addresses in these reports.

bsdserver# netstat -nr
Routing tables

Internet:
Destination Gateway Flags Refs Use Netif Expire
default 10.10.12.1 UGSc 0 0 em0
10.10.12/24 link#1 UC 0 0 em0
localhost localhost UH 0 144 lo0

Internet6:
Destination Gateway Flags Netif Expire
localhost.booklab. localhost.booklab. UH lo0
fe80::%em0 link#1 UC em0
fe80::20e:cff:fe3b 00:0e:0c:3b:87:32 UHL lo0
fe80::%lo0 fe80::1%lo0 Uc lo0
fe80::1%lo0 link#4 UHL lo0
fc00:: link#1 UC em0
fc00::20e:cff:fe3b 00:0e:0c:3b:87:32 UHL lo0
fc00:fe67:d4:b:: link#1 UC em0
fc00:fe67:d4:b:205 00:05:85:8b:bc:db UHLW em0
fc00:fe67:d4:b:20e 00:0e:0c:3b:87:32 UHL lo0
ff01:: localhost.booklab. U lo0
ff02::%em0 link#1 UC em0
ff02::%lo0 localhost.booklab. UC lo0

The IPv4 routing table is even simpler than the CE0 router’s, which we might have
expected, because the host only has one interface (em0). The third entry (localhost)
is for the loopback interface (lo0), so there are really only two. The 10.10.12/24 entry
points to link#1, which is the em0 interface that attaches bsdserver to LAN1. It says
Gateway above the column, but it really means “what is the next hop for this packet?”

Why does it say “gateway” and not “router”? Because technically it is a gateway, not a
router. A gateway, as mentioned before, connects one or more LANs to the Internet (and
can route from LAN to LAN, not just onto or off of the Internet). A router, on the other
hand, can have nothing but other routers connected to it. People speak very loosely, of
course, and usually the terms “gateway” or “router” can be used without confusion.

222 PART II Core Protocols

So the default entry does point to a router, in this case CE6, which is the gateway
to the world on LAN2. The Refs and Use columns are usage indicators, and there is no
Expire value because this information, as on router CE0, was not learned via a routing
protocol and therefore will not get “stale” and need to be refreshed.

The fl ags commonly seen in FreeBSD follow:

■ U (Up)—The route is the active route.
■ H (Host)—The route destination is a single host.
■ G (Gateway)—Send packets for this destination here, and it will fi gure out

where to forward it.
■ S (Static)—A manually confi gured route that was not generated by protocol

or other means.
■ C (Clone)—Generates a new route based on this one for devices that we

connect to. Normally used for the local network(s).
■ W (Was cloned)—A route that was autoconfi gured based on a LAN clone

route.
■ L (Link)—The route references hardware.

Although listed as default, the actual entry value for the default route is 0.0.0.0/0 or
0/0. We can force numeric displays in netstat by using the n option, but we won’t use
that here (generally, the fewer options you have to remember to use, the better).

Where’s the Metric?
Note the netstat –nr on the host did not display any metric values, and show
route on the router didn’t either. In the case of CE0, that was explained by the fact
that we have no routing protocol running to provide metrics for routes (destina-
tion networks). But even if a routing protocol were running, netstat never shows
any metrics associated with routes. Does that mean hosts have no metrics or do
not bother to compute them? Not necessarily, as we’ll soon see in the case of
Windows XP.

Why is the Internet6 routing table so much larger than either the Internet (IPv4)
table on bsdserver or the tables on router CE0? It is larger because of the IPv6 neighbor
discovery feature that populates the table with all of the local IPv6 hosts on LAN2. An
easy way to spot them is by their MAC addresses in the Gateway column. There are also
number link-local (fe80) and private (fc00) entries absent in IPv4, as well as multicast
addresses beginning with ff.

Let’s look at the routing table on lnxclient for comparison. We don’t have IPv6
running, so the table includes the IPv4 address only. Most of the information is the same
as in FreeBSD, just arranged differently.

CHAPTER 8 Routing 223

[root@lnxclient admin]# netstat -nr
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
10.10.12.0 * 255.255.255.0 U 0 0 0 eth0
127.0.0.0 * 255.0.0.0 U 0 0 0 lo
default 10.10.12.1 0.0.0.0 UG 0 0 0 eth0
[root@lnxclient admin]#

The Gateway column has asterisks because we don’t have DNS running and
the address is the same as the Destination. Only the default gateway entry
(10.10.12.1) is different than the entry (0.0.0.0/0). Instead of prefi xes, lnxclient
uses netmask (Genmask) notation for the table entries, but either way, the network is
10.10.12.0/24.

The fl ags used in Linux follow (note the slightly different meanings compared to
FreeBSD):

■ G (Gateway)—The route uses a gateway.
■ U (Up)—The interface to be used is up.
■ H (Host)—Only a single host can be reached by the route.
■ D (Dynamic)—The route is not a static route, but a dynamic route learned by a

routing protocol.
■ M (Modifi ed)—This fl ag is set if the entry was changed by an ICMP redirect

 message.
■ ! (Exclamation)—The route will reject (drop) all packets sent to it.

Linux hosts have the maximum segment size (MSS), Window size, and initial round-
trip time (irtt) lists associated with the route, but these are not IP parameters.
They’re most useful for TCP, and we’ll talk about them in the TCP chapter. And confus-
ingly, a value of 0 in these columns does not mean that their values are zero (which
would make for an interesting network), but that the defaults are used. The Iface
column shows the interface used to reach the destination address space, with lo being
loopback.

Finally, Windows hosts have routing tables as well. You can display the routing table
contents with the route print command or with the same netstat –nr command using
in Unix-based systems. This output is from wincli1 and lists only the IPv4 routes.

C:\Documents and Settings\Owner>route print
Route Table
==
Interface List
0x1 MS TCP Loopback interface
0x2 . . .00 0e 0c 3b 88 3c. . . Intel(R) PR0/1000 MT Desktop Adapter –
Packet Scheduler Miniport
==

224 PART II Core Protocols

==
Active Routes:
Network Destination Netmask Gateway Interface Metric
 0.0.0.0 0.0.0.0 10.10.11.1 10.10.11.51 10
 10.10.11.51 255.255.255.255 127.0.0.1 127.0.0.1 10
 10.255.255.255 255.255.255.255 10.10.11.51 10.10.11.51 1
 127.0.0.0 255.0.0.0 127.0.0.1 127.0.0.1 1
 224.0.0.0 240.0.0.0 10.10.11.51 10.10.11.51 10
 255.255.255.255 255.255.255.255 127.0.0.1 127.0.0.1 1
Default Gateway: 10.10.11.1
==
Persistent Routes:
Network Address Netmask Gateway Address Metric
 10.10.12.0 255.255.255.0 10.10.11.1 1

The table looks different, yet is still very familiar. There is an entry for the default
gateway (10.10.11.1), which is also listed separately for emphasis. One oddity is the
classful broadcast address entry (10.255.255.255), but this can be changed. There
are explicit loopback (127.0.0.0/8) and multicast (224.0.0.0/4) entries, and a
255.255.255.255/32 entry, as well as for the host itself (10.10.11.51/32), which point
to the loopback interface.

Instead of relying on a fl ag, Windows just shows you Active Routes. But there is also
a Persistent Route that is always in the table, no matter what. This was entered in the
table manually, like a static route, and makes sure that any packets sent to LAN2 go to
the router at 10.10.11.1. It would still work with only a default route, but this shows
how a static route shows up in Windows.

Note that even though no routing protocol is running in the host, wincli1 assigns
metrics to all the routes. These can be changed, but they are always there. But what
about when netstat –nr is used on the Windows host? We didn’t see any metrics on
the Unix-based systems. Take a look at what we get with netstat –nr.

This output is from wincli1 and lists only the IPv4 routes.

C:\Documents and Settings\Owner>netstat -nr
Route Table
==
Interface List
0x1 MS TCP Loopback interface
0x2 . . .00 0e 0c 3b 88 3c. . . Intel(R) PR0/1000 MT Desktop Adapter –
Packet Scheduler Miniport
==
==
Active Routes:
Network Destination Netmask Gateway Interface Metric
 0.0.0.0 0.0.0.0 10.10.11.1 10.10.11.51 10
 10.10.11.51 255.255.255.255 127.0.0.1 127.0.0.1 10
 10.255.255.255 255.255.255.255 10.10.11.51 10.10.11.51 1
 127.0.0.0 255.0.0.0 127.0.0.1 127.0.0.1 1

CHAPTER 8 Routing 225

 224.0.0.0 240.0.0.0 10.10.11.51 10.10.11.51 10
 255.255.255.255 255.255.255.255 127.0.0.1 127.0.0.1 1
Default Gateway: 10.10.11.1
==
Persistent Routes:
Network Address Netmask Gateway Address Metric
 10.10.12.0 255.255.255.0 10.10.11.1 1

That’s right—the output is identical, and does show the metrics. However, Windows
appears to be the only implementation that shows the metrics associated with routes
when netstat is used.

Let’s take a more detailed look at how routing tables are used to determine whether
packets should be sent to the destination directly or to a router for forwarding. We’ll
see how IP and MAC addresses are used in the packets and frames as well.

DIRECT AND INDIRECT DELIVERY
When routers are used to connect or segment Ethernet LANs, the Ethernet frame that
leaves a source may or may not be the same frame that arrives at the destination. If the
source and destination host are on the same LAN, then a method sometimes known
as direct delivery is used and the frame is delivered locally. This means that the source
and destination MAC addresses are the same in the frame that is sent from the source
and in the frame that arrives at the destination.

Let’s see if we can verify that frames are delivered locally, without a router, when
the IP address prefi x is the same on the destination and on the source. In this case, the
MAC addresses on the frame that leave the source and the ones in the frame that arrive
at the destination should be the same.

We can also check and make sure that the frames use different MAC addresses
when the source and destination hosts are on different IP networks and the frames
pass through a router. We can even check and make sure that the frames came from
the router.

First, let’s use the Windows client and server (which are located in pairs on the two
LANs) to generate some packets to capture with Ethereal. We’ll use a little utility called
“ping” (discussed more fully in Chapter 7) to bounce some packets off the Windows
IPv4 addresses.

Ethereal is running on wincli2. When we send some pings to the client (10.10.
12.222) from the Windows server (10.10.12.52), what we see is shown in Figure 8.2.

The MAC address 00:02:b3:27:fa:8c is associated with IPv4 address 10.10.12.222,
and the MAC layer address 00:0e:0c:3b:88:56 is associated with IPv4 address
10.10.12.52. If we looked at the same stream of pings on the server, the MAC address
and IP address associations would be the same. The frame sent is the same as the one
that arrives.

What about a packet sent to other IP networks? We’ll use a little “echo” client and
server utility on the Linux hosts to generate the frames for this exercise. We’ll say more

226 PART II Core Protocols

about where this little utility came from in the chapter on sockets (Chapter 12). For now,
just note that this is not the usual Linux echo utility bundled with most distributions. With
this utility, we can invoke the server on the lnxserver host and use the client to send a
simple string to be echoed back by the server process. We’ll use tethereal (the text ver-
sion of Ethereal) this time, just to show that the same information is available in either
the graphical or text-based version.

First, we’ll run the Echo server process, which normally runs on port 7, on port
55555:

[root@lnxserver admin]# ./Echo 55555

We have to run tethereal on each end too, if we want to compare frames. The com-
mand is the same on the client and server. We’ll use the verbose (2V) switch to see the
MAC layer information as packets arrive.

[root@lnxclient admin]# /usr/sbin/tethereal-V
Capturing on eth0

Now we can invoke the Echo client to bounce the string TESTING123 off the server
process.

[root@lnxclient admin]# . /Echo 10.10.11.66 TESTING123 55555
Received: TESTING123
[root@lnxclient admin]#

FIGURE 8.2

MAC addresses and direct delivery. Note that the MAC layer addresses in the frame that is sent are
the same as in the frame that will arrive at the destination.

CHAPTER 8 Routing 227

What did we get? Let’s look at the frames leaving the client. We only need to examine
the Layer 2 and IP address information.

[root@lnxclient admin]# /usr/sbin/tethereal-V
Capturing on eth0
Frame 1 (74 bytes on wire, 74 bytes captured)
 Arrival Time: May 5, 2008 13:39:34.102363000
 Time delta from previous packet: 0.000000000 seconds
 Time relative to first packet: 0.000000000 seconds
 Frame Number: 1
 Packet Length: 74 bytes
 Capture Length: 74 bytes
Ethernet II, Src: 00:b0:d0:45:34:64, Dst: 00:05:85:8b:bc:db
 Destination: 00:05:85:8b:bc:db (Juniper__8b:bc:db)
 Source: 00:b0:d0:45:34:64 (Dell_45:34:64)
 Type: IP (0x0800)
Internet Protocol, Src Addr: 10.10.12.166 (10.10.12.166), Dst Addr: 10.10.11.66
(10.10.11.66)
 Version: 4
 Header length: 20 bytes... [much more information not shown]

We can see that the Ethernet frame leaving the Linux client has source MAC address
00:b0:d0:45:34:64 and destination MAC address 00:05:85:8b:bc:db. The packet
inside the frame has the source IPv4 address 10.10.12.166 and destination address
10.10.11.66, as expected.

How do we know that the destination MAC address 00:05:85:8b:bc:db is not asso-
ciated with the destination address 10.10.11.66? We can simply look at the frame that
arrives at the Linux server.

[root@lnxserver admin]# /usr/sbin/tethereal -V
Capturing on eth0
Frame 1 (74 bytes on wire, 74 bytes captured)
 Arrival Time: May 5, 2008 13:39:34.104401000
 Time delta from previous packet: 0.000000000 seconds
 Time relative to first packet: 0.000000000 seconds
 Frame Number: 1
 Packet Length: 74 bytes
 Capture Length: 74 bytes
Ethernet II, Src: 00:05:85:88:cc:db, Dst: 00:d0:b7:1f:fe:e6
 Destination: 00:d0:b7:1f:fe:e6 (Intel_1f:fe:e6)
 Source: 00:05:85:88:cc:db (Juniper__88:cc:db)
 Type: IP (0x0800)
Internet Protocol, Src Addr: 10.10.12.166 (10.10.12.166), Dst Addr: 10.10.11.66
(10.10.11.66)
 Version: 4
 Header length: 20 bytes...(much more information not shown)

Note that the frame arriving at 10.10.11.66 has the MAC address 00:d0:b7:1f:fe:e6,
which is not the one used as the destination MAC address in the frame leaving the
10.10.12.166 client (that address is 00:b0:d0:45:34:64).

228 PART II Core Protocols

Now, if the MAC address associated with the frame leaving the 10.10.12.166 client
is 00:bo:do:45:34:64, then the MAC address associated with the same IP address on the
server LAN cannot magically change to 00:05:85:88:cc:db. As expected, the IP packet
is identical (except for the decremented TTL fi eld), but the frame is different. This is
sometimes called indirect delivery of packets because the packet is sent through one
or more network nodes and not directly to the destination.

These relationships are displayed in Table 8.1, which shows how the MAC addresses
relate to the IP subnet addresses.

Tethereal not only gives the MAC addresses, but also parses the 24-bit OUI and help-
fully lists Intel as the owner of 00:d0:b7 and Juniper as the owner of 00:05:85. We can
verify this on the Linux client or server. Let’s look at the client’s ARP cache.

[root@lnxclient admin]# /sbin/arp -a
? (10.10.12.1) at 00:05:85:8b:bc:db [ether] on eth0
[root@lnxclient admin]#

The question mark (?) just means that our routers do not have names in DNS.
The Illustrated Network uses two small LAN switches for LAN1 and LAN2, but the

nodes used for internetworking are routers. Let’s take a closer look at just what a router
does and how it delivers packets from LAN to LAN over an internetwork.

Routing
Routing is done entirely with IP addresses, of course. Many books make extensive use
of the concepts of direct routing and indirect routing of packets. This can be confus-
ing, since direct “routing” of packets does not require a router. In this chapter, the terms
direct delivery and indirect delivery are used instead. A host can use direct delivery to
send packets directly to another host, perhaps using a VLAN, or use indirect delivery if
the destination host is reachable only through a router.

How does the source host know whether the destination host is reachable through
direct (local) delivery or indirect (remote) delivery through a router? The answer has
a lot to do with the way bridges and routers differ in their fundamental operation, and
how routers use the IP address to determine how to handle packets. Here’s an example
using the Illustrated Network’s actual MAC and IP addresses.

Table 8.1 Frame IP and MAC Addresses

MAC Source
Address

IP Source
Address

MAC Destination
Address

IP Destination
Address

Frame
leaving
client

00:b0:d0:45:34:64
(Linux client)

10.10.12.166
(Linux client)

00:05:85:8b:bc:db
(Juniper router)

10.10.11.66
(Linux server)

Frame
arriving at
server

00:05:85:88:cc:db
(Juniper router)

10.10.12.166
(Linux client)

00:d0:b7:1f:fe:e6
(Linux server)

10.10.11.66
(Linux server)

CHAPTER 8 Routing 229

Direct Delivery without Routing
Let’s look at a packet sent from wincli on LAN1 to winsvr1. Both of these hosts are
on LAN1, so no routing is needed. The IPv4 addresses are 10.10.11.51 for wincli1 and
10.10.11.111 for winsvr1, and both use the same 255.255.255.0 mask. Therefore, both
addresses have the same network portion of the IPv4 address, 10.10.11.0/24.

The host software knows that no router is needed to handle a packet sent from the
source host to the destination host because the IP addresses of the source and destina-
tion hosts have the same IP network portion (prefi x) in both source and destination
IP addresses. This is a simple and effective way to let hosts know whether they are on
the same LAN. The packet can be placed in a frame and sent directly to the destination
using the local link. This is shown in Figure 8.3.

In Figure 8.3, a packet is followed from client to server when both are on the
same LAN segment and there is no router between client and server. All direct delivery
means is that the packet and frame do not have to pass through a router on the way
from source to destination.

The TCP/IP protocol stack on the client builds the TCP header and IP header. In
Figure 8.3, the IP packet is placed inside an Ethernet MAC frame. The MAC source and
destination addresses are shown as well. The client knows its own MAC address, and if

Sender (wincli1):
1. Server on same subnet? YES!
2. ARP for IP address of server
3. Use ARP response to determine
 MAC address for frame
4. Build packet and frame and
 send!

(Router ignores
this frame:

It is addressed to
00:0e:0c:3b:87:36)

MAC Address:
00:0e:0c:3b:88:3b

MAC Address:
00:0e:0c:3b:87:36

winsvr1wincli1

Router
MAC Address

00:05:85:88:cc:db

To: 00:0e:0c:3b:88:3b
From: 00:0e:0c:3b:87:36

To: 10.10.11:111
Network 10.10.11 Host 111
From: 10.10.11.51
Network 10.10.11 Host 51

Frame:

Packet:

FIGURE 8.3

Direct delivery of packets on a LAN. Note that the MAC address does not change from source to
destination, and that the router ignores the frame.

230 PART II Core Protocols

the server’s MAC address is not cached, an ARP broadcast message that asks, “Who has
IP address 10.10.11.111?,” is used to determine the MAC address of the server.

The source host knew to ask for the MAC address of the destination host because
the destination host is on the same LAN as the source. Hosts with the same IP network
addresses must be on the same LAN segment. Destination hosts on the same LAN are
simply “asked” to provide their MAC addresses. The destination MAC address in the
frame is the MAC address that corresponds to the destination IP address in the IP
packet inside the MAC frame.

What would be different when the client and server are on different LANs and must
communicate through a router?

Indirect Delivery and the Router
It is one thing to say that the router is the network node of the Internet, but exactly
what does this mean? What is the role of the router on the Internet? Routers route IP
packets to perform indirect delivery (through the forwarding) of packets from source
to destination.

Unlike direct delivery, where the packets are sent between devices on the same LAN,
indirect delivery employs one or more routers to connect source and destination. The
source and destination could be near in terms of distance, perhaps on separate fl oors
of the same building. All that really matters is whether there is a router between source
and destination or not.

Figure 8.4 shows a simple network consisting of two LANs connected by routers. The
routers are connected by a serial link using PPP, but SONET would do just as well. Of
course, the Internet consists of thousands of LANs and routers, but all of the essentials
of routing can be illustrated with this simple network.

The routing network has been simplifi ed to emphasize the architectural features
without worrying about the details. The routers are just Router 1 and Router 2, not CE0
and CE6. But the LANs are still LAN1 and LAN2, and we’ll trace a packet from wincli1
on LAN1 to winsvr2 on LAN2.

Both LAN segments in Figure 8.4 are implemented with Ethernet hubs and
unshielded twisted pair (UTP) wiring, but are shown as shared media cables, just to
make the adjacencies clearer. Each host in the fi gure has a network interface card (NIC)
installed. It is important to realize that it is the interface that has the IP address, not the
entire host, but in this example each host has only one interface. However, the routers
in the fi gure have more than one network interface and therefore more than one IP
network address. A router is a network device that belongs to two or more networks
at the same time, which is how they connect LANs. A typical router can have 2, 8, 16,
or more interfaces. Each interface usually gets an IP address and typically represents a
separate “network” as the term applies to IP, but there are exceptions.

Each NIC in a host or router has a MAC address, and these are given in Figure 8.4. The
routers are only shown with network layers and IP layers, because that’s all they need
for packet forwarding (most routers do have application layers, as we have seen).
Because the routers in this example are in different locations, they are connected by a

CHAPTER 8 Routing 231

serial link. The serial link is running PPP and packets are placed inside PPP frames on
this link between the routers. There is no need for global uniqueness on serial ports,
since they are point-to-point links in the example, so each is called “S1” (Serial1) at the
network layer. They don’t even require IP addresses, but these are usually provided to
make the link visible to network management and make routing and forwarding tables
a lot simpler.

All of the pieces are now in place to follow a packet between client and server on
the “internetwork” in Figure 8.4 using indirect delivery of packets with routers. Let’s
see what happens when a client process running on wincli1 wants to send a packet to
a server process running on winsvr2. The application is unimportant. What is impor-
tant is that the source host knows that the destination host (server) is not on the same
LAN. Once the IP address of the server is obtained, it is obvious to the source that the
destination IP network address (10.10.12.52) is different than the source IP network
address (10.10.11.51).

The source client software now knows that the packet going to 10.10.12.52 must
be sent through at least one router, and probably several routers, using indirect deliv-
ery. It is called indirect delivery (or indirect routing) because the packet destination

wincli1

wincli2 winsvr2

10.10.12.52

winsvr1

LAN1:
IP Network

10.10.11/24

00:0e:0c:3b:88:3c 00:0e:0c:3b:87:36

10.10.11.51

00:05:85:88:cc:db

00:05:85:8b:bc:db

00:0e:0c:3b:88:56

10.10.11.111

10.10.11.1

10.0.99.1

10.10.12.1

10.10.12.222

Router 1

Router 2
PPP

Serial
Link

10.0.99.2

00:02:b3:27:fa:8c
LAN2:

IP Network
10.10.12/24

S1

S1

FIGURE 8.4

Indirect delivery using a router. Note the different MAC and link-level addresses in place between
source and destination.

232 PART II Core Protocols

address is the destination IP address of winsvr2, but the initial frame destination
address is the MAC address of the Router1. The packet is sent indirectly to the desti-
nation host inside a frame sent to the router. The address fi elds of the frame and packet
constructed and sent on the LAN by wincli1 are shown in Figure 8.5.

Note that the frame is sent to Router1’s MAC address (00:05:85:88:cc:db), but the
packet is sent to 10.10.12.52 (winsvr2). This is how routing works. (Bridges, or direct
delivery even in routing, always has frames in which the destination MAC address is the
same as the IP address it represents.)

How did the source host, wincli1, know the MAC address of the correct router?
There could be several routers on a LAN, if for no other reason than redundancy. All that
wincli1 did was use the routing table to look up the IP address of the destination. But
there’s no specifi c entry for a network associated with 10.10.12.52. However, TCP/IP
confi guration on a host often includes confi guration of at least one default gateway
to be used when packets must leave the local LAN. The default gateway (a router in
this case) can be set statically, or dynamically using the Dynamic Host Confi guration
Protocol (DHCP), or even other ways. In this example network, the default gateway IP
address has been entered statically when the host was confi gured for TCP/IP.

Since the default gateway is by defi nition on the same LAN as the source host (they
share the same IP address prefi x), the source host can just send an ARP to get the MAC
address of the interface on the router attached to that LAN. Note that the IP address of
the router is used only to get the MAC address of the router, not so that the source host
wincli1 can send packets to the router (the packets are being forwarded to winsvr2).

When this packet is sent, the router pays attention to the frame when it arrives,
but winsrv1 ignores it (the frame is not for 00:0e:0c:3b:87:36). Router1 looks at the
packet inside the frame and knows that the destination host is not directly connected
to Router1. The next hop to the destination is another router. How does Router1
know? In much the same way as wincli1: Router1 compares the destination IP address
to the IP addresses assigned to its local interfaces. These are 10.10.11.0/24 and
10.0.99.0/24. The packet’s destination IP address of 10.10.12.0/24 does not belong
to either of the two networks local to Router1.

However, a router can have many interfaces, not just the two in this example. Which
output port should the router use to forward the packet? The network portion of the IP

Destination
MAC Address:

00:05:85:
88:cc:db

Source
MAC Address:

00:0e:0c:
3b:88:3c

Source
IP Address:
10.10.11.51

Destination
IP Address:
10.10.12.52

DATA
(Segment)

Ethernet Frame (trailer not shown)

Packet

FIGURE 8.5

Frame and packet sent to Router1, showing source and destination IP and MAC addresses.

CHAPTER 8 Routing 233

address is looked up in the forwarding table according to certain rules to fi nd out the IP
address of the next-hop router and the output interface leading to this router. (In prac-
tice, Router1 might simply have a default route pointed at the serial WAN interface.)
The rules used for these lookups will be discussed in more detail in a later chapter.
For now, assume that Router1 fi nds out that the next hop for the packet to winsvr2 is
Router2, and that Router2 is reached on serial port S1.

Router1 now encapsulates the packet from wincli1 to winsvr2 inside a PPP frame
for transport on the serial link. Another key feature distinguishing routers from bridges,
as we have seen, is an IPv4 router’s ability to fragment a packet for transport on an out-
put link. Fragmentation depends on every router knowing the maximum transmission
unit (MTU) frame size for the link types on all of the router’s interfaces. Ethernet LANs,
for example, all have an MTU size of 1500 bytes (1518 bytes, including the LAN frame
header). Serial links usually have MTU sizes larger than that, so this example assumes that
Router1 does not have to fragment the content of the packet it received from the LAN.

When the packet sent by wincli1 to winsvr2 arrives at Router2 on the serial link from
Router1, Router2 knows that the next hop for this packet is not another router. Router2
can deliver the packet directly to winsvr2 using direct delivery. How does it know?
Because the network portion of the IP address in the packet destination, 10.10.12.52/24,
is on the same network as the router on one of its interfaces, 10.10.12.1/24. In brief, it
has a route that covers the destination network on one of its interfaces.

The frame containing the packet is sent onto the LAN with the structure shown in
Figure 8.6. Note that in this case the MAC address of the source is Router2, and the MAC
address of the destination is the MAC address of winsrv2. Again, Router2 can always use
ARP to get the MAC address associated with IP address 10.10.12.52 if the MAC address
of the destination host is not in the local ARP cache on the router. The source and des-
tination IP addresses on the packet do not change in this example, of course. Winsvr2
must be able to reply to the sender, wincli1 in this case. (We’ll talk about cases using
NAT, when the source and destination packet addresses do and must change, in the
chapter on NAT.)

It is assumed that there is no problem with MTU sizes in this example. However,
MTU sizes are often important, especially when the operational differences between
IPv4 and IPv6 routers, when it comes to fragmentation, are considered.

Destination
MAC Address:

00:0e:Oc:
3b:88:58

Source
MAC Address:

00:05:85:
8b:bc:db

Source
IP Address:
10.10.11.51

Destination
IP Address:
10.10.12.52

DATA
(Segment)

Ethernet Frame (trailer not shown)

Packet

FIGURE 8.6

Frame sent by Router2 to winsvr2, showing source and destination IP and MAC addresses.

234 PART II Core Protocols

QUESTIONS FOR READERS
Figure 8.7 shows some of the concepts discussed in this chapter and can be used to
help you answer the following questions.

Router
CEO

bsdserver

admin@CEO. show route
inet .0 : 5 destinations, 5 routes (5 active, 0 holddown, 0
hidden)
1 5 Active Route, 2 5 Last Active, * 5 Both

0.0.0.0/0 * [Static/5] 3d 02:59:20
. via ge-0/0/3.0

10.0.50.0/24

10.0.50.1/32

10.10.11.1/32

10.10.11.0/24

*Direct/0] 2d 14:25:52
. via ge-0/0/3.0
*[Local/0] 2d 14:25:52
Local via ge-0/0/3.0

*[Local/0] 2d 14:25:52
Local via fe-1/3/0.0

*[Direct/0] 2d 14:25:52
. via fe-1/3/0.0

bsdserver# netstat -nr
Routing tables
Internet:
Destination
default
10.10.12/24
localhost
Internet 6:
Destination
localhost.booklab.
fe80::%emo
fe80::20e:cff:fe3b
fe80::%1o0
fe80::1%1o0
fec0::
fec0::20e:cff:fe3b
fec0::fe67:d4:b::
fec0::fe67:d4:b:205
fec0::fe67:d4:b:20e
ff01::
ff02::%em0
ff02::%1o0

Flags

Flags

UGSC
UC
UH

UH

UHL

UHL

UC
UHLW

UHL

UHL

UC
UC

UC

UC

UC

10.10.12.1
Gateway

link#1
localhost

link#1
00:0e::0c:3b:87:32
fe80::1&1o0

00:0e::0c:3b:87:32
link#1

Gateway
localhost.booklab

localhost.booklab.
link#1
localhost.booklab.

link#4
link#1

00:05:85:8b:bc:db
00:0e:0c:3b:87c:32

Refs Use
0 0 em0

em0
144

0 0
0

1o0

1o0

em0
1o0

1o0

1o0
em0

1o0

Netif Expire

Netif Expire

1o0

em0

em0
1o0

em0
1o0

U

FIGURE 8.7

The routing table output from router CE0 (IPv4 only) and host bsdserver.

1. What is the difference between a routing table and a forwarding table?

2. In the IPv6 routing table for router CE0, what is the IPv6 address associated with
interface ge20/0/3?

3. In the IPv6 routing table for router CE0, what is the precise IP address value of the
default route for IPv4 and IPv6?

4. Why are there so many entries in the IPv6 host routing table on bsdserver?

5. What is a “persistent” route? What is a “static” route?

235

CHAPTER

What You Will Learn
In this chapter, you will learn how routers forward IP packets. We’ll start with
the logical steps a router follows to forward (“route”) a packet out the next-hop
interface. Then we’ll look at router architectures to see how specialized devices
(there are “software-only” routers) accomplish routing and forwarding.

Finally, you will learn about how IPv4 routers transition to handling IPv6 routing
and various methods to tunnel IPv6 packets through links connected by IPv4-only
routers. Tunnels were introduced in Chapters 3 and 4 and occur when the normal
encapsulation sequence of packet–inside frame is violated in some fashion.

Forwarding IP Packets 9

This chapter is really a continued investigation into many of the concepts introduced
in the previous chapter. Figure 9.1 highlights the network components we’ll be work-
ing with in this chapter.

The routers on our network are Juniper Networks routers. These routers have a
different “look and feel” compared to other routers, most of which use a more “Cisco-
like” interface and display. For example, the routing tables seem very long and detailed
compared to Cisco routers’ default displays.

admin@CE6> show route 10.10/16

inet.0: 34 destinations, 35 routes (34 active, 0 holddown, 0 hidden)
1 5 Active Route, - 5 Last Active, * 5 Both

10.10.11.0/24 *[OSPF/10] 1w5d 18:25:05, metric 6
 > via ge-0/0/3.0
10.10.12.0/24 *[Direct/0] 2w2d 00:15:44
 > via fe-1/3/0.0
10.10.12.1/32 *[Local/0] 2w2d 00:15:44
 Local via fe-1/3/0.0

We’ll talk about the routing table entry marked Open Shortest Path First (OSPF) in
Chapter 14. This route was learned by a routing protocol running between the routers
on our network, and we’ll see how OSPF is confi gured in a later chapter. Note that

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80:205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65459

Wireless
in Home

Solid rules � SONET/SDH
Dashed rules � Gig Ethernet
Note: All links use 10.0.x.y
addressing...only the last
two octets are shown.

FIGURE 9.1

Forwarding packets across the network. Note that we’ll be using the customer-edge routers
CE0 and CE6 in this chapter.

238 PART II Core Protocols

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80:205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC: 00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

ge-0/0/3

16.2

ge-0/0/3

16.1

Best ISP

AS 65127

Global Public
Internet

CHAPTER 9 Forwarding IP Packets 239

the entry has a preference of 10 (which makes it more “costly” to use than direct/local
interface routes [0] or static routes [5]). Traffi c to destinations on LAN1 is sent to PE1
over the ge-0/0/3 interface. A preference is distinct from the metric or cost of a route
itself; preference applies to routes learned in different ways.

We can make the routing table display more Cisco-like by using the terse option:

admin@CE6> show route 10.10/16 terse

inet.0: 34 destinations, 35 routes (34 active, 0 holddown, 0 hidden)
1 5 Active Route, - 5 Last Active, * 5 Both

A Destination P Prf Metric 1 Metric 2 Next hop AS path
* 10.10.11.0/24 O 10 6 >ge-0/0/3.0
* 10.10.12.0/24 D 0 >fe-1/3/0.0
* 10.10.12.1/32 L 0 Local

The asterisk (*) means the route is active (used for forwarding), and the P fi eld is for
protocol. One metric is used (two are allowed), the next-hops are the same (thankfully!),
and we’ll talk about what an AS path is in the chapter on the BGP routing protocol.

Let’s use traceroute to see which routers CE6 uses to reach LAN1, attached to
router CE0 at interface 10.10.11.1.

admin@CE6> traceroute 10.10.11.1

traceroute to 10.10.11.1 (10.10.11.1), 30 hops max, 40 byte packets
 1 10.0.16.1 (10.0.16.1) 0.743 ms 0.681 ms 0.573 ms
 2 10.0.12.2 (10.0.12.2) 0.646 ms 0.647 ms 0.620 ms
 3 10.0.24.2 (10.0.24.2) 0.656 ms 0.664 ms 0.632 ms
 4 10.0.45.2 (10.0.45.2) 0.690 ms 0.677 ms 0.695 ms
 5 10.10.11.1 (10.10.11.1) 0.846 ms 0.819 ms 0.775 ms

Each router handles the three-packet set generated by the source (CE6) in one of
three ways:

1. If the packet is not for this router (the device does not have 10.10.11.1 confi gured
locally), and the TTL is 1 or 0, then the router creates an ICMP Time-Exceeded
message, sets the source address to the router’s receiving interface address, sets
the destination address to the source’s, and sends the ICMP packet out the inter-
face listed as the route back to the source in the forwarding table. This does not
have to be the same as the receiving interface, but it usually is.

2. If the packet is not for this router and the TTL is not 1 or 0, then the router dec-
rements the TTL fi eld and forwards the packet out the interface leading to the
next hop on the way to the destination address.

3. If the packet is for this router or device, then it sends back an ICMP Port
 Unreachable message.

Why a TTL of 1 or 0? Some routers decrement the TTL immediately and others only
as part of the forwarding process, right before output queuing. This way both types of
router handle the packet consistently.

240 PART II Core Protocols

When the source receives a Time-Exceeded message, it records the results of the
round-trip time for the three packets, checks to see if it has a DNS entry for the IP
address, and prints a line of output with a “hop” number and the rest of the statistics.
When it receives a Port Unreachable message, the traceroute utility prints the fi nal
results and exits.

Because we don’t yet have DNS running, all the IPv4 addresses are repeated twice.
From the network diagram, we can see that the packets fl owed from CE6 to PE1 (not
surprisingly) at 10.0.16.1 and then through P2 (10.0.12.2), P4 (10.0.24.2), PE5
(10.0.45.2) and on to CE0 (10.10.11.1, the local interface target, is used instead of
10.0.50.2). (We’ll see what happens when one of the P routers or links between them
fails in a later chapter.)

We have IPv6 running on the LANs and routers CE0 and CE6. Let’s see what happens
on CE6 when we ping the LAN1 interface address four times using the LAN2 interface
IPv6 source address. Recall that the private ULA IPv6 addresses on LAN1 start with
fc00:ffb3:d5:a.

admin@CE6> ping count 4 inet6 source fc00:fe67:d4:b:205:85ff:fe8b:bcdb
fc00:ffb3:d5:a:205:85ff:fe88:ccdb
PING6(56=40+8+8 bytes) fc00:fe67:d4:b:205:85ff:fe8b:bcdb —> fc00:ffb3:d5:
a:205:85ff:fe88:ccdb
—- fc00:ffb3:d5:a:205:85ff:fe88:ccdb ping6 statistics —-
4 packets transmitted, 0 packets received, 100% packet loss

What happened? Well, for one thing, we have no routes to any IPv6 addresses on
LAN1 in the IPv6 routing table. And if they’re not in the routing table, they won’t be in
the forwarding table.

admin@CE6> show route table inet6 fc00:ffb3:d5:a::/64

admin@CE6>

What can we do about this? Well, we could add some static routes to the IPv6 tables
on each router, or we could run an IPv6 routing protocol between the routers to share
the routing information (we’ll do this in a later chapter). Or, we can confi gure an IPv6
over IPv4 tunnel between routers CE6 and CE0 (and back). We know we have connec-
tivity with IPv4 between the edge routers, as shown with traceroute.

Here’s how to confi gure an IPv6-over-IPv4 tunnel on routers CE0 and CE6. It basi-
cally tells the router to take any traffi c for LAN1 or LAN2 IPv6 addresses, put them
inside IPv4 packets with the LAN IPv4 interface addresses, and send them out as if they
were IPv4 packets. We’ll apply the tunnels on a logical interface known as the Generic
Routing Encapsulation (GRE) interfaces, abbreviated gr- on Juniper Networks routers.
Only the fi nal confi guration statements are shown.

[edit interfaces gr-1/0/0]
admin@CE6# set interfaces gr-1/0/0
admin@CE6# set unit 0 tunnel source 10.10.12.1;
 /*source address on LAN2 interface*/

CHAPTER 9 Forwarding IP Packets 241

admin@CE6# set unit 0 tunnel destination 10.10.11.1;
 /*destination address on LAN1 interface*/
admin@CE6# set unit 0 family inet6 address fc00:ffb3::/32
 /*LAN1 addresses*/

[edit interfaces gr-1/0/0]
admin@CE0# set interfaces gr-1/0/0
admin@CE0# set unit 0 tunnel source 10.10.11.1;
 /*source address on LAN1 interface*/
admin@CE0# set unit 0 tunnel destination 10.10.12.1;
 /*destination address on LAN2 interface*/
admin@CE0# set unit 0 family inet6 address fc00:ffb3::/32
 /*LAN2 addresses*/

Now we should be able to ping and traceroute an IPv6 address on LAN1 (in this
case, fc00:ffb3:d5:a:20e:cff:fe3b:8f95 for bsdclient) from the customer-edge
router on LAN2. And we can. Note that, because of the tunnel, the destination seems to
be only two hops away.

admin@CE6> ping inet6 count 4 source fc00:fe67:d4:b:205:85ff:fe8b:bcdb
fc00:ffb3:d5:a:20e:cff:fe3b:8f95
PING6(56=40+8+8 bytes) fc00:fe67:d4:b:205:85ff:fe8b:bcdb —>
fc00:ffb3:d5:a:20e:cff:fe3b:8f95
16 bytes from fc00:fe67:d4:b:205:85ff:fe8b:bcdb, icmp_seq=0 hlim=64
time=0.900 ms
16 bytes from fc00:fe67:d4:b:205:85ff:fe8b:bcdb, icmp_seq=1 hlim=64
time=0.728 ms
16 bytes from fc00:fe67:d4:b:205:85ff:fe8b:bcdb, icmp_seq=2 hlim=64
time=0.856 ms
16 bytes from fc00:fe67:d4:b:205:85ff:fe8b:bcdb, icmp_seq=3 hlim=64
time=0.838 ms

admin@CE6> traceroute inet6 source fc00:fe67:d4:b:205:85ff:fe8b:bcdb
fc00:ffb3:d5:a:20e:cff:fe3b:8f95
traceroute6 to fc00:ffb3:d5:a:20e:cff:fe3b:8f95 (fc00:ffb3:d5:a:205:85ff:
fe88:ccdb) from fc00:fe67:d4:b:205:85ff:fe8b:bcdb, 30 hops max, 12 byte
packets
 1 fc00:ffb3:d4:b:205:85ff:fe88:ccdb (fc00:ffb3:d4:b:205:85ff:fe88:ccdb)
1.059 ms 0.979 ms 0.819 ms
 2 fc00:ffb3:d5:a:20e:cff:fe3b:8f95 (fc00:ffb3:d5:a:20e:cff:fe3b:8f95)
0.832 ms 0.887 ms 0.823 ms

Let’s take a look at the some basic types of router architectures that can be used to
implement these packet-forwarding strategies.

ROUTER ARCHITECTURES
There are three main steps that a router must follow to process and forward a packet
to the next hop. Processing a packet means to check an incoming packet for errors
and other parameters, looking up the destination address in a forwarding table to

242 PART II Core Protocols

determine the proper output port for the packet, and then sending the packet out on
that port.

But how are the input ports connected to the output ports? In smaller routers,
which can even be implemented on PC or laptop computers with two or more inter-
faces, software simply examines the packet headers and forwards the packets where
they need to go. Windows PCs can do this, and often do on home networks. In Linux,
there is a command to allow the “host” to forward packets without processing the con-
tent of the packet more fully.

[root@lnxserver admin]# echo "1" > /proc/sys/net/ipv4/ip_forward

Linux IP Forwarding
If you enter the ip_forward command from the shell command prompt, the setting
is not “remembered” after a reboot. If the host is to function as a gateway as well
as host, place the command in an initialization script.

Small routers, such as those for DSL or small-edge LANs, can allow the incoming
packet to sit in a memory buffer somewhere and adjust header fi elds, perform tunnel
encapsulation, and so on, and then queue the packet for output. Larger routers, such
as those used by ISPs or on the Internet backbones, must route as fast as they can, usu-
ally at wire speeds (this means that the device processes data without reducing overall
transmission speed, so even if the packets arrive as fast as the input line allows, under
maximum load, there is minimal delay through the router).

Instead of software-based forwarding architectures, these larger routers use
 hardware-based forwarding fabric architectures. The differences are important, so
we’ll take a look at them in more detail.

Basic Router Architectures
When it comes to architecture, routers look very much like a PC. This was one of the
reasons for the initial success of routers: Routers could be fabricated out of simple,
off-the-shelf parts and did not require extensive or customized chipsets or hardware. So
these routers have a CPU, memory, interfaces, peripheral ports—in short, usually every-
thing but a hard drive. Small routers do not even have fl oppy drives or other forms of
external storage. This makes sense: Routers don’t need to store much of anything. A
forwarding table needs to be in memory at all times, because it’s much too slow to try
and fetch a piece of the table off a hard drive when needed. A lot of routers boot them-
selves from special servers, and have nonvolatile random access memory (NVRAM)
that keeps whatever information they need to remember whenever their power is cut
or turned off. Volatile memory like normal RAM is always erased when power is lost,
but NVRAM is like a disk.

CHAPTER 9 Forwarding IP Packets 243

The chief distinction is that at the heart of such routers is a general-purpose
computer. The architecture for large modern routers does not have a “center.”

Routers do not have to worry about adding cards for video, graphics, or other tasks
either. The slots in the chassis just handle various types of networking interfaces such
as Ethernet, ATM, SONET/SDH (Synchronous Optical Network/Synchronous Digital
Hierarchy), or other types of point-to-point WAN links. Most interface modules have
multiple ports, depending on the type of interface that they support. In a lot of high-
end router models, the interface cards are complex devices all by themselves and
often called blades. Interfaces usually can be added as needed for the networking
 environment—one or more LAN cards for the routers that handle customers and one
or more WAN cards for connection to other routers. Backbone routers often have only
WAN cards and no customers at all.

Another difference between a software-based router and a common PC is that PCs
almost always have only a single CPU. Because of the central role of these chips in
running all of the hardware and software on the computer, single-CPU architectures
require very powerful CPU chips.

Some routers use a variety of CPU chips, and because the tasks are shared among
the processors, these CPU chips do not have to be tremendously powerful either. Each
CPU set is chosen to fi t the mission of the router. They have enough horsepower for
the home and small offi ce, and these chips are stable, plentiful, and inexpensive.

Some routers use different types of memory. Figure 9.2 shows the general layout of
the motherboard of a generic software-based router. Many router motherboards have
four types of memory intended for specifi c purposes. Each type of memory and its loca-
tion on the motherboard is shown in the fi gure. This architecture is also very similar
to the network processor engine (NPE) for larger Cisco router architectures. A lot of
architectures forgo packet memory because of the bandwidth available in their shared

Shared DRAM DRAM

CPU

Flash
MemoryROM

NVRAM

FIGURE 9.2

Software-based architecture for small routers, showing the various types of memory used.

244 PART II Core Protocols

memory architecture or because the CPU itself contains a dedicated packet handling
architecture.

Every router ships with at least the factory default minimum of DRAM (dynamic
random access memory) and fl ash memory, but more can be added in the factory or
in the fi eld. Generally, the DRAM can be doubled or increased fourfold, depending on
model, and fl ash memory can be doubled.

RAM/DRAM is sometimes called working storage because in the days before hard
drives and other types of external storage, memory was all that computers had for stor-
ing information outside of the immediate CPU. In a router, the RAM/DRAM performs
the same functions for the router’s CPU as the memory in a PC does for its CPU. So
when the router is up and running, the RAM/DRAM contains an image of the operating
system software, the running confi guration (called running-confi g in routers using the
Cisco confi guration conventions) fi le, the routing table and associated tables built after
startup, and the packet buffer. If this seems like a lot of work for one type of memory,
this just shows the fl exibility of function in a general-purpose architecture router.

The RAM acronym often used by router vendors is somewhat misleading. Almost
all RAM in a router today is DRAM, since static memory—regular RAM—became obso-
lete some time ago. But people are used to the old RAM acronym, and it’s included in a
lot of literature just for familiarity.

In addition to the DRAM near the CPU, these types of routers include shared
DRAM or shared memory. Also known as packet memory, the shared DRAM handles
the packet buffers in the router. Splitting the packet buffers from the other DRAM
improves I/O performance, because the shared DRAM is physically closer to the inter-
faces that handle the packets.

Nonvolatile RAM (NVRAM) is memory that retains information even when power
is cut off to the router. Routers use NVRAM to store a copy of the router confi gura-
tion fi le. Without NVRAM, the router would never be able to remember its proper
confi guration when it was restarted. NVRAM is where the startup confi guration (called
startup-confi g on routers using the Cisco confi guration conventions) is stored.

Flash memory is another form of nonvolatile memory. But although fl ash memory is
different from NVRAM, fl ash memory can also be erased and reprogrammed as needed. In
many routers, fl ash memory is used to hold one or more copies of the router’s operating
system: In the case of Cisco, this is called the Internetwork Operating System, or IOS.

ROM is read-only memory and is therefore nonvolatile, but, as might be expected,
ROM cannot be changed. Routers use ROM to hold what is called the bootstrap program.
Normally, fl ash memory and NVRAM hold all of the information that the router needs
to come up again properly with the current confi guration after a shutdown or other
power loss. But if there is a catastrophe, the bootstrap program in ROM can be used to
boot the router into a minimum confi guration. ROM used for this purpose is also called
ROMMON (ROM monitor) and usually has a distinctive rommon>> prompt taken from
early Unix systems. ROMMON at least gets the router to the point where simple com-
mands can be typed in through a system console terminal (monitor). In smaller routers,
ROM holds only a minimal subset of the router’s operating system software. In larger
routers, the ROM often holds a full copy of the router’s operating system software.

CHAPTER 9 Forwarding IP Packets 245

Another Router Architecture
In contrast to the basic router architecture just explored, no one would accuse a large
Internet backbone router of looking or acting like a PC. Routers based on a central
CPU just about run out of gas once link speeds move into the multigigabit ranges with
OC-48 (2.4 Gbps) and OC-192 (10 Gbps). And with 10 Gigabit Ethernet and OC-768
(40 Gbps), a change to the basic architecture of the router for the Internet backbone is
necessary. Many Internet backbone routers share the same basic architecture, whether
they come from Cisco or Juniper Networks or someone else. However, the terminol-
ogy used for the components varies considerably from vendor to vendor. Because the
Illustrated Network uses Juniper Networks routers as its network nodes, we’ll use the
Juniper Networks architecture and terminology in this section, but only as an example,
not necessarily as an endorsement.

Larger network routers, oddly enough, do have hard drives. In fact, many Internet
backbone routers have a complete PC built right in (some even have two PCs). But wait
a minute. Isn’t the PC architecture much too slow for heavy duty, “wire-speed” routing?
And isn’t a hard drive useless when it comes to routing because the forwarding table
has to be in memory? Right on both counts. The PC in the backbone router, called the
routing engine (RE) in Juniper Networks routers, does not forward packets at all. Pack-
ets are routed and forwarded by the packet-forwarding engine (PFE), which is where
all the specialized ASICs are located. The RE controls the router, handles the routing
protocols, and performs all of the other tasks that can be handled more leisurely than
wire-speed packet transit traffi c. Packets are forwarded from input to output port using
the forwarding table (FT) in the hardware fabric.

The fundamental principle in large router design is the idea that the functions of a
router can be split into two distinct parts: one portion for handling routing and control
operations and another for forwarding packets. By separating these two operations, the
router hardware can be designed and optimized to perform each function well.

This division of labor makes perfect sense. It has already been pointed out several
times that no one really sends traffi c to a router. The vast majority of packets just pass
through the router. So transit packets never leave the hardware-based fabric linking input
and output ports and control packets, such as those for the routing protocols, which only
come along every few seconds or so, and can be handled as required by the RE.

Just like other routers, large backbone routers can handle various types of network-
ing interfaces. But these routers are normally intended for mainly customer traffi c
aggregation or for an ISP backbone, although many corporations are attracted to edge-
oriented routers with this architecture as well. And anywhere in an enterprise where
there is a requirement for sustained 2-Gbps operation, routing is probably not being
done in software.

The overall concept of the division between routing engine (routing protocol
 control and management) and packet-forwarding engine (line-rate routing transit traf-
fi c) with a hardware-based “switching” fabric is shown in Figure 9.3.

The section of the router that is designed to handle the general routing opera-
tions (and control-plane management tasks) is the RE. The RE is designed to handle all
the routing protocols, user interaction, system management, and OAM&P (operations,

246 PART II Core Protocols

administration, maintenance, and provisioning), and so on. The second section in Juni-
per Networks routers is the PFE, and is specifi cally designed to handle the forwarding
of packets across the router from input to output interface. Transit packets never enter
the routing engine at all.

The communications channel between the routing engine and the PFE is a stan-
dard 100-Mbps Fast Ethernet. This might seem somewhat surprising at fi rst, because
the interfaces on a Juniper Networks router can be many gigabits per second. But
only control information needs to enter the routing engine. The vast majority of pack-
ets only transits the PFE at wire speeds. There are many advantages to using a standard
interface, even internally. A standard interface is easier to implement than creating a
new proprietary interface, and standard chipsets are readily available, inexpensive,
and so on.

The routing engine of a Juniper Networks router contains the router’s operating sys-
tem, the JUNOS Internet software, the command line interface (CLI) for confi guration
and control, and the routing table (RT) itself. The routing table in a Juniper Networks
router contains all of the routing information gathered from all routing protocols run-
ning on the router, as well as miscellaneous information such as interface addresses,
static routes, and so forth.

It might not seem that the RE would have to be very powerful, or have a large hard
drive, but it usually does. This is because of the increasing expense of converging a
growing routing table.

The PFE is where the forwarding table resides. The forwarding table contains all
the active route information that is actually used to determine the packet’s next hop
without needing to send the packet to the routing engine.

Routing
Engine

Console

AUX

fxp0 Ethernet

FPC 0

0

1 1

2

3

0
Input

Transit Traffic
Output

IP II

Packet-
Forwarding

Engine
2

3

FPC n
fxp1

Transit Traffic

100

FIGURE 9.3

A hardware-based router with a switching fabric architecture. Note that the fi gure uses the
 architecture and terminology of Juniper Networks routers, which are used on the Illustrated
Network.

CHAPTER 9 Forwarding IP Packets 247

ROUTER ACCESS
Users don’t generally communicate directly with routers, but rather through routers.
The situation is different for network administrators and managers, however, who
must communicate directly with the individual routers in order to install, confi gure,
and manage the routers.

Routers are key devices on the Internet and almost any type of network. Many
backbone routers handle packets for hundreds or thousands of users, and some handle
packets for even more. So when a router goes down, or even slows down due to con-
gestion or a problem, the users go wild and the network managers react immediately.
For this reason, network managers need multiple and foolproof ways to access the rout-
ers they are responsible for in order to manage them.

Larger routers, and many smaller ones, do not normally come with a keyboard,
mouse, and monitor. Nevertheless, there are usually three ways that a network admin-
istrator can communicate with a router.

The Console Port
This port is for a serial terminal that is at the same location as the router and attached
by a short cable from the serial port on the terminal to the console port on the
router. The terminal is usually a PC or Unix workstation running a terminal emulation
program. There are several physical connector types used for this port on Cisco rout-
ers. Network administrators sometimes have to carry around several different connec-
tor types so they can be sure to have the proper connector for the router they need to
manage. (Usually, after initial installation, the console ports are connected to a terminal
server on a management network so that access does not have to be right where the
router is.)

The Auxiliary Port
This port is for a serial terminal that is at a remote location. Connection is made
through a pair of modems, one connected to the router and the other connected to
the terminal. There is little difference, if any, between the auxiliary (AUX) and con-
sole ports in terms of characteristics. They are separate because routers might require
simultaneous local and remote access that would be impossible if there were only one
serial port on the router.

The Network
The router can always be managed over the same network on which it is routing
packets. This is often called “in-band management” in contrast to the console and
AUX ports, which are “out-of-band.” This just means that the network access method
shares the link to the router “in the same bandwidth” as user packets transiting the
router. There are often three ways to access a router over the network: through Telnet

248 PART II Core Protocols

(called VTY lines on a Cisco router), with a more secure remote access program called
secure shell (SSH), using a Web browser (HTTP is the protocol), or with SNMP (Sim-
ple Network Management Protocol), a protocol invented expressly for remote router
management.

These arrangements are shown in Figure 9.4. Small routers usually only have a con-
sole port. With the proper cables, these console ports can be hooked up to a modem
for remote access, but obviously cannot be used simultaneously for local access. On
some routers, the console ports are labeled “Admin” or “Management.” It is tempting to
try and access a console or AUX ports using the normal graphical interface provided by
Windows, a Mac, or Unix X-Windows. But the console and AUX ports only understand a
simple, character-based serial protocol. On Windows PCs, for example, only HyperTer-
minal (or another serial terminal emulation program) can communicate with a router
through the console or AUX ports.

FORWARDING TABLE LOOKUPS
In the connectionless, best-effort world of IP, every packet is forwarded independently,
hop by hop, toward the destination. Each router determines the next hop for the
 destination address in the packet header based on information gathered into the rout-
ing table and distilled into the forwarding table. The essential operation of a router
is the looking up of the packet’s destination IP address in this table to determine the
next hop.

Router

Console
Port

AUX
Port

Network
Interface

Local
Cable

Modem

Modem

Dial-up

Management
Terminal

Management
Terminal

Management
Terminal

Telnet, HTTP, SNMP

Network

FIGURE 9.4

The three router access methods. Note that the console port requires access to the router, while
the others allow remote access.

CHAPTER 9 Forwarding IP Packets 249

It’s unusual that a packet address is an exact match for a table entry. Otherwise,
routing and forwarding tables would need an entry for every host in the world—all
32 bits for IPv4 and 128 bits for IPv6! So in the current classless (prefi x) world of IP
addressing, the host-hop destination is chosen by the longest match rule. Figure 9.5
shows how the next-hop address and interface information are used with the ARP pro-
cess (cache or query) to forward the packet in a frame toward the destination.

Consider a packet sent to 10.10.11.77 (bsdclient) from LAN2. Remember, the net-
work is 10.10.11.0/24. Suppose the Best ISP edge router, PE1, has the entries shown
in Table 9.1 about 10.10/16 networks in its tables; the longest match determines the
correct interface that should forward the packet.

Which interface is the “best” next hop toward the destination? It would be easy if
we had an entry like 10.10.11/24 to work with, but routers closer to the backbone
use aggregate addresses in their tables. In most cases, Internet backbone routers will
accept prefi xes of /24 or shorter. (It would be nice to accept only /19 or shorter, but
not many could get away with that.)

So where should the router send a packet for network 10.10.11.0/24? Which next
hop should it use? All three table entries are “close” to the destination address, but
which one is “best”?

According to the longest-match rule, the router will send the packet for 10.10.11.77
to 10.10.17.2 on interface so-0/0/2. But how exactly does it work?

Forwarding Module

Extract
Destination

Address
Packet

Lookup
Table Next-hop Address

and Interface
Information

To ARP

Interface
Next-hop
Address

Prefix
Network
Address

FIGURE 9.5

How the longest match rule applies to a forwarding table lookup. More specifi c (longer) routes
are preferred to less specifi c (shorter) routes.

250 PART II Core Protocols

Routers today can “mix and match” prefi xes of differing lengths in a routing or for-
warding table and still send packets to the correct next hop. In the table, 10.10.8/21
and 10.10.8/22 are different routes, as would be 10.10.8/23 and 10.10.8/24.

Now, the 32-bit destination address, 10.10.11.77, in bits is 00001010 00001010
00001011 01001101. There is, of course, no subnet mask associated with a host address.
Looking at the table, the fi rst 20 bits are exactly the same in all three entries, as well as
the destination address. But which is the longest match? The router will keep compar-
ing the addresses in the table to the destination address bit by bit until the table runs
out of entries. The last match is the longest match, no matter if it’s all 32 bits, or none
(the default 0/0 entry matches everything).

The 21st bit is a 1 bit in the table entry for 10.10.8/21, and so is the 21st bit in the
destination address. The 22nd bit is a 0 bit in the table entry for 10.10.8/22, and so is
the 22nd bit in the destination address. There is no longer entry. This makes the /22
entry the longest match for the destination address, and the packet is forwarded to
10.10.17.2. The rest of the bits are used for local delivery of the packet on LAN2.

The longest match is also often called the best match or the more specifi c route for a
given destination IP address. But whatever it is called, the point is the same: The longest-
match next hop is always used in favor of a potential, but shorter match, next hop.

What if there were other entries such as 10.10.8/23 or 10.10.8/24? It doesn’t
matter. The 1 bit in the 23rd position will not match these entries, which all have 0s at
the end of the entry. The same longest match rules apply at each router.

DUAL STACKS, TUNNELING, AND IPV6
So far, we’ve seen how routers forward packets, what the routers look like internally,
and how the longest match determines the output port. But most of this chapter dealt
with IPv4. But what about IPv6 packets? It’s one thing to say that some routers can
handle both IPv4 and IPv6, but what about older or smaller routers and hosts that don’t
integrate IPv6 support and handle IPv4 only? This chapter ends with a consideration of
the role of the router in a world that is slowly making its way toward IPv6.

The transition to IPv6 will be a long one for most networks. There might be net-
works where it will be necessary to mix hosts and routers that run IPv4 only, IPv6 only,
and a combination of the two. Why would a host need to run both IPv4 and IPv6? Well,
a Web site that only ran IPv6 would be forever unreachable by IPv4 browsers. Routers,
of course, can be used to build separate IPv4 and IPv6 router networks. For example,

Table 9.1 Tables for Router PE1

Network (Network Bits in Bold) Prefi x Next-Hop Address Interface

10.10.0 (00001010 00001010 0000xxxx xxxx) /20 10.0.12.2 so-0/0/0

10.10.8 (00001010 00001010 00001xxx xxxx) /21 10.0.19.2 so-0/0/1

10.10.8 (00001010 00001010 000010xx xxxx) /22 10.0.17.2 so-0/0/2

CHAPTER 9 Forwarding IP Packets 251

LAN1 and LAN2 could have two routers each—one for IPv4 and one for IPv6 traffi c.
But a lot of newer routers should be able to handle both IPv4 and IPv6 packets, and
many do.

There are two main strategies that have emerged for dealing with mixed IPv4 and
IPv6 environments. These are dual protocol stacks and tunneling.

Dual Protocol Stacks
All of the hosts on the Illustrated Network, as we have seen, are capable of assigning
both an IPv6 and IPv4 address to their network interfaces. This is possible because they
all implement a sort of “split” IP network layer. For example, if the Ethernet Type fi eld is
set to 0x0800 the packet is handed off to the IPv4 process, and if the Type fi eld is set to
0x86DD, then the packet is handed off to the IPv6 process. This is shown conceptually
in Figure 9.6.

The dual protocol stack must provide error messages that are IPv6 “aware,” and rout-
ing protocols have to adapt to IPv6 addresses as well (as we’ll see). And in spite of the
fi gure, which is a very common representation, the TCP/UDP layer is also dual.

Dual protocols stacks are not new with IPv6. This method was frequently used
whenever two or more protocol stacks had to share a single host interface. In fact, very
complex arrangements were not unknown, with IBM’s (and Microsoft’s) NetBios shar-
ing the network with Novell’s NetWare and IP itself (for Internet access).

Tunneling
Tunneling is a much misunderstood topic in general. This section talks about IPv6 tun-
nels, but networks also feature IPSec tunnels, VPN tunnels, and possibly even more. But
they all employ tunnels. Tunneling occurs whenever the normal sequence of encap-
sulation headers is violated. That’s all.

Application Services

TCP/UDP

IPv4 IPv6

Network Access (Ethernet, etc.)

Physical Network

FIGURE 9.6

Dual protocol stacks for IPv4 and IPv6 sharing a single network connection. Technically, TCP and
UDP have to be adjusted for an IPv6 environment.

252 PART II Core Protocols

Normally, a message is broken up into segments, which are put inside packets placed
inside frames that are sent as a sequence of bits to an adjacent system. The receiver
usually expects that the frame contains a packet, and so on, but what if it doesn’t? Then
the device is using tunneling.

We’ve already seen a form of tunneling in action. When we put PPP frames inside
 Ethernet frames, we put a frame inside a frame and violated the normal OSI-RM
sequence of headers. That’s okay, as long as the receiver knows the sequence of head-
ers the sender is generating.

Not all devices need to know the exact sequence of encapsulations used by the
sender and receiver. Only the endpoints (usually hosts, but not always) need to know
how to encapsulate the data at one end and process the headers correctly at the des-
tination. In between, inside the tunnel, all other devices can treat the data units as
usual.

Tunneling in a mixed IPv4 and IPv6 network is used to transport IPv6 packets over
a series of IPv4 routers or to an IPv4 host. There is a lot of variation in tunnels to sup-
port IPv4/IPv6 operation. For example, a native IPv6 backbone might tunnel IPv4 to
reduce address consumption in the network core. For the sake of simplicity, let’s con-
sider four types of tunnels and two major scenarios for their use:

1. Host to router—Hosts with dual-stack capabilities can tunnel IPv6 packets to a
dual-stack router that is only reachable over a series IPv4-only device.

2. Router to router—Routers with dual-stack capabilities can tunnel IPv6 packets
over an IPv4 infrastructure to other routers.

3. Router to host—Routers with dual-stack capabilities can tunnel IPv6 packets
over an IPv4 infrastructure to a dual-stack destination host.

4. Host to host—Hosts with dual-stack capabilities can tunnel IPv6 packets over an
IPv4 infrastructure to other dual-stack IP hosts without an intervening router.

The four types of tunnels are shown in Figure 9.7. When the IPv6 packet is sent to
a router (the fi rst two tunneling methods), the endpoint of the tunnel is not the same
as the destination, so the destination address of the IPv6 packet does not indicate the
same device as the IPv4 tunnel endpoint address that carries the IPv6 packet. The
source host or router must have the tunnel endpoint’s IPv4 address confi gured. This is
called confi gured tunneling.

In contrast, the last two methods send the encapsulated IPv6 packet directly to the
destination host, so the IPv4 and IPv6 addresses used correspond to the same host. This
lets the IPv6 destinations use IPv4-compatible addresses that are derived automatically
by the devices. This is called automatic tunneling because it does not require explicit
confi guration.

Automatic tunneling uses a special form of the IPv6 address. The 32-bit IPv4 address
is simply prepended with 96 zero bits in the form 0:0:0:0:0:0:<IPv4 address>. This
format is abbreviated as ::<IPv4 address>.

All dual-stack IP hosts recognize this format and encapsulate the IPv6 packet inside
an IPv4 packet using the embedded IPv4 address, creating an end-to-end tunnel. The

CHAPTER 9 Forwarding IP Packets 253

receiver simply strips off the IPv4 header and processes the IPv6 header and packet
inside.

Hosts that only run IPv6 can use dual-stack routers to communicate using this spe-
cial form of IPv6 address also. Dual-stack routers recognize the IPv6 traffi c and use the
last 32 bits to create the IPv4 address for the IPv4 “wrapper.” Figure 9.8 shows how this
special addressing format works. Naturally, this requires IPv6-only hosts to have valid
and routable IPv4 addresses, which clearly marks the format as a transitional method.
If the IPv6 address is not in this special address form, then a confi gured tunnel must
be used, or, if every device on the path from source to destination uses dual protocol
stacks, or IPv6 only, well-formed IPv6 addresses can be used.

IPv4/IPv6
Host

Host to Router

Router to Router
(intermediate
hops)

Router to Host
(last hop)

Host to Host

IPv4 Network
(IPv4 routers)

IPv4 Network
(IPv4 routers)

IPv4 Network
(IPv4 routers)

IPv4 Network
(IPv4 routers)

IPv4/IPv6
Host

IPv4/IPv6
Host

IPv4/IPv6
Router

IPv6-only
Router

IPv4/IPv6
Router

IPv4-only
Router

IPv4/IPv6
Host

FIGURE 9.7

The various types of IPv6 tunnels, showing host and router situations that can be used to connect.

IPv4 Header IPv6 Header

IPv6 Header

IPv4
Dest.
Addr.:
192.168.38.156

TCP/UDP Header

TCP/UDP Header

Data

Data

IPv6 Destination Address:
0:0:0:0:0:0:192.168.38.156

(::192.168.38.156)

FIGURE 9.8

The special IPv6 tunnel-addressing format for dual-stack routers.

254 PART II Core Protocols

TUNNELING MECHANISMS
The theory of tunneling IPv6 packets through a collection of IPv4 routers is one thing.
Exactly how to do it is another. There are several tunnel mechanisms that embody the
concepts discussed previously.

Manually configured tunnels—These are defined in RFC 2893, and both end-
points of the tunnel must have both IPv4 and IPv6 addresses. These tunnels are
usually used between dual-stack edge routers.

Generic Routing Encapsulation (GRE) tunnels—GRE tunnels were designed to
transport non-IP protocols over an IP network. But GRE is also a good way to
carry IPv6 across the IPv4 routers. We used a GRE tunnel earlier in this chapter.

IPv4-compatible (6over4) tunnels—Also defined in RFC 2893, these are the
automatic tunnels based on IPv4-compatible IPv6 addresses using the ::<IPv4
address> form of IPv6 address.

6to4 tunnels—Another form of automatic tunnel defined in RFC 3065. They use an
IPv4 address embedded in the IPv6 address to identify the tunnel endpoint.

Intra-site Automatic Tunnel Addressing Protocol (ISATAP) tunnels—ISATAP tun-
nels are a mechanism much like 6to4 tunneling, but for local site (campus)
networks. An ISATAP address uses a special prefix and the IPv4 address to
identify the endpoint.

The differences between the 6to4 tunnel and the ISATAP tunnel address are shown
in Figure 9.9.

128 bits

16 bits 32 bits

32 bits64 bits

Subnet Prefix 0005EFE IPv4 Address

32 bits

16 bits 64 bits

Interface IDSubnet ID

(a)

(b)

001000000000000010
2002: ...

IPv4 Address

FIGURE 9.9

The differences between 6to4 and ISATAP tunnel addressing, showing how the 128 bits of the
IPv6 address are structured in each case. (a) 6to4 tunneling address format (b) ISATAP tunneling
address format

CHAPTER 9 Forwarding IP Packets 255

TRANSITION CONSIDERATIONS
Routers occupy a key position during the transition period between IPv4 and
IPv6. There are still a lot of routers, mostly older ones, that do not handle IPv6 or
understand only the ::<IPv4 address> form of IPv6 address. How will IPv4 and IPv6
routers and hosts interoperate?

A transition plan has been put in place and contains some distinct terminology that
is new. The IPv4 to IPv6 transition plan defi nes the following terms for nodes:

■ IPv4-only Node—A host or router that implements only IPv4.
■ IPv6/IPv4 (dual) Node—A host or router that implements both

IPv4 and IPv6.
■ IPv6-only Node—A host or router that implements only IPv6.
■ IPv6 Node—A host or router that implements IPv6. Both IPv4/IPv6 dual

nodes and IPv6-only nodes are included in this category.
■ IPv4 Node—A host or router that implements IPv4. Both IPv4/IPv6 dual

nodes and IPv4-only nodes are included in this category.

In addition, the plan defi nes three types of addresses:

1. IPv4-compatible IPv6 address—An address assigned to an IPv6 node that can
be used in both IPv6 and IPv4 packets. The ::<IPv4 address> format is used for
this type of IP address. For example, an address such as ::10.10.11.66 is used
when there is no IPv6 router available.

2. IPv4-mapped IPv6 address—An address assigned to an IPv4-only node rep-
resented as an IPv6 address. These addresses always identify IPv4-only nodes,
never IPv4/IPv6 or IPv6-only nodes. These are provided when an IPv6 applica-
tion requests the host name for a node with an IPv4 address only. For example,
::FFFF:10.10.12.166 is an IPv4-mapped IPv6 address.

3. IPv6-only address—An address globally assigned to any IPv4/IPv6 or IPv6-only
node. These addresses never identify IPv4-only nodes.

These terms can be somewhat confusing, but all they mean is that hosts and routers
can be classifi ed either as IPv4 devices, IPv6 devices, or both IPv4 and IPv6 devices.
The IPv4/IPv6 devices are capable of understanding and using both IPv4 and IPv6.
However, the IPv6-only address (an address that has no relationship to an IPv4 address)
can be used in an IPv6/IPv4 device.

256 PART II Core Protocols

QUESTIONS FOR READERS
Figure 9.10 shows some of the concepts discussed in this chapter and can be used to
help you answer the following questions.

1. Which router, based on the architecture in the fi gure, is probably a small site
router? Which is probably a large Internet backbone router?

2. Which output interface, based on the routing table shown in the fi gure, will
packets arriving from the directly attached host for IPv4 address 10.10.11.1 use
for forwarding? Assume longest match is used.

3. Which output interface will packets for 10.10.192.10 use? Assume the longest
match is used.

4. Which IPv6 tunneling protocol can be used between the two hosts? How many
bits will be used for the subnet identifi er?

5. Do the routers require IPv6 support to deliver packets between the two hosts?

Router with
NVRAM

and DRAM

Interface 1

Interface 2

Interface 3Router
with RE
and PFE

Host
Supporting
6to4 and
ISATAP
Tunnels

Host
Supporting

6to4
Tunnels

admin@router0> show route
inet.0: 2 destinations, 2 routes (2 active...
10.10.0.0/16 >via interface #1
10.10.64.0/18 >via interface #2
10.10.128.0/18 >via interface #3

FIGURE 9.10

A simple network of routers and hosts, showing architecture, a routing table, and tunnel support.

257

CHAPTER

What You Will Learn
In this chapter, you will learn about UDP, one of the major transport layer protocols
in the TCP/IP stack. We’ll talk about datagrams and the structure of the UDP
header.

You will learn about ports and sockets and how they are used at the transport
layer.

User Datagram Protocol 10

The User Datagram Protocol (UDP) is one the major transport layer protocols that rides
on top of IPv4 or IPv6. Most explorations of the TCP/IP transport layer treat the other
major protocol, the connection-oriented Transmission Control Protocol (TCP) fi rst and
present connectionless UDP later. But the complexities of TCP, and the reasons for these
often sophisticated procedures, are better understood after appreciating the basic con-
nectionless service provided by UDP. In addition, certain concepts that are shared by
both UDP and TCP, such as ports, can be introduced in UDP and so reduce the number
of new ideas that must be covered during TCP discussions to a more manageable level.

The UDP acronym shows the effects of early Internet efforts to distinguish con-
nectionless packet delivery (“It’s a datagram, not a packet!”) from more conventional
connection-oriented schemes in use at the time. The data unit of UDP is not a packet
anyway, but a datagram, the content of a connectionless packet (many authors call IP
packets datagrams as well, but we do not in this book). UDP datagrams have their own
headers, naturally, and the UDP header is about as simple as a header can get. That’s only
to be expected, because UDP operation is also very simple, making UDP ideal for a fi rst
look at end-to-end functions on a network.

In recent years, UDP’s popularity as a transport layer protocol for applications has
been growing. The simple and fast operation of UDP makes it ideal for delay-sensitive
traffi c like voice samples (the digital representation of analog speech), multicast digital
video, and other types of “real-time” traffi c that cannot be resent if lost on the network.
This use of UDP is not as originally intended, and there are other things that need
to be done before UDP is ready for voice and video, but in the true spirit of Internet
 innovation, UDP was adapted for these new circumstances.

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80:205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65459

Wireless
in Home

Solid rules � SONET/SDH
Dashed rules � Gig Ethernet
Note: All links use 10.0.x.y
addressing...only the last
two octets are shown.

FIGURE 10.1

UDP ports and sockets on the Illustrated Network. Note that this chapter mainly uses the Unix-based
hosts on the network to explore UDP.

260 PART II Core Protocols

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80:205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC: 00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

ge-0/0/3

16.2

ge-0/0/3

16.1

Best ISP

AS 65127

Global Public
Internet

CHAPTER 10 User Datagram Protocol 261

UDP is used by many common network applications, including DNS, IPTV streaming
media applications, voice over IP (VoIP), the Trivial File Transfer Protocol (TFTP), and
online games. UDP is required for multicast applications.

UDP PORTS AND SOCKETS
Figure 10.1 shows the hosts on the Illustrated Network that we’ll be using in this
 chapter to explore UDP ports and sockets. We’ll primarily use the Unix-based hosts,
both FreeBSD and Linux.

Let’s look at a simple application of UDP between the lnxclient and lnxserver hosts.
The standard Unix “echo” utility (not the same “echo” program as the application used in
a previous chapter) sends a simple text string from a client to a server using UDP port
7. The server just bounces a UDP datagram back with the same content. But even with
this simple interaction, all of the major points about UDP discussed in this chapter can
be illustrated.

The capture is from lnxserver (10.10.11.66). The server is responding to the

lnxclient (10.10.12.166) request to echo the string “TEST.” The important sections

of the request and response packets relevant to UDP are highlighted.

[root@lnxserver admin]# /usr/sbin/tethereal -V port 7
Capturing on eth0
Frame 1 (60 bytes on wire, 60 bytes captured)
 Arrival Time: May 6, 2008 16:31:30.947137000
 Time delta from previous packet: 0.000000000 seconds
 Time relative to first packet: 0.000000000 seconds
 Frame Number: 1
 Packet Length: 60 bytes
 Capture Length: 60 bytes
Ethernet II, Src: 00:05:85:88:cc:db, Dst: 00:d0:b7:1f:fe:e6
 Destination: 00:d0:b7:1f:fe:e6 (Intel_1f:fe:e6)
 Source: 00:05:85:88:cc:db (Juniper__88:cc:db)
 Type: IP (0x0800)
 Trailer: 0000000000000000000000000000
Internet Protocol, Src Addr: 10.10.12.166 (10.10.12.166), Dst Addr:
10.10.11.66 (10.10.11.66)
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
 0000 00.. = Differentiated Services Codepoint: Default (0x00)
0. = ECN-Capable Transport (ECT): 0
0 = ECN-CE: 0
 Total Length: 32
 Identification: 0x0000
 Flags: 0x04
 .1.. = Don’t fragment: Set
 ..0. = More fragments: Not set
 Fragment offset: 0

262 PART II Core Protocols

 Time to live: 62
 Protocol: UDP (0x11)
 Header checksum: 0x10d2 (correct)
 Source: 10.10.12.166 (10.10.12.166)
 Destination: 10.10.11.66 (10.10.11.66)
User Datagram Protocol, Src Port: 32787 (32787), Dst Port: echo (7)
 Source port: 32787 (32787)
 Destination port: echo (7)
 Length: 12
 Checksum: 0xac26 (correct)
Data (4 bytes)

0000 54 45 53 54 TEST

Frame 2 (46 bytes on wire, 46 bytes captured)
 Arrival Time: May 6, 2008 16:31:30.948312000
 Time delta from previous packet: 0.001175000 seconds
 Time relative to first packet: 0.001175000 seconds
 Frame Number: 2
 Packet Length: 46 bytes
 Capture Length: 46 bytes
Ethernet II, Src: 00:d0:b7:1f:fe:e6, Dst: 00:05:85:88:cc:db
 Destination: 00:05:85:88:cc:db (Juniper__88:cc:db)
 Source: 00:d0:b7:1f:fe:e6 (Intel_1f:fe:e6)
 Type: IP (0x0800)
Internet Protocol, Src Addr: 10.10.11.66 (10.10.11.66), Dst Addr:
10.10.12.166 (10.10.12.166)
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
 0000 00.. = Differentiated Services Codepoint: Default (0x00)
0. = ECN-Capable Transport (ECT): 0
0 = ECN-CE: 0
 Total Length: 32
 Identification: 0x0000
 Flags: 0x04
 .1.. = Don’t fragment: Set
 ..0. = More fragments: Not set
 Fragment offset: 0
 Time to live: 64
 Protocol: UDP (0x11)
 Header checksum: 0x0ed2 (correct)
 Source: 10.10.11.66 (10.10.11.66)
 Destination: 10.10.12.166 (10.10.12.166)
User Datagram Protocol, Src Port: echo (7), Dst Port: 32787 (32787)
 Source port: echo (7)
 Destination port: 32787 (32787)
 Length: 12
 Checksum: 0xac26 (correct)
Data (4 bytes)

0000 54 45 53 54 TEST

CHAPTER 10 User Datagram Protocol 263

The DF bit in the packet is set, and the UDP checksum fi eld is used. Technically,
the UDP checksum is optional, and the client decides whether to use it. The server
responds with a checksum because the client used a checksum in the request. In fact,
Windows XP and FreeBSD do the same.

The UDP checksum was made optional to cut processing on reliable networks like
small LAN segments to a bare minimum. Today, client and server on the same LAN
segment are not very common, and processing the checksum is not a burden for mod-
ern computing devices. Also, UDP checksum calculation can be offl oaded to modern
Ethernet chipsets, so it’s less “expensive” than it used to be. Currently, use of the UDP
checksum is common, and most traditional texts say it “should” be used with IPv4. Use
of the UDP checksum is mandatory with IPv6.

Note that the program uses client UDP port 32787. This is in the range of ports
known as registered ports. We’ll talk about those, and the dynamic port range of
49152 to 65535, later in this chapter. The dynamic port range that a Unix system uses
is a kernel-tunable parameter and can be changed using tweaks to the /etc/sysctl.
conf fi le, but information on exactly how to do it is scarce and beyond the scope of
this book.

We can see the sockets in use on a Linux host by using the netstat –lp command
to display listening sockets. (Although the options imply these are listening ports, it
is the socket information that is displayed.)

root@lnxserver admin]# netstat -lp
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
 PID/Program name
tcp 0 0 *:32768 *:* LISTEN
 1664/
tcp 0 0 localhost.localdo:32769 *:* LISTEN
 1783/xinetd
tcp 0 0 localhost.localdoma:783 *:* LISTEN
 1853/spamd -d -c -a
tcp 0 0 *:sunrpc *:* LISTEN
 1645/
tcp 0 0 *:x11 *:* LISTEN
 2103/X
tcp 0 0 *:ssh *:* LISTEN
 1769/sshd
tcp 0 0 localhost.localdoma:ipp *:* LISTEN
 6813/cupsd
tcp 0 0 localhost.localdom:smtp *:* LISTEN
 1826/
udp 0 0 *:32768 *:*
 1664/
udp 0 0 *:echo *:*
 1923/Echo
udp 0 0 *:sunrpc *:*
 1645/

264 PART II Core Protocols

udp 0 0 *:631 *:*
 6813/cupsd
udp 0 0 localhost.localdoma:ntp *:*
 1800/
udp 0 0 *:ntp *:*
 1800/
Active UNIX domain sockets (only servers)
Proto RefCnt Flags Type State I-Node PID/Program name
Path
unix 2 [ACC] STREAM LISTENING 2663 1939/
/tmp/jd_sockV4
unix 2 [ACC] STREAM LISTENING 2839 2053/
/tmp/.gdm_socket
unix 2 [ACC] STREAM LISTENING 2714 2016/
/tmp/.font-unix/fs7100
unix 2 [ACC] STREAM LISTENING 2542 1872/
/tmp/.iroha_unix/IROHA
unix 2 [ACC] STREAM LISTENING 2849 2103/X
/tmp/.X11-unix/X0
unix 2 [ACC] STREAM LISTENING 2535 1862/gpm
/dev/gpmctl

The output is diffi cult to parse, but we can see our little echo utility (highlighted,
and the second line of the UDP section) patiently waiting for clients on port 7 (the
output identifi es it as the standard “echo” port). UDP, being a stateless protocol, is not
technically in a “listening” state, but that’s what the server socket essentially does. The
asterisks (*:*) mean that communications will be accepted from another IP address
and port.

The command to reveal the same type of information on bsdserver is sockstat.

bsdserver# sockstat
USER COMMAND PID FD PROTO LOCAL ADDRESS FOREIGN ADDRESS
root sendmail 88 4 tcp4 *:25 *:*
root sendmail 88 6 tcp4 *:587 *:*
root sshd 83 4 tcp4 *:22 *:*
root inetd 79 4 tcp4 *:21 *:*
root inetd 79 5 tcp4 *:23 *:*
root syslogd 72 5 udp4 *:514 *:*

USER COMMAND PID FD PROTO LOCAL ADDRESS FOREIGN ADDRESS
root sendmail 88 5 tcp46 *:25 *:*
root sshd 83 3 tcp46 *:22 *:*
root syslogd 72 4 udp6 *:514 *:*
USER COMMAND PID FD PROTO ADDRESS
admin sshd 48218 3 stream sshd[48216]:4
root sshd 48216 4 stream sshd[48218]:3
smmsp sendmail 91 3 dgram syslogd[72]:3
root sendmail 88 3 dgram syslogd[72]:3
root syslogd 72 3 dgram /var/run/log

CHAPTER 10 User Datagram Protocol 265

The little “echo” port is not listed because it is not running on this host. Note that
the syslogd process in FreeBSD listens on both the UDP and TCP ports (in this case,
port 514) for clients.

What about Windows XP? The command here is netstat –a (all), but be prepared
to be surprised. Windows hosts listen to a larger number of sockets than Unix systems.
It depends on exactly what the system is doing, but even on our “quiet” test network,
winsrv2 has 25 TCP and 19 UDP processes waiting to spring into action. They range
from Netbios (an old IBM and Microsoft LAN protocol) to Microsoft-specifi c functions.
Heavily loaded systems have even higher numbers.

What about looking at UDP with IPv6? It’s not really necessary. We are now high
enough in the TCP/IP protocol stack not to worry about differences between IPv4 and
IPv6. (In practical terms, we still have to worry about DNS a bit, but we’ll talk about
that in Chapter 19.) With the exception of the checksum use and something called the
pseudo-header, UDP is the same in both.

WHAT UDP IS FOR
UDP was defi ned in RFC 768 and refi ned in RFC 1122. All implementations must
 follow both RFCs to make interoperability reliable, and all do. UDP uses IP protocol
ID 17. Any IPv4 or IPv6 packet received with 17 in the protocol ID fi eld is given to
the local UDP service.

UDP is defi ned as stateless (no session information is kept by hosts) and unreliable
(no guarantees of any QoS parameters, not even delivery). This does not mean that
UDP traffi c is somehow lower priority on the network or through routers. It’s not as
if UDP traffi c is routinely tossed by stressed-out routers. It just means that if the appli-
cation using UDP needs to keep track of a session history (“How many datagrams did
you get before that link failed?”) or guaranteed delivery (“I’m not sending any more
until I know if you got the datagrams I sent.”), then the application itself must do it,
because UDP can’t and won’t.

Nevertheless, there is a whole class of applications that use UDP, some almost
 exclusively. These are applications that are invoked to exchange quick, request–
response pairs of messages, such as DNS (“Quick! What IP address goes with www.
example.com?”). These applications could suffer while waiting for all the overhead
that TCP requires to set up a connection between hosts before sending a message.

Multicast allows one source to send a single packet stream to multiple destina-
tions (TCP is strictly a one-source-to-one-destination protocol), so UDP must be used
for multicast data transfer as well. Multicast is not only used with video or audio, but
also in applications such as the Dynamic Host Confi guration Protocol (DHCP).

In other words, UDP is a low-overhead transport for applications that do not need, or
cannot have, the “point-to-point” connections or guaranteed delivery that TCP provides.

Packets carrying UDP traffi c in IPv4 sometimes have the DF (Don’t Fragment) bit
set in the IPv4 header. However, no one should be surprised or upset to fi nd a UDP
datagram riding inside an IPv4 packet without the DF bit set.

266 PART II Core Protocols

THE UDP HEADER
Figure 10.2 shows the UDP header. There are only four fi elds, and the data inside the
datagram (the message) are optional.

The header is only 8 bytes (64 bits) long. First are the 2-byte Source Port fi eld and
the 2-byte Destination Port fi eld. These fi elds are the datagram counterparts of the
source and destination IP addresses at the packet level. But unlike IP addresses, there
is no structure to the port fi elds: All values between 0 and 65,353 are represented as
pure numerics. This does not mean that all port numbers, source and destination, are
the same, however. Port values can be divided into well-known, registered, and dynamic
port numbers.

The Length fi eld gives the length in bytes of the UDP datagram, and includes the
header fi elds along with any data. The minimum length is 8 (the header alone), and the
maximum value is 65,353. However, the achievable maximum UDP datagram lengths
are determined by the size of the send and receive buffers on the host end systems,
which are usually set to around 8000 bytes (although they can be changed).

As already mentioned, hosts are required to handle 576-byte IP packets at a minimum,
but many protocols (the most common being DNS and DHCP) limit the maximum size
of the UDP datagram that they use to 512 bytes or less.

The Checksum fi eld is the most interesting fi eld in the UDP header. This is because
the checksum is not a simple value calculated on the UDP header fi elds and data,
if present. The UDP checksum is computed on what is called the pseudo-header. The
pseudo-header fi elds for IPv4 are shown in Figure 10.3.

The all-zero byte is used to provide alignment of the pseudo-header, and the data
fi eld must be padded to align it with a 16-bit boundary. The 12 bytes of the UDP
pseudo-header are prepended to the UDP datagram, and the checksum is computed on
the whole object. For this computation, the Checksum fi eld itself is set to zero, and the
16-bit result placed in the fi eld before transmission. If the checksum computes to zero,
an all-1s value is sent, and all-1s is not a computable checksum. The pseudo-header
fi elds are not sent with the datagram.

1 byte

Source Port

Datagram Data (optional)

Length (including header) Checksum

1 byte 1 byte 1 byte

Destination Port

FIGURE 10.2

The four UDP header fi elds. Technically, use of the checksum is optional, but it is often used
today.

CHAPTER 10 User Datagram Protocol 267

At the receiver, the value of the Checksum is copied and the fi eld again set to zero.
The checksum is again computed on the pseudo-header and compared to the received
value. If they match, the datagram is processed by the receiving application indicated
by the destination port number. If they do not match, the datagram is silently discarded
(i.e., no error message is sent to the source).

Naturally, using 32-bit IPv4 addresses to compute transport layer checksums
will not work in IPv6, although the procedure is the same. RFC 2460 establishes a
different set of pseudo-header fi elds for IPv6. The IPv6 pseudo-header is shown in
Figure 10.4.

The Next Header value is not always 17 for UDP, because other extension head-
ers could be in use. Length is the length of the upper layer header and the data it
carries.

IPv4 AND IPv6 NOTES
The presence of the IP source and destination address in an upper layer checksum
computation strikes many as a violation of the concept of protocol layer independence.
(The same concern applies to NAT, discussed in Chapter 27.) In fact, a lot of TCP/IP
books mention that including packet level fi elds in the end-to-end checksum helps
assure (when the checksum is correct at the receiver) that the message has not only
made its way to right port, but to the correct system.

The presence of a pseudo-header also shows how late in the development process
that TCP and UDP were separated from IP. Not only that, but the transport layer and
network layer (or, to give them more intuitive names, the end-to-end layer and routing
layer) have always been tightly coupled in any working network.

The use of the UDP checksum is not required for IPv4, but highly recommended.
It is required in IPv6, of course. In IPv4, servers that receive client datagrams with the
checksum fi eld set are supposed to reply using the checksum, but this is not always
enforced. If the IPv4 checksum fi eld is not used, it is set to all 0 bits (recall that all 0
checksums are sent as all-1s).

1 byte 1 byte 1 byte 1 byte

Source IPv4 Address

Destination IPv4 Address

UDP LengthAll 0 byte Protocol (517)

FIGURE 10.3

The UDP IPv4 pseudo-header. These fi elds are used for checksum computation and include
fi elds in the IP header.

268 PART II Core Protocols

1 byte

Source IPv6 Address

1 byte 1 byte 1 byte

Destination IPv6 Address

UDP (Upper Layer Protocol) Length

Next HeaderAll 0 bytes

PORT NUMBERS
Each application running above UDP (and TCP) and IP is indexed by its port number,
allowing for the multiplexing of the IP layer. Just as frames with different types of pack-
ets inside (on Ethernet, IPv4 is 0x0800 and IPv6 is 0x86DD) are multiplexed onto a single
LAN interface, the individual IPv4 or IPv6 packets are multiplexed and distributed by
the protocol number (UDP is IP protocol number 17, and TCP is 6).

The port numbers in turn multiplex and distribute datagrams from applications,
allowing them to share a single UDP or TCP process, which is usually integrated closely
with the operating system. This function of frame Ethertype, packet protocol, and data-
gram port is shown in Figure 10.5. The fi gure shows how IPv4 data for DNS makes its
way from frame through IPv4 through UDP to the DNS application listening on UDP
port 53.

Well-Known Ports
Port numbers can run from 0 to 65353. Port numbers from 0 to 1023 are reserved for
common TCP/IP applications and are called well-known ports. The use of well-known
ports allows client applications to easily locate the corresponding server application
processes on other hosts. For example, a client process wanting to contact a DNS

FIGURE 10.4

The UDP IPv6 pseudo-header. Use of the UDP checksum is not optional in IPv6.

CHAPTER 10 User Datagram Protocol 269

process running on a server must send the datagram to some destination port. The
well-known port number for DNS is 53, and that’s where the server process should
be listening for client requests. These ports are sometimes called “privileged” ports,
although a number of applications that formerly ran in “privileged” mode, such as HTTP
servers, do not run this way anymore except when binding to the port. It should be
noted that it is getting harder and harder to register new applications in the space
below 1023 (these often use registered ports in the range 1024 to 49151).

Ports used on servers are persistent in the sense that they last for a long time, or at
least as long as the application is running. Ports used on clients are ephemeral (“lasting
a short time,” although the term technically means “lasting a day”) in the sense that they
“come and go” as the user runs client applications.

Technically, UDP port numbers are independent from TCP port numbers. In
practice, most of the applications indexed by port numbers are the same in UDP or
TCP (although a few applications can use either protocol), excepting a handful that
are maintained for historical reasons. This does not imply that applications can use
TCP or UDP as they choose. It just means that it’s easier to maintain one list rather
than two. But no matter what port numbers are used, UDP port 1000 is a different

TCP
Applications

UDP
Applications

UDP Process

Echo Service
Domain
Name
Server

7 53

TCP Process

Ethertype 5 0800 for IPv4,
86DD for IPv6

IPV6 Process SegmentProtocol 5 6 for TCP,
17 for UDP

Port 5 53 for DNS,
7 for Echo

Packet Header

Packet

Frame Header

Data

FIGURE 10.5

UDP port multiplexing and distribution, showing how a single IP layer (IPv6 in this case) can be
used by multiple transport protocols and applications.

270 PART II Core Protocols

 application than TCP port 1000, even though both applications might perform the
same function.

Some of the more common well-known port numbers are shown in Table 10.1. In
the table, the UDP and TCP port numbers are identical.

Port numbers above 1023 can be either registered or dynamic (also called private
or non-reserved). Registered ports are in the range 1024 to 49151. Dynamic ports are in
the range 49152 to 65535. As mentioned, most new port assignments are in the range
from 1024 to 49151.

Registered port numbers are non–well-known ports that are used by vendors for
their own server applications. After all, not every possible application capability will
be refl ected in a well-known port, and software vendors should be free to innovate. Of
course, if another vendor chooses the same port number for a server process, and they
are run on the same system, there would be no way to distinguish between these two
seemingly identical applications.

■ Well-known ports—Ports in the range 0 to 1023 are assigned and controlled.

■ Registered ports—Ports in the range 1024 to 49151 are not assigned or controlled,
but can be registered to prevent duplication.

■ Dynamic ports—Ports in the range 49152 to 65535 are not assigned, controlled,
or registered. They are used for temporary or private ports. They are also known as
private or non-reserved ports. Clients should choose ephemeral port numbers from
this range, but many systems do not.

Table 10.1 Some Well-Known Ports Used by UDP and TCP Services and Functions

Port Number Service Meaning

7 Echo Used to echo data back to the sender

9 Discard Used to discard data at receiver

13 Daytime Reports time information in user-friendly format

17 Quote Returns a “quote of the day” (rarely used today)

19 Chargen Character generator

53 DNS Domain Name Service

67 DHCP server Server port used to send confi guration i nformation

68 DHCP client Client port used to receive confi guration information

69 TFTP Trivial fi le transfer

161 SNMP Used to receive network management queries

162 SNMP traps Used to receive network problem reports

1011–1023 Reserved Reserved for future use

CHAPTER 10 User Datagram Protocol 271

Vendors can register their application’s ports with ICANN. Other software vendors
are supposed to respect these registered values and register their own server appli-
cation port numbers from the pool of unused values. Some registered UDP and TCP
 protocol numbers are shown in Table 10.2.

The private, or dynamic, port numbers are used by clients and not servers. Data-
grams sent from a client to a server are typically only sent to well-known or registered
ports (although there are exceptions). Server applications are usually long lived, while
client processes come and go as users run them. Client applications therefore are free
to choose almost any port number not used for some other purpose (hence the term
“dynamic”), and many use different source port numbers every time they are run. The
server has no trouble replying to the proper client because the server can just reverse
the source and destination port numbers to send a reply to the correct client (assuming
the IP address of the client is correct).

All TCP/IP implementations must know the range of well-known, registered, and
private ports when choosing a port number to use. Unix systems hold this informa-
tion is the /etc/services fi le. Windows users can fi nd this C:\%SystemRoot%\system32\
drivers\etc\SERVICES fi le, where %SystemRoot% will be automatically referred to a
folder such as WinNT or WINDOWS. Most ports are the same for UDP or TCP, but some are
unique to one or the other. For example, FTP control uses TCP port 21.

Table 10.2 Selected Registered UDP and TCP Ports with Service
and Brief Description of Meaning

Port Number Service Brief Description of Use

1024 Reserved Reserved for future use

1025 Blackjack Network version of blackjack

1026 CAP Calendar access protocol

1027 Exosee ExoSee

1029 Solidmux Solid Mux Server

1102 Adobe 1 Adobe Server 1

1103 Adobe 2 Adobe Server 2

44553 Rbr-debug REALBasic Remote Debug

46999 Mediabox MediaBox Server

47557 Dbbrowse Databeam Corporation

48620–49150 Unassigned These ports have not been
registered

49151 Reserved Reserved for future use

272 PART II Core Protocols

Here is the beginning of the fi le from winsvr2:

Copyright (c) 1993-1999 Microsoft Corp.
#
This file contains port numbers for well-known services defined by IANA
#
Format:
#
<service name> <port number>/<protocol> [aliases...] [#<comment>]
#

echo 7/tcp
echo 7/udp
discard 9/tcp sink null
discard 9/udp sink null
systat 11/tcp users #Active users
systat 11/tcp users #Active users
daytime 13/tcp
daytime 13/udp
qotd 17/tcp quote #Quote of the day
qotd 17/udp quote #Quote of the day
chargen 19/tcp ttytst source #Character generator
chargen 19/udp ttytst source #Character generator
ftp-data 20/tcp #FTP, data
ftp 21/tcp #FTP. control
telnet 23/tcp
[many more lines not shown...]

For the latest global list of well-known, registered, and private port numbers, see
www.iana.org/assignments/port-numbers. The port numbers are the same for IPv4
and IPv6.

The Socket
The combination of IPv4 or IPv6 address and port numbers forms an abstract concept
called a socket. We’ve mentioned the socket concept briefl y before, and will do so
again and again in later chapters. The socket concept is important for many reasons,
and a later chapter will explore some of them more completely. For now, all that is
important to mention is that, for each client–server interaction, there is a socket on
each host at the endpoints of the network. The sockets at each end uniquely identify
that particular client–server interaction, although the same sockets can be used for
subsequent interactions.

Sockets are usually written in IPv4 and IPv6 by adding a colon (:) to the IP address,
although sometimes a dot (.) is used instead. In IPv6, it is also necessary to add brack-
ets to avoid confusion with the :: notation, such as in [FC00:490:f100:1000::1]:80.
A UDP socket on lnxclient, for example, would be 10.10.12.166:17, while one on
bsdserver would be 10.10.12.77:17.

CHAPTER 10 User Datagram Protocol 273

UDP OPERATION
The delivery of UDP datagrams is by no means certain. The lack of an expected
response on the part of a server to a UDP client request is handled by a simple timeout.
Responses are not always expected, as might be the case with streaming audio and
video. The client might resend the datagram, but in many cases this might not be the
best strategy.

In some cases, lack of response is not a reliable indication that anything is wrong
with the network or remote host. Routers routinely fi lter out unwanted packets, and
many do so silently, while others send the appropriate ICMP “administratively prohib-
ited” message.

In general, there are fi ve major possible results when an application sends a UDP
request, shown in Figure 10.6. Note that any of the replies can be lost on the way back
to the sender, generating a timeout.

UDP OVERFLOWS
We’ve looked at UDP as a sort of quick-and-dirty request–response interaction between
hosts over a network. Delivery is not guaranteed, but neither is an important network
property called fl ow control. A lot of nonsense has been written about fl ow con-
trol, which is a very simple idea. It just means that no sender should ever be able to

Action

UDP request
sent to server

UDP request
sent to server

UDP request
sent to server

UDP request
sent to server

UDP request
sent to server

UDP request
sent to server

Condition

Server
available

Server host
does not exist

Port is blocked by
firewall/router

Port is blocked
by silent

firewall/router

Reply is lost on
way back

Port is closed
on server

Outcome

Sender gets ICMP
“Port unreachable”

message

Sender gets
UDP reply from

server

Sender gets ICMP
“Port unreachable—

Administrative
prohibited”message

Sender gets ICMP
“Host unreachable”

message

(timeout)

(timeout)

FIGURE 10.6

UDP protocol actions, showing the request–reply outcomes.

274 PART II Core Protocols

 overwhelm a receiver with traffi c. In other words, receivers must have a way to tell
senders to slow down. UDP, of course, has no such mechanism.

The confusion over fl ow control often comes from treating fl ow control as a syn-
onym for a related concept called congestion control. While fl ow control is strictly a
local property of individual senders and receivers, congestion control is a global prop-
erty of the network. No sender overwhelms a receiver: There’s just too much traffi c in
the router network for things to work properly.

Congestion control often uses fl ow control to accomplish its goals (source quench
was a not-too-sophisticated mechanism). There’s not much else a router can use other
than fl ow control to tell senders to shut up for a while. But that’s no excuse for treating
the two as one and the same.

What has this to do with UDP? Well, it is possible for UDP receivers’ buffers, which
are usually fi xed, to overfl ow with unexpected UDP datagrams and be forced to discard
traffi c. Most UDP implementations include a way to display “UDP socket overfl ows” or
discarded UDP datagrams.

But what if an application needs guaranteed delivery, sequencing, and fl ow control
to work properly, and we don’t want to add these to the application? Files cannot use
quick request–response messages to transfer themselves over a network. That’s the job
of TCP, which is the topic of the next chapter.

CHAPTER 10 User Datagram Protocol 275

This page intentionally left blank

QUESTIONS FOR READERS
Figure 10.7 shows some of the concepts discussed in this chapter and can be used to
help you answer the following questions.

1. Which UDP header fi eld does UDP use for demultiplexing?

2. What is UDP’s only attempt at error control?

3. A socket is comprised of which two TCP/IP components?

4. What is the registered port range? Is this assigned or controlled?

5. What is the dynamic or private port range? Are these assigned or controlled?

1 byte 1 byte 1 byte 1 byte

Source Port

Length (including header)

Datagram Data (optional)

(a)

Destination Port

Checksum

(b)

1 byte 1 byte 1 byte 1 byte

Source IPv4 Address

Destination IPv4 Address

UDP LengthAll 0 byte Protocol (517)

FIGURE 10.7

The UDP header (a) and pseudo-header (b) fi elds for IPv4.

277

CHAPTER

What You Will Learn
In this chapter, you will learn about the TCP transport layer protocol, which is
the connection-oriented, more reliable companion of UDP. We’ll talk about all
the fi elds in the TCP header (which are many) and how TCP’s distinctive three-way
handshake works.

You will learn how TCP operates during the data transfer and disconnect phase,
as well as some of the options that have been established to extend TCP’s use for
today’s networking conditions.

Transmission Control
Protocol 11

The Transmission Control Protocol (TCP) is as complex as UDP is simple. Some of the
same concepts apply to both because both TCP and UDP are end-to-end protocols.
Sockets and ports, well-known, dynamic, and private, apply to both. TCP is IP protocol
6, but the ports are usually the same as UDP and run from 0 to 65,535. The major dif-
ference between UDP and TCP is that TCP is connection oriented. And that makes all
the difference.

Internet specifi cations variously refer to connections as “virtual circuits,” “fl ows,”
or “packet-switched services,” depending on the context. These subtle variations are
unnecessary for this book, and we simply use the term “connection.” A connection is
a logical relationship between two endpoints (hosts) on a network. Connections can
be permanent (although the proper term is “semipermanent”) or on demand (often
called “switched”). Permanent connections are usually set up by manual confi guration
of the network nodes. (On the Internet, this equates to a series of very specifi c static
routes.) On-demand connections require some type of signaling protocol to estab-
lish connections on the fl y, node by node through the network from the source (the
“caller”) host to the destination (the “callee”) host.

Permanent connections are like intercoms: You can talk right away or at any time
and know the other end is there. However, you can only talk to that specifi c endpoint
on that connection. On-demand connections are like telephone calls: You have to wait
until the other end “answers” before you talk or send any information, but you connect
to (call) anyone in the world.

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80:205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65459

Wireless
in Home

Solid rules � SONET/SDH
Dashed rules � Gig Ethernet
Note: All links use 10.0.x.y
addressing...only the last
two octets are shown.

FIGURE 11.1

TCP client–server connections, showing that this chapter uses a client and server pair on the
same LAN.

280 PART II Core Protocols

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80:205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC: 00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

ge-0/0/3

16.2

ge-0/0/3

16.1

Best ISP

AS 65127

Global Public
Internet

CHAPTER 11 Transmission Control Protocol 281

TCP AND CONNECTIONS
As much as router discussions become talks about IP packets and headers, host discus-
sions tend to become talks about TCP. However, a lot of the demonstrations involving
TCP revolve around things that can go wrong. What happens if an acknowledgment
(ACK) is lost? What happens when two hosts send almost simultaneous connection
requests (SYN) to open a connection? With the emphasis on corner cases, many pages
written on TCP become exercises in exceptions. Yet there is much to be learned about
TCP just by watching it work in a normal, error-free environment.

Instead of watching to check whether TCP recovers from lost segments (it does),
we’ll just capture the sequence of TCP segments used on various combinations of
the three operating system platforms and see what’s going on. Later, we’ll use an FTP
data transfer between wincli2 and bsdserver (both on LAN2) to look at TCP in action.
In many ways it is an odd protocol, but we’ll only look at the basics and examine FTP
in detail in a later chapter. Figure 11.1 shows these hosts on the network.

As before, we’ll use Ethereal to look at frames and packets. There is also a utility
called tcpdump, which is bundled with almost every TCP/IP implementation. The major
exception, as might be expected, is Windows. The Windows version, windump, is not
much different than our familiar Ethereal, so we’ll just use Ethereal to capture our Win-
dows TCP sessions. Because TCP operation is complicated, let’s look at some details of
TCP operation before looking at how TCP looks on the Illustrated Network.

THE TCP HEADER
The TCP header is the same for IPv4 and IPv6 and is shown in Figure 11.2. We’ve
already talked about the port fi elds in the previous chapter on UDP. Only the features
unique to TCP are described in detail.

Source and destination port—In some Unix implementations, source port num-
bers between 1024 and 4999 are called ephemeral ports. If an application
does not specify a source port to use, the operating systems will use a source
port number in this range. This range can be expanded and changed (but not
always), and 49,152 through 65,535 is more in line with current standards. Use
of ephemeral ports impacts firewall use and limits the number of connections
a host can have open at any one time.

Sequence number—Each new connection (re-tries of failed connections do not
count) uses a different initial sequence number (ISN) as the basis for tracking
segments. Windows uses a very simple time-based formula to compute that
ISN, while Unix ISNs are more elaborate (ISNs can be spoofed by hackers).

Acknowledgment number—This number must be greater than or equal to zero
(even a TCP SYN consumes one sequence number) except for the all 1’s ISN.
 All segments on an established connection must have this bit set. If there is no

282 PART II Core Protocols

actual data in the received segment, the acknowledgment number increments
by 1. (Every byte in TCP is still counted, but that’s not all that contributes to
the sequence number field.)

Header length—The TCP header length in 4-byte units.

Reserved—Four bits are reserved for future use.

ECN flags—The two explicit congestion notification (ECN) bits are used to tell
the host when the network is experiencing congestion and send windows
should be adjusted.

URG, ACK, PSH, RST, SYN, FIN—These six single-bit fields (Urgent, Acknowledg-
ment, Push, Reset, Sync, and Final) give the receiver more information on how
to process the TCP segment. Table 11.1 shows their functions.

Window size—The size of receive window that the destination host has set. This
field is used in TCP flow control and congestion control. It should not be set
to zero in an initial SYN segment.

Checksum—An error-checking field on the entire TCP segment and header as
well as some fields from the IP datagram (the pseudo-header). The fields are

1 byte

32 bits

H
e
a
d
e
r

1 byte

Source Port

Sequence Number

Acknowledgment Number

Window SizeRESV
E
C
N

E
C
N

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Header
Length

TCP Checksum

DATA (application message)

Options Field (variable length, maximum 40 bytes, 0 padded to 4-byte multiple)

Urgent Pointer

Destination Port

1 byte 1 byte

FIGURE 11.2

The TCP header fi elds. Note that some fi elds are a single bit wide, and others, like the options
fi eld, can be up to 40 bytes (320 bits) long.

CHAPTER 11 Transmission Control Protocol 283

the same as in UDP. If the checksum computed does not match the received
value, the segment is silently discarded.

Urgent pointer—If the URG control bit is set, the start of the TCP segment con-
tains important data that the source has placed before the “normal” contents
of the segment data field. Usually, this is a short piece of data (such as CTRL-C).
This field points to the first nonurgent data byte.

Options and padding—TCP options are padded to a 4-byte boundary and can be
a maximum of 40 bytes long. Generally, a 1-byte Type is followed by a 1-byte
Length field (including these initial 2 bytes), and then the actual options. The
options are listed in Table 11.2.

Table 11.1 TCP Control Bits by Abbreviation and Function

Bit Function

URG If set, the Urgent Pointer fi eld value is valid (often resulting from an interrupt-like
CTRL-C). Seldom used, but intended to raise the priority of the segment.

ACK If set, the Acknowledgment Number fi eld is valid.

PSH If set, the receiver should not buffer the segment data, but pass them directly to the
application. Interactive applications use this, but few others.

RST If set, the connection should be aborted. A favorite target of hackers “hijacking” TCP
connections, a series of rules now govern proper reactions to this bit.

SYN If set, the hosts should synchronize sequence numbers and establish a connection.

FIN If set, the sender had fi nished sending data and initiated a close of the connection.

Table 11.2 TCP Option Types, Showing Abbreviation (Meaning), Length, and RFC
in Which Established

Type Meaning Total Length and Description RFC

0 EOL 1 byte, indicates end of option list (only used if end of
options is not end of header)

793

1 NOP 1 byte, no option (used as padding to align header with
Header-Length Field)

793

2 MSS 4 bytes, the last 2 of which indicate the maximum payload
that one host will try to send another. Can only appear in
SYN and does not change.

793
879

284 PART II Core Protocols

TCP MECHANISMS
It might not be obvious why TCP connections should be such a complication. One of
the reasons is that TCP adds more to connectionless IP than connection capability. The
TCP service also provides aspects of what the ISO-RM defi nes as Session Layer services,
services that include the history (a popular term is “state variables”) of the connection
progress. Connections also provide a convenient structure with which to associate
QoS parameters, although every layer of any protocol stack always has some QoS duties
to perform, even if it is only error checking.

Offi cially, TCP is a virtual circuit service that adds reliability to the IP layer, reli-
ability that is lacking in UDP. TCP also provides sequencing and fl ow control to the
host-to-host interaction, which in turn provides a congestion control mechanism to the
routing network as a whole (as long as TCP, normally an end-to-end concern, is aware
of the congested condition). The fl ow control mechanism in TCP is a sliding window
procedure that prevents senders from overwhelming receivers and applies in both
directions of a TCP connection.

TCP was initially defi ned in RFC 793, refi ned in RFCs 879, 1106, 1110, and 1323
(which obsoleted RFC 1072 and RFC 1185). RFCs 1644 and 1693 extended TCP to
 support transactions, which can be loosely understood as “connection-oriented

Table 11.2 (continued)

Type Meaning Total Length and Description RFC

 3 WSCALE 3 bytes, the last establishing a multiplicative (scaling) factor.
Supports bit-shifted window values above 65,535.

1072

 4 SACKOK 2 bytes, indicating that selective ACKs are permitted. 2018

 5 SACK Of variable length, these are the selective ACKs. 1072

 6 Echo 6 bytes, the last 4 of which are to be echoed. 1072

 7 Echo reply 6 bytes, the last 4 of which echo the above. 1072

 8 Timestamp 10 bytes, the last 8 of which are used to compute the retrans-
mission timer through the RTT calculation. Makes sure that an
old sequence number is not accepted by the current connection.

1323

 9 POC perm 2 bytes, indicating that the partial order service is permitted. 1693

10 POC profi le 3 bytes, the last carrying 2-bit fl ags. 1693

11 CC 6 bytes, the last 4 providing a segment connection count. 1644

12 CCNEW 6 bytes, the last 4 providing new connection count. 1644

13 CCECHO 6 bytes, the last 4 echoing previous connection count. 1644

CHAPTER 11 Transmission Control Protocol 285

request–response pairs that cannot use UDP.” RFC 3168 added explicit congestion noti-
fi cation (ECN) bits to the TCP header. These bits were “added” by redefi ning bits 6 and
7 in the TOS fi eld of the packet header.

TCP and Transactions
It is important to note that TCP does not use the term “transaction” to describe
those peculiar interactions that require coordinated actions among multiple hosts
on the network. A familiar “transaction” is an accounting process that is not com-
plete until both one account has been debited and another has been credited.
Database transactions are a completely different notion than what a transaction
means in TCP.

But this is not the purpose of transactions for TCP (T/TCP)! TCP “transactions”
are a way to sneak a quick burst of request–response data into an exchange of con-
nection setup segments, similar to the way that UDP works.

TCP headers can be between 20 bytes (typical) and 60 bytes long when options are
used (not often). A segment, which is the content of a TCP data unit, is essentially a por-
tion of the application’s send buffer. As bytes accumulate in the send buffer, they will
exceed the maximum segment size (MSS) established for the connection. These bytes
receive a TCP header and are sent inside an IP packet. There are also ways to “push” a
partially full send buffer onto the network.

At the receiver, the segment is added to a receive buffer until complete or until the
application has enough data to process. Naturally, the amount of data exchanged varies
greatly.

Let’s look at how TCP works and then examine the header fi elds that make it all
happen. It might seem strange to talk about major TCP features before the TCP header
has been presented, but the operation of many of the fi elds in the TCP header depend
on terminology and concepts used during TCP connection and other procedures.

CONNECTIONS AND THE THREE-WAY HANDSHAKE
TCP establishes end-to-end connections over the unreliable, best-effort IP packet ser-
vice using a special sequence of three TCP segments sent from client to server and
back called a three-way handshake. Why three ways? Because packets containing the
TCP segment that ask a server to accept another connection and the server’s response
might be lost on the IP router network, leaving the hosts unsure of exactly what is
going on.

Once the three segments are exchanged, data transfer can take place from host
to host in either direction. Connections can be dropped by either host with a simple

286 PART II Core Protocols

exchange of segments (four in total), although the other host can delay the dropping
until fi nal data are sent, a feature rarely used.

TCP uses unique terminology for the connection process. A single bit called the
SYN (synchronization) bit is used to indicate a connection request. This single bit is
still embedded in a complete 20-byte (usually) TCP header, and other information, such
as the initial sequence number (ISN) used to track segments, is sent to the other host.
Connections and data segments are acknowledged with the ACK bit, and a request to
terminate a connection is made with the FIN (fi nal) bit.

The entire TCP connection procedure, from three-way handshake to data transfer
to disconnect, is shown in Figure 11.3. TCP also allows for the case where two hosts
performs an active open at the same time, but this is unlikely.

This example shows a small fi le transfer to a server (with the server sending 1000
bytes back to the client) using 1000-byte segments, but only to make the sequence
numbers and acknowledgments easier to follow. The whole fi le is smaller than the

CLIENT

Active OPEN

SERVER
Passive OPEN

Client–Server File Transfer Using
1000-byte Segments

OPEN

3-way Handshake
Complete

(sends 1000
bytes back)

(3000 bytes of
window full)

CLOSING

WAIT!

OPEN

Data Transfer
SEQ and ACK

SEQ (ISN) 2000 WIN 5840

SYN SEQ (ISN) 4000 WIN 8760

SEQ 2001 WIN 5840

MSS (OPT)1460

MSS (OPT)1460

SEQ 2001 ACK 4001

SEQ 4001 ACK 3001

ACK 4001SEQ 3001

ACK 4001SEQ 4001

ACK 4001SEQ 5001

ACK 6001(no data)
(Transfer
continues...)

Connection
Release

CLOSING

FIN SEQ 4001 ACK 10001

ACK SEQ 10001 ACK 4002

FIN SEQ 10001 ACK 4002

ACK SEQ 4002 ACK 10002

ACK

SYN

ACK 4001

WAIT!

..

FIGURE 11.3

Client–server interaction with TCP, showing the three connection phases of setup, data transfer,
and release (disconnect).

CHAPTER 11 Transmission Control Protocol 287

server host’s receive window and nothing goes wrong (but things often go wrong in
the real world).

Note that to send even one exchange of a request–response pair inside segments,
TCP has to generate seven additional packets. This is a lot of packet overhead, and the
whole process is just slow over high latency (delay) links. This is one reason that UDP
is becoming more popular as networks themselves become more reliable.

Connection Establishment
Let’s look at the normal TCP connection establishment’s three-way handshake in some
detail. The three messages establish three important pieces of information that both
sides of the connection need to know.

1. The ISNs to use for outgoing data (in order to deter hackers, these should not
be predictable).

2. The buffer space (window) available locally for data, in bytes.

3. The Maximum Segment Size (MSS) is a TCP Option and sets the largest segment
that the local host will accept. The MSS is usually the link MTU size minus the 40
bytes of the TCP and IP headers, but many implementations use segments of 512
or 536 bytes (it’s a maximum, not a demand).

A server issues a passive open and waits for a client’s active open SYN, which in
this case has an ISN of 2000, a window of 5840 bytes and an MSS of 1460 (common
because most hosts are on Ethernet LANs). The window is almost always a multiple
of the MSS (1460 3 4 5 5840 bytes). The server responds with a SYN and declares the
connection open, setting its own ISN to 4000, and “acknowledging” sequence number
2001 (it really means “the next byte I get from you in a segment should be numbered
2001”). The server also established a window of 8760 bytes and an MSS of 1460 (1460 3
6 5 8760 bytes).

Finally, the client declares the connection open and returns an ACK (a segment with
the ACK bit set in the header) with the sequence number expected (2001) and the
acknowledgment fi eld set to 4001 (which the server expects). TCP sequence numbers
count every byte on the data stream, and the 32-bit sequence fi eld allows more than
4 billion bytes to be outstanding (nevertheless, high-speed transports such as Gigabit
 Ethernet roll this fi eld over too quickly for comfort, so special “scaling” mechanisms are
available for these link speeds).

TCP’s three-way handshake has two important functions. It makes sure that both
sides know that they are ready to transfer data and it also allows both sides to agree
on the initial sequence numbers, which are sent and acknowledged (so there is no
mistake about them) during the handshake. Why are the initial sequence numbers so
important? If the sequence numbers are not randomized and set properly, it is possible
for malicious users to hijack the TCP session (which can be reliable connections to a
bank, a store, or some other commercial entity).

288 PART II Core Protocols

Each device chooses a random initial sequence number to begin counting every
byte in the stream sent. How can the two devices agree on both sequence number val-
ues in about only three messages? Each segment contains a separate sequence number
fi eld and acknowledgment fi eld. In Figure 11.3, the client chooses an initial sequence
number (ISN) in the fi rst SYN sent to the server. The server ACKs the ISN by adding one
to the proposed ISN (ACKs always inform the sender of the next byte expected) and
sending it in the SYN sent to the client to propose its own ISN. The client’s ISN could
be rejected, if, for example, the number is the same as used for the previous connection,
but that is not considered here. Usually, the ACK from the client both acknowledges the
ISN from the server (with server’s ISN 1 1 in the acknowledgment fi eld) and the con-
nection is established with both sides agreeing on ISN. Note that no information is sent
in the three-way handshake; it should be held until the connection is established.

This three-way handshake is the universal mechanism for opening a TCP connec-
tion. Oddly, the RFC does not insist that connections begin this way, especially with
regard to setting other control bits in the TCP header (there are three others in addition
to SYN and ACK and FIN). Because TCP really expects some control bits to be used dur-
ing connection establishment and release, and others only during data transfer, hackers
can cause a lot of damage simply by messing around with wild combinations of the six
control bits, especially SYN/ACK/FIN, which asks for, uses, and releases a connection
all at the same time. For example, forging a SYN within the window of an existing SYN
would cause a reset. For this reason, developers have become more rigorous in their
interpretation of RFC 793.

Data Transfer
Sending data in the SYN segment is allowed in transaction TCP, but this is not typical.
Any data included are accepted, but are not processed until after the three-way hand-
shake completes. SYN data are used for round-trip time measurement (an important
part of TCP fl ow control) and network intrusion detection (NID) evasion and inser-
tion attacks (an important part of the hacker arsenal).

The simplest transfer scenario is one in which nothing goes wrong (which, fortu-
nately, happens a lot of the time). Figure 11.4 shows how the interplay between TCP
sequence numbers (which allow TCP to properly sequence segments that pop out of
the network in the wrong order) and acknowledgments allow both sides to detect
missing segments.

The client does not need to receive an ACK for each segment. As long as the estab-
lished receive window is not full, the sender can keep sending. A single ACK covers a
whole sequence of segments, as long as the ACK number is correct.

Ideally, an ACK for a full receive window’s worth of data will arrive at the sender
just as the window is fi lled, allowing the sender to continue to send at a steady rate.
This timing requires some knowledge of the round-trip time (RTT) to the partner host
and some adjustment of the segment-sending rate based on the RTT. Fortunately, both
of these mechanisms are available in TCP implementations.

CHAPTER 11 Transmission Control Protocol 289

What happens when a segment is “lost” on the underlying “best-effort” IP router net-
work? There are two possible scenarios, both of which are shown in Figure 11.4.

In the fi rst case, a 1000-byte data segment from the client to the server fails to arrive
at the server. Why? It could be that the network is congested, and packets are being
dropped by overstressed routers. Public data networks such as frame relay and ATM
(Asynchronous Transfer Mode) routinely discard their frames and cells under certain
conditions, leading to lost packets that form the payload of these data units.

If a segment is lost, the sender will not receive an ACK from the receiving host.
After a timeout period, which is adjusted periodically, the sender resends the last unac-
knowledged segment. The receiver then can send a single ACK for the entire sequence,
covering received segments beyond the missing one.

But what if the network is not congested and the lost packet resulted from a sim-
ple intermittent failure of a link between two routers? Today, most network errors are
caused by faulty connectors that exhibit specifi c intermittent failure patterns that
steadily worsen until they become permanent. Until then, the symptom is sporadic lost
packets on the link at random intervals. (Predictable intervals are the signature of some
outside agent at work.)

Client–Server Response to Lost SegmentsCLIENT SERVER
ACK 3001SEQ 8001

ACK 3001SEQ 8001

ACK 3001SEQ 10001

ACK 3001SEQ 11001

ACK 10001(no data)

ACK 10001(no data)

ACK 14001(no data)

ACK 10001(no data)

ACK 10001(no data)

ACK 3001SEQ 12001

ACK 3001SEQ 13001

ACK 3001SEQ 10001

ACK 3001SEQ 9001
(Where is 8001?)

LOST!

LOST!

(Where is 10001?
Repeat ACK for
100001)

(Ah! There it is...)

(Ah! There it is...)

(Sending data...)

(Thanks!)

(Where’s my
ACK for 8001
and 9001?)

Timeout!
(resend)

(Sending data...)

..

FIGURE 11.4

How TCP handles lost segments. The key here is that although the client might continue to send
data, the server will not acknowledge all of it until the missing segment shows up.

290 PART II Core Protocols

Waiting is just a waste of time if the network is not congested and the lost packet
was the result of a brief network “hiccup.” So TCP hosts are allowed to perform a “fast
recovery” with duplicate ACKs, which is also shown in Figure 11.4.

The server cannot ACK the received segments 11,001 and subsequent ones because
the missing segment 10,001 prevents it. (An ACK says that all data bytes up to the ACK
have been received.) So every time a segment arrives beyond the lost segment, the
host only ACKs the missing segment. This basically tells the other host “I’m still waiting
for the missing 8001 segment.” After several of these are received (the usual number
is three), the other host fi gures out that the missing segment is lost and not merely
delayed and resends the missing segment. The host (the server in this case) will then
ACK all of the received data.

The sender will still slow down the segment sending rate temporarily, but only in
case the missing segment was the result of network congestion.

Closing the Connection
Either side can close the TCP connection, but it’s common for the server to decide just
when to stop. The server usually knows when the fi le transfer is complete, or when the
user has typed logout and takes it from there. Unless the client still has more data to
send (not a rare occurrence with applications using persistent connections), the hosts
exchange four more segments to release the connection.

In the example, the server sends a segment with the FIN (fi nal) bit set, a sequence
number (whatever the incremented value should be), and acknowledges the last data
received at the server. The client responds with an ACK of the FIN and appropriate
sequence and acknowledgment numbers (no data were sent, so the sequence number
does not increment).

The TCP releases the connection and sends its own FIN to the server with the
same sequence and acknowledgment numbers. The server sends an ACK to the FIN
and increments the acknowledgment fi eld but not the sequence number. The connec-
tion is down.

But not really. The “best-effort” nature of the IP network means that delayed dupli-
cated could pop out of a router at any time and show up at either host. Routers don’t
do this just to be nasty, of course. Typically, a router that hangs or has a failed link rights
itself and fi nds packets in a buffer (which is just memory) and, trying to be helpful,
sends them out. Sometimes routing loops cause the same problem.

In any case, late duplicates must be detected and disposed of (which is one reason
the ISN space is 32 bits—about 4 billion—wide). The time to wait is supposed to be
twice as long as it could take a packet to have its TTL go to zero, but in practice this is
set to 4 minutes (making the packet transit time of the Internet 2 minutes, an incred-
ibly high value today, even for Cisco routers, which are fond of sending packets with
the TTL set to 255).

The wait time can be as high as 30 minutes, depending on TCP/IP implementation,
and resets itself if a delayed FIN pops out of the network. Because a server cannot
accept other connections from this client until the wait timer has expired, this often
led to “server paralysis” at early Web sites.

CHAPTER 11 Transmission Control Protocol 291

Today, many TCP implementations use an abrupt close to escape the wait-time
requirement. The server usually sends a FIN to the client, which fi rst ACKs and then
sends a RST (reset) segment to the server to release the connection immediately and
bypass the wait-time state.

FLOW CONTROL
Flow control prevents a sender from overwhelming a receiver with more data than it
can handle. With TCP, which resends all lost data, a receiver that is discarding data that
overfl ows the receive buffers is just digging itself a deeper and deeper hole.

Flow control can be performed by either the sender or the receiver. It sounds
strange to have senders performing fl ow control (how could they know when receiv-
ers are overwhelmed?), but that was the fi rst form of fl ow control used in older
 networks.

Many early network devices were printers (actually, teletype machines, but the
point is the same). They had a hard enough job running network protocols and print-
ing the received data, and could not be expected to handle fl ow control as well. So
the senders (usually mainframes or minicomputers with a lot of horsepower for the
day) knew exactly what kind of printer they were sending to and their buffer sizes. If
a printer had a two-page buffer (it really depended on byte counts), the sender would
know enough to fi re off two pages and then wait for an acknowledgment from the
printer before sending more. If the printer ran out of paper, the acknowledgment was
delayed for a long time, and the sender had to decide whether it was okay to continue
or not.

Once processors grew in power, fl ow control could be handled by the receiver, and
this became the accepted method. Senders could send as fast as they could, up to a
maximum window size. Then senders had to wait until they received an acknowledg-
ment from the receiver. How is that fl ow control? Well, the receiver could delay the
acknowledgments, forcing the sender to slow down, and usually could also force the
sender to shrink its window. (Receivers might be receiving from many senders and
might be overwhelmed by the aggregate.)

Flow control can be implemented at any protocol level or even every protocol layer.
In practice, fl ow control is most often a function of the transport layer (end to end). Of
course, the application feeding TCP with data should be aware of the situation and also
slow down, but basic TCP could not do this.

TCP is a “byte-sequencing protocol” in which every byte is numbered. Although
each segment must be acknowledged, one acknowledgment can apply to multiple seg-
ments, as we have seen. Senders can keep sending until the data in all unacknowledged
segments equals the window size of the receiver. Then the sender must stop until an
acknowledgment is received from the receiving host.

This does not sound like much of a fl ow control mechanism, but it is. A receiver is
allowed to change the size of the receive window during a connection. If the receiver

292 PART II Core Protocols

fi nds that it cannot process the received window’s data fast enough, it can establish
a new (smaller) window size that must be respected by the sender. The receiver can
even “close” the window by shrinking it to zero. Nothing more can be sent until the
receiver has sent a special “window update ACK” (it’s not ACKing new data, so it’s not
a real ACK) with the new available window size.

The window size should be set to the network bandwidth multiplied by the round-
trip time to the remote host, which can be established in several ways. For example, a
100-Mbps Ethernet with a 5-millisecond (ms) round-trip time (RTT) would establish
a 64,000-byte window on each host (100 Mbps 3 5 ms 5 0.5 Mbits 5 512 kbits 5
64 kbytes). When the window size is “tuned” to the RTT this way, the sender should
receive an ACK for a window full of segments just in time to optimize the sending
process.

“Network” bandwidths vary, as do round-trip times. The windows can always shrink
or grow (up to the socket buffer maximum), but what should their initial value be?
The initial values used by various operating systems vary greatly, from a low of 4096
(which is not a good fi t for Ethernet’s usual frame size) to a high of 65,535 bytes. Free-
BSD defaults to 17,520 bytes, Linux to 32,120, and Windows XP to anywhere between
17,000 and 18,000 depending on details.

In Windows XP, the TCPWindowSize can be changed to any value less that 64,240.
Most Unix-based systems allow changes to be made to the /etc/sysctl.conf fi le. When
adjusting TCP transmit and receive windows, make sure that the buffer space is suffi -
cient to prevent hanging of the network portion on the OS. In FreeBSD, this means
that the value of nmbclusters and socket buffers must be greater than the maximum
window size. Most Linux-based systems autotune this based on memory settings.

TCP Windows
How do the windows work during a TCP connection? TCP forms its segments in mem-
ory sequentially, based on segment size, each needing only a set of headers to be added
for transmission inside a frame. A conceptual “window” (it’s all really done with point-
ers) overlays this set of data, and two moveable boundaries are established in this series
of segments to form three types of data. There are segments waiting to be transmitted,
segments sent and waiting for an acknowledgment, and segments that have been sent
and acknowledged (but have not been purged from the buffer).

As acknowledgments are received, the window “slides” along, which is why the
process is commonly called a “sliding window.”

Figure 11.5 shows how the sender’s sliding window is used for fl ow control. (There
is another at the receiver, of course.) Here the segments just have numbers, but each
integer represents a whole 512, 1460, or whatever size segment. In this example, seg-
ments 20 through 25 have been sent and acknowledged, 26 through 29 have been sent
but not acknowledged, and segments 30 through 35 are waiting to be sent. The send
buffer is therefore 15 segments wide, and new segments replace the oldest as the buf-
fer wraps.

CHAPTER 11 Transmission Control Protocol 293

Flow Control and Congestion Control
When fl ow control is used as a form of congestion control for the whole network, the
network nodes themselves are the “receivers” and try to limit the amount of data that
senders dump into the network.

But now there is a problem. How can routers tell the hosts using TCP (which is an
end-to-end protocol) that there is congestion on the network? Routers are not sup-
posed to play around with the TCP headers in transit packets (routers have enough to
do), but they are allowed to play around with IP headers (and often have to).

Routers know when a network is congested (they are the fi rst to know), so they can
easily fl ip some bits in the IPv4 and IPv6 headers of the packets they route. These bits
are in the TOS (IPv4) and Flow (IPv6) fi elds, and the hosts can read these bits and react
to them by adjusting windows when necessary.

RFC 3168 establishes support for these bits in the IP and TCP headers. However,
support for explicit congestion notifi cation in TCP and IP routers is not mandatory,
and rare to nonexistent in routers today. Congestion in routers is usually indicated by
dropped packets.

PERFORMANCE ALGORITHMS
By now, it should be apparent that TCP is not an easy protocol to explore and understand.
This complexity of TCP is easy enough to understand: Underlying network should be
fast and simple, IP transport should be fast and simple as well, but unless every applica-
tion builds in complex mechanisms to ensure smooth data fl ow across the network, the
complexity of networking must be added to TCP. This is just as well, as the data transfer
concern is end to end, and TCP is the host-to-host layer, the last bastion of the network
shielding the application from network operations.

Sliding Window

Data sent and
acknowledged

Data sent and waiting
for acknowledgment

Data to
be sent

Data to
be sent

(Each integer represents a segment of
hundreds or thousands of bytes)

2120 22 23 24 25 26 27 28 29 30 31 32 33 34 35

FIGURE 11.5

TCP sliding window.

294 PART II Core Protocols

To look at it another way, if physical networks and IP routers had to do all that the
TCP layer of the protocol stack does, the network would be overwhelmed. Routers
would be overwhelmed by the amount of state information that they would need to
carry, so we delegate carrying that state information to the hosts. Of course, applica-
tions are many, and each one shouldn’t have to do it all. So TCP does it. By the way,
this consistent evolution away from “dumb terminal on a smart network” like X.25 to
“smart host on a dumb network” like TCP/IP is characteristic of the biggest changes in
networking over the years.

This chapter has covered only the basics, and TCP has been enhanced over the
years with many algorithms to enhance the performance of TCP in particular and the
network in general. ECN is only one of them. Several others exist and will only be men-
tioned here and not investigated in depth.

Delayed ACK—TCP is allowed to wait before sending an ACK. This cuts down
on the number of “stand-alone” ACKs, and lets a host wait for outgoing data
to “piggyback” an acknowledgment onto. Most implementations use a 200-ms
wait time.

Slow Start—Regardless of the receive window, a host computes a second con-
gestion window that starts off at one segment. After each ACK, this window
doubles in size until it matches the number of segments in the “regular”
window. This prevents senders from swamping receivers with data at the start
of a connection (although it’s not really very slow at all).

Defeating Silly Window Syndrome Early—TCP implementations processed
receive buffer data slowly, but received segments with large chunks of data.
Receivers then shrunk the window as if this “chunk” were normal. So windows
often shrunk to next to nothing and remained here. Receivers can “lie” to pre-
vent this, and senders can implement the Nagle algorithm to prevent the send-
ing of small segments, even if PUSHed. (Applications that naturally generate
small segments, such as a remote login, can turn this off.)

Scaling for Large Delay-Bandwidth Network Links—The TCP window-scale
option can be used to count more than 4 billion or so bytes before the sequence
number field wraps. A timestamp option sent in the SYN message helps also.
Scaling is sometimes needed because the Window field in the TCP header is
16 bits long, so the maximum window size is normally 64 kbytes. Larger
 windows are needed for large-delay times, high-bandwidth product links
(such as the “long fat pipes” of satellite links). The scaling uses 3 bytes: 1 for type
(scaling), 1 for length (number of bytes), and 2 for a shift value called S. The
shift value provides a binary scaling factor to be applied to the usual value
in the Window field. Scaling shifts the window field value S bits to the left to
determine the actual window size to use.

Adjusting Resend Timeouts Based on Measured RTT—How long should a sender
wait for an ACK before resending a segment? If the resend timeout is too short,

CHAPTER 11 Transmission Control Protocol 295

resends might clutter up a network slow in relaying ACKs because it is teeter-
ing on the edge of congestion. If it is too long, it limits throughput and slows
recovery. And a value just right for TCP connection over the local LAN might
be much too short for connections around the globe over the Internet. TCP
adjusts its value for changing network conditions and link speeds in a rational
fashion based on measured RTT, how fast the RTT has change in the past.

TCP AND FTP
First we’ll use a Windows FTP utility on wincli2 (10.10.12.222) to grab the 30,000-
byte fi le test.stuff from the server bsdserver (10.10.12.77) and capture the TCP
(and FTP) packets with Ethereal. Both hosts are on the same LAN segment, so the pro-
cess should be quick and error-free.

The session took a total of 91 packets, but most of those were for the FTP data
transfer itself. The Ethereal statistics of the sessions note that it took about 55 seconds
from fi rst packet to last (much of which was “operator think time”), making the average
about 1.6 packets per second. A total of 36,000 bytes were sent back and forth, which
sounds like a lot of overhead, but it was a small fi le. The throughput on the 100 Mbps
LAN2 was about 5,200 bits per second, showing why networks with humans at the
controls have to be working very hard to fi ll up even a modestly fast LAN.

We’ve seen the Ethereal screen enough to just look at the data in the screen shots.
And Ethereal lets us expand all packets and create a PDF out of the capture fi le. This in
turn makes it easy to cut-and-paste exactly what needs to be shown in a single fi gure
instead of many.

For example, let’s look at the TCP three-way handshake that begins the session in
Figure 11.6.

FIGURE 11.6

Capture of three-way handshake. Note that Ethereal sets the “relative” sequence number to zero
instead of presenting the actual ISN value.

296 PART II Core Protocols

The fi rst frame, from 10.10.12.222 to 10.10.12.77, is detailed in the fi gure. The
window size is 65,535, the MSS is 1460 bytes (as expected for Ethernet), and selective
acknowledgments (SACK) are permitted. The server’s receive window size is 57,344
bytes. Figure 11.7 shows the relevant TCP header values from the capture for the initial
connection setup (which is the FTP control connection).

Ethereal shows “relative” sequence and acknowledgment numbers, and these always
start at 0. But the fi gure shows the last bits of the actual hexadecimal values, showing
how the acknowledgment increments the value in sequence and acknowledgment
number (the number increments from 0x...E33A to 0x...E33B), even though no data
have been sent.

Note that Windows XP uses 2790 as a dynamic port number, which is really in the
registered port range and technically should not be used for this purpose.

This example is actually a good study in what can happen when “cross-platform”
TCP sessions occur, which is often. Several segments have bad TCP checksums. Since
we are on the same LAN segment, and the frame and packet passed error checks cor-
rectly, this is probably a quirk of TCP pseudo-header computation and no bits were
changed on the network. There is no ICMP message because TCP is above the IP layer.
Note that the application just sort of shrugs and keeps right on going (which happens
not once, but several times during the transfer). Things like this “non–error error” hap-
pen all the time in the real world of networking.

At the end of the session, there are really two “connections” between wincli2 and
bsdserver. The FTP session rides on top of the TCP connection. Usually, the FTP session
is ended by typing BYE or QUIT on the client. But the graphical package lets the user
just click a disconnect button, and takes the TCP connection down without ending the
FTP session fi rst. The FTP server objects to this breach of protocol and the FTP server
process sends a message with the text, You could at least say goodbye, to the client.
(No one will see it, but presumably the server feels better.)

TCP sessions do not have to be complex. Some are extremely simple. For example,
the common TCP/IP “echo” utility can use UDP or TCP. With UDP, an echo is a simple

Checksum Bad!
(But 3-way handshake
complete anyway...)

OPEN

Passive OPEN
bsdserverwincli2

Active OPEN
(Client port 2790)

OPEN

FTP Handshake Using 1460-byte Segments
SYN SEQ (ISN) ...72d1 WIN 65535

ACK SEQ ...72d2 WIN 65535
ACK ... e33b

SYN SEQ (ISN) ... e33a WIN 57344

MSS (OPT) 1460

MSS (OPT) 1460

FIGURE 11.7

FTP three-way handshake, showing how the ISNs are incremented and acknowledged.

CHAPTER 11 Transmission Control Protocol 297

exchange of two segments, the request and reply. In TCP, the exchange is a 10-packet
sequence.

This is shown in Figure 11.8, which captures the echo “TESTstring” from lnxclient
to lnxserver. It includes the initial ARP request and response to fi nd the server.

Why so many packets? Here’s what happens during the sequence.

Handshake (packets 3 to 5)—The utility uses dynamic port 33,146, meaning
Linux is probably up-to-date on port assignments. The connection has a win-
dow of 5840 bytes, much smaller than the FreeBSD and Windows XP window
sizes. The MMS is 1460, and the exchange has a rich set of TCP options, includ-
ing timestamps (TSV) and windows scaling (not used, and not shown in the
figure).

Transfer (packets 6 to 9)—Note that each ECHO message, request and response, is
acknowledged. Ethereal shows relative acknowledgment numbers, so ACK=11
means that 10 bytes are being ACKed (the actual number is 0x0A8DA551, or
177,055,057 in decimal.

Disconnect (packets 10 to 12)—A typical three-way “sign-off” is used.

We’ll see later in the book that most of the common applications implemented on
the Internet use TCP for its sequencing and resending features.

FIGURE 11.8

Echo using TCP, showing all packets of the ARP, three-way handshake, data transfer, and
 connection release phases.

298 PART II Core Protocols

QUESTIONS FOR READERS
Figure 11.9 shows some of the concepts discussed in this chapter and can be used to
help you answer the following questions.

1. What are the three phases of connection-oriented communications?

2. Which fi elds are present in the TCP header but absent in UDP? Why are they not
needed in UDP?

3. What is the TCP fl ow control mechanism called?

4. What does it mean when the initial sequence and acknowledgment numbers are
“relative”?

5. What is the silly window syndrome? What is the Nagle algorithm?

1 byte

Source Port

1 byte 1 byte 1 byte

Destination Port

Sequence Number

Acknowledgment Number

Header
Length

RESV Control Bits Window Size

TCP Checksum

wincli2
Active OPEN
(Client port 2790)

Urgent Pointer

Options Field (variable length, maximum 40 bytes, 0 padded to 4-byte multiple)

DATA (application message)

H
e
a
d
e
r

FTP Handshake Using 1460-byte Segments bsdserver
Passive OPEN

OPEN

OPEN

SYN SEQ (ISN) ... e33a WIN 57344

MSS (OPT) 1460

ACK SEQ ...72d2 WIN 65535

ACK ... e33b

SYN SEQ(ISN) ...72d1 WIN 65535

MSS (OPT) 1460

3-Way Handshake
Complete

FIGURE 11.9

The TCP header fi elds and three-way handshake example.

299

CHAPTER

What You Will Learn
In this chapter, you will learn about how multiplexing (and demultiplexing) and
sockets are used in TCP/IP. We’ll see how multiplexing allows many applications
can share a single TCP/IP stock process.

You will learn how layer and applications interact to make multiplexing and
the socket concept very helpful in networking. We’ll use a small utility program to
investigate sockets and illustrate the concepts in this chapter.

Multiplexing and Sockets 12

Now that we’ve looked at UDP and TCP in detail, this chapter explores two key
 concepts that make understanding how UDP and TCP work much easier: multiplex-
ing and sockets. Technically, the term should be “multiplexing and demultiplexing,” but
because mixing things together makes little sense unless you can get them back again,
most people just say “multiplexing” and let it go at that.

Why is multiplexing necessary? Most TCP/IP hosts have only one TCP/IP stack pro-
cess running, meaning that every packet passing into or out of the host uses the same
software process. This is due to the fact that the hosts usually have only one network
connection, although there are exceptions. However, a host system typically runs many
(technically, if other systems can access them, the host system is a server). All these
applications share the single network interface through multiplexing.

LAYERS AND APPLICATIONS
Both the source and destination port numbers, each 16 bits long, are included as the
fi rst fi elds of the TCP or UDP segment header. Well-known ports use numbers between
0 and 1023, which are reserved expressly for this purpose. In many TCP/IP implemen-
tations, there is a process (usually inetd or xinetd, the “Internet daemon”) that listens
for all TCP/IP activity on an interface. This process then launches to FTP or other appli-
cation processes on request, using the well-known ports as appropriate.

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80:205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65459

Wireless
in Home

Solid rules � SONET/SDH
Dashed rules � Gig Ethernet
Note: All links use 10.0.x.y
addressing...only the last
two octets are shown.

FIGURE 12.1

Sockets between Linux client and server, showing the devices used in this chapter to illustrate socket
operation.

302 PART II Core Protocols

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80:205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC: 00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

ge-0/0/3

16.2

ge-0/0/3

16.1

Best ISP

AS 65127

Global Public
Internet

CHAPTER 12 Multiplexing and Sockets 303

However, the well-known server port numbers can be statically mapped to their
respective application on the TCP/IP server, and that’s how we will explore them in
this introduction to sockets. With static mapping, the DNS (port number 53) or FTP
(port number 21) server processes (for example) must be running on the server at all
times in order for the server TCP protocol to accept connections to these application
form clients. Things are more complex when both IPv4 and IPv6 are running, but this
chapter considers the situation for IPv4 for simplicity.

This chapter will be a little different than the others. Instead of jumping right in and
capturing packets and then analyzing them, the socket packet capture is actually the
whole point of the chapter. So we’ll save that until last. In the meantime, we’ll develop
a socket-based application to work between the lnxclient (10.10.12.166 on LAN2)
and lnxserver (10.10.11.66 on LAN1), as shown in Figure 12.1.

THE SOCKET INTERFACE
Saying that applications share a single network connection through multiplexing is
not much of an explanation. How does the TCP/IP process determine the source and
destination application for the contents of an arriving segment? The answer is through
sockets. Sockets are the combination of IP address and TCP/UDP port number. Hosts
use sockets to identify TCP connections and sort out UDP request–response pairs, and
to make the coding of TCP/IP applications easier.

The server TCP/IP application processes that “listen” through passive opens for con-
nection requests use well-known port numbers, as already mentioned. The client TCP/
IP application processes that “talk” through active opens and make connection requests
must choose port numbers that are not reserved for these well-known numbers. Serv-
ers listen on a socket for clients talking to that socket. There is nothing new here, but
sockets are more than just a useful concept. The socket interface is the most common
way that application programs interact with the network.

There are several reasons for the socket interface concept and construct. One rea-
son has already been discussed. Suppose there are two FTP sessions in progress to
the same server, and both client processes are running over the same network con-
nection on a host with IP address 192.168.10.70. It is up to the client to make sure
that the two processes use different client port numbers to control the sessions to
the server. This is easy enough to do. If the clients have chosen client port numbers
14972 and 14973, respectively, the FTP server process replies to the two client sockets
as 192.168.10.79:14972 and 192.168.10.70:14973. So the sockets allow simultaneous
fi le transfer sessions to the same client from the same FTP server. If the client sessions
were distinguished only by IP address or port number, the server would have no way
of uniquely identifying the client FTP process. And the FTP server’s socket address is
accessed by all of the FTP clients at the same time without confusion.

Now consider the server shown in Figure 12.2. Here there is a server that has more
than one TCP/IP interface for network access, and thus more than one IP address. Yet
these servers may still have only one FTP (or any other TCP/IP application) server process

304 PART II Core Protocols

running. With the socket concept, the FTP server process has no problem separating
 client FTP sessions from different network interfaces because their socket identifi ers
will differ on the server end. Since a TCP connection is always identifi ed by both the cli-
ent and server IP address and the client and server port numbers, there is no confusion.

This illustrates the sockets concept in more depth, but not the use of the socket
interface in a TCP/IP network. The socket interface forms the boundary between the
application program written by the programmer and the network processes that are
usually bundled with the operating system and quite uniform compared to the myriad
of applications that have been implemented with programs.

Socket Libraries
Developers of applications for TCP/IP networks will frequently make use of a sockets
library to implement applications. These applications are not the standard “bundled”
TCP/IP applications like FTP, but other applications for remote database queries and
the like that must run over a TCP/IP network. The sockets library is a set of program-
ming tools used to simplify the writing of application programs for TCP or UDP. Since
these “custom” applications are not included in the regular application services layer
of TCP/IP, these applications must interface directly with the TCP/IP stack. Of course,
these applications must also exist in the same client–server, active–passive open envi-
ronment as all other TCP/IP applications.

The socket is the programmer’s identifi er for this TCP/IP layer interface. In Unix
environments, the socket is treated just like a fi le. That is, the socket is created, opened,
read from, written to, closed, and deleted, which are exactly the same operations that
a programmer would use to manipulate a fi le on a local disk drive. Through the use of
the socket interface, a developer can write TCP/IP networked client–server applica-
tions without thinking about managing TCP/IP connections on the network.

The programmer can use sockets to refer to any remote TCP/IP application layer
entity. Many developers use socket interfaces to provide “front-end” graphical interfaces

FTP ProcessSocket 1:
172.16.24.17:22

Socket 2:
172.16.43.11:22

172.16.24.17 172.16.43.11

FIGURE 12.2

The concept of sockets applied to FTP. Note how sockets allow a server with two different IP
addresses to access the FTP server process using the same port.

CHAPTER 12 Multiplexing and Sockets 305

to common remote TCP/IP server processes such as FTP. Of course, the developers may
choose to write applications that implement both sides of the client–server model.

The socket can interface with either TCP (called a “stream” socket), UDP (called a
“datagram” socket), or even IP directly (called the “raw” socket). Figure 12.3 shows the
three major types of socket programming interfaces. There are even socket libraries
that allow interfaces with the frames of the network access layer below IP itself. More
details must come from the writers of the sockets libraries themselves, since socket
libraries vary widely in operational specifi cs.

TCP Stream Service Calls
When used in the stream mode, the socket interface supplies the TCP protocol with
the proper service calls from the application. These service calls are few in number,
but enough to completely activate, maintain, and terminate TCP connections on the
TCP/IP network. Their functions are summarized in the following:

OPEN—Either a passive or active open is defined to establish TCP connections.

SEND—Allows a client or server application process to pass a buffer of informa-
tion to the TCP layer for transmission as a segment.

RECEIVE—Prepares a receive buffer for the use of the client or server application
to receive a segment from the TCP layer.

STATUS—Allows the application to locate information about the status of a TCP
connection.

CLOSE—Requests that the TCP connection be closed.

Application Programs

Stream
Interface

Network

Datagram
Interface

Raw Socket
Interface

TCP UDP

IP Layer

FIGURE 12.3

The three socket types. Note that the raw socket interface bypasses TCP and UDP. (The socket
program often builds its own TCP or UDP header.)

306 PART II Core Protocols

ABORT—Asks that the TCP connection discard all data in buffers and terminate
the TCP connection immediately.

These commands are invoked on the application’s behalf by the socket interface,
and therefore are not seen by the application programmer. But it is always good to
keep in mind that no matter how complicated a sockets library of routines might seem
to a programmer, at heart the socket interface is a relatively simple procedure.

THE SOCKET INTERFACE: GOOD OR BAD?
However, the very simplicity of socket interfaces can be deceptive. The price of this
simplicity is isolating the network program developers from any of the details of how
the TCP/IP network actually operates. In many cases, the application programmers
interpret this “transparency” of the TCP/IP network (“treat it just like a fi le”) to mean
that the TCP/IP network really does not matter to the application program at all.

As many TCP/IP network administrators have learned the hard way, nothing could
be further from the truth. Every segment, datagram, frame, and byte that an applica-
tion puts on a TCP/IP network affects the performance of the network for everyone.
Programmers and developers that treat sockets “just like a fi le” soon fi nd out that the
TCP/IP network is not as fast as the hard drive on their local systems. And many appli-
cations have to be rewritten to be more effi cient just because of the seductive transpar-
ency of the TCP/IP network using the socket interface.

For those who have been in the computer and network business almost from the
start, the socket interface controversy in this regard closely mirrors the controversy that
erupted when COBOL, the fi rst “high-level” programming language, made it possible for
people who knew absolutely nothing about the inner workings of computers to be
trained to write application programs. Before COBOL, programmers wrote in a low-level
assembly language that was translated (assembled) into machine instructions. (Some
geniuses wrote directly in machine code without assemblers, a process known as “bare
metal programming.”)

Proponents then, as with sockets, pointed out the effi ciencies to be enjoyed by
 freeing programmers from reinventing the wheel with each program and writing
the same low-level routines over and over. There were gains in production as well—
 programmers who wrote a single instruction in COBOL could rely on the compiler
to generate about 10 lines of underlying assembly language and machine code. Since
programmers all wrote about the same number of lines of code a day, a 10-fold gain in
productivity could be claimed.

The same claims regarding isolation are often made for the socket interface. Freed
from concerns about packet headers and segments, network programmers can con-
centrate instead on the real task of the program and benefi t from similar productivity
gains. Today, no one seriously considers the socket interface to be an isolation liabil-
ity, although similar claims of “isolation” are still heard when programmers today can
 generate code by pointing and clicking at a graphical display in Visual Basic or another
even higher level “language.”

CHAPTER 12 Multiplexing and Sockets 307

The “Threat” of Raw Sockets
A more serious criticism of the socket interface is that it forms an almost perfect tool
for hackers, especially the raw socket interface. Many network security experts do not
look kindly on the kind of abuses that raw sockets made possible in the hands of
 hackers.

Why all the uproar over raw sockets? With the stream (TCP) and datagram (UDP)
socket interfaces, the programmer is limited with regard to what fi elds in the TCP/UDP
or IP header that they can manipulate. After all, the whole goal is to relieve the program-
mer of addressing and header fi eld concerns. Raw sockets were originally intended as
a protocol research tool only, but they proved so popular among the same circle of
trusted Internet programmers at the time that use became common.

But raw sockets let the programmer pretty much control the entire content of the
packet, from header to fl ags to options. Want to generate a SYN attack to send a couple
of million TCP segments with the SYN bit sent one after the other to the same Web
site, and from a phony IP address? This is diffi cult to do through the stream socket, but
much easier with a raw socket. Consequently, this is one reason why you can fi nd and
download over the Internet hundreds of examples using TCP and UDP sockets, but raw
socket examples are few and far between. Not only could users generate TCP and UPD
packets, but even “fake” ICMP and traceroute packets were now within reach.

Microsoft unleashed a storm of controversy in 2001 when it announced support
for the “full Unix-style” raw socket interface in Windows XP. Limited support for raw
sockets in Windows had been available for years, and third-party device drivers could
always be added to Windows to support the full raw socket interface, but malicious
users seldom bestirred themselves to modify systems that were already in use. How-
ever, if a “tool” was available to these users, it would be exploited sooner or later.

Many saw the previous limited support for raw sockets in Windows as a blessing
in disguise. The TCP/UDP layers formed a kind of “insulation” to protect the Internet
from malicious application programs, a protective layer that was stripped away with
full raw socket support. They also pointed out that the success of Windows NT servers,
and then Windows 95/98/Me, all of which lacked full raw socket support, meant that
no one needed full raw sockets to do what needed doing on the Internet. But once full
raw sockets came to almost everyone’s desktop, these critics claimed, hackers would
have a high-volume, but poorly secured, operating system in the hands of consumers.

Without full raw sockets, Windows PCs could not spoof IP addresses, generate TCP
segment SYN attacks, or create fraudulent TCP connections. When taken over by email-
delivered scripts in innocent-looking attachments, these machines could become “zom-
bies” and be used by malicious hackers to launch attacks all over the Internet.

Microsoft pointed out that full raw sockets support was possible in previous edi-
tions of Windows, and that “everybody else had them.” Eventually, with the release of
Service Pack 2 for Windows XP, Microsoft restricted the traffi c that could be sent over
the raw socket interface (receiving was unaffected) in two major ways: TCP data could
not be sent and the IP source address for UDP data must be a valid IP address. These
changes should do a lot to reduce the vulnerability on Windows XP in this regard.

308 PART II Core Protocols

Also, in traditional Unix-based operating systems, access to raw sockets is a privileged
activity. So, in a sense the issue is not to hamper raw sockets, but to prevent unauthor-
ized access to privileged modes of operation. According to this position, all raw socket
restrictions do is hamper legitimate applications and form an impediment to effec-
tiveness and portability. Restrictions have never prevented a subverted machine from
spoofi ng traffi c before Windows XP or since.

Socket Libraries
Although there is no standard socket programming interface, there are some socket inter-
faces that have become very popular for a number of system types. The original socket
interface was developed for the 1982 version of the Berkeley Systems Distribution of
Unix (BSD 4.1c). It was designed at the time to be used with a number of network pro-
tocol architectures, not just TCP/IP alone. But since TCP/IP was bundled with BSD Unix
versions, sockets and TCP/IP have been closely related. A number of improvements have
been made to the original BSD socket interface since 1982. Some people still call the
socket interfaces “Berkeley sockets” to honor the source of the concept.

In 1986, AT&T, the original developers of Unix, introduced the Transport Layer
Interface (TLI). The TLI interface was bundled with AT&T UNIX System V and also sup-
ported other network architectures besides TCP/IP. However, TLI is also almost always
used with TCP/IP network interface. Today, TLI remains somewhat of a curiosity.

WinSock, as the socket programming interface for Windows is called, is a special
case and deserves a section of its own.

THE WINDOWS SOCKET INTERFACE
One of the most important socket interface implementations today, which is not for
the Unix environment at all, is the Windows Socket interface programming library, or
WinSock. WinSock is a dynamic link library (DLL) function that is linked to a Windows
TCP/IP application program when run. WinSock began with a 16-bit version for
 Windows 3.1, and then a 32-bit version was introduced for Windows NT and Windows
95. All Microsoft DLLs have well-defi ned application program interface (API) calls, and
in WinSock these correspond to the sockets library functions in a Unix environment.

It is somewhat surprising, given the popularity of the TCP/IP protocol architecture
for networks and the popularity of the Microsoft Windows operating system for PCs,
that it took so long for TCP/IP and Windows to be used together. For a while, Microsoft
(and the hardcover version of Bill Gates’s book) championed the virtues of multime-
dia CD-ROMs over the joys of surfi ng the Internet, but that quickly changed when the
softcover edition of the book appeared and Microsoft got on the Internet bandwagon
(much to the chagrin of Internet companies like Netscape). In fairness to Microsoft,
there were lots of established companies, such as Novell, that failed to foresee the rise
of the Internet and TCP/IP and their importance in networking. There were several
reasons for the late merging of Windows and TCP/IP.

CHAPTER 12 Multiplexing and Sockets 309

TCP/IP and Windows
First, TCP/IP was always closely associated with the Unix world of academics and
research institutions. As such, Unix (and the TCP/IP that came with it) was valued as an
open standard that was easily and readily available, and in some cases even free. Win-
dows, on the other hand, was a commercial product by Microsoft intended for cor-
porate or private use of PCs. Windows came to be accepted as a proprietary, de facto
standard, easily and readily available, but never for free. Microsoft encouraged develop-
ers to write applications for Windows, but until the release of Windows for Workgroups
(WFW) these applications were almost exclusively “stand-alone” products intended to
run complete on a Windows PC. Even with the release of Windows for Workgroups, the
network interface bundled with WFW was not TCP/IP, but NetBIOS, a network inter-
face for LANs jointly owned by IBM and Microsoft.

Second, in spite of Windows multitasking capabilities (the ability to run more
than one process at a time), Windows used a method of multitasking known as “non-
preemptive multitasking.” In non-preemptive multitasking, a running process had
to “pause” during execution on its own, rather than the operating system taking
control and forcing the application to pause and give other processes a chance to
execute. Unix, in contrast, was a preemptive multitasking environment. With pre-
emptive multitasking, the Unix operating system keeps track of all running pro-
cesses, allocating computer and memory resources so that they all run in an effi cient
manner. This system is characterized by more work for the operating system, but it is
better for all the applications in the long run. Windows was basically a multitasking
GUI built on top of a single-user operating system (DOS).

Sockets for Windows
The pressure that led to the development of the WinSock interface is simple to
relate. Users wanted to hook their Windows-based PCs into the Internet. The Internet
only understands one network protocol, TCP/IP. So WinSock was developed to satisfy
this user need. At fi rst the WinSock interface was used almost exclusively to Internet-
enable Windows PCs. That is, the applications developed in those pre-Web days to use
the WinSock interface were simple client process interfaces to enable Windows users
to Telnet to Internet sites, run FTP client process programs to attach to Internet FTP
servers, and so on. This might sound limited, but before WinSock, Windows users were
limited to dialing into ports that offered asynchronous terminal text interfaces and
performed TCP/IP conversion for Windows users.

There were performance concerns with those early Windows TCP/IP implementa-
tions. The basic problem was the performance of multitasked processes in the Micro-
soft Windows non-preemptive environment. Most TCP/IP processes, client or server,
do not worry about when to run or when to pause, as the Unix operating system
handles that. With Windows applications written for the WinSock DLL, all of the TCP/IP
processes worried about the decision of whether to run or pause, since the Win-
dows operating system could not “suspend” or pause them on its own. This voluntary

310 PART II Core Protocols

 giving up of execution time was a characteristic of Windows, but not of most TCP/IP
 implementations.

Also, Unix workstations had more horsepower than PC architectures in those early
days, and the Unix operating system has had multitasking capabilities from the start. Orig-
inally, Unix required a whole minicomputer’s resources to run effectively. When PCs
came along in the early 1980s, they were just not capable of having enough memory
or being powerful enough to run Unix effectively (a real embarrassment for the mak-
ers of AT&T PCs for a while). By the early 1990s, when the Web came along, early Web
sites often relied on RISC processors and more memory than Windows PCs could even
address in those days.

It is worth pointing out that most of these limitations were fi rst addressed with
Windows 95, the process continued with Windows NT, and fi nally Windows XP and
Vista. Today, no one would hesitate to run an Internet server on a Windows platform,
and many do.

SOCKETS ON LINUX
Any network, large or small, can use sockets. In this section, let’s look at some socket
basics on Linux systems.

We could write socket client and server applications from scratch, but the truth
is that programmers hate to write anything from scratch. Usually, they hunt around
for code that does something pretty close to what they want and modify it for the
occasion (at least for noncommercial purposes). There are plenty of socket exam-
ples available on the Internet, so we downloaded some code written by Michael
J. Donahoo and Kenneth L. Calvert. The code, which comes with no copyright and a
“use-at-your-own-risk” warning, is taken from their excellent book, TCP/IP Sockets in
C (Morgan Kaufmann, 2001).

We’ll use TCP because there should be more effi ciency derived from a connection-
oriented, three-way handshake protocol like TCP than in a simple request–response
protocol like UDP. This application sends a string to the server, where the server
socket program bounces it back. (If no port is provided by the user, the client looks
for well-known port 7, the TCP Echo function port.) First, we’ll list out and compile
my version of the client socket code (TCPsocketClient and DieWithError.c) on
lnxclient. (Ordinarily, we would put all this is its own directory.)

[root@lnxclient admin]# cat TCPsocketClient.c
#include <stdio.h> /* for printf() and fprintf() */
#include <sys/socket.h> /* for socket(), connect(), send(), and recv() */
#include <arpa/inet.h> /* for sockaddr_in and inet_addr() */
#include <stdlib.h> /* for atoi() and exit() */
#include <string.h> /* for memset() */
#include <unistd.h> /* for close() */

#define RCVBUFSIZE 32 /* Size of receive buffer */

CHAPTER 12 Multiplexing and Sockets 311

void ErrorFunc(char *errorMessage); /* Error handling function */

int main(int argc, char *argv[])
{
 int sock; /* Socket descriptor */
 struct sockaddr_in echoServAddr; /* Echo server address */
 unsigned short echoServPort; /* Echo server port */
 char *servIP; /* Server IP address (dotted quad) */
 char *echoString; /* String to send to echo server */
 char echoBuffer[RCVBUFSIZE]; /* Buffer for echo string */
 unsigned int echoStringLen; /* Length of string to echo */
 int bytesRcvd, totalBytesRcvd; /* Bytes read in single recv()
 and total bytes read */

 if ((argc < 3) || (argc > 4)) /* Test for correct number of
arguments */

 {
 fprintf(stderr, "Usage: %s <Server IP> <Echo Word> [<Echo Port>]\n",
 argv[0]);
 exit(1);
 }

 servIP = argv[1]; /* First arg: server IP address (dotted quad) */
 echoString = argv[2]; /* Second arg: string to echo */

 if (argc == 4)
 echoServPort = atoi(argv[3]); /* Use given port, if any */
 else
 echoServPort = 7; /* 7 is the well-known port for the echo

service */

 /* Create a reliable, stream socket using TCP */
 if ((sock = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP)) < 0)
 DieWithError("socket() failed");

 /* Construct the server address structure */
 memset(&echoServAddr, 0, sizeof(echoServAddr)); /* Zero out

structure */
 echoServAddr.sin_family = AF_INET; /* Internet address

family */
 echoServAddr.sin_addr.s_addr = inet_addr(servIP); /* Server

IP address */
 echoServAddr.sin_port = htons(echoServPort); /* Server port */

 /* Establish the connection to the echo server */
 if (connect(sock, (struct sockaddr *) &echoServAddr,

sizeof(echoServAddr)) < 0)
 DieWithError("connect() failed");

 echoStringLen = strlen(echoString); /* Determine input length */

312 PART II Core Protocols

 /* Send the string to the server */
 if (send(sock, echoString, echoStringLen, 0) != echoStringLen)
 DieWithError("send() sent a different number of bytes than expected");

 /* Receive the same string back from the server */
 totalBytesRcvd = 0;
 printf("Received: "); /* Setup to print the echoed string */
 while (totalBytesRcvd < echoStringLen)
 {
 /* Receive up to the buffer size (minus 1 to leave space for
 a null terminator) bytes from the sender */
 if ((bytesRcvd = recv(sock, echoBuffer, RCVBUFSIZE - 1, 0)) <= 0)
 DieWithError("recv() failed or connection closed prematurely");
 totalBytesRcvd += bytesRcvd; /* Keep tally of total bytes */
 echoBuffer[bytesRcvd] = ‘\0’; /* Terminate the string! */
 printf(echoBuffer); /* Print the echo buffer */
 }

 printf("\n"); /* Print a fi nal linefeed */

 close(sock);
 exit(0);
}

[root@lnxclient admin]# cat DieWithError.c
#include <stdio.h> /* for perror() */
#include <stdlib.h> /* for exit() */

void DieWithError(char *errorMessage)
{
 perror(errorMessage);
 exit(1);

}

[root@lnxclie3nt admin]#

The steps in the program are fairly straightforward. First, we create a stream socket,
and then establish the connection to the server. We send the string to echo, wait for
the response, print it out, clean things up, and terminate. Now we can just compile the
code and get ready to run it.

[root@lnxclient admin]# gcc –o TCPsocketClient TCPsocketClient.c DieWithError.c
[root@lnxclient admin]#

Before we run the program with TCPsocketoClient <ServerIPAddress> <StringtoEcho>
<ServerPort>, we need to compile the server portion of the code on lnxserver. The code
in these two fi les is more complex.

CHAPTER 12 Multiplexing and Sockets 313

[root@lnxserver admin]# cat TCPsocketServer.c
#include <stdio.h> /* for printf() and fprintf() */
#include <sys/socket.h> /* for socket(), bind(), and connect() */
#include <arpa/inet.h> /* for sockaddr_in and inet_ntoa() */
#include <stdlib.h> /* for atoi() and exit() */
#include <string.h> /* for memset() */
#include <unistd.h> /* for close() */

#define MAXPENDING 5 /* Maximum outstanding connection requests */

void ErrorFunc(char *errorMessage); /* Error handling function */
void HandleTCPClient(int clntSocket); /* TCP client handling function */

int main(int argc, char *argv[])
{
 int servSock; /* Socket descriptor for server */
 int clntSock; /* Socket descriptor for client */
 struct sockaddr_in echoServAddr; /* Local address */
 struct sockaddr_in echoClntAddr; /* Client address */
 unsigned short echoServPort; /* Server port */
 unsigned int clntLen; /* Length of client address data

structure */

 if (argc != 2) /* Test for correct number of arguments */
 {
 fprintf(stderr, "Usage: %s <Server Port>\n", argv[0]);
 exit(1);
 }

 echoServPort = atoi(argv[1]); /* First arg: local port */

 /* Create socket for incoming connections */
 if ((servSock = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP)) < 0)
 DieWithError("socket() failed");

 /* Construct local address structure */
 memset(&echoServAddr, 0, sizeof(echoServAddr)); /* Zero out

structure */
 echoServAddr.sin_family = AF_INET; /* Internet address

family */
 echoServAddr.sin_addr.s_addr = htonl(INADDR_ANY); /* Any incoming

interface */
 echoServAddr.sin_port = htons(echoServPort); /* Local port */

 /* Bind to the local address */

 if (bind(servSock, (struct sockaddr *) &echoServAddr,
 sizeof(echoServAddr)) < 0)
 DieWithError("bind() failed");

 /* Mark the socket so it will listen for incoming connections */
 if (listen(servSock, MAXPENDING) < 0)
 DieWithError("listen() failed");

314 PART II Core Protocols

 for (;;) /* Run forever */
 {
 /* Set the size of the in-out parameter */
 clntLen = sizeof(echoClntAddr);

 /* Wait for a client to connect */
 if ((clntSock = accept(servSock, (struct sockaddr *) &echoClntAddr,
 &clntLen)) < 0)
 DieWithError("accept() failed");

 /* clntSock is connected to a client! */

 printf("Handling client %s\n", inet_ntoa(echoClntAddr.sin_addr));

 HandleTCPClient(clntSock);
 }
 /* NOT REACHED */
}

[root@lnxserver admin]# cat HandleTCPClient.c
#include <stdio.h> /* for printf() and fprintf() */
#include <sys/socket.h> /* for recv() and send() */
#include <unistd.h> /* for close() */

#define RCVBUFSIZE 32 /* Size of receive buffer */

void DieWithError(char *errorMessage); /* Error handling function */

void HandleTCPClient(int clntSocket)
{
 char echoBuffer[RCVBUFSIZE]; /* Buffer for echo string */
 int recvMsgSize; /* Size of received message */

 /* Receive message from client */
 if ((recvMsgSize = recv(clntSocket, echoBuffer, RCVBUFSIZE, 0)) < 0)
 DieWithError("recv() failed");

 /* Send received string and receive again until end of transmission */
 while (recvMsgSize > 0) /* zero indicates end of transmission */
 {
 /* Echo message back to client */
 if (send(clntSocket, echoBuffer, recvMsgSize, 0) != recvMsgSize)
 DieWithError("send() failed");

 /* See if there is more data to receive */
 if ((recvMsgSize = recv(clntSocket, echoBuffer, RCVBUFSIZE, 0)) < 0)
 DieWithError("recv() failed");
 }
 close(clntSocket); /* Close client socket */
}

[root@lnxserver admin]#

The server socket performs a passive open and waits (forever, if need be) for the
 client to send a string for it to echo. It’s the HandleTCPClient.c code that does the bulk

CHAPTER 12 Multiplexing and Sockets 315

of this work. We also need the ErrorFunc.c code, as before, so we have three fi les to
compile instead of only two, as on the client side.

[root@lnxserver admin]# gcc -o TCPsocketServer TCPsocketServer.c
HandleTCPClient.c DieWithError.c
[root@lnxserver admin]#

Now we can start up the server on lnxserver using the syntax TCPsocketServer

<ServerPort>. (Always check to make sure the port you choose is not in use already!)

[root@lnxserver admin]# . /TCPsocketServer 2005

The server just waits until the client on lnxclient makes a connection and presents a
string for the server to echo. We’ll use the string TEST.

[root@lnxclient admin]# . /TCPsocketClient 10.10.11.66 TEST 2005
Received: TEST
[root@lnxclient admin]#

Not much to that. It’s very fast, and the server tells us that the connection with
lnxclient was made. We can cancel out of the server program.

Handling client 10.10.12.166
^C
[root@lnxserver admin]#

We’ve also used Ethereal to capture any TCP packets at the server while the socket
client and server were running. Figure 12.4 shows what we caught.

So that’s the attraction of sockets, especially for TCP. Ten packets (two ARPs are not
shown) made their way back and forth across the network just to echo “TEST” from
one system to another. Only two of the packets actually do this, as the rest are TCP
connection overhead.

But the real power of sockets is in the details, or lack of details. Not a single line
of C code mentioned creating a TCP or IP packet header, fi eld values, or anything
else. The stream socket interface did it all, so the application programmer can concen-
trate on the task at hand and not be forced to worry about network details.

FIGURE 12.4

The socket client–server TCP stream captured. This is a completely normal TCP connection
accomplished with a minimum of coded effort.

316 PART II Core Protocols

QUESTIONS FOR READERS
Figure 12.5 shows some of the concepts discussed in this chapter and can be used to
help you answer the following questions.

1. In the fi gure, two clients have picked the same ephemeral port for their FTP
connection to the server. What is it about the TCP connection that allows this to
happen all the time without harm?

2. What if the user at the same client PC ran two FTP sessions to the same server
process? What would have to be different to make sure that both TCP control
(and data) connections would not have problems?

3. What is the attraction of sockets as a programming tool?

4. Why can’t the same type of socket interface be used for both TCP and UDP?

5. Are fully supported raw sockets an overstated threat to the Internet and attached
hosts?

Server Socket:
172.16.19.10:22 FTP Server

FTP Client 1:
IP: 192.168.14.76

Port: 50001

FTP Client 2:
IP: 192.168.243.17

Port: 50001

Internet

Application Programs

Stream
Interface

Datagram
Interface

TCP UDP

IP Layer

Network

Raw Socket
Interface

FIGURE 12.5

A socket in an FTP server and the various types of socket programming interfaces.

317

Internet service providers (ISPs) use routers and routing protocols to connect
pieces of the Internet together. This part explores IGPs such as RIP, OSPF, and
IS-IS, and also BGP. It includes a look at multicast routing protocols and MPLS, a
method of IP switching.

■ Chapter 13—Routing and Peering

■ Chapter 14—IGPs: RIP, OSPF, and IS–IS

■ Chapter 15—BGP

■ Chapter 16—Multicast

■ Chapter 17—IP Switching and Convergence

Routing and
Routing
Protocols

PART

III

CHAPTER

What You Will Learn
In this chapter, you will learn about how routing differs from switching, the other
network layer technology. We’ll compare connectionless and connection-oriented
networking characteristics and see how quality of service (QOS) can be sup-
ported on both.

You will learn what a routing protocol is and what they do. We’ll investigate
the differences between interior and exterior routing protocols as the terms apply
to an ISP. We’ll also talk about routing policies and the role they play on the mod-
ern Internet.

Routing and Peering 13

In Chapter 9, we introduced the concept of forwarding packets hop by hop across a
network of interconnected routers and LANs. This process is loosely called “routing,”
and that chapter comprised a fi rst look at routing tables (and the associated forward-
ing tables). In this chapter, we’ll discuss how ISPs manipulate their routing tables with
routing policies to infl uence the fl ow of traffi c on the Internet. This chapter will focus
more closely on the routing tables on hosts. In Chapters 14 and 15, we discuss in more
detail the routing tables and routing policies on the network routers.

This chapter will look at the routing tables on the hosts on the LANs, as shown in
Figure 13.1. But we’ll also discuss, for the fi rst time, how the two ISPs on the network
(called Ace ISP and Best ISP) relate to each other and how their routing tables ensure
that traffi c fl ows most effi ciently between LAN1 and LAN2. For example, it’s obviously
more effective to send LAN1–LAN2 traffi c over the link between P4 and P2 instead of
shuttling onto the Internet from P4 and relying on routers beyond the control of either
Best or Ace ISP to route the packets back to P2. (Of course, traffi c could fl ow from P4
to P7, or even end up at P9 to be forwarded to P7, but this is just an example.) But how
do the routers know how P2 and P4 are connected? More importantly, how do the
routers PE5 and PE1 know how the other routers are connected? What keeps router
PE5 from forwarding Internet-bound traffi c to P9 instead of P4? And, because P9 is also
connected to P4, why should it be a big deal anyway?

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80:205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-0
/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65459

Wireless
in Home

Solid rules � SONET/SDH
Dashed rules � Gig Ethernet
Note: All links use 10.0.x.y
addressing...only the last
two octets are shown.

FIGURE 13.1

The hosts on the LANs have routing tables as well as the routers. The ISPs on the Illustrated Network
have chosen to implement an ISP peering arrangement.

322 PART III Routing and Routing Protocols

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80:205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC: 00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

ge-0/0/3

16.2

ge-0/0/3

16.1

Best ISP

AS 65127

Global Public
Internet

CHAPTER 13 Routing and Peering 323

This chapter will begin to answer these questions, and the next two chapters will
complete the investigation. However, it should be mentioned right away that connec-
tionless routers that route (forward) each packet independently through the network
are not the only way ISPs can connect LANs on the Internet. The network nodes can
be connection-oriented switches that forward packets along fi xed paths set up through
the network nodes from source to destination.

We’ve already discussed connectionless and connection-oriented services at the
transport layer (UDP and TCP). Let’s see what the differences are between connection-
less and connection-oriented services at the network layer.

NETWORK LAYER ROUTING AND SWITCHING
Are the differences between connection-oriented and connectionless networking at
the network layer really that important? Actually, yes. The difference between the way
connectionless router networks handle traffi c (and link and node failures) is a major
reason that IP has basically taken over the entire world of networking.

A switch in modern networking is a network node that forwards packets toward a
destination depending on a locally signifi cant connection identifi er over a fi xed path.
This fi xed path is called a virtual circuit and is set up by a signaling protocol (a switched
virtual circuit, or SVC) or by manual confi guration (a permanent virtual circuit, or
PVC). A connection is a logical association of two endpoints. Connections only need be
referenced, not identifi ed by “to” and “from” information. A data unit sent on “connection
22” can only fl ow between the two endpoints where it is established—there is no need
to specify more. (We’ve seen this already at Layer 2 when we looked at the connection-
oriented PPP frame.) As long as there is no confusion in the switch, connection identi-
fi ers can be reused, and therefore have what is called local signifi cance only.

Packets on SVCs or PVCs are often checked for errors hop by hop and are resent
as necessary from node to node (the originator plays no role in the process). Packet
switching networks offer guaranteed delivery (as least as error-free as possible). The
network is also reliable in the sense that certain performance guarantees in terms of
bandwidth, delay, and so on can be enforced on the connection because packets always
follow the same path through the network. A good example of a switched network is
the public switched telephone network (PSTN). SVCs are normal voice calls and PVCs
are the leased lines used to link data devices, but frame relay and ATM are also switched
network technologies. We’ll talk about public switched network technologies such as
frame relay and ATM in a later chapter.

On the other hand, a router is a network node that independently forwards pack-
ets toward a destination based on a globally unique address (in IP, the IP address)
over a dynamic path that can change from packet to packet, but usually is fairly stable
over time. Packets on router networks are seldom checked for errors hop by hop and
are only resent (if necessary) from host to host (the originator plays a key role in
the process). Packet routing networks offer only “best-effort” delivery (but as error-
free as possible). The network is also considered “unreliable” in the sense that certain

324 PART III Routing and Routing Protocols

 performance guarantees in terms of bandwidth, delay, and so on cannot be enforced
from end to end because packets often follow different paths through the network.
A good example of a router-based network is the global, public Internet.

CONNECTION-ORIENTED AND CONNECTIONLESS NETWORKS
Many layers of a protocol stack, especially the lower layers, offer a choice of connection-
oriented or connectionless protocols. These choices are often independent. We’ve seen
that connectionless IP can use connection-oriented PPP at Layer 2. But what is it that
makes a network connectionless? Not surprisingly, it’s the implantation of the network
layer. IP, the Internet protocol suite’s network layer protocol, is connectionless, so TCP/IP
networks are connectionless.

Connection-oriented networks are sometimes called switched networks, and con-
nectionless networks are often called router-based networks. The signaling protocol
messages used on switched networks to set up SVCs are themselves routed between
switches in a connectionless manner using globally unique addresses (such as tele-
phone numbers). These call setup messages must be routed, because obviously there
are no connection paths to follow yet. Every switched network that offers SVCs must
also be a connectionless, router-based network as well.

One of the major reasons to build a connectionless network like the Internet was
that it was inherently simpler than connection-oriented networks that must route sig-
naling setups messages and forward traffi c on connections. The Internet essentially
handles everything as if it were a signaling protocol message. The differences between
 connection-oriented switched networks and connectionless router networks are
shown in Table 13.1.

Table 13.1 Switched and Connectionless Networks Compared by Major Characteristics

Characteristic Switched Network Connectionless Network

Design philosophy Connection oriented Connectionless

Addressing unit Circuit identifi ers Network and host address

Scope of address Local signifi cance Globally unique

Network nodes Switches Routers

Bandwidth use As allowed by “circuit” Varies with number and size of
frames

Traffi c processing Signaling for path setup Every packet routed independently

Examples Frame relay, ATM, ISDN, PSTN,
most other WANs

IP, Ethernet, most other LANs

CHAPTER 13 Routing and Peering 325

Note that every characteristic listed for a connectionless network applies to the
 signaling network for a switched network. It would not be wrong to think of the Inter-
net as a signaling network with packets that can carry data instead of connection (call)
setup information. The whole architecture is vastly simplifi ed by using the connection-
less network for everything.

The simplifi ed router network, in contrast to the switched network, would auto-
matically route around failed links and nodes. In contrast, connection-oriented networks
lost every connection that was mapped to a particular link or switch. These had to be
re-established through signaling (SVCs) or manual confi guration (PVCs), both of which
involved considerable additional traffi c loads (SVCs) or delays (PVCs) for all affected
users. One of the original aims of the early “Internet” was explicitly to demonstrate that
packet networks were more robust when faced with failures. Therefore, connectionless
networks could be built more cheaply with relatively “unreliable” components and still be
resistant to failure. Today, “best-effort” and “unreliable” packet delivery over the Internet is
much better than any other connection-oriented public data network not so long ago.

Of course, an Internet router has to maintain a list of every possible reachable des-
tination in the world (and so did signaling nodes in connection-oriented networks),
but processors have kept up with the burden imposed by the growth in the scale of
the routing tables. A switch only has to keep track of local associations of two end-
points (connections) currently established. We’ll talk about multiprotocol label switch-
ing (MPLS) in Chapter 17 as an attempt to introduce the effi ciencies of switching into
router-based networking. (MPLS does not really relieve the main burdens of interdo-
main routing, but we will see that MPLS has traffi c engineering capabilities that allow
ISPs to shift the paths that carry this burden.)

In only one respect is there even any discussion about the merits of connection-
oriented networks versus the connectionless Internet. This is in the area of the ability
of connectionless router networks to deliver quality of service (QoS).

Quality of Service
It might seem odd to talk about QoS in a chapter on connectionless Internet routing
and forwarding. But the point is that in spite of the movement to converge all types
of information (voice and video as well as data) onto the Internet, no functional inter-
domain QoS mechanism exists. QoS is at heart a queue management mechanism, and
only by applying these strategies across an entire routing domain will QoS result in any
route optimization at all. Even then, no ISP can impose its own QoS methodology on
any other.

One of the biggest challenges in quality of service (QoS) discussions is that there
is no universal, accepted agreement of just what network QoS actually means. Some
sources defi ne QoS quite narrowly, and others defi ne it more broadly. For the purposes
of this discussion, a broader defi nition is more desirable. We’ll use six parameters in
this book.

326 PART III Routing and Routing Protocols

Our working defi nition of QoS in this book is the “ability of an application to
 specify required values of certain parameters to the network, values without which the
 application will not be able to function properly.” The network either agrees to provide
these parameters for the applications data fl ow, or not. These parameters include things
like minimum bandwidth, maximum delay, and security. It makes no sense to put delay-
sensitive voice traffi c onto a network that cannot deliver delays less than 2 or 3 seconds
one way (voice suffers at delays far less than full seconds), or to put digital, wide-screen
video onto a network of low-bandwidth, dial-up analog connections.

Table 13.2 shows some typical example values that are used often. In some cases, an
array of values is offered to customers as a CoS.

Bandwidth is usually the fi rst and foremost QoS parameters, for the simple rea-
son that bandwidth was for a long time the only QoS parameter that could be deliv-
ered by networks with any degree of consistency. It has also been argued that, given
enough bandwidth (just how much is part of the argument), every other QoS param-
eter becomes irrelevant.

Jitter is just delay variation, or how much the end-to-end network latency varies
from time to time due to effects such as network queuing and link failures, which cause
alternate routes to be used. Information loss is just the effect of network errors. Some

CoS or QoS?
Should the term for network support of performance parameters be “class of
 service” (CoS) or “quality of service” (QoS)? Many people use the terms inter-
changeably, but in this book QoS is used to mean that parameters can take on
almost any value between maximum and minimum. CoS, on the other hand, estab-
lishes groups of parameters based on real world values (e.g., bandwidth at 10, 100,
or 1000 Mbps with associated delays), and is offered as a “class” to customers (e.g.,
bronze, silver, or gold service).

Table 13.2 The Six QoS Parameters

QoS Parameter Example Values (Typical)

Bandwidth (minimum) 1.5 Mbps, 155 Mbps, 1 Gbps

Delay (maximum) 50-millisecond (ms) round-trip delay, 150-ms delay

Jitter (delay variation) 10% of maximum delay, 5-ms variation

Information loss (error effects) 1 in 10,000 packets undelivered

Security All data streams encrypted and authenticated

CHAPTER 13 Routing and Peering 327

applications can recover from network errors by retransmission and related strategies.
Other applications, most notably voice and video, cannot realistically resend informa-
tion and must deal with errors in other ways, such as the use of forward error correc-
tion codes. Either way, the application must be able to rely on the network to lose only
a limited amount of information, either to minimize resends (data) or to maximize the
quality of the service (voice/video).

Availability and reliability are related. Some interpret reliability as a local network
quality and availability as global quality. In other words, if my local link fails often,
I cannot rely on the network, but global availability to the whole pool of users might
be very good. There is another way that reliability is important in TCP/IP. IP is often
called an unreliable network layer service. This does not imply that the network fails
often, but that, at the IP layer, the network cannot be relied on to deliver any QoS
parameter values at all, not even minimum bandwidth. But keep in mind that a system
built of unreliable components can still be reliable, and QoS is often delivered in just
this fashion.

Security is the last QoS parameter to be added, and some would say that it is the
most important of all.

Many discussions of QoS focus on the fi rst four items on the parameter list. But
reliability and security also belong with the others, for a number of reasons. Security
concerns play a large part in much of IPv6. And reliability can be maximized in IP
routing tables. There are several other areas where security and reliability impact QoS
parameters; the items discussed here are just a few examples.

Service providers seldom allow user application to pick and choose values from
every QoS category. Instead, many service providers will gather the typical values of
the characteristics for voice, video, and several types of data applications (bulk transfer,
Web access, and so on), and bundle these as a class of service (CoS) appropriate for that
traffi c fl ow. (On the other hand, some sources treat QoS and CoS as synonyms.) Usually,
the elements in a CoS suite that a service provider offers have distinctive names, either
by type (voice, video) or characteristic (“gold” level availability), or even in combina-
tion (“silver-level video service”).

The promise of widespread and consistent QoS has been constantly derailed by
the continuing drop in the cost (and availability) of network links of higher and higher
bandwidth. Bandwidth is a well-understood network resource (some would say the
only well-understood network resource), and those who control network budgets
would rather spend a dollar on bandwidth (known effects, low risk, etc.) than on other
QoS schemes such as DiffServ (spotty support, diffi cult to implement, etc.).

HOST ROUTING TABLES
Now that we’ve shown that the Illustrated Network is fi rmly based on connectionless
networking concepts, let’s look at the routing tables (not switching tables) on some
of the hosts. Host routing tables can be very short. When initially confi gured, many of
them have only four types of entries.

328 PART III Routing and Routing Protocols

Loopback—Usually called lo0 on Unix-based systems (and routers), this is the
prefix 127/8 in IPv4 and ::1 in IPv6. Not only used for testing, the loopback
is a stable interface on a router (or host) that should not change even if the
interface addresses do.

The host itself—There will be one entry for every interface on the host with an IP
address. This is a /32 address in IPv4 and a /128 address in IPv6.

The network—Each host address has a network portion that gets its own routing
table entry.

The default gateway—This tells the host which router to use when the network
portion of the destination IP address does not match the network portion of
the source address.

Gateway or Edge Router?
A lot of texts simply say that the term “router” is the new term for “gateway” on the
Internet, but that this old term still shows up in a number of acronyms (such as
IGP). Other sources use the term “gateway” as a kind of synonym for what we’ve
been calling the customer-edge router, meaning a router with only two types of
routing decisions, that is, local or Internet. A DSL “router” is really just a “gateway”
in this terminology, translating between local LAN protocols and service provider
protocols. On the other hand, a backbone router without customer LANs is defi -
nitely a router in any sense of the term.

In this book, we’ll use the terms “gateway” and “router” interchangeably, keep-
ing in mind that the gateway terminology is still used for the entry or egress point
of a particular subnet.

Routing Tables and FreeBSD
FreeBSD systems keep this fundamental information in the /etc/default/rc.conf fi le.
But this information can be manipulated with the ifconfig command, which we’ve used
already. However, interface information does not automatically jump into the routing
table unless the changes are made to the rc.conf fi le. (If the network_interfaces vari-
able is kept to the default of auto, the system fi nds its network interfaces at boot time.)

Let’s use the netstat –nr command to take a closer look at the routing table on
bsdserver.

bsdserver# netstat -nr
Routing tables

Internet:
Destination Gateway Flags Refs Use Netif Expire
default 10.10.12.1 UGSc 1 97 em0
10.10.12/24 link#1 UC 2 0 em0

CHAPTER 13 Routing and Peering 329

10.10.12.1 00:05:85:8b:bc:db UHLW 2 0 em0 335
10.10.12.52 00:0e:0c:3b:88:56 UHLW 0 4 em0 1016
127.0.0.1 127.0.0.1 UH 0 6306 lo0

Internet6:
Destination Gateway Flags Netif Expire
::1 ::1 UH lo0
fe80::%em0/64 link#1 UC em0
fe80::20e:cff:fe3b:8732%em0 00:0e:0c:3b:87:32 UHL lo0
fe80::%xl0/64 link#2 UC xl0
fe80::2b0:d0ff:fec5:9073%xl0 00:b0:d0:c5:90:73 UHL lo0
fe80::%lo0/64 fe80::1%lo0 Uc lo0
fe80::1%lo0 link#4 UHL lo0
ff01::/32 ::1 U lo0
ff02::%em0/32 link#1 UC em0
ff02::%xl0/32 link#2 UC xl0
ff02::%lo0/32 ::1 UC lo0

FreeBSD merges the routing and ARP tables, which is why hardware addresses (and
their timeouts) appear in the output. The C and c fl ags are host routes, and the S is a
static entry.

To manually confi gure an Ethernet interface and add the route to the routing table,
we use the ifconfig and route commands.

bsdserver# ifconfig em0 inet 10.10.12.77/24
bsdserver# route add –net 10.10.12.77 10.10.12.1

Routing and Forwarding Tables
Remember, the routing tables we’re looking at here are tables of routing informa-
tion and mainly for human inspection. Generally, everything the system learns
about the network from a routing protocol is put into the routing table. But not all
of the information is used for packet forwarding.

At the software level, the system creates a forwarding table in a much more
compact and machine-useable format. The forwarding table is used to determine
the output, the next-hop interface (if the system is not the destination). How-
ever, we’ll use the friendly routing tables to illustrate the routing process, as is
normally done.

Routing Tables and RedHat Linux
RedHat Linux systems keep most network confi guration information in the /etc/
sysconfig and /etc/sysconfig/network-scripts directories. The hostname, default gate-
way, and other information are kept in the /etc/sysconfig/network fi le. The Ethernet

330 PART III Routing and Routing Protocols

interface-specifi c information, such as IP address and network mask for eth0, is in the
/etc/sysconfig/network-scripts/ifcfg-eth0 fi le (loopback is in ifcfg-lo0).

Let’s look at the lnxclient routing table with the netstat –nr command.

[root@lnxclient admin]# netstat -nr
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
10.10.12.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
0.0.0.0 10.10.12.1 0.0.0.0 UG 0 0 0 eth0

Oddly, the host address isn’t here. This system does not require a route for the
interface address bound to the interface. The loopback entries are slightly different
as well. Only network entries are in the Linux routing table. If we added a second
 Ethernet interface (eth1) with IPv4 address 172.16.44.98 and a different default router
(172.16.44.1), we’d add that information with the ipconfig and route commands.

[root@lnxclient admin]# ifconfig eth1 172.16.44.98 netmask 255.255.255.0
[root@lnxclient admin]# route add default gw 172.16.44.0 eth1

We’re not running IPv6 on the Linux systems, so no IPv6 information is displayed.

Routing and Windows XP
Windows XP, of course, handles things a little differently. We’ve already used ipconfig
to assign addresses, and Windows XP uses the route print command to display routing
table information, such as on wincli2.

C:\Documents and Settings\Owner>route print
==
Interface List
0x1 MS TCP Loopback interface
0x2 ...00 02 b3 27 fa 8c Intel(R) PRO/100 S Desktop Adapter - Packet
Scheduler Miniport
==
==
Active Routes:
Network Destination Netmask Gateway Interface Metric
 0.0.0.0 0.0.0.0 10.10.12.1 10.10.12.222 20
 10.10.12.0 255.255.255.0 10.10.12.222 10.10.12.222 20
 10.10.12.222 255.255.255.255 127.0.0.1 127.0.0.1 20
 10.255.255.255 255.255.255.255 10.10.12.222 10.10.12.222 20
 127.0.0.0 255.0.0.0 127.0.0.1 127.0.0.1 1
 224.0.0.0 240.0.0.0 10.10.12.222 10.10.12.222 20
 255.255.255.255 255.255.255.255 10.10.12.222 10.10.12.222 20
Default Gateway: 10.10.12.1
==
Persistent Routes:
 None

CHAPTER 13 Routing and Peering 331

The table is an odd mix of loopbacks, multicast, and host and router information.
Persistent routes are static routes that are not purged from the table. We can delete
information, add to it, or change it. If no gateway is provided for a new route, the system
attempts to fi gure it out on its own.

The IPv6 routing table is not displayed with route print. To see that, we need to
use the IPv6 rt command. The table on wincli2 reveals only a single entry for the link-
local–derived IPv6 address of the default router.

C:\Documents and Settings\Owner>ipv6 rt
::/0 -> 5/fe80:5:85ff:fe8b:bcdb pref 256 life 25m52s <autoconf>

This won’t even let us ping the wincli1 system on LAN1, even though we know to
what router to send the IPv6 packets.

C:\Documents and Settings\Owner>ping6 fe80::20c:cff:fe3b:883c

Pinging fe80::20c:cff:fe3b:883c with 32 bytes of data:

No route to destination.
 Specify correct scope-id or use –s to specify source address.
No route to destination.
 Specify correct scope-id or use –s to specify source address.
No route to destination.
 Specify correct scope-id or use –s to specify source address.
No route to destination.
 Specify correct scope-id or use –s to specify source address.

Ping statistics for fe80::20c:cff:fe3b:883c:
 Packets: Sent = 4, Received = 0, Lost = 4 (100% loss)

What’s wrong? Well, we’re using link-local addresses, for one thing. Also, we have
no way to get the routing information known about LAN2 and router CE6 to LAN1
and router CE0. That’s the job of the Interior Gateway Protocols (IGPs), the types of
routing protocols that run between ISP’s routers. Why do we need them? Let’s look at
the Internet fi rst, and then we’ll use an IPG in the next chapter so that the IPv6 ping
works.

THE INTERNET AND THE AUTONOMOUS SYSTEM
Before taking a more detailed look at the routing protocols that TCP/IP uses to ensure
that every router knows how to forward packets closer to their ultimate destination,
it’s a good idea to have a fi rm grasp of just what routing protocols are trying to accom-
plish on the modern Internet. The Internet today is composed of interlocking network
pieces, much like a jigsaw puzzle of global proportions. Each piece is called an autono-
mous system (AS), and it’s convenient to think of each ISP as an AS, although this is not
strictly true.

332 PART III Routing and Routing Protocols

Routing protocols do not and cannot blend all these ASs together into a seamless
whole all on their own. Routing protocols allow routers or networks to share adjacency
information with their neighbors. They establish the global connectivity between rout-
ers, within an AS and without, and ASs in turn establish the global connectivity that
characterizes the Internet. Routing policies change the behavior of the routing proto-
cols so AS connectivity is made into what the ISPs want (usually, ISPs add some term
like “AS connectivity is made more effective and effi cient” but many times routing
 policy doesn’t do this, as we’ll see).

Routers are the network nodes of the global public Internet, and they pass IP address
information back and forth as needed. The result is that every router knows how to
reach every IP network (really, the IP prefi x) anywhere in the world, or at least those
that advertise that they are willing to accept traffi c for that prefi x. They also know
when a link or router has failed, and thus other networks might then be (temporarily)
unreachable. Routers can dynamically route around failed links and routers, unless the
destination network is connected to the Internet by only one link or happens to be
right there on the local router.

There are no users on the router itself that originate or read email (as an example),
although routers routinely take on a client or a server role (or both) for confi guration
and administrative purposes. Routers almost always just pass IP packet traffi c through

Routing Protocols and Routing Policies
A routing protocol is run on a router (and can be run on a host) to allow the router
to dynamically learn about its network neighborhood and pass this knowledge on
until every router has built a consistent view of the network “map” and the least
cost (“best”) place to forward traffi c toward any reachable destination. Until the
protocol converges there is always the possibility that some routers do not have
the latest view of the network and might forward packets incorrectly. Actually, it’s
possible that some of the “maps” never converge and that some less-than-optimal
path might be taken. But that need not be a disaster, although the reasons are far
beyond this simple introduction.

A routing policy can be defi ned as “a rule implemented on the router to deter-
mine the handling of routing protocol information.” An example of an ISP’s routing
policy rule is to “accept no routing protocol updates from hosts or routers not
part of this ISP’s network.” This rule, intended to minimize the effects of malicious
users, can be combined with others to create an overall routing policy for the
whole ISP.

The term should not be confused with policy routing. Policy routing is usually
defi ned as the forwarding of packets based not only on destination address, but
also on some other fi elds in the TCP/IP header, especially the IPv4 ToS bits. Con-
fusingly, policy routing can be made more effective with routing policies, but this
book will not deal with policy routing or QoS issues.

CHAPTER 13 Routing and Peering 333

from one interface to another, input port to output port, while trying to ensure that the
packets are making progress through the network and moving one step closer to its
destination. It is said that routers route packets “hop by hop” through the Internet. In a
very real sense, routers don’t care if the packet ever reaches the destination or not: All
the router knows is that if the IP address prefi x is X, that packet goes out port Y.

THE INTERNET TODAY
There is really no such thing as the Internet today. The concept of “the Internet” is a
valid one, and people still use the term all the time. But the Internet is no longer a
thing to be charted and understood and controlled and administered. What we have
is an interlocking grid of ISPs, an ISP “grid-net,” so to speak. Actually, the graph of the
Internet is a bit less organized than this, although ISPs closer to the core have a higher
level of interconnection than those at the edge. This is an interconnected mesh of
ISPs and related Internet-connected entities such as government bureaus and learning
institutions. Also, keep in mind that in addition to the “big-I internet,” there are other
internetworks that are not part of this global, public whole.

If we think of the Internet as a unity, and have no appreciation of actual ISP con-
nectivity, then the role of routing protocols and routing policies on the Internet today
cannot be understood. Today, Internet talk is peppered with terms like peers, aggre-
gates, summaries, Internet exchange points (IXPs), backbones, border routers, edge
routers, and points of presence (POPs). These terms don’t make much sense in the
context of the Internet as a unifi ed network.

The Internet as the spaghetti bowl of connected ISPs is shown in Figure 13.2. There
are large national ISPs, smaller regional ISPs, and even tiny local ISPs. There are also
pieces of the Internet that act as exchange points for traffi c, such as the Network
Access Points NAPs and IXPs. IXPs can by housed in POPs, formal places dedicated for
this purpose, and in various collocation facilities, where the organizations rent fl oor
space for a rack of equipment (“broom closet”) or larger fl oor space for more elaborate
arrangements, such as redundant links and power supplies. The IXPs are often run by
former telephone companies.

Each cloud, except the one at the top of the fi gure, basically represents an ISP’s AS.
Within these clouds, the routing protocol can be an IGP such as OSPF, because it is
presumed that each and every network device (such as the backbone routers) in the
cloud is controlled by the ISP. However, between the clouds, an EGP such as BGP must
be used, because no ISP can or should be able to directly control a router in another
ISP’s network.

The ISPs are all chained together by a complex series of links with only a few hard
and fast rules (although there are exceptions). As long as local rules are followed, as
determined by contract, the smallest ISP can link to another ISP and thus give their
users the ability to participate in the global public Internet. Increasingly, the nature of
the linking between these ISPs is governed by a series of agreements known as peer-
ing arrangements. Peers are equals, and national ISPs may be peers to each other, but

334 PART III Routing and Routing Protocols

treat smaller ISPs as just another customer, although it’s not all that unusual for small
regional ISPs to peer with each other.

Peering arrangements detail the reciprocal way that traffi c is handed off from one
ISP (and that means AS) to another. Peers might agree to deliver each other’s packets
for no charge, but bill non-peer ISPs for this privilege, because it is assumed that the
national ISP’s backbone will be shuttling a large number of the smaller ISPs’ packets.
But the national ISP won’t be using the small ISP much. A few examples of national
ISPs, peer ISPs, and customer ISPs are shown in the fi gure. This is just an example, and
very large ISPs often have plenty of very small customers and some of those will be
attached to more than one other ISP and employ high capacity links. There will also be
“stub AS” networks with no downstream customers.

Millions of PCs and Unix systems act as clients, servers, or both on the Internet.
These hosts are attached to LANs (typically) and linked by routers to the Internet. The
LANs and “site routers” are just “customers” to the ISPs. Now, a customer of even
 moderate size could have a topology similar to that of an ISP with a distinct border,
core, and aggregation or services routers. Although all attached hosts conform to the

High speed Medium speed Low speed

Customer Customer Customer
Customer

Customer

Customer

Customer

CustomerCustomer

Customer

Customer

Customer

Customer

Customer
Customer

Customer

Customer

Heavily interconnected
public peering points

Large, National ISPs

Regional ISPs

Small, Local ISPs

Large ISPs Connect
IXPs, POPs or

Collocation Facilities

Peer of ISP A,
Customer of

ISP B

ISP A ISP B

Customer
of ISP B

FIGURE 13.2

The haphazard way that ISPs are connected on today’s Internet, showing IXPs at the top.
 Customers can be individuals, organizations, or other ISPs.

CHAPTER 13 Routing and Peering 335

client–server architecture, many of them are strictly Web clients (browsers) or Web
 servers (Web sites), but the Web is only one part of the Internet (although probably the
most important one). It is important to realize that the clients and servers are on LANs,
and that routers are the network nodes of the Internet. The number of client hosts
greatly exceeds the number of servers.

The link from the client user to the ISP is often a simple cable or DSL link. In con-
trast, the link from a server LAN’s router to the ISP could be a leased, private line, but
there are important exceptions to this (Metro Ethernet at speeds greater than 10 Mbps
is very popular). There are also a variety of Web servers within the ISP’s own network.
For example, the Web server for the ISP’s customers to create and maintain their own
Web pages is located inside the ISP cloud.

The smaller ISPs link to the backbones of the larger, national ISPs. Some small ISPs
link directly to national backbones, but others are forced for technical or fi nancial rea-
sons to link in a “daisy-chain” fashion to other ISPs, which link to other ISPs, and so on
until an ISP with direct access to an IXP is reached. Peering bypasses the need to use
the IXP structure to deliver traffi c.

Many other countries obtain Internet connectivity by linking to an IXP in the United
States, although many countries have established their own IXPs. Large ISPs routinely
link to more than one IXP for redundancy, while truly small ones rarely link to more
than one other ISP for cost reasons. Peer ISPs often have multiple, redundant links
between their border routers. (Border routers are routers that have links to more than
one AS.) For a good listing of the world’s major IXPs, see http://en.wikipedia.org under
Internet Exchange Point.

Speeds vary greatly in different parts of the Internet. Client access by way of low-
speed dial-up telephone lines is typically 33.6 to 56 kbps. Servers are connected by
Metro Ethernet or by medium-speed private leased lines, typically 1.5 Mbps. The high-
speed backbone links between national ISPs run at yet higher speeds, and between the
IXPs themselves, speeds of 155 Mbps (known as OC-3c), 622 Mbps (OC-12c), 2.4 Gbps
(OC-48c), and 10 Gbps (OC-192c) can be used, although “n 3 10” Gbps Ethernet trunks
are less expensive. Higher speeds are always needed, both to minimize large Web site
content-transfer latency times (like video and audio fi les) and because the backbones
concentrate and aggregate traffi c from millions of clients and servers onto a single
network.

THE ROLE OF ROUTING POLICIES
Today, it is impossible for all routers to know all details of the Internet. The Internet
now consists of an increasing number of routing domains. Each routing domain has
its own internal and external routing policies. The sizes of routing domains vary greatly,
from only one IP address space to thousands, and each domain is an AS. Many ISPs
have only one AS, but national or global ISPs might have several AS numbers. A global
ISP might have one AS for North America, another for Europe, and one for the rest of
the world. Each AS has a uniquely assigned AS number, although there can be various,

336 PART III Routing and Routing Protocols

 logical “sub-ASs” called confederations or subconfederations (both terms are used)
inside a single AS.

We will not have a lot to say about routing policies, as this is a vast and complex
topic. But some basics are necessary when the operation of routers on the network is
considered in more detail.

An AS forms a group of IP networks sharing a unifi ed routing policy framework.
A routing policy framework is a series of guidelines (or hard rules) used by the ISP to
formulate the actual routing policies that are confi gured on the routers. Among differ-
ent ASs, which are often administered by different ISPs, things are more complex. Care-
ful coordination of routing policies is needed to communicate complicated policies
among ASs.

Why? Because some router somewhere must know all the details of all the IPv4 or
IPv6 addresses used in the routing domain. These routes can be aggregated (or sum-
marized) as shorter and shorter prefi xes for advertisement to other routers, but some
routers must retain all the details.

Routes, or prefi xes, not only need to be advertised to another AS, but need to be
accepted. The decision on which routes to advertise and which routes to accept is deter-
mined by routing policy. The situation is summarized in the extremely simple exchange
of routing information between two peer ASs shown in Figure 13.3. (Note that the labels
“AS #1” and “AS #2” are not saying “this is AS1” or “this is AS2”—AS numbers are reserved
and assigned centrally.) The routing information is transferred by the routing protocol
running between the routers, usually the Border Gateway Protocol (BGP).

The exchange of routing information is typically bidirectional, but not always. In
some cases, the routing policy might completely suppress or ignore the fl ow of routing
information in one direction because of the routing policy of the sender (suppress the
advertising of a route or routes) or the receiver (ignore the routing information from
the sender). If routing information is not sent or accepted between ASs, then clients
or servers in one AS cannot reach other hosts on the networks represented by that
 routing information in the other AS.

ISP B
(AS 2)

Announces Net3 to ISP Peer and
Accepts Net1, But NOT Net2

ISP A
(AS 1)

Announces Net1 and Net2 to
ISP Peer and Accepts Net3

FIGURE 13.3

A simple example of a routing policy, showing how routes are announced (sent) and accepted
(received). ISP A and ISP B are peers.

CHAPTER 13 Routing and Peering 337

Economic considerations often play a role in routing policies as well. In the old
days, there were always subsidies and grants available for continued support for the
research and educational network. Now the ISP grid-net has ISPs with their own cus-
tomers, and they can also be customers of other ISPs as well. Who pays whom, and
how much?

PEERING
Telephony faced the same problem and solved it with a concept called settlements.
This is where one telephone company bills the call originator and shares a portion of
the billed amount with other telephone companies as an access charge. Access charges
compensate the other telephone companies, long distance and local, that carry the call
for the loss of the use of their own facilities (which could otherwise make money for
the company directly) for the duration of the call. Now, in the IP world the source and
destination share the cost of delivering packets, but the point is that telephony solved
a similar issue and the terminology has been borrowed by the ISPs, which are often
telephone companies as well.

The issue on the Internet becomes one of how one ISP should compensate another
ISP for delivering packets that originate on the other ISP (if at all). The issue is compli-
cated because the “call” is now a stream of packets, and an ISP might just be a transit ISP
for packets that originate in one ISP’s AS and are destined for a third ISP’s AS.

ISP peers have tried three ways to translate this telephony “settlements” model to
the Internet. First, there are very popular bilateral (between two sides) settlements
based on the “call,” usually defi ned as some aspect of IP packet fl ows. In this settlement
arrangement, the fi rst ISP, where the packet originates at a client, gets all of the revenue
from the customer. However, the fi rst ISP shares some of this money with the other ISP
(where the server is located). Second, there is the idea of sender keeps all (SKA), where
the fl ow of packets from client to server one way is supposedly balanced by the fl ow
of packets from client to server the other way. So each ISP might as well just keep all
of the revenue from their customers. Finally, there are transit fees, which are just settle-
ments between one ISP and another, usually paid by a smaller ISP to a larger (because
this traffi c fl ow is seldom symmetrical).

Unfortunately, none of these methods have worked out well on the Internet. TCP/IP
is not telephony and routers are not telephone switches. There are often many more
than just two or three ISPs involved between client and server. There is no easy way to
track and account for the packets that should constitute a “call,” and even TCP sessions
leave a lot to be desired because a simple Web page load might involve many rapid
TCP connections between client and server. It is often hard to determine the “origin”
because a packet and packets do not always follow stable network paths. Packets are
often dropped, and it seems unfair to bill the originating ISP for resent packets replacing
those that were not delivered by the billing ISP in the fi rst place. Finally, dynamic rout-
ing might not be symmetric: So-called “hot potato” routing seeks to pass packets off to
another ISP as soon as possible. So the path from client to server often passes through

338 PART III Routing and Routing Protocols

different ISPs rather than keeping requests and replies all on one ISP’s network. This
common practice has real consequences for QoS enforcement.

These drawbacks of the telephony settlements model resulted in a movement to
more simplistic arrangements among ISP peers, which usually means ISPs of roughly
equal size. These are often called peering arrangements or just peering. There is no
strict defi nition of what a peer is or is not, but it often describes two ISPs that are
directly connected and have instituted some routing policies between them. In addi-
tion, there is nearly endless variation in settlement arrangements. These are just some
of the broad categories. The key is that any traffi c that a small network can offl oad onto
a peer costs less than traffi c that stays on internal transit links.

Economically, there is often also a sender-keeps-all arrangement in place, and
no money changes hands. An ISP that is not a peer is just another customer of the
ISP, and customers pay for services rendered. An interesting and common situation
arises when three peers share a “transit peer” member. This situation is shown in
 Figure 13.4. There are typically no fi nancial arrangements for peer ISPs providing
 transit services to the third peer, so peer ISPs will not provide transit to a third peer
ISP (unless, of course, the third peer ISP is willing to pay and become a customer of
one of the other ISPs).

Traffic with Sources
and Destinations

in ISP A and ISP B
Is Okay

Traffic with Sources
and Destinations

in ISP C and ISP B
Is Okay

ISP B

Peer of ISP A and ISP C

ISP A

Peer of ISP B,
but not ISP C

ISP C

Peer of ISP B,
but not ISP A

Traffic with Sources
and Destinations

in ISP A and ISP C
Is Blocked

No Direct Connections
Exist between ISP A

and ISP C

FIGURE 13.4

ISPs do not provide free transit services, and generally are either peers or customers of other
ISPs. Unless “arrangements” are made, ISP B will routinely block transit traffi c between ISP A
and ISP C.

CHAPTER 13 Routing and Peering 339

All three of these ISPs are “peers” in the sense that they are roughly equal in terms
of network resources. They could all be small or regional or national ISPs. ISP A peers
with ISP B and ISP B peers with ISP C, but ISP A has no peering arrangement (or
direct link) with ISP C. So packet deliveries from hosts in ISP A to ISP B (and back)
are allowed, as are packet deliveries from hosts in ISP C to and from ISP B. But ISP B
has routing policies in place to prevent transit traffi c from ISP A to and from ISP C
through ISP B. How would that be of any benefi t to ISP B? Unless ISP A and ISP C are
willing to peer with each other, or ISP A or ISP C is willing to become a customer of
ISP B, there will be no routing information sent to ISP A or ISP C to allow these ISPs
to reach each other through ISP B. The routing policies enforced on the routers in
ISP B will make sure of this, telling ISP A (for example) “you can’t get to ISP C’s hosts
through me!”

The real world of the Internet, without a clearly defi ned hierarchy, complicates
peering drastically. Peering is often a political issue. The politics of peering began
in 1997, when a large ISP informed about 15 other ISPs that its current, easy-going
peering arrangements would be terminated. New agreements for transit traffi c were
now required, the ISP said, and the former peers were effectively transformed into
customers. As the trend spread among the larger ISPs, direct connections were favored
over public peering points such as the IXPs.

This is one reason that Ace ISP and Best ISP in Figure 13.1 at the beginning of the
chapter maintain multiple links between the four routers in the “quad” between their
border routers. Suppose for a moment that routers P2 and P4 only have a single, direct
link between them to connect the two ISPs. What would happen if that link were
down? Well, at fi rst glance, the situation doesn’t seem very drastic. Both have links
to “the Internet,” which we know now is just a collection of other ISPs just like Ace
and Best.

Can LAN1 reach LAN2 through “the Internet”? Maybe. It all depends on the arrange-
ments between our two ISPs and the ISPs at the end of the “Internet” links. These ISPs
might not deliver transit traffi c between Ace and Best, and may even demand payment
for these packets as “customers” of these other ISPs. The best thing for Ace and Best to
do—if they don’t have multiple backup links in their “quad”—is to make more peers
of other ISPs.

PICKING A PEER
All larger ISPs often want to be peers, and peers of the biggest ISPs around. (For many,
buying transit and becoming a customer of some other ISP is a much less expensive
and effective way to get access to the global public Internet if being a transit provider is
not your core business.) When it comes to peering, bigger is better, so a series of merg-
ers and acquisitions (it is often claimed that there are no mergers, only acquisitions)
among the ISPs took place as each ISP sought to become a “bigger peer” than another.
This consolidation decreased the number of huge ISPs and also reduced the number of
potential peers considerably.

340 PART III Routing and Routing Protocols

Potential partners for peering arrangements are usually closely examined in several
areas. ISPs being considered for potential peering must have high capacity backbones,
be of roughly the same size, cover key areas, have a good network operations center
(NOC), have about the same quality of service (QoS) in terms of delay and dropped
packets, and (most importantly), exchange traffi c roughly symmetrically. Nobody wants
their routers, the workhorse of the ISP, to peer with an ISP that supplies 10,000 packets
for every 1000 packets it accepts. Servers, especially Web sites, tend to generate much
more traffi c than they consume, so ISPs with “tight” networks with many server farms
or Web hosting sites often have a hard time peering with anyone. On the other hand,
ISPs with many casual, intermittent client users are courted by many peering suitors.
Even if match is not quite the same in size, if the traffi c fl ows are symmetrical, peering
is always possible. The peering situation is often as shown in Figure 13.5. Keep in mind
that other types of networks (such as cable TV operators and DSL providers) have dif-
ferent peering goals than presented here.

Without peering arrangements in place, ISPs rely on public exchange and peer-
ing points like the IXPs for connectivity. The trend is toward more private peering
between pairs of peer ISPs.

Private peering can be accomplished by installing a WAN link between the AS border
routers of the two ISPs. Alternatively, peering can be done at a collocation site where the
two peers’ routers basically sit side by side. Both types of private peering are common.

ISP A

Traffic with Balance
ISP A to ISP B: 1000
 packets per min.
ISP B to ISP A: 1000
 packets per min.

Traffic Flow Unbalanced
ISP A to ISP C: 1000
 packets per min.
ISP C to ISP A: 10,000
 packets per min.

Medium Infrastructure
Mix of Clients and Servers

ISP B

Large Infrastructure
with Many Clients

ISP C

Many Web Servers
on Lots of Server Farms

Who will peer
with ISP A?

(a) (b)

FIGURE 13.5

Good and bad peering candidates. Note that the goal is to balance the traffi c fl ow as much as
 possible. Generally, the more servers the ISP maintains, the harder it is to peer. (a) ISP A will
propose peering to ISP B; (b) ISP A will not want to peer with ISP C but will take them on as a
customer.

CHAPTER 13 Routing and Peering 341

The Internet today has more routes than there were computers attached to the
Internet in early 1989. Routing policies are necessary whether the peering relationship
is public or private (through an IXP or through a WAN link between border routers).
Routing information simply cannot be easily distributed everywhere all at once. Even
the routing protocols play a role. Some routing protocols send much more information
than others, although protocols can be “tuned” by adjusting parameters and with rout-
ing policies.

Routing policies help interior gateway protocols (IGPs) such as OSPF and IS–IS
distribute routing information within an AS more effi ciently. The fl ow of routing infor-
mation between routing domains must be controlled by routing policies to enforce the
public or private peering arrangements in place between ISPs.

In the next chapter, we’ll see how an IGP works within an AS or routing domain.

342 PART III Routing and Routing Protocols

Even Better ISP
(established when EveNet ISP

bought Better ISP)

One Unified Routing
Policy and Domain

Lower Speed
Link

Higher Speed
Link

Private Peering with Ace
ISP (large amounts of

traffic exchanged)
Public Peering with Best

ISP at an IXP

AS
(former EveNet ISP) AS

(former Better ISP)

FIGURE 13.6

Even Better ISP, showing peering arrangements and routing domains.

QUESTIONS FOR READERS
Figure 13.6 shows some of the concepts discussed in this chapter and can be used to
help you answer the following questions.

1. What is an Internet autonomous system (AS)?

2. Why might a single ISP like Even Better ISP have more than one routing domain?

3. What is the purpose of a routing policy?

4. What does “ISP peering” mean?

5. What is the difference between public and private peering? Are both necessary?

343

CHAPTER

What You Will Learn
In this chapter, you will learn about the role of IGPs and how these routing proto-
cols are used in a routing domain or autonomous system (AS). We’ll use OSPF and
RIP, but mention IS–IS as well.

You will learn how a routing policy can distribute the information gathered
from one routing protocol into another, where it can be used to build routing and
forwarding tables, or announced (sent) to other routers. We’ll create a routing
policy to announce our IPv6 routes to the other routers.

As is true of many chapters in this book, this chapter’s content is more than
enough for a whole book by itself. Only the basics of IGPs are covered here, but
they are enough to illustrate the function of an internal routing protocol on our
network.

14

In this chapter, we’ll confi gure an IGP to run on the Juniper Networks routers that
make up the Illustrated Network. In Chapter 9 we saw output that showed OSPF run-
ning on router CE6 as part of Best ISP’s AS. So fi rst we’ll show how OSPF was confi g-
ured on the routers in AS 65127 and AS 65459. We could confi gure IS–IS on the other
AS, but that would make an already long chapter even longer. Because we closed the
last chapter with IPv6 ping messages not working, let’s confi gure RIPng, the version of
RIP that is for IPv6. This is not an endorsement of RIPng, especially given other avail-
able choices. It’s just an example.

Why not add OSPFv3 (the version of OSPF used with IPv6) for IPv6 support? We
certainly could, but suppose the smaller site routers only supported RIP or RIPng? (RIP
is usually bundled with basic software, but other IGPs often have to be purchased.)
Then we would have no choice but to run RIPng to distribute the IPv6 addresses. If we
confi gure RIPng to run on the ASs between on-site routers CE0 and CE6, we can always
extend RIPng support right to the Unix hosts (the IPv6 hosts just need to point to CE0
or CE6 as their default routers).

In this chapter, we’ll use the routers heavily, as shown in Figure 14.1.

IGPs: RIP, OSPF,
and IS–IS

FIGURE 14.1

The routers on the Illustrated Network, showing routers on which OSPF and RIPng will be running.
The IGPs will not be running between the two AS routing domains; instead, an EGP will run.

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80:205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-0
/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65459

Wireless
in Home

Solid rules � SONET/SDH
Dashed rules � Gig Ethernet
Note: All links use 10.0.x.y
addressing...only the last
two octets are shown.

346 PART III Routing and Routing Protocols

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80:205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC: 00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

ge-0/0/3

16.2

ge-0/0/3

16.1

Best ISP

AS 65127

Global Public
Internet

CHAPTER 14 IGPs: RIP, OSPF, and IS–IS 347

Unfortunately, when it comes to networks, a lot of things are interrelated, although
we’d like to learn them sequentially. For example, we’ve already shown in Chapter 9
that OSPF is confi gured on the routers, although we didn’t confi gure it. Also, although
both ASs will run the same IGP (RIPng) in this chapter, the ASs are not running RIPng
or any other IGP in between (e.g., on the links between routers P9 and P7). That’s the
job of the EGP, which we’ll explore in the next chapter. There is a lot going on in this
chapter, so let’s list the topics covered here (and in Chapter 15), so we don’t get lost.

1. We’ll talk about ASs and the role of IGP and EGPs on a network.

2. We’ll confi gure RIPng as the IGP in both ASs, starting with the IPv6 address on the
interfaces and show that the routing information about LAN1 and LAN2 ends up
everywhere. We will not talk about the role of the EGP in all this until Chapter 15.

3. We’ll compare three major IGPs: RIP, OSPF, and IS–IS. In the OSPF section, we’ll
show how OSPF was confi gured in the two ASs for Chapter 9.

Internal and External Links
In this chapter, we’ll add RIPng as an IGP on all but the links between AS 65459
and AS 65127. This affects routers P9 and P4 in AS 65459 and routers P7 and P2 in
AS 65127. IGPs run on internal (intra-AS) links, and EGPs run on external (inter-
AS) links.

In Chapter 15, we’ll confi gure BGP as the EGP on those links. This chapter
assumes that BGP is up and running properly on the external links between P9
and P4 in AS 65459 and P7 and P2 in AS 65127.

We’ll use our Windows XP clients for this exercise, just to show that the “home
 version” of XP is completely comfortable with IPv6.

 Autonomous System Numbers
Ace and Best ISP on the Illustrated Network use AS numbers (ASNs) in the private
range, just as our IP addresses. IANA parcels them out to the various registries that
assign them as needed to those who apply. Before 2007, AS numbers were 2-byte
(16-bit) values with the following ranges of relevance:

■ 0: Reserved (can be used to identify nonrouted networks)
■ 1–43007: Allocated by ARIN, APNIC, AfriNIC, and RIPE NCC
■ 43008–48127: Held by IANA
■ 48128–64511: Reserved by IANA
■ 64512–65534: Designated by IANA for private use
■ 65535: Reserved

348 PART III Routing and Routing Protocols

Now, let’s see what it takes to get RIPng up and running on these routers. So far, the
link-local fe80 addresses have been fi ne for running ping and for neighbor discovery
from router to host, but these won’t be useful for LAN1 to LAN2 communications with
IPv6. For this, we’ll use routable fc00 private ULA IPv6 addresses. Once we get RIPng
up and running with routable addresses on our hosts and routers, we should be able to
successfully ping from LAN1 to LAN2 using only IPv6 addresses. While we’ll be confi g-
uring IGPs on both Ace and Best ISP’s AS routing domains, we won’t be running IGPs
between them. That’s the job of the EGP (Border Gateway Protocol, or BGP), and we’ll
add that in Chapter 15.

We need to create four routable IPv6 addresses and prefi xes—two for the hosts
and two for the router’s LAN interfaces (both are fe-1/3/0). We’ve already done this in
Chapter 4. The site IPv6 addresses, and the IPv4 and MAC addresses used on the same
interfaces, are shown in Table 14.1. We don’t need to change the link-local addresses on
the link between the routers because, well, they are link-local.

We know from Chapter 13 that we have these IPv6 addresses confi gured on wincli1
and wincli2. We have to do three things to enable RIPng on the routers:

■ Confi gure routable addresses on interface fe-1/3/0

■ Confi gure the RIPng protocol to run on the site (customer-edge) routers (CE0 and
CE6), the provider-edge routers (PE5 and PE1), and the internal links on the provider-
backbone routers (P9, P7, P4, and P2).

■ Create and apply a routing policy on CE0 and CE6 to advertise the fe-1/3/0 IPv6
addresses with RIPng.

Since 2007, ASNs are allocated as 4-byte values. Because each fi eld can run
from 0 to 65535, the current way of designating ASNs is as two numbers in the
form nnnnn.nnnnnn. The full range of ASNs now is from 0.0 to 65535.65535
(0 to 4,294,967,295 in decimal).

For example, 0.65525 is how the former 2-byte ASN 65535 would be written
today. In this book, we’ll drop the leading “0,” and just use the “legacy” 2-byte AS
format for Ace and Best ISP: 65459 and 65127.

Table 14.1 Routable IPv6 Addresses Used on the Network

System
IPv4 Network

Address MAC Address IPv6 Address

wincli1 10.10.11/24 02:0e:0c:3b:88:3c fc00:ffb3:d5:b:20e:cff:fe3b:883c

CE0 (fe-1/3/0) 10.10.11/24 00:05:85:88:cc:db fc00:ffb3:d5:b:205:85ff:fe88:ccdb

CE6 (fe-1/3/0) 10.10.12/24 00:05:85:8b:bc:db fc00:fe67:d4:c:205:85ff:fe8b:bcdb

Wincli2 10.10.12/24 00:02:b3:27:fa:8c fc00:fe67:d4:c:202:b3ff:fe27:fa8c

CHAPTER 14 IGPs: RIP, OSPF, and IS–IS 349

The confi gurations are completely symmetrical, so one of each type will do for
 illustration purposes. Let’s use router CE0 as the customer-edge router. First, the
addresses for IPv4 (family inet) and IPv6 (family net6) must be confi gured on LAN
interface fe-1/3/0.

set interfaces fe-1/3/0 unit 0 family inet address 10.10.11.1/24
set interfaces fe-1/3/0 unit 0 family inet6 address fe80::205:85ff:fe88:ccdb/64
s et interfaces fe-1/3/0 unit 0 family inet6 address fc00:fe67:d4:c:205:85ff:fe88:

ccdb/64

Note that the link-local address is fi ne as is. We usually have many addresses on
an interface in most IPv6 implementations, including multicast. We just added the
second address to it. Now we can confi gure RIPng itself on the link between CE0 and
PE5. We have to explicitly tell RIPng to announce (export) the routing information
specifi ed in the send-ipv6 routing policy (which we’ll write shortly) and tell it the
RIPng “ neighbor” (routing protocol partner) is found on interface ge-0/0/3 logical
unit 0.

set protocols ripng group ripv6group export send-ipv6
set protocols ripng group ripv6group neighbor ge-0/0/3.0

Because RIPv2 and RIPng use multicast addresses, we specify the router’s neigh-
bor location with the physical address information (ge-0/0/3) instead of unicast
address. And because Juniper Network’s implementation of RIP always listens for rout-
ing information but never advertises or announces routes unless told, we’ll have to
write a routing policy to “export” the IPv6 addresses we want into RIPng. There’s only
one interface needed in this case, fe-1/3/0.0 to LAN1. It seems odd to say from when
sending, but in a Juniper Networks routing policy, from really means “out of”—“Out of
all the interfaces, this applies to interface fe-1/3/0.”

set policy-options policy-statement send-ipv6 from interface fe-1/3/0.0
set policy-options policy-statement send-ipv6 from family inet6
set policy-options policy-statement send-ipv6 then accept

All this routing policy says is that “if the routing protocol (which is RIPng) running
on the LAN1 interface (fe-1/3/0) wants to advertise an IPv6 route (from family inet6),
let it (accept).”

We also have to confi gure RIPng on the other routers. We know that we can’t
run RIPng on the external links on the border routers (P7, P9, P2, and P4), but we
can show the full confi gurations on PE5 and PE1. These routers have to run RIPng
on three interfaces, not just one, so that RIPng routing information fl ows from site
router to backbone (and from backbone to site router). Let’s look at PE5 (PE1 is about
the same).

350 PART III Routing and Routing Protocols

set interfaces fe-1/3/0 unit 0 family inet address 10.10.50.1/24
set interfaces fe-1/3/0 unit 0 family inet6 address fe80::205:85ff:fe85:aafe/64
set interfaces fe-1/3/0 unit 0 family inet6 address fc00:fe67:d4:c:205:85ff:fe85:

aafe/64

We have IPv6 addresses on the SONET links to P9 and P4, so-0/0/0 and so-0/0/2,
but the details are not important. What is important is that we run RIPng on all three
interfaces.

set protocols ripng group ripv6group export send-ipv6
set protocols ripng group ripv6group neighbor ge-0/0/3.0
set protocols ripng group ripv6group neighbor so-0/0/0.0
set protocols ripng group ripv6group neighbor so-0/0/2.0

The routing policy now will export the interface IPv6 addresses we want into
RIPng. This policy has one term for each interface and is more complex than the one
for the site routers.

set policy-options policy-statement send-ipv6 term A from interface ge-0/0/3.0
set policy-options policy-statement send-ipv6 term A from family inet6
set policy-options policy-statement send-ipv6 term A then accept
set policy-options policy-statement send-ipv6 term B from interface so-0/0/0.0
set policy-options policy-statement send-ipv6 term B from family inet6
set policy-options policy-statement send-ipv6 term B then accept
set policy-options policy-statement send-ipv6 term C from interface so-0/0/2.0
set policy-options policy-statement send-ipv6 term C from family inet6
set policy-options policy-statement send-ipv6 term C then accept

The policy simply means this: “Out of all interfaces, look at ge-0/0/3, so-0/0/0, and
so-0/0/2. If the routing protocol running on those links (which is RIPng) wants to
advertise an IPv6 route (from family inet6), let it (accept).”

The backbone routers run RIPng on their internal interfaces, but the confi gurations
and policies are very similar to those on the provider-edge routers. We don’t need to
list those.

When all the confi gurations are committed and made active on the routers, we form
an adjacency and exchange IPv6 routing information with each neighbor according to
the policy. The IPv6 routing table on CE0 now shows the prefi x of LAN2 (fc00:fe67:
d4:c::/64) learned from CE6 with RIPng.

admin@CE0# show route table inet6 fc00:fe67:d4:c::/64

inet6.0: 38 destinations, 38 routes (38 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

fc00:ffbe:d5:b::/64 *[RIPng/100] 01:15:19, metric 6, tag 0
 to fc00:ffbe:d5:b::a00:3b01 via so-0/0/0.0
 > to fc00:ffbe:d5:b::a00:2d01 via so-0/0/2.0

CHAPTER 14 IGPs: RIP, OSPF, and IS–IS 351

What does all this mean? We’ve learned this route with RIPng, and its preference is
100 (high compared to local interfaces, which are 0). When routes are learned in dif-
ferent ways from different protocols, the route with the lowest preference will be the
active route. The metric of 6 (hops) essentially shows that LAN2 is 6 routers away from
LAN1. If there are different paths with different metrics through a collection of routers,
the hop to the path with the lowest metric becomes the active route. More advanced
routing protocols can compute metrics on the basis of much more than simply number
of routers (hops).

Note the right angle bracket (>) to the left of the so-0/0/2.0 link to router P9. Remem-
ber, there are two ways for PE5 to forward packets to LAN2: through router P4 at the end
of link so-0/0/0.0 and through router P9 at the end of link so-0/0/0.0. The > indicates
that packets are being forwarded to router P9. (Usually, all other things being equal, a
router chooses the link with the lower IP address.) However, the other link is available if
the active link or router fails. (If we want to forward packets out both links, we can turn
on load balancing and the links will be used in a round-robin fashion.)

But even with RIPng up and running among the routers, we still have to give non–
link-local addresses to the hosts. Right now, if we try to use ping6 on LAN2 to ping a
different IPv6 private address on LAN1, we’ll still get an error condition. Let’s try it from
wincli2 on LAN2 to wincl1 on LAN1.

C:\Documents and Settings\Owner>ping6 fe80::20c:cff:fe3b:883c

Pinging fe80::20c:cff:fe3b:883c with 32 bytes of data:

No route to destination.
 Specify correct scope-id or use –s to specify source address.

No route to destination.
 Specify correct scope-id or use –s to specify source address.

No route to destination.
 Specify correct scope-id or use –s to specify source address.

No route to destination.
 Specify correct scope-id or use –s to specify source address.

Ping statistics for fe80::20c:cff:fe3b:883c:
 Packets: Sent = 4, Received = 0, Lost = 4 (100% loss)

Like the routers, the Windows XP hosts need routable addresses. We assign an inter-
face (by index shown by ipconfig) that is a routable IPv6 address with the ipv6 adu
command. But the address is still shown with ipconfig.

C:\Documents and Settings\Owner>ipconfig

Ethernet adapter Local Area Connection:

 Connection-specific DNS Suffix . :
 IP Address : 10.10.12.222
 Subnet Mask : 255.255.255.0

352 PART III Routing and Routing Protocols

 IP Address : fc00:fe67:d5:c:202:b3ff:fe27:fa8c
 IP Address : fe80::202:b3ff:fe27:fa8c%5
 Default Gateway : 10.10.12.1
 fe80::5:85ff:fe8b:bcdb%5
 fc00:fe67:d5:c:205:85ff:fe8b:bcdb

How did the host know the default gateway to use for IPv6? We probed for neighbors
earlier, but even if we had not, IPv6 router advertisement (which was confi gured with
RIPng on the routers, and the main reason we did it) takes care of that.

Now we should be able to ping end to end from wincli2 to wincli1 by IPv6 address.

C:\Documents and Settings\Owner>ping6 fc00:ffb3:d4:b:20e:cff:fe3b:883c

Pinging fc00:ffb3:d.4:b:20e:cff:fe3b:883c
from fc00:fe67:d5:c:202:b3ff:fe27:fa8c with 32 bytes of data:

Reply from fc00:ffb3:d4:b:20e:cff:fe3b:883c: bytes=32 time<1ms
Reply from fc00:ffb3:d4:b:20e:cff:fe3b:883c: bytes=32 time<1ms
Reply from fc00:ffb3:d4:b:20e:cff:fe3b:883c: bytes=32 time<1ms
Reply from fc00:ffb3:d4:b:20e:cff:fe3b:883c: bytes=32 time<1ms

Ping statistics for fc00:ffb3:d4:b:20e:cff:fe3b:883c:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
 Minimum = 4ms, Maximum = 5ms, Average = 4ms

The reverse also works as well. In the rest of this chapter, let’s take a closer look
at how the IGPs perform their task of distributing routing information within an AS.
Remember, how the IGP routing information gets from AS to AS with an EGP is the
topic of Chapter 15.

INTERIOR ROUTING PROTOCOLS
Routers initially know only about their immediate environments. They know the IP
addresses and prefi xes confi gured on their local interfaces, and at most a little more
statically defi ned information. Yet all routers must know all the details about everything
in their routing domain to forward packets rationally, hop by hop, toward a given des-
tination. So routers offer to and ask their neighbor routers (adjacent routers one hop
away) about the routing information they know. Little by little, each router then builds
up a detailed routing information database about the TCP/IP network.

How do routers exchange this routing information within a domain and between
routing domains? With routing protocols. Within a routing domain, several different
routing protocols can be used. Between routing domains on the Internet, another rout-
ing protocol is used. This chapter focuses on the routing protocols used within a rout-
ing domain and the next chapter covers the routing protocol used between routing
domains.

CHAPTER 14 IGPs: RIP, OSPF, and IS–IS 353

Interior routing protocols, or IGPs, run between the routers inside a single routing
domain, or autonomous system (AS). A large organization or ISP can have a single AS,
but many global networks divide their networks into one or more ASs. IGPs run within
these routing domains and do not share information learned across AS boundaries
except physical interface addresses if necessary.

Modern routing protocols require minimal confi guration of static routes (routes
confi gured and maintained by hand). Today, dynamic routing protocols allow adjacent
(directly connected) routers to exchange routing table information periodically to build
up the topology of the router network as a whole by passing information received by
adjacent neighbors on to other routers.

IGPs essentially “bootstrap” themselves into existence, and then send information
about their IP addresses and interfaces to other routers directly attached to the source
router. These neighbor, or adjacent, routers distribute this information to their neigh-
bors until the network has converged and all routers have the identical information
available.

When changes in the network as a result of failed links or routers cause the rout-
ing tables to become outdated, the routing tables differ from router to router and are
inconsistent. This is when routing loops and black holes happen. The faster a routing
protocol converges, the better the routing protocol is for large-scale deployment.

THE THREE MAJOR IGPs
There are three main IGPs for IPv4 routing: RIP, OSPF, and IS–IS. The Routing Informa-
tion Protocol (RIP), often declared obsolete, is still used and remains a popular routing
protocol for small networks. The newer version of RIP, known as RIPv2, should always
be used for IPv4 routing today. Open Shortest Path First (OSPF) and Intermediate
 System–Intermediate System (IS–IS) are similar and much more robust than RIP. There
are versions of all three for IPv6: OSPFv3, RIPng (sometimes seen as RIPv6), and IS–IS
works with either IPv4 or IPv6 today.

RIP is a distance-vector routing protocol, and OSPF and IS–IS are link-state routing
protocols. Distance-vector routing protocols are simple and make routing decisions
based on one thing: How many routers (hops) are there between here and the destina-
tion? To RIP, link speeds do not matter, nor does congestion near another router. To RIP,
the “best” route always has the fewest number of hops (routers).

Link-state protocols care more about the network than simply the number
of routers along the path to the destination. They are much more complex than
 distance-vector routing protocols, and link-state protocols are much more suited
for networks with many different link speeds, which is almost always the case
today. However, link-state protocols require an elaborate database of information
about the network on each router. This database includes not only the local router
addressing and interfaces, but each and every router in the immediate area and
often the entire AS.

354 PART III Routing and Routing Protocols

ROUTING INFORMATION PROTOCOL
The RIP is still used on all types of TCP/IP networks. The basics of RIP were spelled out
in RFC 1058 from 1988, but this is misleading. RIP was in use long before 1988, but no
one bothered to document RIP in detail. RIP is bundled with almost all implementa-
tions of TCP/IP, so networks often run only RIP. Why pay for something when RIP was
available for free?

RIP version 1 (RIPv1) in RFC 1058 has a number of annoying limitations, but RIP
is so popular that doing away with RIP is not a realistic consideration. RFC 1388 intro-
duced RIP version 2 (RIPv2 or sometimes RIP-2) in 1993. RIPv2 addressed RIPv1 limita-
tions, but could not turn a distance-vector protocol into a link-state routing protocol
such as OSPF and IS–IS.

RIPv2 is backward compatible with RIPv1, and most RIP implementations run RIPv2
by default and allow RIPv1 to be confi gured. In this chapter, the term “RIP” by itself
means “a version of RIP runs RIPv2 by default but can also be confi gured as RIPv1 as
required.”

Router vendor Cisco was deeply dissatisfi ed with RIPv1 limitations and so created
its own vendor-specifi c (proprietary) version of an IGP routing protocol, which Cisco
called the Interior Gateway Routing Protocol (IGRP). IGRP improved upon RIPv1 in
several ways, but “pure” IGRP could only run between Cisco routers. As good as IGRP
was, IGRP was still basically implemented as a distance-vector protocol. As networks
grew more and more complex in terms of link speeds and router capacities, it was pos-
sible to switch to a link-state protocol such as OSPF or IS–IS, but many network admin-
istrators at the time felt these new protocols were not stable or mature enough for
production networks. Cisco then invented Enhanced IGRP (EIGRP) as a sort of “hybrid”
routing protocol that combined features of both distance-vector and link-state routing
protocols all in one (proprietary) package.

Due to the proprietary nature of IGRP and EIGRP, only the basics of these routing
protocols are covered in this chapter.

Distance-Vector Routing
RIP and related distance-vector routing protocols are classifi ed as “Bellman–Ford” routing
protocols because they all choose the “best” path to a destination based on the shortest
path computation algorithm. It was fi rst described by R. E. Bellman in 1957 and applied
to a distributed network of independent routers by L. R. Ford, Jr. and D. R. Fulkerson in
1962. Every version of Unix today bundles RIP with TCP/IP, usually as the routed (“route
management daemon”) process, but sometimes as the gated process.

All routing protocols use a metric (measure) representing the relative “cost” of send-
ing a packet from the current router to the destination. The lowest relative cost is the
“best” way to send a packet. Distance-vector routing protocols have only one metric:
distance. The distance is usually expressed in terms of the number of routers between
the router with the packet and the router attached to the destination network. The

CHAPTER 14 IGPs: RIP, OSPF, and IS–IS 355

distance metric is carried between routers running the same distance-vector routing
protocol as a vector, a fi eld in a routing protocol update packet.

A simple example of how distance-vector, or hop-count, routing works will illustrate
many of the principles that all routing protocols simple and complex must deal with. All
routing protocols must pass along network information received from adjacent rout-
ers to all other routers in a routing domain, a concept known as fl ooding. Flooding is
the easiest way to ensure consistency of routing tables, but convergence time might
be high as routers at one end of a chain of routers wait for information from routers at
the far end of the chain to make its way through the routers in between. Flooding also
tends to maximize the bandwidth consumed by the routing protocol itself, but there
are ways to reduce this.

RIP fl oods updates every 30 seconds. Note that routing information takes at least 30
seconds to reach the closest neighbor if that is the routing update interval used. Long
chains of routers can take quite a long time to converge (several minutes) when a net-
work address is added or when a link fails.

When this network converges, each routing table will be consistent and each router
will be reachable from every other router over one of the interfaces. The network
topology has been “discovered” by the routing protocol. An example of the information
in one of these tables is shown in Table 14.2.

Routers can have alternatives other than those shown in the table. For example, the
cost to reach network 192.168.44.0 from this router could be the same (3) over E1 as
it is over E2. The E1 interface is most likely in the table because the update from the
neighbor router saying “send 192.168.44.0 packets here” arrived before the update
from another router saying the same thing, or the entry was already in the table. When
costs are equal, routing tables tend to keep what they know.

Broken Links
The distance-vector information has now been exchanged and the routers all have a
way to reach each other. Usually, the routing protocol will update an internal database
in the router just for that routing protocol and one or more entries based on the data-
base are made in the routing table, which might contain information from other rout-
ing protocols as well. The routing table information is then used to compute the “best”
routes to be used in the forwarding table (sometimes called the switching table) of the

Table 14.2 Example RIP Routing Table

Network Next Hop Interface Cost

10.0.14.0 Ethernet 1 (E1) 2

172.16.15.0 Serial 1 (S1) 1

192.168.44.0 Ethernet 2 (E2) 3

192.168.66.0 Serial 2 (S2) INF (15)

192.168.78.0 Locally attached 0

356 PART III Routing and Routing Protocols

router. This chapter blurs the distinctions between routing protocol database, routing
table, and forwarding table for the sake of simplicity and clarity.

What will happen to the network if a link “breaks” and can no longer be used to
forward traffi c? In a static routing world, this would be disastrous. But when using a
dynamic routing protocol, even one as simple as a distance-vector routing protocol, the
network should be able to converge around the new topology.

The routers at each end of the link, since they are locally connected to the interface
(direct), will notice the outage fi rst because routers constantly monitor the state of
their interfaces at the physical level. Distance-vector protocols note this absent link by
noting that the link now has an “infi nite” cost. All routers formerly reachable through
the link are now an infi nite distance away.

Distance-Vector Consequences
In some cases, distance-vector updates are generated so closely in time by different
routers that a link failure can cause a routing loop to occur, and packets can easily
“bounce” back and forth between two adjacent routers until the packet TTL expires,
even though the destination is reachable over another link. The “bouncing effect” will
last until the network converges on the new topology.

However, this convergence can take some time, since routers not located at the end
of a failed link have to gradually increase their costs to infi nity one “hop” at a time. This
is called “counting to infi nity,” and can drag out convergence time considerably if the
value of “infi nity” is set high enough. On the other hand, a low value of “infi nity” will
limit the maximum number of routers that can form the longest path through the net-
work from source to destination.

In order to minimize the effects of bouncing and counting to infi nity, most imple-
mentations of distance-vector routing protocols such as RIP also implement split hori-
zon and triggered updates.

Split Horizon
If Router A is sending packets to Router B to reach Router E, then it makes no sense at
all for Router B to try to reach Router E through Router A. All Router A will do is turn
around and send the packet right back to Router B. So Router A should never advertise
a way to reach Router E to Router B.

A more sophisticated form of split horizon is known as split horizon with poison
reverse. Split horizon with poison reverse eliminates a lot of counting to infi nity prob-
lems due to single link failures. However, many multiple link failures will still cause
routing loops and counting to infi nity problems even when split horizon with poison
reverse is in use.

Triggered Updates
With triggered updates, a router running a distance-vector protocol such as RIP can
remain silent if there are no changes to the information in the routing table. If a link
failure is detected, triggered updates will send the new information. Triggered updates,

CHAPTER 14 IGPs: RIP, OSPF, and IS–IS 357

like split horizon, will not eliminate all cases of routing loops and counting to infi nity.
However, triggered updates always help the counting process to reach infi nity much
faster.

RIPv1
A RIP packet must be 512 bytes or smaller, including the header. RIP packets have no
implied sequence, and each update packet is processed independently by the router
receiving the update. A router is only required to keep one entry associated with each
route. But in practice, routers might keep up to four or more routes (next hops) to the
same destination so that convergence time is lowered.

RIPv1 required routers running RIP to broadcast the entire contents of their rout-
ing tables at fi xed intervals. On LANs, this meant that the RIPv1 packets were sent
inside broadcast MAC frames. But broadcast MAC frames tell not only every router on
the LAN, but every host on the LAN, “pay attention to this frame.” Inside the frame, the
host would fi nd a RIPv1 update packet, and probably ignore the contents. But every
30 seconds, every host on the LAN had to interrupt its own application processing and
start throwing away RIPv1 packets.

Each host could keep the information inside the RIPv1 update packet. Some hosts
on LANs with RIPv1 routers have as elaborate a routing table as the routers themselves.
Hackers loved RIPv1: With a few simple coding changes, any host could impersonate
a RIPv1 router and start pumping out fake routing information, as many college and
university network administrators discovered in the late 1980s. (This is one reason you
don’t run RIP on host interfaces.)

Many people see RIP updates vary from 30 seconds and assume that timers are off.
In fact, table updates in RIP are initiated on each router at approximate 30-second
intervals. Strict synchronization is avoided because RIP traffi c spikes can easily lead to
discarded RIP packets. The update timer usually adds or subtracts a small amount of
time to the 30-second interval to avoid RIP router synchronization.

Network devices running RIP can be either active or passive (silent) mode. Active
RIP devices will listen for RIP update packets and also generate their own RIP update
packets. Passive RIP devices will only listen for RIP updates and never generate their
own update packets. Many hosts, for example, which must process the broadcast RIP
updates sent on a LAN, are purely passive RIP devices.

RIPv1 Limitations
RIPv1 had a number of limitations that made RIPv1 diffi cult to use in large networks. The
larger the routing domain, the more severe and annoying the limitations of RIPv1
become.

Wasted Space—All of the RIPv1 packet fields are larger than they need to be,
sometimes many times larger. There are almost three times as many 0 bits as
information bits in a RIP packet.

358 PART III Routing and Routing Protocols

Limited Metrics—As a network grows, the distance-vector might require a metric
greater than 15, which is unreachable (infinite).

No Link Speed Allowances—The simple hop count metric will always result in
packets being sent (as an example) over two hops using low-speed, 64-kbps
links rather than three hops using SONET/SDH links.

No Authentication—RIPv1 devices will accept RIPv1 updates from any other
device. Hackers love RIPv1 for this very reason, but even an innocently mis-
configured router can disrupt an entire network using RIPv1.

Subnet Masks—RIPv1 requires the use of the same subnet mask because RIPv1
updates do not carry any subnet mask information.

Slow Convergence—Convergence can be very slow with RIPv1, often 5 minutes
or more when links result in long chains of routers instead of neat meshes. And
“circles” of RIPv1 routers maximize the risk of counting to infinity.

RIPv2
RIPv2 fi rst emerged as an update to RIPv1 in RFC 1388 issued in January 1993. This
initial RFC was superseded by RFC 1723 in November 1994. The only real difference
between RFC 1388 and RFC 1723 is that RFC 1723 deleted a 2-byte Domain fi eld
from the RIPv2 packet format, designating this space as unused. No one was really
sure how to use the Domain fi eld anyway. The current RIPv2 RFC is RFC 2453 from
 November 1998.

RIPv2 was not intended as a replacement for RIPv1, but to extend the functions of
RIPv1 and make RIP more suitable for VLSM. The RIP message format was changed as
well to allow for authentication and multicasting.

In spite of the changes, RIPv2 is still RIP and suffers from many of the same limita-
tions as RIPv1. Most router vendors support RIPv2 by default, but allow interfaces or
whole routers to be confi gured for backward compatibility with RIPv1. RIPv2 made
major improvements to RIPv1:

■ Authentication between RIP routers
■ Subnet masks to be sent along with routes
■ Next hop IP addresses to be sent along with routes
■ Multicasting of RIPv2 messages

The RIPv2 packet format is shown in Figure 14.2.

Command Field (1 byte)—This is the same as in RIPv1: A value of 1 is for a
Request and a value of 2 is for a Response.

Version Number (1 byte)—RIPv1 uses a value of 1 in this field, and RIPv2 uses a
value of 2.

CHAPTER 14 IGPs: RIP, OSPF, and IS–IS 359

Unused (2 bytes)—Set to all zero bits. This was the Domain field in RFC 1388.
Now officially unused in RFC 1723, this field is ignored by routers running
RIPv2 (but this field must be set to all 0 bits for RIPv1 routers).

Address Family Identifier (AFI) (2 bytes)—This field is set to a value of 2 when
IP packet and routing information is exchanged. RIPv2 also defined a value of
1 to ask the receiver to send a copy of its entire routing table. When set to all
1s (0xFFFF), the AFI field is used to indicate that the 16 bits following the AFI
field, ordinarily set to 0 bits, now carry information about the type of authen-
tication being used by RIPv2 routers.

Authentication or Route Tag (2 bytes)—When the AFI field is not 0xFFFF, this
is the Route Tag field. The Route Tag field identifies internal and external
routes in RIPv2. Internal routes are those learned by RIP itself, either locally
or through other RIP routers. External routes are routes learned from another
routing protocol such as OSPF or BGP.

IPv4 Address (4 bytes)—This field and the three that follow can be repeated up
to 25 times in the RIPv2 Response packet. This field is almost the same as in

1 byte
R
o
u
t
e

E
n
t
r
y

R
o
u
t
e

E
n
t
r
y

Command Version

Address Family Identifier

Address Family Identifier

Authentication or Route Tag

Authentication or Route Tag

Subnet Mask

Next Hop

IP Address

Metric

Subnet Mask

Next Hop

IP Address

Metric

32 bits

(Repeats multiple times,up to a maximum of 25)

Unused (set to all zeros)

1 byte 1 byte 1 byte

FIGURE 14.2

RIPv2 packet format, showing how the subnet mask is included with the routing information
advertised.

360 PART III Routing and Routing Protocols

RIPv1. This address can be a host route, a network address, or a default route.
A RIPv2 Request packet has the IP address of the originator in this field.

Subnet Mask (4 bytes)—This field, the biggest change in RIPv2, contains the sub-
net mask that goes with the IP address in the previous field. If the network
address does not use a subnet mask different from the natural classful major
network mask, then this field can be set to all zeroes, just as in RIPv1.

Next Hop (4 bytes)—This field contains the next hop IP address that traffic to this
IP address space should use. This was a vast improvement over the “implied”
next hop used in RIPv1.

Metric (4 bytes)—Unfortunately, the metric field is unchanged. The range is still 1
to 15, and a metric value of 16 is considered unreachable.

RIPv2 is still RIP. But RIPv2’s additions for authentication, subnet masks, next
hops, and the ability to multicast routing information increase the sophistication of RIP
and have extended RIP’s usefulness.

Authentication
Authentication was added in RIPv2. The Response messages contain the routing
update information, and authenticating the responder to a Request message is a good
way to minimize the risk of a routing table becoming corrupted either by accident or
through hacker activities. However, there were really only 16 bits available for authen-
tication, hardly adequate for modern authentication techniques. So the authentication
actually takes the place of one routing table entry and authenticates the entire update
message. This gives 16 bytes (128 bits) for authentication, which is not state of the art,
but is better than nothing.

The really nice feature of RIPv2 authentication is that router vendors can add their
own Authentication Type values and schemes to the basics of RIPv2, and many do. For
example, Cisco and Juniper Networks routers can be confi gured to use MD5 (Message
Digest 5) authentication encryption to RIPv2 messages. Thus, most routers can have
three forms of authentication on RIP interfaces: none, simple password, or MD5. Natu-
rally, the MD5 authentication keys used must match up on the routers.

Subnet Masks
The biggest improvement from RIPv1 to RIPv2 was the ability to carry the subnet mask
along with the route itself. This allowed RIP to be used in classless IP environments
with VLSM.

Next Hop Identifi cation
Consider a network where there are several site routers with only one or a few small
LANs. The small routers run RIPv2 between themselves and their ISP’s router, but might
run a higher speed link to one router and a lower speed link to another. The higher
speed link might be more hops away than the lower speed link.

CHAPTER 14 IGPs: RIP, OSPF, and IS–IS 361

The next hop fi eld in RIPv2 is used to “override” the ordinary metric method of
deciding active routes in RIP. RIPv2 routers check the next hop fi eld in the routing
update message. If the next hop fi eld is set for a particular route, the RIP router will use
this as the next hop for the route, regardless of distance-vector considerations.

This RIPv2 next hop mechanism is sometimes called source routing in some docu-
ments. But true source routing information is always set by a host, not a router. This is
just RIPv2 next hop identifi cation.

Multicasting
Multicasting is a kind of “halfway” distribution method between unicast (one source
to one destination) and broadcast (one source to all possible destinations). Unlike
 broadcasts that are received by all nodes on the subnet, only devices that join the
RIPv2 multicast group will receive packets for RIPv2. (We’ll talk more about multi-
cast in Chapter 16.) RIPv2 multicasting also offers a way to fi lter out RIPv2 messages
from a RIPv1 only router. This can be important, since RIPv2 messages look very much
like RIPv1 messages. But RIPv2 messages are all invalid by RIPv1 standards. RIPv1
devices would either discard RIPv2 messages because the mandatory all-zero fi elds are
not all zeroes, or accept the routes and ignore the additional RIPv2 information such
as the subnet mask. RIPv2 multicasting makes sure that only RIPv2 devices see the
RIPv2 information. So RIPv1 and RIPv2 routers can easily coexist on the same LAN, for
instance. The multicast group used for RIPv2 routers is 224.0.0.9.

RIPv2 is still limited in several ways. The 15 maximum-hop count is still there, as
well as counting to infi nity to resolve routing loops. And RIPv2 does nothing to improve
on the fi xed distance-vector values that are a feature of all versions of RIP.

RIPng for IPv6
The version of RIP used with IPv6 is called RIPng, where “ng” stands for “next genera-
tion.” (IPv6 itself was often called IPng in the mid-1990s.) RIPng uses exactly the same
hop count metric as RIP as well as the same logic and timers. So RIPng is still a distance-
vector RIP, with two important differences.

1. The packet formats have been extended to carry the longer IPv6 addresses.
2. IPv6 security mechanisms are used instead of RIPv2 authentication.

The overall format of the RIP packet is the same as the format of the RIPv2 packet
(but RIPng cannot be used by IPv4). There is a 32-bit header followed by a set of 20-byte
route entries. The header fi elds must be the same as those used in RIPv2: There is a
1-byte Command code fi eld, followed by a 1-byte Version fi eld (now 6), and then 2 unused
bytes of bits that must still be set to all 0 bits. However, the 20-byte router entry fi elds in
RIPng are totally different that those in RIPv2.

IPv6 addresses are 16 bytes long, leaving only 4 bytes for any other information that
must be associated with the IPv6 route. First, there is a 2-byte Route Tag fi eld with the
same use as in RIPv2: The Route Tag fi eld identifi es internal and external routes. Inter-
nal routes are those learned by RIP itself, either locally or through other RIP routers.

362 PART III Routing and Routing Protocols

External routes are routes learned from another routing protocol such as OSPF or
BGP. Then there is a 1-byte Prefi x Length fi eld that tells the receiver where the bound-
ary between network and host is in the IPv6 address. Finally, there is a 1-byte Metric
fi eld (this fi eld was a full 32 bits in RIPv1 and RIPv2). Since infi nity is still 16 in RIPng,
this is not a problem.

The fi elds of the RIPng packet are shown in Figure 14.3. The combination of IPv6
address and Prefi x Length do away with the need for the Subnet Mask fi eld in RIPv2
packets. The Address Format Identifi er (AFI) fi eld from RIPv2 is not needed in RIPng,
since only IPv6 routing information can be carried in RIPng.

But IPv6 still needs a Next Hop fi eld. This RIPv2 fi eld contained the next-hop IP
address that traffi c to this IP address space should use, and was a vast improvement
over the “implied” next hop used in RIPv1. Now, IPv6 does not always need this Next
Hop information, but in many cases the next hop should be included in an IPv6 routing
information update. An IPv6 Next Hop needs another 128 bits (16 bytes). The creators
of RIPng decided to essentially reproduce the same route entry structure for the IPv6
Next Hop, but use a special value of the last fi eld (the Metric) to indicate that the fi rst
16 bytes in the route entry was an IPv6 Next Hop, not the route itself. The value chosen
for the metric was 256 (0xFF) because this was far beyond the legal hop count limit
(15) for RIP.

1 byte 1 byte 1 byte 1 byte

Unused (set to all zeros)VersionCommand

IPv6 Address

IPv6 Address

Route Tag

(Repeats multiple times, up to a maximum of 25)

Prefix Length Metric

Route Tag Prefix Length Metric

32 bits

R
o
u
t
e

E
n
t
r
y

R
o
u
t
e

E
n
t
r
y

FIGURE 14.3

RIPng for IPv6 packet fi elds. Note the large address fi elds and different format than RIPv2 fi elds.

CHAPTER 14 IGPs: RIP, OSPF, and IS–IS 363

When the route entry used is an IPv6 Next Hop, the 3 bytes preceding the 0xFF
Metric must be set to all 0 bits. This is shown in Figure 14.4.

At fi rst it might seem that the amount of the IPv6 routing information sent with
RIPng must instantly double in size, since now each 20-byte IPv6 route requires a
20-byte IPv6 Next Hop fi eld. This certainly would make IPv6 very unattractive to cur-
rent RIP users. But it was not necessary to include a Next Hop entry for each and every
IPv6 route because the creators of RIPng used a clever mechanism to optimize the use
of the Next Hop entry.

A Next Hop always qualifi es any IPv6 routes that follow it in the string of route
entries until another Next Hop entry is reached or the packet stream ends. This keeps
the number of “extra” Next Hop entries needed in RIPng to an absolute minimum. And
due to the fact that the Next Hop fi eld in RIPv2 has only specialized use, a lot of IPv6
routes need no Next Hop entry at all.

The decision to replace RIPv2 authentication with IPv6 security mechanisms was
based on the superior security used in IPv6. When used with RIPng updates, the IPv6
Authentication Header protects both the data inside the packet and the IP addresses of
the packet, but this is not the case with RIPv2 authentication no matter which method
is used. And IPv6 encryption can be used to add further protection.

A NOTE ON IGRP AND EIGRP
Cisco routers often use a proprietary IGP known as the Interior Gateway Routing
 Protocol (IGRP) instead of RIP. Later, features were added to IGRP in the form of
Enhanced IGRP (EIGRP). In spite of the name, EIGRP was a complete redesign of
IGRP. This section will only give a brief outline of IGRP and EIGRP, since IGRP/EIGRP
interoperability with Juniper Networks routers is currently impossible.

IGRP and EIGRP might appear to be open standards, but this is only due to the wide-
ranging deployment of Cisco routers. Cisco has never published the details of IGRP
internals (EIGRP is based on these), and is not likely to.

1 byte 1 byte 1 byte 1 byte

Next Hop IPv6 Address

Must Be All Zeros

32 bits

Metric50xFF

FIGURE 14.4

The Next Hop in IPv6 with RIPng. Note the use of the special metric value.

364 PART III Routing and Routing Protocols

IGRP improves on RIP in several areas, but IGRP is still essentially a distance-vector
routing protocol. EIGRP, on the other hand, is advertised by Cisco as a “hybrid” rout-
ing protocol that includes aspects of link-state routing protocols such as OSPF and
IS–IS among the features of EIGRP. Today not many, even those with all-Cisco networks,
would consider running EIGRP over OSPF or IS–IS.

Open Shortest Path First
OSPF is not a distance-vector protocol like RIP, but a link-state protocol with a set of
metrics that can be used to refl ect much more about a network than just the number
of routers encountered between source and destination. In OSPF, a router attempts to
route based on the “state of the links.”

OSPF can be equipped with metrics that can be used to compute the “shortest” path
through a group of routers based on link and router characteristics such as highest
throughput, lowest delay, lowest cost (money), link reliability, or even more. OSPF is still
used very cautiously, with default metrics based entirely on link bandwidth. Even with
this conservative use, OSPF link states are an improvement over simple hop counts.

Distance-vector routing protocols like RIP were fi ne for networks comprised of
equal speed links, but struggled when networks started to be built out of WAN links
with a wide variety of available speeds. When RIP fi rst appeared, almost all WANs were
composed of low-speed analog links running at 9600 bps. Even digital links running at
56 or 64 kbps were mainly valued for their ability to carry fi ve 9600-bps channels on
the same physical link. Commercial T1s at 1.544 Mbps were not widely available until
1984, and then only in major metropolitan areas. Today, the quickest way to send pack-
ets from one router to another is not always through the fewest number of routers.

The “open” in OSPF is based on the fact that the Shortest Path First (SPF) algorithm
was not owned by anyone and could be used by all. The SPF algorithm is often called
the Dijkstra algorithm after the computer and network pioneer that fi rst worked it
out from graph theory. Dijkstra himself called the new method SPF, fi rst described in
1959, because compared to a distance-vector protocol’s counting to infi nity to produce
convergence, his algorithm always found the “shortest path fi rst.”

OSPF version 1 (OSPFv1), described in RFC 1131, never matured beyond the experi-
mental stage. The current version of OSPF, OSPFv2, which fi rst appeared as RFC 1247
in 1991, and is now defi ned by RFC 2328 issued in 1998, became the recommended
replacement for RIP (although a strong argument could be made in favor of IS–IS, dis-
cussed later in this chapter).

Link States and Shortest Paths
Link-state protocols are all based on the idea of a distributed map of the network. All
of the routers that run a link-state protocol have the same copy of this network map,
which is built up by the routing protocol itself and not imposed on the network from
an outside source. The network map and all of the information about the routers and
links (and the routes) are kept in a link-state database on each router. The database

CHAPTER 14 IGPs: RIP, OSPF, and IS–IS 365

is not a “map” in the usual sense of the word: Records represent the topology of the
network as a series of links from one router to another. The database must be identical
on all of the routers in an area for OSPF to work.

Initially, each router only knows about a piece of the entire network. The local
router knows only about itself and the local interfaces. So link-state advertisements
(LSAs), the OSPF information sent to all other routers from the local router, always iden-
tify the local router as the source of the information.

The OSPF routing protocol “fl oods” this information to all of the other routers so
that a complete picture of the network is generated and stored in the link-state data-
base. OSPF uses reliable fl ooding so that OSPF routers have ways to fi nd out if the
information passed to another router was received or not.

The more routers and links that OSPF has to deal with, the larger the link-state data-
base that has to be maintained. In large router networks, the routing information could
slow traffi c. OSPFv2 introduced the idea of stub areas into an OSPF routing domain.
A stub area could function with a greatly reduced link-state database, and relied on a
special backbone area to reach the entire network.

What OSPF Can Do
By 1992, OSPF had matured enough to be the recommended IGP for the Internet and
had delivered on its major design goals.

Better Routing Metrics for Links
OSPF employs a confi gurable link metric with a range of valid values between 1 and
65,535. There is no limit on the total cost of a path between routers from source to
destination, as long as all the routers are in the same AS. Network administrators, for
example, could assign a metric of 10,000 to a low-bandwidth link and 10 to a very
high-bandwidth Metro Ethernet or SONET/SDH link. In theory, these values could be
manually assigned through a central authority. In practice, most implementations of
OSPF divide a reference bandwidth by the actual bandwidth on the link, which is
known through the router’s interface confi guration. The default reference bandwidth
is usually 100 Mbps (Fast Ethernet). Since the metric cannot be less than 0, all links at
100 Mbps or faster use a 1 as a link metric and thus revert to a simple hop count when
computing longest cost paths. The reference bandwidth is routinely raised to accom-
modate higher and higher bandwidths, but this requires a central authority to carry out
consistently.

Equal-Cost Multipaths
There are usually multiple ways to reach the same destination network that the rout-
ing protocol will compute as having the same cost. When equal-cost paths exist, OSPF
routers can fi nd and use equal-cost paths. This means that there can be multiple next
hops installed in a forwarding table with OSPF. OSPF does not specify how to use these
multipaths: Routers can use simple round-robin per packet, round-robin per fl ow, hash-
ing, or other mechanisms.

366 PART III Routing and Routing Protocols

Router Hierarchies
OSPF made very large routing domains possible by introducing a two-level hierarchy
of areas. With OSPF, the concepts of an “edge” and “backbone” router became common
and well understood.

Internal and External Routes
It is necessary to distinguish between routing information that originated within the
AS (internal routing information) and routing information that came from another AS
(external routing information). Internal routing information is generally more trusted
than external routing information that might have passed from ISP to ISP across the
Internet.

Classless Addressing
OSPF was fi rst designed in a classful Internet environment with Class A, B, and C
addresses. However, OSPF is comfortable with the arbitrary network/host boundaries
used by CIDR and VLSM.

Security
RIPv1 routers accepted updates from anyone, and even RIPv2 routers only offi cially
used simple plain-text passwords that could be discovered by anyone with access to
the link. OSPF allows not only for simple password authentication, but strong MD5 key
mechanisms on routing updates.

ToS Routing
The original OSPF was intended to support the bit patterns established for the Type of
Service (ToS) fi eld in the IP packet header. Routers at the time had no way to enforce
ToS routing, but OSPF anticipated the use of the Internet for all types of traffi c such
as voice and video and went ahead and built into OSPF ways to distribute multiple
metrics for links. So OSPF routing updates can include ToS routing information for
fi ve IP ToS service classes, defi ned in RFC 1349. The service categories and OSPF ToS
values are normal service (ToS 5 0), minimize monetary cost (2), maximize reliability
(4), maximize throughput (8), and minimize delay (16). Since all current implementa-
tions of OSPF support only a ToS value of 0, no more need be said about the other ToS
metrics.

By the way, here’s all we did on the customer- and provider-edge routers in each AS
to confi gure OSPF to run on every router interface. Now, in a real network, we wouldn’t
necessarily confi gure OSPF to run on all of the router’s internal or management inter-
faces, but it does no harm here.

set protocols ospf area 0.0.0.0 interface all

All OSPF routers do not have to be in the same area, and in most real router net-
works, they aren’t. But this is a simple network and only confi gures an OSPF backbone
area, 0.0.0.0. The provider routers in our ISP cores (P9, P7, P4 and P2), which are called

CHAPTER 14 IGPs: RIP, OSPF, and IS–IS 367

AS border routers, or ASBRs, run OSPF on the internal links within the AS, but not on
the external links to the other AS (this is where we’ll run the EGP).

The relationship between the OSPF use of a reference bandwidth and ToS routing
should be clarifi ed. Use of the OSPF link reference bandwidth is different from and
independent of ToS support, which relies on the specifi c settings in the packet head-
ers. OSPF routers were supposed to keep separate link-state databases for each type
of service, since the least-cost path in terms of bandwidth could be totally different
from the least-cost path computed based on delay or reliability. This was not feasible
in early OSPF implementations, which struggled to maintain the single, normal ToS 5 0
database. And it turned out that the Internet users did not want lots of bandwidth or
low delay or high reliability when they sent packets. Internet users wanted lots of
bandwidth and low delay and high reliability when they sent packets. So the reference
bandwidth method is about all the link-state that OSPF can handle, but that is still bet-
ter than nothing.

OSPF Router Types and Areas
OSPFv2 introduced areas as a way to cut down on the size of the link-state database, the
amount of information fl ooded, and the time it takes to run the SPF algorithm, at least
on areas other than the special backbone area.

An OSPF area is a logical grouping of routers sharing the same 32-bit Area ID. The
Area ID can be expressed in dotted decimal notation similar to an IP address, such as
192.168.17.33. The Area ID can also be expressed as a decimal equivalent, so Area 261
is the same as Area 0.0.1.5. When the Area ID is less than 256, usually only a single num-
ber is used, but Area 249 is still really Area 0.0.0.249.

There are fi ve OSPF area types. The position of a router with respect to OSPF areas
is important as well. The area types are shown in Figure 14.5.

The OSPF Area 0 (0.0.0.0) is very special. This is the backbone area of an OSPF
routing domain. An OSPF routing domain (AS) can consist of a single area, but in that
case the single area must be Area 0. Only the backbone area can generate the summary
routing topology information that is used by the other areas. This is why all interarea
traffi c must pass through the backbone area. (There are backdoor links that can be
confi gured on some routers to bypass the backbone area, but these violate the OSPF
specifi cation.) In a sense, the backbone area knows everything. Not so long ago, only
powerful high-end routers could be used on an OSPF backbone. On the Illustrated Net-
work, each AS consists of only an Area 0.

If an area is not the backbone area, it can be one of four other types of areas. All of
these areas connect to the backbone area through an Area Border Router (ABR). An
ABR by defi nition has links in two or more areas. In OSPF, routers always form the
boundaries between areas. A router with links outside the OSPF routing domain is
called an autonomous system boundary router (ASBR). Routing information about des-
tination IP addresses not learned from OSPF are always advertised by an ASBR. Even
when static routes, or RIP routes, are redistributed by OSPF, that router technically
becomes an ASBR. ASBRs are the source of external routes that are outside of the

368 PART III Routing and Routing Protocols

OSPF routing domain, and external routes are often very numerous in an OSPF routing
domain attached to the global Internet. If a router is not an ABR or ASBR, it is either an
internal router and has all of its interfaces within the same area, or a backbone router
with at least one link to the backbone. However, these terms are not as critical to OSPF
confi gurations as to ABRs or ASBRs. That is, not all backbone routers are ABRs or ASBRs;
backbone routers can also be internal routers, and so on.

Non-backbone, Non-stub Areas
These areas are really smaller versions of the backbone area. There can be links to other
routing domains (ASBRs) and the only real restriction on a non-backbone, non-stub area
is that it cannot be Area 0. Area 11 in Figure 14.5 is a non-backbone, non-stub area.

Stub Area
Stub areas cannot have links outside the AS. So there can be no ASBRs in a stub area. This
minimizes the amount of external routing information that needs to be distributed into
the link-state databases of the stub area routers. Because an AS might be an ISP on the

Area 0
(backbone)

ABR
ABR ABR

ASBR

ASBR

AS

ABR

Area 10.0.0.3
(NSSA: ASBR
allowed, otherwise
same as stub)

Area 24
(total stub area:
no ASBR, only
one default
route)

Area 1.17
(stub: no ASBR
allowed, default
external routes)

Area 11
(non-backbone
non-stub)

Inter-AS
Link

ASBR

Inter-AS
Link

Inter-AS
Link, RIP, etc.

FIGURE 14.5

OSPF area types, showing the various ways that areas can be given numbers (decimal, IP address,
or other). Note that ABRs connect areas and ASBRs have links outside the AS or to other routing
protocols.

CHAPTER 14 IGPs: RIP, OSPF, and IS–IS 369

Internet, the number of external routes required in an OSPF routing domain is usually
many times larger than the internal routes of the AS itself. Stub area routers only obtain
information on routes external to the AS from the ABR. Area 1.17 in Figure 14.5 is a
stub area.

Total Stub Area
This is also called a “totally stubby area.” Recall that stub areas cannot have ASBRs
within them, by defi nition. But stub areas can only reach other ASBRs, which have the
links leading to and from other ASs, through an ABR. So why include detailed external
route information in the stub area router’s link-state database? All that is really needed
is the proper default route as advertised by the ABR. Total stub areas only know how
to reach their ABR for a route that is not within their area. Area 24 in Figure 14.5 is a
total stub area.

Not-So-Stubby Area
Banning ASBRs from stub areas was very restrictive. Even the advertisement of static
routes into OSPF made a router an ASBR, as did the presence of a single LAN running
RIP, if the routes were advertised by OSPF. And as ISPs merged and grew by acquiring
smaller ISPs, it became diffi cult to “paste” the new OSPF area with its own ASBRs onto
the backbone area of the other ISP. The easiest thing to do was to make the new former
AS a stub area, but the presence of an ASBR prevented that solution. The answer was to
introduce the concept of a not-so-stubby area (NSSA) in RFC 1587. An NSSA can have
ASBRs, but the external routing information introduced by this ASBR into the NSSA is
either kept within the NSSA or translated by the ABR into a form useful on the back-
bone Area 0 and to other areas. Area 10.0.0.3 in Figure 14.5 is an NSSA.

OSPF Designated Router and Backup Designated Router
An OSPF router can also be a Designated Router (DR) and Backup Designated Router
(BDR). These have nothing to do with ABRs and ASBRs, and concern only the relation-
ship between OSPF routers on links that deliver packets to more than one destination
at the same time (mainly LANs).

There are two major problems with LANs and public data networks like ATM and
frame relay (called non-broadcast multiple-access, or NBMA, networks). First is the fact
that the link-state database represents links and routers as a directed graph. A simple
LAN with fi ve OSPF routers would need N(N 2 1)/2, or 5(4)/2 5 20 link-state advertise-
ments just to represent the links between the routers, even though all fi ve routers are
mutually adjacent on the LAN and any frame sent by one is received by the other four.
Second, and just as bad, is the need for fl ooding. Flooding over a LAN with many OSPF
routers is chaotic, as link-state advertisements are fl ooded and “refl ooded” on the LAN.

To address these issues, multiaccess networks such as LANs always elect a desig-
nated router for OSPF. The DR solves the two problems by representing the multi-
access network as a single “virtual router” or “pseudo-node” to the rest of the network
and managing the process of fl ooding link-state advertisements on the multiaccess

370 PART III Routing and Routing Protocols

network. So each router on a LAN forms an OSPF adjacency only with the DR (and also
the Backup DR [BDR] as mentioned later). All link-state advertisements go only to the
DR (and BDR), and the DR forwards them on to the rest of the network and internet-
work routers.

Each network that elects a DR also elects a BDR that will take over the functions of
the DR if and when the DR fails. The DR and BDR form OSPF adjacencies with all of the
other routers on the multiaccess network and the DR and BDR also form an adjacency
with each other.

OSPF Packets
OSPF routers communicate using IP packets. OSPF messages ride directly inside of IP
packets as IP protocol number 89. Because OSPF does not use UDP or TCP, the OSPF
protocol is fairly elaborate and must reproduce many of the features of a transport pro-
tocol to move OSPF messages between routers.

There can be one of fi ve OSPF packet types inside the IP packet, all of which
share a common OSPF header. The structure of the common OSPF header is shown in
Figure 14.6.

The version fi eld is 2, for OSPFv2, and the type has one of the fi ve values. The
packet length is the length of the OSPF packet in bytes. The Router ID is the IP address
selected as OSPF Router ID (usually the loopback interface address), and the Area ID is
the OSPF area of the router that originates the message. The checksum is the same as
the one used on IP packets and is computed on the whole OSPF packet.

32 bits

1 byte

Version Type Packet Length

Router ID

Area ID

Checksum Authentication Type

Authentication Length

Authentication*

Authentication*

1 byte 1 byte 1 byte

*When authentication type52, the authentication field has this structure:

Key ID030000

Cryptographic Sequence Number

FIGURE 14.6

OSPF packet header fi elds, showing how the structure can vary with type.

CHAPTER 14 IGPs: RIP, OSPF, and IS–IS 371

The Authentication Type (or AuType) is either none (0), simple password authen-
tication (1), or cryptographic authentication (2). The simple password is an eight-
character plain-text password, but the use of AuType = 2 authentication gives the
authentication fi eld the structure shown in the fi gure. In this case, the Key ID identifi es
the secret key and authentication algorithm (MD5) used to create the message digest,
the Authentication Data Length specifi es the length of the message digest appended
to the packet (which does not count as part of the packet length), and the Crypto-
graphic Sequence Number always increases and prevents hacker “replay” attacks.

OSPFv3 for IPv6
The changes made to OSPF for IPv6 are minimal. It is easy to transition from OSPF
for IPv4 to OSPF for IPv6. There is new version number, OSPF version 3 (OSPFv3),
and some necessary format changes, but less than might be expected. The basics are
described in RFC 2740.

OSPF for IPv6 (often called OSPFv6) will use link local IPv6 addresses and IPv6
multicast addresses. The IPv6 link-state database will be totally independent of the IPv4
link-state database, and both can operate on the same router.

Naturally, OSPFv6 must make some concessions to the larger IPv6 addresses and
next hops. But the common LSA header has few changes as well. The Link State Iden-
tifi er fi eld is still there, but is now a pure identifi er and not an IPv4 address. There is
no longer an Options fi eld, since this fi eld also appears in the packets that need it,
and the LSA Header Type fi eld is enlarged to 16 bits. Naturally, when LSAs carry the
details of IPv6 addresses, those fi elds are now large enough to handle the 128 bit IPv6
addresses.

INTERMEDIATE SYSTEM–INTERMEDIATE SYSTEM
OSPF is not the only link-state routing protocol that ISPs use within an AS. The other
common link-state routing protocol is IS–IS (Intermediate System–Intermediate
System). When IS–IS is used with IP, the term to use is Integrated IS. IS–IS is not really
an IP routing protocol. IS–IS is an ISO protocol that has been adapted (“integrated”) for
IP in order to carry IP routing information inside non-IP packets.

IS–IS packets are not IP packets, but rather ConnectionLess Network Protocol
(CLNP) packets. CLNP packets have ISO addresses, not IP source and destination
addresses. CLNP packets are not normally used for the transfer of user traffi c from
client to server, but for the transfer of link-state routing information between routers.
IS–IS does not have “routers” at all: Routers are called intermediate systems to distin-
guish them from the end systems (ES) that send and receive traffi c.

The independence of IS–IS from IP has advantages and disadvantages. One advan-
tage is that network problems can often be isolated to IP itself if IS–IS is up and running
between two routers. One disadvantage is that there are now sources and destinations
on the network (the ISO addresses) that are not even “ping-able.” So if a link between

372 PART III Routing and Routing Protocols

two routers is confi gured with incorrect IP addresses (such as 10.0.37.1/24 on one
router and 10.0.38.2/24 on the other), IS–IS will still come up and exchange routing
information over the link, but IP will not work correctly, leaving the network adminis-
trators wondering why the routing protocol is working but the routes are broken.

Our network does not use IS–IS, so much of this section will be devoted to intro-
ducing IS–IS terminology, such as link-state protocol (LSP) data unit instead of OSPF’s
link-state advertisement (LSA), and contrasting IS–IS behavior with OSPF.

The IS–IS Attraction
If IS–IS is used instead of OSPF as an IGP within an AS, there must be strong reasons
for doing so. Why introduce a new type of packet and addressing to the network?
And even the simple task of assigning ISO addresses to routers can be a complex task.
Yet many ISPs see IS–IS as being much more fl exible than OSPF when it comes to the
structure of the AS.

IS–IS routers can form both Level 1 (L1) and Level 2 (L2) adjacencies. L1 links con-
nect routers in the same IS–IS area, and L2 links connect routers in different areas. In
contrast to OSPF, IS–IS does not demand that traffi c sent between areas use a special
backbone area (Area 0.0.0.0). IS–IS does not care if interarea traffi c uses a special area
or not, as long as it gets there. The same is true when a larger ISP acquires a smaller one
and it is necessary to “paste” new areas onto existing areas. With IS–IS, an ISP can just
paste the new area wherever it makes sense and confi gure IS–IS L1/L2 routers in the
right places. IS–IS takes care of everything.

A backbone area in IS–IS is simply a contiguous collection of routers in different
areas capable of running L2 IS–IS. The fact that the routers must be directly connected
(contiguous) to form the backbone is not too much as a limitation (most core routers
on the backbone usually have multiple connections). Each and every IS–IS backbone
router can be in a different area. If an AS structure similar to centralized OSPF is desired,
this is accomplished in IS–IS by running certain (properly connected) routers as
L2-only routers in one selected area (the backbone), connecting areas adjacent to
the central area with L1/L2 routers, and making the other the routers in the other areas
L1-only routers. The IS–IS attraction is in this type of fl exibility compared to OSPF.

IS–IS and OSPF
ISO’s idea of a network layer protocol was CLNP. To distribute the routing information,
ISO invented ES–IS to get routing information from routers to and from clients and
servers, and IS–IS to move this information between routers.

IS–IS came from DEC as part of the company’s effort to complete DECnet Phase
V. Standardized as ISO 10589 in 1992, it was once thought that IS–IS would be the
natural progression from RIP and OSPF to a better routing protocol. (OSPF was strug-
gling at the time.) To ease the transition from IP to OSI-RM protocols, Integrated IS–IS
(or Dual IS–IS) was developed to carry routing information for both IP and ISO-RM
protocols.

CHAPTER 14 IGPs: RIP, OSPF, and IS–IS 373

OSPF rebounded, ironically by often borrowing what had been shown to work
in IS–IS. Today OSPF is the recommended IGP to run on the Internet, but IS–IS still
has adherents for reasons of fl exibility. Of course, OSPF has much to recommend it
as well.

Similarities of OSPF and IS–IS

■ Both IS–IS and OSPF are link-state protocols that maintain a link-state database and
run an SPF algorithm based on Dijkstra to compute a shortest path tree of routes.

■ Both use Hello packets to create and maintain adjacencies between neighboring
 routers.

■ Both use areas that can be arranged into a two-level hierarchy or into interarea and
intraarea routes.

■ Both can summarize addresses advertised between their areas.

■ Both are classless protocols and handle VLSM.

■ Both will elect a designated router on broadcast networks, although IS–IS calls it a
designated intermediate system (DIS).

■ Both can be confi gured with authentication mechanisms.

Differences between OSPF and IS–IS
Many of the differences between IS–IS and OSPF are terminology. The use of the terms
IS and ES have been mentioned. IS–IS has a subnetwork point of attachment (SNPA)
instead of an interface, protocol data units (PDUs) instead of packets, and other minor
differences. OSPF LSAs are IS–IS link-state PDUs (LSPs), and LSPs are packets all on their
own and do not use OSPF’s LSA-OSPF header-IP packet encapsulation.

But all IS–IS and OSPF differences are not trivial. Here are the major ones.

Areas—In OSPF, ABRs sit on the borders of areas, with one or more interfaces
in one area and other interfaces in other areas. In IS–IS, a router (IS) is either
totally in one area or another, and it is the links between the routers that con-
nect the areas.

Route Leaking—When L2 information is redistributed into L1 areas, it is called
route leaking. Route leaking is defined in RFC 2966. A bit called the Up/Down
bit is used to distinguish routes that are local to the L1 area (Up/Down 5 0)
from those that have been leaked in the area from an L1/L2 router (Up/
Down 5 1). This is necessary to prevent potential routing loops. Route leak-
ing is a way to make IS–IS areas with LI only routers as “smart” as OSPF routers
in not-so-stubby-areas (NSSAs).

374 PART III Routing and Routing Protocols

Network Addresses—CLNP does not use IP addresses in its packets. IS–IS packets
use a single ISO area address (Area ID) for the entire router because the
router must be within one area or another. Every IS–IS router can have up to
three different area ISO addresses, but this chapter uses one ISO address per
router. The ISO Area ID is combined with an ISO system address (System ID)
to give the ISO Network Entity Title, or NET. Every router must be given an ISO
NET as described in ISO 8348.

Network Types—OSPF has five different link or network types that OSPF can
be configured to run on: point-to-point, broadcast, non-broadcast multi-access
(NBMA), point-to-multipoint, and virtual links. In contrast, IS–IS defines only
two types of links or subnetworks: broadcast (LANs) and point-to-point (called
“general topology”). This only distinguishes links that can support multicast-
ing (broadcast) and use a designating router (DIS) and links that do not sup-
port multicasting.

Designated Intermediate System (DIS)—Although IS–IS technically uses a DIS,
many still refer to these devices as a designated router (DR). The DIS or DR
represents the entire multiaccess network link (such as a LAN) as a single
pseudo-node. The pseudo-node (a “virtual node” in some documentation) does
not really exist, but there are LSPs that are issued for the entire multiaccess
network as if the pseudo-node were a real device. Unlike OSPF, all IS–IS rout-
ers on a pseudo-node (such as a LAN) are always fully adjacent to the pseudo-
node. This is due to the lack of a backup DIS, and new DIS elections must take
place quickly.

LSP Handling—IS–IS routers handle LSPs differently than OSPF routers handle
LSAs. While OSPF LSAs age from zero to a maximum (MaxAge) value of 3600 sec-
onds (1 hour), IS–IS LSPs age downward from a MaxAge of 1200 seconds (20 min-
utes) to 0. The normal refresh interval is 15 minutes. Since IS–IS does not use IP
addresses, multicast addresses cannot be used in IS–IS for LSP distribution. Instead,
a MAC destination address of 0180.c200.0014 (AllL1ISs) is used to carry L1 LSPs to
L1 ISs (routers), and a MAC destination address of 0180.c200.0015 (AllL2ISs) is used
to carry L2 LSPs to L2 ISs (routers).

Metrics—Like OSPF, IS–IS can use one of four different metrics to calculate least-cost
paths (routes) from the link-state database. For IS–IS, these are default (all routers
must understand the default metric system), delay, expense, and error (reliability in
OSPF). Only the default metric system is discussed here, as with OSPF, and that is the
only system that most router vendors support. The original IS–IS specifi cation used
a system of metric values that could only range from 0 to 63 on a link, and paths (the
sum of all link costs along the route) could have a maximum cost of 1023. Today,
IS–IS implementations allow for “wide metrics” to be used with IS–IS. This makes
the IS–IS metrics 32 bits wide.

CHAPTER 14 IGPs: RIP, OSPF, and IS–IS 375

IS–IS for IPv6
One advantage that IS–IS has over OSPF is that IS–IS is not an IP protocol and is not as
intimately tied up with IPv4 as OSPF. So IS–IS has fewer changes for IPv6: IPv4 is already
strange enough.

With IPv6, the basic mechanisms of RFC 1195 are still used, but two new Type-
Length-Vector (TLVs, which defi ne representation) types are defi ned for IPv6.

IPv6 Interface Address (type 232)—This TLV just modifies the interface address
field for the 16-byte IPv6 address space.

IPv6 Reachability (type 236)—This TLV starts with a 32-bit wide metric. Then
there is an Up/Down bit for route leaking, an I/E bit for external (other routing
protocol or AS) information, and a “sub-TLVs present?” bit. The last 5 bits of this
byte are reserved and must be set to 0. There is then 1 byte of Prefix Length
(VLSM) and from 0 to 16 bytes of the prefix itself, depending on the value of
the Prefix Length field. Zero to 248 bytes of sub-TLVs end the TLV.

Both types have defi ned sub-TLVs fi elds, but none of these has yet been standardized.

376 PART III Routing and Routing Protocols

QUESTIONS FOR READERS
Figure 14.7 shows some of the concepts discussed in this chapter and can be used to
help you answer the following questions.

RIP

RIP

RIP Distance-
Vector Routing

Domain

R

R

R

R

R

L2

L2

R

AS
BR

AS
BR

ABR

RIP

ABR

R

R

R

R

L2

OSPF
Area 0.0.0.0

OSPF Link-State
Routing Domain

with Multiple Areas
IS-IS Link-State Routing Domain

with L2 Router “Chain” as Backbone

FIGURE 14.7

Three IGPs and some of their major characteristics.

1. Why does RIP continue to be used in spite of its limitations?

2. What is the difference between distance-vector and link-state routing protocols?

3. It is often said that it is easier to confi gure a backbone area in IS–IS than in
OSPF. What is the basis for this statement?

4. What are the similarities between OSPF and IS–IS?

5. What are the major differences between OSPF and IS–IS?

377

CHAPTER

What You Will Learn
In this chapter, you will learn about the BGP and the essential role it plays on the
Internet. With BGP, routing information is circulated outside the AS and to all rout-
ing domains. We’ll see how a simple routing policy change can make a destination
unreachable.

You will learn about the differences between the Internet BGP (IBGP) and the
Exterior Gateway Protocol (EBGP), and why both are needed. We’ll also look at
BGP attributes and message formats.

Border Gateway Protocol 15

The EGP used on the Internet is the Border Gateway Protocol (BGP). IGPs run between
the routers inside a routing domain (single AS). BGP runs between different autono-
mous services (ASs). BGP runs on links between the border routers of these routing
domains and shares information about the routes within the AS or learned by the AS
with the AS on the other side of the “border.”

BGP makes sure that every network and interface in any AS located anywhere on
the Internet is reachable from every other place. BGP does not generate any routing
information on its own, unlike the IGPs, which essentially “bootstrap” themselves into
existence. BGP relies on an underlying IGP (or static routes) as the source of the BGP-
distributed information.

BGP runs on the border routers of Ace ISP’s AS 65459 (routers P9 and P4) and Best
ISP’s AS 65127 (routers P7 and P2). These are highlighted in Figure 15.1. An IGP such as
OSPF or IS–IS runs on the direct links between routers P9 and P4 and routers P7 and P2,
but these are interior links. BGP runs on the other links between the backbone routers.

BGP AS A ROUTING PROTOCOL
There are EGPs defi ned other than BGP. The Inter-Domain Routing Protocol (IDRP)
from ISO is the EGP that was to be used with IS–IS as an IGP. IDRP is also sometimes
promoted as the successor to BGP, or the best way to carry IPv6 routing information

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80:205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65459

Wireless
in Home

Solid rules � SONET/SDH
Dashed rules � Gig Ethernet
Note: All links use 10.0.x.y
addressing...only the last
two octets are shown.

FIGURE 15.1

BGP on the Illustrated Network.

380 PART III Routing and Routing Protocols

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80:205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC: 00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

ge-0/0/3

16.2

ge-0/0/3

16.1

Best ISP

AS 65127

Global Public
Internet

CHAPTER 15 Border Gateway Protocol 381

between ISP ASs. However, when it comes to the Internet today, the only EGP worth
considering is BGP.

In a very real sense, BGP is not a routing protocol at all. BGP does not really
 carry routing information from AS to AS, but information about routes from AS to AS.
 Generally, a route that passes through fewer ASs (ISPs) than another is considered more
attractive, although there are many other factors (BGP attributes) to consider. BGP is a
routing protocol without real routes or metrics, and both of those derive from the IGP.
BGP is not a link-state protocol, because the state of links in many AS clouds would be
diffi cult to convey and maintain across the entire network (and links would tend to
“average out” to a sort of least common denominator anyway). But it’s not a distance-
vector protocol either, because more attributes than just AS path length determine
active routes. BGP is called a “path-vector” protocol (a vector has a direction as well as
value), but mainly because a new term was needed to describe its operation.

BGP information is not even described as a “route.” BGP carries network layer
reachability information (NLRI). BGP “routes” do not have metrics, like IGP routes, but
attributes. Together, the BGP NLRI and their attributes allow other ASs to make deci-
sions about the best way to reach a route (network) in another AS. Once a packet is
routed to the correct AS through BGP information, the packet is delivered locally using
the IGP information.

The differences between BGP and IGPs should always be remembered. Some new
to BGP struggle with BGP terminology and concepts because they attempt to interpret
BGP features in terms of more familiar IGP features. BGP does not work like an IGP
because BGP is not an IGP and should not work like an IGP. When BGP passes informa-
tion from one AS border router to another AS border router inside an AS, a form known
as interior BGP (IBGP) is used. When BGP passes information from one AS to another
AS, the form of BGP used is called exterior BGP (EBGP).

This chapter does not deal much with routing policies for BGP based on multiple
attributes, which determine how the routers use BGP to route packets. Complex rout-
ing policies are beyond the scope of this book.

Confi guring BGP
It’s important to keep in mind exactly what is meant by a routing domain and routing
policy. For example, is CE0 part of AS 65459 or not? This is not as simple a question as
it sounds, because there might be a dozen routers behind CE0 that the Ace ISP knows
nothing about. But the interface to PE5 is fi rmly under the control of Ace, and generally
all customer site routers are considered part of the ISP’s routing domain in the sense
that a routing policy on PE5 can always control the routing behavior of CE0.

This does not mean something like preventing the users on LAN1 from running
Internet Chat or something. This type of application-level detailing is not what a rout-
ing policy is for. Corporate policies of this type (application policing) are best han-
dled by an appliance on site. ISP routing policies determine things like where the

382 PART III Routing and Routing Protocols

10.10.11.0/24 route to LAN1 is advertised or held back, and which routes are accepted
from other sources.

Let’s see how easy it is to confi gure BGP on the border routers. Each of them is
essentially identical in basic confi guration, so let’s use P9 as an example.

set protocols bgp group ebgp-to-as65127 type external;
set protocols bgp group ebgp-to-as65127 peer-as 65127;
set protocols bgp group ebgp-to-as65127 neighbor 10.0.79.1;
set protocols bgp group ebgp-to-as65127 neighbor 10.0.29.1;

set protocols bgp group ibgp-mesh type internal;
set protocols bgp group ibgp-mesh local-address 192.168.9.1;
set protocols bgp group ibgp-mesh neighbor 192.168.4.1;
set protocols bgp group ibgp-mesh neighbor 192.168.5.1;

BGP confi gurations are organized into groups that have user-defi ned names
(ebgp-to-as65127 and ibgp-mesh) Note that there are two types of BGP running on
the border routers: EBGP and IBGP. EBGP must know the other AS number and IBGP
must know the local address to use as a source address (routers typically have many
IP addresses). Note that EBGP uses link addresses and IBGP uses the router’s “loopback”
address, in this case the address assigned to the routing engine. We’ll see why this is
usually done when we discuss EBGP and IBGP later in this chapter.

We showed at the end of the previous chapter that we could ping IPv6 addresses
from the Windows XP client on LAN1 to the Windows XP client on LAN2. Let’s see
if the same works for the IPv4 addresses on the Unix hosts. All is well between
 bsdclient and bsdserver.

bsdclient# ping 10.10.12.77
PING 10.10.12.1 (10.10.12.77): 56 data bytes
64 bytes from 10.10.12.77: icmp_seq=0 ttl=255 time=0.600 ms
64 bytes from 10.10.12.77: icmp_seq=1 ttl=255 time=0.477 ms
64 bytes from 10.10.12.77: icmp_seq=2 ttl=255 time=0.441 ms
64 bytes from 10.10.12.77: icmp_seq=3 ttl=255 time=0.409 ms
^C
--- 10.10.12.77 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.409/0.482/0.600/0.072 ms

The default behavior for BGP is to advertise all active routes that it learns by its
own operation, so no special advertising policies are needed on the backbone rout-
ers. Because there are direct links in place between the two ISPs to connect the Los
Angeles offi ce (LAN1) with the New York offi ce (LAN2), each ISP relies on the routing
protocol metrics to make sure traffi c fl owing between LAN1 (10.10.11/24) and LAN2
(10.10.12/24) is not forwarded onto the Internet. That is, the cost of forwarding a
LAN1-LAN2 packet between the provider backbone routers will always be less than
using the Internet at large.

CHAPTER 15 Border Gateway Protocol 383

However, one day the users on LAN1 and LAN2 discover a curious thing: no one can
reach servers on the other LAN. Pings to the local router work fi ne, but pings to remote
hosts on the other LAN produce no results at all.

bsdserver# ping 10.10.12.1
PING 10.10.12.1 (10.10.12.1): 56 data bytes
64 bytes from 10.10.12.1: icmp_seq=0 ttl=255 time=0.599 ms
64 bytes from 10.10.12.1: icmp_seq=1 ttl=255 time=0.476 ms
64 bytes from 10.10.12.1: icmp_seq=2 ttl=255 time=0.401 ms
64 bytes from 10.10.12.1: icmp_seq=3 ttl=255 time=0.443 ms
^C
--- 10.10.12.1 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.401/0.480/0.599/0.071 ms
bsdserver# ping 10.10.11.177
PING 10.10.11.177 (10.10.11.177): 56 data bytes
^C
--- 10.10.11.177 ping statistics ---
5 packets transmitted, 0 packets received, 100% packet loss

The remote router cannot be pinged either (presumably, no security prevents them
from pinging to another site router’s port).

bsdserver# ping 10.10.11.1
PING 10.10.11.1 (10.10.11.1): 56 data bytes
^C
--- 10.10.11.1 ping statistics ---
7 packets transmitted, 0 packets received, 100% packet loss

The Power of Routing Policy
There are many things that could be wrong in this situation. In this case, the cause of
the problem is ultimately determined to be a feud between the Ace ISP and Best ISPs
running the service provider routers. The issue (greatly exaggerated here) is a server
located on LAN2 in New York. This essential server provides full-motion video, huge
database fi les, and all types of other information to the clients in Los Angeles on LAN1.
Naturally, a lot more packets fl ow from Best ISP’s AS to Ace ISP’s AS than the other way
around. So, the Ace ISP (AS 65459) controlling border routers P9 and P4 decided that
Best ISP (AS 65127) should pay for all these “extra” packets they were delivering from
the New York server. Shortly before the LANs stopped communicating, they sent a bill
to Best ISP—turning AS 65127 from a peer into a customer.

Naturally, Best ISP was not happy about this new arrangement and refused to pay.
So, Ace ISP decided to do a simple thing: they applied a routing policy and did not send
any information about the LAN1 network (10.10.11/24) to AS 65127’s border routers
(P7 and P2). If the border routers don’t know how to send packets back to LAN1
from the servers on LAN2, Ace ISP will be getting what they paid Best ISP for—which
is nothing. (In the real world, the customer paying for LAN1 and LAN2 connectivity
would be asked to pay for the asymmetrical traffi c load.)

384 PART III Routing and Routing Protocols

Without the correct routing information available on the routers on both ASs, no
one on LAN2 can fi nd a route to LAN1. Even if there were still some connectivity
between the sites through Ace and Best ISPs’ links to the Internet, this means that the
symptom would show up as a sharply increased network delay (and related application
timeouts), as packets now wander through many more hops than before. Something
would still clearly be wrong.

This large effect comes from a very simple cause. Let’s look at the routing tables and
policies on P2 and P7 (and P9 and P4) and see what has happened. Best ISP has applied
a very specifi c routing policy to their external BGP session with Ace ISP’s border rout-
ers. Here’s what it looks like on P7.

set policy-statement no-10-10-11 term1 from route-filter 10.10.11.0/24 exact;
set policy-statement no-10-10-11 term1 then reject;

This basically says, “Out of all the routing protocol information, fi nd (fi lter) the infor-
mation matching the network 10.10.11.0/24 exactly and nothing else; then discard
(reject) this information and do not use it in the routing or forwarding tables.”

This import policy on P7 and P2 (Best ISP’s routers) is applied on links from neigh-
bor border routers P4 and P9 (Ace ISP’s routers). The effect is to block BGP in AS 65127
from learning anything at all about network 10.10.11/24 from P4 and P9. Normally, Best
ISP’s backbone routers would pass the information about the route to LAN1 through
P7 and P2 to all other routers in the AS, including CE6 (LAN2’s site router). Without this
information, no forwarding table can be built on CE6 to allow packets to reach LAN1.
Problem solved: no packets for LAN1 can fl ow through Best ISP’s router network.

Note that Best ISP (AS 65127) still advertises its own LAN2 network (10.10.12/24)
to Ace ISP, and Ace ISP’s routers accept and distribute the information. So, on LAN1 the
site router CE0 still knows about both LANs.

admin@CE0# show route 10.10/16
inet.0: 38 destinations, 38 routes (38 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both
10.10.11.0/24 *[Direct/0] 00:03:31
> via fe-1/3/0.0
10.10.11.1/32 *[Local/0] 00:03:31
Local via fe-1/3/0.0
10.10.12.0/24 *[BGP/170] 00:00:09
> via ge-0/0/3.0

But this makes no difference: Packets can get to LAN2 through CE6 (and from any-
where else in Best ISP’s AS), but they have no way to get back if they have a source
address of 10.10.12.x. Let’s verify this on CE6.

admin@CE6# show route 10.10/16
inet.0: 38 destinations, 38 routes (37 active, 0 holddown, 1 hidden)
+ = Active Route, - = Last Active, * = Both

CHAPTER 15 Border Gateway Protocol 385

10.10.12.0/24 *[Direct/0] 00:25:42
> via fe-1/3/0.0
10.10.12.1/32 *[Local/0] 00:25:42
Local via fe-1/3/0.0

How are packets to get back to 10.10.11/24? They can’t. (The former route to
LAN1 is now hidden because the network is no longer reachable.) This simple exam-
ple shows the incredible power of BGP and routing policies on the Internet.

BGP AND THE INTERNET
BGP is the glue of the Internet. Generally, an ISP cannot link to another ISP unless both
run BGP. Contrary to some claims, customer networks (even large customer networks
with many routers and multiple ASs) do not have to run BGP between their own net-
works and to their ISP (or ISPs). Smaller customers especially can defi ne a limited num-
ber of static routes provided by the ISP, and larger customers might be able run IGP
passively (no adjacency formed) on the border router’s ISP interface. It depends on the
complexity of the customer and ISP network. A customer with only one link to a single
ISP generally does not need BGP at all. But if a routing protocol is needed, it will be BGP.

When a customer network links to two ISPs and runs BGP, routing policies are
immediately needed to prevent the large ISPs from seeing the smaller network as a
transit AS to each other. This actually happened a number of times in the early days of
BGP, when small corporate networks new to BGP suddenly found themselves passing
traffi c between two huge national ISPs whose links to each other had failed. Why pass
traffi c through two or three other ISPs when “Small Company, Inc.” has a BGP path
a single AS long? BGP routing policies are immediately put in place to not advertise
routes learned for one national ISP to the other. As long as “you can’t get there from
here,” all will be fi ne at the little network in the middle.

BGP summarizes all that is known about the IP address space inside the local AS
and advertises this information to other ASs. The other ASs pass this information along,
until all ASs running BGP know exactly what is where on the Internet. Without BGP,
a single default route must handle all destinations outside the AS. This is okay when a
single router leads to the Internet, but inadequate for networks with numerous connec-
tions to other ASs and ISPs.

BGP was not the original EGP used on the Internet. The fi rst exterior gateway pro-
tocol was Exterior Gateway Protocol (EGP). EGP is still around, but only on isolated
portions of the original Internet—such as for the U.S. military. An appreciation of EGP’s
limitations helps to understand why BGP works the way it does.

EGP and the Early Internet
In the early 1980s, the Internet had grown to include almost 1000 computers. Several
noted that distance-vector routing protocols such as the original Gateway-to-Gateway
Protocol (GGP), an IGP, would not scale to a large network environment. If every router

386 PART III Routing and Routing Protocols

needed to know everything about every route, convergence times when links failed
would be very high. GGP routing changes had to happen globally and in a coordinated
fashion. But the Internet, even in the 1980s, was a huge network with many different
types of computers and routers run by many different organizations.

The answer divided the emerging Internet into independent but interconnected ASs.
As seen in Chapter 14, the AS is identifi ed by a 4-byte (32-bit) number assigned by the
same authorities that assign IP addresses. We’ll use a shorthand such as 65127 instead
of the full (and proper) 0.65127 to indicate legacy 2-byte AS numbers. The AS range
64512 through 65535 is reserved for private AS numbers. Inside the AS, the network
was assumed to be under the control of a single network administrator. Within the AS,
local network matters (addressing, links, new routers, and so on) could be addressed
locally with GGP. But GGP ran only within the AS. Between ASs, some way had to be
found to communicate what networks were reachable within and through one AS to
the other AS.

EGP was the solution. EGP ran on the border routers (gateways), with links to other
ASs. EGP routers just sent a list of other routers and the classful major networks that
the router could reach. This cut down on the amount of information that needed to
be sent between ASs. Today, aggregation should be used as often as possible with BGP
instead of classful major network routes, but the intent and result are the same. So,
if a BGP router knows about networks 10.10.1.0/24 through 10.10.127.0/24 it can
aggregate the route as 10.10.0.0/17 and advertise that one route (NRLI) instead of
128 separate routing updates. Even if a network such as 10.10.11.0/24 is not included
in the range, the more specifi c advertisement of 10.10.11.0/24 and the longest match
rule will make sure traffi c fi nds its way to the right place—as long as the route is adver-
tised properly. Nevertheless, there are many reasons people do not aggregate as much
as they should, and many of their reasons are fl awed. For example, trying to protect a
network against “prefi x hijacking” is a bad reason not to aggregate.

There is no need for an EGP to reproduce the features of an IGP. An IGP needs to
tell every router in the AS which router has which interfaces and what IP addresses are
attached to these interfaces or reachable through that router (such as static routes). All
that other ASs need to know is which IP addresses are reachable in a particular AS and
how to get to a border router on, or nearer to, the target AS.

The Birth of BGP
EGP suffered from a number of limitations, too technical to recount. After some ini-
tial attempts to upgrade EGP, it was decided to create a better EGP (as a class of
routing protocol, contrasted with IGPs) than EGP: BGP. BGP was defi ned in 1989
with RFC 1105 (BGP1 or BGP-1 or BGPv1), revised in 1990 as RFC 1163 (BGP2), and
revised again in 1991 as RFC 1267 (BGP3). The version of BGP used today on the
Internet, BGP4, emerged in 1994 as RFC 1654 and was extended for classless opera-
tion in 1995 as RFC 1771. The baseline BGP specifi cation today is RFC 4271. This
chapter describes BGP4.

CHAPTER 15 Border Gateway Protocol 387

BGP has been extended for new roles on the Internet. BGP extended communities
are used with virtual private networks (VPNs). Communities are simply labeled that
so they can be used to associate NLRIs that do not share other traits. For example, a
 community value can be assigned to small customers and another community value
used to identify a small customer with multiple sites. There are few limits to the com-
munity “tags’” usage. And BGP routes are often the only ones that can use multiprotocol
label switching (MPLS) label-switched paths (LSPs). BGP is as easily extensible as IS–IS
and OSPF to support new functions and add routing information that needs to be cir-
culated between ASs.

Many organizations fi nd themselves suddenly forced to adapt BGP in a hurry, for
instance, when they have to multihome their networks. Also, when they deploy VPNs
or MPLS or any one of the many newer technologies used to potentially span ISPs and
ASs, BGP is needed. The problem with IGPs is that they cannot easily share information
across routing domain boundaries.

BGP AS A PATH-VECTOR PROTOCOL
One of the problems with EGP was that the metrics looked very much like RIP hop
counts. Simple distance vectors were not helpful at the AS level, because hop counts
did not distinguish the fast links that began appearing in major ISP network backbones.
Destinations that were “close” over two or three 56- or 64-kbps links actually took
much longer to reach than through four or fi ve hops over 45-Mbps links, and distance
vectors had no protection against routing loops.

Link-state protocols could have dealt with the problem by implementing some of
the alternate TOS metrics described for OPSF and IS–IS. However, these would rely not
only on consistent implementation among all ISPs but the proper setting of bits in IP
packets. In the world of independent highly competitive ISPs, this consistency was
next to impossible. So, BGP was developed as a path-vector protocol. This means that
one of the most important attributes BGP uses to choose the active route is the length
of the AS path reported in the NLRI.

To create this AS list, BGP routing updates carry a complete list of transit networks
(ASs) that must be traversed between the AS receiving the update and the AS that can
deliver the packet using its IGP. A loop occurs when an AS path list contains the same
AS that is receiving the update, so this update is rejected and loops are prevented. If
the update is accepted, that AS will add its own AS to the list when advertising the
 routing update to other ASs. This lets an AS apply routing policies to the updates and
avoid using routes that lead through an AS that is not the preferred way to reach a
 destination.

Path vectors do not mean that all ASs are created equal. Numerous small ASs might
get traffi c through faster than one huge AS. But more aspects of a route are described in
BGP than just the length of the AS path to the destination. The system allows each AS
to represent the route with a different metric that means something to the AS originat-
ing the route.

388 PART III Routing and Routing Protocols

But more ASs generate more and longer path information. RFC 1774 in 1995
 estimated that 100,000 routes generated by 3000 ASs would have paths about 20 ASs
long. There was a concern about router memory and processor requirements to store
and maintain all of this information, especially in smaller routers.

Several mechanisms are built into BGP to address this. ISPs would not usually accept
a BGP route advertisement with a mask more than 19 bits long (/19). This was called
the universally reachable address level. The price for compact routing tables and
maintenance was a loss of routing accuracy, and many ISPs relaxed this policy. Most
today accept /24 prefi xes (although they can accept more specifi c addresses from their
own customers, of course). The other BGP mechanisms to cut down on routing table
size and maintenance complexity are route refl ectors, confederations (also called sub-
confederations), and route damping (or dampening). All of these are beyond the scope
of this chapter, but should be mentioned.

IBPG AND EBGP
BGP is an EGP that runs between individual routing domains, or ASs. When BGP speak-
ers (the term for routers confi gured to peer with BGP neighbors) are in different ASs,
the routers use an exterior BGP (EBPG) session to exchange information. When BGP
peers are within the same AS, the routers use interior BGP (IBGP). These terms often
appear as E-BPG/I-BGP or eBGP/iBGP.

IBGP is not some IGP version of BGP. It is used to allow BGP routers to exchange
BGP routing information inside the same AS. IBGP sessions are usually only required
when an AS is multihomed or has multiple links to other ASs. (However, we used them
on the Illustrated Network anyway, and that’s fi ne too.) An AS with only a single link to
one other AS need only run EBGP on the border router and relies on the IGP to distrib-
ute routes learned by EBPG to the other routers. In the case where there is only one
exit point for the entire AS, a single static default route to the border router can be used
effectively instead. The reason that IBGP is needed is shown in Figure 15.2.

Without IBGP, all routes learned by EBGP must be dumped into the IGP to make
sure all routes are known in the entire AS. This can easily overwhelm the IGP. For this
reason, it is usual to create an IBGP mesh between routers on the backbone (other rout-
ers can make do with a handful of default routes).

EBGP sessions typically peer to the physical interface address of the neighbor router.
These are often point-to-point WAN links, and are the only way to reach another AS. If
the link is down, the other AS is unreachable over that link. So, there is little point in
trying to keep a BGP session going to the peer.

On the other hand, IBGP sessions usually peer to the stable “loopback” interface
address of the peer router. An IBGP peer can typically be reached over more than one
physical interface within the AS, so even if an IBGP peer’s “closest” interface is down
the BGP sessions can stay up because BGP packets use the IGP routing table to fi nd an
alternate route to the peer.

CHAPTER 15 Border Gateway Protocol 389

Two BGP neighbors, EBGP or IBGP, fi rst exchange their entire BGP routing tables—
subject to the policies on each router. After that, only incremental or partial table
information is exchanged when routing changes occur. BGP keepalives are exchanged
because in stable networks long periods of time might elapse before something inter-
esting happens.

IGP Next Hops and BGP Next Hops
BGP uses NLRIs as the way one AS tells another, “I know how to reach IP address space
192.168.27.0/24 and 172.16.44.0/24 and…” The AS does not say that it is the AS that
has assigned that IP address space locally. Many of the addresses might be from other
ASs beyond the AS advertising the routes. The AS path allows an AS to fi gure out how
far away a destination is through the AS that has advertised the route, or NLRI.

With an IGP, the next hop associated with a route is usually the IP address of the
physical interface on the next hop router. But the BGP next hop (also sometimes called
the “protocol next hop”) is often the IP address of the router that is advertising the
BGP NLRI information. The BGP next hop is the address of the BGP peer, most often
the loopback interface address (the BGP Identifi er) for IBGP and the physical interface
address in the other AS for EBGP. The BGP next hop is the way one BGP router tells
another, “If you have a packet for this IP address space, send it here.”

The IGP has to know how to reach the next hop, whether it’s a BGP next hop or
not. But the next hop for EBGP is often at the end of a link to the other AS and is not
running an IGP (it’s not an internal link). So, how is the IGP to know about it? Well, BGP
routes could be “dumped” into the IGP—but there are a lot more external routes than
internal, and the whole point is to keep the IGP and EGP separate to some extent. This
brings up an interesting point about the relationship of BGP and the IGP and a practice
known as next hop self.

“I can reach
10.10.11.0/24”

“I can reach
10.10.12/24”

EBGP EBGPIBGP

AS 64513Router in
AS 65459

Router in
AS 65127Router A

“How can Router A
know how to reach
10.10.12.0/24?”

“How can Router B
know how to reach
10.10.11.0/24?”

Router B

FIGURE 15.2

The need for IBGP. Note that if only EBGP is running, the AS in the middle must dump all BGP
routes into the IGP to advertise them throughout the network.

390 PART III Routing and Routing Protocols

BGP and the IGP
There is a well-known unreachable condition in BGP that must be solved with a
 simple routing policy know as next hop self, or just NHS. An EBGP route (NLRI) nor-
mally arrives from another AS with the physical address of the remote interface as
the BGP next hop. If the EBGP route is readvertised through IBPG, it is likely that
the BGP next hop will be completely unknown to the IGP routing tables inside the
receiving AS. A router within an AS does not care how to reach a physical interface
IP address in another AS. Next hop self is just a way to have the router advertising the
route through IBGP use itself as the next hop for the EBGP route. The idea is not BGP
“next-hop-is-the-physical-interface-in-another-AS” but BGP “next-hop-is-me-in-this-AS”
or BGP “next-hop-self.”

BGP is not a routing protocol built directly on top of IP. BGP relies on TCP connec-
tions to reach its peers, and so resembles an IP application more than an IGP routing
protocol. Without the IGP to provide connectivity, TCP sessions for the BGP messages
cannot be established except on links to adjacent routers. BGP does not fl ood infor-
mation with IBPG. So, what an IBGP router learns from its IBGP peers is never passed
along to another IBGP neighbor.

To fully distribute BGP information among the routers within an AS, a full mesh of
IBGP connections (adjacencies) is necessary. Every IBGP router must send complete
routing information to every other IBGP router in the AS. In a large AS with many exter-
nal links to other ASs, this meshing requirement can add a lot of overhead traffi c and
confi guration maintenance to the network. This is where route refl ectors and confed-
erations come in (these concepts are far beyond the scope of this chapter and will not
be discussed further).

The main reasons BGP was built this way were to keep BGP as simple as possible
and to prevent routing loops inside the AS. The dependency on TCP and the lack of
fl ooding means that IBGP must communicate directly with every other router that
needs to know BGP routing information. This does not mean that every router must be
adjacent (connected by a direct link), because TCP can be routed through many routers
to reach its destination. What it does mean is that routers connected by IBGP inside an
AS must create a full mesh of IGBP peering sessions. This need to create a full mesh
and synchronize BGP with the IGP is shown in Figure 15.3.

In the fi gure, Ace ISP and Best ISP are no longer peers. Now they are both custom-
ers of National ISP. Naturally, everyone on LAN2 still has to know how to reach LAN2
at 10.10.11.0/24 (and vice versa, of course). EBGP advertises LAN1 to National ISP, and
IBGP from border router to border router makes sure that LAN2 on Best ISP can reach
10.10.11.0/24. But what about an internal router inside National ISP’s AS? There are
only two ways to allow everyone in National ISP’s service area to access LAN1 (pre-
sumably to buy something, although there are cases concerning LAN1 security where
the route might not be advertised everywhere). With a full mesh of IBGP sessions in
National ISP, there is no need to dump all external routes into the IGP (the IGP should
only handle routes within the AS).

CHAPTER 15 Border Gateway Protocol 391

OTHER TYPES OF BGP
The major types of BGP are EBGP for external peers outside the AS and IBGP for inter-
nal peers within the same AS. These are usually the only types of BGP mentioned in
most sources. But there are other variations of BGP used in other situations.

One BGP variation that is becoming very important, especially where VPNs are con-
cerned, is Multiprotocol BGP (often seen as MBGP or MP-BGP). Multiprotocol BGP
originally extended BGP to support IP multicast routes and routing information. But
MBGP is also used to support IP-based VPN information and to carry IPv6 routing infor-
mation, such as from RIPng and OSPF for IPv6. MBGP work on IPv6 is just starting, so
no special consideration of using BGP for IPv6 appears in this chapter other than to
note than MBGP is used for this purpose. MBGP is currently defi ned in RFC 4760.

There is also Multihop BGP, sometimes seen as EBGP multihop. Multihop BGP is only
used with EBGP and allows an EBGP peer in another AS to be more than one hop away.
Usually, EBGP peers are directly connected by a point-to-point WAN link. But sometimes
it is necessary to peer with a router beyond the border router that actually terminates
the link. Normally, BGP packets have a TTL of 1 and thus never travel beyond the adjacent
router. Multihop BGP packets have a TTL greater than 1 and the peer is beyond the adja-
cent router. Multihop BGP is also used in load balancing situations when there is more
than one link between two border routers, and for “route-view”–style route collectors.

Finally, there is a slight change in behavior of the BGP that runs between confed-
erations. In most cases, the version of BGP that runs between confederations is just
called EBGP. However, there are slight differences in the EBGP that runs between
ASs and the EBGP that runs between confederations—which are always inside the

Internal
RTR 1

Internal
RTR 2

Border
RTR 1

“How do I get to
10.10.11.0/24?”

“I know how
to get to

10.10.11.0/24”

Border
RTR 2

Best ISP

National ISP EBGP
10.10.11.0/24

IBGP

EBGP

Ace ISP

10.10.11.0/24

Internal RTR 3

FIGURE 15.3

The need for a full IBGP mesh. Note that the routers inside National ISP do not necessarily know
how to reach 10.10.11.0/24 (LAN1).

392 PART III Routing and Routing Protocols

same AS. Sometimes the variant of BGP that runs between confederations is known as
 Confederation BGP, or CBGP, although use of this term is not common.

BGP ATTRIBUTES
The information that all forms of BGP carry is associated with a route (NLRI) as a series
of attributes. This is the major difference between BGP and IGPs. IGP routes carry the
route, next hop, metric, and maybe an optional tag (or two). BGP routes can carry a
considerable amount of information, all intended to allow an AS to choose the “best”
way to reach a destination.

Most implementations of BGP will understand 10 attributes, and some use and under-
stand even more. Every BGP attribute is characterized by two major parameters. An attri-
bute is either well known or optional. Well-known attributes must be understood and
processed by every implementation of BGP regardless of vendor. Optional attributes are
exactly that: there is no guarantee that a given BGP implementation will understand or
process that particular attribute. BGP implementations that do not support an optional
attribute simply pass that information on if that is what is called for, or ignore it.

In addition, a well-known BGP attribute is either mandatory or discretionary. Manda-
tory BGP attributes must be present in every BGP update message for EBGP, IBGP, or
something else. Discretionary BGP attributes appear only in some types of BGP update
messages, such as those used by EBGP only.

Finally, optional BGP attributes are transitive or nontransitive. Transitive BGP optional
attributes are passed from peer to peer even if the router does not support that option.
Nontransitive BGP optional attributes can be ignored by the receiver BGP process if not
supported and not sent along to peers. The ten BGP attributes discussed in this chapter
are listed in Table 15.1 and their characteristics are described in the list that follows.

Table 15.1 BGP Attributes

Attribute and Type
Code

Well-Known
Mandatory

Well-Known
Discretionary

Optional
Transitive

Optional
Nontransitive

ORIGIN (1) X

AS_PATH (2) X

NEXT_HOP (3) X

LOCAL_PREF (4) X

ATOMIC_AGGR (5) X

AGGREGATOR (6) X

COMMUNITY (7) X

MED (8) X

ORIGINATOR_ID (9) X

CLUSTER_LIST (10) X

CHAPTER 15 Border Gateway Protocol 393

ORIGIN—This attribute reflects where BGP obtained knowledge of the route in
the first place. This can be the IGP, EGP, or “incomplete.”

AS_PATH—This forms a sequence of AS numbers that leads to the originating AS
for the NLRI. The main use of the AS Path is for loop avoidance among ASs, but
it is common to artificially extend the AS Path attribute through a routing policy
so that a particular path through a certain router looks very unattractive. The
AS Path attribute can consist of an ordered list of AS numbers (AS_SEQUENCE)
or just a collection of AS numbers in no particular order (AS_SET).

NEXT_HOP—The BGP Next Hop (or “protocol next hop”) is quite distinct from
an IGP’s next hop. Outside an AS, the BGP Next Hop is most likely the border
router—not the actual router inside the other AS that has this network on a
local interface. Next Hop Self is the typical way to make sure that the BGP Next
Hop is reachable.

LOCAL_PREF—The Local Preference of the NLRI is relative to other routes learned
by IBGP within an AS and therefore is not used by EBGP. When routes are
advertised with IBGP, traffic will f low toward the AS exit point (border router)
that advertised the highest Local Preference for the route. It is used to estab-
lish a preferred exit link to another AS.

MULTI_EXIT_DISC (MED)—The Multi-Exit Discriminator (MED) attribute is the
way one AS tries to influence another when it goes to choosing among mul-
tiple exit points (border routers) that link to the AS. A MED is the closest thing
to a purely IGP metric that BGP has. Changing MEDs is one of the most com-
mon ways one ISP tries to make another ISP use the links it wants between
the ISPs, such as higher speed links (“use this address on this link to reach me,
unless it’s down, then use this one…”). MED values are totally arbitrary.

ATOMIC_AGGREGATE and AGGREGATOR—These two attributes work together.
Both are used when routing information is aggregated for BGP. A common
goal on the Internet today is to represent as many networks (routes) with
as few routing table entries as possible. So, as routing information makes
its way through the Internet each AS will often try to condense (aggregate)
the routing information as much as possible with as short a VLSM as can be
 properly contrived.

COMMUNITY—The BGP Community attribute is sort of a “club for routes.”
 Communities make it easier to apply policies to routes as a group. There might
be a community that applies to an ISP’s customers. In that case, it is not nec-
essary to list every customer’s IP address in a policy to set Local Pref or MED
(for example) as long as they all are assigned to a unique “customer” community
value. Community values are often used today as a way for one ISP to inform a
peer ISP of the value of the Local Pref for the route inside the originating ISP’s

394 PART III Routing and Routing Protocols

AS (Local Pref is not present in EBGP). The Community attribute was originally
Cisco specifi c, but was standardized in RFC 1997. Communities just make it easier
for a router to fi nd all NLRIs associated with (for example) a particular VPN.

ORIGINATOR_ID and CLUSTER_LIST—These attributes are used by BGP route
reflectors. Both of these attributes are used to prevent routing loops when
route reflectors are in use. The Originator ID is a 32-bit value created by the
route reflector and is the originator of the route within the local AS. If the
originator router sees that its own ID is a received route, a loop has occurred
and the route is ignored. The Cluster List is a list of the route reflection cluster
IDs of the clusters through which the route has passed. If a route reflector
sees it own cluster ID in the Cluster List, a loop has occurred and the route is
ignored.

BGP AND ROUTING POLICY
BGP is a policy-driven protocol. What BGP does and how BGP does it can be almost
totally determined by routing policy. It is diffi cult to make BGP do exactly what an ISP
wants without the use of routing policies.

Want BGP to advertise customers on static routes or running OSPF, IS–IS, or RIP?
Redistribute statics, OSPF, IS–IS, and RIP into BGP? Want to artifi cially extend an AS path
to make an AS look very unattractive for transit traffi c? Write a routing policy to pre-
pend the AS multiple times. Want to change the community attribute to add or subtract
information? Use a routing policy. Concerned about the shear amount of routes adver-
tised? Write a routing policy to aggregate the routes any way that makes sense. Want to
advertise a more specifi c route along with a more general aggregate (called “punching
a hole” in the advertised address space)? Write a routing policy. BGP depends on rout-
ing policy to behave the way it should.

BGP Scaling
A global corporation today might have 3000 routers large and small spread around the
world. Even with multiple ASs, there could be 1000 routers within an AS that might
all need IBGP information—no matter how the routes have been aggregated. To
fully mesh 1000 IBGP routers within an AS requires 499,500 IBGP sessions. A net-
work 100 times larger than a 10-router network requires more than 10,000 times
more IBGP sessions. Adding one router adds 1000 additional IBGP sessions to the
network.

This problem with the exponential growth of IBGP sessions is the main BGP scaling
issue. There are two ways to deal with this issue: the use of router refl ectors (RR) and
confederations.

What is the difference between RRs and confederations? At the risk of offending
BGP purists, it can be loosely stated that RRs are a way of grouping BGP routers inside

CHAPTER 15 Border Gateway Protocol 395

an AS and running IBGP between the RR clusters. Confederations are a way of group-
ing BGP routers inside an AS and running EBGP between the confederation “sub-ASs.”
Because of the differences between RRs and confederations, it is even possible to have
both confi gured at the same time in the same AS. There is also BGP route damping,
which is not a way of dealing with BGP scaling directly but rather a way to deal with
the effects of BGP scaling in terms of the amount of routing information that needs to
be distributed to IBGP and EBGP peers when a router or link fails.

BGP MESSAGE TYPES
BGP messages types are simpler than those used by OSPF and IS–IS because of the
presence of TCP. TCP handles all of the details of connection setup and maintenance,
and before a BGP peering session is established the router performs the usual TCP
three-way handshake using TCP port 179 on one router. The other router uses a port
that is not well known, and it is just a matter of whose TCP SYN message arrives fi rst
that determines which BGP peer is technically the “server.” All BGP messages are then
unicast over the TCP connection. There are only four BGP message types.

Open—Used to exchange version numbers (usually four, but two routers can agree
on an earlier version), AS numbers (same for IBGP, different for EBGP), hold
time until a Keepalive or Update is received (the smaller value is used if they
differ), the BGP identifier (Router ID, usually the loopback interface address),
and options such as authentication method (if used).

Keepalive—Keepalive messages are used to maintain the TCP session when there
are no Updates to send. The default time is one-third of the hold time estab-
lished in the Open message exchange.

Update—This advertises or withdraws routes. The Update has fields for the NLRI
(both prefix and VLSM length), path attributes, and withdrawn routes by prefix
and length.

Notification—These are for errors and always close a BGP connection. For exam-
ple, a BGP version mismatch in the Open message closes the connection,
which must then be reopened when one router or the other adjusts its version
support.

The maximum TCP segment size for a BGP message is 4096 bytes and the minimum
is 19 bytes. All BGP messages have a common header, as shown in Figure 15.4.

The Marker is a 16-byte fi eld used for synchronizing BGP connections and in
 authentication. If no authentication is used and the message is an Open, this fi eld is
set to all 1s. The Length is a 16-bit fi eld that contains the length of the message, includ-
ing the header, in bytes. Finally, the Type is an 8-bit fi eld set to 1 (Open), 2 (Update), 3
(Notifi cation), or 4 (Keepalive).

396 PART III Routing and Routing Protocols

1 byte

H
e
a
d
e
r

1 byte 1 byte

Marker

Length Type

32 bits

1 byte

FIGURE 15.4

The BGP message header carried inside a TCP segment.

BGP MESSAGE FORMATS
A data portion follows the header in all but the Keepalive messages. Keepalives consist
of only the BGP message headers and so need not be discussed further in this section.

The Open Message
Once a TCP connection has been established between two BGP speakers, Open mes-
sages are exchanged between the BGP peers. If the Open is acceptable to a router,
a Keepalive is sent to confi rm the Open. Once Keepalives are exchanged, peers can
exchange Updates, Keepalives, and Notifi cation messages. The format of the Open mes-
sage is shown in Figure 15.5.

The Open message has an 8-bit Version fi eld, a 2-byte My Autonomous System fi eld,
a 2-byte Hold Time value (0 or at least 3 seconds), a 32-bit BGP Identifi er (router ID),
an 8-bit Optional Parameters Length fi eld (set to 0 if no options are present), and the
optional parameters themselves in the same TLV format used by IS–IS in the previous
chapter. BGP options are not discussed in this chapter.

The Update Message
The Update message is used to advertise NLRIs (routes) to a BGP peer, to withdraw
multiple routes that are now unreachable (or unfeasible), or both. The format of the
Update message is shown in Figure 15.6. Because of the peculiar “skew” the 19-byte
BGP header puts on subsequent fi elds, this message is shown in a different format than
the others. There are two distinct sections to the Update message. They are used to
Withdraw and Advertise routes.

CHAPTER 15 Border Gateway Protocol 397

1 byte 1 byte 1 byte 1 byte

My Autonomous System Hold Time

BGP Identifier

Option Parameters
Length

Optional Parameters

Optional Parameters

Version

32 bits

FIGURE 15.5

The BGP Open message showing optional fi elds at the end.

The Update message starts with a 20-byte fi eld indicating the total length of the
Withdrawn Routes fi eld in bytes. If there are no Withdrawn Routes, this fi eld is set
to zero. If there are Withdrawn Routes, the routes follow in a variable-length fi eld
with the list of Withdrawn Routes. Each route is a Length/Prefi x pair. The length indi-
cates the number of bits that are signifi cant in the following prefi x and form a mask/
prefi x pair.

The next fi eld is a 2-byte Total Path Attribute Length fi eld. This is the length in bytes
of the Path Attributes fi eld that follows. A value of zero means that nothing follows.

The variable-length Path Attributes fi eld lists the attributes associated with the
NRLIs that follow. Each Path attribute is a TLV of varying length, the fi rst part of which

Unfeasible Routes Length
(2 bytes)

Total Path Attribute Length
(2 bytes)

Path Attribute
(variable length)

Network Layer Reachability Information
(variable length)

Withdrawn Routes
(variable length)

FIGURE 15.6

The BGP Update message. This is the main way routes are advertised with BGP.

398 PART III Routing and Routing Protocols

is the 2-byte Attribute Type. There is a structure to the Attribute Type fi eld, as shown
in Figure 15.7. There are four fl ag bits, four unused bits, and then an 8-bit Attribute
Type code.

There are other attribute codes in use with BGP, but these are not discussed in this
chapter. One of the most important of these other attributes is the Extended Commu-
nity attribute used in VPNs.

The Update message ends with a variable-length NLRI fi eld. Each NLRI (route)
is a Length/Prefi x pair. The length indicates the number of bits that is signifi cant
in the following prefi x. There is no length fi eld for this list that ends the Update
message. The number of NLRIs present is derived from the known length of all of the
other fi elds.

So, instead of saying “here’s a route and these are its attributes…” for every NLRI
advertised the Update message basically says “here’s a group of path attributes and here
are the routes that these apply to…” This cuts down on the number of messages that
needs to be sent across the network. In this way, each Update message forms a unit of
its own and has no further fragmentation concerns.

The Notifi cation Message
Error messages in BGP have an 8-bit Error Code, an 8-bit Subcode, and a variable-length
Data fi eld determined by the Error Code and Subcode. The format of the BGP Notifi ca-
tion message is shown in Figure 15.8.

8 bits 8 bits

O T P E U U U U Attribute Type Code

Flag bits:

O: Optional bit
 05Optional
 15Well known
T: Transitive bit
 05Transitive
 15Nontransitive
P: Partial bit
 05Optional transitive attribute is partial
 15Optional transitive attribute is complete
E: Extended length bit
 05Attribute length is 1 byte
 15Attribute length is 2 bytes
U: Unused

FIGURE 15.7

The BGP Attribute Type format. This is how NRLIs are grouped.

CHAPTER 15 Border Gateway Protocol 399

A full discussion of BGP Notifi cation codes and subcodes is beyond the scope of
this chapter. The major Error Codes are Message Header Error (1), Open Message Error
(2), Update Message Error (3), Hold Timer Expired (4), Finite State Machine Error (5),
used when the BGP implementation gets hopelessly confused about what it should be
doing next, and Cease (6), used to end the session.

32 bits

Data

Error SubcodeError Code

1 byte 1 byte 1 byte 1 byte

Error codes:
1: Message header error
2: Open message error
3: Update message error

4: Hold timer expired
5: Finite State Machine error
6: Cease

FIGURE 15.8

The BGP Notifi cation message format. BGP benefi ts from using TCP as a transport protocol.

400 PART III Routing and Routing Protocols

QUESTIONS FOR READERS
Figure 15.9 shows some of the concepts discussed in this chapter and can be used to
help you answer the following questions.

“I don’t know
10.0.75.1!

It’s not in this AS!”

Router
192.168.14.1

“Oh! I know how to reach
192.168.14.1”

IBGP
without
NHS

IBGP with
NHS

EBGP
(No IGP)

Router in
AS 65127

“I can reach
10.10.12/24.
Use 10.0.75.1
as a next hop.”

10.0.75.2 10.0.75.1

FIGURE 15.9

How Next Hop Self allows internal routers to forward packets for BGP routes. Border router
192.168.14.1 substitutes its own address for the “real” next hop.

1. BGP distributes “reachability” information and not routes. Why doesn’t BGP
 distribute route information?

2. What does it mean to say that the BGP is a “path-vector” protocol?

3. What is “next hop self” and why is it important in BGP?

4. Which two major BGP router confi gurations are employed to deal with BGP
scaling?

5. What are the ten major BGP attributes?

401

CHAPTER

What You Will Learn
In this chapter, you will learn how multicast routing protocols allow multicast
 traffi c to make its way from a source to interested receivers through a router-based
network. We’ll look at both dense and parse multicast routing protocols, as well as
some of the other protocols used with them (such as IGMP).

You will learn how the PIM rendezvous point (RP) has become the key
 component in a multicast network. We’ll see how to confi gure an RP on the
 network and use it to deliver a simple multicast traffi c stream to hosts.

Multicast 16

If the Internet and TCP/IP are going to be used for everything from the usual data
activities to voice and video, something must be done about the normal unicast packet
addressing refl ecting one specifi c source and one specifi c destination. Almost every-
thing described in this book so far has featured unicast, although multicast addresses
have been mentioned from time to time—especially when used by routing protocols.

The one-to-many operation of multicast is a technique between the one-to-one
packet delivery operation of unicast and the one-to-all operation of broadcast. Broad-
casts tend to disrupt hosts’ normal processing because most broadcasts are not really
intended for every host yet each receiving host must pay attention to the broadcast
packet’s content. Many protocols that routinely used broadcasts, such as RIPv1, were
replaced by versions that used multicast groups instead (RIPv2, OSPF). Even the proto-
cols in IPv4 that still routinely use broadcast, such as ARPing to fi nd the MAC address
that goes with an IP address, have been replaced in IPv6 with multicast-friendly versions
of the same procedure.

Multicast protocols are still not universally supported on much of the Internet. Then
how do large numbers of people all watch the same video feed from a Web server
(for example) at the same time? Today, this is normally accomplished with numerous
 unicast links, each running from the server to every individual host. This works, but
it does not scale. Can a server handle 100, 1000, or 1,000,000 simultaneous users?
Many-to-many multicast applications, such as on-line gaming and gambling sites, use

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80:205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-
0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Rendezvous
Point (RP)

Wireless
in Home

Best-

AS 65459

Solid rules � SONET/SDH
Dashed rules � Gig Ethernet
Note: All links use 10.0.x.y
addressing...only the last
two octets are shown.

FIGURE 16.1

Portion of the Illustrated Network used for the multicast examples. The RP will be router PE5, and
the ISPs have merged into a single AS for this chapter.

404 PART III Routing and Routing Protocols

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80:205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC: 00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

ge-0/0/3

16.2

ge-0/0/3

16.1

Ace ISP

Global Public
Internet

CHAPTER 16 Multicast 405

multiple point-to-point meshes of links in most cases. Even if modern server clusters
could do this, could all the routers and links handle this traffi c? Multicast uses the rout-
ers to replicate packets, not the servers.

However, interdomain (or even intersubnet) multicasting is a problem. IP multicast
is widely leveraged on localized subnets where it’s solely a question of host support.
Many-to-many applications have some fundamental scaling challenges and multicast
does not address these very well. For example, how does each host in a shared tree of
multicast traffi c manage the receipt of perhaps 50 video streams from participants?

Today, multicast is a key component of local IPv6 and IPv4 resource discovery
mechanisms and is not confi ned to enterprise applications. However, multicast appli-
cations are used mainly on enterprise networks not intended for the general public.
In the future, multicast must move beyond a world where special routers (not all rout-
ers can handle multicast packets) use special parts of the Internet (most famously, the
MBONE, or multicast backbone) to link interested hosts to their sources. Multicast must
become an integral part of every piece of hardware and software on the Internet.

Let’s look at a few simple multicast packets and frames on the Illustrated Network.
We don’t have any video cameras or music servers on the network to pump out con-
tent, but we do have the ability to use simple socket programs to generate a stream of
packets to multicast group addresses as easily as to unicast destinations. We could look
at multicast as used by OSPF or IPv6 router announcements, but we’ll look at simple
applications instead.

We’ll look at IPv4 fi rst, and then take a quick look at IPv6 multicasting. We’ll use the
devices shown in Figure 16.1 to illustrate multicast protocols, introducing the terms
used in multicast protocols as we go. We’ll explore all of the terms in detail later in the
chapter.

This chapter uses wincli2 and lxnclient on LAN2 and wincli1 on LAN1. The router
PE5 will serve as our PIM sparse-mode RP. To simplify the number of multicast protocols
used, we’ve merged the two ISPs into Best-Ace ISP for this chapter. This means we will
not need to confi gure the Multicast Source Discovery Protocol (MSDP), which allows
receivers in an AS to fi nd RPs in another AS. A full investigation of MSDP is beyond the
scope of this chapter, but we will go over the basics.

A FIRST LOOK AT IPV4 MULTICAST
This section uses two small socket programs from the source cited in Chapter 12: the
excellent TCP/IP Sockets in C by Michael J. Donahoo and Kenneth L. Calvert. We’ll use
two programs run as MulticastReceiver and MulticastSender, and two free Windows
multicast utilities, wsend and wlisten.

Let’s start with two hosts on the same LAN. We’ll use lnxclient (10.10.12.166)
and wincli2 (10.10.12.222) for this exercise (both clients, but there’s no heavy mul-
ticasting going on). We’ll set the Linux client to multicast the text string HEY once
every 3 seconds onto the LAN using multicast group address 239.2.2.2 (multicasts
use special IP addresses for destinations) and UDP port 22222 (multicast applications

406 PART III Routing and Routing Protocols

often use UDP, and cannot use TCP). Naturally, we’ll set the multicast receiver socket
program on the Windows XP client to receive traffi c sent to that group.

It should be noted that the multicast group addresses used here are administra-
tively scoped addresses that should only reach a limited number of hosts and not be
used on the global public Internet, much like private IP addresses. However, we won’t
discuss how the traffi c to these groups is limited. This is mainly because there are some
operational disagreements about how to apply administratively scoped boundaries. We
are using scoped addresses primarily as an analogy for private IP addresses. We could
also have used GLOP addresses (discussed in this chapter) or addresses from the
dynamic multicast address block.

The receiver socket program does not generate any special messages to say, “Send
me content addressed to group 239.2.2.2.” We know it’s going to be there. Later,
we’ll see that a protocol called Internet Group Management Protocol (IGMP) sends
join or leave messages and knows what content is carried at this time by group
239.2.2.2 because of the Session Announcement Protocol and Source Description
Protocol (SAP/SDP) messages it receives. In reality, multicast is a suite of protocols—
and much more is required to create a complete multicast application. However,
this little send-and-receive exercise will still reveal a lot about multicast. Figure 16.2
shows a portion of the Ethereal capture of the packet stream, detailing the UDP con-
tent inside the IP packet.

FIGURE 16.2

Multicast packet capture, showing the MAC address format used and the port in the UDP
 datagram. Some IGMPv3 messages appear also.

CHAPTER 16 Multicast 407

The Ethernet frame destination address is in a special form, starting with 01 and
ending in 02:02:02—which corresponds to the 239.2.2.2 multicast group address.
We’ll explore the rules for determining this frame address in material following. Note
that the packet is addressed to the entire group, not an individual host (as in unicast).
How does the network know where to send replicated packets? Two strategies (dis-
cussed later in the chapter) are to send content everywhere and then stop if no one
says they are listening (fl ood-and-prune, or dense mode), or to send content only to
hosts that have indicated a desire to receive the content (sparse mode).

The fi gure also shows that the Windows XP receiver (10.10.12.222) is generating
IGMPv3 membership reports sent to multicast group address 224.0.0.22 (the IGMP
multicast group). XP does this to keep the multicast content coming, even though
the socket sender program has no idea what it means. These messages from XP to the
IGMP group sometimes cause consternation with Windows network administrators,
who are not always familiar with multicast and wonder where the 224.0.0.22 “server”
could be.

Now let’s set our multicast group send program to span the router network from
LAN1 to LAN2. We’ll start the socket utility sending on wincli1 (10.10.11.51), using
multicast group 239.1.1.1 and UDP port 11111. The listener will still be wincli2
(10.10.12.222).

This is easy enough, and Ethereal on wincli1 shows a steady stream of multicast
traffi c being dumped onto LAN1. However, the Ethereal capture on wincli2 (which had
no problem receiving a multicast stream only moments ago) now receives absolutely
nothing. What’s wrong?

The problem is that the routers between LAN1 and LAN2 are not running a multicast
routing protocol. The router on LAN1 at 10.10.11.1 adjacent to the source receives
every multicast packet sent by wincli1. But the destination address of 239.1.1.1 is
meaningless when considered as a unicast address. No entry exists in the unicast rout-
ing table, and there is yet no multicast “routing table” (more properly, table for multicast
interface state) on the router network.

Before we confi gure multicast for use on our router network and allow multicast traf-
fi c to travel from LAN1 to LAN2, there are many new terms and protocols to explain—a
few of which we’ve already mentioned (IGMP, SAP/SDP, how a multicast group maps to
a frame destination address, and so on.) Let’s start with the basics.

MULTICAST TERMINOLOGY
Multicast in TCP/IP has developed a reputation of being more diffi cult to understand
than unicast. Part of the problem is the special terminology used with multicast, and
the implication that if something is not universally supported, it must be complicated
and diffi cult to understand. But there is nothing in multicast that is more complex than
subnet masking, multicast sockets are nearly the same as unicast sockets (except that
they don’t use TCP sockets), and many things that routing protocols do with multicast
packets are now employed in unicast as well (the reverse-path forwarding, or RFP

408 PART III Routing and Routing Protocols

check). Figure 16.3 shows a general view of some of the terms commonly used in an
IP multicast network.

The key component of the multicast network is the multicast-capable router, which
replicates the packets. The routers in the IP multicast network, which has exactly the
same topology as the unicast network it is based on, use a multicast routing protocol
to build a distribution tree to connect receivers (this term is preferred to the mul-
timedia implications of listeners, but the listener term is also used) to sources. The
distribution tree is rooted at the source. The interface on the router leading toward
the source is the upstream interface, although the less precise terms incoming or
inbound interface are also used. There should be only one upstream interface on the
router receiving multicast packets. The interface on the router leading toward the
receivers is the downstream interface, although the less precise terms outgoing or
outbound interface are used as well. There can be 0 to N – 1 downstream interfaces on
a router, where N is the number of logical interfaces on the router. To prevent looping,
the upstream interface should never receive copies of downstream multicast packets.

Routing loops are disastrous in multicast networks because of the repeated replica-
tion of packets. Modern multicast routing protocols need to avoid routing loops, packet
by packet, much more rigorously than in unicast routing protocols.

Each subnetwork with hosts on the router that has at least one interested receiver
is a leaf on the distribution tree. Routers can have multiple leafs or leaves (both terms
are used) on different interfaces and must send a copy of the IP multicast packet out

Multicast
Host

Multicast
Host

Multicast
Host

Multicast
Host

Multicast
Host

Multicast
Host

Multicast
Host

Multicast
Host

Multicast
RoutersPRUNE JOIN JOIN

Multicast
Source
(Group A)

Multicast
Source
(Group B)

Leafs

Root of
Multicast
Tree

Distribution
Tree(s)

Uninterested
Host

Uninterested
Host

Interested
Host

(Group A)

Interested
Host

(Group B)

Interested
Host

(Group B)

Interested
Host

(Group B)

Upstream Downstream

FIGURE 16.3

Examples of multicast terminology showing how multicast trees are “rooted” at the source. JOINs
are also sent using IGMP from receivers to local routers.

CHAPTER 16 Multicast 409

on each interface with a leaf. When a new leaf subnetwork is added to the tree (i.e.,
the interface to the host subnetwork previously received no copies of the multicast
packets), a new branch is built, the leaf is joined to the tree, and replicated packets are
now sent out on the interface.

When a branch contains no leaves because there are no interested hosts on the
router interface leading to that IP subnetwork, the branch is pruned from the distribu-
tion tree, and no multicast packets are sent out from that interface. Packets are repli-
cated and sent out from multiple interfaces only where the distribution tree branches
at a router, and no link ever carries a duplicate fl ow of packets.

Collections of hosts all receiving the same stream of IP packets, usually from the
same multicast source, are called groups. In IP multicast networks, traffi c is delivered to
multicast groups based on an IP multicast address or group address. The groups deter-
mine the location of the leaves, and the leaves determine the branches on the multicast
network. Some multicast routing protocols use a special RP router to allow receivers
to fi nd sources effi ciently.

DENSE AND SPARSE MULTICAST
Multicast addresses represent groups of receivers, and two strategies can be employed
to ensure that all receivers interested in a multicast group receive the traffi c.

Dense-Mode Multicast
The assumption here is that almost all possible subnets have at least one receiver
 wanting to receive the multicast traffi c from a source, so the network is fl ooded with
traffi c on all possible branches and then pruned back as branches do not express
an interest in receiving the packets—explicitly (by message) or implicitly (timeout
silence). This is the dense mode of multicast operation. LANs are appropriate environ-
ments for dense-mode operation. In practice, although PIM-DM is worth covering (and
we’ll even confi gure it!) there aren’t a lot of scenarios in which people would seriously
consider it. Periodic blasting of source content is neither a very scalable nor effi cient
use of resources.

Sparse-Mode Multicast
The assumption here is that very few of the possible receivers want packets from this
source, so the network establishes and sends packets only on branches that have at
least one leaf indicating (by message) a desire for the traffi c. This is the sparse mode
of multicast operation. WANs (like the Internet) are appropriate networks for sparse-
mode operation. Sparse-mode multicast protocols use the special RP router to allow
receivers to fi nd sources effi ciently.

Specifi c networks can run whichever mode makes sense. A low-volume multicast
application can make effective use of dense mode, even on a WAN. A high-volume
application on a LAN might still use sparse mode for effi ciency.

410 PART III Routing and Routing Protocols

Some multicast routing protocols, especially older ones, support only dense-mode
operation—which makes them diffi cult to use effi ciently on the public Internet. Others
allow sparse mode as well. If sparse-dense mode is supported, the multicast routing
protocol allows some special dense multicast groups to be used to the RPs—at which
point the router operates in sparse mode.

MULTICAST NOTATION
To avoid multicast routing loops, every multicast router must always be aware of the
interface that leads to the source of that multicast group content by the shortest path.
This is the upstream (incoming) interface, and packets should never be forwarded back
toward a multicast source. All other interfaces are potential downstream (outgoing)
interfaces, depending on the number of branches on the distribution tree.

Routers closely monitor the status of the incoming and outgoing interfaces, a process
that determines the multicast forwarding state. A router with a multicast forwarding
state for a particular multicast group is essentially “turned on” for that group’s content.
Interfaces on the router’s outgoing interface list (OIL) send copies of the group’s pack-
ets received on the incoming interface list for that group. The incoming and outgoing
interface lists might be different for different multicast groups.

The multicast forwarding state in a router is usually written in (S,G) or (*,G)
notation. These are pronounced “S comma G” and “star comma G,” respectively. In (S,G),
the S refers to the unicast IP address of the source for the multicast traffi c, and the
G refers to the particular multicast group IP address for which S is the source. All multi-
cast packets sent from this source have S as the source address and G as the destination
address.

The asterisk (*) in the (*,G) notation is a wild card indicating that the source sending
to group G is unknown. Routers try to track down these sources when they have to in
order to operate more effi ciently.

MULTICAST CONCEPTS
The basic terminology of multicast is complicated by the use of several related con-
cepts. Many of these apply to how the routers on a multicast-capable network handle
multicast packets and have little to do with hosts on LANs, but they are important
concepts nonetheless.

Reverse-Path Forwarding
Unicast forwarding decisions are typically based on the destination address of the
packet arriving at a router. The unicast routing table is organized by destination subnet
and mainly set up to forward the packet toward the destination.

CHAPTER 16 Multicast 411

In multicast, the router forwards the packet away from the source to make progress
along the distribution tree and prevent routing loops. The router’s multicast forward-
ing state runs more logically by organizing tables based on the reverse path, from the
receiver back to the root of the distribution tree. This process is known as reverse-path
forwarding (RPF).

The router adds a branch to a distribution tree depending on whether the request for
traffi c from a multicast group passes the RPF check. Every multicast packet received must
pass an RPF check before it is eligible to be replicated or forwarded on any interface.

The RPF check is essential for every router’s multicast implementation. When a
multicast packet is received on an interface, the router interprets the source address in
the multicast IP packet as the destination address for a unicast IP packet. The source
multicast address is found in the unicast routing table, and the outgoing interface is
determined. If the outgoing interface found in the unicast routing table is the same
as the interface that the multicast packet was received on, the packet passes the RPF
check. Multicast packets that fail the RPF check are dropped because the incoming
interface is not on the shortest path back to the source.

Routers can build and maintain separate tables for RPF purposes. The router must
have some way to determine its RPF interface for the group, which is the interface
topologically closest to the root. The distribution tree should follow the shortest-path
tree topology for effi ciency. The RPF check helps to construct this tree.

The RPF Table
The RPF table plays the key role in the multicast router. The RPF table is consulted for
every RPF check, which is performed at intervals on multicast packets entering the
multicast router. Distribution trees of all types rely on the RPF table to form properly,
and the multicast forwarding state also depends on the RPF table.

The routing table used for RPF checks can be the same routing table used to for-
ward unicast IP packets, or it can be a separate routing table used only for multicast
RPF checks. In either case, the RPF table contains only unicast routes because the RPF
check is performed on the source address of the multicast packet (not the multicast
group destination address), and a multicast address is forbidden from appearing in the
source address fi eld of an IP packet header. The unicast address can be used for RPF
checks because there is only one source host for a particular stream of IP multicast
content for a multicast group address, although the same content could be available
from multiple sources.

Populating the RPF Table
If the same routing table used to forward unicast packets is also used for the RPF
checks, the routing table is populated and maintained by the traditional unicast routing
protocols such as Border Gateway Protocol (BGP), Intermediate System-to-Intermediate
System (IS–IS), OSPF, and Routing Information Protocol (RIP). If a dedicated multicast

412 PART III Routing and Routing Protocols

RPF table is used, this table must be populated by some other method. Some multicast
routing protocols, such as the Distance Vector Multicast Routing Protocol (DVMRP),
essentially duplicate the operation of a unicast routing protocol and populate a dedi-
cated RPF table. Others, such as Protocol Independent Multicast (PIM), do not duplicate
routing protocol functions and must rely on some other routing protocol to set up this
table—which is why PIM is protocol independent.

Some traditional routing protocols (such as BGP and IS–IS) now have extensions
to differentiate between different sets of routing information sent between routers
for unicast and multicast. For example, there is multiprotocol BGP (MBGP) and multi-
topology routing in IS–IS (M-ISIS). Multicast Open Shortest Path First (MOSPF) also
extends OSPF for multicast use, but goes further than MBGP or M-ISIS and makes
MOSPF into a complete multicast routing protocol on its own. When these routing
protocols are used, routes can be tagged as multicast RPF routers and used by the
receiving router differently than the unicast routing information.

Using the main unicast routing table for RPF checks provides simplicity. A dedicated
routing table for RPF checks allows a network administrator to set up separate paths
and routing policies for unicast and multicast traffi c, allowing the multicast network to
function more independently of the unicast network. The following section discusses
in further detail how PIM operates, although the concepts could be applied to other
multicast routing protocols.

Shortest-Path Tree
The distribution tree used for multicast is rooted at the source and is the shortest-path
tree (SPT) as well. Consider a set of multicast routers without any active multicast
 traffi c for a certain group (i.e., they have no multicast forwarding state for that group).
When a router learns that an interested receiver for that group is on one of its directly
connected subnets, the router attempts to join the tree for that group.

To join the distribution tree, the router determines the unicast IP address of the
source for that group. This address can be a simple static confi guration in the router, or
use more complex methods.

To build the SPT for that group, the router executes an RPF check on the source
address in its routing table. The RPF check produces the interface closest to the source,
which is where multicast packets from this source for this group should fl ow into the
router.

The router next sends a join message out on this interface using the proper mul-
ticast protocol to inform the upstream router that it wishes to join the distribution
tree for that group. This message is an (S,G) join message because both S and G are
known. The router receiving the (S,G) join message adds the interface on which the
message was received to its OIL for the group and performs an RPF check on the
source address. The upstream router then sends an (S,G) join message out the RPF
interface toward the source, informing the upstream router that it also wants to join
the group.

CHAPTER 16 Multicast 413

Each upstream router repeats this process, propagating joins out the RPF interface—
building the SPT as it goes. The process stops when the join message does the following:

■ Reaches the router directly connected to the host that is the source, or
■ Reaches a router that already has multicast forwarding state for this

source-group pair.

In either case, the branch is created, each of the routers has multicast forwarding state
for the source-group pair, and packets can fl ow down the distribution tree from source
to receiver. The RPF check at each router ensures that the tree is an SPT.

SPTs are always the shortest path, but they are not necessarily short. That is, sources
and receivers tend to be on the periphery of a router network (not on the backbone) and
multicast distribution trees have a tendency to sprawl across almost every router in the
network. Because multicast traffi c can overwhelm a slow interface, and one packet can
easily become a hundred or a thousand on the opposite side of the backbone, it makes
sense to provide a shared tree as a distribution tree so that the multicast source could
be located more centrally in the network (on the backbone). This sharing of distribution
trees with roots in the core network is accomplished by a multicast rendezvous point.

Rendezvous Point and Rendezvous-Point Shared Trees
In a shared tree, the root of the distribution tree is a router (not a host), and is located
somewhere in the core of the network. In the primary sparse-mode multicast routing
protocol, Protocol Independent Multicast sparse mode (PIM-SM), the core router at the
root of the shared tree is the RP. Packets from the upstream source and join messages
from the downstream routers “rendezvous” at this core router.

In the RP model, other routers do not need to know the addresses of the sources for
every multicast group. All they need to know is the IP address of the RP router. The RP
router knows the sources for all multicast groups.

The RP model shifts the burden of fi nding sources of multicast content from each
router—the (S,G) notation—to the network—the (*,G) notation knows only the RP.
Exactly how the RP fi nds the unicast IP address of the source varies, but there must
be some method to determine the proper source for multicast content for a particular
group.

Consider a set of multicast routers without any active multicast traffi c for a certain
group. When a router learns that an interested receiver for that group is on one of its
directly connected subnets, the router attempts to join the distribution tree for that
group back to RP (not to the actual source of the content). In some sparse-mode pro-
tocols, the shared tree is called the rendezvous-point tree (RPT).

When the branch is created, packets can fl ow from the source to the RP and from
the RP to the receiver. Note that there is no guarantee that the shared tree (RPT) is
the shortest path tree to the source. Most likely it is not. However, there are ways to
“migrate” a shared tree to an SPT once the fl ow of packets begins. In other words, the
forwarding state can transition from (*,G) to (S,G). The formation of both types of trees
depends heavily on the operation of the RPF check and the RPF table.

414 PART III Routing and Routing Protocols

PROTOCOLS FOR MULTICAST
Multicast is not a single protocol used for a specifi c function, like FTP. Nor is multicast
a series of separate protocols that can be used as desired between adjacent hosts
and routers to perform a function, like IS–IS and OSPF. Multicast is a series of related
 protocols that must be carefully coordinated across and between an AS and often
among hosts.

The family of multicast protocols is due to the complexity of source discovery
and the mechanisms used to perform this task. Most hosts can send and receive
multicast frames and packets on a LAN as easily as they handle broadcast or uni-
cast. Routers must be capable of sending copies of a single received packet out on
more than one interface (replication), and many low-end routers cannot do this. In
addition, routers must be able to use unicast routing tables for multicast purposes,
or construct special tables for multicast information (again, many low-end routers
cannot do this).

Multicast routers must be able to maintain state on each interface with regard to
multicast traffi c. That is, the router must know which multicast groups have active
receivers on an outgoing interface (called downstream interfaces) and which interface
is the “closest” to the source (called upstream interface). These interfaces vary from
group to group, one group can have more than one potential source (for redundancy
purposes), and special routers might be employed for many groups (the RPs).

Multicast Hosts and Routers
Multicast tasks are very different for hosts versus routers. At this juncture, we will
extend the multicast discussion beyond IPv4 to IPv6 and hosts. General points follow.

■ Hosts must be able to join and leave multicast groups. The major protocols here are
various versions of the Internet Group Management Protocol (IGMP) in IPv4 and
Multicast Listener Discovery (MLD) in IPv6.

■ Hosts (users) must know the content of multicast groups. The related Session
Announcement Protocol and Session Description Protocol (SAP/SDP, defi ned in RFC
2974 and RFC 2327) are the standard protocols used to describe the content and
some other aspects of multicast groups. These should not be used as a method of
multicast source discovery.

■ Routers must be able to fi nd the sources of multicast content, both in their own
 multicast (routing) domain and in others. For sparse modes, this means fi nding the
RPs. These can be confi gured statically, or use protocols such as Auto-RP, anycast RP
(RFC 3446), bootstrap router (BSR), or MSDP (RFC 3618). For IPv6, embedded RP is
used instead of MSDP—which is not defi ned for IPv6 use. (This point actually applies
to ASM, not SSM, discussed in material following.)

■ Routers must be able to prevent loops that replicate the same packet over and over.
The techniques here are not really protocols, and include the use of scoping (limit-
ing multicast packet hops) and RPF checks.

CHAPTER 16 Multicast 415

■ Routers must provide missing multicast information when feasible. Multicast
 networks can use Pragmatic General Multicast (PGM) to add some TCP features
lacking in UDP to multicast networks. However, the only assurance is that you
know you missed something. Application-specifi c mechanisms can do the same
thing with simple sequence numbers.

Fortunately, only a few of these protocols are really used for multicast at present on
the Internet. The only complication is that some of the special protocols used for IPv4
multicasting do not work with IPv6, and thus different protocols perform the same
functions.

Multicast Group Membership Protocols
Multicast group membership protocols allow a router to know when a host on a
directly attached subnet, typically a LAN, wants to receive traffi c from a certain mul-
ticast group. Even if more than one host on the LAN wants to receive traffi c for that
multicast group, the router has to send only one copy of each packet for that multicast
group out on that interface because of the inherent broadcast nature of LANs. Only
when the router is informed by the multicast group membership protocol that there
are no interested hosts on the subnet can the packets be withheld and that leaf pruned
from the distribution tree.

Internet Group Management Protocol for IPv4
There is only one standard IPv4 multicast group membership protocol: the Internet
Group Management Protocol (IGMP). However, IGMP has several versions that are sup-
ported by hosts and routers. There are currently three versions of IGMP.

IGMPv1—The original protocol defined in RFC 1112. An explicit join message
is sent to the router, but a timeout is used to determine when hosts leave a
group. This process wastes processing cycles on the router, especially on older
or smaller routers.

IGMPv2—Among other features, IGMPv2 (RFC 2236) adds an explicit leave mes-
sage to the join message so that routers can more easily determine when a
group has no interested listeners on a LAN.

IGMPv3—Among other features, IGMPv3 (RFC 3376) optimizes support for a
 single source of content for a multicast group or source-specific multicast
(SSM). (RFC 1112 supported both many-to-many and one-to-many multicast, but
one-to-many is considered the more viable model for the Internet at large.)

Although the various versions of IGMP are backward compatible, it is common
for a router to run multiple versions of IGMP on LAN interfaces because backward
compatibility is achieved by dropping back to the most basic of all versions run on
a LAN. For example, if one host is running IGMPv1, any router attached to the LAN

416 PART III Routing and Routing Protocols

 running IGMPv2 drops back to IGMPv1 operation—effectively eliminating the IGMPv2
 advantages. Running multiple IGMP versions ensures that both IGMPv1 and IGMPv2
hosts fi nd peers for their versions on the router.

Multicast Listener Discovery for IPv6
IPv6 does not use IGMP to manage multicast groups. Multicast groups are an integral
part of IPv6, and the Multicast Listener Discovery (MLD) protocol is an integral part
of IPv6. Some IGMP functions are assumed by ICMPv6, but IPv6 hosts perform most
multicast functions with MLD. MLD comes in two versions: MLD version 1 (RFC 2710)
has basic functions, and MLDv2 (RFC 3590) supports SSM groups.

Multicast Routing Protocols
There are fi ve multicast routing protocols.

Distance-Vector Multicast Routing Protocol
This is the fi rst of the multicast routing protocols and hampered by a number of
 limitations that make this method unattractive for large-scale Internet use. DVMRP is
a dense-mode-only protocol that uses the fl ood-and-prune, or implicit join method,
to deliver traffi c everywhere and then determines where uninterested receivers are.
DVMRP uses source-based distribution trees in the form (S,G).

Multicast Open Shortest Path First
This protocol extends OSPF for multicast use, but only for dense mode. However,
MOSPF has an explicit join message, and thus routers do not have to fl ood their entire
domain with multicast traffi c from every source. MOSPF uses source-based distribution
trees in the form (S,G).

PIM Dense Mode
This is Protocol Independent Multicast operating in dense mode (PIM DM), but the dif-
ferences from PIM sparse mode are profound enough to consider the two modes sepa-
rately. PIM also supports sparse-dense mode, but there is no special notation for that
operational mode. In contrast to DVMRP and MOSPF, PIM dense mode allows a router
to use any unicast routing protocol and performs RPF checks using the unicast routing
table. PIM dense mode has an implicit join message, so routers use the fl ood-and-prune
method to deliver traffi c everywhere and then determine where the uninterested
receivers are. PIM dense mode uses source-based distribution trees in the form (S,G),
as do all dense-mode protocols.

PIM Sparse Mode
PIM sparse mode allows a router to use any unicast routing protocol and performs RPF
checks using the unicast routing table. However, PIM sparse mode has an explicit join
message, so routers determine where the interested receivers are and send join mes-
sages upstream to their neighbors—building trees from receivers to RP. The Protocol

CHAPTER 16 Multicast 417

Independent Multicast sparse mode uses an RP router as the initial source of multicast
group traffi c and therefore builds distribution trees in the form (*,G), as do all sparse-
mode protocols. However, PIM sparse mode migrates to an (S,G) source-based tree if
that path is shorter than through the RP for a particular multicast group’s traffi c.

Core-Based Trees
Core-based trees (CBT) share all of the characteristics of PIM sparse mode (sparse
mode, explicit join, and shared [*,G] trees), but are said to be more effi cient at fi nding
sources than PIM sparse mode. CBT is rarely encountered outside academic discus-
sions and the experimental RFC 2201 from September 1997. There are no large-scale
deployments of CBT, commercial or otherwise. The differences among the fi ve multi-
cast routing protocols are summarized in Table 16.1.

It is important to realize that retransmissions due to a high bit-error rate on a link or
overloaded router can make multicast as ineffi cient as repeated unicast.

Any-Source Multicast and SSM
RFC 1112 originally described both one-to-many (for radio and television) and many-
to-many (for videoconferences and application on-line gaming) multicasts. This model
is now known as Any-Source Multicast (ASM). To support many-to-many multicasts,
the network is responsible for source discovery. So, whenever a host expresses a desire
to join a group the network must fi nd all the sources for that group and deliver them
to the receiver.

Source discovery is especially complex with interdomain scenarios (source in one
AS, receiver/s in another). And most plans to commercialize Internet multicasts, such
as bringing radio station and television channel multicasts directly onto the Internet,
revolve around the one-to-many model exclusively. So, the one-to-many scenario has
been essentially split off from the all-embracing RFC 1112 vision and become Source-
Specifi c Multicast (SSM, defi ned in FC 3569).

As the name implies, SSM supports multicast content delivery from only one specifi c
source. In SSM, source discovery is not the responsibility of the network but of the

Table 16.1 Major Characteristics of Multicast Routing Protocols

Multicast
Routing
Protocol

Dense
Mode

Sparse
Mode

Implicit
Join

Explicit
Join (S,G) SBT

(*,G) Shared
Tree

DVMRP Yes No Yes No Yes No

MOSPF Yes No No Yes Yes No

PIM-DM Yes No Yes No Yes No

PIM-SM No Yes No Yes Yes, maybe Yes, initially

CBT No Yes No Yes No Yes

418 PART III Routing and Routing Protocols

receivers (hosts). This eliminates much of the complexity of multicast mechanisms
required in ASM and the use of MSDP. It also eliminates some of the scaling consider-
ations associated with traffi c on (*,G) groups.

ASM and SSM are not protocols but service models. Most of what is described in
this chapter applies to ASM (the more general model). But keep in mind that SSM does
away with many of the procedures covered in detail here that apply to ASM, including
RPs, RPTs, and MSDP. Figure 16.4 shows the current suite of multicast protocols and
how they all fi t together.

Multicast Source Discovery Protocol
MSDP, described in RFC 3618, is a mechanism to connect multiple PIM-SM domains
(usually, each in an AS). Each PIM-SM domain can have its own independent RPs,
and these do not interact in any way (so MSDP is not needed in SSM scenarios). The
advantages of MSDP are that the RPs do not need any other resource to fi nd each
other and that domains can have receivers only and get content without globally
advertising group membership. In addition, MSDP can be used with protocols other
than PIM-SM.

Protocols for Source-
Specific Multicast

PIM-SM

PIM-DM PIM-DM

Sparse Mode Sparse Mode

PIM-SSM
(No RP)

OSPF

M-ISIS

RIP

DVRMPDVMRP DVMRP

Distance VectorDense ModeDense Mode

(None needed in
SMS)

Protocols for Any-Source
Multicast

Peer-RPF Flooding

Protocols for Reverse-
Path Forwarding

Path Vector

Link State

Interdomain
(AS to AS)

Intradomain (same AS)

MBGPMSDP

FIGURE 16.4

Suite of multicast protocols showing how those for ASM, SSM, and RFP checks fi t together
and are used.

CHAPTER 16 Multicast 419

MSDP routers in a PIM-SM domain peer with their MSDP router peers in other
domains. The peering session uses a TCP connection to exchange control information.
Each domain has one or more of these connections in its “virtual topology.” This allows
domains to discover multicast sources in other domains. If these sources are deemed
of interest to receivers in another domain, the usual source-tree mechanism in PIM-SM
is used to deliver multicast content—but now over an interdomain distribution tree.
More details about MSDP are beyond the scope of this introductory chapter.

Frames and Multicast
Multicasting on a LAN is a good place to start an investigation of multicasting in general.
Consider a single LAN, without routers, with a multicast source sending to a certain
group. The rest of the hosts are receivers interested in the multicast group’s content.
So, the multicast source host generates packets with its unicast IP address as the source
and the group address as the destination.

One issue comes up immediately. The packet source address obviously will be
the unicast IP address of the host originating the multicast content. This translates
to the MAC address for the source address in the frame in which the packet is encap-
sulated. The packet’s destination address will be the multicast group. So far, so good.
But what should be the frame’s destination address that corresponds to the packet’s
multicast group address?

Using the LAN broadcast MAC address defeats the purpose of multicast, and hosts
could have access to many multicast groups. Broadcasting at the LAN level makes no
sense. Fortunately, there is an easy way out of this. The MAC address has a bit that is set
to 0 for unicast (the LAN term is individual address) and to a 1 to indicate that this
is a multicast address. Some of these addresses are reserved for multicast groups for
specifi c vendors or MAC-level protocols. Internet multicast applications use the range
0x01-00-5E-00-00-00 to 0x01-00-5E-FF-FF-FF. TCP/IP multicast receivers listen for frames
with one of these addresses when the application joins a multicast group and stops
listening when the application terminates or the host leaves the group.

So, 24 bits are available to map IPv4 multicast addresses to MAC multicast addresses.
But all IPv4 addresses, including multicast addresses, are 32 bits long. There are 8 bits
left over. How should IPv4 multicast addresses be mapped to MAC multicast addresses
to minimize the chance of “collisions” (two different multicast groups mapped to the
same MAC multicast address)?

All IPv4 multicast addresses begin with the same four bits (1110), so we only have
to really worry about 4 bits (not 8). We shouldn’t drop the last bits of the IPv4 address,
because these are almost guaranteed to be host bits—depending on subnet mask. But
the high-order bits, the rightmost bits, are almost always network bits and we’re only
worried about one LAN for now.

One other bit of the remaining 24 MAC address bits is reserved (an initial 0 indicates
an Internet multicast address), so let’s just drop the 5 bits following the initial 1110 in
the IPv4 address and map the 23 remaining bits (one for one) into the last 23 bits of the
MAC address. This procedure is shown in Figure 16.5.

420 PART III Routing and Routing Protocols

Note that this process means that there are 32 (25) IPv4 multicast addresses that
could map to the same MAC multicast addresses. For example, multicast IPv4 addresses
224.8.7.6 and 229.136.7.6 translate to the same MAC address (0x01-00-5E-08-07-06).
This is a real concern, and because the host will accept frames sent to both multicast
groups, the IP software must reject one or the other. This problem does not exist in
IPv6, but is always a concern in IPv4.

Once the MAC address for the multicast group is determined, the operating system
essentially orders the NIC card to join or leave the multicast group and accept frames
sent to the address as well as the host’s unicast address or ignore that multicast group’s
frames. It is possible for a host to receive multicast content from more than one group
at the same time, of course. The procedure for IPv6 multicast packets inside frames
is nearly identical, except for the MAC destination address 0x3333 prefi x and other
points outlined in the previous section.

IPv4 Multicast Addressing
The IPv4 addresses (Class D in the classful addressing scheme) used for multicast usage
range from 224.0.0.0 to 239.255.255.255. Assignment of addresses in this range is
controlled by the Internet Assigned Numbers Authority (IANA). Multicast addresses can
never be used as a source address in a packet (the source address is always the unicast

Ethernet Frame Multicast Destination Address

IPv4 Header Multicast Destination Address

Decimal:

Binary:

Hex:

Hex:

Binary:

232. 224. 202. 181

E8 - E0 - CA - B5

60 - CA - B5

Ignore Copy

0110 0000 1100 1010 10110101

350 for Internet
351 for other

3110 0000 1100 1010 10110101

11101000 1110 0000 1100 1010 10110101

Copy
Drop

Multicast Bit

MAC Address in Hex: 01 : 00 : B3 : 27 : FA : 8C

MAC Multicast Address: 01 : 00 : B3 : 60 : CA : B5

FIGURE 16.5

How to convert from IPv4 header multicast to Ethernet MAC multicast address formats.

CHAPTER 16 Multicast 421

IP address of the content originator). Certain subranges within the range of addresses
are reserved for specifi c uses.

■ 224.0.0.0/24—The link-local multicast range (these packets never pass
through routers)

■ 224.2.0.0/16—The SAP/SDP range
■ 232.0.0.0/8—The Source-Specifi c Multicast (SSM) range
■ 233.0.0.0/8—The AS-encoded statically assigned GLOP range defi ned in

RFC 3180
■ 239.0.0.0/8—The administratively scoped multicast range defi ned in

RFC 2365 (these packets may pass through a certain number of routers)

For a complete list of currently assigned IANA multicast addresses, refer to the
www.iana.org/assignments/multicast-addresses Web site. If multicast addresses had

Table 16.2 Multicast Addresses Used for Various Protocols

Address Purpose Comment

224.0.0.0 Reserved base address RFC 1112

224.0.0.1 All systems of this subnet RFC 1112

224.0.0.2 All routers on this subnet

224.0.0.3 Unassigned

224.0.0.4 DVMRP routers on this subnet RFC 1075

224.0.0.5 All OSPF routers on this subnet RFC 1583

224.0.0.6 All OSPF DRs on this subnet RFC 1583

224.0.0.7 All ST (Streams protocol) routers on this subnet RFC 1190

224.0.0.8 All ST hosts on this subnet RFC 1190

224.0.0.9 All RIPv2 routers on this subnet RFC 1723

224.0.0.10 All Cisco IGRP routers on this subnet (Cisco)

224.0.0.11 All Mobile IP agents

224.0.0.12 DHCP server/relay agents RFC 1884

224.0.0.13 All PIM routers (IANA)

224.0.014-224.0.0.21 Assigned to various routing protocols and router
features

(IANA)

224.0.0.22 IGMP (IANA)

224.0.0.23-244.0.0.255 See www.iana.org/assignments/multicast-addresses (IANA)

422 PART III Routing and Routing Protocols

been assigned in the same manner that unicast addresses were allocated, the Class D
address space would have been exhausted long ago. However, IANA allocates static
multicast addresses only for protocols. Routers cannot forward packets in these ranges.
Some of these addresses are outlined in Table 16.2.

A simple dynamic address allocation mechanism is used in the SAP/SDP block to
prevent multicast address exhaustion. Applications, such as the Session Directory Tool
(SDR), use this mechanism to randomly select an unused address in this range. This
dynamic allocation mechanism for global multicast addresses is similar to the DHCP
function, which dynamically assigns unicast addresses on a LAN.

However, some applications require static multicast addresses. So, GLOP (described
in RFC 3180) provides static multicast ranges for organizations that already have an
AS number. (GLOP is not an acronym or abbreviation—it’s just the name of the mech-
anism.) GLOP uses the 2-byte AS number to derive a /24 address block within the
233/8 range. It’s worth noting that there are no GLOP addresses set aside for 4-byte AS
numbers. The static multicast range is derived from the following form:

233.[first byte of AS].[second byte of AS].0/24

For example, AS 65001 is allocated 233.253.233.0/24—and only this AS can use it. The
following is an easy way to compute this address.

1. Convert the AS number to hexadecimal (65001 5 0xFDE9).
2. Convert the fi rst byte back to decimal (0xFD 5 253).
3. Convert the second byte back to decimal (0xE9 5 233).

Addresses in the 239/8 range are defi ned as administratively scoped. Packets sent
to these addresses should not be forwarded by a router outside an administratively
defi ned boundary (usually a domain).

Addresses in the 232/8 range are reserved for SSM. A nice feature of SSM is that
the multicast group address no longer needs to be globally unique. The source-group
“channel,” or tuple, provides uniqueness because the receiver is expressing interest in
only one source for the group.

SSM has solved the multicast addressing allocation headache. With SSM, as well
as GLOP, administrative scoping, and SAP/SDP, IPv4 multicast address allocation is
 suffi cient until IPv6 becomes more common.

IPv6 Multicast Addressing
In IPv6, the number of multicast (and unicast) addresses available is not an issue. All
IPv6 multicast addresses start with 1111 1111 (0xFF). As in IPv4, no IPv6 packet can
have an IPv6 multicast address as a source address. There is really no such thing as a
“broadcast” in IPv6. Instead, devices must belong to certain multicast groups and pay
attention to packets sent to these groups. The structure of the IPv6 multicast address
is shown in Figure 16.6.

CHAPTER 16 Multicast 423

Format Prefi x
This 8-bit fi eld is simply 1111 1111 (0xFF).

Flags
As of RFC 2373, the only fl ag defi ned for this 4-bit fi eld is Transient (T). If 0, the multicast
address is a permanently assigned well-known address allocated by IANA. If 1, the
 multicast address is not permanently assigned (transient).

Scope
This 4-bit fi eld establishes the multicast packets’ boundaries. RFC 2372 defi nes several
well-known scopes, including node-local (1), link-local (2), site-local (3), organization-
local (8), and global (E). Packets sent to 0xFF02:X are confi ned to a single link and can-
not pass through a router (this issue came up in the IGP chapter with RIPng).

Group ID
The IPv6 multicast group ID is 112 bits long. Permanently assigned group IDs are valid
regardless of the scope value, whereas transient group IDs are valid only within a par-
ticular scope. The 122 bits of the Group ID fi eld pose a challenge to the 48-bit MAC
address (and only 23 of those bits were used in IPv4). But the solution is much simpler
than in IPv4. RFC 2373 recommends using the low-order 32 bits of the Group ID and
setting the high-order 16 bits to 0x3333. This is shown in Figure 16.7.

Naturally, there are 80 more bits that could be used in the Group ID fi eld. For now,
RFC 2373 recommends setting the 801 bits available for multicast group IDs to 0s. If
there is a problem with 32 bits for multicast groups, which can be as many as 4 billion,
probably in the future the RFC group will think about extending the bits.

8 bits

1111 1111 Flags Scope Group ID

128 bits

112 bits4 bits 4 bits

FIGURE 16.6

The IPv6 multicast address format. Note the presence of the scope fi eld.

16 bits 80 bits 32 bits

0011 0011 0011 0011 MAC Group IDMust Be All Zeroes

128 bits

FIGURE 16.7

The IPv6 multicast group addresses showing how the MAC group ID is embedded.

424 PART III Routing and Routing Protocols

PIM-SM
The most important multicast routing protocol for the Internet today is PIM sparse
mode, defi ned in RFC 2362. PIM-SM is ideal for a number of reasons, such as its protocol-
independent nature (PIM can use regular unicast routing tables for RPF checks and
other things), and it’s a nice fi t with SSM (in fact, not much else fi ts at all with SSM). So,
we’ll look at PIM-SM in a little more detail (also in addition, because that’s what we’ll
be using on the Illustrated Network’s routers).

If a potential receiver is interested in the content of a particular multicast group, it
sends an IGMP Join message to the local router—which must know the location of the
network RPs servicing that group. If the local router is not currently on the distribu-
tion tree for that group, the router sends a PIM Join message (not an IGMP message)
through the network until the router becomes a leaf on the shared tree (RPT) to the
RP. Once multicast packets are fl owing to the receiver, the routers all check to see if
there is a shorter path from the source to the destination than through the RP. If there
is, the routers will transition the tree from an RPT to an SPT using PIM Join and Prune
messages (technically, they are PIM Join/Prune messages, but it is common to distin-
guish them). The SPT is rooted at the designated router of the source. All of this is done
transparently to the receivers and usually works very smoothly.

There are other reasons to transition from an RPT to an SPT, even if the SPT is
actually longer than the RPT. An RP might become quite busy, and the shortest path
might not be optimal as determined by unicast routing protocols. A lot of multicast
discussion at ISPs involves issues such as how many RPs there should be (how many
groups should each service?) and where they should be located (near their sources?
centrally?). A related issue is how routers know about RPs (statically? Auto-RP? BSR?),
but these discussions have no clear or accepted answers.

There is only one PIM-SM feature that needs to be explained. How does traffi c get
from the sender’s local router to the RP? The rendezvous point could create a tree
directly to every source, but if there is a lot of sources, there is a lot of state informa-
tion to maintain. It would be better if the senders’ local routers could send the content
directly to the RP.

But how? The destination address of all multicast packets is a group address and not
a unicast address. So, the source’s router (actually, the DR) encapsulates the multicast
packets inside a unicast packet sent to the RP and tunnels the packet to the RP in this
form. The RP decapsulates the multicast content and makes it available for distribution
over the RPT tree.

There is much more to PIM-SM that has not been detailed here, such as PIM-SM for
SSM (sometimes seen as PIM-SSM). But it is enough to explain the interplay among host
receivers, IGMP (in IPv4), MLD (in IPv6), PIM itself, the RP, and the source.

The Resource Reservation Protocol and PGM
A lot of books and material on multicast include long discussions of the Resource
 Reservation Protocol (RSVP), and some multicast routers and hosts still use RSVP to

CHAPTER 16 Multicast 425

 signal the network that the multicast packet stream they will be receiving will consume
a certain amount of resources on the network. However, the most common use of RSVP
today is not with multicast but with Multiprotocol Label Switching (MPLS)—and that’s
where we’ll put RSVP.

RVSP makes sense for multicast in a restricted bandwidth environment. But the
need for RSVP was undermined (as was ATM) by the embarrassment of bandwidth
available on LANs and router backbones (the video network YouTube today uses more
bandwidth than the entire Internet had in 2000). On slow networks, the biggest short-
coming is that you can’t reserve bandwidth you don’t have. If you do anyway, you’re
really just performing admission control (limited to those who are allowed to connect
over the network) and hosing the other applications. Everything works better with
enough bandwidth.

However, this is not to say that multicast is fi ne using UDP in all cases—especially
when multicast content must cross ISP boundaries, where bandwidth on these heavily
used links is often consumed by traffi c. Nothing is more annoying when receiving
multicast content, voice, or video than dropped packets causing screen freezes and
unpredictable silences. So, routers and hosts can use Pragmatic General Multicast
(PGM), described in RFC 3208. PGM occupies the same place in the TCP/IP stack as
TCP itself. PGM runs on sender and receiver hosts, and on routers (which perform the
PGM router assist function).

As mentioned, the goal of PGM is not to make multicast UDP streams as reliable as
TCP. The PGM goal is to allow senders or routers (performing router assist functions)
to supply missing multicast packets if possible (such as for stock-ticker applications)
or to assure receivers that the data is indeed missing and not just delayed (it does this
by simply sequencing multicast packets). The issue is that you have to carry all of this
state information in routers, which is not good for scaling.

Multicast Routing Protocols
Now we can go back to the network. We’ll have to run a multicast routing protocol
on our routers. We’ll run PIM, which is the most popular multicast protocol. But PIM
can be confi gured in dense “send-everywhere” mode or sparse “only if you ask” mode.
Which should we use?

Let’s consider our router confi guration. Nothing is easier to confi gure than dense
mode. We can just confi gure PIM dense mode (PIM-DM) to run on every router inter-
face (even the LAN interfaces if we like—the PIM messages won’t hurt anything),
except for the network management interface on Juniper Networks routers (fxp0.0).
Multicast traffi c is periodically fl ooded everywhere and pruned back as IGMP member-
ship reports come in on local area network interfaces. This is just an exercise for our lab
network. You defi nitely should not try this at home. The following is the confi guration
on router CE6:

set protocols pim interface all mode dense;
set protocols pim interface fxp0.0 disable;

426 PART III Routing and Routing Protocols

It is not necessary to confi gure IGMP on the LAN interface. As long as PIM is confi g-
ured, IGMPv2 is run on all interfaces that support broadcasts (including frame relay and
ATM). Of course, if a different version of IGMP—such as IGMPv1 or IGMPv3 (wincli
was running IGMPv3, as shown in Figure 16.2)—is desired, this must be explicitly
 confi gured.

It is more interesting and meaningful to confi gure the PIM sparse mode, because that
is what is used, with few exceptions, on the Internet. There are two distinct confi gura-
tions: one for the RP router and the other on all the non-RP routers. We’ll use simple
static confi guration to locate the RP router, but that’s not what is typically done in the
real world. The confi guration on the RP router, which is router PE5 in this example,
 follows:

set protocols pim rp local address 192.168.5.1;
set protocols pim rp interface all mode sparse;
set protocols pim rp interface fxp0.0 disable;

The local keyword means that the local router is the RP. The address is the RP
address that will be used in PIM messages between the routers. The confi guration on
the non-RP router, such as P9, follows:

set protocols pim rp static address 192.168.5.1;
set protocols pim rp interface all mode sparse;
set protocols pim rp interface fxp0.0 disable;

The static keyword means that another router is the RP, located at the IP address given.
The RP address is used in PIM messages between the routers.

Once PIM is up and running on the rest of the router network (we don’t need MSDP
because the RP is known everywhere within the merged Best-Ace ISP routing domain
and this precludes interdomain ASM use anyway), wincli2 receives multicast traffi c
from wincli1, as shown in Figures 16.8 and 16.9.

FIGURE 16.8

Receiving a stream of multicast traffi c from wincli1 across the router network on wincli2.

CHAPTER 16 Multicast 427

IPv6 Multicast
In contrast to IPv4, where multicast sometimes seems like an afterthought compared
to the usual unicast business of the network, IPv6 is fairly teeming with multicast.
You have to do a lot to add multicast to IPv4, but IPv6 simply will not work without
 multicasting. Of course, a lot of this multicast use is confi ned to single subnets. So,
despite being more heavily used, IPv6 multicast is not necessarily easier to deploy
(even though you don’t have to worry about MSDP).

Figure 16.10 shows a multicast IPv6 neighbor discovery packet, which contains an
ICMPv6 message (an echo request). As expected, the packet is sent to IPv6 multicast
address 0xFF02::1, and the frame is sent to the address beginning 0x33:33.

FIGURE 16.9

ICMPv6 multicast packets for neighbor discovery, showing how the MAC address is embedded in
the IPv6 source address fi eld.

428 PART III Routing and Routing Protocols

QUESTIONS FOR READERS
Figure 16.10 shows some of the concepts discussed in this chapter and can be used to
help you answer the following questions.

1. Generally, it is a good idea for RPs to be centrally located on the router network.
Why does this make sense?

2. In Figure 16.10, does the rightmost host, which is interested in Group B content,
have to get it initially from the RP when the source is closer?

3. Would the RP be required if the routers were running PIM dense mode?

4. Will the leftmost router with the uninterested host constantly stream multicast
traffi c onto the LAN anyway?

5. Is the uninterested host on the LAN in the middle able to listen in on Group A
and Group B traffi c without using IGMP to join the groups?

Multicast
Source
(Group A)

Multicast
Host

Multicast
Routers

Multicast
Host

Uninterested
Host

Uninterested
Host

Interested
Host

(Group A)

Interested
Host

(Group B)

Interested
Host

(Group B)

Interested
Host

(Group B)

Routers Running
PIM Sparse Mode

Multicast
Host

Multicast
Source
(Group B)

RP

Multicast
Host

Multicast
Host

Multicast
Host

Multicast
Host

Multicast
Host

FIGURE 16.10

A group of routers running PIM sparse mode with sources and receivers.

429

CHAPTER

What You Will Learn
In this chapter, you will learn how the desire for convergence has led to the
 development of various IP switching techniques. We’ll also compare and contrast
frame relay and ATM switched networks to illustrate the concepts behind IP
switching.

You will learn how MPLS is used to create LSPs to switch (instead of route)
IP packet through a routing domain. We’ll see how MPLS can form the basis for a
type of VPN service offering.

MPLS and IP Switching 17

One of the reasons TCP/IP and the Internet have grown so popular is that this
 architecture is the promising way to create a type of “universal network” well suited
for and equally at home with voice, video, and data. The Internet started as a network
exclusively for data delivery, but has proved to be remarkably adaptable for different
classes of traffi c. Some say that more than half of all telephone calls are currently carried
for part of their journey over the Internet, and this percentage will only go higher in
the future. Why not watch an entire movie or TV show over the Internet? Many now
watch episodes they missed on the Internet. Why not everything? As pointed out in
the previous chapter, multicast might not be used to maximum effect for this but video
delivery still works.

When a service provider adds television (or video in general) to Internet access and
telephony, this is called a “triple play” opportunity for the service provider. (Adding wire-
less services over the Internet is sometimes called a “quadruple play” or “home run.”)

This desire for networking convergence is not new. When the telephone was
invented, there were more than 30 years’ worth of telegraph line infrastructure in
place from coast to coast and in most major cities throughout the United States. The
initial telephone services used existing telegraph links to distribute telegrams, but this
was not a satisfactory solution. The telegraph network was optimized for the dots and
dashes of Morse code, not the smooth analog waveforms of voice. Early attempts to run
voice over telegraph lines stumbled not over bandwidth, but with the crosstalk induced

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80:205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Best-

Wireless
in Home

Solid rules � SONET/SDH
Dashed rules � Gig Ethernet
Note: All links use 10.0.x.y
addressing...only the last
two octets are shown.

FIGURE 17.1

The routers on the Illustrated Network will be used to illustrate MPLS. Note that we are still dealing with
the merged Best-Ace ISP and a single AS.

432 PART III Routing and Routing Protocols

Ace ISP

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80:205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC: 00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

ge-0/0/3

16.2

ge-0/0/3

16.1

AS 65127

Global Public
Internet

CHAPTER 17 MPLS and IP Switching 433

by the pulses of Morse code running in adjacent wires. The solution was to twist and
pair telephone wires and maintain adequate separation from telegraph wire bundles.

So, two separate networks grew up: telephone and telegraph. When cable TV came
along much later, the inadequate bandwidth of twisted-pair wire led to a third major
distinct network architecture—this one made of coaxial cable capable of delivering
50 or more (compared to the handful of broadcast channels available, that was a lot)
television channels at the same time.

Naturally, communications companies did not want to pay for, deploy, and maintain
three separate networks for separate services. It was much more effi cient to use one
converged infrastructure for everything. Once deregulation came to the telecommuni-
cations industry, and the same corporate entity could deliver voice as a telephony com-
pany, video as a cable TV company, and data as an ISP, the pressure to fi nd a “universal”
network architecture became intense. But the Internet was not the only universal net-
work intended to be used for the convergence of voice, video, and data over the same
links. Telecommunications companies also used frame relay (FR) and asynchronous
transfer mode (ATM) networks to try to carry voice, video, and data on the same links.

Let’s see if we can “converge” these different applications onto the Illustrated
Network. This chapter will use the Illustrated Network routers exclusively. This is
shown in Figure 17.1, which also reveals something interesting when we run trace-
route from bsdclient on LAN1 to bsdserver on LAN2.

bsdclient# traceroute bsdserver

traceroute to bsdserver (10.10.12.77), 64 hops max, 44 byte packets
 1 10.10.11.1 (10.10.11.1) 0.363 ms 0.306 ms 0.345 ms
 2 10.0.50.1 (10.1.36.2) 0.329 ms 0.342 ms 0.346 ms
 3 10.0.45.1 (10.0.45.1) 0.330 ms 0.341 ms 0.346 ms
 4 10.0.24.1 (10.0.24.1) 0.332 ms 0.343 ms 0.345 ms
 5 10.0.12.1 (10.0.12.1) 0.329 ms 0.342 ms 0.347 ms
 6 10.0.16.2 (10.0.16.2) 0.330 ms 0.341 ms 0.346 ms
 7 10.10.12.77 (10.10.12.77) 0.331 ms 0.343 ms 0.347 ms

bsdclient#

The packets travel from PE5 to P4 and then on to P2 and PE1. Why shouldn’t they
fl ow through P9 and P7? Well, they could, but without load balancing turned on (and
it is not) PE5 has to choose P9 or P4 as the next hop. All things being equal, if all other
metrics are the same, routers typically pick to lowest IP address. A look at the network
diagram shows this to be the case here.

There are obviously other users on the Best-Ace ISP’s network, not just those on
LAN1 and LAN2. However, it would be nice if the customer-edge (site) routers CE0 and
CE6 were always seven hops away and never any more (in other words, no matter how
traffi c is routed there are always six routers between LAN1 and LAN2). This is because
most of the traffi c fl ows between the two sites, as we have seen (on many LANs, vast
quantities of traffi c usually fl ow among a handful of destinations).

Before the rise of the Internet, the company owning LAN1 and LAN2 would pay a
service provider (telephone company or other “common carrier”) to run a point-to-point

434 PART III Routing and Routing Protocols

link between New York and Los Angeles and use it for data traffi c. They might also do the
same for voice, and perhaps even for video conferences between the two sites. The nice
thing about these leased line links (links used exclusively for voice are called tie lines) is
that they make the two sites appear to be directly connected, reducing the number of
hops (and network processing delay) drastically.

But leased lines are an expensive solution (they are paid for by the mile) and are lim-
ited in application (they only connect the two sites). What else could a public network
service provider offer as a convergence solution to make the network more effi cient?

We’ll take a very brief look at the ideas behind some public network attempts at
convergence (frame relay and ATM) and then see how TCP/IP itself handles the issue.
We’ll introduce Multiprotocol Label Switching (MPLS) and position this technology as
a way to make IP router networks run faster and more effi ciently with IP switching.

CONVERGING WHAT?
Convergence is not physical convergence through channels, which had been done for
a very long time. Consider a transport network composed of a series of fi ber optic links
between SONET/SDH multiplexers. The enormous bandwidth on these links can be
(and frequently is) channelized into multiple separate paths for voice bits, data bits, and
video bits on the same physical fi ber. But this is not convergence.

In this chapter convergence means the combination of voice, video, and data on
the same physical channel. Convergence means more than just carrying channels on
the same physical transport. It means combining the bits representing voice, video,
and data into one stream and carrying them all over the total bandwidth on the same
“unchannelized” fi ber optic link. If there are voice, video, and data channels on the link,
these are now virtual channels (or logical channels) and originate and terminate in the
same equipment—not only at the physical layer, but at some layer above the lowest.

On modern Metro Ethernet links, the convergence is done by combining the traffi c
from separate VLANs on the same physical transport. The VLANs can be established
based on traffi c type (voice, video, and data), customer or customer site, or both (with
an inner and outer VLAN label.) In this chapter, we’ll talk about MPLS—which can
work with VLANs or virtual channels.

Fast Packet Switching
Before there was MPLS, there was the concept of fast packet switching to speed up
packet forwarding on converged links and through Internet network nodes. Two major
technologies were developed to address this new technology, and they are worth at
least a mention because they still exist in some places.

Frame Relay
Frame relay was an attempt to slim down the bulky X.25 public packet switching
standard protocol stack for public packet networks for the new environment of home
PCs and computers at every work location in an organization. Although it predated

CHAPTER 17 MPLS and IP Switching 435

modern layered concepts, X.25 essentially defi ned the data units at the bottom three
layers—physical interface, frame structure, and packet—as an international standard.
It was mildly successful compared to the Internet, but wildly successful for a world
without the Web and satellite or cell phones. In the mid-1980s, about the only way to
communicate text to an off-shore oil platform or ships at sea was with the familiar but
terse “GA” (go ahead) greeting on a teletype over an X.25 connection.

The problem with X.25 packets (called PLP, Packet Layer Protocol, packets) was
that they weren’t IP packets, and so could not easily share or even interface with the
Internet, which had started to take off when the PC hit town. But IP didn’t have a
popular WAN frame defi ned (SLIP did not really use frames), so the X.25 Layer 2 frame
structure, High-level Data Link Control (HDLC)—also used in ISDN—was modifi ed to
make it more useful in an IP environment populated by routers. In fact, routers, which
struggled with full X.25 interfaces, could easily add frame relay interfaces.

One of the biggest parts of X.25 dropped on the way to frame relay was error
resistance. Today, network experts have a more nuanced and sophisticated understand-
ing of how this should be done instead of the heavyweight X.25 approach to error
detection and recovery.

Frame relay was once popularly known as “X.25 on steroids,” a choice of analogies
that proved unfortunate for both X.25 and frame relay. But at least frame relay switch
network nodes could relay frames faster than X.25 switches could route packets.
Attempts were made to speed X.25 up prior to the frame relay makeover, such as
allowing a connection-request message to carry data, which was then processed and a
reply returned by the destination in a connection-rejected message, thus making X.25
networks as effi cient for some things as a TCP/IP network with UDP. However, an X.25
network was still much more costly to build and operate than anything based on the
simple Internet architecture. The optimization to X.25 that frame relay represented is
shown in Figure 17.2.

Even with frame relay defi ned, there was still one nagging problem: Like X.25 before
it, frame relay was connection oriented. Only signaling protocol messages were con-
nectionless, and many frame relay networks used “permanent virtual circuits” set up

Network Layer

Data Link Layer Data Link Layer

Physical Layer Physical Layer

Layers Needed to
Route X.25 Packets

Layers Needed to
“Relay” FR Frames

Layer 3

Layer 2 Layer 2

Layer 1Layer 1

FIGURE 17.2

How X.25 packet routing relates to frame relaying. Note that frame relay has no network layer,
leaving IP free to function independently.

436 PART III Routing and Routing Protocols

with a labor-intensive process comparable to confi guring router tables with hundreds
of static entries in the absence of mature routing protocols.

Connections were a large part of the reason that X.25 network nodes were switches
and not routers. A network node that handled only frame relay frames was still a
switch, and connections were now defi ned by a simple identifi er in the frame relay
header and called “virtual circuits.” But a connection was still a connection. In the time
it took a frame relay signaling message exchange to set up a connection, IP with UDP
could send a request and receive a reply. Even for bulk data transfer, connections over
frame relay had few attractions compared to TCP for IP.

The frame relay frame itself was tailor-made for transporting IP packets over public
data networks run by large telecommunications carriers rather than privately owned
routers linked by dedicated bandwidth leased by the mile from these same carriers.
The frame relay frame structure is shown in Figure 17.3.

■ DLCI—The Data Link Connection Identifi er is a 10-bit fi eld that gives the
connection number.

■ C/R—The Command/Response bit is inherited from X.25 and not used.
■ EA—The Extended Address bit tells whether the byte is the last in the

header (headers in frame relay can be longer than 2 bytes).
■ FECN and BECN—The Forward/Backward Explicit Congestion Notifi cation

bits are used for fl ow control.
■ DE—The Discard Eligible bit is used to identify frames to discard under

congested conditions.

Unlike a connectionless packet, the frame relay frame needs only a connection
identifi er to allow network switch nodes to route the frame. In frame relay, this is the
DLCI. A connection by defi nition links two hosts, source and destination. There is no

01111110
(7E)

01111110
(7E)

Header: Address
and Control

Payload
(information)

Trailer: Frame
Check Sequence

1 byte 2 bytes Up to
4096 bytes

2 bytes 1 byte

8 1Bits

DLCI
(6 high-order bits)

DLCI
(4 low-order bits)

C/R
E
A

F
E
C
N

B
E
C
N

D
E

E
A

FIGURE 17.3

The basic 2-byte frame relay frame and header. The DLCI fi eld can come in larger sizes.

CHAPTER 17 MPLS and IP Switching 437

sense of “send this to DLCI 18” or “this is from DLCI 18.” Frames travel on DLCI 18,
and this implies that connections are inherently unidirectional (which they are, but
are usually set up and released in pairs) and that the connection identifi ers in each
direction did not have to match (although they typically did, just to keep network
operators sane).

One of the things that complicate DLCI discussions is that unlike globally unique IP
addresses, DLCIs have local signifi cance only. This just means that the DLCI on a frame
relay frame sent from site A on DLCI 25 could easily arrive at site B on DLCI 38. And
in between, the frame could have been passed around the switches as DLCI 18, 44, or
whatever. Site A only needs to know that the local DLCI 25 leads to site B, and site B
needs to know that DLCI 38 leads to site A, and the entire scheme still works. But it is
somewhat jarring to TCP/IP veterans.

This limits the connectivity from each site to the number of unique DLCIs that
can operate at any one time, but the DLCI header fi eld can grow if this becomes a
problem. And frame relay connections were never supposed to be used all of the
time.

What about adding voice and video to frame relay? That was actually done, espe-
cially with voice. Frame relay was positioned as a less expensive way of linking an orga-
nization’s private voice switches (called private branch exchanges, or PBXs) than with
private voice circuits. Voice was not always packetized, but at least it was “framerized”
over these links. If the links had enough bandwidth, which was not always a given,
primitive videoconferencing (but not commercial-quality video signals that anyone
would pay to view) could be used as well.

Frame relay suffered from three problems, which proved insurmountable. It was
not particularly IP friendly, so frame relay switches (which did not run normal IP rout-
ing protocols) could not react to TCP/IP network conditions the way routers could.
The router and switches remained “invisible” to each other. And in spite of efforts to
integrate voice and video onto the data network, frame relay was fi rst and foremost a
data service and addressed voice and video delay concerns by grossly overconfi gur-
ing bandwidth in almost all cases. Finally, the telecommunications carriers (unlike the
ISPs) resisted easy interconnection of the frame relay network with those of other car-
riers, which forced even otherwise eager customers to try to do everything with one
carrier (an often impossible task). It was a little like cell phones without any possibility
of roaming, and in ironic contrast to the carrier’s own behavior as an ISP, this closed
environment was not what customers wanted or needed.

Frame relay still exists as a service offering. However, outside of just another type of
router WAN interface, frame relay has little impact on the Internet or IP world.

Asynchronous Transfer Mode
The Asynchronous Transfer Mode (ATM) was the most ambitious of all convergence
 methods. It had to be, because what ATM essentially proposed was to throw everything
out that had come before and to “Greenfi eld” the entire telecommunications structure

438 PART III Routing and Routing Protocols

the world over. ATM was part of an all-encompassing vision of networking known as
broadband ISDN (B-ISDN), which would support all types of voice, video, and data
applications though virtual channels (and virtual connections). In this model, the Inter-
net would yield to a global B-ISDN network—and TCP/IP to ATM.

Does this support plan for converged information sound familiar? Of course it does.
It’s pretty much what the Internet and TCP/IP do today, without B-ISDN or ATM. But
when ATM was fi rst proposed, the Internet and TCP/IP could do none of the things
that ATM was supposed to do with ease. How did ATM handle the problems of mixing
 support for bulk data transfer with the needs of delay-sensitive voice and bandwidth-
hungry (and delay-sensitive) video?

ATM was the international standard for what was known as cell relay (there were
cell relay technologies other than ATM, now mostly forgotten). The cell relay name
seems to have developed out of an analogy with frame relay. Frame relay “relayed”
(switched) Layer 2 frames through network nodes instead of independently routing
Layer 3 packets. The effi ciency of doing it all at a lower layer made the frame relay node
faster than a router could have been at the time.

Cell relay took it a step further, doing everything at Layer 1 (the actual bit level).
But there was no natural data unit at the physical layer, just a stream of bits. So, they
invented one 53 bytes long and called it the “cell”—apparently in comparison to the
cell in the human body—which is very small, can be generic, and everything else is
built up from them. Technically, in data protocol stacks, cells are a “shim” layer slipped
between the bits and the frames, because both bits and frames are still needed in hard-
ware and software at source and destination.

Cell relay (ATM) “relayed” (switched) cells through network nodes. This could be
done entirely in hardware because cells were all exactly the same size. Imagine how
fast ATM switches would be compared to slow Layer 3 routers with two more layers
to deal with! And ATM switches had no need to allocate buffers in variable units, or to
clean up fragmented memory. The structure of the 5-byte ATM cell header is shown in
Figure 17.4 (descriptions follow on next page). The call payload is always 48 bytes long.

GFC VPI

VCIVPI

VCI

VCI PTI CLP

HEC

8 Bits 1

UNI Cell Header

VPI

VCIVPI

VCI

VCI PTI CLP

HEC

8 Bits 1

NNI Cell Header5
octets

FIGURE 17.4

The ATM cell header. Note the larger VPI fi elds on the network (NNI) version of the header.

CHAPTER 17 MPLS and IP Switching 439

■ GFC—The Generic Flow Control is a 4-bit fi eld used between a customer site and
ATM switch, on the User-Network Interface (UNI). It is not present on the Network–
Network Interface (NNI) between ATM switches.

■ VPI—The Virtual Path Identifi er is an 8- or 12-bit fi eld used to identify paths between
sites on the ATM network. It is larger on the NNI to accommodate aggregation on
customer paths.

■ VCI—The Virtual Connection Identifi er is a 16-bit fi eld used to identify paths between
individual devices on the ATM network.

■ PTI—The Payload Type Indicator is a 3-bit fi eld used to identify one of eight traffi c
types carried in the cell.

■ CLP—The Cell Loss Priority bit serves the same function as the DE bit in frame relay,
but identifi es cells to discard when congestion occurs.

■ HEC—The Header Error Control byte not only detects bit errors in the entire
40-bit header, but can also correct single bit errors.

In contrast to frame relay, the ATM connection identifi er was a two-part virtual path
identifi er (VPI) and virtual channel identifi er (VCI). Loosely, VPIs were for connections
between sites and VCIs were for connections between devices. ATM switches could
“route” cells based on the VPI, and the local ATM switch could take care of fi nding the
exact device for which the cell was destined.

Like frame relay DLCIs, ATM VPI/VCIs have local signifi cance only. That is, the VPI/
VPI values change as the cells make their way from switch to switch and depending on
direction. Both frame relay and ATM switch essentially take a data unit in on an input
port, look up the header (DLCI or VPI/VCI label) in a table, and output the data unit
on the port indicated in the table—but also with a new label value, also provided by
the table.

This distinctive label-swapping is characteristic of switching technologies and
protocols. And, as we will see later, switching has come to the IP world with MPLS,
which takes the best of frame relay and ATM and applies it directly to IP without the
burden of “legacy” stacks (frame relay) or phantom applications (ATM and B-ISDN).

The tiny 48-byte payload of the ATM cell was intentional. It made sure that no delay-
sensitive bits got stuck in a queue behind some monstrous chunk of data a thousand
times larger than the 48 voice or video bytes. Such “serialization delay” introduced
added delay and delay variation (jitter) that rendered converged voice and video almost
useless without more bandwidth than anyone could realistically afford. With ATM, all
data encountered was a slightly elevated delay when data cells shared the total band-
width with voice and video. But because few applications did anything with data (such
as a fi le) before the entire group of bits was transferred intact ATM pioneers deemed
this a minor inconvenience at worst.

All of this sounded too good to be true to a lot of networking people, and it turned
out that it was. The problem was not with raw voice and video, which could be molded
into any form necessary for transport across a network. The issue was with data, which
came inside IP packets and had to be broken down into 48-byte units—each of which
had a 5-byte ATM cell header, and often a footer that limited it to only 30 bytes.

440 PART III Routing and Routing Protocols

This was an enormous amount of overhead for data applications, which normally
added 3 or 4 bytes to an Ethernet frame for transport across a WAN. Naturally, no hard-
ware existed to convert data frames to cells and back—and software was much too
slow—so this equipment had to be invented. Early results seemed promising, although
the frame-to-cell-and-back process was much more complex and expensive than antici-
pated. But after ATM caught on, prices would drop and effi ciencies would be naturally
discovered. Once ATM networks were deployed, the B-ISDN applications that made the
most of them would appear. Or so it seemed.

However, by the early 1990s it turned out that making cells out of data frames was
effective as long as the bandwidth on the link used to carry both voice and video
along with the data was limited to less than that needed to carry all three at once.
In other words, if the link was limited to 50 Mbps and the voice and video data added
up to 75 Mbps, cells made sense. Otherwise, variable-length data units worked just fi ne.
Full-motion video was the killer at the time, with most television signals needing about
45 Mbps (and this was not even high-defi nition TV). Not only that, but it turned out that
the point of diminishing ATM returns (the link bandwidth at which it became slower
and more costly to make cells than simply send variable-length data units) was about
622 Mbps—lower than most had anticipated.

Of course, one major legacy of the Internet bubble was the underutilization of
fi ber optic links with more than 45 Mbps, and in many cases greatly in excess of
622 Mbps. And digital video could produce stunning images with less and less band-
width as time went on. And in that world, in many cases, ATM was left as a solution
without a problem. ATM did not suffer from lack of supporters, but it proved to be the
wrong technology to carry forward as a switching technology for IP networks.

Why Converge on TCP/IP?
Some of the general reasons TCP/IP has dominated the networking scene have been
mentioned in earlier chapters. Specifi cally, none of the “new” public network technolo-
gies were particularly TCP/IP friendly—and some seemed almost antagonistic. ATM
cells, for instance, would be a lot more TCP/IP friendly if the payload were 64 bytes
instead of 48 bytes. At least a lot of TCP/IP traffi c would fi t inside a single ATM cell
intact, making processing straightforward and effi cient.

At 48 bytes, everything in TCP/IP had to be broken up into at least two cells. But the
voice people wanted the cell to be 32 bytes or smaller, in order to keep voice delays as
short as possible. It may be only a coincidence that 48 bytes is halfway between 32 and
64 bytes, but a lot of times reaching a compromise instead of making a decision annoys
both parties and leaves neither satisfi ed with the result. So, ATM began as a standard
by alienating the two groups (voice and data) that were absolutely necessary to make
ATM a success.

But the real blow to ATM came because a lot of TCP/IP traffi c would not fi t into
64-byte frames. ACKs would fi t well, but TCP/IP packet sizes tend to follow a bimodal
distribution with two distinct peaks at about 64 and between 1210 and 1550 bytes.
The upper cluster is smaller and more spread out, but this represents the vast bulk of
all traffi c on the Internet.

CHAPTER 17 MPLS and IP Switching 441

Then new architectures allowed otherwise normal IP routers to act like frame relay
and ATM switches with the addition of IP-centric MPLS. Suddenly, all of the benefi ts
of frame relay and ATM could be had without using unfamiliar and special equipment
(although a router upgrade might be called for).

MPLS
Rather than adding IP to fast packet switching networks, such as frame relay and ATM,
MPLS adds fast packet switching to IP router networks. We’ve already talked about
some of the differences between routing (connectionless networks) and switching
networks in Chapter 13. Table 17.1 makes the same type of comparisons from a differ-
ent perspective.

The difference in the way CoS is handled is the major issue when convergence is
concerned. Naturally, the problem is to fi nd the voice and video packets in the midst of
the data packets and make sure that delay-sensitive packets are not fi ghting for bandwidth
along with bulk fi le transfers or email. This is challenging in IP routers because there is no
fi xed path set up through the network to make it easy to enforce QoS at every hop along
the way. But switching uses stable paths, which makes it easy to determine exactly which
routers and resources are consumed by the packet stream. QoS is also challenging because
you don’t have administrative control over the routers outside your own domain.

MPLS and Tunnels
Some observers do not apply the term “tunnel” to MPLS at all. They reserve the term
for wholesale violations on normal encapsulations (packet in frame in a packet, for
example). MPLS uses a special header (sometimes called a “shim” header) between
packet and frame header, a header that is not part of the usual TCP/IP suite layers.

However, RFCs (such as RFC 2547 and 4364) apply the tunnel terminology
to MPLS. MPLS headers certainly conform to general tunnel “rules” about stack
encapsulation violations. This chapter will not dwell on “MPLS tunnel” terminol-
ogy but will not avoid the term either. (This note also applies to MPLS-based VPNs,
discussed in Chapter 26.)

But QoS enforcement is not the only attraction of MPLS. There are at least two
others, and probably more. One is the ability to do traffi c engineering with MPLS, and
the other is that MPLS tunnels form the basis for a certain virtual private network
(VPN) scheme called Layer 3 VPNs. There are also Layer 2 VPNs, and we’ll look at them
in more detail in Chapter 26.

MPLS uses tunnels in the generic sense: The normal fl ow of the layers is altered at one
point or another, typically by the insertion of an “extra” header. This header is added at
one end router and removed (and processed) at the other end. In MPLS, routers form the

442 PART III Routing and Routing Protocols

endpoints of the tunnels. In MPLS, the header is called a label and is placed between the
IP header and the frame headers—making MPLS a kind of “Layer 2 and a half” protocol.

MPLS did not start out to be the answer to everyone’s dream for convergence or
traffi c engineering or anything else. MPLS addressed a simple problem faced by every
large ISP in the world, a problem shown in Figure 17.5.

MPLS was conceived as a sort of BGP “shortcut” connecting border routers across
the ISP. As shown in the fi gure, a packet bound for 10.10.100.0/24 entering the border
router from the upstream ISP is known, thanks to the IBGP information, to have to exit
the ISP at the other border router. In practice, of course, this will apply to many border
routers and thousands of routes (usually most of them), but the principle is the same.

Only the local packets with destinations within the ISP technically need to be
routed by the interior routers. Transit packets can be sent directly to the border router,

Table 17.1 Comparing Routing and Switching on a WAN

Characteristic Routing Switching

Network node Router Switch

Traffi c fl ow Each packet routed independently
hop by hop

Each data unit follows same
path through network

Node coordination Routing protocols share
information

Signaling protocols set up
paths through network

Addressing Global, unique Label, local signifi cance

Consistency of address Unchanged source to destination Label is swapped at each node

QoS Challenging Associated with path

Router Router

Router

Router

ISP Border
Router

Router
Router

Border
Router

Upstream
ISP

Downstream
ISP

Packet for
10.10.100.0/24

Network
10.10.100.0/24
(and many more)

FIGURE 17.5

The rationale for MPLS. The LSP forms a “shortcut” across the routing network for transit traffi c.
The Border Router knows right away, thanks to BGP, that the packet for 10.10.100.0/24 must exit
at the other border router. Why route it independently at every router in between?

CHAPTER 17 MPLS and IP Switching 443

if possible. MPLS provides this mechanism, which works with BGP to set up tunnels
through the ISP between the border routers (or anywhere else the ISP decides to use
them).

The structure of the label used in MPLS is shown in Figure 17.6. In the fi gure,
it is shown between a Layer 2 PPP frame and the Layer 3 IP packet (which is very
 common).

■ Label—This 20-bit fi eld identifi es the packets included in the “fl ow” through the
MPLS tunnel.

■ CoS—Class-of-Service is a 3-bit fi eld used to classify the data stream into one of
eight categories.

■ S—The Stack bit lets the router know if another label is stacked after the
current 32-bit label.

■ TTL—The Time-to-Live is an 8-bit fi eld used in exactly the same way as the IP
packet header TTL. This value can be copied from or into the IP packet or used
in other ways.

Certain label values and ranges have been reserved for MPLS. These are outlined in
Table 17.2.

The MPLS architecture is defi ned in RFC 3031, and MPLS label stacking is defi ned in
RFC 3032 (more than one MPLS label can precede an IP packet). General traffi c engi-
neering in MPLS is described in RFC 2702, and several drafts add details and features
to these basics.

What does it mean to use traffi c engineering on a router network? Consider the
Illustrated Network. We saw that traffi c from LAN1 to LAN2 fl ows through backbone
routers P4 and P2 (reverse traffi c also fl ows this way). But notice that P2 and P4 also
have links to and from the Internet. A lot of general Internet traffi c fl ows through rout-
ers P2 and P4 and their links, as well as LAN1 and LAN2 traffi c.

PPP Header MPLS Label
(32 bits) IP Packet

Label

20 bits 3 bits 1
bit

8 bits

CoS S TTL

FIGURE 17.6

The 32-bit MPLS label fi elds. Note the 3-bit CoS fi eld, which is often related to the IP ToS header.
The label fi eld is used to identify fl ows that should be kept together as they cross the network.

444 PART III Routing and Routing Protocols

So, it would make sense to “split off” the LAN1 and LAN2 traffi c onto a less utilized
path through the network (for example, from PE5 to P9 to P7 to PE1). This will ease
congestion and might even be faster, even though in some confi gurations there might
be more hops (for example, there might be other routers between P9 and P7).

Table 17.2 MPLS Label Values and Their Uses

Value or Range Use

0 IPv4 Explicit Null. Must be the last label (no stacking). Receiver
removes the label and routes the IPv4 packet inside.

1 Router Alert. The IP packet inside has information for the
router itself, and the packet should not be forwarded.

2 IPv6 Explicit Null. Same as label 0, but with IPv6 inside.

3 Implicit Null. A “virtual” label that never appears in the
label itself. It is a table entry to request label removal by the
 downstream router.

4–15 Reserved.

16–1023 and 10000–99999 Ranges used in Juniper Networks routers to manually confi gure
MPLS tunnels (not used by the signaling protocols).

1024–9999 Reserved.

100000–1048575 Used by signaling protocols.

Why Not Include CE0 and CE6?
Why did we start the MPLS tunnels at the provider-edge routers instead of directly
at the customer edge, on the premises? Actually, as long as the (generally) smaller
site routers support the full suite of MPLS features and protocols there’s no reason
the tunnel could not span LAN to LAN.

However, MPLS traditionally begins and ends in the “provider cloud”—usually
on the PE routers, as in this chapter. This allows the customer routers to be more
independent and less costly, and allows reconfi guration of MPLS without access to
the customer’s routers. Of course, in some cases the customer might want ISP to
handle MPLS management—and then the CE routers certainly could be included
on the MPLS path.

There are ways to do this with IGPs, such as OSPF and IS–IS, by adjusting the link
metrics, but these solutions are not absolute and have global effects on the network.
In contrast, an MPLS tunnel can be confi gured from PE5 to PE1 through P9 and P7 and

CHAPTER 17 MPLS and IP Switching 445

only affect the routing on PE5 and PE1 that involves LAN1 and LAN2 traffi c, exactly the
effect that is desired.

MPLS Terminology
Before looking at how MPLS would handle a packet sent from LAN1 to LAN2 over an
MPLS tunnel, we should look at the special terminology involved with MPLS. In no
 particular order, the important terms are:

LSP—We’ve been calling them tunnels, and they are, but in MPLS the tunnel is
called a label-switched path. The LSP is a unidirectional connection following
the same path through the network.

Ingress router—The ingress router is the start of the LSP and where the label is
pushed onto the packet.

Egress router—The egress router is the end of the LSP and where the label is
popped off the packet.

Transit or intermediate router—There must be at least one transit (sometimes
called intermediate) router between ingress and egress routers. The transit
router(s) swaps labels and replaces the incoming values with the outgoing
values.

Static LSPs—These are LSPs set up by hand, much like permanent virtual circuits
(PVCs) in FR and ATM. They are difficult to change rapidly.

Signaled LSPs—These are LSPs set up by a signaling protocol used with MPLS
(there are two) and are similar to switched-virtual circuits (SVCs) in FR
and ATM.

MPLS domain—The collection of routers within a routing domain that starts and
ends all LSPs form the MPLS domain. MPLS domains can be nested, and can be
a subset of the routing domain itself (that is, all routers do not have to under-
stand MPLS; only those on the LSP).

Push, pop, and swap—A push adds a label to an IP packet or another MPLS label.
A pop removes and processes a label from an IP packet or another MPLS label.
A swap is a pop followed by a push and replaces one label by another (with
different field values). Multiple labels can be added (push push . . .) or removed
(pop pop . . .) at the same time.

Penultimate hop popping (PHP)—Many of LSPs can terminate at the same bor-
der router. This router must not only pop and process all the labels but route
all packets inside, plus all other packets that arrive from within the ISP. To
ease the load of this border router, the router one hop upstream from the
egress router (known as the penultimate router) can pop the label and simply
route the packet to the egress router (it must be one hop, so the effect is the

446 PART III Routing and Routing Protocols

same). PHP is an optional feature of LSPs, and keep in mind that the LSP is still
 considered to terminate at the egress router (not at the penultimate).

Constrained path LSPs—These are traffic engineering (TE) LSPs set up by a
 signaling protocol that must respect certain TE constraints imposed on the
network with regard to delay, security, and so on. TE is the most intriguing
aspect of MPLS.

IGP shortcuts—Usually, LSPs are used in special router tables and only available to
routes learned by BGP (transit traffic). Interior Gateway Protocol (IGP) short-
cuts allow LSPs to be installed in the main routing table and used by traffic
within the ISP itself, routes learned by OSPF or another IGP.

Signaling and MPLS
There are two signaling protocols that can be used in MPLS to automatically set up
LSPs without human intervention (other than confi guring the signaling protocols
themselves!). The Resource Reservation Protocol (RSVP) was originally invented to set
up QoS “paths” from host to host through a router network, but it never scaled well or
worked as advertised. Today, RSVP has been defi ned in RFC 3209 as RSVP for TE and is
used as a signaling protocol for MPLS. RSVP is used almost exclusively as RSVP-TE (most
people just say RSVP) by routers to set up LSPs (explicit-path LSPs), but can still be used
for QoS purposes (constrained-path LSPs).

The Label Distribution Protocol (LDP), defi ned in RFC 3212, is used exclusively with
MPLS but cannot be used for adding QoS to LSPs other than using simple constraints
when setting up paths. On the other hand, LDP is trivial to confi gure compared to RSVP.
This is because LDP works directly from the tables created by the IGP (OSPF or IS–IS).
The lack of QoS support in LDP is due to the lack of any intention in the process. The
reason for the LDP paths created from the IGP table to exist is only simple adjacency. In
addition, LDP does not offer much if your routing platform can forward packets almost
as fast as it can switch labels. Today, use of LDP is deprecated (see the admonitions in
RFC 3468) in favor of RSVP-TE.

A lot of TCP/IP texts spend a lot of time explaining how RSVP-TE works (they deal
with LDP less often). This is more of an artifact of the original use of RSVP as a host-
based protocol. It is enough to note that RSVP messages are exchanged between all
routers along the LSP from ingress to egress. The LSP label values are determined, and
TE constraints respected, hop by hop through the network until the LSP is ready for
traffi c. The process is quick and effi cient, but there are few parameters that can be
confi gured even on routers that change RSVP operation signifi cantly (such as interval
timers)—and none at all on hosts.

Although not discussed in detail in this introduction to MPLS, another protocol is
commonly used for MPLS signaling, as described in RFC 2547bis. BGP is a routing pro-
tocol, not a signaling protocol, but the extensions used in multiprotocol BPG (MPBGP)
make it well suited for the types of path setup tasks described in this chapter. With
MPBGP, it is possible to deploy BGP- and MPLS-based VPNs without the use of any other

CHAPTER 17 MPLS and IP Switching 447

signaling protocol. LSPs are established based on the routing information distributed by
MPBGP from PE to PE. MPBGP is backward compatible with “normal” BGP, and thus use
of these extensions does not require a wholesale upgrade of all routers at once.

Label Stacking
Of all the MPLS terms outlined in the previous section, the one that is essential to
understand is the concept of “nested” LSPs; that is, LSPs which include one or more
other LSPs along their path from ingress to egress. When this happens, there will be
more than one label in front of the IP packet for at least part of its journey.

It is common for many large ISPs to stack three labels in front of an IP packet. Often,
the end of two LSPs is at the same router and two labels are pushed or popped at once.
The current limit is eight labels.

There are several instances where this stacking ability comes in handy. A larger ISP
can buy a smaller ISP and simply “add” their own LSPs onto (outside) the existing ones.
In addition, when different signaling protocols are used in core routers and border
routers, these domains can be nested instead of discarding one or the other.

The general idea of nested MPLS domains with label stacking is shown in Figure 17.7.
There are fi ve MPLS domains, each with its own way of setting up LSPs: static, RSVP,
and LDP. The fi gure shows the number of labels stacked at each point and the order

R R R R

MPLS Domain 1

MPLS Domain 2
MPLS Domain 3

Static RSVP

RSVP

MPLS
Domain 4

LDP

MPLS
Domain 5

LDP

Two stacked labels
(MPLS2, MPLS1, IP)

Three stacked labels
(MPLS4, MPLS3,

MPLS1, IP)

Three stacked labels
(MPLS5, MPLS3,

MPLS1, IP)

FIGURE 17.7

MPLS domains, showing how the domains can be nested or chained, and how multiple labels
are used.

448 PART III Routing and Routing Protocols

they are stacked in front of the packet. All of the routers shown (in practice, there will
be many more) pop and process multiple labels. MPLS domains can be nested for geo-
graphical, vendor, or organizational reasons as well.

MPLS and VPNs
MPLS forms the basis for many types of VPNs used on IP networks today, especially
Layer 3 VPNs. LSPs are like the PVCs and SVCs that formed “virtually private” links
across a shared public network such as FR or ATM. LSPs are not really the same as
 private leased-line links, but they appear to be to their users.

Of course, while the path is constrained, the MPLS-based Layer 3 VPN is not actually
doing anything special to secure the content of the tunnel or to protect its integrity. So,
this “security” value is limited to constraining the path. This reduces the places where
snooping or injection can occur, but it does not replace other Layer 3 VPN technology
for security (such as IPSec, discussed in Chapter 29).

Nevertheless, VPNs are often positioned as a security feature on router networks.
This is because, like “private” circuits, hackers cannot hack into the middle of an LSP
(VPN) just by spoofi ng packets. There are labels to be dealt with, often nested labels.
The ingress and egress routers are more vulnerable, but it’s not as easy to harm VPNs or
the sites they connect as it is to disrupt “straight” router networks.

So, VPNs have a lot in common with MPLS and LSPs—except that the terms are
 different! For example, the transit routers in MPLS are now provider (P) routers in
VPNs. VPNs are discussed further in the security chapters.

MPLS Tables
The tables used to push, pop, and swap labels in multiprotocol label switching are dif-
ferent from the tables used to route packets. This makes sense: MPLS uses switching,
and packets are routed.

Most MPLS tables are little more than long lists of labels with two key pieces of
information attached: the output interface to the next-hop router on the LSP and the
new value of the label. Other pieces of information can be added, but this is the abso-
lute minimum.

What does an MPLS switching table look like? Suppose we did set up an LSP between
LAN1 and LAN2 to carry packets from PE5 to PE1 through backbone routers P9 and P7
instead of through P4 and P2?

Figure 17.8 shows how the MPLS switching tables might be set up to switch a
packet from LAN1 to LAN2. Note that this has nothing to do with routed traffi c going
back from LAN2 to LAN1! (In the real world, we would set up an LSP going from LAN2
to LAN1 as well.)

CHAPTER 17 MPLS and IP Switching 449

CONFIGURING MPLS USING STATIC LSPS
Let’s build the static LSP from LAN1 to LAN2 from PE5 to P9 to P7 to PE1 that was shown
in Figure 17.8. Then we’ll show how that affects the routing table entries and run a
 traceroute for packets sent from 10.10.11.0/24 (LAN1) to 10.10.12.0/24 (LAN2).

The Ingress Router
Let’s start by confi guring the LSP on PE5, the ingress router, so that packets from LAN1’s
address space get an MPLS label value of 1023 and are sent to 10.0.59.2 as a next hop
on the link to P9 (so-0/0/0).

set protocols mpls static-path LAN1-to-LAN2 10.10.11.0/24 next-hop 10.0.59.2;
set protocols mpls static-path LAN1-to-LAN2 10.10.11.0/24 push 1023;
set protocols mpls static-path LAN1-to-LAN2 interface so-0/0/0;

Once the confi guration is committed, the static LSP shows up as a static route natu-
rally (signaled LSPs are referenced by signaling a protocol, RSVP or LDP).

admin@PE5# show route table inet.0 protocol static
10.10.11.0/24 *[Static/5] 00:01:42
 > to 10.0.59.2 via so-0/0/0. push 1023

The Transit Routers
This is how the LSP is confi gured on P9, the fi rst transit (or intermediate) router.

set protocols mpls interface so-0/0/0 label-map 1023 next-hop 10.0.79.1;
set protocols mpls interface so-0/0/0 label-map 1023 swap 1104;

Ingress
Router

Egress
Router

Transit
Router

Transit
Router

PE5 PE1P9 P7

10.10.11/24 10.0.59/24 10.0.79/24 10.0.17/24 10.10.12/24

Label Table
Push 1023

Output on:
10.0.59/24

Output on:
10.0.79/24

Output on:
10.0.17/24

ROUTE to:
10.10.12/24

Label Table
Pop 1253

Label Table
Pop 1023
Push 1104
(swap 1104
for 1023)

Label Table
Pop 1104
Push 1253
(swap 1253
for 1104)

FIGURE 17.8

Label tables for a static LSP from PE5 (ingress) to PE1 (egress).

450 PART III Routing and Routing Protocols

Note that this table is not organized by destination, as on the PE router, but by
the interface that the MPLS data unit arrives on. There can be many labels, but this
“label map” looks for 1023, swaps it for label 1104, and forwards it to 10.0.79.1. Note
that there was no need to look anything up in the main routing table (in Juniper
Networks routers, the interface addresses are held in hardware). Transit LSPs are
identifi ed by the use of swap in the static router entry, but this time in MPLS “label
table” mpls.0.

admin@P9# show route table mpls.0 protocol static
1023 *[Static/5] 00:01:57
 > to 10.0.79.1 via so-0/0/1. swap 1104

The link to P7 is so-0/0/1, as expected. The confi guration on the P7, the second transit
router, is very similar.

set protocols mpls interface so-0/0/1 label-map 1104 next-hop 10.0.17.1;
set protocols mpls interface so-0/0/1 label-map 1104 swap 1253;

If we wanted to confi gure PHP, this is the router where we would enable it. The
statement swap 3 is the “magic word” that enables PHP. MPLS label value 3 says to the
local router, “Don’t really push a 3 on the packet, but instead pop the label and route
the packet inside.” The use of the label at least makes it easier to remember that the end
of the LSP is really on PE1.

The Egress Router
The confi guration on the egress router, PE1, is essentially the opposite of that on the
ingress router but more similar to that on a transit router.

set protocols mpls interface so-0/0/2 label-map 1253 next-hop 10.0.12.0/24;
set protocols mpls interface so-0/0/2 label-map 1253 pop;
admin@PE1# set protocols mpls interface so-0/0/2 label-map 1253 next-hop 10.10.12.0/24;
admin@PE1# set protocols mpls interface so-0/0/2 label-map 1253 pop;

There is no need to tell the router what label value to pop: if it got this far, the label
value is 1253. Note that the next hop is the IP address of LAN2, which is the entire
point of the exercise. When PHP is used, there is no need for a label map for that LSP
on the egress router. When PHP is not used, the egress LSPs are identifi ed by the use of
pop in the static router entry in mpls.0.

admin@PE1# show route table mpls.0 protocol static
1253 *[Static/5] 00:02:17
 > to 10.10.12.0/24 via ge-0/0/3. pop

CHAPTER 17 MPLS and IP Switching 451

Static LSPs are fi ne, but offer no protection at all against link failure. And consider
how many interfaces, labels, and other information have to be maintained and entered
by hand. In MPLS classes, most instructors make students suffer through a complex
static LSP confi guration (some of which never work correctly) before allowing the use
of RSVP-TE and LDP to “automatically” set up LSPs anywhere or everywhere. It is a les-
son that is not soon forgotten. (In fact, dynamic LSP confi guration using RVSP-TE is so
simple that it is not even used as an example in this chapter.)

Traceroute and LSPs
How do we know that our static LSP is up and running properly? A ping that works
proves nothing about the LSP because it could have been routed, not switched. Even
one that fails proves nothing except the fact that something is broken.

But traceroute is the perfect tool to see if the LSP is up and running correctly. The
following is what it looked like before we confi gured the LSP.

bsdclient# traceroute bsdserver
traceroute to bsdserver (10.10.12.77), 64 hops max, 44 byte packets
 1 10.10.11.1 (10.10.11.1) 0.363 ms 0.306 ms 0.345 ms
 2 10.0.50.1 (10.1.36.2) 0.329 ms 0.342 ms 0.346 ms
 3 10.0.45.1 (10.0.45.1) 0.330 ms 0.341 ms 0.346 ms
 4 10.0.24.1 (10.0.24.1) 0.332 ms 0.343 ms 0.345 ms
 5 10.0.12.1 (10.0.12.1) 0.329 ms 0.342 ms 0.347 ms
 6 10.0.16.2 (10.0.16.2) 0.330 ms 0.341 ms 0.346 ms
 7 10.10.12.77 (10.10.12.77) 0.331 ms 0.343 ms 0.347 ms
bsdclient#

Let’s look at it now, after the LSP.

bsdclient# traceroute bsdserver
traceroute to bsdserver (10.10.12.77), 64 hops max, 44 byte packets
 1 10.10.11.1 (10.10.11.1) 0.363 ms 0.306 ms 0.345 ms
 2 10.0.59.1 (10.0.59.1) 0.329 ms 0.342 ms 0.346 ms
 3 10.0.16.2 (10.0.16.2) 0.330 ms 0.343 ms 0.0347 ms
 4 10.10.12.77 (10.10.12.77) 0.331 ms 0.343 ms 0.347 ms
bsdclient#

Only four routers have “routed” the packet. On the backbone, the packet is switched
based on the MPLS tables, and so forms one router hop. But at least we can see that the
packets are sent toward P9 (10.0.59.1) and not P4 (10.0.50.1).

The details of the path of MPLS LSPs are not visible from the hosts. Why should
they be? LSPs are tools for the service providers on our network. Only on the routers,
running a special version of traceroute, can we reveal the hop-by-hop functioning of
the LSP. When run on PE5 to trace the path to the link to CE6, traceroute “expands” the
path and provides details—showing that the CE6 is still fi ve routers away from CE0
(and that there are still six routers and seven hops between LAN1 and LAN2).

452 PART III Routing and Routing Protocols

admin@PE5> traceroute 10.10.16.1
traceroute to 10.10.12.0 (10.10.12.0), 30 hops max, 40 byte packets
 1 10.10.12.1 (10.10.12.1) 0.851 ms 0.743 ms 0.716 ms
 MPLS Label=1023 CoS=0 TTL=1 S=1
 2 10.0.59.1 (10.0.59.1) 0.799 ms 0.753 ms 0.721 ms
 MPLS Label=1104 CoS=0 TTL=1 S=1
 3 10.0.79.1 (10.0.79.1) 0.832 ms 0.769 ms 0.735 ms
 MPLS Label=1253 CoS=0 TTL=1 S=1
 4 10.0.17.1 (10.0.17.1) 0.854 ms 0.767 ms 0.734 ms
 5 10.0.16.1 (10.0.16.1) 0.629 ms !N 0.613 ms !N 0.582 ms !N
admin@PE5>

Just to show that the LSP we set up is unidirectional, watch what happens when we
run traceroute in reverse from bsdserver on LAN2 to bsdclient on LAN1.

bsdserver# traceroute bsdclient
traceroute to bsdclient (10.10.11.177), 64 hops max, 44 byte packets
 1 10.10.12.1 (10.10.12.1) 0.361 ms 0.304 ms 0.343 ms
 2 10.0.16.1 (10.1.16.1) 0.331 ms 0.344 ms 0.347 ms
 3 10.0.12.2 (10.0.12.2) 0.329 ms 0.340 ms 0.345 ms
 4 10.0.24.2 (10.0.24.2) 0.333 ms 0.344 ms 0.346 ms
 5 10.0.45.2 (10.0.45.2) 0.329 ms 0.342 ms 0.347 ms
 6 10.0.50.2 (10.0.50.2) 0.330 ms 0.341 ms 0.346 ms
 7 10.10.11.177 (10.10.11.177) 0.331 ms 0.343 ms 0.347 ms
bsdclient#

Packets fl ow through backbone routers P2 and P4, as they did before the MPLS LSP
was set up! The “old” route is used, showing that MPLS is the basis for traffi c engineering
on a router network.

CHAPTER 17 MPLS and IP Switching 453

This page intentionally left blank

QUESTIONS FOR READERS
Figure 17.9 shows some of the concepts discussed in this chapter and can be used to
help you answer the following questions.

1. Does the LSP in Figure 17.9 use the shortest path in terms of number of routers
from ingress to egress?

2. What does traffi c engineering mean as the term applies to MPLS?

3. Is there an LSP set up on the reverse path from egress to ingress router?

4. Which label is used on the LSP between routers A and B? Is this label added to
another, or swapped?

5. Is PHP used on the LSP? How can you tell?

Router
A

Router
B

Router
C

Router
D

ISP Egress
Router

Router
E

Router
F

Ingress
Router

Upstream
ISP

Downstream
ISP

Packet for
10.10.100.0/24

Network
10.10.100.0/24
(and many more)

1104

1253

1215

3

FIGURE 17.9

An MPLS LSP from ingress to ingress router, showing label value to path. The LSP runs along the
heavy lines through the routers designated. The label values used on each link are also shown.

455

Every host on the Internet typically runs a set of basic client–server applications.
This part of the book examines each one in detail.

■ Chapter 18—Dynamic Host Confi guration Protocol

■ Chapter 19—The Domain Name System

■ Chapter 20—File Transfer Protocol

■ Chapter 21—SMTP and Email

■ Chapter 22—Hypertext Transfer Protocol

■ Chapter 23—Securing Sockets with SSL

Application
Level

PART

IV

CHAPTER

What You Will Learn
In this chapter, you will learn how IP addresses are assigned in modern IP networks.
You will learn how the Dynamic Host Confi guration Protocol (DHCP) and related
protocols, such as BOOTP, combine to allow IP addresses to be assigned to devices
dynamically instead of by hand.

You will learn how users often struggle to fi nd printers and servers whose IP
addresses “jump around,” and you will learn means of dealing with this issue.

Dynamic Host Confi guration
Protocol 18

When TCP/IP fi rst became popular, confi guration was never trivial and often complex.
Whereas many clients needed only a handful of parameters, servers often required
long lists of values. Operating systems had quickly outgrown single fl oppies, and most
hosts now needed hard drives just to boot themselves into existence. Routers were in
a class by themselves, especially when they connected more than two subnets—and
in the days of expensive memory and secondary storage (hard drives), routers usually
needed to load not only their confi guration from a special server, but often their entire
operating systems.

A once-popular movement to “diskless workstations” hyped devices that put all of
their value into hefty processors while dispensing with expensive (and failure-prone)
hard drives altogether. Semiconductor memory was not only prohibitively expensive in
adequate quantities but universally volatile, meaning that the content did not carry over
a power failure if shut down. How could routers and diskless workstations fi nd the soft-
ware and confi guration information they needed when they were initially powered on?

RFC 951 addressed this situation by defi ning BOOTP, the bootstrap protocol, to fi nd
servers offering the software and confi guration fi les routers and other devices needed
on the subnet. The basic functions were extended in RFC 1542, which described relay
agents that could be used to fi nd BOOTP servers almost anywhere on a network. BOOTP
did a good job at router software loading, but the confi guration part (notably the IP
addresses) assigned by the device’s physical address had to be laboriously maintained
by the BOOTP server administrator.

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80:205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66

DHCP
Server

DHCP
Client

LAN2: 10.10.11.51 LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65459

Wireless
in Home

Solid rules � SONET/SDH
Dashed rules � Gig Ethernet
Note: All links use 10.0.x.y
addressing...only the last
two octets are shown.

FIGURE 18.1

DHCP devices and confi guration on the Illustrated Network showing the host used as DHCP
relay agent.

460 PART IV Application Level

DHCP
Client

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80:205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC: 00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222

LAN2
New York

Office BOOTP/DHCP
Relay Agent

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

ge-0/0/3

16.2

ge-0/0/3

16.1

Best ISP

AS 65127

Global Public
Internet

CHAPTER 18 Dynamic Host Confi guration Protocol 461

So, BOOTP was updated and clarifi ed in RFC 2131 to become DHCP, which
 automated the IP address assignment process, making the entire system more friendly
and useful for host confi guration. RFC 2132 described all parameters that could be
used with BOOTP and DHCP. The real value offered by DHCP over BOOTP was the
ability to release an address. Dynamically assigned BOOTP devices received an address
that had no upper bound on how long they could use it.

DHCP AND ADDRESSING
So far, we’ve used static address assignment on all of the hosts on the Illustrated
Network. This is a common enough practice: Lab network testing is often hard enough
without worrying about address leases expiring, host addresses changing, and clut-
tering up the LAN with DHCP chatter. But the point here is to dynamically assign the
host addresses on the Illustrated Network (we’ll leave the routers alone), so that’s
what we’ll do for this chapter. We’ll use the equipment as confi gured in Figure 18.1.
Note that for these application-level chapters we can go back to two ISPs and routing
domains.

We’ll use IPv4 only and set up our Linux server (lnxserver) as a DHCP server for
the IP address ranges on both LAN1 and LAN2. First, we’ll confi gure Windows XP on
the same LAN to fi nd its address using the DHCP server. Naturally, as with multicast this
won’t help the hosts on LAN2 fi nd the DHCP server. So, we’ll confi gure LAN2 router
CE6 as a BOOTP and DHCP relay agent by sending DHCP messages to the Linux DHCP
server and sending back the replies. Finally, we’ll confi gure the Windows XP client on
LAN2 to use dynamic IP address assignment and to make sure the entire confi guration
works.

Once again, it must be pointed out that this network exists solely for this book.
In a real situation, no one would really make clients in Los Angeles rely on a DHCP
server across the country (although it would certainly work). Considering the amount
of information that would be exposed, it would at least be carried over some sort of
encrypted path.

DHCP Server Confi guration
Linux-based DHCP servers run /usr/sbin/dhcpd, the DHCP daemon, using parameters
found in the /etc/dhcpd.conf fi le. The confi guration guide bundled with the most
common DHCP implementation, from the Internet Software Consortium (ISC), is 36
pages long and gives all sorts of options that are not needed for basic confi gurations.

There are even freeware implementations of DHCP servers for Windows XP. These
feature the expected point-and-click GUI setup interface, and are just as useful as their
Unix-based cousins.

The following is a fairly minimal confi guration fi le for a DHCP server. Note that we
can assign the default router address as an option for the subnet. If this option is not
present, users will have to enter their default “gateway” information manually.

462 PART IV Application Level

[root@lnxserver admin]# /cat /etc/dhcpd.conf
dhcpd.conf
#
global options
ddns-update-style interim;
default-lease-time 600;
max-lease-time 7200;

subnet 10.10.11.0 netmask 255.255.255.0 {
 range 10.10.11.200 10.10.11.210;
 option routers 10.10.11.1;
}
subnet 10.10.12.0 netmask 255.255.255.0 {
 range 10.10.12.210 10.10.12.220;
 option routers 10.10.12.1;
}

Although we are not using DHCP to dynamically update DNS entries, and we don’t
even have a DNS server on the LAN yet, the ISC implementation insists on having a
line in the confi guration referencing dynamic DNS update “style.” And although a lot
of TCP/IP references mention DHCP’s “unhelpful” error messages, we found the error
messages when we tried to start dhcpd with a missing semicolon (;) or a missing ddns-
update-style line to be explicit and welcome.

By the way, this lack of DNS is one reason many hands-on Internet services work-
shops start with DNS fi rst. But there is no requirement for this, as the order of the
chapters in this book illustrates.

But what DNS name should be associated with a DHCP address? Typically, a generic
name such as dhcp1.example.com is associated with the DHCP address. However, this
is not appropriate for servers, and only barely tolerable for clients, which usually have
more informative names in DNS. And generally, you don’t want to hand out changing
IP addresses to routers, servers, or the DHCP server itself.

Ordinarily, we would include an option line for the DNS server’s names, but we
haven’t confi gured those yet on the network. Options can be global or applied to only
a subset of the network, a nice feature. We’d also usually have a host entry for our serv-
ers so that they would get the same IPv4 addresses every time. For testing, it’s common
to override the default lease time and maximum lease time (which are fairly high) for
which a host can ask to use the address. We’ve made them 10 minutes and an hour,
respectively, here.

The most important lines are those that establish the address pool for hosts on
LAN1 (10.10.11.0) that ask for an IPv4 address. This information is set in the subnet
and range lines. We’ve made the range different from any of the IPv4 addresses used
before, just so it’s easy to see if Windows XP is really picking up the DHCP address.

We’ve also set up an address pool for LAN2 (10.10.12.0), just to save time. We
haven’t confi gured the LAN2 router as a DHCP relay agent yet, but we will.

Setting up a DHCP client is much easier than setting up the server. Windows XP, for
example, makes it very easy to reconfi gure a PC to obtain an IPv4 address (including
the default router) from the network’s DHCP server (as shown in Figure 18.2).

CHAPTER 18 Dynamic Host Confi guration Protocol 463

Now let’s run the DHCP server on lnxserver and see what address the Windows XP
host wincli1 is assigned.
C:\Documents and Settings\Owner>ipconfig
Windows IP Configuration
Ethernet adapter Local Area Connection:

 Connection-specific DNS Suffix . :
 IP Address : 10.10.11.200
 Subnet Mask : 255.255.255.0
 Default Gateway : 10.10.11.1

As expected, the address assigned is within the range specifi ed, and is the fi rst address
in that range.

Router Relay Agent Confi guration
The confi guration stanza to make a Juniper Network router a DHCP relay agent is
under the BOOTP hierarchy level. This makes sense because DHCP relay agents are all
BOOTP relay agents as well. We’ll talk more about BOOTP later in this chapter.

FIGURE 18.2

Confi guring Windows to use DHCP, as is commonly done. Note that the IP address and DNS
server to be used are assigned.

464 PART IV Application Level

The router can act as a relay agent globally or for a group of interfaces. This just
makes the CE6 router into a DHCP relay agent for the LAN2 interface. There is no need
to do anything for LAN1 on the network because the DHCP server handles all of those
hosts locally.

set forwarding-options helpers bootp description "DHCP relay agent for
lnxserver on LAN1";

set forwarding-options helpers bootp server 10.10.11.66;
set forwarding-options helpers bootp interface fe-1/3/0;

That’s all there is to it. As long as there’s a way to reach network 10.10.11/24 from
LAN2 and a way to get back to 10.10.12/24 from CE0, DHCP messages should have no
problem crossing the network like any other packets.

Getting Addresses on LAN2
Without a relay agent running on the LAN2 router, we can fi re up wincli2 all we want
and it will never receive an IP address from a DHCP server. One is not present on LAN2,
and the router will not route DHCP messages unless told to.

Now that we have the relay agent running, we can check the IPv4 address on wincli2.
Note that the lowest IP address in the range is not always the fi rst one handed out by
the DHCP server. In this case, the host asks for its “old” address of 10.10.12.222, and
the server attempts to assign the closest address it has to that one.

C:\Documents and Settings\Owner>ipconfig
Windows IP Configuration
Ethernet adapter Local Area Connection:

 Connection-specific DNS Suffix . :
 IP Address : 10.10.12.220
 Subnet Mask : 255.255.255.0
 Default Gateway : 10.10.12.1

DHCP is such an important part of LANs and the Internet today that a closer look
at the functioning of DHCP through a router relay agent is a good idea. The complete
sequence of events, captured on wincli2 as it received its DHCP address, is shown in
Figure 18.3.

We’ll talk about DHCP messages and sequences in detail later in this chapter. Note
that the sequence starts with wincli2 sending a broadcast DHCP discover message
onto LAN2 with the “unknown” source address of 0.0.0.0. The host asks for its “old”
address, 10.10.12.222. The router, acting as relay agent, forwards the request to the
DHCP server (10.10.11.66, lnxserver) on LAN1, which replies to the relay agent
and wants to assign address 10.10.12.220 to wincli2. The relay agent sends an ARP
(No. 2) to see if anyone on LAN2 already has 10.10.12.220 (it could have been assigned
statically). The relay agent then offers the host this IP address (No. 3), and the DHCP
server itself (No. 4) sends a ping to check on 10.10.12.220 itself (note that there is no
reply to the ping from wincli2).

CHAPTER 18 Dynamic Host Confi guration Protocol 465

It takes a while for the host to gather the information about possible multiple DHCP
servers, and there are two pairs of repeated DHCP discover messages from "0.0.0.0"
and DHCP offers from the relay agent (Nos. 5–8). In each exchange, the host asks for
its old IP address (10.10.12.222) in the DHCP discover message, and the relay agent
assigns 10.10.12.220 in the DHCP offer message.

Finally, wincli2 accepts the DHCP information and assigned address, and sends a
DHCP request message (No. 9) for confi guration information for 10.10.12.220, but it is
still using the 0.0.0.0 address. The relay agent replies with a DHCP acknowledgement
(No. 10), which basically contains the same information as before.

The sequence ends with a series of gratuitous ARPs to the relay agent (Nos. 11–13)
for address 10.10.12.220, the host’s new address (see the source IP address fi eld). This
tells the DHCP relay agent that everything has worked out. The details of one of the
DHCP discover messages sent by the host (all of them are essentially the same) are
shown in Figure 18.4.

The details of one of the DHCP offer messages sent by the relay agent on behalf of
the DHCP server (all of these are essentially the same too) are shown in Figure 18.5.

Using DHCP on a Network
As we have seen, what DHCP brings to TCP/IP for the fi rst time is a measure of
mobility. With the proper DHCP servers available, a user could unplug a host from one
Ethernet LAN subnet, move it across the country, plug it into another subnet, expect
the confi guration data to be loaded properly, and become productive on the new sub-
net immediately.

Once ISPs began offering dial-up Internet access to the general public with home
PCs, the benefi ts of DHCP became instantly obvious. Suppose an ISP had a pool of
254 IPv4 addresses, that is, what used to be a Class C address. But the ISP also has
300 customers. Obviously, 254 IP addresses cannot be statically assigned to 300 hosts.
However, all of them cannot be on-line at the same time because the ISP has only 200
dial-in modem ports (a situation that was not uncommon before the Web took over
the planet). So, DHCP quickly became the means of choice in assigning IP addresses
dynamically to a pool of users.

FIGURE 18.3

DHCP messages sent through a router relay agent. Note the use of broadcast and the “unknown”
source IP address.

466 PART IV Application Level

FIGURE 18.4

The DHCP discover message details. Note the use of the bootstrap protocol (BOOTP) and the
numerous options.

FIGURE 18.5

The DHCP offer message details, showing the use of the “magic cookie.”

CHAPTER 18 Dynamic Host Confi guration Protocol 467

Organizations that employed proxy servers to protect their Internet users (or limit
Internet users) could do the same thing, and often did. In fact, any time the pool of
potential users exceeds the number of IP addresses available, DHCP is a potential
 solution.

The heavy use of changing IP addresses among ISPs was one major reason ISPs
refused to support servers on the customer’s premises (asymmetric traffi c loads,
especially over always-on but asymmetrical DSL links, was the other one). Servers
were typically included in DNS, to make them easy to remember, and this required
a high degree of stability of IP addresses because changes had to propagate literally
around the world. Naturally, dynamic server addresses, changing rapidly, challenged
DNS procedures and capabilities. Servers could get static IP addresses, if they could
be found, and running one server process like a Web server on an otherwise all-client
host made the box into a server. The simplest thing for an ISP to do was to ban serv-
ers on the customer’s premises, unless extra fees for DNS “maintenance” were paid (in
truth, there was little maintenance the ISP had to do except initially). Offi cially, home
servers were “not supported”; since ISPs had little way of making sure that a server
was present this essentially meant, “If you call and try to open a trouble ticket on it,
we won’t listen.”

When DHCP is confi gured on a client in many operating systems, it usually isn’t
even required to name it. Just check off or click on “obtain an IP address automatically”
and you’re in business.

BOOTP still exists, and some devices still use BOOTP alone. BOOTP is often com-
bined with the Trivial File Transfer Protocol (TFTP), defi ned in RFC 1350 (RFCs 2347,
2348, and 2349 all discuss TFTP options). And the best way to understand why DHCP
works the way it does is to begin with BOOTP.

BOOTP
Diskless workstations were expected to have only basic IP, UDP, and TFTP capabilities
at start-up, although of course they needed Ethernet and rudimentary operating sys-
tem functions as well. The original vision for BOOTP was to have the process complete
in three steps.

The BOOTP client broadcast a request for information from port UDP 68 to a boot
server listening on port 67. (BOOTP uses well-known ports for both client and server
because server replies can be broadcast, but typically are not.)

The boot server returned the client’s IP address and, as an option, the location of
a fi le to be downloaded (presumably, the rest of the client’s software was in this fi le).
The client used TFTP and the boot server listening on UDP port 69 to download the
software.

RARP, discussed in Chapter 5, provides the IP address that goes with a physical
address (such as the MAC address). RARP provides an IP address to a diskless client, but
only an IP address. And RARP broadcasts never pass through a router, whereas BOOTP
requests, in proper confi gurations, will (this requires a relay agent, as in DHCP).

468 PART IV Application Level

BOOTP Implementation
Diskless workstations never became a popular line, and most users saw them as a
return to the “bad old days” of “dumb terminals” and considered a full-blooded PC
on the desktop as a sign of status. And soon enough the cost differential for diskless
devices as opposed to full-fl edged workstations or desktops shrunk to zero and then
went negative. Applications for devices with no local storage still exist, but there is no
cost benefi t associated with them.

Once almost all PCs began to ship with minimal hard disks it became more com-
mon to split the boot server functions between two separate servers. The boot server
still listened on UDP port 67 for client broadcast requests sent on port 68, and this was
usually all PCs needed. But for truly diskless devices one or more TFTP servers provided
the fi les needed for further operation, usually separated by type. This arrangement is
shown in Figure 18.6.

BOOTP was very fl exible. Clients could start with some or no information, accept
any boot server or pick a particular one, and use no fi le (a default) or a specifi c down-
load fi le.

BOOTP Messages
All BOOTP requests and replies are sent as 300-byte UDP messages. These are shown
in Figure 18.7. Fields shown in bold must be fi lled in for a BOOTP request, and those in
italic represent optional information supplied by the client.

Opcode—This byte is set to 1 for a request and 2 for a reply.

Hardware Type—This byte is set to 1 for Ethernet, and uses the same values as
the hardware type field in an ARP message.

Boot Server

UDP Port UDP Port UDP Port

Client
Device

Software for
Client

TFTP Server

LAN

67 68 69

IP Address and
Configuration
Information

FIGURE 18.6

BOOTP and TFTP servers, showing the ports used by the servers and client.

CHAPTER 18 Dynamic Host Confi guration Protocol 469

Hardware Address Length—This byte is set to 6 for Ethernet.

Hop Counter—The client sets this to 0, but a proxy BOOTP server (or relay agent,
described later) can use this field when the BOOTP message is sent beyond
the local Ethernet.

Transaction ID—A random 4-byte number chosen by the client and used to
match replies to their requests. Multiple servers can reply, and only the first is
accepted by the client.

Seconds Elapsed—A 2-byte field set by the client to the amount of time since the
bootstrap process began. It starts at 0 and gradually increases if the request is
not answered. A secondary server can monitor this value, and if it gets too high
will assume the primary BOOTP server is down and reply to the client.

Client IP Address—Set to all 0 bits unless the client knows its IP address, in which
case it is placed here.

“Your” Client IP Address—If the previous field is 0, the server supplies the client’s
IP address in this field.

1 byte 1 byte1 byte

Transaction ID (used to match request and reply)

Hardware Type
Length of
Hardware
Address

Hop Counter
(initially 0)

Unused

Client IP Address (if known to Client, otherwise all 0)

Client IP Address (provided by Server in response)

Boot File Name (Client supplies generic name:“Windows”: Server
supplies full pathname to Boot file)

1 byte

25 reply

Opcode
1� request

Seconds Elapsed since Client
Sent First Request Message

IP Address of Server
(provided by Server in response: where Client should go for Boot file)

Client Hardware Address

Relay Router IP Address

“Vendor-Specific Area”
Additional Parameters

Server Host Name (Client can optionally identify Server)

32 bits

FIGURE 18.7

Request.

470 PART IV Application Level

Server IP Address—Filled in by the server.

Relay Router IP Address—If a BOOTP relay agent is used, the router fills in the
address of the port the request was received on. This allows the server to reply
to the proper relay agent.

Client Hardware Address—The same 16-byte address is in the frame source
address, but the BOOTP process has no easy access to this information (which
is three layers away) so it is placed here.

Server Hostname—The server optionally can use these 64 bytes (null terminated)
to identify itself to the client.

Boot File Name—The server optionally can use these 128 bytes (null terminated)
to identify the path to and the name of the boot file.

Vendor-Specific Area—These 64 bytes are used for BOOTP extensions, defined in
RFC 1533.

BOOTP Relay Agents
BOOTP requests are broadcast, and broadcasts will not be forwarded through a router.
Yet maintaining BOOTP servers on all subnets, which are often quite small, can be
burdensome in many organizations. So, BOOTP allows the use of relay agents, which
can be hosts but are usually routers having the added capability to forward BOOTP
requests to a centrally located server.

The router BOOTP relay agent is allowed to broadcast the request onto other sub-
nets, using the hop count to control endless looping, but it is more common for the
relay agent to maintain a list of the IP addresses of one or more boot servers to which
to forward the requests. The way it all fi ts together is shown in Figure 18.8.

The relay agent receiving a BOOTP broadcast checks the Relay Router fi eld. If it is
set to 0, the relay agent inserts the port’s IP address (if the fi eld is non-zero, another
relay router has already processed this request). The BOOTP server will use the address
to reply to the proper relay agent.

The relay agent can send the request to one or more preconfi gured BOOTP
servers. The relay agent usually replaces the broadcast IP address with the BOOTP
server’s destination address.

BOOTP “Vendor-Specifi c Area” Options
The fi elds in the BOOTP request and reply do not cover a lot of things client hosts often
need to know to function properly. For example, how is the subnet mask and default
router address conveyed to the client?

RFC 1533 kept the vendor-specifi c purpose of the fi eld but added several optional
functions that can be used to supply needed information to a client. The “magic cookie”

CHAPTER 18 Dynamic Host Confi guration Protocol 471

IPv4 address of 99.130.83.99 is used to signal clients that there is useful information
in this area.

Each item begins with a 1-byte Tag (for example, Tag 5 1 is for the subnet mask) and
Length (subnet mask 5 4 bytes) fi eld. Tag 5 0 is used to pad items to a 32-bit boundary,
and Tag 5 255 is used pad out the end of the list.

Once a client has used BOOTP to obtain an IP address, subnet mask, and default
router address, it is ready to begin the software download phase if needed. The TFTP
protocol is used for this process.

TRIVIAL FILE TRANSFER PROTOCOL
Many books discuss TFTP in the context of full FTP. But TFTP is best understood in the
context of the BOOTP environment. In particular, TFTP differs greatly from usual FTP
operation (FTP is discussed in Chapter 20). In contrast to full FTP, TFTP

■ Uses UDP port 69
■ Uses uniformly sized 512-byte blocks of data, except for the last (If the fi le is a

multiple of 512 bytes, a fi nal, empty block signals end-of-fi le.)

Client
Device

BOOTP Broadcast

LAN

LAN

Router
Performing

Relay Agent Function

w.x.y.z

Relay BOOTP
Messages to
IP Address

w.x.y.z

Server

FIGURE 18.8

BOOTP relay agent (router), showing how the relay agent forwards broadcast BOOTP messages
to a unicast IP address.

472 PART IV Application Level

■ Numbers blocks starting from 1
■ Acknowledges every block
■ Uses no authentication

Today, of course, the lack of authentication means that use of TFTP requires special
considerations. And it still makes more sense to use Trivial File Transfer Protocol for
BOOTP software downloads because in many cases the client and server are on the
same low-error-rate LAN.

Once a client knows where to go and what to get, a TFTP transaction starts with
a read request (RRQ) to download a fi le or write request (WRQ), used if the client is
going to save information back onto the TFTP server. The requests are sent to UDP port
69 on the server, and a dynamic port is used on the client.

The server does not use port 69 throughout the process, but identifi es a server
port to use for the rest of the procedure. Data transfer proceeds through an exchange
of sequenced data blocks and answering ACKs, one-for-one, echoing the data block
 number. Any non–full-data block ends the exchange.

The default block size can be changed using the options at the end of the read or
write request. A size of 1468 (a 1500-byte Ethernet frame minus the 20 IP, 8 UDP, and
4 TFTP header bytes) is common. Other options include a resend timeout value (UDP
has none of its own) and the total size of the fi le to be transferred. This value is offered
in the client write request, but is set to 0 in a read request and sent by the server in
response. A client is allowed to abort the transfer if the fi le size the server wants to
transfer is too large.

TFTP Messages
TFTP really only has requests (RQ), data blocks (DATA), and ACKs, but these are
employed to yield a total of six message types.

■ Read request (RRQ)
■ Write request (WRQ)
■ Data block (DATA)
■ Acknowledgment (ACK)
■ Error (ACK)
■ Option acknowledgment (OACK)

The six operation codes are used in the Trivial File Transfer Protocol header, shown in
Figure 18.9.

The fi elds in RRQ and WRQ can vary in size and are thus delimited with all-0 bytes.
Oddly, there are no codes for the modes or for the strings netascii and octet (there
was also a mail mode initially).

TFTP Download
TFTP lives up to its name. A simple TFTP transfer is shown in Figure 18.10. In the fi gure,
it is assumed that no options are used.

CHAPTER 18 Dynamic Host Confi guration Protocol 473

TFTP message inside UDP

2 bytes

2 bytes

2 bytes

2 bytes 1 byte

1 byte1 byte

N bytes

N bytes N bytes

2 bytes

2 bytes

2 bytes

2 bytes

Opcode
15RRQ
25WRQ

1 byte 1 byteN bytes

Filename

N bytes

0 0Mode

0–512 bytes

Data

Opcode
45ACK

Opcode
55Error

Opcode
65OACK

Error
Number

Error Message 0

0 0Option B

Opcode
35DATA

Block
Number

Block
Number

Option A

FIGURE 18.9

The six TFTP messages. Note that the content is extremely variable depending on opcode.

Choose a Source
Port, Then
Send Read
Request to
UDP Port 69

TFTP Reading a Remote File

Send ACK
for Block 1

Send ACK
for Block N

Send ACK
for Last Block
TERMINATE

Send ACK
for Block 2

CLIENT
TFTP Process
Running and
“Listening”
Choose Source
Port, Send Block 1

SERVER

Send
Block 2

Send
Block N

Send Block with
Less Than
512 bytes

TERMINATE

FIGURE 18.10

TFTP fi le transfer. Compared to full FTP, this exchange is very simple.

474 PART IV Application Level

DHCP
It might seem odd to spend so much time in a chapter on DHCP discussing BOOTP
and TFTP. But much of what DHCP does and the way it accomplishes its functions is
similar to the operation of these two earlier protocols. DHCP involves a more complex
exchange of messages between client and server, but the intention was always that
servers could provide both BOOTP and DHCP functions with a minimum of recoding.

DHCP was referenced in BOOTP RFCs 1533 and 1534, but as an “extension” of
BOOTP capabilities. Currently, RFC 2131 describes DHCP and distinguishes it from
BOOTP. Not only does a DHCP server allocate addresses to clients, but it also main-
tains parameters for individual clients and entire client groups, greatly enhancing the
 effi ciency of the entire system. In general, DHCP is designed to:

■ Be a mechanism. No “policy” or ideas about IP address allocation schemes are assumed
by DHCP. However, DHCP can be the mechanism on which such policies are built.

■ Do away with manual confi guration. A user should always be able to simply plug
their devices into the network and work. (The requirement to confi gure DHCP, if not
the default, is beyond DHCP’s control.)

■ Handle many subnets from one server. DHCP employs the BOOTP relay agent
 concept, mostly implemented in routers, for this purpose.

■ Allow multiple servers. For redundancy and reliability, clients and servers must be
able to deal with more than one DHCP server.

■ Coexist with statically addressed hosts. As mentioned, dynamically addressed serv-
ers are a challenge for DNS and the user in general. DHCP must allow these hosts to
function properly.

■ Support BOOTP. DHCP can use BOOTP relay agents and must be able to service
BOOTP clients.

■ Guarantee unique addresses. No address can ever be assigned to two clients at the
same time.

■ Retain client information. The servers must retain all client parameters in case of
failures or between shutdown and start-up.

If the addresses handed out by DHCP were permanent, there would be little dif-
ference between static assignment or the way that BOOTP operates. But the DHCP
association between client and address is called a binding, or, more commonly, a lease.
And like any lease, it must be renewed periodically or become available for assignment
to a new client.

The pool of IP addresses handed out by the DHCP server is called a scope. A collec-
tion of scopes gathered for administrative purposes is known as a superscope.

DHCP Operation
The format of the DHCP message is shown in Figure 18.11, which should be compared
to the BOOTP message in Figure 18.7. Many BOOTP clients have no problem interact-
ing with DHCP servers, and that was the intent all along.

CHAPTER 18 Dynamic Host Confi guration Protocol 475

The fi elds are the same in form and content as those for BOOTP, with a few
 exceptions. Opcode DHCP uses the same operation codes as BOOTP (1 5 request and
2 5 reply). DHCP is indicated by the use of an Option Tag value of 53. This allowed
DHCP to use BOOTP relay agents transparently.

Flags—These 16 bits were unused in BOOTP. Only one flag is defined for DHCP,
the rightmost bit, or BROADCAST flag. All other bits must be set to 0. A tricky
issue in dynamic configuration was the fact that some clients discarded unicast
packets until configuration was complete, and so the DHCP messages were
rejected with their addresses! The BROADCAST bit told servers to broadcast
replies to these DHCP clients.

Options—The BOOTP “vendor-specific” fields in what is now the DHCP options
field, were greatly extended to become DHCP parameters. Client ID Option
DHCP clients can be identified other than by hardware MAC address, as in
BOOTP. Some other identifier, such as a fully qualified domain name, could be
used instead. This helped if NIC cards were replaced. In practice, those cards
are very reliable and this option is not used much.

1 byte

Opcode
1 � request Hardware Type

Transaction ID (used to match request and reply)

Flag Field
(only broadcast flag bit defined)

Client IP Address (if known to Client, otherwise all 0)

Server Host Name (Client can optionally identify Server)

File Name

Options

32 bits

Relay Router IP Address

Client IP Address (provided by Server in response)

IP Address of Server

Seconds Elapsed Since Client Sent
First Request Message

Client Hardware Address

Length of
Hardware
Address

Hop Counter
(initially 0)

1 byte 1 byte 1 byte

25 reply

FIGURE 18.11

DHCP message format, showing similarities with the BOOTP message.

476 PART IV Application Level

The client ID option is used for several things: It provides better logging, supports
dynamic DNS, and allows for hosts with more than one network interface (such as
laptops with wired and wireless capability). Care must be taken that you don’t produce
collisions, because two hosts with the same client ID will get the same IP address.

Once a host is confi gured to seek out confi guration information using DHCP, the
message fl ow is straightforward—even with two “competing” DHCP servers on a LAN.
The usual fl ow of messages is shown in Figure 18.12.

DHCP, in contrast to BOOTP, uses a complex sequence of messages between cli-
ents and servers, all tucked neatly inside the “BOOTP” options fi eld at the end of the
message. There are eight major DHCP messages types (all using either request or reply
operation codes, of course).

■ DHCPDISCOVER—Used by clients to discover DHCP servers, and usually includes a
list of the parameters for which the client needs values, such as IP addresses, subnet
mask, and default router.

■ DHCPOFFER—Used by servers to offer the needed values to clients.

■ DHCPREQUEST—Used by a client to request a reply from one server. The request is
sent to all servers, even those not selected.

■ DHCPDECLINE—Used by a client to refuse to accept one or more values from a
server, usually because they are not valid for the client.

DHCP Server 1

Determines
Configuration
Requirements

(Use
Parameters)

(Lease
Expires)

Select
Configuration
Offer

Commits to
Configuration

Discards
Lease

DHCP Server 2

Determines
Configuration
Requirements

DHCPREQUEST DHCPREQUEST

DHCPRELEASE

DHCPPACK

Collect
Replies

DHCPDISCOVER

DHCPOFFER

DHCPOFFER

DHCPDISCOVER

Begin Initialization
Client

FIGURE 18.12

Typical DHCP message fl ow when there are two potential DHCP servers from which to choose.

CHAPTER 18 Dynamic Host Confi guration Protocol 477

■ DHCPACK—Used for server responses and to furnish the parameters to a client.

■ DHCPNAK—Used by a server to refuse a client request. (Clients must start over.)

■ DHCPRELEASE—Used by a client to release an IP address, returning it to the
 server pool.

■ DHCPINFORM—Used by clients to tell servers the client has an IP address already,
but needs the values for other parameters.

DHCP Message Type Options
DHCP clients can request values for more than 60 different parameters from a DHCP
server. The fi rst 49 can be used by BOOTP or DHCP, and these include the very funda-
mental IP subnet mask request (Tag 5 1) and default router address (Tag 5 3).

Options 50 through 61 are reserved for DHCP only. These are outlined in Table 18.1.
Tag numbers through 127 are reserved for current and future standard options. Tags
128 through 254 are reserved for site-specifi c options.

Table 18.1 DHCP Parameters Shown by Tag Value

Tag Parameter Description

50 Requested IP address Client asks for a specifi c IP address.

51 IP address lease time Client’s request or time granted by server.

52 Option overload The Server Host Name or Boot File Name fi elds are
carrying DHCP options to save space in the message.

53 DHCP message type This is how the DISCOVER, OFFER, or REQUEST
formats are determined.

54 DHCP server identifi er Client tells which server was accepted.

55 Parameter request list Client’s list of needed parameters.

56 Message Used for errors. Server sends errors with DHCPNAK,
and client uses DHCPDECLINE.

57 Max. DHCP message size Largest DHCP message the client can accept.

58 Renewal time (T1) Client will try to renew lease after this time.

59 Rebinding time (T2) If lease renewal fails, client tries any server after this
elapsed time (T2 must be greater than T1).

60 Class identifi er Vendor code describing client. Servers can reply
based on this class.

61 Client identifi er Unique identifi er for this client used by server to
determine parameters.

478 PART IV Application Level

DHCP AND ROUTERS
DHCP takes advantage of the BOOTP relay agent concept. In fact, router confi guration
of DHCP can be complicated because many routers mention only BOOTP relay agents
and assume administrators know they are the same.

A DHCP relay agent is usually a router, but it could also be a dual-homed host that
uses a router to reach the DHCP server. A typical confi guration using a router as a relay
agent was shown in Figure 18.1.

The DHCP relay agent listens for broadcast BOOTP request messages and sends
them to the server. The relay agent then receives replies from the DHCP server and
replies to the client.

DHCPv6
We haven’t done anything with DHCP in IPv6. There’s a reason for that, and it has to
do with the way IPv6 confi gures itself on a host.

A lot of what DHCP does in IPv4 can also be done with RARP and ICMP. Yet DHCP
is all over the place in IPv4. IPv6 includes elaborate neighbor and router discovery pro-
tocols that allow IPv6 hosts to invent link-local IPv6 addresses and multicast groups for
confi guration purposes. Yet, just like IPv4 DHCP for IPv6 exists as DHCPv6. There are
at least three reasons DHCPv6 continues to make sense in IPv6.

■ Not all networks support the multicasts needed for IPv6 autoconfi guration,
like those consisting of point-to-point links or ATM and frame relay.

■ Some small IPv6 networks might not have a router, which is required for
IPv6 autoconfi guration.

■ Network managers might desire more control over device confi guration
than afforded by IPv6 autoconfi guration.

DHCPv6 will not be used on the Illustrated Network. There is no BOOTP support
because it is not really needed in IPv6. In truth, a lot of DHCP parameters are superfl uous
in IPv6. It is enough for this chapter to point out that DHCPv6 can be triggered by options
in the IPV6 Router Advertisement messages, which we fi rst introduced in Chapter 5.

DHCPv6 and Router Advertisements
DHCPv6 and its relationship to IPv6 addressing are described in a series of RFCs,
most notably RFC 3315 and 3726. DHCPv6 can provide stateless or stateful address
 autoconfi guration information to IPv6 hosts. Stateless address autoconfi guration is
used to confi gure both link-local and additional non–link-local addresses through the
exchange of Router Solicitation and Router Advertisement messages with routers. State-
ful address autoconfi guration is used to confi gure non–link-local addresses through the
use of a confi guration protocol such as DHCP.

CHAPTER 18 Dynamic Host Confi guration Protocol 479

How does a host know which one it can use? We did not emphasize it then, but our
discussion of the IPv6 Router Advertisement protocol in Chapter 7 mentioned the M
and O bit fl ags. The Router Advertisement message can set the following:

Managed Address Configuration Flag, known as the M flag—When set to 1, this
bit instructs the host to use the configuration protocol to obtain a stateful
(non–link-local) address.

Other Stateful Configuration Flag, known as the O flag—When set to 1, this bit
instructs the host to use the configuration protocol to obtain more configura-
tion settings.

There can be four different situations.

1. Both M and O fl ags are 0. This is used when the local network has no DHCPv6
infrastructure. IPv6 hosts use Router Advertisements and other methods, such as
manual confi guration, to get non–link-local addresses and other settings.

2. Both M and O fl ags are 1. In this case, DHCPv6 is used to obtain both addresses
and other confi guration settings. This is known as the “DHCPv6 stateful” situa-
tion, and DHCPv6 is used to assign stateful addresses to the IPv6 hosts.

3. M fl ag is 0, O fl ag is 1. DHCPv6 is not used to provide addresses, but only other
confi guration settings, such as the location of DNS servers. The routers are set to
advertise non–link-local prefi xes from which the IPv6 hosts can confi gure state-
less addresses. This is known as “DHCPv6 stateless” because stateful addresses
are not provided.

4. M fl ag is 1, O fl ag is 0. DHCPv6 is used to provide addresses, but no other set-
tings. This combination is allowed but unlikely, because IPv6 hosts need to know
other things, such as the addresses of the DNS servers.

Because we’re not using DHCPv6 on the Illustrated Network, we won’t detail the
DHCPv4 message formats and exchange patterns—which are different for stateful and
stateless operation.

DHCPv6 Operation
All DHCP servers and relay agents are required to join the local All-DHCP-Agents multi-
cast group, and all servers must join the local All-DHCP-Servers group. All relay agents
also join the local All-DHCP-Relays group.

DHCPv6 servers and agents send to UDP port 546, and clients send to UDP port
547. There are six message types defi ned for DHCPv6, and one nice feature is that the
operation code (or message type byte) comes fi rst in the message instead of being
 buried in the old BOOTP options fi eld (as is DHCP for IPv4).

480 PART IV Application Level

QUESTIONS FOR READERS
Figure 18.13 shows some of the concepts discussed in this chapter and can be used to
help you answer the following questions.

1. The client sets the BOOTP hop count to zero initially. If that is the case, what is
the hop counter used for?

2. What is the hardware type and hardware address length for Ethernet?

3. How is the relay router IP address fi eld used?

4. What is the client ID option in DHCP?

5. What is the “magic cookie” IP address in BOOTP?

Opcode

Opcode

Transaction ID (used to match request and reply)

Client Hardware Address

Flag Field

Client IP Address (if known to Client, otherwise all 0)

Server Host Name (Client can optionally identify Server)

File Name

Client IP Address (provided by Server in response)

IP Address of Server

Options

Relay Router IP Address

Hardware
Type

Length of
Hw Address

Hop
Counter

Unused

Client IP Address (if known to Client, otherwise all 0)

Client IP Address (provided by Server in response)

IP Address of Server
(Server response: where Client should go for Boot file)

Relay Router IP Address

Server Host Name (Client can optionally identify Server)

Boot File Name (Client supplies generic name — “Windows”)

“Vendor-Specific Area”
Additional Parameters

Client Hardware Address

Hardware
Type

Length of
Hw Address

Transaction ID (used to match request and reply)

Seconds Elapsed Since Client
Sent First Request Message

Seconds Elapsed Since Client
Sent First Request Message

Hop
Counter

BOOTP Message
Format and Fields

DHCP Message
Format and Fields

FIGURE 18.13

The BOOTP and DHCP messages compared.

481

CHAPTER

What You Will Learn
In this chapter, you will learn how DNS gives the Internet a more user-friendly
way to access resources. We’ll see how names are associated with IP addresses and
how applications fi nd this information.

You will learn how DNS servers provide information about local networks, and
how this information is distributed and shared on the Internet. We’ll also use show
tools to help examine DNS.

The Domain Name
System 19

The Domain Name System (DNS) is the distributed database used by the TCP/IP
 protocol suite to translate hostnames to IP addresses (both IPv4 and IPv6) and provide
related information, such as email routing information. DNS has been around as part of
the Internet for so long that it is easy to forget that in the early days users needed a fi le
named /etc/hosts (no extension) unless they wanted to type in the 32-bit IP address
that went along with the hostname.

Today, the database is distributed because no single site on the Internet knows
everyone’s hostname and IP address. Of course, placing every host’s IP address in a
single text fi le would be impractical now, but people can still type www.juniper.net
anywhere on the Internet and access the main Web page for the site. The correct func-
tioning of DNS is so ingrained in expectations that many users do not even realize
that when DNS fails typing, http://207.17.137.68 yields the same result as the www
entry. For many, when DNS disappears the Internet might as well have vanished as well
(except for some local and cached IP addresses, this is probably true enough).

Microsoft support services report that well over 70% of all calls, no matter what the
reported symptom, end up being DNS calls. How can something as apparently simple
as DNS cause such problems? Two big reasons are that the details of DNS functioning
have changed a lot recently, and that many users and administrators know very little
about the inner workings of DNS.

Because of the abundance of new terminology, special operations, and new types
of servers, this chapter requires us to discuss some of the basics of DNS before looking

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80:205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-0
/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177 eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

Primary
DNS Server

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65459

Wireless
in Home

“dig”
used

Solid rules � SONET/SDH
Dashed rules � Gig Ethernet
Note: All links use 10.0.x.y
addressing...only the last
two octets are shown.

FIGURE 19.1

DNS on the Illustrated Network, showing the hosts used as primary and secondary DNS servers and
utilities.

484 PART IV Application Level

Secondary
DNS Server

“nslookup”
Used

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80:205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77 eth0: 10.10.12.166 LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

ge-0/0/3

16.2

ge-0/0/3

16.1

Best ISP

AS 65127

Global Public
Internet

CHAPTER 19 The Domain Name System 485

at how DNS is employed on a network. In this chapter, we’ll use the equipment in the
roles shown in Figure 19.1. Discussion will be kept to a minimum and exploration is
maximized in this chapter.

DNS BASICS
Recall that two things are globally administered in TCP/IP: the network portion of the
IPv4 or IPv6 address and the domain name that goes along with it. The host portion
of the IP address and the further qualifi cation of the domain name are administered
locally. It is up to the local administrator to prevent duplicates at this level, and in large
organizations this is not as easy as it sounds. (In some cases there are valid reasons
for duplicates to exist in an organization, such as due to “split horizon” issues.) Very
large organizations often depend on several layers of administration (perhaps division,
department, and so on) to dole out blocks of addresses and domain names correctly.
Along with this responsibility goes the duty to ensure that all of the detailed host
addressing and the corresponding fully qualifi ed domain names (FQDNs) is correct so
that all of the clients can fi nd the servers they are supposed to fi nd.

Usually each site—whether it be a company, university, or other type of organiza-
tion—maintains its own database of information and runs a server process (typically
on a dedicated system) other systems can query. You can also get a third party (not the
ISP) to manage a zone for you, and that is a service most registrars will do for a nominal
fee (if not free) with the registration of a domain name.

At one time, connection to the Internet required an organization to provide at least
two DNS servers for the site. The goal was resilience, but because missing authoritative
name serves can cause all sorts of performance issues two non-topologically diverse
name serves do not really solve anything. Now, very small organizations (or individual
users) often rely on their ISP to provide the DNS service and point all of their hosts
at these two “public” DNS servers for hostname resolution. This arrangement poses its
own set of problems, such as a recurring ISP charge to “maintain” the database records
(surely the lowest maintenance task on the Internet) and the need to update the ISP’s
database when changes to FQDN or IP addressing take place on the local network.
Dynamic IP addresses also cause problems for DNS, as detailed later in this chapter.

The DNS Hierarchy
DNS servers are arranged in a hierarchical fashion. That is, the hundreds of thousands
of systems that are authoritative for the FQDNs in their zone are found at the bottom
of the DNS “pyramid.” For ease of maintenance, when two or more DNS servers are
involved only one of them is fl agged as the primary server for the zone, and the rest
become secondary DNS servers. Both are authoritative for the zone. ISPs typically run
their own DNS servers, often for their customers, with the actual number of systems for
each ISP depending on the size of the ISP. At the top of the pyramid is the “backbone.”
There are root servers for the root zone and others for .com, .edu, and so on.

486 PART IV Application Level

DNS servers above the local authoritative level refer other name servers to the
systems beneath them, and when appropriate each name server will cache informa-
tion. Information provided to hosts from any but the authoritative DNS system for the
domain is considered non-authoritative, a designation not refl ecting its reliability, but
rather its derived nature.

Authoritative and non-authoritative servers can be further classifi ed into categories.
Authoritative servers can be:

■ Primary—The primary name server for a zone. Find its information locally in
a disk fi le.

■ Secondary—One or more secondary name servers for the zone. They get their
information from the primary.

■ Stub—A special secondary that contains only name server data and not
host data.

■ Distribution—An internal (or “stealth server”) name server known only by IP
address.

Keep in mind that the primary and secondary distinction is relevant only to the operator
of the systems and not to the querier, who treats them all the same. Non- authoritative
servers (technically, only the response is non-authoritative) can be:

■ Caching—Contain no local zone information. Just caches what it learns from
other queries and responses it handles.

■ Forwarder—Performs the queries for many clients. Contains a huge cache.

Root Name Servers
The root servers that stand at the tip of the DNS pyramid deserve more explanation in
terms of operation and organization. Today, the root servers are the entry points to the
DNS service and rely more on caching than the passive databases that once character-
ized the root server system. With the explosion of the Internet, it made little sense to
maintain records with the same “priority” for sites that are constantly bombarded with
traffi c and those that are seldom visited. The current database in a root name server is
small.

The current root servers only know which name server a local DNS needs to ask
next to resolve a query. So, any query for a .com sent to a root name server produces
a list of name servers that might know the answer. The continuous caching of these
answers means that there is less need to query the root servers after the fi rst query.

Root Server Operation
The root server operators are not involved in the policymaking regarding Internet
names and addresses, nor in modifi cation of the data. They just take what is originated
by one of their number (Verisign Global Registry Services) and propagate it to the
others. The operators are encouraged to explore diversity in organizational structure,

CHAPTER 19 The Domain Name System 487

locations, hardware, and software, while maintaining expected levels of physical sys-
tem security and over-provisioning of capacity. They maintain their own infrastructure
for emergencies, including telephone hotlines, encrypted email, and secure credentials.
The root servers use distributed anycast where practical, making many separate sys-
tems all over the world appear and act as one system with one IP address. The use of
anycast helps minimize the effects of denial-of-service attacks.

We haven’t talked about anycast before. In anycast, as in multicast, there is a one-
to-many association between addresses and destinations (multicast has groups) on the
network. Each destination address identifi es a set of receiver endpoints, but (in contrast
to multicast) only one of them (determined to be the “nearest” or the “best”) is chosen
at any particular time to receive information from a particular sender. For example, in
contrast to a broadcast (which goes to everyone) or a multicast (which goes to all inter-
ested listeners) sent onto a LAN, a message to an anycast address goes to only one of a
set of hosts and is then considered delivered. Anycast (“send this to any one of these”)
is more suited to connectionless protocols (such as UDP) than stateful protocols (such
as TCP) that have to maintain state information.

Root server operators often struggle to overcome a lot of misconceptions, even on
the part of people who should know better. Contrary to what some believe, all Internet
traffi c does not fl ow through the root servers (nor do they determine routes), not every
DNS query goes to a root server, the “A” system is not special, and there are many more
than just 13 machines.

Table 19.1 DNS Root Servers Listed by Operator, Locations, and IP Address

Server Operator Locations

A Verisign Dulles, VA

B Information Sciences Institute Marina Del Rey, CA

C Cogent Communications Herndon, VA; Los Angeles; New York; Chicago

D University of Maryland College Park, MD

E NASA Ames Research Center Mountain View, CA

F Internet Systems Consortium, Inc. 43 sites all over the world

G U.S. DoD NIC Vienna, VA

H U.S. Army Research Lab Aberdeen, MD

I Autonomica/NORDUnet 31 sites all over the world

J Versign 41 sites all over the world

K Réseaux IP Européens–Network
Coordination Center

17 sites all over the world

L ICANN Los Angeles; Miami

M WIDE Project 6 sites around the world

488 PART IV Application Level

Root Server Details
Table 19.1 shows the 13 root name servers (A through M), who operates them, their
locations, and their IP addresses (IPv4 and IPv6, where applicable). For the latest infor-
mation, which changes from time to time (for example, the IPv4 address of B.root-
servers.net changed in 2004), see www.root-servers.org.

Note that many of the root servers, although all grouped under a single name, are
actually many systems spread throughout the world. This is where anycast is useful.

In the past, the willingness of DNS servers to accept updates from any source when
offered was a major security weakness. Modern DNS servers accept only authorized and
digitally signed updates, and higher level DNS servers never accept dynamic updates
from anyone. One interesting initiative is the continuing development of DNS Security
(DNSSec). DNS is still a tempting target on the Internet, and although DNSSec raises the
bar the target remains attractive.

DNS IN THEORY: NAME SERVER, DATABASE, AND RESOLVER
DNS consists of three essential components: the name server, the database of DNS
resource records, and the resolver. An application interacts with name servers through
a resolver. This is an application program that resides on user workstations and sends
requests for DNS information when necessary. Resolvers must be able to fi nd at least
one name server, usually the local name server, and local DNS servers provide authori-
tative answers for local systems. The resolver must also be able to use the information
returned by the local name server, if the resource records needed are not local or
cached, to pursue the query using referral information leading to other DNS name
servers on the Internet.

The resource records of the Domain Name Space are grouped and formatted with a
strict tree-structured name space. Information is associated with each type of resource
record. The sets of local information (the zones) in this structure are distributed among
all DNS servers. The name servers essentially answer resolver queries using the infor-
mation in its zones or from other zones. A resolver query gives the name of interest and
stipulates the type of information needed.

The name servers themselves maintain the structure of the Domain Name Space
and the sets of information about the hosts in the zones. Any name server can cache
anything it sees about any part of any Internet domain, but generally a particular name
server knows only about a tiny fraction of the Internet zones. But there are pointers
to other name servers that can be used to answer a resolver query. Name servers can
distribute zone information to other name servers to provide redundancy. Finally, DNS
name servers periodically refresh their zone information, from local fi les (the primary)
or from other name servers (the secondaries) through a zone transfer.

Other important DNS concepts are relative name and absolute name (FQDN).
A resolver request for the IP address for the relative name Web server would produce
many addresses on many networks around the world. The relative name is part of
the complete absolute name, perhaps webserver.example.com. Most resolvers step

CHAPTER 19 The Domain Name System 489

through an ordered list of preconfi gured suffi xes, append them one at a time to the
relative name, and attempt to fi nd the IP address without the absolute name. Absolute
names always end in a dot (.).

Like all good protocols using query/response pairs, DNS uses UDP (port 53). How-
ever, DNS also uses TCP (and port 53 there, too) for zone transfers between name
servers. These transfers can be considerable in large organizations, and although LANs
usually feature very low-error rates the risk of corrupt DNS information more than
justifi es the use of TCP for the zone transfers. TCP is also used if a response is larger
than 512 bytes. And fl ow control is a really good reason to use TCP for zone transfers,
because they can occur over essentially arbitrary distances.

Adding a New Host
Whenever a new host is added to a zone, the DNS administrator must add the resource
records (minimally the name and IP address of the host) to a fi le on the primary name
server. The primary name server is then told to read the confi guration fi les, and when
the secondaries query the primary (typically every 3 hours), the secondaries fi nd
newer information on the primary and perform a zone transfer. The DNS Notify feature
enhances the basic zone status check and zone transfer mechanisms. This lets the pri-
mary server notify the secondaries when the database has changed. A related feature
allows part of a zone to be transferred and not the entire zone information.

How can all of the local name servers fi nd each other? They can’t. But every name
server must be able to fi nd and contact the root name servers on the Internet. Their
positions at the top of the DNS pyramid allow the root name servers to answer que-
ries directly from the zone they have loaded, if with non-authoritative information. Of
course, there’s always a chance a user on one side of the world will attempt to contact
a server or Web site that has just been linked to the Internet and has the zone informa-
tion such as the IP address available only in the local name server on the network with
the Web site.

Recursive and Iterative Queries
If DNS database information is spread throughout the Internet, and the local name serv-
ers cannot fi nd each other and the root name servers don’t have gigantic databases,
how can all hosts in the world fi nd out anything at all? It is because of the way the local
DNS name server handles a query from a resolver.

DNS queries can be sent out asking for another name server to handle the query
recursively or iteratively (some texts say “non-recursively”). Most local DNS servers
function recursively by default. In fact, recursive operation maximizes the amount of
information available for caching on name servers, although iterative operation will
maximize the amount of information available to a particular name server. Many local
name servers use recursive queries (they can be asked to handle a query iteratively),
and higher level name servers use iterative queries (root servers always answer queries
iteratively).

490 PART IV Application Level

Recursive DNS queries are handled by the receiving name server waiting until it
receives an answer to its own queries. Iterative queries are handled with an immediate
“I don’t know the answer, but here’s where you can look next” response. In the recur-
sive case, the name server “in the middle” can fi nd and cache the information, whereas
in the iterative case, it cannot. This might sound confusing, but we’ll look at a detailed
example of how DNS usually works in the following sections.

Delegation and Referral
Large organizations, or large ISPs operating the DNS servers for their customers, often
delegate part of the domain name space to a separate system. For example, a huge
bigcompany.com might have headquarters records on the main DNS but delegate DNS
chores for maintaining and housing east.bigcompany.com (on the east coast) and west.
bigcompany.com (on the west) to its two main divisions. So, there are three DNS serv-
ers in all, perhaps called hqns.bigcompany.com, ns1.east.bigcompany.com on the east
coast and ns2.west.bigcompany.com on the west coast. There could be many LANs
for which one of these name servers is authoritative, such as the LANs for accounting,
marketing, sales, and so on.

Figure 19.2 shows the fl ow of DNS-related actions (solid arrows) and the responses
they invoke (dashed arrows) among the DNS name servers mentioned in the
 bigcompany.com example the fi rst time someone looks for the Web site. The initial
user resolver query to the LAN’s local name server and the eventual response are also
shown. The following is the sequence in detail.

The local user on the wincli1 Web browser (me) requests a Web page from www.
sales.west.bigcompany.com (the example is valid, but the name has been changed). The
browser invokes the local name resolver software in the PC and passes this name to it.

The local resolver checks its cache to see if there is already an IP address stored
for this name. (If there is, the quest is over, but we’ve assumed that this is the fi rst time
the user has asked for the Web site so it’s not cached.) The resolver also checks to
see if there is a local host table fi le. (Again, let’s assume there is no static mapping for
the name.)

The resolver generates a recursive query (typically) and sends it to the local name
server, which we’ve set up as ns1.booklab.englab.jnpr.net on winsrv1 using the
name server’s IP address, which it knows because the server is local (it’s 10.10.11.111).
The local DNS system receives the request and checks its cache. If present, the DNS
returns a non-authoritative response to the resolver. It would also check to see if there
are zone resource records for the request name, but because they are completely dif-
ferent domains there are no zone records.

The local DNS generates an iterative request containing the name sought and sends
it to a root name server. The root name server doesn’t resolve the name, but returns the
name and IP address of the name server for the .com domain. The local DNS (which is
performing the bulk of the work, we should note) now sends an iterative request to the
name server for the .com domain.

CHAPTER 19 The Domain Name System 491

The .com name server returns the name and IP address for the name server for the
bigcompany.com domain. The local DNS then generates an iterative request to the name
server for the bigcompany.com domain. The bigcompany.com name server looks to see
if it has that information. It notices that the requested name is in a separate zone, the
west.bigcompany.com subdomain.

The local DNS next generates an iterative request to the name server for the west.
bigcompany.com domain. This name server is authoritative for the www.sales.west.
bigcompany.com information. It returns the address information for the host to the
local DNS. The local DNS system (winsrv1) caches the information.

The local DNS returns the resolution to the client's resolver software (wincli1).
The local resolver also caches the information. The local resolver supplies the address
information to the browser. The browser can now send an HTTP request to the
correct IP address.

Local Name Server
(winsrv1)

4. Cache check
5. Resolve query to root

6. Name Server for .com

7. Resolve
query to .com

6. Name Server
for bigcompany.com

9. Resolve query to
bigcompany.com

10. Name Server for
west.bigcompany.com

11. Resolve query to
west.bigcompany.com

12. IP address for
www.west.bigcompany.com

17. HTTP request sent
to resolved address

west.
bigcompany.com

Name Server

bigcompany.com
Name Server

.com
Name Server

Root Name Server

com

(root)

bigcompany

west

Accting Mkting Sales

2. Cache check

15. Cache update

13. Cache update

Cache

Cache Resolver

1. Resolution
request

USER wants:

www.sales.west.
bigcompany.com

Client (wincli1)

www.sales.west.
bigcompany.com

Web site Server

Server

3. Recursive
query

14. Requested
IP address

16. Requested
IP address

FIGURE 19.2

Example DNS query and response message fl ow. Messages sent to the servers are shown as
solid arrows and replies as dashed arrows.

492 PART IV Application Level

It’s actually a tribute to the entire DNS server collection that all of this usually
 happens very quickly. Note how using recursion on the PC maximized the amount
of DNS information available for caching and how iteration elsewhere minimized the
amount of information needing to be stored permanently.

Glue Records
There was one key step in the chain of delegation and referral in Figure 19.2 that
did not use DNS to fi nd an IP address. Notice that the bigcompany.com name server
did not use DNS to fi nd the IP address of the west.bigcompany.com name server. Del-
egation must use an address (A) resource record to indicate the IP addresses of name
servers responsible for zones below the current level. These are called glue records
in DNS and are the answer to an interesting question involving dynamic IP address
 allocation.

When DHCP fi rst became available, many organizations confi gured a pool of IP
addresses to be assigned only to active users on the Internet. Many organizations
included their DNS servers in this pool, and quickly found out that DNS stopped
working. Why? Simply, the glue records used by intermediate name servers to fi nd the
local authoritative servers didn’t work anymore. In other words, the headquarters can’t
use DNS to fi nd the zone resource records for delegated zones! Glue records serve that
purpose.

This is one main reason users whose ISPs use DHCP with dynamic IP addresses for
host confi guration cannot establish their own DNS name server at home. These users
would form delegated zones from the main ISP. And without a local DNS server users
who want to place their own server on-site need to work with the ISP to make this
happen. Some people see this as part of an ISP plot to prevent users from running their
own servers, creating hosting revenue for ISPs and others. But it’s really just the glue
records.

You need a DNS service provider willing to upgrade the glue records when your
address changes. In practice, dynamic DNS service providers can do this, but it also
means that the TTL on the records must be low enough so that they fl ow over in short
order. Ideally, they would also provide a secondary DNS.

DNS IN PRACTICE: RESOURCE RECORDS
AND MESSAGE FORMATS
When implemented as a series of resolvers and name servers, DNS databases consist of
resource records (RRs) entered into a zone fi le and loaded onto the authoritative name
server. Any other DNS name server can cache this information as a non-authoritative
source, and a special reverse zone fi le is used to enable resolvers to look up a host name
by IP address. RRs all end in in-addr.arpa. A DNS RR contains the following fi elds.

Name—The FQDN or portion that is represented by the entry. For example,
 bigcompany.com.

CHAPTER 19 The Domain Name System 493

TTL (Time to Live)—How long in seconds the record can be cached. Many ISPs
use 2 or even 3 days for this field (172,800 or 259,000). If no value is entered,
the default can be short (as little as 1 hour).

Class—Today, the only class that counts is IN for Internet address. This is usu-
ally entered only once, in the first record, and is inherited by all subsequent
records for that name.

Record-Type—There are many record types, usually indicated by a short abbreviation,
such as A for address and NS for name server. The types fall into four categories:

Table 19.2 Common DNS Resource Record Types and Their Uses and Meanings

Use Record Type Meaning

Zone

SOA Start of Authority records identify the zone and set parameters.

NS Gives an authoritative name server for the zone, and delegates sub-
domains. Not the IP address of the name server, but a text fi eld.

Basic

A Maps the name to the IPv4 address. Each device address requires a
separate A record.

AAAA Used to allow an IPv4 name server to return an IPv6 address.
Intended as a transitional type.

A6 Now obsolete, these were used to map a name to an IPv6 address.

PTR Used to map an IP address to a host name in reverse zone lookups.

DNAME Formerly used for redirection for reverse lookups in IPv6 DNS servers
due to longer nature of IPv6 addresses. Now obsolete.

MX Mail Exchanger records point from a name to A records that are the
mail exchanger for the name.

Security

KEY The public key for the DNS name.

NXT Used for negative answers with DNSSec.

SIG The signature for an authenticated zone.

Optional

CNAME Maps an alias name to a canonical (“real”) name. For example,
www.example.com and ftp.example.com might both be running on
the host server.example.com.

LOC Geographical location.

NAPTR Name Authority Pointer is used to allow regular expression rewrites
of the domain name.

RP Contact information for responsible person.

SRV Gives locations of well-known services.

TXT To add comments and information to the record.

494 PART IV Application Level

zone, basic, security, and optional. A list of the more common record types appears
in Table 19.2.

Record-Data—Depending on the type, this information varies. For a name server,
this is the domain name of the name server. For a host, this is the IP address.

Comments—These are optional and begin with a semicolon (;) and are never
returned with data.

This is not an exhaustive list. Some defi ned record types are seldom used (HINFO
is supposed to mention host model and operating system) or are perceived as security
risks (WKS records list the “well-known services” available at the host).

Some readers might have noticed the elaborate form of the IPv6 addresses used on
the Illustrated Network. This is because IPv6 once used something called the binary
label syntax. IPv6 addresses use the fi rst bits (really, whole words) of the 128-bit IPv6
address to indicate the ISP. The A6 records included a referral fi eld to allow a name
server to refer to the ISP’s name server for the “network” portion of the IPv6 address.
The A6 record also gave the number and value of the bits present in the A6 record itself.
This prevented the laborious entry of many redundant bits into the resource records. It
also made shifting service providers easier. So, a query for an A6 record might only get
the last 64 bits of an IPv6 address. A further referral query to the name server in the A6
record is necessary for the fi rst 64 bits. The DNAME records do the same for the Pv6
host name. This now obsolete system was used for the IPv6 addresses.

The same DNS message format is used for queries and responses. The DNS query
message goes out with a 12-octet header and a variable number of questions. The DNS
response message essentially pastes on a variable number of three types of response
fi elds: answer RRs, RRs identifying authoritative servers, and RRs with additional infor-
mation. Figure 19.3 shows the general format of the DNS message.

0

Identification

Numbers of Questions Number of Answer RRs

15 16
Q
R

Op
code

A
A

T
C

R
D

R
A

R
code

12
octets

31

Number of Authority RRs Number of Additional RRs

Question(s)

Variable Number of RR Answers

Variable Number of Authority RRs

Variable Number of Additional RRs

FIGURE 19.3

DNS message format. Note that the last four fi elds are variable in size.

CHAPTER 19 The Domain Name System 495

DNS Message Header
The 16-bit identifi cation fi eld, set by the client and returned by the server, allows for
coordination of outstanding requests and responses. The 16-bit Flags fi eld is quite
 complex:

QR—A 1-bit field where 0 = query and 1 = response.

Opcode—A 4-bit field where 0 = standard query. Other values are for an inverse
query (1) and a server status request (2).

AA—A 1-bit flag that indicates that the name server is authoritative for the zone
(1 = true).

TC—A 1-bit fl ag meaning that the reply has been truncated. UDP limits DNS
responses to 512 octets, except when Extension Mechanism for DNS (EDNS0,
defi ned in RFC 2671) is used. EDNS0 identifi es the requester’s UDP packet size.

RD—A 1-bit flag for “recursion desired.” If this bit is set in a query, the receiving
name server is supposed to keep trying to find the answer. If this bit is not set,
the name server returns a list of other name servers to contact unless it can
provide an authoritative answer.

RA—A 1-bit flag for “recursion available.” Some name servers will refuse to act
recursively, and this bit is cleared in response to let other systems know about
server refusal.

Pad—A 3-bit field that must be set to 000.

Rcode—A 4-bit field for the return code. The most common values are for no
error (0) and a name error (3).

The next four 16-bit fi elds help receivers parse the four fi elds in the rest of the
 message. In a query, the number of questions is usually 1 and the other three fi elds
are 0. A reply typically sets the Number of Answers fi eld to 1 (or more), and the other
two are 0. Utilities such as tcpdump and Ethereal normally parse all of the fi elds and
fl ags. There are other ways to watch DNS in action, however.

DNSSec
As indispensable as DNS is for Internet operation, DNS was not (unfortunately) designed
to be secure. Threats to DNS fall into several distinct classes, many of which are just
well-known security threats redirected at DNS. However, a few are specifi c to the par-
ticular way the DNS protocol functions. RFC 3833 documents some of the known
threats to DNS and tries to assess the extent to which DNSSec will succeed in defend-
ing against these threats. Although this section uses some concepts we haven’t covered
yet, DNSSec is important enough to introduce in this chapter on DNS itself.

496 PART IV Application Level

In particular, DNSSec was designed to protect Internet DNS resolvers (the clients)
from forged DNS data, which can point people looking for a particular Web site (such
as their bank) to the wrong IP address. This forged information can be put in place by
a process called DNS cache poisoning. In DNSSec, all answers to queries are digitally
signed (we’ll talk more about digital signatures and certifi cates in Chapters 22 and 23).
The digital signature can be checked by the resolver to see if the information is identi-
cal to the information on the authoritative DNS server for the site. DNSSec, although
designed primarily to protect IP addresses, can be used to protect other information
(such as the cryptographic certifi cates stored in DNS). RFC 4367 describes how to use
DNS to distribute certifi cates, including those used for email, so it is possible to use
DNSSec as a global infrastructure for secure email.

However, DNSSec does not say anything about the confi dentiality of data. That is,
all DNSSec responses are authenticated but not encrypted (we’ll talk more about the
differences in Chapter 29). It also really doesn’t protect against denial-of-service attacks
directly, although DNSSec does provide some benefi t through the authentication fea-
tures of the digital signature. Other methods must be used to protect bulk data, such
as a large zone transfer. Of course (per RFC 4367) DNSSec cannot prevent users from
making false assumptions about domain names, such as the idea that the organization’s
name plus .com is always the company (or bank) Web site they are looking for. But
at least DNSSec can authenticate that the data provided by DNS is actually from the
domain owner.

The current DNSSec specifi cations describe DNSSec-bis. The most important are
RFC 4033, RFC 4034, and RFC 4035.

DNS Tools: nslookup, dig, and host
The Berkeley Internet Name Domain (BIND), developed for the Unix environment,
is both resolver and name server. When BIND is running as name server, the process
is named. Entire books have been written about DNS and BIND, so this chapter can
only look at a few of the things that can be explored with a few simple DNS tools and
 utilities.

BIND confi guration statements for a zone are in named.conf, usually found in /etc—
where the name servers to be contacted (in resolv.conf) are also located. A “hints” fi le
(variously named named.ca, named.root, or root.cache) has information about the
root servers and essentially “primes” the DNS cache at start-up.

The nslookup utility program allows a user to interact with a DNS name server
directly. Options allow the user to display detailed query and response information
as needed. Originally a testing tool, nslookup functions in both interactive and non-
 interactive mode. Today, the use of nslookup is deprecated, and it is not included in
many operating system distributions. Its functionality has been taken over by dig and
host.

The Domain Internet Groper (dig) DNS query tool is more general than nslookup,
and is often used with other tools. It has a consistent output format that is easily parsed
with other programs, and is available for Windows 2000/XP (but not 98/ME).

CHAPTER 19 The Domain Name System 497

Over time, dig developed a distinct “feature sprawl” that offended some who favored
clean and mean Internet tools. The host utility by Eric Wassenaar is intended to be an
evolutionary step for both nslookup and dig. The examples in this chapter will use dig
as well as nslookup, if only because of the familiarity of the nslookup format.

DNS IN ACTION
Putting a functioning DNS system on the Illustrated Network will allow us to do things
such as ping winsrv1.booklab.englab.jnpr.net instead of having to know the IP address
and use ping 10.10.11.111. We’ll go against common wisdom and make a Windows
XP system (winsrv1) our primary DNS server, and we will use the FreeBSD server
 (bsdserver) as the secondary DNS for LAN1 and LAN2. Windows XP Pro does not
support DNS natively, so we’ll use a GUI-based DNS server package called SimpleDNS
instead of BIND.

Once DNS is up and running, we have to ensure that all hosts know where to fi nd it.
On lnxclient, and most Unix hosts, we just add them to the /etc/resolv.conf fi le.

search booklab.englab.jnpr.net englab.jnpr.net jnpr.net
nameserver 10.10.11.111
nameserver 10.10.12.77

Now, let’s see how DNS works to fi nd local hosts.

[root@lnxclient admin]# nslookup
Note: nslookup is deprecated and may be removed from future releases.
Consider using the 'dig' or 'host' programs instead. Run nslookup with
the '-sil[ent]' option to prevent this message from appearing.
> winsrv1
Server: 10.10.11.111
Address: 10.10.11.111#53

Name: winsrv1.booklab.englab.jnpr.net
Address: 10.10.11.111
> winscli1
Server: 10.10.11.111
Address: 10.10.11.111#53

Name: wincli1.booklab.englab.jnpr.net
Address: 10.10.11.51
> bsdserver
Server: 10.10.11.111
Address: 10.10.11.111#53

Name: bsdserver.booklab.englab.jnpr.net
Address: 10.10.12.77
>

Note the “warning” about continued use of nslookup. But it still works. Of course, if
we pause the DNS on winsrv1, we can still get a response from bsdserver (as long as a
zone transfer has taken place).

498 PART IV Application Level

> lnxserver
Server: 10.10.12.77
Address: 10.10.12.77#53

Non-authoritative answer:
Name: lnxserver.booklab.englab.jnpr.net
Address: 10.10.11.66

Simple DNS has a nice GUI, in contrast to the text fi les used in most Unix DNS
 versions (as shown in Figure 19.4).

The Ethereal capture in Figure 19.5 shows the utter simplicity of the DNS message
exchanges. There’s even a nice log of these messages, as shown in Figure 19.6 (it also
tracks DHCP leases when dynamic DNS is used).

Now we can fi nally ping on the Illustrated Network the “normal” way.

[root@lnxclient admin]# ping wincli1.booklab.englab.jnpr.net
PING wincli1.booklab.englab.jnpr.net (10.10.11.51) 56(84) bytes of data.
6 4 bytes from wincli1.booklab.englab.jnpr.net (10.10.11.51): icmp_seq=1
ttl=126 time=0.768 ms

6 4 bytes from wincli1.booklab.englab.jnpr.net (10.10.11.51): icmp_seq=2
ttl=126 time=0.283 ms

FIGURE 19.4

DNS records on winsrv1 using a GUI. Note the various record types (the name servers in
 particular).

CHAPTER 19 The Domain Name System 499

FIGURE 19.5

DNS server reply. Note that the question fi eld shows up as “queries.”

FIGURE 19.6

DNS server log showing the history of queries and responses.

500 PART IV Application Level

6 4 bytes from wincli1.booklab.englab.jnpr.net (10.10.11.51): icmp_seq=3
ttl=126 time=0.285 ms

6 4 bytes from wincli1.booklab.englab.jnpr.net (10.10.11.51): icmp_seq=4
ttl=126 time=0.259 ms

6 4 bytes from wincli1.booklab.englab.jnpr.net (10.10.11.51): icmp_seq=5
ttl=126 time=0.276 ms

6 4 bytes from wincli1.booklab.englab.jnpr.net (10.10.11.51): icmp_seq=6
ttl=126 time=0.244 ms

6 4 bytes from wincli1.booklab.englab.jnpr.net (10.10.11.51): icmp_seq=7
ttl=126 time=0.259 ms

^C

--- wincli1.booklab.englab.jnpr.net ping statistics ---
7 packets transmitted, 7 received, 0% packet loss, time 8080ms
rtt min/avg/max/mdev = 0.244/0.325/0.768/0.158 ms
[root@lnxclient admin]#

LAN1 is also running a DNS server on lnxserver, and to keep the confi guration
very simple only functions as a non-authoritative server. The confi guration is short and
sweet:

lnxserver$ cat /etc/named.conf
options {
 directory "/var/named";
};
// this is a caching only name server zone configuration
zone "." {
 type hint;
 file "named.ca";
};
zone "0.0.127.in-addr.local";
 type master;
 file "named.local";
};

The two zone statements only point to the root servers on the Internet (in the hints fi le
named.ca) and make this server the master for its own loopback address. These two
zones appear in all name server confi gurations.

We should also limit the hosts from which recursion can be performed on the
caching name server. Otherwise, it might get used as a denial-of-service amplifi er. That
section would be:

allow-recursion { 127.0.0.1;
10.10.11.0/24;
};

We’ll point to the lnxserver name server on wincli1 on LAN1 and use nslookup to
verify that we can still fi nd the Internet name servers. At the interactive DNS prompt
(>), we’ll set the type of query to send to ns for name servers and we will look for “com.”

CHAPTER 19 The Domain Name System 501

This is the root of the entire “.com” Domain Name Space (note that we ask for com. and
not .com without the ending dot). Otherwise, the system would append a suffi x and try
to fi nd com.booklab.englab.jnpr.net and return an error (unless we did have a system
named “com” on the network).

> com.
Server: lnxserver.booklab.juniper.net
Address: 192.168.27.14

Non-authoritative answer:
com nameserver = f.gtld-servers.net
com nameserver = g.gtld-servers.net
com nameserver = h.gtld-servers.net
com nameserver = i.gtld-servers.net
com nameserver = j.gtld-servers.net
com nameserver = k.gtld-servers.net
com nameserver = l.gtld-servers.net
com nameserver = m.gtld-servers.net
com nameserver = a.gtld-servers.net
com nameserver = b.gtld-servers.net
com nameserver = c.gtld-servers.net
com nameserver = d.gtld-servers.net
com nameserver = e.gtld-servers.net

a.gtld-servers.net internet address = 192.5.6.30
a.gtld-servers.net AAAA IPv6 address = 2001:503:a83e::2:30
b.gtld-servers.net internet address = 192.33.14.30
b.gtld-servers.net AAAA IPv6 address = 2001:503:231d::2:30
c.gtld-servers.net internet address = 192.26.92.30
d.gtld-servers.net internet address = 192.31.80.30
e.gtld-servers.net internet address = 192.12.94.30
f.gtld-servers.net internet address = 192.35.51.30
g.gtld-servers.net internet address = 192.42.93.30
h.gtld-servers.net internet address = 192.54.112.30
i.gtld-servers.net internet address = 192.43.172.30
j.gtld-servers.net internet address = 192.48.79.30
k.gtld-servers.net internet address = 192.52.178.30
l.gtld-servers.net internet address = 192.41.162.30
m.gtld-servers.net internet address = 192.55.83.30

There are 13 servers, A through M, on the fi rst part of the list. But instead of being
called “root servers” these are “gltd servers.” GLTD stands for generic top-level domains
(sometimes seen as gTLD), and that’s what the traditional Internet host name endings
such as .com, .mil, .org, and so on are in DNS. There are also ccTLDs (country code
TLDs), such as .fr for France and .ca for Canada.

Note that the A and B GTLD servers return AAAA record types, showing that the
A6 and DNAME records (once so promising) are obsolete. We’re not supposed to use
nslookup (dig is not built into Windows XP, but can be installed as freeware). Let’s see
what dig can do, this time on the FreeBSD client.

502 PART IV Application Level

bsdclient# dig

; <<>> DiG 8.3 <<>>
;; res options: init recurs defnam dnsrch
;; got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 10624
;; flags: qr rd ra; QUERY: 1, ANSWER: 13, AUTHORITY: 0, ADDITIONAL: 13
;; QUERY SECTION:
;; ., type = NS, class = IN

;; ANSWER SECTION:
. 12h46m16s IN NS d.root-servers.net.
. 12h46m16s IN NS a.root-servers.net.
. 12h46m16s IN NS h.root-servers.net.
. 12h46m16s IN NS c.root-servers.net.
. 12h46m16s IN NS g.root-servers.net.
. 12h46m16s IN NS f.root-servers.net.
. 12h46m16s IN NS b.root-servers.net.
. 12h46m16s IN NS j.root-servers.net.
. 12h46m16s IN NS k.root-servers.net.
. 12h46m16s IN NS l.root-servers.net.
. 12h46m16s IN NS m.root-servers.net.
. 12h46m16s IN NS i.root-servers.net.
. 12h46m16s IN NS e.root-servers.net.

;; ADDITIONAL SECTION:
d.root-servers.net. 12h46m16s IN A 128.8.10.90
a.root-servers.net. 12h46m16s IN A 198.41.0.4
h.root-servers.net. 12h46m16s IN A 128.63.2.53
c.root-servers.net. 12h46m16s IN A 192.33.4.12
g.root-servers.net. 12h46m16s IN A 192.112.36.4
f.root-servers.net. 12h46m16s IN A 192.5.5.241
b.root-servers.net. 12h46m16s IN A 192.228.79.201
j.root-servers.net. 12h46m16s IN A 192.58.128.30
k.root-servers.net. 12h46m16s IN A 193.0.14.129
l.root-servers.net. 12h46m16s IN A 198.32.64.12
m.root-servers.net. 12h46m16s IN A 202.12.27.33
i.root-servers.net. 12h46m16s IN A 192.36.148.17
e.root-servers.net. 12h46m16s IN A 192.203.230.10

;; Total query time: 1 msec
;; FROM: bsdclient.booklab.englab.jnpr.net to SERVER: 10.10.11.66
;; WHEN: Fri Feb 22 10:10:00 2008
;; MSG SIZE sent: 17 rcvd: 449

bsdclient#

That’s a lot more detailed information, and it doesn’t use an interactive prompt.
By default, dig looks for root NS records and serves up fl ags, TTL information (in user-
friendly units), and so on. Let’s look at a more complete (or realistic) example and look

CHAPTER 19 The Domain Name System 503

for the IP address of the server for www.amazon.com (perhaps so you can prepare to
order more copies of this book).

bsdclient# dig www.amazon.com

; <<>> DiG 8.3 <<>> www.amazon.com
;; res options: init recurs defnam dnsrch
;; got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 10904
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0
;; QUERY SECTION:
;; www.amazon.com, type = A, class = IN

;; ANSWER SECTION:
www.amazon.com. 1m7s IN A 207.171.175.35

;; Total query time: 95 msec
;; FROM: bsdclient.booklab.englab.jnpr.net to SERVER: 10.10.11.66
;; WHEN: Fri Feb 22 10:40:17 2008
;; MSG SIZE sent: 32 rcvd: 48

dig got us an answer, but not an authoritative one (AUTHORITY: 0). To get the author-
itative answer to the Amazon Web site, and not something from cache, we’ll have to fi nd
the Amazon name servers and ask one of them.

bsdclient# dig www.amazon.com ns

; <<>> DiG 8.3 <<>> www.amazon.com ns
;; res options: init recurs defnam dnsrch
;; got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 44598
;; flags: qr rd ra; QUERY: 1, ANSWER: 4, AUTHORITY: 0, ADDITIONAL: 1
;; QUERY SECTION:
;; www.amazon.com, type = NS, class = IN

;; ANSWER SECTION:
www.amazon.com. 21h7m55s IN NS ns-40.amazon.com.
www.amazon.com. 21h7m55s IN NS ns-30.amazon.com.
www.amazon.com. 21h7m55s IN NS ns-20.amazon.com.
www.amazon.com. 21h7m55s IN NS ns-10.amazon.com.

;; ADDITIONAL SECTION:
ns-40.amazon.com. 21h7m55s IN A 207.171.169.7
;; Total query time: 1 msec
;; FROM: bsdclient.booklab.englab.jnpr.net to SERVER: 10.10.11.66
;; WHEN: Fri Feb 22 10:38:37 2008
;; MSG SIZE sent: 32 rcvd: 128

Amazon has four name servers (note we found these answers cached, because of
the AUTHORITY: 0). We’ll ask ns-40 about Amazon’s Web site:

504 PART IV Application Level

bsdclient# dig @ns-40.amazon.com www.amazon.com A

; <<>> DiG 8.3 <<>> @ns-40.amazon.com www.amazon.com A
; (1 server found)
;; res options: init recurs defnam dnsrch
;; got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 6717
;; flags: qr rd; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIONAL: 0
;; QUERY SECTION:
;; www.amazon.com, type = A, class = IN

;; AUTHORITY SECTION:
www.amazon.com. 1m7s IN A 207.171.166.48

;; Total query time: 3 msec
;; FROM: bsdclient.booklab.englab.jnpr.net to SERVER: 204.74.101.1
;; WHEN: Fri Feb 22 10:32:52 2008
;; MSG SIZE sent: 32 rcvd: 112

Now AUTHORITY: 1 appears. It’s nice to know that Amazon’s own name server
is authoritative for itself. But let’s not get too worried about authoritative answers.
Cached information is usually just as good. In fact, look what happens when we repeat
the query.

bsdclient# dig @ns-40.amazon.com www.amazon.com A

; <<>> DiG 8.3 <<>> @ns-40.amazon.com www.amazon.com A
; (1 server found)
;; res options: init recurs defnam dnsrch
;; got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 52895
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0
;; QUERY SECTION:
;; www.amazon.com, type = A, class = IN

;; ANSWER SECTION:
www.amazon.com. 1m7s IN A 207.171.175.35

;; Total query time: 91 msec
;; FROM: bsdclient.booklab.englab.jnpr.net to SERVER: 207.171.169.7
;; WHEN: Fri Feb 22 10:55:29 2008
;; MSG SIZE sent: 32 rcvd: 48

Isn’t the ns-40 server still authoritative? Sure, but our earlier query just popped that
information into the local cache. Why fetch up an authoritative reply when there’s one
just as good in cache? Caching can be a nuisance when trying to “force” authoritative
answers, especially across the Internet.

Dig has been criticized for feature bloat. For comparison, the host DNS utility retains
the clean and sparse Unix output philosophy.

CHAPTER 19 The Domain Name System 505

bsdclient# host www.amazon.com
www.amazon.com has address 207.171.166.102
bsdclient#

Even at its most verbose, host is not as forthcoming as the other utilities.

bsdclient# host -v www.amazon.com ns-40.amazon.com
Using domain server:
Name: ns-40.amazon.com
Addresses: 207.171.169.7

Trying null domain
rcode = 0 (Success), ancount=1
The following answer is not verified as authentic by the server:
www.amazon.com 67 IN A 207.171.175.29

This has been by no means an exhaustive look at how DNS acts. For more informa-
tion, the excellent DNS and BIND by Cricket Liu (O’Reilly Media) should be consid-
ered defi nitive.

506 PART IV Application Level

QUESTIONS FOR READERS
Figure 19.7 shows some of the concepts discussed in this chapter and can be used to
help you answer the following questions.

1. How many questions (queries) are usually present in a DNS request?

2. Is the message in the fi gure a query or a response?

3. What are the host names of the client and the DNS server on the Illustrated
 Network that correspond to the IP addresses in the fi gure?

4. The fl ag fi eld value is 0x8580. Is the DNS server authoritative for the zone?

5. Based on the fl ag fi eld value, is recursion desired and available?

FIGURE 19.7

A DNS server reply message parsed by Ethereal.

507

CHAPTER

What You Will Learn
In this chapter, you will learn how FTP provides a method to move fi les around the
Internet. We’ll examine various aspects of FTP as a protocol and as an application,
showing how commands translate to protocol actions.

You will learn about the differences between FTP’s active and passive modes
of operation. We’ll discuss how security concerns affect the operation of FTP.

File Transfer Protocol 20

The original Internet boasted three applications: electronic mail, remote computer
access, and remote fi le access. Over time, not only have these three been joined by a
host of others but the original applications have evolved to keep pace with expansion
of the Internet and the environment of the modern world. As a simple example of this
trend, these applications have all moved beyond their simple commands typed in at a
prompt to graphical front ends. These GUIs make the applications more accessible to
novices, but at the same time mask the details of protocol operation from users. Yet in
most cases the original protocols are still there, running behind the scenes, as this look
at the File Transfer Protocol (FTP) will show.

FTP transfers a copy of a fi le. The original fi le is usually still present on the source
host, available for copying over and over as remote users request it. Copying fi les
between two different computer systems has always been more diffi cult than it seems.
Today, most users are familiar with the differences between Windows fi le formats and
those used by Apple, which is why one can’t usually take a fl oppy or CD from one and
load it on the other. When other fi le systems are considered, such as the varieties of
Unix and older formats used by minicomputer and mainframe vendors (many of which
could not be copied between computer models from the same vendor), it is no won-
der the FTP is one of the most elaborate and robust applications in TCP/IP (although
format conversion is much less of a concern than it used to be).

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80:205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177 eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

FTP
Server

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65459

Wireless
in Home

FTP
Client

Solid rules � SONET/SDH
Dashed rules � Gig Ethernet
Note: All links use 10.0.x.y
addressing...only the last
two octets are shown.

FIGURE 20.1

FTP client and servers on the Illustrated Network use Unix-based and Windows hosts.

510 PART IV Application Level

FTP
Client

FTP
Server

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80:205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166 LAN2: 10.10.12.52 LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

ge-0/0/3

16.2

ge-0/0/3

16.1

Best ISP

AS 65127

Global Public
Internet

CHAPTER 20 File Transfer Protocol 511

OVERVIEW
Of all the applications covered in this book, FTP is the one we’ve used most on the
Illustrated Network. Whenever we had software to install, capture fi les to consolidate,
or screen images to transfer, we used FTP to move them around. Every server device
had a different FTP package installed, from the “native” FreeBSD and Linux CLI version
to a couple of different GUI FTP servers for Windows XP.

That said, the “experimental” nature of the Illustrated Network should be noted.
FTP is still useful for fi le transfers on the global public Internet (especially a form
known as anonymous FTP), but in the real world it’s better practice to use an authen-
ticated form of fi le transfer such as SFTP or SCP (discussed at the end of this chap-
ter). Let’s take a look at how these applications look and feel. Then we’ll explore the
basics of FTP operation in a little more detail. This chapter makes FTP servers out of
winsrv1 and winsrv2. We’ll access them from bsdclient and lnxclient, as shown in
Figure 20.1.

The CLI versions of FTP depend on commands, of course. The GUI version depends
on commands as well, but these are often hidden from the user (some show the com-
mands executed after you click on a button or icon). This is not an FTP tutorial, and
FTP application’s commands are not part of the FTP protocol, but this will give a feel
for the number of things FTP can do. You can look at the commands a client can use
to tell the servers what to do in FreeBSD and Linux. These are the FTP help command
listings. The following is FreeBSD:

bsdclient# ftp
ftp>> help
Commands may be abbreviated. Commands are:

! chmod ftp ls msend proxy rhelp system
$ close get macdef newer put rmdir tenex
account cr gate mdelete nlist pwd rstatus trace
append debug glob mdir nmap quit runique type
ascii delete hash mget ntrans quote send umask
bell dir help mkdir open recv sendport user
binary disconnect idle mls page reget site verbose
bye edit image mode passive rename size ?
case epsv4 lcd modtime preserve reset status
cd exit less more progress restart struct
cdup form lpwd mput prompt restrict sunique
ftp>>

The list given by Linux is similar, but not the same. Most of the commands appear
in both lists, but 6 are unique to Linux and 11 are unique to FreeBSD. Some are quite
handy, such as the ability in FreeBSD’s FTP to preserve the modifi cation timestamp on
downloaded fi les. Usually, the “extra” commands are used to determine how fi les are
handled before or after they are transferred. The actual session commands are fairly
consistent, and they both get the job done.

512 PART IV Application Level

The biggest difference in FTP application-level operation is between the “regular”
use of the port command and the use of the passive (PASV) command. Until recently,
it was the server that supplied the port number assignment to use for the data connec-
tion and then opened the connection. But in passive mode the port number and open
command used for the data connection is supplied by the client instead of the server,
mainly to satisfy fi rewall rules and still allow FTP to function. We’ll talk more about this
later in this chapter, because it can cause problems when fi rewalls are in use, which
should be just about always today.

First, let’s see if the FreeBSD or Linux versions of Unix differ in how their FTP client
implementations handle the PASV mode. In both cases, we’ll fetch the same fi le from
the FTP server running on winsrv1.

PORT and PASV
In both FreeBSD and Linux, passive mode is the default. The FTP passive command is a
toggle that turns the mode on and off as it is entered.

ftp> passive
Passive mode off.
ftp> passive
Passive mode on.
ftp>

The following shows a little 30,000-byte fi le called testfile.zip from the CLI on
FreeBSD and Linux. This example uses a plain text password, but only for instructional
purposes.

bsdclient# ftp
ftp> open 10.10.11.111
Connected to 10.10.11.111.
220 Fastream NETFile FTP Server Ready
Name (10.10.11.111:admin): walter
331 Password required for walter.
Password: (not shown)
230 User walter logged in.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> get testfile.zip
local: testfile.zip remote: testfile.zip
227 Entering Passive Mode (10,10,11,111,7,69).
150 Opening data connection for testfile.zip.
100%
|***
***************************| 30642 00:00 ETA
226 File sent ok
30642 bytes received in 0.10 seconds (306.08 KB/s)
ftp>

CHAPTER 20 File Transfer Protocol 513

We like the fact that the client shows we are in passive mode and tells me the port
number I’m going to use to open the data connection to the server. We also like the
tick mark progress bar and the statistics displayed. Let’s look at what we get in Linux:

[root @lnxclient admin]# ftp
ftp> open 10.10.11.111
Connected to 10.10.11.111.
220 Fastream NETFile FTP Server Ready
500 'AUTH': command not understood.
500 'AUTH': command not understood.
KERBEROS_V4 rejected as an authentication type
Name (10.10.11.111:admin): walter
331 Password required for walter.
Password: (not shown)
230 User walter logged in.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> get testfile.zip
local: testfile.zip remote: testfile.zip
227 Entering Passive Mode (10,10,11,111,7,80).
150 Opening data connection for testfile.zip.
226 File sent ok
30642 bytes received in 0.0065 seconds (4.6e+03 Kbytes/s)
ftp>

Linux is more terse and tries to use Kerberos (a more secure authentication method),
going back to simple userID and password only when it has to. We are comparing vari-
ants of the default FTP client on these systems rather than something built into the
systems themselves or a high-quality FTP application. However, we’ll look at the packet
capture as well.

Let’s see what these exchanges look like when captured by Ethereal. Figure 20.2
shows the packets from the time the user logs into the server until that data connec-
tion is used.

It is reassuring to note that the client does indeed use the port expected by the
server (7 3 256 5 1792 1 98 5 1890), although the port is not in the currently
accepted range for these ports. Figure 20.3 shows the same using the Linux client.

As expected with an application as widely used and as venerable as FTP, there are
only a few differences here and there. Note that the Windows XP fi le server identifi es

FTP Features
Most features that you get by default in some FTP applications (such as the
 transfer progress “tick marks”) must be explicitly turned on in other FTP
 implementations.

514 PART IV Application Level

itself as a “Unix Type” fi le server. FreeBSD tries an initial EPSV, the RFC 2428 extended
 passive command for IPv6, and network address translation (NAT) environments and
FTP. (We’ll talk all about EPSV later in the chapter.) It then uses, as Linux does from the
start, the PASV command.

Linux is more in line with current client port usage conventions, using 33371 rather
than FreeBSD, which still is using four-digit port numbers. In both cases, the data trans-
fer does not use the well-known port 20 on the server side.

FIGURE 20.2

FTP passive using FreeBSD, showing that the client initiates the data connection.

FIGURE 20.3

FTP passive using Linux. The port numbers are more in line with current practice.

CHAPTER 20 File Transfer Protocol 515

FTP AND GUIS
When it comes to Windows, winsrv1 is running the FTP package Fastream and winsrv2
is running FileZilla. We had no familiarity with these packages: they were just the fi rst
“shareware” ones we found when looking on the Web. Again, given the history of vul-
nerabilities in FTP servers and the possible consequences of having a server subverted
you should not run random FTP software found on the Internet except in tightly con-
trolled circumstances like these.

The Fastream NETFile FTP server is also an HTTP Web server and is free for personal
use. It has a nice logging capability, which can display on-screen and save to a fi le at the
same time. This is shown in Figure 20.4.

FileZilla has the most impressive array of log-in variations, as shown in Figure 20.5.
We’ll say more about SSL and SSH in later chapters. SFTP solves many of the problems
running FTP with tunnels and NAT can cause.

In addition, almost all Web browsers can handle FTP as well as HTTP, the Web
protocol. This is part of the “universal client” role of the browser.

For example, if we use the Web browser on winsrv1 to “visit” the FTP server on
winsrv2 (ftp://winsrv2), we are still asked to log in (no anonymous user is defi ned on
winsrv2, but if it had been, no log-in screen would appear. The log-in request is shown
in Figure 20.6.

FIGURE 20.4

Fastream FTP logging. Note the amount of detail provided.

516 PART IV Application Level

FIGURE 20.5

FileZilla FTP log-in variations. SFTP is part of SSH2, but is a separate protocol.

FIGURE 20.6

FTP browser log-in screen, showing how verbose a GUI can be compared to CLI implementations.

CHAPTER 20 File Transfer Protocol 517

But once we log in properly, we will get a listing of the default FTP directory. This
directly, C:\NFRoot, contained a series of Ethereal capture fi les when this was done (as
shown in Figure 20.7).

FTP Basics
FTP was defi ned in RFC 959 and updated in RFC 2228, RFC 2640, RFC 2773, RFC
3659 and several others. One major difference between FTP and almost every other
application is the fact that FTP employs not one but two ports between client and
server. One explanation is that there is always an available control connection to
quickly countermand actions that have unintended or unexpected results. But RFC
959 simply notes that the control connection essentially uses the remote access tel-
net protocol, leading one to believe that the developers wanted to use something
already existing.

The FTP control connection is set up in the usual client–server fashion. That is,
an FTP server process (such as ftpd) is listening for clients’ connection requests. The
 number of simultaneous clients an FTP server can accept varies and is usually a
 confi gurable parameter, but limits well above 100 are not unusual.

FIGURE 20.7

Browser FTP listing, showing how a browser can act as a “universal client.”

518 PART IV Application Level

The FTP server requires a log-in from the user, and in many cases servers will allow
a special log-in for anonymous FTP. The user is supposed to use their email address
as a password, a primitive auditing measure. Anonymous FTP implementations used to
allow users to simply press Enter and leave the anonymous password fi eld blank, but
many FTP implementations now demand at least something at the password prompt.
Some do not allow more creative substitutes for an email address, and many FTP servers
check for things such as the presence of dots and the at sign (@) to try to enforce some
semblance of honesty. In many cases, the FTP server will accept a similar term such as
guest or visitor. The point behind anonymous FTP is that users are not required to
have a valid user ID or password on the remote system in order to be able to access
fi les in some directories.

Of course, there are fi le areas on the FTP server that should only be accessed by
authenticated users of the remote system. Private IDs can be combined with anon-
ymous FTP to protect certain areas of the fi le system while allowing public access
to others. Of course, this does not stop people from trying to access fi les they had no
business seeing, but if the fi le system permissions are set up correctly (or at all), FTP is
highly secure. However, the best way to prevent access to sensitive fi les is not to put
them on an FTP server with public access in the fi rst place.

The well-known port of the control connection is TCP port 21. The client runs
the FTP client program and uses an ephemeral port to begin the interaction with the
server. This connection asks for the user ID and password, anonymous or not, and is
nothing more than a normal remote log-in session using the Telnet application.

Once logged in, the user is placed in a default fi le system directory. Navigation out-
side this directory might be permitted, but usually there’s a good reason to direct a user
to this particular directory, and thus outside access should be unnecessary.

FTP Commands and Reply Codes
Users are sometimes surprised to see that FTP employs a very rich protocol all by itself.
When run in interactive mode from the command line, FTP supplies its own prompt
(like DNS) and supplies users with return codes for everything they type in.

The client and server have a conversation over the control connection, with the
user at the client typing simple commands and sending them to the server process
over the control connection. Some of the more common and helpful FTP commands
are outlined in Table 20.1. These are the commands users type. But FTP sends four-
 character representations of these commands. For example, a get is a RETR (retrieve)
and a put is STOR (store).

The server receives the command, takes the appropriate action (if allowed), and
returns a numeric reply code. The reply codes are translated by the FTP client into text
that can be understood easily and displayed at the prompt. The displayed text can vary
from system to system because each FTP client implementation is free to interpret the
reply codes, within reason, and display that text to the user. The meanings of the fi rst
and second digits of the reply codes are outlined in Table 20.2.

The third digit adds details. For example, the reply code 500 means that there is
a syntax error and an unrecognized command has been sent to the server. The reply

CHAPTER 20 File Transfer Protocol 519

Table 20.1 Common FTP Commandsa

Command Meaning

Open Create an FTP connection between the two hosts.

Close Close an FTP connection between two hosts.

Bye End the FTP session.

Get Retrieve a remote fi le from the remote host.

Put Store a fi le on the remote host.

Mget Get multiple fi les using wildcards (for example, mget a* fetches all fi les
that being with the letter “a” in the current directory).

Mput Put multiple fi les on the remote host using wildcards.

Glob Enable wildcard interpretation. This is usually on by default.

Ascii The fi le transferred is in ASCII representation (a common default).

Binary The fi le is in image (binary) format (sometimes the default), and is useful
for programs and formatted word processing fi les.

Cd Change the directory on the remote host.

Dir Get a directory listing from the remote host.

Ldir Get a directory listing from the local host.

Hash Display hash marks (dots) to show fi le transfer progress.

a These commands are not part of the FTP protocol.

code 501 means the syntax error is in the command arguments. If the reply code
 generates more than one line at the client (for example, if the valid arguments are
listed), the reply code appears on the fi rst line with a hyphen and is repeated at the
end of the text.

The user then can type in another command. Common FTP replies, including the
text that could be displayed with them, are:

■ 125 Data connection open and transfer starting
■ 200 Command okay
■ 214 Help message (text follows)
■ 331 User name okay, password required
■ 425 Unable to open data connection
■ 452 Error writing fi le
■ 500 Command syntax error
■ 501 Argument syntax error

Sessions end with the user typing bye or quit at the FTP prompt. The server should
respond with a 221 reply, usually displayed as 221 Goodbye. In some cases, the server

520 PART IV Application Level

Table 20.2 FTP Protocol Reply Codes

Reply Meaning

1xx Positive response, but preliminary. Action begun, but wait for another reply
before sending further commands.

2xx Positive completion. New commands can be sent.

3xx Positive response, but intermediate. Command accepted, but another
 command is required to complete the action.

4xx Negative reply, but transient. Action did not take place, but the condition is
temporary and the same command can be used again.

5xx Negative reply, permanent. Action did not take place, and cannot be done.
The command should not be sent again in that form.

x0x Syntax error.

x1x Information.

x2x Reply refers to control or data connections.

x3x Reply refers to authenticating and accounting commands, such as login.

x4x Unspecifi ed.

x5x File system status information.

simply disappears, and one client we’ve used groused in the session log You could
at least say Goodbye. But it is a sign of the robustness and stability of FTP that such
breaches of protocol seldom mean that things do not work properly overall.

One advantage of running FTP from the command line instead of from a GUI is
that the user can type in the entire array of FTP commands, which typically number
50 or more. GUI point-and-click clients can be prettier and easier, but do not always
implement the full suite of FTP commands. (Some of the commands are seldom used or
necessary today, such as glob, but might come in handy in certain situations.)

FTP Data Transfers
At some point in the FTP conversation between client and server port 21, the user
will use a command that will trigger a fi le transfer. The transfer might not be the
actual fi le itself, such as with get or put. Often, the user requests a fi le directory list-
ing from the present working directory on the server with the dir command, usually
to ensure that the desired fi le is there or to check the spelling after the fi rst transfer
attempt has failed. These actions require the server to set up an FTP data connection.
(The control connection is just a Telnet remote access session and is inappropriate for
bulk data transfer anyway.) The FTP model of control and data connections is shown
in Figure 20.8.

CHAPTER 20 File Transfer Protocol 521

Consider what happens when a user at an FTP client types in the dir command to
receive a list of the contents of the remote host’s directory. This requires the establish-
ment of a data connection on the part of the server. The server normally uses well-
known TCP port 20 as the server end of the data connection. But how does the client
know which ephemeral port to listen on for the data?

The server sends an FTP PORT command over the control connection to the client
with this information. This tells the client which port should be used at the client end
for the data connection. So that there is no misunderstanding, the server includes the
client’s IP address as well. Thus, the command really supplies socket information. The
PORT command is sent over the control connection and is formatted as if it were data
to appear on a Telnet terminal, including control characters such as \n (new line).

The port number is expressed as two independent numbers. The fi rst is multiplied
by 256 and added to the second (which must be in the range 0–255) to give the client’s
port number. So, if the PORT command ends with the numbers 14, 234 (excluding the
control characters) the port number the client should use for the data connection is
3818 (14 3 256 5 3584 1 234 5 3818).

The client issues a passive open on port 3818, and the FTP server now sends a TCP
SYN message to open the TCP session and send the dir listing as requested. The server
usually closes the data connection as soon as the transfer is complete.

The control connection process of obtaining a simple dir listing from a remote
FTP server is shown in Figure 20.9. Note that the client issues FTP commands and the
server replies with codes.

The activity on the data connection is shown in Figure 20.10. Although in many
cases the data connection uses well-known port 20 on the server, it does not have to.

FTP Client

User

FTP Server

FTP Server
Protocol

Data Transfer
Protocol

TCP Port

20
File

System
File

System

TCP Port

21

FTP Client Protocol

Data Transfer
Protocol

Data
Connection

Control
Connection

TCP Port

TCP Port

7894

8639

User interface,
GUI or CLI

FIGURE 20.8

FTP control and data connections, showing how both are used in an FTP application.

522 PART IV Application Level

(Starts FTP to server) (Starts ftpd)

(Password
required)

(User ID and
password okay)

(Port 3818 used
on Client)

220 with server welcome message

331 Password required for User ID

230 with user logged in message

PORT 192,168,14,27,14,232

200 PORT command successful

226 transfer complete

221 Goodbye

150 opening ASCII mode

LIST

PASS with password

USER with User ID

ACK

ACK

ACK

ACK

QUIT

Client–Server Control Connection

User Types
in User ID

User Types
in Password

User Types
in ‘dir’

User Types
in ‘quit’

(Open data connection)

(Use and close data connection)

FIGURE 20.9

FTP control connection, showing how a directory listing proceeds.

CLIENT Client–Server Data Connection

Listing Displayed

SERVER

(Active open for
data connection)

TCP SYN for new connection

TCP SYN for new connection

TCP PSH with dir listing content

TCP FIN to close connection

TCP ACK for data

TCP FIN to close connection

TCP ACK

ACK
(Get dir listing)

(Active close)

FIGURE 20.10

FTP data connection. The connection does not have to use port 20 on the server.

CHAPTER 20 File Transfer Protocol 523

Passive and Port
Using the PORT command is not the only way the port used for the FTP data connection
is determined. Today, the PORT command is considered in many cases to be an unac-
ceptable security risk to an organization. This is because the PORT command requires
an external FTP server to open a connection to an internal client. It is possible for a
fi rewall to support incoming TCP connections for FTP, but with the common use of
network address translation (see Chapter 27) it is simpler to use passive. (In larger
installations using fi rewalls and NAT, collisions among the incoming port numbers are
common anyway.)

FTP Passive
FTP supports two different methods of data connection establishment. In the
 normal active mode using PORT, the server (1) initiates the data connection, then
(2) the client asks for a data transfer and (3) the client responds. In passive mode
(PASV), the client tells the server that the client will initiate the data connection
and the server responds. Passive mode allows the transfer to proceed when mod-
ern client devices are prohibited from accepting incoming data connections.

Consider the implication for a user sitting at a client host on a corporate LAN. We
haven’t talked about security in any detail, but in many cases the company will employ
a fi rewall between internal LANs and the external world of the Internet. The fi rewall’s
job is to prevent malicious hackers or their code from attacking the hosts on the inter-
nal network.

One of the ways fi rewalls do this is to prevent any outside devices from establishing
TCP connections to any internal client hosts on the LAN (publicly accessed servers are
typically isolated, physically and logically, from purely internal hosts). Hosts accepting
outside connections are seen, from the fi rewall’s perspective, as vulnerable to any num-
ber of malicious worms or viruses. Many inexpensive fi rewalls also see an external FTP
server’s attempt to establish a TCP data connection to the client as a potential hostile
attack. This attempt is blocked, and the transfer fails.

The PASV command reverses the procedure, and lets the client open the data con-
nection to the server. Figure 20.11 shows the major difference between a client using
the POST and PASV commands to initiate a data transfer. In both cases, the client uses
port 4122 for the data connection. However, in active mode the server initiates the data
connection and uses well-known port 20. In passive mode, the client initiates the data
connection and listens on port 2020 instead of 20 for the connection.

However, all might still not be well. Many fi rewalls will not allow internal hosts to
open connections to external ports that are not well known. After all, the malicious
user could be on the local LAN and attacking someone else remotely. So, even when
PASV is used the data connection set up might still fail.

524 PART IV Application Level

More state-of-the-art fi rewalls will look at more than just TCP or UDP headers and
can fi gure out that an FTP session is in progress. Many will only allow ports from a cer-
tain preconfi gured pool to be used, but there is a lot of variation in implementation.

RFC 2428 defi nes the EPRT and EPSV commands to be used when IPv6 addresses and
NAT is in use. Some FTP implementations use these forms of PORT and PASS by default.
Network address translation can be particularly harsh on FTP because addresses can
change. Some applications, such as FTP, send IP address and protocol ports inside
messages as data. Unless NAT can change the addresses in the data stream to agree
with its other changes, the application will fail. We’ll talk more about NAT in a later
chapter, but a full discussion of the interplay of NAT and FTP is beyond the scope of
this book.

Sometimes the FTP application tries to get into the act and imposes certain con-
ventions on the user. One FTP implementation insists on using PASV when it fi nds that
private IPv4 addresses are being used, presumably because private addresses are only

CLIENT

(Uses server port
20 for data
connection)

Send PASV command

Control Connection
on Port 4096

Control Connection
on Port 4096

Passive FTP

Control Connection
on Port 21

Control Connection
on Port 21

Active FTP

Data Connection

Open data connection

CLIENT

Data Connection

Open data connection

SERVER

(ACK Port
command)

(Handshake for
data connection to
client port 4122)

(Tell client to use
port 2020 for data)

(Handshake for
data connection to
client port 4122)

(send or receive data)(send or receive data)

(send or receive data)

(Uses server port
2020 for data
connection)

“Use Data Port 2020”

(send or receive data)

ACK

Send PORT 4122 command

SERVER

FIGURE 20.11

FTP active and passive. Note which side opens the data connection and which ports are used in
each case.

CHAPTER 20 File Transfer Protocol 525

used behind a fi rewall or when NAT is used. This particular form of FTP also insists that
the user enter the public “WAN” address space used, which can be problematic when a
purely private TCP/IP network such as the Illustrated Network is being used! (Needless
to say, this application was not very useful on the Illustrated Network.)

File Transfer Types
What about the actual fi les that can be transferred from server to client or from cli-
ent to server? The original FTP specifi cation listed multiple options as to fi le type,
embedded control characters, structure, and transmission mode. In those days, there
were many types of computer architectures. Today, those choices usually boil down
to exactly two: ascii and binary. Either one can be the implementation default, but
as time goes on, pure text fi les using ASCII are becoming rarer and rarer, whereas fi les
with executable code and embedded HTML formatting are becoming more and more
common. FTP helpfully puts in line formatting control characters if they are missing
when performing an ascii transfer. Naturally, this renders code fi les completely useless
(although many newer FTP-based applications make this much less of a concern).

Unless there is a compelling reason to do otherwise, most FTP transfers are better
off using binary (the fi le is transferred as a string of bits, and FTP makes no effort to
fi gure out what they mean). This doesn’t mean that the transferred fi le will be useful,
but it has a better chance than a fi le of program code transferred as a text note with
ascii.

When Things Go Wrong
There is a huge benefi t to keeping FTP data transfers off the control connection. The
use of two connections allows users to abort a fi le transfer that is unintended or out
of control (a misformed mget is usually the culprit). When the client is storing a fi le on
a server, the use of the control connection is straightforward: The client stops sending
data and sends an ABOR command to the sender on the control connection. The inter-
rupt key is usually cntl-C, but others are possible depending on operating system. The
ABOR command is sent as urgent TCP data to make sure it is handled promptly by the
server.

When the server receives the ABOR command on the control connection, it should
respond with 426 (transfer aborted) and 226 (abort successful) messages. The data
transfer might continue sending data, and typically does, but the client will not acknowl-
edge it and ignores everything received after the user abort.

There are only a few other things that can go wrong with FTP. A common mistake is
to transfer binary fi les as text, and some FTP servers will warn the user if the fi le exten-
sion seems to indicate this might be going to happen. Other servers assume that users
know what they are doing and simply perform the transfer.

There are two other parameters dealing with fi le transfer in FTP that can be changed
and might cause problems when multiple fi les are transferred without restoring the set-
tings. One is the fi le-structure. A transfer can use fi le-structure (the name is unfortunate)

526 PART IV Application Level

or record-structure. File-structure, the usual default, makes no assumptions about the
fi le at all and simply views the content as a string of bytes. Record-structure, rarely used
today, means that there is a record format to the fi le and is set by sending the STRU R
command to the other host.

Even when the record-structure is set for the transfer, the actual formatting of the
data depends on another setting—this one is called the transmission mode. Modes can
be stream (the typical default), block, and compressed. The three modes combine with
the fi le-structure to give four types of fi le transfer formatting.

Stream mode with file-structure—The file is set as a stream of bytes, and TCP
provides data integrity. No headers or delimiters are inserted into the data
stream, and the end of the transferred file is only indicated by closing the data
connection normally. This is the most common way in which FTP works on
the Internet today.

Stream mode with record-structure—The file is sent as a string of records, each
one delimited by a 2-byte End of Record (EOR) control code (0xFF01). An End
of File (EOF) code, 0xFF02 (or sometimes 0xFF03), is used to indicate the end
of the file to the receiver.

Block mode—The file is sent as a series of data blocks. Each block begins with a
3-byte header containing some descriptor flags and a 2-byte length field giving
the block byte count. Flags are used to indicate EOR, EOF, and restart.

Compressed mode—Rarely supported today because modern compression meth-
ods have superseded this primitive function. The file is sent after removing
repeated string of bytes. Today, files are compressed outside FTP and sent as
binary data.

Finally, many FTP server implementations routinely check the domain name of the
client to make sure it is valid before allowing the connection. Reverse DNS, as this is
called, is not a robust security feature, and at times has caused problems as well on the
network. Hackers can easily use phony IP addresses, the theory goes, but it’s more dif-
fi cult (and foolish) to map it to a public domain name and distribute the information by
registering on the public DNS. This was a problem with some early Illustrated Network
fi le transfers because no DNS was running on the network at all, and even when it was
no Illustrated Network domain names were registered on the Internet. But “dumber”
FTP versions worked just fi ne with only IP addresses.

FTP COMMANDS
One of the things that surprises people when they examine traces of FTP activity is
that the FTP commands sent and received by client and server are not the same as the
ones entered by the user at the client. We’ve already looked at some examples (cntl-C
sends an ABORT), but maybe it’s a good idea to look at them in more detail.

CHAPTER 20 File Transfer Protocol 527

Clients and servers do not have to implement all of the FTP commands, which are
often added to. What happens if a server requires the user at the client to use an FTP
command the client implementation does not support? A thorough client will imple-
ment the quote user command, which lets the user enter the exact formal command
(and any parameters) necessary to continue. The input is then sent over the control
connection exactly as entered.

The six FTP commands that control a user’s access to a remote fi le server are out-
lined in Table 20.3. The 11 FTP commands that control a user’s fi le access and man-
agement functions on the remote fi le server are outlined in Table 20.4. The working
directory is the current directory.

Table 20.3 FTP Commands for File Server Access with Meaning and Parameters

Command Meaning Parameter(s)

USER User ID User ID

PASS User password Password itself

ACCT Provide an account for charging purposes Account ID

REIN Reinitialize to the start state None

QUIT End and log out None

ABORT Abort previous command and any fi le transfer None

Table 20.4 FTP Commands for Remote Server File Management with Meaning
and Parameters

Command Meaning Parameter(s)

CWD Change to another directory Directory path

CDUP Change to the parent directory None

DELE Delete a fi le File name

LIST List fi le information None, or directory name, or list of fi les

MKD Make a directory Directory name

NLST List the fi les in a directory None for current directory, or name

PWD Show the name of the current working directory None

RMD Remove a directory Directory name

RNFR Rename a fi le (references current name) Current fi le name

RNTO Rename a fi le (references new name) New fi le name

SMNT Mount a different fi le system File system identifi er

ABORT Abort previous command and any fi le transfer None

528 PART IV Application Level

The three FTP commands that set the type, structure, and mode of the fi le transfer
are outlined in Table 20.5. The 10 FTP commands that actually control the fi le trans-
fer are outlined in Table 20.6. Finally, the fi ve FTP commands outlined in Table 20.7
supply useful information to the user.

Variations on a Theme
Few people use the command line interface for FTP unless they have to. However, it is
common to use the CLI for instructional purposes (as done here). But today almost all
FTP client software, and many servers, use GUI interfaces to let users simply point and

Table 20.5 FTP Commands for Transfer Parameters, with Meaning and Parameters

Command Meaning Parameter(s)

TYPE Identify the fi le type for transfer A (ASCII), E (EBCDIC), I (binary image),
N (nonprint), T (telnet), C (ASA)

STRU File structure F (fi le) or R (record)

MODE Format used for transmission S (stream), B (block), C (compressed)

Table 20.6 FTP Commands for File Transfer, with Meaning and Parameters

Command Meaning Parameter(s)

ALLO Allocate enough space for the data to come Integer number of bytes

APPE Append a local fi le to the remote fi le File names

EPSV The extended version (RFC 2428) of the PASV
 command, used for IPv6 and NAT

IP address and port

EPRT The extended version (RFC 2428) of the PORT
 command, used for IPv6 and NAT

IP address and port

PASV Supply the network address and port number that will
be used for the data connection initiated by the client

IP address and port

PORT Supply the network address and port number that will
be used for the data connection initiated by the server

IP address and port

REST Identify a restart marker (followed by the transfer
 command to be restarted)

Marker value

RETR Get (retrieve) a fi le File name(s)

STOR Put (store) a fi le File name(s)

STOU Create a version of the fi le with a unique name (store
unique)

File name

CHAPTER 20 File Transfer Protocol 529

click at directories and fi les and effect a transfer. Almost all still allow users to watch
the interplay between mouse strokes and FTP commands and response codes, but few
pay attention to them unless things go wrong.

GUI implementations of FTP tend to be much more sophisticated than their CLI
cousins, especially when it comes to security variations. The heavy use of security on
modern networks has spawned many variations of the simple FTP control and data
connection process. Most of these variations have to do with how the user ID and pass-
word are packaged and sent from client to server, but some are more far-reaching than
that. Many commercial FTP server implementations can be set up to function in any of
the following environments:

■ Simple FTP
■ FTP over Secure Sockets Layer and Transport Layer Security (SSL/TLS), using

implicit encryption
■ FTP over SSL/TLS using explicit encryption
■ FTP over TLS directly, using explicit encryption
■ FTP bypassing the fi rewall

We’ll have much more to say about these security variations later in this book. There
is also Secure FTP (SFTP), a feature of Secure Shell 2 (SSH2). But this is a completely
different protocol than FTP, as we’ll see in Chapter 25 (on SSH).

A Note on NFS
If TCP/IP is indeed for everything, an employee at a branch bank should be able to use
common TCP/IP applications to change a customer’s information in the central bank’s
database. However, it makes no sense at all to access the master account fi le, transfer a
copy of it to the branch host, update it, and then load it back up to the central location.
Not only does this method transfer masses of information not needed, but it prevents
(hopefully) anyone else from updating any other customer record at the same time.

Table 20.7 FTP Commands for User Information, with Meaning and Parameters

Command Meaning Parameter(s)

HELP Gives information about server implementation None

NOOP Request “OK” reply from server None

SITE Used in the popular WU-FTP implementation from Washington
University (used in many Linux versions) to engage server-specifi c
commands not in the FTP standard

None

SYST Requests that the server identify its OS version None

STAT Request connection status and parameter information from server None

530 PART IV Application Level

Many applications don’t want or need remote fi le transfer. They just need remote
fi le access, usually to a particular record or even fi eld. This is the idea behind the Net-
work File System (NFS), pioneered by Sun Microsystems. NFS allows local fi le systems
to be accessed by remote users as if they were local users and is a nice illustration of
the power and utility of the socket interface.

NFS is actually part of an overall system that includes an extension of the socket
concept known as remote procedure calls (RPCs). RPCs are a more sophisticated way
of handling basic programming subroutine (or function) calls by allowing the subpro-
gram (the procedure) to be called on a remote system across a network (hence the
term remote procedure call).

RPCs do not use well-known ports. RPC server processes handle RPC client requests
for server connections by dynamically mapping the server ports. In dynamic map-
ping, all connection requests handled by TCP go to one server process running at the
application layer instead of several. This server process is capable of dynamically start-
ing up the correct port server application process and allowing the TCP protocol to
grant the connection. The single server application process running under dynamic
mapping is known as the port mapper. These port mappers (usually run as the rpcbind
process) are very common on most Unix implementations of TCP/IP.

Another part of the NFS is the External Data Representation (XDR) standard, a way
of defi ning data types in terms of standard formats. The point is to allow remote fi le
access between different platforms, from Unix to Windows to MACs and even more.
NFS has been a part of the overall TCP/IP standardization process since 1998.

CHAPTER 20 File Transfer Protocol 531

This page intentionally left blank

QUESTIONS FOR READERS
Figure 20.12 shows some of the concepts discussed in this chapter and can be used to
answer the following questions.

1. Who initiates the data connection in active and passive mode, respectively?

2. In the fi gure, for active mode what port will the client use on the server for data
transfer?

3. In the fi gure, for passive mode what port will the client use on the server for
data transfer?

4. In the fi gure, what port will the client use for the data connection in active
mode?

5. In the fi gure, what port will the client use for the data connection in passive
mode? How does the server know what it is?

CLIENT

ACK

Send PORT 33167 command

(send or receive data)

(send or receive data)(send or receive data)

(send or receive data)

Send PASV command

“Use Data Port 2020”

Control Connection
on Port 4096

Control Connection
on Port 4096

Control Connection
on Port 21

Control Connection
on Port 21

Active FTP

Passive FTP

Data Connection

Open data connection

CLIENT

SERVER

SERVER

Data Connection

Open data connection

FIGURE 20.12

Simplifi ed view of active and passive data transfer modes.

533

CHAPTER

What You Will Learn
In this chapter, you will learn about the major architectures used to send and
receive email on the Internet. We’ll also see the fi ve steps needed to send an email
message.

You will learn about the protocols used with email applications, especially
SMTP and POP3. We’ll also describe MIME messages and discuss the important
role of headers in email.

SMTP and Email 21

The Internet and TCP/IP are known to the greatest number of people through electronic
mail (email) applications. Even those who cannot tell a router from a modem, or a
packet from a frame, can check their email and send a message. A certain percentage of
users still use the Internet mainly for email.

Email was one of the original applications the Internet was created to support (the
others being fi le transfer and remote computer access). Things have come a long way
since the original mail application, which is still supported on many Unix boxes:

>mail harry
We need to talk.
.

The modern email explosion has produced on-line ads, do-not-contact lists, spam,
spam blockers, evil attachments, impounded attachments, and dozens of other moves
and countermoves that make the email experience at once essential and yet daunt-
ing for many. Hardly anyone uses email except through a GUI today, and the mail user
agents (MUAs)—the technical term for email client applications—are as varied as they
are powerful, allowing users to schedule meetings, reserve conference rooms, or even
request a projector for a certain time or place.

Email is a set of related and interconnected protocols that run on clients and servers
to provide the global mesh of mailboxes and readers and writers upon which email
depends. We’ll look at several scenarios for sending and receiving email, using the
devices on the network shown in Figure 21.1.

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80:205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-
0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177 eth0: 10.10.11.66 LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65459

Wireless
in Home

Email
Client

Email
Server

Email Client

Solid rules � SONET/SDH
Dashed rules � Gig Ethernet
Note: All links use 10.0.x.y
addressing...only the last
two octets are shown.

FIGURE 21.1

Email on the Illustrated Network, showing the Unix-based hosts used on email clients and servers.

536 PART IV Application Level

Email
Server

Email
Client

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80:205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77 eth0: 10.10.12.166 LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

ge-0/0/3

16.2

ge-0/0/3

16.1

Best ISP

AS 65127

Global Public
Internet

CHAPTER 21 SMTP and Email 537

In some examples, we’ll use the Unix-based host systems as email clients and
servers. We won’t leave Windows out, however. We’ll use the email client at the home
to offi ce to show that Windows Outlook works essentially the same as older email
systems.

ARCHITECTURES FOR EMAIL
What needs to be added to the network to create the TCP/IP email system shown in the
fi gure? It all depends on the overall architecture used to support email, and these have
evolved through three distinct stages, all of which are still supported today. The fi nal
stage is the general email architecture for the Internet today, and that’s what we will be
exploring in this chapter. The three architectures are:

Single shared system—The shared system could be a mainframe or minicomputer
that users access. The email administrator creates mailboxes (restricted access
files on the local hard drive) where received messages are stored. A special
user agent (UA) program creates the messages and stores them in the user’s
mailbox.

Shared systems connected by the Internet—The second architecture takes into
account the fact that users might not share the same local system. Another
piece was added to the email architecture: the message transfer agent (MTA).
The UA still handles mailboxes and messages locally, whereas the MTA handles
communications between the two systems in the usual client/server fashion.

Email clients and servers connected by the Internet—The final step is to realize
that today most users are connected to their email servers by a LAN or WAN
(dial-up or DSL) link. Because receivers are not always present (even on a LAN),
users need the services of a message access agent (MAA) to retrieve their email
from their local email server. The architecture of this final scenario is shown
in Figure 21.2, between typical users we can call “Alice” and “Bob.” The flow
shown is from Alice to Bob, but when Bob replies to Alice the roles of client
and server (as well as MTA and MAA) are reversed.

This architecture shows two systems dedicated to managing users’ email mailboxes
and delivering email. But how does the sender’s email system know which device is
acting as the receiver’s email system? Today, special DNS records provide this informa-
tion, but in the early days of the Internet relaying was used to deliver email. Email was
routed from email system to email system in a fashion similar to forwarding packets.
Today, most email travels over the Internet from an originator’s email system directly to
the recipient’s, minimizing complexity and delay.

But email servers are not necessary for the TCP/IP email protocol, the Simple Mail
Transfer Protocol (SMTP), to operate. We can still use the original and simple Unix
built-in applications (sendmail and mail) to send and retrieve email from (for example)

538 PART IV Application Level

bsdserver to bsdclient. It’s nice to know that even today complex GUIs and massive
directories are not needed to exchange email messages from the command prompt.

bsdserver# sendmail admin@bsdclient.booklab.englab.juniper.net
testing to 10.10.11.177
.
bsdserver#

This email is going to the admin user on bsdclient. The text of the message is
“testing to 10.10.11.177” and the text entry ends with a single period on a line by
itself. Shown in the following is what happens at the receiver, starting with the prompt
indicating that mail has arrived (the period does not appear in the received text).

You have new mail.
bsdclient# mail
Mail version 8.1 6/6/93. Type ? for help.
"/var/mail/admin": 2 messages 1 unread
 1 admin@bsdserver.engl Fri Jan 18 22:38 22/1153
U 2 admin@bsdserver.engl Fri Jan 18 22:56 22/1162
& 2

UA

Alice

MTA
Client

MAA
Client

LAN/WAN

MTA
Server

Mailboxes

MTA
Server

Email System

Internet

MTA
Client

Mailboxes

MTA
Server

LAN/WAN

UA: User Agent; MTA: Message Transfer Agent; MAA: Message Access Agent

Email System

Bob

UA

FIGURE 21.2

Email over the Internet, showing the role of client and server components.

CHAPTER 21 SMTP and Email 539

Message 2:
From admin@bsdserver.booklab.englab.juniper.net Fri Jan 18 22:56:47 2008
Date: Fri, 18 Jan 2008 22:50:47 -0700 (PDT)
From: Administrator<admin @bsdserver.booklab.englab.juniper.net>
To: undisclosed-recipients:;

testing to 10.10.11.177

&

FIGURE 21.3

Delivery of message using SMTP. Note the embedded control characters (starting with \) in the
message body.

In this case, the mail was delivered directly from system to system. Only the SMTP
MTA was used, with a minimal UA. Figure 21.3 shows the actual delivery of the mes-
sage text itself. (Do not be concerned about the “undisclosed-recipients:” in the To:
fi eld. The for fi eld in the message shows that the message is for the admin user on
bsdclient.) Note that there is a lot more information carried in the message and dis-
played by the receiver than was entered by the sender. We’ll talk more about these
added email headers in detail later in this chapter.

Even when a complex GUI is used as an email front end, the same basic sequence of
about 24 packets is used by SMTP to pass a small message off anywhere in the world.
However, most people don’t use the command prompt for this purpose. Modern email
is more complex.

Sending Email Today
Today, there are fi ve basic steps almost everyone uses to send and receive email. Although
the procedures are absolutely symmetrical, and everyone is both sender and receiver
when it comes to email, we’ll follow a message one way from one person to another.

540 PART IV Application Level

Email Message Composition
The user accesses a GUI email user agent (UA or sometimes MUA) to create the message.
The email message contains two major parts: the header and the body. The header con-
tains a series of fi elds that describes the message and controls how it is delivered and
processed. The body of the message contains the actual information to be sent to the
recipient. There can be multiple fi les accompanying the header and simple text of the
message, and these are known as attachments. Most users do little more with the header
than specify the email addresses of the intended recipients and subject line content. The
UA takes care of making sure the entire message is in the correct standard format.

Submission of Email
When the user “sends” the newly created email, the sender’s host (in a client role) does
not need to set up a TCP connection directly to the receiver’s host (in a server role). In
fact, the user can compose a message and decide to submit it for delivery later, manu-
ally or automatically. Even when the message leaves the sender’s host, the message is
sent to the local email server using SMTP, and might sit there for a while rather than
being forwarded across the Internet immediately. This allows for more effi cient use of
resources on the local email server. The server might require SMTP authentication of
the user before accepting the message (we’ll talk more about authentication later).

Delivery of Email
Once the local SMTP server has accepted the email message, the email server of the
recipient(s) must be determined. DNS is used for this purpose, and the local email
server performs a DNS query to access special Mail Exchanger (MX) records stored
on a name server to provide this information. For example, an email sent to walter@
example.com might be sent to a remote email server known as pop3.example.com. DNS
provides both the name and IP address of this server.

SMTP also supports the ability to pass email messages through a specifi ed sequence
of SMTP servers to reach the destination. The intermediate servers are email relay
agents. Relay agents are useful when a large organization has a single email server
connected to the Internet (perhaps for ease of screening incoming messages) and yet
has departments with their own email servers on each LAN. One way or another, the
message makes its way to the destination email SMTP server that knows exactly who
 walter@example.com is. If the server cannot be contacted after a certain period of time,
the mail is bounced back to the sender as undeliverable.

Email Processing
The receiving STMP server processes the incoming message, and if all seems well,
places it into the recipient’s mailbox. The message remains until the user retrieves it. If
the recipient is unknown to the receiving server, the message is bounced back to the
sender (also as undeliverable).

Email Access and Reading
The recipient’s email application checks in periodically with the local SMTP server to
see if any mail has arrived. This checking can be either automatic or when specifi cally

CHAPTER 21 SMTP and Email 541

run. If there is mail, the user can retrieve the mail, open it, and read it, and delete it.
 Usually, these are all separate steps. This step does not use SMTP, but a special mail
access method and protocol such as POP3 or IMAP4 (both are used by TCP/IP MAAs).

All fi ve of these steps are not always necessary. Some hosts act as mail servers all on
their own, and the host-local-mail-server communication steps can be bypassed. Dial-in
users often compose, send, and receive email all at once when they send mail. But usu-
ally all fi ve steps are needed.

Four devices are involved in the fi ve steps. They are the sender’s client, the send-
er’s local SMTP mail server, the recipient’s local SMTP mail server, and the recipient’s
client. The relationship they have with one another and the protocols the email uses
are shown in Figure 21.4. Note the symmetrical nature of the components so that two-
way communication is possible.

Email Protocols
There are three common protocols used to deliver email over the Internet: the Simple
Mail Transfer Protocol (SMTP), the Post Offi ce Protocol (POP), and the Internet Message
Access Protocol (IMAP). All three use TCP, and the last two are used for accessing
electronic mailboxes. Special records stored in DNS servers play a role as well, using

SENDER

SMTP Client SMTP Server SMTP Server SMTP Client

User composes
email

User reads
email

Recipient’s
Client

Recipient’s Local
SMTP Server

Sender’s Local
SMTP Server

Sender’s Client

RECIPIENT

Email Editor/
Reader

POP/IMAP
Client

POP/IMAP
Server

Local Email
Storage

Server File
System

POP/IMAP
Server

Server File
System

Email Editor/
Reader

POP/IMAP
Client

Local Email
Storage

FIGURE 21.4

Email protocols and components, showing the components used to send an email message. Note
the symmetrical nature of the sender and recipient so that the receiver can respond.

542 PART IV Application Level

UDP. The current version of POP is version 3 (POP3) and the current version of IMAP
is version 4 (IMAP4).

Although not a protocol, there is a series of Multipurpose Internet Mail Extensions
(just MIME, never “MIMEs”) for various types of email attachments (not just simple
text). Finally, a number of related specifi cations add authentication to the basic email
protocols. The way the protocols fi t together is shown in Figure 21.5.

As we have seen, the original SMTP was designed as a simple host-to-host protocol.
A user on one host created a message with a program called sendmail or mail and this
text was sent directly to the destination host using SMTP as a Mail Transfer Agent (MTA).
Of course, if the remote user was not running an email server process to accept the
SMTP session, there was nothing for the sender to do but keep trying.

Modern email systems “decouple” the sender from the receiver so that email still
goes through, even when the recipient is away for two weeks (but the messages keep
piling up, just like regular mail). In addition, unlike almost every other TCP/IP applica-
tion email operates not from host to host but from user to user. This means that users
are not required to receive email on a particular host, nor is a particular host expected
to have only one user with email capabilities. (We can even pick up email for a recipi-
ent from the sending host, and we’ll do that later.) This user “mobility” poses special
challenges for email addressing, which is why more than just a host name is required
for correct email delivery.

The solution, of course, is to add another level to the hostname, this one identifying
a particular user. So, for example, walter@example.com indicates a different mail destina-
tion than goralski@example.com. And, in fact, the actual host on which an email user is
defi ned is not always added to the email address (which would yield something like walter
@ bsdclient.example.com). The email protocols all work together to make this work.

MIME
AttachmentsEmail

Client

Sender

SMTP

MX Records

POP/IMAP

SMTP
Server

DNS Email
Client

Recipient

ISP A

ISP B
SMTP
Server SMTP

FIGURE 21.5

Email protocols, showing where they fi t between sender and recipient.

CHAPTER 21 SMTP and Email 543

There are older email address formats—FIDOnet, UUCP, email gateways (distin-
guished by the use of user% notations), and so on—but these are only of historical inter-
est today. This is not to say that the evolution of email is not interesting, just that the
history can be given very briefl y and the discussion can turn to what is actually done
with email on the Internet today.

The Evolution of Email in Brief
As expected with an application that has grown from a simple way to send text
 messages to an almost universal tool on the Internet, the email RFCs track a long evo-
lutionary path as email changed with the times. In fact, email goes back to the days
before TCP/IP and the Internet formally existed—all the way back to ARPAnet. Two
very early documents, RFCs 95 and RFC 155, described physical mailing lists for dis-
tributing documents. Then the pioneers realized that the network itself could be used
to distribute these documents, in the form of an electronic messaging application and
associated protocols. In 1971, RFC 196 described the Mail Box Protocol for sending
documents for remote printing.

By the mid-1970s, more sophisticated methods were developed, including some
based on FTP. Today, the basic protocol for TCP/IP email is defi ned in RFC 821, and RFC
822 defi nes the format of the basic email message. RFC 974 added interactions with
DNS to email transactions, and RFC 1869 added more capabilities as SMTP Service
Extensions (ESMTP). Today, everyone still calls it SMTP, even when ESMTP is a more
accurate term. Those same RFCs are still essentially in force today, although heavily
added to in a number of ways and currently gathered as RFC 2821 and RFC 2822
(exactly 2000 away from the originals, an intentional numeration).

Email quickly grew to include various types of attachments, and modern users are
used to these. RFCs 2045 through 2048 defi ne basic MIME, which allows email to carry
various types of email attachments. This series replaced RFCs 1521, 1522, and 1590,
which had displaced RFC 1341.

Modern email protocols split the sending and retrieving task. The retrieval protocol
POP3 has evolved through fi ve RFCs, from RFC 1081 to RFC 1939. Another method,
IMAP4 (often just IMAP), went from RFC 1730 to 2060.

Finally, RFC 2254 extended the SMTP authentication capabilities, and these
were based on ESMTP in RFC 1869. Most modern SMTP applications support SMTP
 authentication, which defi nes an SMTP authentication server to advertise this func-
tion to SMTP clients. Today, the list of RFCs relating to MIME security (S/MIME) is a
lengthy one and additional drafts are added all the time. And many RFCs address SMTP
authentication.

SMTP Authentication
How do you know that the email you send goes only to the person intended? How
do you know that the email you just got, supposedly from the president of your
company, really came from that person? SMTP authentication was introduced to

544 PART IV Application Level

help prevent these email abuses, and others. It was based partly on ESTMP, and most
 implementations support SMTP authentication today. A lot of MUAs, which of course
include the SMTP client, make it available. A server can support several forms of
 authentication, and the client application should pick one to use. The client can request
a specifi c authentication method, but the server is free to reject its use.

SMTP authentication, which is advertised by an SMTP authentication server, requires
clients to authenticate themselves, and both parties must mutually accept and support
the chosen authentication procedure. Once successfully authenticated, the user can
receive and send email.

Unfortunately, SMTP authentication does not fi t very well into the SMTP protocol,
mainly because it is based on the Simple Authentication and Security Layer (SASL)
concept, which is more strictly aimed at direct client–server interactions. And several
RFCs are needed to understand how it all works, some of which don’t even mention
any SMTP extensions, although they require use of the special ESMTP EHLO (Extended
Hello) command.

The goal of SMTP authentication is to prevent username and password from cross-
ing the network (the Internet) in plain text. A full discussion of STMP authentication
depends on an understanding of how encryption provides authentication, topics which
have not been covered yet. SMTP authentication is still evolving, and the mechanisms,
methods, and procedures used will change as time goes on.

Simple Mail Transfer Protocol
A basic SMTP session between sender and local SMTP server is shown in Figure 21.6.

Like FTP, SMTP uses a system of client commands with parameters and numerical
server responses, which is usually accompanied by some basic text as well. Oddly, if
you know what you are doing, you can simply use a remote access method to connect
to the SMTP server, and simply send the keywords and any parameters by typing them
at the command prompt. The basic interaction between client and server when SMTP
authentication is used is shown in Figure 21.7.

The client indicates to the server that it knows the server supports ESMTP (and
wants to use it) with the SMTP EHLO command. The server offers a number of authen-
tication schemes, including simple log-in with password. The client selects this option
with the AUTH command. The server then uses base64 encoding (a special type of
character coding) to ask the user for username and password, one at a time. The client
replies are also encoded with base64, not encrypted. If the user types in the password
incorrectly, the authentication fails, but the user can usually try again before the server
drops the connection altogether.

The 11 most common SMTP commands are outlined in Table 21.1. A few others are
defi ned, but they are hardly used anymore.

SMTP reply codes resemble FTP reply codes. The fi rst digit refers to the command
status, the second classifi es the reply, and the third adds details. The meanings of the
fi rst two digits are outlined in Table 21.2.

CHAPTER 21 SMTP and Email 545

Client–Server AuthenticationCLIENT SERVER

(Active open for
data connection)

(Composes
message with
mail program)

User Types
Wrong Password

220 (server supports ESMTP)

EHLO (identifies sending host)

AUTH login (login picked for authentication method)

250 (...Auth types offered, including “login”)

334 VXN1cm5hbWU1 (base64 “Username”)

334 UGFzc3dvcmQ6 (base64 “Password”)

(base64 password string)

535 Authentication Failure

(base64 userID)

FIGURE 21.7

SMTP authentication. Note that SMTP uses a special coding known as base64.

Client–Server Mail ConnectionCLIENT SERVER

(Active open for
data connection)

(Composes
message with
mail program) 220 (sendmail server greeting)

HELO (identifies sending host)

MAIL (sender’s address)

250 (host okay)

250 (sender okay)

250 (recipient okay)

250 (mail accepted)

QUIT

221 (server signs off)

DATA (put server in receive mode)

354 (okay to send mail)

(email text, followed by “.”)

RCPT (recipient’s address)

FIGURE 21.6

Basic STMP email exchange between a client and a server.

546 PART IV Application Level

Table 21.1 Common SMTP Commands and Meanings

Command Meaning

HELO Identifi es the sender to the receiver.

EHLO Identifi es the sender with extended capabilities to the receiver.

MAIL FROM Identifi es the originator and starts a mail transaction.

RCPT TO Identifi es an individual recipient. Repeated for multiple recipients. Receiver, if
possible, checks for the validity of the recipient.

DATA Sender is ready to transmit lines of text. Maximum line length is 1000 characters,
including fi nal “new line” character or characters.

RSET Aborts current mail transaction and clears all information.

NOOP Asks for a positive reply.

QUIT Asks for a positive reply to close the connection.

VRFY Asks the receiver to validate recipient name.

EXPN Asks the receiver to confi rm name in a mailing list, and for list content. For
 information only (do not change recipient names).

HELP Asks for implementation details, such as commands supported.

Table 21.2 SMTP Reply Codes and Meanings

Digit and Position Meaning

1xx Positive preliminary (not currently used)

2xx Positive completion

3xx Positive intermediate result

4xx Transient negative (okay to try again)

5xx Permanent negative (“stop doing that!”)

x0x For a problem, syntax error, or unknown command

x1x Information request reply (such as to HELP)

x2x Connection reply

x3x Unspecifi ed

x4x Unspecifi ed

x5x Receiver status reply

MULTIPURPOSE INTERNET MAIL EXTENSIONS
MIME is a rather dry subject, but quite important, if for no other reason than that
MIME formats are also used in transfer using the protocol of the World Wide Web, the
Hypertext Transport Protocol (HTTP), which is examined in the next chapter. So, MIME
deserves at least a quick look here.

CHAPTER 21 SMTP and Email 547

A MIME message has a set of headers and one or more “body parts.” Internet text
mail messages also have headers, of course, with fi elds such as To:, From:, and Date:.
MIME messages have additional introductory headers to describe the overall format
and content of the message.

MIME Media Types
When there are multiple parts to a MIME message, one introductory header defi nes a
string used to mark the boundaries between parts. After the boundary delimiter, which
is chosen by the email application, there are additional headers to describe the part of
the MIME message that follows. The overall structure of the information in each part is
determined by the Content-Type MIME headers. The type can be an image, audio, text,
or even a mixture of these.

There are seven standard media types, all of which have a variety of subtypes. Five
of them are considered “discrete” (meaning that the format is consistent throughout
the part), and two are “composite,” meaning that the format changes independently in
each component. The discrete types are:

■ Text
■ Image
■ Video
■ Audio
■ Application

The composite types are:

■ Multipart—Each component can have a different data type, usually discrete.
■ Message—Used to “encapsulate” other information, such as a forwarded email

message.

Some of the more common subtypes used in these seven major data types are
 outlined in Table 21.3.

MIME Encoding
The data type and subtype establish the format of the content of a MIME body part. But
how should the data in each part be represented for transmission across the Internet?
MIME defi nes a variety of coding methods, allowing hosts and MTAs to be as fl exible
as possible.

The default coding method is ASCII (as used in the United States). If another method
is used, such as for formatted documents, this must be announced in a MIME Content-
Transfer-Encoding header.

There are six major MIME encoding methods. These are listed in Table 21.4. The
quoted-printable encoding extends the usual 7-bit ASCII code set to allow a few extra
characters. Special hex characters are preceded by an = sign. So, 0x0C (form feed) is sent
in quoted =printable as = 0C.

Base64 encoding is very common today. SMTP was originally a text-based transmis-
sion system. Yet a lot of email content is sent as simple bytes, such as audio and video,

548 PART IV Application Level

and even as executable code (much to the chagrin of network administrators). Base64
encoding converts a binary data stream to a sequence of “text” characters. This usually
results in the size of the binary fi le growing by about 33% in terms of bytes. This is
because 6 bits can indicate the numbers 0 through 63. But bytes are 8 bits, of course, at
least where the Internet and TCP/IP are concerned.

An Example of a MIME Message
Consider a writer delivering a short story to an editor as an email attachment (been
there, done that). What would the MIME headers that form the overall body of the
email message look like? Well, they would resemble the following:

Content-Type: multipart/mixed;
 boundary = "--- = _NextPart_000_027HB582.0E7E0F6"
This is a message in MIME format.
--- = _NextPart 000_027HB582.0E7E0F6
Content-Type: text/plain

Table 21.3 MIME Content Types and Subtypes

Type Subtypes

text plain, richtext, tab-separated-values, html, sgml

image jpeg, gif, ief, tiff, g3fax, png

video mpeg, quicktime, vnd.vivo

audio basic, 32kadpcm, vnd.vivo

application octet-stream, postscript, rtf, pdf, zip, macwriteii, msword, remote-printing, EDI-X12,
EDIFACT, dec-dx, dca-rft, activemessage, applefi le, mac-binhex40, news-message-id,
mews-transmission, wordperfect5.1, mathematica, pgp-encrypted, pgp-signature,
pgp-keys, andrew-inset, slate, set-payment, set-registration, sgml, wita, lotus-wordpro,
lotus-1-2-3, lotus-organizer, ms-excel, powerbuilder-6

multipart mixed, alternative, digest, parallel, appledouble, header-set, form-data, report,
voice-message, signed, encrypted

message rfc822, partial, external-body, news, http, delivery-status

Table 21.4 MIME Encoding Methods and Meanings

Method Meaning

7bit Ordinary ASCII as used in the United States.

quoted-printable Adds a few special characters and coding to ASCII text.

base64 Content is mapped into a “text” package (very common).

8bit Similar to 7bit, but can include 8-bit characters.

binary True binary data.

x-(name) Experimental encodings must have a name starting with “x”.

CHAPTER 21 SMTP and Email 549

Please take a look at the attached short story. Thanks.

W

--- = _NextPart_000_027HB582.0E7E0F6
Content-Type: application/msword;
 name = "new story.doc"
Content-Transfer-Encoding: base64
Content-Disposition: attachment;
 filename = "new story.doc"

(Lots of nonsense characters form the base64 table.)

--- = _NextPart_000_027HB582.0E7E0F6

The lines in bold are the MIME headers.

USING POP3 TO ACCESS EMAIL
The original host-to-host SMTP did not allow for attachments, limited messages to
1000 bytes, was a purely connection-oriented application, and never imagined a world
of personal computers and intermittent email checking. STMP was built for immediate
email delivery to a specifi c host, sort of what we think of as instant messaging (IM)
today. Email today is often delivered to mailboxes on mail servers, not directly to the
end user, that is, users who might only have dial-up Internet access.

FIGURE 21.8

A POP3 capture, highlighting how the email listing is sent to the user.

550 PART IV Application Level

Client–Server POP3 Connection
(TCP 3-way handshake and close omitted)

�OK POP3 Inxserver...(etc.)

�OK User name accepted, password please

�OK Mailbox open, 1 message

USER admin1

PASS admin11

DELE 1

QUIT

STAT

(SERVER)
port 110

Inxserver
(CLIENT)
port 2447

Inxclient

�OK 1 1108

�OK Mailbox scan listing follows\r\n1 1108...(etc.)

�OK 1108 octets

�OK Message deleted

�OK Sayonara

LIST

RETR 1

FIGURE 21.9

A POP3 connection used to fetch email, showing a more schematic view than the capture.

These intermittent Internet users log in and access their mailbox with POP3 (com-
monly just called POP). POP3 does not send email: SMTP does that. But POP3 retrieves
the email, and the IMAP4 protocol maintains and controls access to the mailbox
accounts.

POP3 uses TCP port 110, and users are authenticated by userID and password. POP3
then places a lock on the mailbox to avoid access confl icts. The POP3 server then
enters transaction mode for user access to messages. POP3 features include the abil-
ity to view a list of email messages and their sizes and to selectively retrieve or delete
messages, but many implementations simply dump all waiting mail to the client. POP3
servers can be the same device as the SMTP mail server, but this is not a requirement.

Let’s add POP3 to our network. We used the BSD hosts before, so let’s make lnxserver
(10.10.11.66) into our email server for the network. We can then compose a fairly long
(1108 bytes) message and send it to user admin1. Figure 21.8 shows the sequence of
packets used to retrieve the message from host lnxclient (10.10.12.166).

POP3 employs a characteristic +OK and not a code when responding normally to a
client. The series of packets shown in Figure 21.8 is boiled down to its POP3 essentials
in Figure 21.9.

CHAPTER 21 SMTP and Email 551

Note that the retrieval of the message (RETR) by the client and its deletion from the
server (DELE) are separate steps. You don’t have to delete email as you read it, of course.
The +OK Sayonara is also part of the POP3 protocol implementation.

HEADERS AND EMAIL
We’ve mentioned email headers already and supplied some details about MIME headers
(header extensions). Email has its own proper set of headers as well, and an Internet
email message is little more than a sequence of headers and their values, one after the
other, from the start of the email message to the end. Table 21.5 outlines the basic email
header fi eld names and groups established by RFC 822.

Now we have everything in place to examine the headers created when sending a
short email message through our email server (lnxserver) from a client host to another
user. We’ll use the admin account on lnxclient to send a message to the admin user on

Table 21.5 RFC 822 Email Header Fields and Characteristics

Field Group Field Name Appearance
Occurrences
per Message Comment

Destination
Address Field

To: Usually present 1 Primary recipient list

Cc: Optional 1 Copy recipient

Bcc: Optional 1 “Blind” copy

Identifi cation
Fields

Message-ID: Usually present 1 Unique code applied when
sent

In-Reply-To: Optional, normal
for replies

1 Provides method to coordi-
nate responses

References: Optional 1 Other documents or mes-
sage IDs

Informational
Fields

Subject: Usually present 1 Topic of the message

Comments: Optional Unlimited Describe message

Keywords: Optional Unlimited Useful search item

Origination
Date

Date: Mandatory 1 Date and time stamp for
mail

Originator
Fields

From: Mandatory 1 Source address of
“originator”

Sender: Optional 1 If different from
“originator”

Reply-To: Optional 1 If absent, reply goes to
“from”

552 PART IV Application Level

lnxserver (these are not necessarily the same users: they just share a mailbox name).
Then we’ll fetch the message from the email server mailbox using the admin account,
showing that we can fetch our email almost anywhere, even from the sending host.

We can use the same basic mail program as we did on the BSD hosts. This time,
we’ll use the –s fl ag to create a subject for the message. The text is simple, and we end
our message with a single dot as before.

[admin@lnxclient admin]$ mail –s "Here is another example"
 admin@lnxserver.booklab.englab.juniper.net

This is text…
.
Cc: (enter)

Now we’ll use fetchmail to “fetch” the mail message with POP3 from the email
server (lnxserver) and bring it back to lnxclient. Note that when we run the program
and have email we get a version of the familiar “you’ve got mail” prompt.

[admin@lnxclient admin]$ fetchmail
Enter password for admin@lnxserver.booklab.englab.juniper.net: (not shown)
You have new mail in /var/spool/mail/admin

Usually, our complete email application would display the information and the mes-
sage. But there’s nothing magical about that. We can do the same with the command
prompt, listing the mailbox content and displaying the email message with normal
Unix commands.

[admin@lnxclient admin]$ ls –l /var/spool/mail/admin
-rw------- 1 admin mail 3122 Jan 17 16:42 /var/spool/mail/admin

Table 21.5 (continued)

Field Group Field Name Appearance
Occurrences
per Message Comment

Resent Fields Resent-Date:
Resent-From:
Resent-Sender:
Resent-To:
Resent-Cc:
Resent-Bcc:
Resent-Message-ID:

Each time
 message is
resent, this block
is generated

Resent-Date:
and Resent-
Sender: are
mandatory;
all others
optional

Special, used for
forwarding an email
message to others

Trace Fields Received:
Return-Path:

Inserted by
email
system

Unlimited Used to trace the
message through the
email system

CHAPTER 21 SMTP and Email 553

[admin@lnxclient admin]$ cat /var/spool/mail/admin
From admin@lnxserver.booklab.englab.juniper.net Wed Jan 16 13:04:50 2008
Return-Path: <admin@lnxclient.booklab.englab.juniper.net>
Received: from localhost (localhost.localdomain [127.0.0.1])
 by lnxclient.booklab.englab.juniper.net (8.12.9/8.12.8) with ESMTP id
 jBGL4onD026830
 for <admin@localhost>; Wed, 16 Jan 2008 13:04:50 -0800
Received: from lnxserver.booklab.englab.juniper.net
 by localhost with POP3 (fetchmail-6.2.0)
 for admin@localhost (single-drop); Wed, 16 Jan 2008 13:04:50 -0800 (PST)
Received: from lnxclient.booklab.englab.juniper.net ([10.10.12.166])
 by lnxserver.booklab.englab.juniper.net (8.12.8/8.12.8) with ESMTP id
 jBGL4HFa027257
 for <admin@lnxserver.booklab.englab.juniper.net>; Wed, 16 Jan 2008

13:04:17 -0800 (PST)
Received: from lnxclient.booklab.englab.juniper.net (localhost.localdomain
 [127.0.0.1])
 by lnxclient.booklab.englab.juniper.net (8.12.8/8.12.8) with ESMTP id
 jBGL4HnD026820
 for <admin@lnxserver.booklab.englab.juniper.net>; Wed, 16 Jan 2008

13:04:17 -0800
Received: (from admin@localhost)
 by lnxclient.booklab.englab.juniper.net (8.12.8/8.12.8/Submit) id
 jBGL4HHf026818
 for admin@lnxserver.booklab.englab.juniper.net; Wed, 16 Jan 2008

13:04:17 -0800
Date: Wed, 16 Jan 2008 13:04:17 -0800
From: admin@lnxclient.booklab.englab.juniper.net
Message-Id: <200801172104.jBGL4HHf-26818 @lnxclient.booklab.englab.juniper.net>
To: admin@lnxserver.booklab.englab.juniper.net
Subject: Here is another example
X-IMAPbase: 1134766876 8
Status: o
X-UID: 8
X-Keywords:

This is text…

The important fi elds are highlighted. Most of the other headers were added when
the email was created, of course. Most useful is the series of Received: headers, which
allows us to trace the message back to its origin. It might seem odd that there are fi ve
receiver headers along the trace for a message that has gone from client to email server
and then back to client. But the application adds a localhost step at each end, at the
sender (admin@localhost) and receiver (from localhost) to the message trace. The
complete path of the message recorded in the headers (from “bottom to top”) is:

1. The mail application receives the composed message from the local user.
2. The local mailbox receives the message using ESMTP.
3. The email server receives the message using ESMTP.

554 PART IV Application Level

4. The other client retrieves the message from the email server using POP3
 (fetchmail).

5. The local host transfers the message to the local mailbox using ESMTP.
6. The use of these protocols is highlighted in the headers.

HOME OFFICE EMAIL
Let’s end our email discussion by showing that Windows uses the same protocols
and headers to send and receive email over the Internet. This time, we’ll send a mes-
sage from lnxclient on the Illustrated Network to my home offi ce host (which uses
 Outlook).

Almost all email applications have an option to view the complete headers. In Out-
look, it’s just “Message Header” in the singular, but the following is the result of viewing
the message headers in Outlook. Only the headers are displayed, not the message text
itself.

Microsoft Mail Internet Headers Version 2.0
Received: from beta.jnpr.net ([172.24.18.109]) by positron.jnpr.net with
 Microsoft SMTPSVC(5.0.2195.6713);
 Thu, 17 Jan 2008 07:37:14 -0700
Received: from merlot.juniper.net ([172.17.27.10]) by beta.jnpr.net over TLS
 secured channel with Microsoft SMTPSVC(6.0.3790.1830);
 Thu, 17 Jan 2008 07:37:13 -0700
Received: from lnxclient.englab.juniper.net (lnxclient.englab.juniper.net
 [10.10.12.166])
 by merlot.juniper.net (8.11.3/8.11.3) with ESMTP id k9JEbDH15244
 for <walterg@juniper.net>; Thu, 17 Jan 2008 07:37:13 -0700 (PDT)
 (envelope-from admin@lnxclient.englab.juniper.net)
Received: from lnxclient.englab.juniper.net (localhost.localdomain
 [127.0.0.1])
 by lnxclient.englab.juniper.net (8.12.8/8.12.8) with ESMTP id
 k9JEacUg026193
 for <walterg@juniper.net>; Thu, 17 Jan 2008 07:36:58 -0700
 Received: (from admin@localhost)
 by lnxclient.englab.juniper.net (8.12.8/8.12.8/Submit) id k9JEaSlp026191
 for walterg@juniper.net; Thu, 17 Jan 2008 07:36:28 -0700
Date: Thu, 17 Jan 2008 07:36:28 -0700
From: admin@lnxclient.englab.juniper.net
Message-Id: <200801171436.k9JEaSlp026191@lnxclient.englab.juniper.net>
To: walterg@juniper.net
Subject: here is an email example
Return-Path: admin@lnxclient.englab.juniper.net
X- OriginalArrivalTime: 17 Jan 2008 14:37:13.0230 (UTC) FILETIME=[10F80AE0:
01C6F38C]

CHAPTER 21 SMTP and Email 555

This page intentionally left blank

QUESTIONS FOR READERS
Figure 21.10 shows some of the concepts discussed in this chapter and can be used to
answer the following questions.

FIGURE 21.10

POP3 session capture.

1. Which port does POP3 use?

2. Which password is provided by the user?

3. Was the email message deleted after it was retrieved?

4. How long was the message?

5. How many other messages are in the user’s mailbox?

557

CHAPTER

What You Will Learn
In this chapter, you will learn about the HTTP protocol used on the Web, including
the major message types and HTTP methods. We’ll also discuss the status codes
and headers used in HTTP.

You will learn how URLs are structured and how to decipher them. We’ll also
take a brief look at the use of cookies and how they apply to the Web.

Hypertext Transfer
Protocol 22

After email, the World Wide Web is probably the most common TCP/IP application
 general users are familiar with. In fact, many users access their email through their Web
browser, which is a tribute to the versatility of the protocols used to make the Web
such a vital part of the Internet experience.

There is no need to repeat the history of the Web and browser, which are covered
in other places. It is enough to note here that the Web browser is a type of “universal
client” that can be used to access almost any type of server, from email to the fi le trans-
fer protocal (FTP) and beyond. The unique addressing and location scheme employed
with a browser along with several related protocols combine to make “surfi ng the Web”
(it’s really more like fi shing or trawling) an essential part of many people’s lives around
the world.

The protocol used to convey formatted Web pages to the browser is the Hypertext
Transfer Protocol (HTTP). Often confused with the Web page formatting standard, the
Hypertext Markup Language (HTML), it is HTTP we will investigate in this chapter. The
more one learns about how the Hypertext Transfer Protocol and the browser inter-
act with the Web site and TCP/IP, the more impressed people tend to become with
the system as a whole. The wonder is not that browsers sometimes freeze or open
unwanted windows or let worms wiggle into the host but that it works effectively and
effi ciently at all.

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80:205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-
0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65459

Wireless
in Home

IIS with
ASP

Installed

Solid rules � SONET/SDH
Dashed rules � Gig Ethernet
Note: All links use 10.0.x.y
addressing...only the last
two octets are shown.

FIGURE 22.1

The Web servers on the Illustrated Network, also showing the major client browser hosts. Note that
we’ll be using IIS with ASP on the Windows platform and Apache with SSL on the Unix host.

560 PART IV Application Level

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80:205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.166
MAC: 00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

ge-0/0/3

16.2

ge-0/0/3

16.1

Best ISP

AS 65127

Global Public
Internet

Apache Web
with SSL
Installed

CHAPTER 22 Hypertext Transfer Protocol 561

HTTP IN ACTION
Web browsers and Web servers are perhaps even more familiar than electronic mail,
but nevertheless there are some interesting things that can be explored with HTTP on
the Illustrated Network. In this chapter, Windows hosts will be used to maximum effect.
Not that the Linux and FreeBSD hosts could not run GUI browsers, but the “purity” of
Unix is in the command line (not the GUI).

We’ll use the popular Apache Web server software and install it on bsdserver. Just
to make it interesting (and to prepare for the next chapter), we’ll install Apache with
the Secure Sockets Layer (SSL) module, which we’ll look at in more detail in the next
chapter. We’ll also be using winsrv1 and the two Windows clients, wincli1 and wincli2,
as shown in Figure 22.1.

We could install Apache for Windows XP as well, because one of the goals of this
book is to explore how much can be done with basic Windows XP Professional. But
we don’t want to go into full-blown server operating systems and build a complete
Windows server. It should be noted that many Unix hosts are used exclusively as Web
sites or email servers, but here we’re only exploring the basics of the protocols and
applications, not their ability or relative performance.

The Web has changed a lot since the early days of statically defi ned content deliv-
ered with HTTP. Now it’s common for the Web page displayed to be built on fl y on the
server, based on the user’s request. There are many ways to do this, from good old Perl
to Java and beyond, all favored and pushed by one vendor or platform group or another.
In Windows, the “in-house” dynamic Web page software is called Active Service Pages
(ASP). ASP works differently than the others, but all of them vary in large or small ways,
so that’s not really a criticism.

So, we’ll install Integrated Information Services (IIS), available for Windows XP Pro
and a few other (free) packages, notably the .NET Framework and Software Develop-
ment Kit (SDK). This will make it possible for us to build ASP Web pages on winsrv1
and access them with a browser.

The ASP installation was rather torturous, but there are invaluable Web sites and
books that take you through the process step by step. One book includes an extremely
simple Web page along the lines of “Hello World!” (but the Web page is also small
enough to demonstrate how HTTP fetches the page). Figure 22.2 shows how the page
looks in the browser window on wincli2.

What does the HTTP exchange look like between the client and server? Let’s cap-
ture it with Ethereal and see what we come up with. Figure 22.3 shows the result.

Not surprisingly, after the TCP handshake the content is transferred with a single
HTTP request and response pair. The entire page fi t in one packet, which is detailed in
the fi gure. And just as it should, once TCP acknowledges the transfer the connection
stays open (persistent).

Note that the dynamic date and time content is transferred as a static string of text.
All of the magic of dynamic content takes place on the server’s “back room” and does
not involve HTTP in the least.

562 PART IV Application Level

What about more involved content? Let’s see what the default Apache with SSL page
looks like from wincli2 when we install it on bsdserver. This is shown in Figure 22.4.

This is just the default index.html page showing that Apache installed success-
fully. There is no “real” SSL on this page, however. There is no security or encryption

FIGURE 22.2

An ASP page from winsrv1. The “active” component means that the date and time on the page
are kept current.

FIGURE 22.3

Capture of the HTTP for the ASP page, showing how the protocol identifi es the “make and model”
of the Web site (Microsoft IIS using ASP.NET).

CHAPTER 22 Hypertext Transfer Protocol 563

FIGURE 22.4

Apache HTTP “success” page displayed when the software is installed correctly.

FIGURE 22.5

HTTP Apache capture. Most of the text is transferred in only a few packets.

564 PART IV Application Level

involved. What does the HTTP capture look like now? It’s captured on wincli2 (shown
in Figure 22.5).

This exchange involved 21 packets, and would have been longer if the image had
not been cached on the client (a simple “Not Modifi ed” string is all that is needed to
fetch it onto the page). Most of the text is transferred in packets 10 through 12, and
then the images on the page are “fi lled in.” We’ll take a look at the SSL aspects of this
Web site in the next chapter.

Before getting into the nuts and bolts of HTTP, there is a related topic that must
be investigated fi rst. This is an appreciation of the addressing system used by brows-
ers and Web servers to locate the required information in whatever form it may
be stored. There are three closely related systems defi ned for the Internet (not just
the Web). These are uniform resource identifi ers (URIs), locators (URLs), and names
(URNs).

Uniform Resources
As if it weren’t enough to have to deal with MAC addresses, IP addresses, ports, sockets,
and email addresses, there is still another layer of addresses used in TCP/IP that has
to be covered. These are “application layer” addresses, and unlike most of the other
addresses (which are really defi ned by the needs of the particular protocol) application
layer addresses are most useful to humans.

This is not to say that the addresses we are talking about here are the same as
those used in DNS, where a simple correspondence between IP address 192.168.77.22
and the name www.example.com is established. As is fi tting for the generalized Web
browser, the addresses used are “universal”—and that was one name for them before
someone fi gured out that they weren’t really universal quite yet, but they were at least
uniform.

So, labels were invented not only to tell the browser which host to go to and appli-
cation use but what resources the browser was expecting to fi nd and just where they
were located. Let’s start with the general form for these labels, the URI.

URIs
The generic term for resource location labels in TCP/IP is URI. One specifi c form of
URI, used with the Web, is the URL. The use of URLs as an instance of URIs has become
so commonplace that most people don’t bother to distinguish the two, but they are
technically distinct.

The latest work on URIs is RFC 2396, which updated several older RFCs (including
RFC 1738, which defi nes URLs). In the RFC, a URI is simply defi ned as “a compact string
of characters for identifying an abstract or physical resource.” There is no mention of
the Web specifi cally, although it was the popularity of the Web that led to the develop-
ment of uniform resource notations in the fi rst place.

When a user accesses http://www.example.com from a Web browser, that string is a
URI as much as a URL. So, what’s the difference between the URI and the URL?

CHAPTER 22 Hypertext Transfer Protocol 565

URLs
RFC 1738 defi ned a URL format for use on the Web (although the RFC just says “Inter-
net”). Newer URI rules all respect conventions that have grown up around URLs over
the years. URLs are a subset of URIs, and like URIs, consist of two parts: a method used
to access the resource, and the location of the resource itself. Together, the parts of the
URL provide a way for users to access fi les, objects, programs, audio, video, and much
more on the Web.

The method is labeled by a scheme, and usually refers to a TCP/IP application or pro-
tocol, such as http or ftp. Schemes can include plus signs (+), periods (.), or hyphens
(-), but in practice they contain only letters. Methods are case insensitive, so HTTP is the
same as http (but by convention they are expressed in lowercase letters).

The locator part of the URL follows the scheme and is separated from it by a colon
and two forward slashes (://). The format or the locator depends on the type of
scheme, and if one part of the locator is left out, default values come into play. The
scheme- specifi c information is parsed by the received host based on the actual scheme
(method) used in the URL.

Theoretically, each scheme uses an independently defi ned locator. In practice,
because URLs use TCP/IP and Internet conventions many of the schemes share a com-
mon syntax. For example, both http and ftp schemes use the DNS name or IP address
to identify the target host and expect to fi nd the resource in a hierarchical directory
fi le structure.

The most general form of URL for the Web is shown in Figure 22.6. There is very
little difference between this format and the general format of a URI, and some of these
differences are mentioned in the material that follows the fi gure.

The format changes a bit with method, so an FTP URL has only a type=<typecode>
fi eld as the single <params> fi eld following the <url-path>. For example, a type code of
d is used to request an FTP directory listing. The fi gure shows the general fi eld for the
http method.

<scheme>://<user:><password>@<host>:<port>/<url-path>?<query>#<fragment>

http
for

Web

Public Access (Local host) 80 Working
Directory

StartNot a
Query

Default value if not specified

http://myuserid:mypassword@www.example.com:8080/cgi-bin/figs.php?Ch22#Fig1

FIGURE 22.6

The fi elds of a complete URL, showing that the default values used in the fi elds are absent.

566 PART IV Application Level

<scheme>—The method used to access the resource. The default method for a Web
browser is http.

<user> and <password>—In a URI, this is the authorization field. A URL’s autho-
rization consists of a user ID and password separated by a colon (:). Many
private Web sites require user authorization, and if not provided in the URL
the user is prompted for this information. When absent, the user defaults to
publicly available resource access.

<host>—Called the networkpath in a URI, the host is specified in a URL by DNS
name or IP address (IPv6 works fine for servers using that address form).

<port>—This is the TCP or UDP port that together with the host information
specifies the socket where the method appropriate to the scheme is found. For
http, the default port is 80.

<url-path>—The URI specification calls this the absolutepath. In a URL, this is
usually the directory path starting from the default directory to where the
resource is to be found. If this field is absent, the Web site has a default direc-
tory into which the user is placed. The forward slash (/) before the path is not
technically part of the path, but forms the delimiter and must follow the port.
If the url-path ends in another slash, this means a directory and not a “file”
(but most Web sites figure out whether the path ends at a file or directory on
their own). A double dot (..) moves the user up one level from the default
directory.

<params>—These parameters control how the method is used on the resource and
are scheme specific. Each parameter has the form <parameter>5<value> and
the parameters are separated by semicolons (;). If there are no parameters, the
default action for the resource is taken.

<query>—This URL field contains information used by the server to form the
response. Whereas parameters are scheme specific, query information is
resource specific.

<fragment>—The field is used to indicate which particular part of the resource
the user is interested in. By default, the user is presented with the start of the
entire resource.

Most of the time, a simple URL, such as ftp://ftp.example.com, works just fi ne for
users. But let’s look at a couple of examples of fairly complex URLs to illustrate the use
of these fi elds.

http:// myself:mypassword@mail.example.com:32888/mymail/ShowLetter?MsgID-5551212#1

The user myself, authenticated with mypassword, is accessing the mail.example.com
server at TCP port 32888, going to the directory /mymail, and running the ShowLetter

CHAPTER 22 Hypertext Transfer Protocol 567

program. The letter is identifi ed to the program as MsgID-5551212, and the fi rst part of
the message is requested (this form is typically used for a multipart MIME message).

www.examplephotos.org:8080/cgi-bin/pix.php?WeddingPM#Reception19

The user is going to a publicly accessible part of the site called www.examplephotos.
org, which is running on TCP port 8080 (a popular alternative or addition to port 80). The
resource is the PHP program pix.php in the cgi-bin directory below the default direc-
tory, and the URL asks for a particular page of photographs to be accessed (WeddingPM)
and for a particular photograph (Reception19) to be presented.

www.sample.com/who%20are%20you%3F

File names that have embedded spaces and special characters that are the same as URL
delimiters can be a problem. This URL accesses a fi le named who are you? in the default
directory at the www.sample.com site. There are 21 “unsafe” URL characters that can be
represented this way.

There are many other URL “rules” (as for Windows fi les), and quite a few tricks.
For example, if we wanted to make a Web page at www.loserexample.com (IP address
192.168.1.1) appear as if it is located at www.nobelprizewinners.org, we can translate
the Web site’s IP address to decimal (192.168.1.1 5 0xC0A80101 5 3232235777 deci-
mal), add some “bogus” authentication information in front of it (which will be ignored
by the Web site), and hope that no one remembers the URL formatting rules:

http://www.nobelprizewinners.org@3232235777

A lot of evil hackers use this trick to make people think they are pointing and clicking
at a link to their bank’s Web site when they are really about to enter their account infor-
mation into the hacker’s server! Well, if that’s what a URL is for, why is a URN needed?

URNs
URNs extend the URI and URL concept beyond the Web, beyond the Internet even,
right into the ordinary world. URIs and URLs proved so popular that the system was
extended to become URNs. URNs, fi rst proposed in RFC 2141, would solve a particu-
larly vexing problem with URLs.

It may be a tautology, but a URL specifi es resources by location. This can be a prob-
lem for a couple of reasons. First, the resource (such as a freeware utility program)
could exist on many Web servers, but if it is not on the one the URL is pointing to the
familiar HTTP 404 – NOT FOUND error results. And how many times has a Web site moved,
changing name or IP address or both—leaving thousands of pages with embedded
links to the stale information? (URLs do not automatically supply a helpful “You are
being directed to our new site” message.)

As expected, URNs label resources by a name rather than a location. The familiar
Web URL is a little like going by address to a particular house on a particular street

568 PART IV Application Level

and asking for Joe Smith. A URN is like asking for Joe Smith, getting an answer from a
“resolver,” and going to the current address where good old Joe is found. “Joe Smith” is
an example of a URN in the human “namespace.” Of course, if this is to work properly
there can only be one Joe Smith in the world.

Any namespace that can be used to uniquely identify any type of resource can be
used as a URN. But before you rush out to invent a URN system for automobiles, for
example, keep in mind that designing URNs for new namespaces is not that easy.

Each URN must be recognized by some offi cial body or another, and must be strictly
defi ned by a formal language. It’s not enough to say that the URN string will identify
a car. It is necessary to defi ne things such as the length of the string and just what is
allowed in the string and what isn’t (actually, there’s a lot more to it than that).

For example, the International Standard Book Number (ISBN) system uniquely
identifi es books published all over the world. Part of the number identifi es region of
the world where the book is published, another part the publisher, yet another part
the particular book, and fi nally there is a checksum digit that is computed in case
someone makes a mistake writing down one of the other parts. The formal defi ni-
tion of the ISBN namespace would establish the length of these fi elds, and note that
the ISBN must be 10 digits long and can only be made up of the digits 0 through
9, except for the last checksum digit, where the Roman numeral X is used for the
checksum 10 (10 is a valid ISBN checksum “digit”). The general format of a URN is
URN:<namespace-ID>:<resource-identifier>.

Note the lack of any sense of location. The namespace ID is needed to distinguish
a 10-digit telephone number from a 10-digit ISBN numbers (for example), and the URN
literally makes it obvious that the URN notation system is being employed.

Work on URNs has been slow. A resource identifi ed by URN still has a location, and
so must still provide one or more URLs (think of all the places where a certain book
might be located) to the user. A series of RFCs, from RFC 3401 to RFC 3406, defi nes a
system of URN “resolvers” called the Dynamic Delegation Discovery System (DDDS).
For now, the Internet will have to make do with URLs.

HTTP
HTTP started out as a very simple protocol, based on the familiar scheme of a small
set of commands issued by the client (browser) and reply codes and related informa-
tion issued by the server (Web site). As indicated by the name, the original HTTP (and
HTML) concerned itself with hypertext, the idea being to embed active links in textual
information and allow users to spontaneously follow their instincts from page to page
and site to site around the Internet and around the world. There were also graphics
associated with the Web almost immediately, and this was a startling enough innovation
to completely change the user perception of the Internet.

The original version of HTTP, now called HTTP 0.9, was just something people did
if they wanted their Web sites to work, and nobody bothered to write down much
about it. The people who wanted to know found out how it worked. This was fi ne for
a few years, but once the Web got rolling RFC 1945 in 1996 defi ned HTTP 1.0 (a more

CHAPTER 22 Hypertext Transfer Protocol 569

full-blooded protocol)—which made “old” HTTP into HTPP 0.9. Then HTTP 1.1 came
along in 1997 with RFC 2068, which was extended in 1999 with RFC 2616. And that
was pretty much it. The basic HTTP 1.1 is what we live and work with on the Internet
today.

However, it’s always good to remember what HTTP is and isn’t. HTTP is just a trans-
port mechanism for Web stuff, and not only for varied content. HTTP is fl exible enough
to transport Web features such as cascading style sheets (CCSs), Java Applets, Active
Server Pages (ASPs), Perl scripts, and any one of the half dozen of so languages and pro-
gramming tools that have evolved to make Web servers more complex and paradoxi-
cally easier to confi gure and use.

The Evolution of HTTP
HTTP began as a simple TCP/IP request/response language using TCP to retrieve infor-
mation from a server in a stateless manner (most TCP/IP applications are stateless).
Because the server is stateless, the server has no idea of any history of the interaction
between client and server. Therefore, any state information has to be stored in the
client. We’ll talk about cookies later, after looking at the basics of HTTP.

With HTTP 0.9, a basic browser accessed a Web page by issuing a GET command for
the page desired (indicated in the URL), accompanied by a number of HTTP headers.
This was sent over a TCP connection established between the browser port and port
80 (the default Web port) on the server. The server responded with the text-based Web
page marked up in HTML and closed the TCP session. The initial browser command
was usually GET /index.html.

But what about the graphics and audio in the reply, if included in the Web page?
HTML is a markup language, meaning that special tags are inserted into an ordi-
nary text fi le to control the appearance of the Web page on the browser screen.
Once the initial request transfer was made in HTTP 0.9, the browser parsed the
HTML tags and opened a separate TCP connection to the server for every element of
the page. This is why the location of the graphics and associated media fi les are so
important in HTML: they aren’t really “there” on the page in any sense until HTTP is
used to fetch them.

Naturally, the TCP overhead involved with all of this shuttling of information was
staggering, especially on slow dial-up links and when Web pages grew to include 30 or
more elements. Some Web sites shut down as the “listen” queues fi lled up, router links
became saturated with TCP overhead, and browsers hung as frustrated users began
pounding and clicking everything in sight (one old Internet Explorer message box
begged “Stop doing that!”).

Interim solutions were not particularly effective. Many solutions made use of mas-
sive caching of Web pages on “intermediate systems” that were closer to the perceived
user pool, and many businesses used “proxy servers” (an old Internet security mecha-
nism pressed into service as a caching storehouse). Caching Web pages became so
common that Internet gurus felt compelled to remind everyone that the point of TCP
was that it was an end-to-end protocol and that fetching Web pages from caches from
proxy servers was not the same as the real thing.

570 PART IV Application Level

So, HTTP evolved to make the entire process more effi cient. HTTP 1.0 created a
true messaging protocol and added support for MIME types, adapted for the Web, and
addressed some of the issues with HTTP 0.9 (but not all). In addition, vendors had
been incrementally adding features here and there haphazardly. HTTP 1.1 brought all
of these changes under one specifi cation. In particular, HTTP 1.1 added:

Persistent connections: A client can send multiple requests for related resources
in a single TCP session.

Pipelining—Persistent connections permitted clients to pipeline requests to the
server. If the browser requests images 1, 2, and 3 from the server, the client
does not have to wait for a response to the image 1 request before requesting
file 2. This allows the server to handle requests much more efficiently.

Multiple host name support—Web sites could now run more than one Web server
per IP address and host name. Today, one Web server can handle requests for
literally hundreds of individual Web sites, all running as “virtual hosts” on the
server.

Partial resource selection—A client can ask for only part of a document of
resource.

Content negotiation—The client and server can exchange information to allow
the client to select the best format for a resource, such as MP3 or WAV format
for audio files (the formats must be available on the server, of course). This
negotiation is not the same as presenting format options to the user.

Better security—Authentication was added to HTTP interactions with RFC 2617.

Better support for caching and proxying—Rules were added to make caching of
Web pages and the operation of proxy servers more uniform.

HTTP 1.1 is the current version of HTTP. With so many millions of Web sites in
operation today, any fundamental changes to HTTP would be unthinkable. Instead,
changes to HTTP are to be made through extensions to HTTP 1.1. Unfortunately, not
everyone agrees about the best way to do this. An HTTP extension “framework” was
written as RFC 2774 in 2000 but has never moved beyond the experimental stage.

HTTP Model
The simplest HTTP interaction is for a browser client to send a request directly to the
Web site server (running httpd) and get a response over a TCP connection between
client and server. With HTTP 1.1, the model was extended to allow for intermediaries
in the path between client and server. These devices can be proxies, gateways, tunnel
endpoints, and so on. Proxy servers are especially popular for the Web, and a company
frequently uses them to improve response time for job-related queries and to provide
security for the corporate LAN.

Like FTP, HTTP invites data from “untrustworthy” sources right in the front door, and
the proxy tries to screen harmful pages out. The proxy also protects IP addresses and

CHAPTER 22 Hypertext Transfer Protocol 571

other types of information from leaving the site. (Some companies feared that workers
would fritter away company time and so tried to limit Web access with proxies as
well.) With an intermediary in place, the direct request/response becomes a four-step
process.

1. Browser request: HTTP client sends the request to the intermediary.
2. Intermediary request: The intermediary makes changes to the request and

forwards the request to the actual Web server.
3. Web server response: The Web site interprets the request and sends the reply

back to the intermediary.
4. Intermediary response: The intermediary device processes the reply, makes

changes, and forwards it to the client browser.

Generally, intermediaries become security devices that can perform a variety of
functions, which we will explore later in this book. It is not unusual to fi nd more
than one intermediary on the path from HTTP client to server. In these scenarios, the
request (and response) is created once but sent three times, usually with slightly differ-
ent information. The difference between direct interactions and those with intermedi-
aries is shown in Figure 22.7.

HTTP Messages
All HTTP messages are either requests or responses. Clients almost always issue
requests, and servers almost always issue responses. Intermediaries can do both. The
HTTP generic message format is similar to a text-based email message and is defi ned
as a series of headers followed by an optional message body and trailer (which consists
of more “headers”). The whole is introduced by a “start line.”

CLIENT
(Runs browser)

SERVER
(Active Web site)

Request

Intermediary 1

Request Request Request

ResponseResponseResponse

Intermediaries (proxies or caching devices) can alter fields
in a request and generate an appropriate response.

Intermediary 2

Response

FIGURE 22.7

The HTTP models of interaction, showing how intermediaries can act on a request or response.

572 PART IV Application Level

<start-line>
<message-headers>
<empty-line>
[<message-body>]
[<message-trailers>]

The start line text identifi es the nature of the message. HTTP headers can be
presented in any order at all, and they follow a <header-name>:<header-value>
convention. The message body frequently carries a fi le (called an entity in HTTP)
found more often in responses than in requests. Special headers describe the encod-
ing and other characteristics of the entity.

TRAILERS AND DYNAMIC WEB PAGES
Web pages were originally statically defi ned in HTML and passed out to whoever was
allowed to see them. Web pages today are sometimes still created this way, but the most
sophisticated Web pages create their content dynamically, on the fl y, after a user has
requested it. And for reasons of effi ciency, the beginning can be streamed toward the
browser before the end of the result has been determined. Pages that include current
date and time stamps are good examples of dynamic Web page content, but of course
many are much more complex.

Dynamic Web pages, however, pose a problem for persistent TCP connections. The
browser has to know when the entire Web page response has been received. With
a static Web page, the size is announced in a header at the start of the item. But
dynamic page headers cannot list the size ahead of time, because the server does
not know.

HTTP today uses chunked encoding to solve this problem. As soon as it is known,
each piece of the response gets it own size (the chunk) and is sent to the browser.
The last chunk has size 0, and can include optional “trailer” information consisting of a
series of HTTP headers.

HTTP Requests and Responses
HTTP requests are a specifi c instance of the generic message format. They are intro-
duced by a “request line.”

<request-line>
<general-headers>
<request-headers>
<entity-headers>
<empty-line>
[<message-body>]
[<message-trailers>]

A typical initial request from a browser to the Web site is shown in Figure 22.8.

CHAPTER 22 Hypertext Transfer Protocol 573

GET.index.html HTTP/1.1
Date: Mon, 04 July 2007 19:12:45 GMT
Connection: close
Host: www.example.com
From: walterg@example.com
Accept: text/html, text/plain
User-Agent: MSIE6.0 (Windows XP)

Request line
General headers

Request
headers

Entity headers

Message body

FIGURE 22.8

The HTTP request message, showing some details of the general and request headers.

If the request is sent to an intermediary, such as a proxy server, the host name would
appear in the request line as the resource’s full URL: GET http://www.example.com. The
use of the general, request, and entity headers are fairly self-explanatory. Request head-
ers, however, can be conditional and are only fi lled if certain criteria are met. Each HTTP
request to a server generates a response, and sometimes two (a preliminary response
and then the full response). The format is only slightly different from the request.

<status-line>
<general-headers>
<response-headers>
<entity-headers>
<empty-line>
[<message-body>]
[<message-trailers>]

HTTP/1.1 200 OK
Date: Mon, 04 July 2007 19:12:48 GMT
Connection: close
Server: Apache/1/3/27
Accept-Range: bytes
Content-Type: text/html
Content-Length: 170
Last-Modified: Fri, 01 July 2007 22:15:32 GMT

<html>
<head>
<title>Welcome to the Illustrated Network Site!</title>
</head>
<body>
<p> This site under construction. Check back later... </p>
</body>
</html>

Status line
General headers

Response headers

Entity headers

Message body

FIGURE 22.9

The HTTP response message, showing the headers usually included.

574 PART IV Application Level

The status line has two purposes: It tells the client what version of HTTP is in use
and summarizes the results of processing the client’s request. The results are set as
a status code and reason phrase associated with it. The structure of a typical HTTP
response, sent in response to the request shown in Figure 22.8, is shown in Figure 22.9.
The response headers provide details for the overall status summarized in the fi rst line
of the response.

HTTP Methods
HTTP commands, such as GET, are not called commands at all. HTTP is an object-
 oriented language, and instead of pointing out that all languages used for programming
are to one extent or another object oriented we’ll just mention that HTTP commands
are called methods. (Yes, the URI method http has other HTTP methods beneath
it.) Most HTTP messages use the fi rst three methods almost exclusively. The HTTP
methods are:

GET—Requests a resource from a Web site by URL. Sometimes also used to upload
form data, but this is not a secure method. When the request headers contain
conditionals, this situation is often called a conditional GET. When part of a
resource is requested, this is sometimes called a partial GET.

HEAD—Formatted very much like a GET, the HEAD requests only the HTTP headers
from the server (not the target itself). Clients use this to see if the resource is
actually there before asking for a potentially monstrous file.

POST—Sends a block of data from the browser to the server, usually data from a
form the user has filled out or some other application data. The URL sent must
identify the function (program) that processes the data on the server.

PUT—Also sends data to the server, but asks the server to store the body of the
data as a resource (file), which must be named in the URL. This can be used
(with authentication) to store a file on the server, but FTP is most often used
to accomplish this and thus PUT is not often used (or allowed).

OPTIONS—Requests information about communication options available on the
Web server, with an asterisk (*) asking for details about the server itself. Not
surprisingly, this method can be a security risk.

DELETE—Asks the server to delete the resource, which must be named in the URL.
Not often used, for the same reasons as PUT.

TRACE—Used to debug Web applications, especially when proxy servers and gate-
ways are in use. The client asks for a copy of the request it sent.

CONNECT—Reserved for future use with SSL tunneling.

The initial HTTP RFC 2068 also defi ned PATCH, LINK, and UNLINK, but these have been
removed. However, some sources continue to list them. Most of the HTTP methods are

CHAPTER 22 Hypertext Transfer Protocol 575

“safe” methods that can be repeated by impatient users without harm. The exception
is the POST method, which should only be done once or side effects will result in incon-
sistent or just plain wrong information on the server.

HTTP Status Codes
The status codes used to provide status information to the browser are very similar to
those used in FTP and email. Only the major (fi rst) digit codes are listed in Table 22.1.

Each status code has an associated reason phrase. The reason phrases in the HTTP
specifi cation are “samples” that everyone copies and uses. They are intended as aids to
memory and not as a full explanation of what is wrong when an error occurs. But a
lot of browsers just display the 404 status code reason phrase, Not Found, and deem it
adequate.

It’s not necessary to list all of the HTTP status codes, but one does require additional
comment. The 100 status code (reason phrase Continue) is often seen when a client is
going to use the POST (or PUT) method to store a large amount of data on the server. The
client might want to check to see whether the server can accept the data, rather than
immediately sending it all. So, the request will have a special Expect: 100-continue
header in it asking the server to reply with a 100 Continue preliminary reply if all is
well. After this response is received, the client can send the data.

That’s the theory, anyway. In practice, it’s a little different. Clients usually go ahead
and send the data even if they don’t get the 100 Continue response from the server
(hey, the browser has to do something with all of that data). And servers, perhaps think-
ing about all those users out there holding their breaths just waiting for 100 Continue
responses before they turn blue, often send out 100 Continue preliminary responses
for almost every request they get from a browser. But it was a fi ne idea.

HTTP Headers
It is not possible or necessary to list every HTTP header. Instead, we can just a take
a look at the types of things HTTP headers do. First, some of the headers are end-
to-end and others are hop-by-hop. As might be expected, the end-to-end headers are
not changed as they make their way between client and server no matter how many

Table 22.1 HTTP Status Codes and Their Meanings

Code Meaning

1xx Informational, such as “request received” or “continuing process”

2xx Successful reception, processing, acceptance, or completion

3xx Redirection, indicating further action is needed to complete the request

4xx Client error, such as the familiar 404, not found often, indicating syntax error

5xx Server error when the Web site fails to fulfi ll a valid request

576 PART IV Application Level

 intermediary devices are between client and server. Hop-by-hop headers, on the other
hand, have information relevant to each intermediary system.

General Headers
General headers are not supposed to be specifi c to any particular message or compo-
nent. These convey information about the message itself, not about content. They also
control how the message is handled and processed. However, in practice general head-
ers are found in one type of message and not another. Some can have slightly different
meanings in a request or response. The general headers are outlined in Table 22.2.

Request Headers
The request headers in an HTTP request message allow clients to supply information
about themselves to the server, provide details about the request, and give the client
more control over how the server handles the request and how (or if) the response is

Table 22.2 HTTP General Headers and Their Uses

Header Use

Cache-control These contain a directive that establishes limits on how the request or
response in cached. Only one directive can accompany a cache-control
header, but multiple cache-control headers can be used.

Connection These contain instructions that apply only to a particular connection. The
headers are hop-by-hop and cannot be retained by proxies and used for other
connections. The most common use is with the “close” parameters (Connec-
tion: close) to override a persistent connection and terminate the TCP session
after the server response.

Date Date and time the message originated, in RFC 822 email format.

Pragma Implementation-specifi c directives similar to Unix programming. Often used for
cache control in older versions of HTTP.

Trailer When the response is chunked, this header is used before the data to indicate
the presence of the trailer fi elds.

Transfer-encoding Message body encoding, most often used with chunked transfers. This applies
to the entire message, not a particular entity.

Upgrade Clients can list connection protocols they support. If the server supports
another in common, it can “upgrade” the connection and inform the client in
the response.

Via Used by intermediaries to allow client and server to trace the exact path.

Warning Carries additional information about the message, usually from an intermediary
device regarding cached information.

CHAPTER 22 Hypertext Transfer Protocol 577

returned. This is the largest category of headers, and only the briefest description can
be given of each. They are listed in Table 22.3.

Response Headers
HTTP response headers are the opposite of request headers and appear only in mes-
sages sent from server to browser. They expand on the information provided in the
summary status line, as outlined in Table 22.4. Many response headers are sent only in
answer to a specifi c type of request, or to certain headers within particular requests.

Table 22.3 HTTP Request Headers and Their Uses

Header Use

Accept What media types the client will accept, including preference (q).

Accept-Charset Similar to accept, but for character sets.

Accept-Encoding Similar to accept, but for content encoding (especially compression).

Accept-Language Similar to accept, but for language tags.

Authorization Used to present authentication information (“credentials”) to the server.

Expect Tells the server what action the client expects next, usually “Continue.”

From Human user’s email address. Optional, and for information only.

Host Only mandatory header, used to specify DNS name/port of Web site.

If-Match Usually in GET, server responds with entity only if it matches the value of the
entity tags.

If-Modifi ed-Since Similar to If-Match, but only if the resource has changed in the time interval
specifi ed.

If-None-Match Similar to If-Match, but the exact opposite.

If-Range Used with Range header to check whether entity has changed and request
that part of the entity.

If-Unmodifi ed-Since Opposite of If-Modifi ed-Since.

Max-Forwards Limits the number of intermediaries. Used with TRACE and OPTIONS. Value
is decremented and when 0 must get a response.

Proxy-Authorization Similar to Authorization, but used to present authentication information
(“credentials”) to a proxy server.

Range Asks for part of an entity.

Referer Never corrected to “referrer,” this is used to supply the URL for the “back”
button function to the server (also has privacy implications).

TE Means “transfer encodings,” and is often used with chunking.

User-Agent Provides server with information about the client (name/version).

578 PART IV Application Level

Entity Headers
Finally, entity headers describe the resource carried in the body of the HTTP message.
They usually appear in responses, but can appear in PUT and POST requests. Many of
the entity headers have the same names as the MIME types they are based on, but with
important differences. The entity headers are outlined in Table 22.5.

Table 22.4 HTTP Response Headers and Their Uses

Header Use

Accept-Ranges Tells client if server accepts partial content requests using Range
request header. Typical values are in bytes, or “none” for no support.

Age Tells the client the approximate age of the resource.

ETag Gives the entity tag for the entity in the response.

Location Gives client a new URL to use instead of one requested.

Proxy-Authenticate Tells client how the proxy requires authentication, both method and
parameters needed.

Retry-After Tells client to try the request again later, seconds or by date/time.

Server Server version of User-Agent request header, used for server details.

Vary Used by caching devices to make decisions.

WWW-Authenticate Tells client how the Web site requires authentication, both method and
parameters needed.

Table 22.5 HTTP Entity Headers and Their Uses

Header Use

Allow Lists methods that apply to this resource.

Content-Encoding Describes optional encoding method, usually the compression algorithm
used so that the client can decompress the entity.

Content-Language Specifi es the human language used by the entity. It is optional and can
specify multiple languages.

Content-Length Size of the entity in bytes (octets). Not used in chunked transfers.

Content-Location Resource location as URL. Optional, but used if entity is in multiple places.

Content-MD5 Used for message integrity checking with Message Digest 5.

Content-Range Used for entities that are part of the complete resource.

Content-Type Similar to MIME type and subtype, but not exactly the same.

Expires Data and time after which entity is considered stale.

Last-Modifi ed Date and time server “believes” entity last changed.

CHAPTER 22 Hypertext Transfer Protocol 579

Use of the Last-Modifi ed header is complicated by the fact that the server might not
know when an entity was last modifi ed, especially if the resource is “virtual.” For dynamic
content, this header should be the same as the time the message was generated.

Cookies
A Web server gets a request, processes a request, and returns a response in a completely
stateless manner. Every request, even from the same client a moment later, looks brand
new to the server.

Stateless servers are the easiest to operate. If they fail, just start them up again. No
one cares where they left off. You can even transfer processing to another host and
everything runs just fi ne, as long as the resources are there. Stateless servers are best
for simple resource-retrieval systems.

That’s how the Web started out, but unfortunately this is not how the Web is used
today. Web sites have shopping carts that remember content and billing systems that
remember credit card information. They also remember log-in information that would
otherwise have to be entered every time an HTTP request was made.

How should the state information necessary for the Web today be stored? For bet-
ter or worse, the answer today is in cookies. The term seems to have originated in
older programs that required users to supply a “magic cookie” to make the program do
something out of the ordinary (“Easter eggs” seem to be the GUI equivalent). Accord-
ing to others, an old computer virus put the image onscreen of Cookie Monster (of
Sesame Street fame) announcing, “Want cookie!” The user had to type the word cookie
to continue. The cookie term is also used in BOOTP/DHCP.

Cookies were initially developed by Netscape and were formalized as a Web state
management system in RFC 2965, which replaced RFC 2109. Cookies are not actually
part of HTTP, and remain an option, but few Web browsers can afford to reject all cook-
ies out of hand (so to speak).

The idea behind cookies as a method of server state management is simple. If the
server can’t hold state information about the user and the session, let the client do
it. When the server has a function that needs a state to be maintained over time, the
server sends a small amount of data to the client (a cookie).

Cookies are presented when the server asks for them, and are updated as the ses-
sion progresses. Cookies are just text strings and have no standard formats, in that
only a particular server has to understand and parse them. In Windows XP, cookies
are stored in the cookies.txt fi le under the user’s Documents and Settings directory.
Cookies just accumulate there until users clear them out (few do). If deleted, the fi le is
built again from scratch. Looking at someone’s cookies is a quick and dirty way to see
where the browser (not necessarily the user) has gone recently.

Cookies, as indispensable as they are on the Web today, tend to have a somewhat
unsavory reputation. They aren’t perfect: If a cookie is established to allow access to a
book-shop Web site at home, the cookie is not present on the user’s offi ce computer
and the Web site has no idea who the user is because there is no cookie to give to the

580 PART IV Application Level

server. A lot of users assume they’ve done something wrong, but that’s just the way
cookies work.

Most browsers can be set to screen or reject cookies, mainly because cookies are a
barely tolerated security risk to many people (many think the browser default should
be to reject all cookies instead of accepting them). In particular, there are three big
issues with cookies.

Sending of sensitive information— Banks routinely store user ID and password
in a cookie. Even if it is encrypted when sent, the information is typically sit-
ting on your computer in plain text (waiting for anyone to look at it).

User tracking abuse—Servers can set cookies for any reason, including tracking
the sites a user visits rather than storing useful parameters. This is often seen
as a violation of the right to privacy, and some Web browsers are silent when
a cookie is set.

Third-party cookies—If a Web page contains a link (perhaps to a small image) to
another Web site, the second site can set a cookie (called a third-party cookie)
on your machine even though you’ve never visited (or intend to visit) the site.
So, that must be how all those porn-site cookies got there.

Some people regard cookies as much ado about nothing, whereas others busily turn
off all cookie support whenever they go on-line. But most people should at least con-
sider disabling third-party cookies, which really have no legitimate use when it comes
to HTTP state management.

CHAPTER 22 Hypertext Transfer Protocol 581

This page intentionally left blank

QUESTIONS FOR READERS
Figure 22.10 shows some of the concepts discussed in this chapter and can be used to
answer the following questions.

FIGURE 22.10

The Apache server capture.

1. Which version of Apache is the server using?

2. Which ports are the client and server using?

3. Completely parse the following URL: http://www.examplebooks.com:8888/ cgi-
bin/ebook.php?HTTPforChimps#page345.

4. Completely parse the following URL:

 ftp://ftp.freestuff.com/Is%20This%20Really%20Free%3F.

5. What is a cookie used for? Examine your cookies.txt fi le.

583

CHAPTER

What You Will Learn
In this chapter, you will learn about the secure sockets layer (SSL) and how it is
used on Web sites. We investigate the layers and operation of the SSL protocol and
discuss the SSL’s use of certifi cates.

You will learn about the public key infrastructure (PKI) and how public keys
are used for encryption. We present a simple example of public key encryption
and decryption using only a pocket calculator and no advanced mathematics.

Securing Sockets
with SSL 23

Web site security and user authentication were not much of a concern in the HTTP
chapter. But the popularity of the Web for e-commerce is based on trusting that the
transactions sent over the Internet are secure. To most users, this means two things:

Server authentication—The identity of the server is vouched for in some way
(such as a certificate), so that users have confidence that the Web site is not
run by a bunch of hackers collecting credit card or password information.

Safe passage—Data that passes back and forth between client and server cannot
be read (decrypted) by hackers sniffing odd interfaces here and there.

In this chapter, we explore the SSL, the most widely deployed security protocol on
the Web (and in the world) today. Many users notice the little yellow lock that appears
in the lower right-hand corner of most Web browsers, and a large percentage of those
realize that this means the browser has deemed this site “secure,” but few bother to
investigate just what that means.

SSL AND WEB SITES
In the last chapter, we confi gured the hosts bsdserver and winsvr1 to act as a Web site
using Apache. In this chapter, we’ll explore the security aspects of the Web software.
We’ll be using the same equipment as in the previous chapter, as shown in Figure 23.1.

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80:205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65459

Wireless
in Home

IIS with
ASP

Installed

Solid rules � SONET/SDH
Dashed rules � Gig Ethernet
Note: All links use 10.0.x.y
addressing...only the last
two octets are shown.

FIGURE 23.1

Web sites on the Illustrated Network showing that the Apache Web server supports SSL.

586 PART IV Application Level

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80:205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.166
MAC: 00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

ge-0/0/3

16.2

ge-0/0/3

16.1

Best ISP

AS 65127

Global Public
Internet

Apache Web
with SSL
Installed

CHAPTER 23 Securing Sockets with SSL 587

The Apache Web server software uses a type of SSL called OpenSSL. What happens
when we use the Apache Web server with the OpenSSL module on bsdserver? Let’s
try it from wincli2 and see what happens. In the HTTP chapter, when we accessed the
default Apache Web page (index.html) at http://bsdserver.booklab.englab.jnpr.net, the
page mentioned SSL but did not display a security lock.

When we type in a request for the secure part of the bsdserver by using https,
as in https://bsdserver.booklab.englab.jnpr.net, we get a default security alert
right away from IE (as shown in Figure 23.2). It seems odd to warn about a secure
 connection, but that’s what it does.

FIGURE 23.2

A security alert in IE, oddly “alerting” the user that the information cannot be viewed by others.
Note that these warnings can be disabled.

FIGURE 23.3

A certifi cate security warning. Often the certifi cate has expired and has not yet been renewed.

588 PART IV Application Level

Most people choose not to see this warning over and over and click the box, but it’s
good to see that the browser knows that it’s going to establish a secure connection. If
we okay the operation, the fi rst thing that is noticeable is how much slower the server
is to respond compared to the “regular” default Web page display—which is just about
instantaneous because the two hosts are on the same LAN. Of course, the bsdserver is
not the fastest platform, or the platform of choice, for commercial Web site hosting.

A lot is going on between server and client, but eventually the browser receives
the site certifi cate and in this case immediately objects to the certifi cate provided by
bsdserver. This is shown in Figure 23.3.

The certifi cate must pass three major tests, and the certifi cate used for testing
OpenSSL with Apache is wanting in all three categories. First, the issuing “company”
does not exist. Second, the certifi cate has expired. Third, the name on the certifi cate
has nothing to do with bsdserver. The user can view the certifi cate, and ultimately
decide to proceed or essentially abort the request for the page. If we view the certifi -
cate used for testing in Apache SSL, the reasons for the warnings become obvious (as
shown in Figure 23.4).

The testing certifi cate issued by the nonexistent Snake Oil CA not only expired
long ago but is issued to a bogus domain. Nevertheless, the user can choose to view the

FIGURE 23.4

Apache SSL test certifi cate, which fails on all three counts.

CHAPTER 23 Securing Sockets with SSL 589

details of the certifi cate fi elds, optionally store a copy of the certifi cate on the client, or
choose to proceed (users cannot say they have not been warned!).

Clicking on OK fi nally (after another longish wait) delivers the secure Web page and
displays the familiar browser secure lock in the lower right-hand corner of the window.
We haven’t actually installed any “real” secure pages, so the same page is used for con-
tent as in the last chapter. However, the content is sent encrypted to the client—which
is the point. The page and lock are shown in Figure 23.5. IE7 moves the lock to the top
of the page, but it’s the same lock.

We can always view the certifi cate again by double-clicking on the lock. We see the
same view as in Figure 23.4. The Details tab provides information about the certifi cate.
The following are the fi elds in the Snake Oil certifi cate in detail.

■ Version—V3 (SSLv3)
■ Serial Number—01
■ Signature algorithm—md5RSA
■ Issuer—ca@snakeoil.dom, Snake Oil CA, Snake Oil, Ltd, Snake Town, Snake

Desert, XY

FIGURE 23.5

The secure Web page and lock (IE 7 moves it to the top of the page). Note the use of https.

590 PART IV Application Level

■ Valid From—Thursday, October 21, 1999 11:21:51 AM
■ Valid To—Saturday, October 20, 2001 11:21:51 AM
■ Subject—www@snakeoil.dom, www.snakeoil.dom, Webserver Team, Snake Oil, Ltd,

Snake Town, Snake Desert, XY
■ Public key—RSA (1024 bits; all 128 bytes follow)
■ Subject alternative name—RFC822 Name5www@snakeoil.dom
■ Netscape comment—mod ssl generated custom server certifi cate
■ Netscape Cert Type—SSL Server Authentication (40)
■ Thumbprint algorithm—sha1
■ Thumbprint—20 bytes displayed

The Ethereal capture of the session shows that it takes 98 packets between client
and server for an entire secure exchange. It also took almost 3 minutes to load the SSL
page, but much of this time was “user think time” spent examining the warnings and
alerts for the purposes of this book.

There is much more that could be explored in SSL, but the procedures become
complex very quickly. Interested readers are referred to texts devoted to security
issues. The rest of this chapter explores in more detail what we’ve just seen.

The Lock
The lock in the browser always gives users the strength of encryption used. Passing
the mouse over the lock and pausing it will display a message box with text such as
SSL Secured (128 Bit) in Internet Explorer (IE). This means that the keys used for
encryption and decryption are 128 bits long, barely respectable today. Other browsers
have other ways of revealing this information.

If you double-click on the lock, you’ll be able to see the certifi cate information and
purpose—which is usually to verify the identity of the server (remote computer). The
information should also show the domain for which the certifi cate was issued (such
as www.example.com), which should match the Web site. The issuer of the certifi cate is
available, as well as the dates the certifi cate is valid.

Modern browsers have a built-in security feature that displays a warning message
when you try to send information to a Web site that has a certifi cate “problem.” The
certifi cate could have expired, or the name on the certifi cate might not match the Web
site. The user can choose to proceed, or not, or view the certifi cate itself.

Servers use the certifi cate to derive two keys, public and private. The public key
is part of the digital certifi cate sent to the client browser. The public key is used to
encrypt initial data sent to the server to set up session keys for the transaction. The
reason the public key is not used throughout will be examined later in this chapter.

Some people get their own personal certifi cates and use them to secure a lot of
what they do on the Internet, even protecting their email messages. Let’s take a closer
look at how SSL works as a protocol layer in TCP/IP.

CHAPTER 23 Securing Sockets with SSL 591

Secure Socket Layer
The SSL protocol was invented as a way to secure Web sites, but the status of SSL as
a protocol layer allows it to be used for any client–server transactions as long as they
use TCP. SSL is the basis of a related method, Transport Layer Security (TLS), defi ned in
RFC4346. Both form a complete socket layer sitting above TCP and UDP and add authen-
tication (you are who you say you are), integrity (messages have not been changed
between client-server pairs), and privacy (through encryption) to the Internet.

Figure 23.6 shows the relationship between SSL/TLS and the socket interface. SSL
and TLS are so closely related that they both use the same well-known port. Many
implementations of SSL support TLS. In fact, Ethereal often parses bits as “TLS” instead
of the expected “SSL” in many places.

Typical SSL implementations on the Internet only authenticate the server. That
is, SSL is used as the de facto standard way client users can be sure that when they
log on to www.mybank.com the server is really an offi cial entity of MyBank and not
a phony Web site set up by hackers to entice users to send account, Social Security,
PIN, or other information hackers always fi nd useful. SSL used by a server is indicated
by the little “lock” symbol that appears in the lower right-hand corner of most Web
browsers.

TLS 1.0 can be considered an extension of SSL 3.0 to include the client side of the
transaction. SSL is still used in the Netscape and Internet Explorer browsers, and in
most Web server software. Not all Web pages need to be protected with SSL or TLS, and
SSL can be used free for noncommercial use or licensed for commercial applications.

Why would a Web server need to authenticate and protect the client? Well, consider
the liability of and bad publicity for MyBank if www.mybank.com accepted a request on
the part of a fake client user who transferred someone’s assets to an offshore account
and closed the accounts? Today, many activities that could easily be done over the Inter-
net require a phone call or fax or letter with signature (or several of these!) to protect
the server from phony clients.

Application Programs

TCP

IP Layer

Network

Secure Sockets Layer/ Transport Layer Security
(Authentication, Integrity, and Privacy for Applications)

FIGURE 23.6

SSL/TLS as a “socket layer” protocol, showing how it sits on top of TCP.

592 PART IV Application Level

PRIVACY, INTEGRITY, AND AUTHENTICATION
Before exploring SSL and TLS in more depth, an introduction to the methods they use
to provide authentication, integrity, and privacy is necessary. A more complete discus-
sion of these methods, especially certifi cates and public key cryptography, is presented
in the chapter on IPSec.

Privacy
Privacy is the easiest for most to understand. Coded messages based on “conventional”
or “traditional” secret keys have been used since ancient times, and anyone who has
played with a “secret decoder ring” from a cereal box knows that the point is that only
the sender and receiver know the shared secret key needed to code and decode the
message. Most people also understand that such codes can be broken (some easily,
some only with diffi culty) by extensive analysis of the messages (the more text avail-
able, the better) or by simply fi nding out the “secret” key (the basis of many old spy
movies). The key is the weakest point of the system: You can’t use the code to protect
the key for the same code because it is sent to other communication partners!

Today, public key (or asymmetrical) cryptography addresses the “key exchange
problem” by using two keys—either one of which can be used to encrypt a message.
One key remains private (i.e., known only to one party), whereas the other key is made
public and available to anyone. Either key, public or private, can be used to encrypt
a message—but then only the other key can be used to decrypt the message. (That’s
right, the key used for encryption can’t even be used to “undo” the initial coding. Be
careful when deleting the uncoded messages that the encrypted texts are based on!)
A complete example of public key encryption is given later in this chapter.

Messages encrypted with the public key can only be decrypted by the private key,
which means that the key exchange problem is solved. And if you give your public key
to someone careless, it doesn’t really matter: Anyone can learn the public key and the
method is still secure as long as your private key remains private. Even better, we can
now exchange old-fashioned shared secret keys this way and use them for a while (the
longer a secret key is used, and the more text accumulates to analyze, the less secure
the secret key). For instance, you can use your bank’s public key to send transactions
across the Internet and remain confi dent that only the bank can decrypt the message
using its secret key.

Integrity
Traditional methods of making sure that the message sent is the one received left a lot to
be desired. Witnessing documents with other signers, using public notaries, and other
methods all had problems that could be circumvented. Traditional message integrity
simply relied on the strength of the encryption method to make sure that no one “in
the middle” had changed the message in transit. It is one thing to tell MyBank “transfer
$10,000 to pay off my credit cards” and another to fi nd out MyBank thought you said

CHAPTER 23 Securing Sockets with SSL 593

“transfer $10,000 to Harry Hacker.” As fascinating as your broken bank correspondence
might be to read, hackers usually really want to do some damage. Then, as soon as the
wire transfer has cleared, Harry can close his account and move on to the next victim.

Those who have been around networks know the concept of a frame checksum
or one-way hash. The checksum is a fi xed number of extra bits appended to a frame
(message) to verify that no bits have been altered by errors on the network while the
frame is in transit. Even the checksum itself is included in the “protection.” The modern
equivalent of the checksum hash, extended to many more bits and applied to the mes-
sage text itself (or layers of the message plus headers added), is called a message digest.
A message digest is just a big one-way hash, which means that the original text cannot
be recovered from the hash value. On the other hand, the changes made might just
yield the same hash value as the original message. Message digests understand this and
are mathematically designed to make sure the chances of this happening are very slim,
on the order of one chance in a million or better.

An associated use of message digests is as a digital signature. After all, the message
digest hash only says that the message to MyBank arrived unaltered. It doesn’t guaran-
tee that the message really came from me. Anyone in the middle knowing the message
digest algorithm can simply substitute the entire message, append the proper message
digest, and sent it on to the bank.

But a digital signature involves more than just a hash on the message. A digital
 signature is used with public key encryption to encrypt not only the text and hash value
but other information (such as a sequence number) with my private key. The digital
signature is appended to the encrypted message and is valid only for that message. The
digital signature can be decrypted with my public key, which might sound like defeat-
ing the purpose—but the point is that only you can create a digital signature using the
message digest, and no one can change the digest and still sign it as you have (as long as
my private key remains private, of course). No one else can use this signature later, for
the same reason. Digital signatures provide the receivers with nonrepudiation, mean-
ing that MyBank can be sure that you sent the message and that it’s really the message
you sent (again, as long as you protect your private key).

Authentication
There is only one more concept that remains in understanding how SSL and TLS work.
This is the idea of a certifi cate. Thus far, we have developed a way for an individual to
send encrypted, unalterable, signed messages to MyBank at www.mybank.com. We do
this using the bank’s public key, available to anyone. (Of course, the digital signature
depends on the public key—although the certifi cate concept applies here as well.) But
how do you know that the public key provided is really the bank’s key? Where does
MyBank’s public key come from?

It comes from a certifi cate, of course. The bank provides me with a certifi cate con-
fi rming the public key and the identity of the holder of the key. How do you know the
certifi cate is real? After all, all forms of encryption and authentication are susceptible
to the “man-in-the-middle” exploit—where someone is busily intercepting messages

594 PART IV Application Level

between client and server and substituting their own certifi cates (with their own keys)
to both parties. One solution would be to hardcode the certifi cates into every browser,
but this solution does not scale.

A more practical answer to the “man-in-the-middle” threat is that you know the cer-
tifi cate is real because you got it from a certifi cate authority (CA). The CA is a trusted
third-party agency whose job it is to distribute certifi cates, usually on behalf of com-
mercial enterprises that pay for their services. Certifi cates associate a public key with
the identity of a subject (server or user), along with the public key. The CA issuer digital
signature is included, as well as a period of validity (start and end), version and serial
number of the certifi cate, and sometimes “extension” information.

CAs often require that certifi cate information be delivered in person by more than
one validated representative of the company being “certifi ed.” This root level CA is also
covered by a certifi cate, but one that is self-signed. Even on the Internet, someone has
to be trusted implicitly. Other CAs can issue the certifi cate in a certifi cate chain. Some
certifi cation users refuse to accept a certifi cate if the chain is too long (the longer the
chain, the greater the risk that one certifi cate in the chain might be bad).

Before central bank regulation became common, anyone could found a bank just by
getting people to trust them with their money. Today, anyone can follow a few rules and
be a CA and issue certifi cates—and that is especially true for private intranets in a large
organization. Among the rules are procedures for validating, managing, and revoking cer-
tifi cates through certifi cate revocation lists (CRLs). CRLs are needed because certifi cates
are passed around a lot and it is impossible to tell just by examination that a certifi cate is
no longer valid because things have changed or it has been compromised or abused.

If the concepts of public key encryption, message digests, digital signatures, and cer-
tifi cates still seem somewhat vague and abstract, that’s only to be expected. These are
diffi cult concepts that take time to assimilate. The IPSec chapter revisits the concepts
in more detail, and gives examples of how these concepts all work together.

PUBLIC KEY ENCRYPTION
Public key encryption, using a private key to recover what is encrypted with a public key,
is based on complex mathematical principles. But that doesn’t mean that the use of pub-
lic key encryption is all that diffi cult to perform. After all, computers do it with ease.

Let’s use something no more complex than an ordinary pocket calculator to per-
form this type of encryption. Along the way, several important points about public key
encryption will be uncovered.

Pocket Calculator Encryption at the Client
The security that public key encryption provides is a consequence of the diffi culty
of factoring large numbers, not the complexity of the method. You can do PKI on
any pocket calculator. The “how” is shown in the “Three Magic Numbers” sidebar and
explained in material following.

CHAPTER 23 Securing Sockets with SSL 595

We have to start with three “magic” numbers, and two of them must be prime numbers.
Usually, you choose two large primes fi rst (hundreds of digits) and derive a third huge
number called N (for “normalizer”) through a very complex process. N is never called a
key in the documentation, but N is necessary for both encrypting and decrypting. The
security comes from the fact that given a large N and one of the keys, it is next to impos-
sible to derive the second prime key number. In this example, N 5 33, and the two
primes are 3 and 7. There is no obvious relationship between 33 and 3 and 7, although
with these small numbers, a code cracker could fi gure it out in a minute or two.

One of the two primes becomes the public key (it doesn’t matter which), and the
other becomes the private key. Never consistently assign the smaller number as the
public key. This speeds up client encryption, but is a security risk if people know one
factor must be larger than the other. In this example, N 5 33, the public encryption key
E 5 3, and the private decryption key D 5 7.

Example
To encrypt the plain-text letter “O,” fi rst convert it to a number. “O” is the 15th letter of
the alphabet; we can use that. Of course, we have to obtain the values of the server’s
N and E values. We can get those from a certifi cate, in that the values of N and E must
match up properly with the D that the receiver retains.

Now write down the “O” value E times and multiply, using any suitable calculator
with at least eight (8) positions. So, 15 3 15 3 15 5 3375. This is not too large, so the
encryption does not need N yet.

Divide by N and compute remainder. This is just 3375/33 5 102.27272. The frac-
tion is there because calculators do not give remainders directly. We can get it by sub-
tracting 102, leaving 0.27272. Then, 0.27272 3 33 5 8.99976 5 9. We have to round a
little due to the limited precision of the decimal fraction. The client sends 9, which is
the cipher text for the 15 (“O”) plain text, over the network.

Three Magic Numbers

1. Start with three magic numbers: Public “normalizer” N 5 33, public
 encryption key E 5 3, and private decryption key D 5 7.

2. Encrypt plain-text letter “O” (15th letter of the alphabet) from certifi cate
N and E values.

3. Write down “O” value E times and multiply:
 15 3 15 3 15 5 3375

4. Divide by N and compute remainder:
 3375/33 5 102.27272…
 0.27272… 3 33 5 8.99976 5 9

5. Send 9, the cipher text for plain-text 15, over the network.

596 PART IV Application Level

At the Server

1. Get back “O” without using E, but only N 5 33 and D 5 7. The receiver
gets cipher-text 9 over the network.

2. Write down cipher-text value D (7) times and multiply, applying
“normalizer” whenever number gets large:

 9 3 9 3 9 3 9 3 9 3 9 3 9 5 (531,441) 3 9
 But 531,441/33 = 16,104.272 and 0.272 3 33 5 8.976 5 9.
 So, (9) 3 9 5 81.
 Divide the fi nal result by N and compute the remainder:
 81/33 5 2.4545454…
 0.4545454 3 33 5 14.99998 5 15

3. Thus, 15 plain text is the letter “O” sent securely.

Pocket Calculator Decryption at the Server
Thus far, the client has used the proper N and E from the server to encrypt “O” (15)
as cipher-text 9. This is what is sent on the network. The magic of PKI is being able
to get back “O” without using E, only N and D. (Because N is known to and used
by both parties, it is never called a key itself.) In this example, N 5 33, E 5 3, and
D 5 7. The following is how to get back “P” using only N 5 33 and D 5 7 at the
server end.

1. Write down the cipher-text value (9) D times and multiply. If the number
gets too large for the calculator, we can apply N to get back a more useable
number.

 9 3 9 3 9 3 9 3 9 3 9 3 9 5 (531,441) 3 9
 If we don’t want to risk overfl owing the calculator, we can apply N at

any time as follows:
 531,441/33 5 16,104.272 (subtract 16,104) and 0.272 3 33 5 8.976 5 9

 (Again, rounding is needed to deal with the annoying decimal fractions
 that calculators insist on providing.)

 So, (9) 3 9 5 81. Note how the single (9) replaces 531,441. It is just a
coincidence that this turned out to be 9 also.

2. Divide the fi nal result by N and compute remainder:
 81/33 5 2.4545454, so subtract 2
 0.4545454 3 33 5 14.99998 5 15

CHAPTER 23 Securing Sockets with SSL 597

The security in PKI is in the diffi culty of fi nding D given the values of E and N. This
example is mathematically trivial to hackers and crackers. But try N 5 49,048,499 and
E 5 61. The answer is D 5 2,409,781. Usually, N, E, and D are anywhere from 140 to 156
or more digits long. To deal with text messages, strings of letters can be thought of as
numbers. So, “OK” becomes 1511. ASCII is typically used.

Digital signatures employ the same public keys as well. Either key, E or D, can be
used to encrypt or decrypt. You just need to use the other to reverse the process (try it
with “O”). So, any message encrypted with D can only be decrypted with E (my public
key). So, any text that can be decrypted with E (and N) had to come from me as long
as my private key D remains secure.

PUBLIC KEYS AND SYMMETRICAL ENCRYPTION
As has just been pointed out, public key encryption is done routinely by computers—
but it’s not an easy task, even for modern processors. Computers are really an engi-
neering tool and were generally scorned by mathematicians until relatively recently.
In fact, sometimes a mathematician will ask a computer scientist what value of p is
used in computations. Any value that contains less than an infi nite number of digits is
incorrect, of course. At some point the loss of accuracy is fi ne for engineers, but not for
“pure” mathematicians.

So, the length of the strings encrypted with public keys must be limited to what a
computer can handle. We have to admit, the fi rst time we heard about “128-bit encryp-
tion,” we thought it would be interesting because no programming languages at the
time supported “integers” longer than 64 bits—let alone powers involving 128-bit
 numbers. Normalization helps, of course, but the computational drain of public keys
on general processors is substantial.

For this reason, SSL uses public key encryption as little as possible—typically only to
establish symmetrical keys that can be used much more effi ciently with existing algo-
rithms and processors. Naturally, the symmetrical keys are much less secure than public
key encryption, but they are changed more often and used for shorter periods of time.

SSL AS A PROTOCOL
SSL is a protocol layer all on its own that is placed between a connection-oriented,
network layer protocol (almost always TCP) and the application layer protocol
(such as HTTP) or program. Connections are useful to provide a convenient way to

3. Thus, the plain-text 15 is the letter “O” sent securely using PKI. That’s all
there is to it! Of course, usually it’s a number that’s encrypted—but so
what? Try the number 19 for yourself. You might have to “normalize” on the
encryption side as well, but it still works.

598 PART IV Application Level

 associate security parameters with a specifi c fl ow of packets. SSL uses certifi cates for
 authentication, digital signatures and message digests for integrity, and encryption for
privacy. Each of the three security areas has a range of choices allowed in order to
respect local laws regarding cryptographic algorithms and new technologies to be
included as developed. Specifi c choices in each area are negotiated when a protocol
session (connection) is set up.

SSL Protocol Stack
The SSL protocol stack is shown in Figure 23.7. TLS can be regarded as an enhanced
version of the SSL protocol stack, but the components are essentially the same.

SSL usually uses Diffi e-Hellman (a secure key exchange method used on unsecure
networks) to exchange the keys. The handshake procedure itself uses three SSL pro-
tocol processes: the SSL Handshake Protocol for the overall process, the SSL Change
Cipher Spec Protocol for Cipher Suite specifi cation and negotiation, and the SSL Alert
Protocol for error messages.

All three of these protocols use the SSL Record Protocol to encapsulate their mes-
sages, as well as the application data fl owing on the session once established. The nice
thing about the SSL Record Protocol is that it provides a way to renegotiate active
session parameters or establish a new session using a secure path. Initial session hand-
shakes without a functioning and secure SSL Record Protocol must use a NULL Cipher
Suite (plain text), which is of course a risk.

SSL Session Establishment
Established SSL sessions can be reused, which is good because the SSL session
 establishment process requires the exchange of many messages. Sessions are estab-
lished after a complex handshake routine between client and server. There are many

SSL
Handshake
Protocol

SSL Change
Cipher Spec

SSL Alert
Protocol

SSL Record Protocol

TCP

IP Layer

Network

HTTP (Others...)

FIGURE 23.7

The SSL protocol stack in detail showing its relationship to HTTP and other protocols.

CHAPTER 23 Securing Sockets with SSL 599

 variations in the details of SSL session establishment, but Figure 23.8 shows one of the
most common.

By default, SSL uses TCP port 443. Of course, a user typically just uses http:// (or
nothing at all) when accessing a Web page. Rather than making users remember to
type in the port number at the end of the URL, SSL is invoked with a URL starting with
https://. This should not be confused with Web pages distinguished by the .shtml
ending, which means that the Server Side Includes (SSIs) are in use for that page. There
are four major phases to the SSL session establishment process.

1. Initial Hello exchange
2. Optional server certifi cate presentation and request (authentication of server to

client)
3. Presentation of client certifi cate if requested (authentication of client to server)
4. Finalize Cipher Suite negotiation and fi nish session establishment handshake

Usually, only the server presents its certifi cate to the client (user). Most users don’t
have certifi cates to authenticate themselves to the server, but this will change with TLS.
Regarding Cipher Suite negotiation, SSL 3.0 defi nes 31 Cipher Suites consisting of a
key exchange method, the cipher (encryption method) to use for data transfer, and the

Client Server

Client Hello

Server Hello

Establishes SSL version, session ID,
Cipher Suite, compression method,
and exchanges random values

Optionally sends server certificate
and requests client certificate

Sends client certificate to server
if requested

Change Cipher Suite if necessary
and complete handshake process

Certificate

Certificate Request

Server Hello Done

Certificate

Certificate Verify

Change Cipher Spec

Finished

Change Cipher Spec

Finished

FIGURE 23.8

One form of SSL session establishment. There can be others, but this form is very common.

600 PART IV Application Level

message digest method to use to create the SSL Message Authentication Code (MAC).
There are nine choices for the traditional shared secret key encryption used in SSL.

■ No encryption
■ 40-bit key RSA Data Security, Inc. Code (RC4) stream cipher
■ 128-bit key RC4 stream cipher
■ 40-bit key RC2 Cipher Block Chaining (CBC)
■ The venerable Data Encryption Standard (DES), DES40, and Triple DES (3DES),

all with CBC
■ Idea
■ Fortezza

CBC uses a portion of the previously encrypted cipher text to encrypt the next block
of text. There are three choices of message digest.

■ No message digest
■ 128-bit hash Message Digest 5 (MD5)
■ 160-bit hash Secure Hash Algorithm (SHA)

SSL Data Transfer
All application data and SSL control data use the SSL Record Protocol for message trans-
fer. Details vary, but usually the SSL Record Protocol will fragment the application data
stream (perhaps a Web page) into record protocol units. Each unit is typically compressed
(compression adds a layer of complexity to unauthorized decryption attempts), and the
MAC is computed before the entire unit is encrypted. The end result is tucked into a TCP
segment and IP packet and sent on its way. This process is illustrated in Figure 23.9.

SSL Implementation
Few programmers write an SSL implementation from scratch. SSL is usually imple-
mented as a toolkit library, and patented cryptographic functions must be licensed
anyway. Public key packages are patented as well, and there are export restrictions on
cryptographic algorithms in the United States. All of these factors combine to discour-
age individuals from implementing SSL (as opposed to plain sockets) on their own.

Two public key toolkits are popular. RSARef is the RSA “reference” public key
package, including RSA encryption and Diffi e-Hellman key exchange. It also features
unsupported, but free, source code and is to be used for noncommercial applications.
BSAFE3.0 (“Be-safe,” not an acronym) is the commercial version of RSARef. The public
key toolkits can be combined with any SSL toolkits, including:

SSLRef—An example SSL 3.0 implementation from Netscape Communications
Corp.

SSLava—An SSL 3.0 toolkit from Phaos Technology written in Java.

CHAPTER 23 Securing Sockets with SSL 601

OpenSSL—A free noncommercial implementation of SSL 3.0 (and 2.0) and TLS
2.0) that can be used outside the United States. In the United States, patent
restrictions require use of RSARef or BSAFE3.0.

SSL Issues and Problems
SSL is not perfect, of course. SSL suffers from a number of limitations, most of which
can be overcome with careful planning and attention to detail. The sections that follow
discuss a representative list of SSL issues.

Computational Complexity
As we’ve seen, public key encryption is so processor intensive that we avoid it whenever
we can. And because the server must perform the SSL handshake for every connection,
OpenSSL struggles under heavy workloads. Hardware acceleration with special cards
helps, and load balancing among multiple servers all representing the same Web site
helps as well.

Clear Private Keys
The server has to store the private key somewhere, and usually in clear form (otherwise,
we just move the issue to the next key, or the next, and restarts become a real problem
unless the actual key is somewhere on the system). The point is, of course, that data

Welcome to the IIIustrated Network!

Network!Welcome to the

Application Data
(i.e., Web page)

Record Protocol Units

Compressed Unit

Create MAC (encrypt)

Encryption

TCP Packet

Compress

Fragment

Transmit

Welcome...

Welcome...

 IIIustrated

FIGURE 23.9

The SSL record protocol showing how protocol units are compressed and encrypted.

602 PART IV Application Level

might be transmitted over the network in encrypted form but it is seldom stored on
the server in an encrypted form. The physical security of the server is essential, and
a technique called perfect forward secrecy is also helpful. We’ll meet forward secrecy
again in a discussion of IPSec.

Stolen Credentials
Certifi cate revocation lists are fi ne, but if a private key or certifi cate is stolen it can
take a while for the organization to fi gure out that there is a bogus www.example.com
site out there stealing people’s money and identities. It’s better to query the CA with
a special protocol, such as the Online Certifi cate Status Protocol (OCSP)—defi ned in
RFC 2560—but that’s not common (and may never be). Again physical security is of
paramount importance.

Pseudorandom Numbers and “Entropy”
In SSL, clients and servers both have to generate random numbers and data to use for
session keys. The problem is that most computers’ pseudorandom number genera-
tors (PRNGs) are not adequate for true security because they are predictable (one of
the reasons they are pseudorandom in the fi rst place). The seed number used as input
to the PRNG must itself be as random as possible, and many SSL implementations use
seeds that do not have enough “entropy” (a measure of disorder or randomness). There
are software-based workarounds for this.

Works Only with TCP
SSL only protects applications that use TCP. This is fi ne for HTTP, but more and more
critical data on the Internet uses UDP and not TCP. We’ve already noted that multicast
uses UDP, and we’ll see that VoIP does as well. These data streams need protection, but
SSL cannot currently provide it.

Inadequate Nonrepudiation
Suppose you purchase a product over the Internet that has a rebate. You have to send
proof that you are the person that purchased the product to the rebate “fulfi llment cen-
ter” to receive the rebate. This is nonrepudiation in the sense that the company cannot
say to the rebate center you didn’t purchase the product. However, SSL cannot provide
this nonrepudiation. The workaround, which involves the company and you having
certifi cates, is relatively easy (but this will take a while to become the standard).

When using any security method, all of the system’s “vulnerabilities” are diffi cult to
seal. It’s just diffi cult to detect and patch up all cracks in a complex system.

I once worked in an organization with a coworker who was famous for “playing”
with the servers and their users by simply intercepting messages on the LAN. When the
organization switched to encrypted communications, I tried to console him, thinking
his hacking days were over. “That’s all right,” he told me, “I know where the backups
are. Those aren’t encrypted.”

Where are those frequent backups of the Web servers’ information? How secure
are they? Security is always a never-ending battle where one side or the other seems
to gain an advantage for a while, but never for long. Many of the limitations of SSL are

CHAPTER 23 Securing Sockets with SSL 603

addressed in TLS 1.1, but TLS is new and most clients are not as sophisticated as servers
when it comes to security.

A Note on TLS 1.1
The biggest shortcoming of SSL is the fact that as typically implemented only the server
is authenticated to the user. That is, the server certifi cate with the server’s public key
and other information is presented to the client. But clients such as Web browsers sel-
dom have certifi cates to present to the server to authenticate the user. Server authenti-
cation is fi ne for Internet commerce (encrypted personal and credit card information
is sent to the server) but not so good for on-line banking and other applications where
mutual authentication is desired, if not indispensable.

Implementation of TLS 1.1 (RFC4346) allows clients (users) to use the full capabili-
ties of the standardized PKI. This topic is explored more fully in the chapter on IPSec.

SSL and Certifi cates
Let’s take a close look at how SSL handles certifi cates. Ordinarily, once SSL is installed
on a server you have to generate a certifi cate request to one of the major CAs (such as
VeriSign). There are many types of certifi cates available, such as personal (mainly for
email), code signing (for downloaded programs), and Web site (which is what we’re
talking about here).

Of course, the certifi cate has to be distributed by a CA, which also has to be set up.
In OpenSSL, most CA operations can be done at the CLI, but this method is not really
suitable for a production environment.

No matter which SSL server software is used, they all tell you how to generate a
certifi cate signing request (CSR). Once this is done, the software generates a public/pri-
vate key pair. You send the public key and the CSR to the certifi cate-issuing authority.

If all is in order when reviewed, including related documentation, the response is
emailed to the applicant and loaded into the server SSL software. You usually get three
things in the response:

■ The CA’s certifi cate containing the public key
■ The local certifi cate identifying the server
■ A certifi cate revocation list with a list of certifi cates revoked by the CA

For testing purposes, it is not necessary in most cases to obtain a “real” certifi cate.
OpenSSL, for example, includes the testing certifi cate from the Snake Oil CA that is
functional but not intended for use (hopefully, the “snake oil” name, used for useless
tonics or medications, will be a tip-off to users).

604 PART IV Application Level

QUESTIONS FOR READERS
Figure 23.10 shows some of the concepts discussed in this chapter and can be used to
answer the following questions.

1. Which port is used by https?

2. Which version of SSL is used at the record layer?

3. The capture says the “version” of SSL used is TLS 1.0. Why is that?

4. Which message should be sent in response to a Client Hello?

5. Is SSLv2 DES encryption with SHA supported by the client?

FIGURE 23.10

Ethereal capture of an SSL Client Hello frame. Note the list of encryption methods and details in
the cipher suite.

605

Network
Management

Network management is an important aspect of networking, and the Internet is
no exception. This part of the book explores SNMP, RMON, and the MIB.

■ Chapter 24—Simple Network Management Protocol

PART

V

CHAPTER

What You Will Learn
In this chapter, you will learn how SNMP is used to manage devices on a TCP/
IP network. We’ll explore the SNMP model with many servers (agents) and few
 clients (managers).

You will learn about MIBs and the SMI tree for designating management
 information. We also briefl y discuss RMON (remote monitor) and private manage-
ment information bases (MIBs).

Simple Network
Management Protocol 24

Network management, like network security, is often treated like an adjunct to the true
task of networking, which is to relentlessly shuttle bits about (i.e., until something goes
wrong). Then everyone wonders why it couldn’t be easier to fi gure out what went hay-
wire. Without network management facilities, the network is like driving a car without
fuel-level, water-temperature, or oil-pressure gauges. When the car slowly glides to a
halt, there are few clues of even where to start looking.

The Internet outgrew the humble go-have-a-look-at-it school of network manage-
ment by the late 1980s, when it seemed like colleges and universities were sticking
routers in every other building around the campus and then fi nding someone who
would not object to being placed in charge of the devices. Little did they realize that
they would be expected to ensure that the out-of-the-way device was functional day
and night, 365 days a year. They ran their portion of the Internet on a PING and a
prayer.

It’s not that management of network devices was unknown at the time, or deemed
unnecessary. Vendors always had some sort of management functions tucked away in
their software. The problem was that each vendor’s interface was different (sometimes
in the same product line), the client software expensive and proprietary, and the net-
work operations centers (NOCs) that existed tended to consist of rooms full of equip-
ment that no one knew how to operate equally well.

But knowing that network management was essential and creating a standard for
network management on the Internet were two different things. The international

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80:205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65459

Wireless
in Home

SNMP
Client
(scli)

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

Solid rules � SONET/SDH
Dashed rules � Gig Ethernet
Note: All links use 10.0.x.y
addressing...only the last
two octets are shown.

FIGURE 24.1

SNMP on the Illustrated Network, showing the hosts used as SNMP clients and the router with SNMP
enabled.

610 PART V Network Management

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80:205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.166
MAC: 00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

ge-0/0/3

16.2

ge-0/0/3

16.1

Best ISP

AS 65127

Global Public
Internet

SNMP
Client
(scli)

SNMP-Enabled Router

CHAPTER 24 Simple Network Management Protocol 611

standard for network management, itself a new creation at the time, was the Com-
mon Management Information Services/Common Management Information Protocol
(CMIS/CMIP). However, this standard (geared to the needs of public telephony car-
riers) was loaded with features unnecessary to the Internet at the time. So, Internet
administrators took what they could from the ISO specifi cations and created SNMP
fairly independently.

SNMP CAPABILITIES
The need for network management information has to be weighed against the need for
security. Yet many organizations routinely run SNMPv1 on their network nodes, hubs,
or routers, and seldom take advantage of the heightened security available in many
SNMPv1 implementations or consider SNMPv2. Organizations routinely block Telnet
access to their routers, yet allow SNMP access without too much worry.

Just how much information can be gathered from a router running SNMPv1when
no steps have been taken to protect information? Quite a bit, actually.

Let’s enable SNMP on one of our routers, CE6, attached to LAN2, and use bsdclient
on LAN1 and bsdserver on LAN2 to see what we can do with SNMP. There are many
nifty GUIs available for SNMP, but we’ll use FreeBSD’s scli application to maximize
information and minimize clutter on the screen. We won’t be interested in traffi c
 histograms or historical data anyway. The equipment used in this chapter is shown in
Figure 24.1.

Enabling SNMP on a Juniper router is very straightforward (just setting values to
the proper variables) and need not be shown. The following is the result of our initial
confi guration.

admin@CE6# show snmp
name Router_CE6;
description M71-Router;
contact WalterG;

There is much more we could have confi gured, and in fact this is really more than
we need. But it will allow us to ensure that it’s the right router. Now we can run a Unix
command-line management application on bsdclient called scli to router CE6. (We
haven’t put the routers in DNS, and many organizations don’t for security purposes, so
we’ll access the router by an interface IP address instead of by name.)

bsdclient# scli 10.10.12.1
100-scli version 0.2.12 (c) 2001-2002 Juergen Schoenwaelder
100-scli trying SNMPv2c ... good
(10.10.12.1) scli >

We are now running SNMPv2 to the router. Note that scli is an interactive applica-
tion with its own > prompt, like nslookup, so we can execute all types of commands

612 PART V Network Management

(known through help) at this point until an exit takes us out to the shell again. Let’s
ensure that we have the right router and examine the system information.

(10.10.12.1) scli > show system info
Name: Router_CE6
Address: 10.10.12.1:161
Description: M7i-router
Contact: WalterG
Location:
Vendor: unknown (enterprises.2636)
Services: network
Current Time: 2008-02-28 20:11:36 -07:00
Agent Boot Time: 2008-02-21 20:44:12 -08:00
System Boot Time: 2008-02-21 20:43:27 -08:00
System Boot Args: /kernel
Users: 3
Processes: 61 (532 maximum)
Memory: 256M
Interfaces: 50
Interface Swap: 2008-02-21 20:45:31 -08:00
(10.10.12.1) scli >

That’s the router all right. Note that we get a lot more information than we entered.
And some people would be very nervous about the system details that SNMP has gath-
ered from this router. But let’s look at SNMP in action fi rst. Figure 24.2 shows the SNMP
messages and details. One response is of particular interest—the one that has the infor-
mation we entered on the router. Most of the information displayed at the start of the
show command can be picked out of the lower pane in the figure.

FIGURE 24.2

SNMP session to router CE6.

CHAPTER 24 Simple Network Management Protocol 613

Let’s see what harm we can cause with SNMP by changing something.

(10.10.12.1) scli > set system contact NotMe
500 noResponse 1.00 vpm
(10.10.12.1) scli >

The noResponse tells us that our request was ignored by CE6. Most devices will enable
SNMP with read-only access unless told otherwise. Still, there’s a lot of information
available about good old router CE6, such as the following:

(10.10.12.1) scli > show interface
show interface info [10.10.12.1] [2008-02-28 20:43:38 -07:00]

INTERFACE STATUS MTU TYPE SPEED NAME DESCRIPTION
 1 UUCN 1514 ethernetCsmacd 100m fxp0 fxp0
 2 UUCN 1514 ethernetCsmacd 100m fxp1 fxp1
 4 UUNN 1496 mplsTunnel 0 lsi lsi
 5 UUNN 2147483647 other 0 dsc dsc
 6 UUNN 2147483647 softwareLoopback 0 lo0 lo0
 7 UUNN 2147483647 other 0 tap tap
 8 UUNN 2147483647 tunnel 0 gre gre
 9 UUNN 2147483647 tunnel 0 ipip ipip
 10 UUNN 2147483647 tunnel 0 pime pime
 11 UUNN 2147483647 tunnel 0 pimd pimd
 12 UUNN 2147483647 tunnel 0 mtun mtun
 13 UUNN 1500 propVirtual 100m fxp0.0 fxp0.0
 14 UUNN 1514 propVirtual 100m fxp1.0 fxp1.0
 16 UUNN 2147483647 softwareLoopback 0 lo0.0 lo0.0
 21 UUCN 4474 sonet 155m so-0/0/0 so-0/0/0
 22 UUNN 4470 ppp 155m so-0/0/0.0 so-0/0/0.0
 23 UUCN 4474 sonet 155m so-0/0/1 so-0/0/1
 24 UUNN 4470 ppp 155m so-0/0/1.0 so-0/0/1.0
 25 UUCN 4474 sonet 155m so-0/0/2 so-0/0/2
 26 UUNN 4470 ppp 155m so-0/0/2.0 so-0/0/2.0
 27 UUCN 4474 sonet 155m so-0/0/3 so-0/0/3
 28 UUNN 4470 ppp 155m so-0/0/3.0 so-0/0/3.0
 29 UUNN 2147483647 softwareLoopback 0 lo0.16385 lo0.16385
 30 UUNN 2147483647 tunnel 800m pd-1/2/0 pd-1/2/0
 31 UUNN 2147483647 tunnel 800m pe-1/2/0 pe-1/2/0
 32 UUNN 2147483647 tunnel 800m gr-1/2/0 gr-1/2/0
 33 UUNN 2147483647 tunnel 800m ip-1/2/0 ip-1/2/0
 34 UUNN 2147483647 tunnel 800m vt-1/2/0 vt-1/2/0
 35 UUNN 2147483647 tunnel 800m mt-1/2/0 mt-1/2/0
 36 UUNN 0 tunnel 800m lt-1/2/0 lt-1/2/0
 37 UUCN 1514 ethernetCsmacd 100m fe-1/3/0 fe-1/3/0
 38 UDCN 1514 ethernetCsmacd 100m fe-1/3/1 fe-1/3/1
 39 UUNN 2147483647 tunnel 800m pd-0/3/0 pd-0/3/0
 40 UUNN 2147483647 tunnel 800m pe-0/3/0 pe-0/3/0
 41 UUNN 2147483647 tunnel 800m gr-0/3/0 gr-0/3/0

614 PART V Network Management

 42 UUNN 2147483647 tunnel 800m ip-0/3/0 ip-0/3/0
 43 UUNN 2147483647 tunnel 800m vt-0/3/0 vt-0/3/0
 44 UUNN 2147483647 tunnel 800m mt-0/3/0 mt-0/3/0
 45 UUNN 0 tunnel 800m lt-0/3/0 lt-0/3/0
 46 UDCN 1504 e1 2m e1-0/2/0 e1-0/2/0
 47 UDCN 1504 e1 2m e1-0/2/1 e1-0/2/1
 48 UDCN 1504 e1 2m e1-0/2/2 e1-0/2/2
Byte 2969

And this is only part of it. Just imagine if someone managed to break in and . . . but
wait: All we did is use a router interface’s IP address. No breaking in was needed.

What can we do to tighten things up? Let’s limit SNMP access to a single interface
on the router, and a single host reachable through the interface. The interface will be
LAN2, on fe-1/3/0, not surprisingly. We’ll use the LAN2 host bsdserver so that we can
still use scli. We’ll also let an administrator with root privileges on bsdserver make
changes with the set request in the SNMP community (a sort of SNMP “password,” but
it’s really not) called locallan. Almost all of this is confi gured on the router, not the
host. The scli limitation to execute a remote set command is a function of the applica-
tion. The following presents the new router confi guration.

set snmp name Router_CE6;
set snmp description M7i-router;
set snmp contact WalterG;
set snmp interface fe-1/3/0.0; # restrict SNMP to the LAN2 interface
set snmp view syscontact oid sysContact include; # let the manager change
 the sysContact
set snmp community locallan view sysContact; # establish new community
 string and add sysContact to view. . .
set snmp community locallan authorization read-write; # . . .and let it be
 read and write access. . .
set snmp community locallan clients 10.10.12.77/32; # . . .but only from
 bsdserver for the locallan community string

We have to explicitly add the sysContact object ID to a “view” for the community
string locallan if we are going to allow the network manager on bsdserver to change
the value of that object. Back on bsdclient, the effects of these changes are immediate.

(10.10.12.1) scli > show ip
500 noResponse
500 noResponse
500 noResponse
500 noResponse
500 noResponse
(10.10.12.1) scli >

But things are different once we switch to bsdclient (and remember to use the com-
munity string locallan).

CHAPTER 24 Simple Network Management Protocol 615

> bsdserver# scli
100-scli version 0.2.12 (c) 2001-2002 Juergen Schoenwaelder
scli > open 10.10.12.1 locallan
100-scli trying SNMPv2c ... good
(10.10.12.1) scli > set system contact NotMe
(10.10.12.1) scli > show system
show system info [10.10.12.1] [2008-02-28 21:02:07 -07:00]

Address: 10.10.12.1:161
Contact: NotMe
(10.10.12.1) scli >

If we forget to add the object explicitly to the community on the router, bsdserver
still has access but will not be able to write to the object.

(10.10.12.1) scli > set system contact NotMe
500 noAccess @ varbind 1
(10.10.12.1) scli >

By now it should be obvious that SNMP can be a powerful network management
tool, independent of remote-access or vendor-specifi c management techniques. How-
ever, all of this talk about objects, community strings, SNMPv1, and v2 can be confusing.
SNMP introduces a lot of terms and concepts. Let’s start at the beginning and see just
what SNMP can do and how it does it.

THE SNMP MODEL
This section takes a more detailed look at how SNMP, versions 1 and 2, works. This
chapter identifi es the shortcomings of SNMPv1 that led to the creation of SNMPv2, and
then shows what SNMPv3 will add to SNMP. SNMP remains the most popular and most
viable method of managing networks today, let alone the Internet.

All network management standards, not just SNMP, work by means of what is known
as the agent/manager model. This is not really a new term or concept. The term “agent/
manager model” is essentially the client/server model idea extended to network man-
agement. A manager is just a management console in the NOC running the network
management software, not an actual human being. An agent is software that runs on all
manageable devices on the network. As in the client/server model, managers “talk” and the
agents “listen.” So, managers are clients for network management purposes and agents are
servers for network management purposes. Obviously, a major difference in the agent/
manager model from traditional client/server is that in a network management situation,
there are many servers (agents) and generally only a few clients (management consoles).

The manager running in the network management station (or any host setup to run
it) sends commands to the agent software on the managed device using a network man-
agement protocol that both the manager and agent understand. The agent responds and
then waits (or “listens”) for a further command, and so on. The command may be gener-
ated by the manager software periodically, without human intervention, and the results

616 PART V Network Management

Network Management Station

Network
Management
Application

Network
Management
Application

Network
Management
Application

SNMP Manager

SNMP Agent

Read/write configuration
Read/write status
Read statistics
Read errors

Respond to requests
Report errors
“Trap” certain events

MIB

Managed Device

Logical Database
Configuration Data

Status Parameters
Statistics

stored in a manager console database for future reports or reference. Alternatively, the
commands may be generated by NOC personnel using the manager console to solve
outstanding network problems, perform routine testing, and so forth. In the case of a
serious event, such as major link failure, an alarm (called a trap in SNMP) is generated
without anyone asking. Most servers, hubs, routers, and even end-user devices sold
today have built-in SNMP agent software that does not usually have to be purchased
separately. The SNMP model of network management is shown in Figure 24.3.

Note that network managers can both monitor the status of the device and actu-
ally change the confi guration (a dangerous capability that requires careful consider-
ations if it is to be allowed at all). The network management station typically keeps
the historical information about the network device (devices have better things to
do), and has a number of applications whose main goal is to provide detailed reports
about the network’s performance, often in a graphical format designed for visual
impact.

In addition, all network management standards provide for a special type of agent
(known as the proxy agent) to provide the manager console with management informa-
tion about network devices that do not understand the network management protocol.
Of course, the network devices must understand some type of network management
protocol or they would not be manageable at all. But the proxy agent performs a type
of gateway function to translate back and forth between the network manager console
protocol and the different network management protocol, often proprietary, under-
stood by the network devices accessed by the proxy agent.

FIGURE 24.3

SNMP model, showing that an agent has access to a MIB in the managed devices.

CHAPTER 24 Simple Network Management Protocol 617

The MIB and SMI
The agent software has access to the current value of various objects in the managed
device. The exact function and meaning of an object, and the relationship of one object
to another, is described in the MIB for the managed device. The MIB is a crucial con-
cept in all network management standards, not only in SNMP, although there are many
MIBs for devices used on the Internet.

The MIB is a database description of all fi elds (objects) that make up the totality
of information an agent can furnish to a manager console when requested. So, a MIB is
most often just a piece of paper (RFC) that says things such as “the fi rst fi eld is alphanu-
meric, 20 characters long, and contains the name of the vendor” and “the fi fth fi eld is an
integer and contains the number of bad packets received.” Not that this is rendered in
plain English. A special ISO “language” called ASN.1 (Abstract Syntax Notation version
1) is used to represent all fi elds of the MIB database in very terse and cryptic language
that all MIB implementers understand.

The SMI
The problem with trying to manage all possible network device agents with a single
management protocol is that there are so many different types of network devices.
Some deal with packets (routers), and some with frames (bridges). Some are quite
simple (hubs), and some are very complex (switches). The challenge is to fi nd a way to
sort out all of the possible MIB variables in a standard fashion so that any implementa-
tion of the network manager console protocol will be able to request the value of any
particular object accessible by any agent. Fortunately, standards organizations have all
agreed on and defi ned a standard structure for network management information.

The SNMP developers defi ned a Structure of Management Information (SMI) tree
in RFC 1155. The same SMI is defi ned in ISO 10165, where it is called the Management
Information Model (MIM), and in ITU-T X.720, X.721, and X.722.

MIB information is structured through the use of a naming tree known as the SMI
conceptual tree. Figure 24.4 shows the SMI conceptual tree with the emphasis on
SNMP MIB defi nitions.

The root of the tree is unlabeled. All branches of the tree from the root have both
labels and numbers associated with them. All SNMP MIB objects are under the branch
that leads from ISO (1) to Identifi ed Organizations (3) to the Department of Defense
(DoD) (6) to the Internet (1). At the lowest branches of the tree are the MIB objects
themselves. These are organized into MIB-I (the original SNMP defi nitions) and MIB-II
(extended SNMP defi nitions).

The system group of MIB-II is probably the most commonly used and easily under-
stood of all MIB objects in SNMP. The System(1) group contains seven objects that
provide a general description of the network device. The seven objects are:

■ sysDescr(1)—A description of the network device (“router,” “hub,” etc.)
■ sysObjectID(2)—The identifi er of the device’s private MIB location, if any

 (discussed more fully in material following)

618 PART V Network Management

■ sysUpTime(3)—The time, measured in 100ths of a second, since the network
management software (not necessarily the device!) was reinitialized

■ sysContact(4)—The name of the local contact person responsible for the
 network device

■ sysName(5)—The name of the manufacturer of the network device
■ sysLocation(6)—The physical location of the network device
■ sysServices(7)—The services the network device is capable of rendering

The importance of MIBs in network management should not be overlooked. From
a single console, a network manager can merely point a mouse at an icon and with a
click determine that the device is a router located at 1194 North Mathilda Avenue in
Sunnyvale, California; that the person responsible for the device is Walter Goralski; and
so on. All of this information is provided over the network, on the fl y, from the device
itself (as long as it is entered and maintained on the device, of course).

The numbers and labels referred to previously are technically called object identi-
fi ers and object descriptors in SMI. The SMI tree is used by the network management
protocol to designate objects in the MIB. Object identifi ers are numeric, and all SNMP
manageable devices commonly found on a network begin with 1.3.6.1... (shown in
Figure 24.4). Identifi ers are used by the network management software. Object descrip-
tors, on the other hand, are labels, and all SNMP manageable devices also begin with
ISO.ORG.DOD.INTERNET..., which is the exact equivalent of the numeric string. This
view of the MIB tree is shown in Figure 24.5.

DIRECTORY
1

MGMT
2

MIB-2
1

Transport
Domains

SNMP
Proxies

Module
Identities

EXP
3

PRIVATE
4

SECURITY
5

SNMPv2
6

Root
(unnamed)

ISO
1

ORG
3

DOD
6

Internet
1

FIGURE 24.4

SMI tree, showing how the names are organized.

CHAPTER 24 Simple Network Management Protocol 619

As an example of the use of object identifi ers, consider the case in which a net-
work manager may need to change the system contact for a particular network device.
An SNMP command, in this case a get request, is used to retrieve the current value
of the sysDescr object. The SNMP message requests the current value of the object
1.3.6.1.2.1.1.1, which is the object identifi er equivalent of the object descriptor
iso.org.dod.internet.mgmt.mib-2.system.sysDescr. The device knows to reply with
the current value of the sysDescr object and no other. If permitted, the network man-
ager can even use the SNMP set command to replace to current value of the sysDescr
object with the name of the new local contact for the network device (if there is a
reason to change it, perhaps to refl ect an upgrade).

The MIB
All of the MIB objects in SNMP are defi ned in ISO ASN.1, a presentation layer (OSI-RM
Layer 6) standard syntax. The defi nition of a managed object in a network device’s
agent MIB consists of the following seven fi elds.

■ Syntax—An ASN.1 data type such as integer, time ticks (hundredths of a
 second), string, and so on.

1.3.6.1.2.1.1.1 � iso.org.dod.internet.mgmt.mib-2.system.sysDescr

ISO.ORG.DOD.INTERNET
1.3.6.1

DIRECTORY
1.3.6.1.1

MGMT
1.3.6.1.2

MIB-2
1.3.6.1.2.1

SYSTEM
1.3.6.1.2.1.1

AT
1.3.6.1.2.1.3

ICMP
1.3.6.1.2.1.5

UDP
1.3.6.1.2.1.7

P
1.3.6.1.2.1.4

sysDescr
1.3.6.1.2.1.1.1

sysObjectID
1.3.6.1.2.1.1.2

sysUptime
1.3.6.1.2.1.1.3

INTERFACES
1.3.6.1.2.1.2

TCP
1.3.6.1.2.1.6

EGP
1.3.6.1.2.1.8

EXP
1.3.6.1.3

ENTERPRISES
1.3.6.1.4.1

Vendor
Objects

PRIVATE
1.3.6.1.4

FIGURE 24.5

MIB tree by number and name. The numeric strings can quickly become very long.

620 PART V Network Management

■ Access—If the object is read-write, read-only, not-accessible, and so on.
■ Status—Objects may be mandatory, optional, obsolete, or deprecated (replaced

by newer).
■ Description—An optional text string describing the object type.
■ Reference—An optional cross reference to another MIB defi nition (e.g., a CMIP

branch).
■ Index—If the object is a table, this defi nes how SNMP access a unique logical row.
■ Defval—An optional default value assigned to the object.

In the following are two sample MIB object defi nitions in ASN.1, ifMTU and
 sysUpTime.

OBJECT: ifMtu { ifEntry 4 }
Syntax: INTEGER
Definition: The size of the largest IP datagram that can be sent/received
 on the interface, specified in octets.
Access: read-only.
Status: mandatory.

OBJECT: sysUpTime { system 3 }
Syntax: TimeTicks
Definition: The time (in hundredths of a second) since the network
 management portion of the system was last reinitialized.
Access: read-only.
Status: mandatory.

The ifMtu object is from the interface (ifEntry) group, and gives the maximum
transmission unit size, a key TCP/IP parameter. The object is the fourth entry in the
group (an integer); may only be read by the network manager software, not changed;
must be in all SNMP compliant equipment that uses TCP/IP; and gives the size in bytes
of the largest IP datagram that can be sent or received by this network device on this
particular interface (port).

The sysUpTime object is the third in the system group, and gives the time the net-
work management agent software has been running. The units are a special type of
integer called time ticks. The object is read-only, and must be present.

MIBs are technically just pieces of paper, like a customer database data fi eld descrip-
tion. MIBs must be coded and implemented in the agent software and installed in the
network device before the network device can be managed by a manager console.
Typically, a MIB is coded by the programmers of the network device’s software in
a C-language module and compiled into an object-code module with a special com-
piler known (not surprisingly) as a MIB compiler. The MIB object-code module is then
linked with the SNMP protocol model to yield the entire executable module, which
can be installed in the memory of the network device. All of this is usually done before
the network device is sold, of course.

There are exceptions to this rule, however. MIBs exist for a variety of purposes and net-
work types. For instance, a router may have both an Ethernet MIB and a SONET/SDH
MIB if the router supports both types of network connections, and even a frame-relay

CHAPTER 24 Simple Network Management Protocol 621

MIB on the SONET/SDH port of the router. Sometimes, though, a network device may
be sold with only an Ethernet port (for example) and then upgraded to provide SONET/
SDH connectivity as well, usually through the addition of a new interface card. In this
case, the router may have included only the Ethernet MIB because no SONET/SDH MIB
was needed. When the new SONET/SDH card is added, the SONET/SDH MIB must be
added as well.

Not all modifi cations to network devices involve hardware. In some cases, a new
MIB may have to be installed when a new software feature is activated on the net-
work device. In many SNMP implementations, the extensible MIB may be activated or
installed over the network without even being present at the network device site.

RMON
One additional aspect of SNMP MIBs should be discussed, in that this concept is
extremely helpful in managing large networks. There is a potential problem with man-
aging SNMP devices on a network over the network itself (security is another matter).
The problem is simply this: What if the link to the network device is down? How is the
status of the network device to be determined under these conditions? The answer is
provided by means of a special optional MIB: the RMON MIB. RMON stands for “remote
monitor,” and this MIB provides for a dial-in port to the network device that may be
used by the manager console to communicate with the network device regardless of
other network link availability.

RMON may also be used with leased lines to provide another benefi t for large
IP networks. The larger the enterprise network, the more network devices there are that
need managing. Network managers will try to monitor network device performance
and workload to prevent congestion on the network. The problem is that all of these
SNMP messages fl owing over the network back and forth to all of the network devices
can add a considerable load to a network at the worst possible time, when things are
going suspiciously wrong. If RMON is confi gured to run on separate leased lines to criti-
cal network devices, the SNMP messages add no load at all to the enterprise network
itself.

Unfortunately, not many organizations can afford the additional expense of the nec-
essary leased lines to many of these important network devices (usually the routers).
Still, RMON remains a useful option for heavily loaded or delay-sensitive IP networks.

The Private MIB
Standard MIB objects are designed for a wide variety of technologies and network
devices. These MIB objects cover a large range of possibilities, but there are always
situations and conditions that a network manager should be aware of that are not
covered by a standard MIB object. These are usually very low-level, device-specifi c hard-
ware functions, such as whether a network device’s cooling fan has failed, whether the
device has battery backup or a redundant power supply, or any of a number of other
vendor hardware-implementation choices and options.

622 PART V Network Management

To cover all of these vendor-specifi c situations, the SMI conceptual tree includes a
branch for private MIB extensions. The SMI path to the private MIB is 1.3.6.1.4.1. This
leads to the enterprise branch of the SMI tree, where each vendor may obtain a branch
number (identifi er) and label (descriptor) from the Internet Assigned Number Author-
ity (IANA) for the vendor’s private MIB. For example, all IBM private MIB objects reside
at 1.3.6.1.4.1.2... on the SMI tree because “2” is IBM’s enterprise number. Cisco
routers use 1.3.6.1.4.1.9..., Hewlett-Packard has 1.3.6.1.4.1.11..., and so forth.
More than 700 enterprise code numbers have been assigned by the IANA, showing the
wide availability of SNMP-compliant products.

This system of private MIBs makes sense because only the manufacturer of the net-
work device could possibly know whether the device even has a cooling fan, battery
backup, or other hardware feature. Obviously, a network manager would like to know
if a device’s fan has failed, especially if the device is in a closet where it may overheat
and fail after a few hours. The private MIB offers a way of allowing this information to
be accessed by the network manager.

SNMP manager software will generally have no concept of just where the private
MIB objects are and what these objects represent. Some vendors would actually “hide”
their private MIB descriptions by limiting their availability, and just what the number 2 in
a private MIB fi eld might mean (Status code? Error code? Two minutes to failure?) often
remained a mystery. In most cases, this means that this vendor’s network device could
only be completely manageable using that vendor’s network manager software, which
would have a built-in description of this private MIB. Private MIBs are an effective way
to “lock in” a company to using only a specifi c vendor’s SNMP software as a network
manager.

Few companies go to that extent anymore. But the problem of how any particular
manager console software could know just where any vendor’s private MIB is located
and what the vendor’s private MIB means still exists. This is where the system group
sysObjectID object can be helpful. Accessing the object 1.3.6.1.2.1.1.2 (the second
object in the system group: sysObjectID) from the management console will return a
string such as 1.3.6.1.4.1.999.1.1.... This is, of course, the location of the private
MIB objects for the vendor of the particular device. Further requests to that SMI tree
location might yield the private MIB description implemented by that vendor (1 means
fan failure, 2 means fan normal).

Manufacturers may extend private MIBs with as many objects in whatever structure
they desire. Many vendors publish (on the Internet) their private MIB descriptions so
that makers of SNMP management console software can easily build in private MIB
support without having to follow sysObjectID links.

SNMP OPERATION
All of the foregoing discussion on SMI, MIBs, and private MIBs applies equally to
any standard network management package that may be used on a network. Granted,
there are a few differences between SNMP network management terminology and the

CHAPTER 24 Simple Network Management Protocol 623

others. Specifi cally, the SMI objects in network management protocols other than SNMP
may not all necessarily start with 1.3.6.1... because these are by defi nition TCP/IP
Internet objects and the MIB in CMIP is referred to as MIM (Management Information
Model). There are other minor differences as well, but the point is that all of the previ-
ous material and concepts apply to network management in general.

However, this section will deal entirely with the specifi cs of SNMP as the most wide-
spread, cost-effi cient, and viable network management standard for IP networks in use
today. For the remainder of this section, SNMP without qualifi cation means SNMPv1.
SNMPv2 and SNMPv3 will always be qualifi ed with the version number.

SNMP was invented to manage routers on the Internet, and early versions of SNMP
had few MIB objects suitable for managing other network devices. The latest SNMP MIB
defi nitions have been extended to include objects defi ned for most LAN and WAN tech-
nologies, even ATM and frame relay. SNMP was initially intended as an interim solution
until ISO’s CMIP network management standard was completed, at which time SNMP
was supposed to merge with CMIP. But SNMP has had such success independently of
CMIP that this is unlikely to happen.

SNMP is part of the TCP/IP protocol stack and is considered a standard TCP/IP appli-
cation like FTP or Telnet. Of course, SNMP is a very special type of application, one that
is seldom bundled with TCP/IP software as FTP and Telnet are. Due to its TCP/IP ori-
gins, the original SNMP did suffer from one annoying limitation that severely hampers
the use of SNMP for managing mission-critical networks that should not fail.

The limitation is bound up with the fact that SNMP is defi ned as a request–response
protocol, similar to DNS. Each message sent was expected to generate a reply before
the next request was sent. This made perfect sense for SNMP: Why send a stream of
messages to a device that has failed? And like any request–response protocol, SNMP
used speedy and connectionless UDP for its messages.

But there is a price to be paid for connectionless speed. What if an SNMP message
is sent and no reply received? There can be at least three causes. First, the data may
have been lost by the network on the way to the destination (due to network faults or
congestion). Second, the destination network device itself may be down or powered
off. Third, the data may have been lost by the network on the way back from the desti-
nation (for the same reasons as the fi rst two causes).

On the other hand, connection-oriented networks and applications that fi rst estab-
lish a connection across the network with a remote device have a better chance of
fi guring out just what is wrong if a reply to a particular message is not received. If a
device accepts a connection request, it means the device is turned on and ready to
communicate and the network between the two devices linked by the connection is
up and running. It is important to realize that this knowledge is established even before
any messages have been sent from a source to a destination.

Obviously, toward obtaining a more robust and effective network management pro-
tocol network, managers would rather that SNMP be connection oriented, as is clear
from the previous discussion. A lot could be found out just from establishing a connec-
tion between a manager console and a network device’s agent. However, SNMPv1 was

624 PART V Network Management

Network Management Station

Network
Management
Application

Network
Management
Application

Network
Management
Application

SNMP Manager Protocol

SNMP Agent Protocol

Get
Get-next
Set TrapResponse

MIB

Managed Device

Logical Database
Configuration Data

Status Parameters
Statistics

Port from Pool

Port from Pool

Port 162

Port 161

a connectionless TCP/IP application, which limited its effectiveness on many enter-
prise networks. The operation of the SNMPv1 protocol is shown in Figure 24.6.

SNMP is an extremely simple protocol. There are only fi ve types of messages
defi ned: GetRequest (or Get) to ask an agent to return the current value of an object
(based on the SMI tree), GetNextRequest (or GetNext) to ask an agent to return the
current value of the very next object, GetResponse (or Response) to return the cur-
rent value of an object to the manager, SetRequest (or Set) to tell an agent to replace
the current value of an object with a new value, and Trap to allow an agent to send a
 message to a manager without being asked.

The agent device accepts SNMP requests on port 161 and replies using that port.
The manager chooses a source port from a pool, often restricted to SNMP only. Traps
are sent via port 162 on the manager, also using a source port chosen from a pool.

Traps are used to address another quirk of SNMP. Generally, agents tell the manager
console absolutely nothing without being asked. In view of this, it is normal for the
SNMP manager software to periodically generate GetRequest messages to every man-
ageable device’s agent on the network just to ensure that everything is all right. This
process is known as SNMP polling, and not only adds traffi c to the network, but means
that long periods of time may elapse between successive polls on a complex SNMP
enterprise network.

FIGURE 24.6

SNMPv1 protocol operation, showing ports for the fi ve SNMP message types.

CHAPTER 24 Simple Network Management Protocol 625

Traps help to remedy this situation. These are messages sent from the agent to
the manager without waiting for a poll. There are seven generic trap types that
include such events as link failures and the fact that the agent network device is
being reinitialized, and so on. An enterprise-specific trap type is included to allow
vendors to extend traps to include other events (such as fan failure, battery backup
activated, etc.).

All SNMPv1 messages consist of a message header and the actual SNMP protocol
data unit (PDU). The header only contains the version number (1) and the community
string (default is public).

The PDUs contain the command specifi cs and their operands. The fi elds are variable
in length, and end with strings of variable bindings, which are the pairs of objects and
their current values the network management system has asked to see. On the way to
the managed device, these bindings are typically fi lled in with the zero or blanks, and
naturally they come back with the current values fi lled in. The structure of the SNMPv1
PDU is shown in Figure 24.7.

■ PDU Type—Specifi es the PDU Type: GetRequest, GetNextRequest, GetResponse, and
Setrequest.

■ Request ID—A fi eld used to associate SNMP requests with the proper response.
■ Error Status—Only a GetResponse sets a numeric error code in this fi eld. Other-

wise, the fi eld is zero.
■ Error Index—Associates the error code with a particular object in the bindings.

Only a GetResponse sets a numeric index in this fi eld. Otherwise, the fi eld is zero.
■ Variable Bindings—The data fi eld of the Simple Network Managment Protocol

PDU. Each pair associates the object with its current value, except of course in
the GetRequest and GetNextRequest.

Traps are not included in the fi gure because in SNMPv1 they have a distinctive
(and annoying) structure all their own. In the previous discussion, at least two limita-
tions of SNMPv1 have been identifi ed. First, SNMPv1 is connectionless, which means
that SNMP is much less effective than it could be. Second, SNMP must poll devices in
most cases for effective network management because the traps are few and not very
helpful.

There is a third aspect of SNMP that makes the protocol less effective than it could
be for managing large IP networks, especially portions of the Internet. This is the fact

PDU
Type

Request
ID

Error
Status

Error
Index

Object 1:
Value 1

Object 2:
Value 2

Object n:
Value n

Variable Bindings

FIGURE 24.7

SNMPv1 PDU. Variable bindings allow the response to deliver a lot of information in one message.

626 PART V Network Management

that SNMPv1 had only rudimentary password and authentication features and even
lacked a good encryption technique.

The greatest threat that network management poses to a network, ironically, comes
from exploiting remote confi guration capabilities, one of the most useful things in
network management. Activating additional ports on hubs and routers, changing IP
addresses, and modifying other operational functions over the network rather than by
actually having a technician present at the network device location is a much sought-
after feature of network management. But the routine practice of remote confi guration
is tied up with the establishment on the network of secure network management pro-
tocols to prevent hackers and other unauthorized persons from making such changes
to these devices.

SNMPv1 has only rudimentary features that can be used to try to prevent this from
happening. The SNMP protocol does include the use of a simple password scheme,
known as the community string. All SNMP messages from a management console to
an agent must include a community string fi eld that is compared by the agent with the
community string confi gured at installation in the network device. If the community
strings do not match, the agent presumes that the message is not from the legitimate
network management console software and discards the message.

The problem with expecting SNMP community strings to provide adequate password
protection against unauthorized agent access is twofold. First, many agents are simply
confi gured to respond to the community string public, which is essentially the SNMP
default and might not be changed. Of course, hackers will quickly determine this fact and
make immediate use of this. Second, even if the community string is altered to a more
enterprise-specifi c string such as Example Inc., the SNMP messages exchanged constantly
on the enterprise network due to the SNMP polling process will make no effort to hide
this fact: The community strings are not encrypted in SNMP but sent in plain text.

The problem of authentication is related to the use of passwords for network man-
agement. All SNMPv1 agents accept any SNMP messages and commands if the commu-
nity string is correct. With an authentication scheme for network management, more
should be needed for an agent to accept messages as proper commands sent from a
valid network management console. Matching passwords is not enough: The message
must come from the IP address of the network management console or consoles.

SNMPv2 Enhancements
SNMPv2 was widely anticipated in the network management community since its initial
proposals. SNMPv1 also suffered from an annoying problem with the request–response
system of polling. If one variable was not in the agent’s database, the entire operation
failed. In addition, as MIB grew and grew, SNMPv1 responses often exceeded the maxi-
mum size of a message (UDP doesn’t fragment) and the operation failed.

To address these issues, SNMPv2 added a GetBulk message to the SNMP repertoire,
which allowed the device to supply as much information as it could in response to
the request. There was also a greatly expanded list of error codes used when an SNMP
request failed.

CHAPTER 24 Simple Network Management Protocol 627

Inform allows one network management system to trap information sent by another
network management system and then get a response. In addition, the format of the
Trap was changed to make it more like the other PDU type.

SNMPv2 can still run as a connectionless UDP application on IP networks. But imple-
menters have the option of making SNMPv2 a connection-oriented TCP application. In
addition, SNMPv2 includes very robust and standardized methods for true passwords,
authentication, and encryption.

Yet the use of SNMPv1 remains common on the Internet. The problem with SNMPv2
is exactly the opposite of the simplicity of SNMPv1: SNMPv2 is very complex. This com-
plexity translates to implementation expense, not only in the management console
software but in the agent software installed by every vendor of SNMP-manageable net-
work equipment. For very simple networks, SNMPv2 is overkill.

In addition, SNMPv2 is incompatible with SNMPv1. The message formats are differ-
ent, and there are two new message types (GetBulk and Inform). RFC 1908 recommends
the use of proxy agents, or simply running both when this incompatibility becomes an
issue. Many Internet devices, such as routers, make use of SNMPv1 or SNMPv2 (or both)
as a confi guration option.

SNMPv3
A few words should be said about SNMPv3. SNMPv1 had little or no security to speak of,
and SNMPv2 adds security to the basic operation of SNMP. However, SNMPv3 will essen-
tially make network management and SNMP part of the overall security framework for
a network. SNMP will have very strict requirements for authentication, encryption, and
privacy of information. Discussions of SNMPv3 are best handled by texts devoted to
the topic of security.

628 PART V Network Management

QUESTIONS FOR READERS
Figure 24.8 shows some of the concepts discussed in this chapter and can be used to
answer the following questions.

FIGURE 24.8

Ethereal capture of an SNMP response message. Note the object identifi ers.

 1. Which version of SNMP is used here?

 2. Which router IP address and port are responding?

 3. Express the SMI tree to the sysDescr group in English instead of numbers. It
starts with “iso.org...”

 4. The actual time ticks value of 1209176765 is interpreted. What does this
value represent?

 5. Where is the response telling the management application to go for more
device-specifi c information?

629

Security is a major concern in networking today. This part of the book continues
the theme begun with SSL, and explores the basic aspects of security used on
the Internet today.

■ Chapter 25—Secure Shell (Remote Access)

■ Chapter 26—MPLS-Based Virtual Private Networks

■ Chapter 27—Network Address Translation

■ Chapter 28—Firewalls

■ Chapter 29—IP Security

Security

PART

VI

CHAPTER

What You Will Learn
In this chapter, you will learn how the secure shell (SSH) is used as a more secure
method of remote access than Telnet. We’ll talk about the SSH model, features, and
architectures.

You will learn how the SSH protocols operate and how keys are distributed.
We’ll do a simple example of Diffi e-Hellman key distribution using only a pocket
calculator and no advanced mathematics.

Secure Shell
(Remote Access) 25

Not too long ago, most TCP/IP books would routinely cover Telnet as the Internet
 application for remote access. But today, with the focus on security the Telnet daemon
is considered just too dangerous to leave running on hosts and routers, mainly because
it is such a tempting target even when password encryption is mandated. There are
ways to “enhance” Telnet with security mechanisms, much as the control connection
used for FTP (which is little more than a Telnet session) has done.

This is not to say that remote access itself is not an essential Internet and TCP/IP
tool. This book could not have been written without Telnet remote access. But more
and more today, the preferred application for remote access is SSH.

Windows users should not let the use of the Unix term “shell” scare them. SSH is
not really a Unix shell, such as the Bourne shell or other Unix interfaces. It’s really a
protocol that runs, like most things, over IPv4 or IPv6. Yet the use of the word “shell” in
SSH is a good one because there is a lot more to SSH than just remote access. Perhaps
the term “secure suite” would have been better, but SSH is what it is.

USING SSH
Most people know SSH as just another way to access the remote host of a router. For
example, to access router CE0 from host bsdclient and log in as admin, we would use
the –l option as follows:

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80:205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-
0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

winsvr1

LAN1Los Angeles
Office

Ace ISP

AS 65459

Wireless
in Home

SSH client
to access

router CEO

SSH Server for
Remote Access

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

Solid rules � SONET/SDH
Dashed rules � Gig Ethernet
Note: All links use 10.0.x.y
addressing...only the last
two octets are shown.

FIGURE 25.1

Using SSH on the Illustrated Network showing the host used as the SSH client and the target router
used as the SSH server for remote access.

634 PART VI Security

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80:205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.166
MAC: 00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

ge-0/0/3

16.2

ge-0/0/3

16.1

Best ISP

AS 65127

Global Public
Internet

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

CHAPTER 25 Secure Shell (Remote Access) 635

bsdclient# ssh -l admin 10.10.11.1

admin@10.10.11.1's password: (not shown)
--- JUNOS 8.4R1.3 built 2007-08-06 06:58:15 UTC

admin@CE0>

You might notice a longer wait after issuing the ssh command than other commands
before being asked for the password, but if the network is fast enough this delay is mar-
ginal. In fact, a blizzard of messaging is crisscrossing the network between command
and password requests, and even more before the remote device prompt appears. With-
out some explanation, these messages are completely opaque to users. So, let’s use
bsdclient and CE0 (as shown in Figure 25.1) to explore SSH a little before looking at
the messages in detail.

SSH Basics
Although not technically a shell, SSH lets a user do all of the things Unix commands
such as rsh, rlogin, and rcp do. (SSH is sometimes implemented as slogin.) SSH is an
application that allows users to log on to another host over the network, execute com-
mands on the remote host, and move fi les around. But unlike the older “r commands”
it is intended to replace, SSH provides secure communication over unsecure channels,
strong authentication and encryption, and other security features.

The “r commands” were vulnerable to many different types of attacks. Anyone with-
out root access to the hosts or access to the packets on the network can gain unau-
thorized access to the hosts in several ways. Malicious users can also log all traffi c to
and from the host, including other users’ passwords. (In contrast, SSH never sends
passwords in clear text.)

The popular X Windows GUI for Unix is also vulnerable in many ways. SSH allows
the creation of secure remote X Windows sessions that are transparent to the user. In
fact, using SSH for remote X Window clients is easier for users. Users can still use their
old rhosts and /etc/hosts fi les for this type of remote access, and if a remote host does
not support SSH there is a way for the session to fall back to rsh.

SSH is a traditional client/server protocol. The SSH server process waits for com-
mands (requests) from SSH clients, executes the command if allowed, and returns the
result (reply) to the client. Users are often authenticated with an encrypted key and
passphrase instead of a password, and these public key fi les are placed on the remote
computers users can access. The overall use of SSH is shown in Figure 25.2.

SSH consists of several client programs and a few confi guration fi les. The programs
the user runs are ssh or slogin (both essentially the same) and scp or sftp (also the
same), depending on implementation. Secure shell keys are managed with ssh-keygen,
ssh-agent, and ssh-add.

There have been two major versions of SSH. SSH1 was developed by Tatu Ylonen at
the Helsinki University of Technology in Finland in 1995 after a network attack. It was
released as free software and source code. It also became an Internet draft, but several

636 PART VI Security

issues with the original (which was not systematically developed) were addressed as
SSH2 in 1996. SSH2 has new methods and is not compatible with SSH1. Unfortunately,
users still liked a lot of the features of SSH1 that were lacking in SSH2, and because
some security is better than none, they felt little reason to switch (licensing played a
role as well).

OpenSSH is now available as a free implementation of the SSH2 protocol, and it is
this version that has been ported to many operating systems. People still talk about the
“Ylonen SSH,” “SSH1.5,” or “OpenSSH” implementations of the basic SSH protocol. SSH
was an Internet draft status for a long time, and this chapter describes SSH2. SSH is now
defi ned in a series of RFFCs from RFC 4250 through RFC 4256. This group of RFCs
details various aspects of SSH operation.

SSH Features
SSH has excellent protection features. The major ones follow:

Secure client/server communication—All data are encrypted on the network.

Varied authentication—Users can be authenticated by password (encrypted),
the host, or a public key.

SSH
Client

SSH
Server

SSH
Client

SSH
Client

SSH
Client

Access
denied!

Copy file

FileSuccess!

Log-in
request

Log-in
request

Command
output

Run
command

FIGURE 25.2

SSH model. Note that a way to run commands and copy fi les is included in the model.

CHAPTER 25 Secure Shell (Remote Access) 637

Authentication integration—SSH can be optionally integrated (and often is) with
other authentication systems such as Kerberos, PAM, PGP, and SecureID.

Security add-on—SSH can be used to add security to applications such as NNTP,
Telnet, VNC, and a lot of other TCP/IP protocols and applications.

Transparency and versatility—SSH can be transparent to the user and there are
implementations for almost all operating systems (including Windows with
OpenSSH implementations).

SSH protects users against:

IP spoofing—A remote host can send IP packets pretending to come from some-
where else, such as a trusted host. Spoofers on LANs can even pretend to be
the local routers to the outside world, which SSH protects against as well.

IP source routing—This is another way for hackers to claim that a packet came
from another host.

DNS spoofing—Hackers can forge name server records supplied to a host.

Intermediate device control—This is an old favorite. A hacker can take control of
a router or host between hosts and execute many types of data manipulation.

Clear text interception—Data or passwords sent in clear text are always targets
for hackers.

X Windows attacks—Hackers can listen to X Windows authentication exchanges
and spoof server connections.

SSH never trusts the network. Even if hackers took over the entire network, all that
can happen is that SSH is forced to disconnect. Hackers cannot decrypt, play back, or
compromise data on the connection.

This is not to say that the SSH is perfect. Like any other tool, SSH is only as good as
those setting it up and using it. For example, SSH does have an option for encryption
type (none), but this is only to be used for testing purposes. (There is no real enforce-
ment of this, of course.) And SSH does nothing to prevent someone who had gained
access to the host another way (perhaps by sitting down in front of the unprotected
host itself) from doing a lot of damage with root access. In that case, SSH is often the
fi rst target of a local hacker.

In addition, a lot of organizations with their own fi rewall devices are nervous
when users rely on SSH to connect to hosts. Remember, everything in the SSH stream
is encrypted, and fairly well at that. What SSH does is offer users a direct pipeline
to their internal machines right through the fi rewall, an invisible tunnel into the
 organization.

There are ways to work around this through a SSH proxy gateway, including the
“mute shell” and “SSH-in-SSH” approaches. But nothing is ever perfect or 100% secure.

638 PART VI Security

SSH Architecture
Many SSH components interact to allow secure client–server exchanges. These
 components, not all of which are distinct programs or processes, are shown in
 Figure 25.3.

The following is a brief overview of the major components of SSH.

Server—The program that authenticates and authorizes SSH connections, usually
sshd.

Client—The program run on the client (user) device, often ssh, but also scp, sftp,
and so on.

Session—The client/server connection, which can be interactive or batch. The
session begins after successful authentication to the server and ends when the
connection terminates.

Key generator—A program (usually ssh-keygen) that generates persistent keys.
(Key types are discussed later in this chapter.)

Known hosts—A database of host keys. This is the major authentication mechanism
in SSH.

Client Server

Known
hosts

Host key1
Host key2
Host key3

.

.

. Session
Key

Session
Key

User Account

User Key
Public/
Private

Host Key
Public/
Private

User Key
Public

Identify file or agent

Channels for:
interactive

forwarded ports
remote key agents

other. . .

Target Account

Authorization file

FIGURE 25.3

An overview of the SSH architecture. Note that a lot of space is devoted to the distribution and use
of encryption keys.

CHAPTER 25 Secure Shell (Remote Access) 639

Agent—A caching program for user keys to spare users the need to repeat
passphrases. The agent is only a convenience and does not disclose the keys.
The usual agent is ssh-agent, and ssh-add loads and unloads the key cache.

Signer—This program signs the host-based authentication packets used instead of
password authentication.

Random seed—Random data used by SSH components to initialize the pseudo-
random number generators (PRNG) used in SSH.

Configuration files—Settings to determine the behavior of SSH clients and
 servers.

SSH Keys
Keys are a crucial part of SSH. Almost everything that SSH does involves a key, and often
more than one key. SSH keys can range from tens of bits to almost 2000. Keys are used
as parameters for SSH algorithms such as encryption or authentication. SSH keys are
used to bind the operation to a particular user.

There are two types of SSH keys: symmetric (shared secret keys) and asymmetric
(public and private key pairs). As in all public key systems, asymmetric keys are used to
establish and exchange short-duration symmetric keys. The three types of keys used in
SSH are outlined in Table 25.1. As mentioned, user and host keys are typically created
by the ssh-keygen program.

User key—This persistent asymmetric key is used by the SSH clients to validate
the user’s identity. A single user can have multiple keys and “identities” on a
network.

Host key—This persistent asymmetric key is used by the SSH servers to validate
their identity, as well as the client if host-based authentication is used. If the
device runs a single SSH server process, the host key uniquely identifies the
device. Devices running multiple SSH servers can share a key or use different
host keys.

Session key—This transient symmetric key is generated to encrypt the data sent
between client and server. It is shared during the SSH connection setup to use

Table 25.1 SSH Key Name Types and Major Characteristics

Key Name Lifetime Creator Type Purpose

User key Persistent User Public Identify user to server

Host key Persistent Administrator Public Identify a server or device

Session key One session Client and server Secret Secure communications

640 PART VI Security

for encrypted data streams during the session. When the session ends, the key
is destroyed. There are several session keys, actually—one in each direction
and others to check integrity of communications.

SSH Protocol Operation
This section describes the operations of SSH2 and not the older, and incompatible,
SSH1. There are four major pieces to SSH, and they are documented separately and
theoretically have nothing whatsoever to do with one another. In practice, they all
function together to provide the set of features and functions that make up SSH. Each
is still an Internet draft, but these should all become RFCs some day.

There are some other documents that extend these four protocols, but these make
up the heart of SSH. The major protocols follow:

■ SSH Transport Layer Protocol (SSH-TRANS)
■ SSH Authentication Protocol (SSH-AUTH)
■ SSH Connection Protocol (SSH-CONN)
■ SSH File Transfer Protocol (SSH-SFTP)

The relationships between the protocols, and their major functions, are shown in
 Figure 25.4.

Application Software (ssh, sshd, scp, sftp, sftp-server, etc.)

SSH-AUTH

SSH-TRANS

client authentication
 public key
 host-based
 password
 (many others)

algorithm negotiation
session key exchange
session ID
server authentication
privacy
integrity
data compression

TCP Layer

SSH-CONN SSH-SFTP
multiplexing
flow control
subsystems
pseudo-terminals
signal propagation
remote program execution
authentication agent forwarding
TCP port and X windows forwarding
terminal handling

remote filesystem access
file transfer

FIGURE 25.4

SSH protocols, showing how they relate to one another and the TCP transport layer.

CHAPTER 25 Secure Shell (Remote Access) 641

All critical parameters used in all of the protocols are negotiated. These parameters
include the ways and algorithms used for:

■ User authentication
■ Server authentication
■ Session key exchange
■ Data integrity and privacy
■ Data compression

In most categories, clients and servers are required to support one or more methods,
thereby promoting interoperability. Support is not the same as implementation, however,
and specifi c clients and servers still have to fi nd a “match” to accomplish their goals.

Initial connections (including server authentication, basic encryption, and integrity
services) are established with SSH-TRANS, which is the fundamental piece of SSH. An
SSH-TRANS connection provides a single and secure data stream operating full-duplex
between client and server.

Once the SSH-TRANS connection is made, the client can use SSH-AUTH for authenti-
cation to the server. Multiple authentication methods can be used, and SSH-AUTH estab-
lishes things such as the format and order of requests, conditions of success or failure,
and so on. Protocol extensions are defi ned to allow the methods to be extended in the
future as other authentication methods are developed. Only one method is required in
SSH-AUTH: public key using the digital signature standard (DSS). Two more methods are
defi ned: password and host-based (but we’ll concentrate on public key in this chapter).

Once authenticated, SSH clients use the SSH-CONN protocol over the “pipe” estab-
lished by SSH-TRANS. There are multiple interactive or batch (noninteractive) sessions
over SSH channels. The sessions include things such as X Windows and TCP forward-
ing (tunneling), control signaling (such as ^C) over the connection, data compression,
and related activities.

If fi le transfer or remote fi le manipulation is needed, this is provided by the SSH-SFTP
protocol. The sequence of invoking these protocols is not rigid, and there is consider-
able variation in implementation, mostly in “nonstandard” or customized environments
where global client access is neither needed nor desired.

Note that the SSH protocols only defi ne what should happen on the network.
Internals such as how keys are stored on the local disk, user authorization, and
key forwarding (which most people think of as intimate parts of SSH), are really
implementation-dependent pieces that are usually completely incompatible. The following
sections describe some of the key aspects of protocol operation.

Transport Layer Protocol
Clients normally access the SSH process on the server at well-known TCP port 22. The
server announces the SSH version in a text string, and there are certain conventions
built into this string. For example, SSH version “1.99” means that the server supports
both SSH1 and SSH2, and the client can choose to use either one from then on. Of
course, if the client and server are not compatible, either can break the connection at
that point.

642 PART VI Security

If the connection goes forward, SSH-TRANS shifts into the binary packet protocol—
a record-oriented non-text protocol defi ned for SSH-TRANS. The fi rst activity here is
key exchange, which precedes the negotiation of the basic security properties of the
SSH session.

The key exchange often employs some form of the Diffi e-Hellman procedure for
key agreement, although there are others. Diffi e-Hellman describes a way to securely
exchange information (such as a shared secret key) over an unsecured network such
as the Internet by using asymmetric public/private keys established beforehand. The
key exchange itself should be authenticated to guard against “man-in-the-middle”
attacks.

Pocket Calculator Diffi e-Hellman
In the SSL chapter, we did an exercise in “pocket calculator public key encryption”
to show that although the mathematical theory behind the use of asymmetric
 public/private key encryption was complex its use was not. We’ve mentioned
Diffi e-Hellman several times, and when fi rst popularized in 1976 Diffi e-Hellman
was so revolutionary some doubted it actually worked (not mathematicians, of
course!). How could secure shared secret keys possibly be sent over an unsecure
network where anyone can make copies of the packets?

Let’s show how Diffi e-Hellman can be used to allow users to share a secret
key and yet no one else knows what the key is (even the “man-in-the-middle”
vulnerability does not really “crack” the key, just hijacks it). Again, we’ll use small
non–real-world numbers just to make the math easy enough to do on a pocket
calculator. We’ve already shown how to raise the numbers to a power, and to com-
pute the modular remainder from division, so that is not repeated.

Like public key encryption, Diffi e-Hellman depends on properties of prime
numbers. There are two important ones: the very large prime itself (P) and a
related number (derived by formula) called the “primitive root of P,” which is usu-
ally called Q. A large prime P will have many primitive roots, but only one is used.
For this example, let’s use P 5 13 and Q 5 11 (I didn’t use a formula: There are
tables on primes and primitive roots all over the Internet).

According to usual security example practice, let’s call our two correspondents
Alice (A) and Bob (B). A and B exchange these two numbers publicly over the net-
work, without worrying if anyone else knows them (they have no choice, because
the network is by defi nition unsecure anyway).

A and B each pick, independently, a random number (naturally, in reality this
is done by software without users “picking” anything). Let’s use A 5 4 and B 5 7
(they can even pick the same number by chance, of course). Now each calculates
A* and B* according to the following formulas:

■ A computes A* 5 QA mod (P) 5 114 mod (13) 5 14,641 mod 13 5 3
■ B computes B* 5 QB mod (P) 5 117 mod (13) 5 19,487,171 mod 13 5 2

CHAPTER 25 Secure Shell (Remote Access) 643

The key exchange is usually repeated during a session because “stale” keys that are
used too long might allow a malicious user to break the encryption that much faster.
The more often the keys are changed the less likely this becomes, and even if broken
only that portion of the session is compromised. Usually SSH key exchanges occur
every hour or after every gigabyte of data.

The use of the “null” cipher, which means no encryption at all, is a valid choice
for SSH clients and servers, but this is only to be used for testing. However, many SSH
administrators never disable it. A favorite OpenSSH trick is to gain root access to a
host and edit the user’s confi guration fi le (~/.ssh/config) so that all hosts use the null
cipher only. If client or server do not support “null,” this evil trick is not possible.

Key exchange and encryption choice are followed by more security parameter
choices. Methods of integrity, server authentication, and compression (a marginal fea-
ture still considered part of SSH security) are agreed on. Public key systems are popular
choices, but the issue is always how to verify proper ownership of the public key, as
discussed in Chapter 23, where certifi cates were introduced as a way to provide server
authentication. At the end of the process, methods for cipher/integrity/compression
are established for client-to-server and server-to-client exchanges.

Authentication Protocol
SSH-AUTH is simpler than SSH-TRANS. The authentication protocol defi nes a frame-
work for these exchanges, defi nes a number of actual mechanisms (but only a few of
them), and allows for extensions. The three defi ned methods are public-key, password,
and host-based authentication.

The authentication process is framed by client requests and server responses. The
“authentication” request actually includes elements of authorization (access rights are
checked as well). A request contains:

Now, all A and B have to do is exchange their A* and B* numbers over the
network—not caring who sees them (which they can’t help anyway). But wait,
couldn’t someone easily fi gure out the A and B values in the example? Yes, of
course, with the small numbers used here. But when large enough primes and
well-chosen primitive roots are selected, and A and B choose random enough num-
bers (one reason you don’t let A and B pick their own numbers), there are many
numbers that give the values 3 and 2.

Now A and B simply calculate the shared secret key to use:

■ A’s secret key 5 (B*)A mod (P) 5 24 mod (13) 5 16 mod 13 5 3
■ B’s secret key 5 (A*)B mod (P) 5 37 mod (13) 5 2187 mod 13 5 3

Given enough time, the shared secret key can be broken. So, the Diffi e-Hellman
process is repeated constantly (at fi xed intervals), recomputing new keys, some-
times every few seconds. By the time the key is broken, a new one is in use.

644 PART VI Security

Username, U—The claimed identity of the user. On Unix systems, this is typically
the user account. However, the interpretation context is not defined by the
protocol.

Server name, S—The user is requesting access to a “server,” which is really the
protocol to run on the SSH-TRANS connection after authentication finishes.
This is usually “ssh-connection,” which represents all services (remote log-in,
command execution, etc.) provided by the SSH-CONN protocol.

Method name, M, and method-specific data, D—The particular authentication
method used for the request and any data needed with it. For example, if the
method is password, the data provided are the password itself.

There can be other messages exchanged, depending on the authentication request.
But ultimately the server issues an authentication response. The response can be
 SUCCESS or FAILURE, and the success message has no other content. The failure response
includes

■ a list of the authentication methods that can continue the process
■ a “partial success” fl ag

The FAILURE response can be misleading. If the partial success fl ag is not set (false),
the message means that the preceding authentication method has failed for some rea-
son (incorrect password, invalid account, and so on). However, if the partial success
fl ag is set (true), the message means that the method has succeeded (odd in a failure
message!), but the server requires that additional methods also succeed before access
is granted. In other words, the server can require multiple successful authentication
methods. OpenSSH does not support this feature.

But how does the client know which methods to start with? The client starts with
a “none” authentication request, which prompts the server to reply with a list of the
authentication methods the client can choose to continue the process. In other words,
if the server requires any authentication at all, the “none” method fails. If not, a SUCCESS
is immediate and a lot of time is saved.

The Connection Protocol
Clients usually request to use “ssh-connection” after a successful authentication
exchange. Once the server starts the service, SSH uses the SSH-CONN protocol. This is
really when SSH starts to do things.

The basic SSH-CONN service is multiplexing: the creation of dynamic logical chan-
nels over the SSH-TRANS connection. Channels are identifi ed by numbers and can be
created and destroyed by either side of the connection. Channels are fl ow controlled
and have a type, which are also extensible. The defi ned channels types follow:

Session—These are for the remote execution of a program. Opening a channel
does not start a program, but when started several session channels can be in
operation at once.

CHAPTER 25 Secure Shell (Remote Access) 645

x11—These channels are for X Windows operations.

forwarded-tcpip—These inbound channels are for forwarded TCP ports. (Port
 forwarding in SSH just means that SSH transparently encrypts and decrypts
data on a TCP port.) The server opens this channel type back to the client to
carry remotely forwarded TCP port data.

direct-tcpip—These outbound TCP channels are used to connect to a socket. The
client simply starts listening on the port indicated.

SSH-CONN defi nes a set of channel or global requests in addition to traditional channel
operations such as open, close, send, and so on. The global requests follow:

tcpip-forward—Used to request remote TCP port forwarding. This feature is not
yet supported by Open SSH.

cancel-tcpip-forward—Used to cancel remote TCP port forwarding.

The channel requests are more elaborate and are only summarized in the following.
Most refer to the remote side of the session channel.

pty-req—Requests a pseudo-terminal for the channel (usually for interactive appli-
cations). Includes window size and terminal mode information.

x11-req—Requests X Window forwarding.

Env—Sets an environmental variable. This can be risky, so it is carefully
 controlled.

shell, exec, subsystem—Run the default shell for the account, a program, or service.
This connects the channel to the standard input and output and error streams.
A “subsystem” is used, for example, with file transfers, and the subsystem name
is SFTP in this case.

window-change—Changes the terminal window size.

xon-xoff—Uses client ^S/^Q flow control.

Signal—Sends a signal (such as the Unix kill command) to the remote side.

exit-status—Returns the program’s exit status.

exit-signal—Returns the signal that terminated the program.

Although these channel requests can technically be sent from server to client, the
use of SSH as a remote access tool means that most of these requests are issued by the
client and expect the server to perform in a certain way. Clients usually ignore these
requests from a server, just for security reasons.

646 PART VI Security

The File Transfer Protocol
The last piece of the SSH protocol “suite” is SSH-SFTP. Oddly, SSH-SFTP does not really
implement any fi le transfers at all because it has no fi le transfer capability. What the
protocol does is to use SSH to start a remote fi le transfer agent and then work with it
over the secure connection.

Initially, SSH used a secure version of the remote copy (rcp) Unix program to imple-
ment secure copy (scp). As rcp ran the remote shell (rsh), so scp ran the secure shell
(SSH). But rcp was a very limited program compared to FTP. A session only transferred
a group of fi les in one direction, and it did not allow directory listings, browsing, or any
of the other features associated with FTP.

Thus, SSH2 eventually incorporated the idea of SFTP to secure the fi le transfer
process. The SSH-SFTP protocol describes how this happens. Unfortunately, SFTP isn’t
just using SSH to connect to a remote FTP server. SFTP has absolutely nothing to do
with the FTP protocol described in an earlier chapter of this book.

SSH and FTP are not a good match, one reason being that separate connections
are used in FTP for control and data transfer. FTP itself (like Telnet) can be made more
secure with SSL, but few FTP servers provide these functions. So, an FTP server can also
be an SSH server (providing fi les in unsecure and secure manners)—and that’s about a
close as SSH and FTP can get.

How does SSH-SFTP work? Well, there are really two ways to transfer fi les over an
SSH connection: with scp or with sftp (the names might be different, but it’s the proce-
dure that’s important).

When a client uses scp, the transfer begins by running ssh with certain options,
such as when a forwarding agent is in use. This process in turn runs another ver-
sion on the remote host, which is, of course, running sshd. That copy of scp is run
with its own (undocumented) options, such as “to” (-t) and “from” (-f). SSH then
uses scp, now running on client and server, to transfer the fi le over the secure SSH
connection.

Figure 25.5 shows how SSH uses scp to transfer a fi le called mywebpage.html to a
server and rename it index.html. Naturally, the transfer is encrypted and secure.

SSH can even do a trick that FTP does not allow. SSH can be used for “third-party”
transfers, a capability never implemented in FTP beyond the testing phase (for security
reasons). In other words, when run locally, SSH can transfer a fi le between two remote
hosts (as long as the authentication succeeds).

Consequently, users can perform the Web page transfer to the server even if the
page is on their offi ce desktop and they are sitting with a laptop at an airport gate wait-
ing for a fl ight.

scp lnxclient:mywebpage.html lnxserver:index.html

Using sftp is similar, but the syntax and options for the command are different. This
method starts an SSH subsystem, and that means that the SSH server must be spe-
cifi cally confi gured to run the SFTP protocol. Figure 25.6 shows how the same fi le

CHAPTER 25 Secure Shell (Remote Access) 647

Client

scp mywebpage.html webserver:index.html

run “ssh -x -a ...webserver scp -t index.html”

FILE SCP

ssh

mywebpage.html

Server

index.html

run “scp -t index.html”

SCP

sshd

FILE

SCP Protocol

FIGURE 25.5

Transferring fi les with SCP, showing how SSH is used with the fi le copy.

Client

run “ssh2 -x-a ...webserver -s sftp”

FILE
SFTP/
SCP2

ssh

mywebpage.html

Server

index.html

run “sftp webserver”

SFTP
Server

sshd

FILE

SFTP Protocol

sftp webserver
sftp>put mywebpage.html index.html

or

scp2 mywebpage,html webserver:index.htm

FIGURE 25.6

A fi le transfer with SFTP, showing the same results as when using SCP.

648 PART VI Security

transfer would be done with sftp (in the SSH implementation known as Tectia, sftp is
 confusingly invoked with the command scp2).

The point here is that both methods will transfer the fi le as long as every thing else
is set up correctly. The best book on SSH—SSH: The Secure Shell, by Daniel J. Barrett,
Richard E. Silverman, and Robert G. Byrnes (O’Reilly Media)—is about as long as this
one. Interested readers are referred to this text for more detailed information on SSH.

SSH IN ACTION
If there is one thing that was used more than FTP to produce this book, it’s SSH. In fact, all
of the fi le transfers used to consolidate output for these examples could just as easily have
been done with SCP or SFTP. This is especially true when routers are the remote systems:
Only in special circumstances will organizations allow or use Telnet for router access.

Let’s use SSH to contact the routers on the Illustrated Network. Naturally, the rout-
ers have been set up ahead of time to allow administrator access from certain hosts on
LAN1 and LAN2 and are running sshd. But on the client side, we’ll run ssh “out of the
box” and see what happens.

Ethereal captures are not the best way to look at SSH in action. The secure and
encrypted transfers make packet analysis diffi cult (and often impossible). Fortunately,
we can use the debug feature of SSH itself to analyze the exchange in very verbose
form (using the –vv option).

Let’s see if we can catch SSH-TRANS, SSH-AUTH, and SSH-CONN in action when we
access router TP2 (10.10.11.1) from bsdclient. We’ll log in (the -l option) as admin.

bsdclient# ssh -vv -l admin 10.10.11.1
OpenSSH_3.5p1 FreeBSD-20030924, SSH protocols 1.5/2.0, OpenSSL 0x0090704f
debug1: Reading configuration data /etc/ssh/ssh_config
debug1: Rhosts Authentication disabled, originating port will not be trusted.
debug1: ssh_connect: needpriv 0
debug1: Connecting to 10.10.11.1 [10.10.11.1] port 22.
debug1: Connection established.
debug1: identity file /root/.ssh/identity type -1
debug1: identity file /root/.ssh/id_rsa type -1
debug1: identity file /root/.ssh/id_dsa type -1
debug1: Remote protocol version 1.99, remote software version OpenSSH_3.8
debug1: match: OpenSSH_3.8 pat OpenSSH*
debug1: Enabling compatibility mode for protocol 2.0
debug1: Local version string SSH-2.0-OpenSSH_3.5p1 FreeBSD-20030924
debug1: SSH2_MSG_KEXINIT sent
debug1: SSH2_MSG_KEXINIT received
debug2: kex_parse_kexinit: diffie-hellman-group-exchange-sha1,diffie-
hellman-
 group1-sha1

debug2: kex_parse_kexinit: ssh-dss,ssh-rsa
debug2: kex_parse_kexinit: aes128-cbc,3des-cbc,blowfish-cbc,cast128-cbc,
arcfour,aes192-cbc,aes256-cbc,rijndael-cbc@lysator.liu.se

CHAPTER 25 Secure Shell (Remote Access) 649

debug2: kex_parse_kexinit: aes128-cbc,3des-cbc,blowfish-cbc,cast128-cbc,
arcfour,aes192-cbc,aes256-cbc,rijndael-cbc@lysator.liu.se

debug2: kex_parse_kexinit: hmac-md5,hmac-sha1,hmac-ripemd160,hmac-ripemd160@
openssh.com,hmac-sha1-96,hmac-md5-96

debug2: kex_parse_kexinit: hmac-md5,hmac-sha1,hmac-ripemd160,hmac-ripemd160@
openssh.com,hmac-sha1-96,hmac-md5-96

debug2: kex_parse_kexinit: none,zlib
debug2: kex_parse_kexinit: none,zlib
debug2: kex_parse_kexinit:
debug2: kex_parse_kexinit:
debug2: kex_parse_kexinit: first_kex_follows 0
debug2: kex_parse_kexinit: reserved 0
debug2: kex_parse_kexinit: diffie-hellman-group-exchange-sha1,diffie-
hellman-
group1-sha1

debug2: kex_parse_kexinit: ssh-rsa,ssh-dss
debug2: kex_parse_kexinit: aes128-cbc,3des-cbc,blowfish-cbc,cast128-cbc,
arcfour,aes192-cbc,aes256-cbc,rijndael-cbc@lysator.liu.se,aes128-
ctr,aes192-ctr,aes256-ctr

debug2: kex_parse_kexinit: aes128-cbc,3des-cbc,blowfish-cbc,cast128-
cbc,arcfour,aes192-cbc,aes256-cbc,rijndael-cbc@lysator.liu.se,aes128-
ctr,aes192-ctr,aes256-ctr

debug2: kex_parse_kexinit: hmac-md5,hmac-sha1,hmac-ripemd160,hmac-ripemd160@
openssh.com,hmac-sha1-96,hmac-md5-96

debug2: kex_parse_kexinit: hmac-md5,hmac-sha1,hmac-ripemd160,hmac-ripemd160@
openssh.com,hmac-sha1-96,hmac-md5-96

debug2: kex_parse_kexinit: none,zlib
debug2: kex_parse_kexinit: none,zlib
debug2: kex_parse_kexinit:
debug2: kex_parse_kexinit:
debug2: kex_parse_kexinit: first_kex_follows 0
debug2: kex_parse_kexinit: reserved 0
debug2: mac_init: found hmac-md5
debug1: kex: server->client aes128-cbc hmac-md5 none
debug2: mac_init: found hmac-md5
debug1: kex: client->server aes128-cbc hmac-md5 none
debug1: SSH2_MSG_KEX_DH_GEX_REQUEST sent
debug1: expecting SSH2_MSG_KEX_DH_GEX_GROUP
debug1: dh_gen_key: priv key bits set: 136/256
debug1: bits set: 1042/2049
debug1: SSH2_MSG_KEX_DH_GEX_INIT sent
debug1: expecting SSH2_MSG_KEX_DH_GEX_REPLY
debug1: Host '10.10.11.1' is known and matches the DSA host key.
debug1: Found key in /root/.ssh/known_hosts:1
debug1: bits set: 1049/2049
debug1: ssh_dss_verify: signature correct
debug1: kex_derive_keys
debug1: newkeys: mode 1
debug1: SSH2_MSG_NEWKEYS sent
debug1: waiting for SSH2_MSG_NEWKEYS
debug1: newkeys: mode 0
debug1: SSH2_MSG_NEWKEYS received

650 PART VI Security

debug1: done: ssh_kex2.
debug1: send SSH2_MSG_SERVICE_REQUEST
debug1: service_accept: ssh-userauth
debug1: got SSH2_MSG_SERVICE_ACCEPT
debug1: authentications that can continue: publickey,password,keyboard-
interactive

debug1: next auth method to try is publickey
debug1: try privkey: /root/.ssh/identity
debug1: try privkey: /root/.ssh/id_rsa
debug1: try privkey: /root/.ssh/id_dsa
debug2: we did not send a packet, disable method
debug1: next auth method to try is keyboard-interactive
debug2: userauth_kbdint
debug2: we sent a keyboard-interactive packet, wait for reply
debug1: authentications that can continue: publickey,password,keyboard-
interactive

debug2: we did not send a packet, disable method
debug1: next auth method to try is password
admin@10.10.11.1's password: (not shown)
debug2: we sent a password packet, wait for reply
debug1: ssh-userauth2 successful: method password
debug1: channel 0: new [client-session]
debug1: send channel open 0
debug1: Entering interactive session.
debug2: callback start
debug1: ssh_session2_setup: id 0
debug1: channel request 0: pty-req
debug1: channel request 0: shell
debug1: fd 3 setting TCP_NODELAY
debug2: callback done
debug1: channel 0: open confirm rwindow 0 rmax 32768
debug2: channel 0: rcvd adjust 131072
--- JUNOS 8.4R1.3 built 2007-08-06 06:58:15 UTC
admin@CE0>

The substantial output captures all three phases of SSH protocol operation (all but SSH-
SFTP). Let’s see what the major portions of this listing are saying.

Roughly speaking, the fi rst half of the output is SSH-TRANS negotiation to estab-
lish the methods to use for key exchange, and what to use for cipher, integrity, and
compression. The next quarter is used for SSH-AUTH to decide on a user authentication
method to be used (its password). The last quarter, after the password is entered, is SSH-
CONN (setting up SSH channel 0 from router to client).

It’s not necessary to parse this line by line. Generally, the exchange starts by pars-
ing the version string supplied by the router and starting the negotiation. The router
announces support for SSH1 or SSH2 (version 1.99).

debug1: Remote protocol version 1.99, remote software version OpenSSH_3.8
debug1: match: OpenSSH_3.8 pat OpenSSH*
debug1: Enabling compatibility mode for protocol 2.0

CHAPTER 25 Secure Shell (Remote Access) 651

The client announces OpenSSH support as well.

debug1: Local version string SSH-2.0-OpenSSH_3.5p1 FreeBSD-20030924

Now the process shifts to binary packet mode and begins in earnest. The next major
section presents the router and client support set for key exchange, cipher, integrity,
and compression.

debug1: SSH2_MSG_KEXINIT sent
debug1: SSH2_MSG_KEXINIT received
debug2: kex_parse_kexinit: diffie-hellman-group-exchange-sha1,diffie-
hellman-group1-sha1

debug2: kex_parse_kexinit: ssh-dss,ssh-rsa
debug2: kex_parse_kexinit: aes128-cbc,3des-cbc,blowfish-cbc,cast128-
cbc,arcfour,aes192-cbc,aes256-cbc,rijndael-cbc@lysator.liu.se

debug2: kex_parse_kexinit: aes128-cbc,3des-cbc,blowfish-cbc,cast128-
cbc,arcfour,aes192-cbc,aes256-cbc,rijndael-cbc@lysator.liu.se

debug2: kex_parse_kexinit: hmac-md5,hmac-sha1,hmac-ripemd160,hmac-ripemd160@
openssh.com,hmac-sha1-96,hmac-md5-96

debug2: kex_parse_kexinit: hmac-md5,hmac-sha1,hmac-ripemd160,hmac-ripemd160@
openssh.com,hmac-sha1-96,hmac-md5-96

debug2: kex_parse_kexinit: none,zlib
debug2: kex_parse_kexinit: none,zlib

The fi rst two lines exchange the messages, which are parsed in pairs in the
following. The fi rst pair establishes the key exchange algorithms that the client under-
stands (diffie-hellman-group-exchange-sha1,diffie-hellman-group1-sha1), and the
second establishes the key types (ssh-dss, ssh-rsa). The other three pairs show that the
client and server both support the same methods in the other three categories. (It’s not
unusual for servers to support methods more than clients.) A long section of back-and-
forth negotiation takes place to pare down the possibilities, and fi nally the client and
server agree on what three methods to use for cipher, integrity, and compression.

debug1: kex: server->client aes128-cbc hmac-md5 none
debug1: kex: client->server aes128-cbc hmac-md5 none

Still, in SSH-TRANS, the actual key exchange and server authentication now begin.
Fortunately, it’s really the correct router.

debug1: SSH2_MSG_KEX_DH_GEX_REQUEST sent
debug1: expecting SSH2_MSG_KEX_DH_GEX_GROUP
debug1: dh_gen_key: priv key bits set: 136/256
debug1: bits set: 1042/2049
debug1: SSH2_MSG_KEX_DH_GEX_INIT sent
debug1: expecting SSH2_MSG_KEX_DH_GEX_REPLY
debug1: Host '10.10.11.1' is known and matches the DSA host key.
debug1: Found key in /root/.ssh/known_hosts:1
debug1: bits set: 1049/2049
debug1: ssh_dss_verify: signature correct

652 PART VI Security

The router is known because we’ve accessed it before (many times, in fact). If we
go somewhere we’ve never been before, we have the option to break off the session
because the server cannot be authenticated.

debug1: SSH2_MSG_KEX_DH_GEX_REQUEST sent
debug1: expecting SSH2_MSG_KEX_DH_GEX_GROUP
debug1: dh_gen_key: priv key bits set: 145/256
debug1: bits set: 1006/2049
debug1: SSH2_MSG_KEX_DH_GEX_INIT sent
debug1: expecting SSH2_MSG_KEX_DH_GEX_REPLY
debug2: no key of type 0 for host 10.10.12.1
debug2: no key of type 1 for host 10.10.12.1
The authenticity of host '10.10.12.1 (10.10.12.1)' can't be established.
DSA key fingerprint is 51:5f:da:41:41:9d:b1:c0:3f:a7:d0:a8:b9:7c:99:aa.
Are you sure you want to continue connecting (yes/no)?

At last we’re fi nished with SSH-TRANS. Now SSH-AUTH is used to authenticate the
“user account” to the server. We derive some new keys for the process, and fi nally
(because nothing else “works”) allow the user to type in a password for the router.

debug1: kex_derive_keys
debug1: newkeys: mode 1
debug1: SSH2_MSG_NEWKEYS sent
debug1: waiting for SSH2_MSG_NEWKEYS
debug1: newkeys: mode 0
debug1: SSH2_MSG_NEWKEYS received
debug1: done: ssh_kex2.
debug1: send SSH2_MSG_SERVICE_REQUEST
debug1: service_accept: ssh-userauth
debug1: got SSH2_MSG_SERVICE_ACCEPT
debug1: authentications that can continue: publickey,password,keyboard-
interactive

debug1: next auth method to try is publickey
debug1: try privkey: /root/.ssh/identity
debug1: try privkey: /root/.ssh/id_rsa
debug1: try privkey: /root/.ssh/id_dsa
debug2: we did not send a packet, disable method
debug1: next auth method to try is keyboard-interactive
debug2: userauth_kbdint
debug2: we sent a keyboard-interactive packet, wait for reply
debug1: authentications that can continue: publickey,password,keyboard-
interactive

debug2: we did not send a packet, disable method
debug1: next auth method to try is password
admin@10.10.11.1's password:

Although it is diffi cult to tell from the debug messages, there is a signifi cant wait
after the password is typed in while SSH-CONN sets up channel 0 over the SSH-TRANS
connection. But fi nally we’re in an interactive session and all set to go.

CHAPTER 25 Secure Shell (Remote Access) 653

debug2: we sent a password packet, wait for reply
debug1: ssh-userauth2 successful: method password
debug1: channel 0: new [client-session]
debug1: send channel open 0
debug1: Entering interactive session.
debug2: callback start
debug1: ssh_session2_setup: id 0
debug1: channel request 0: pty-req
debug1: channel request 0: shell
debug1: fd 3 setting TCP_NODELAY
debug2: callback done
debug1: channel 0: open confirm rwindow 0 rmax 32768
debug2: channel 0: rcvd adjust 131072
--- JUNOS 8.4R1.3 built 2007-08-06 06:58:15 UTC
admin@CE0>

Note that SSH does not bypass the router’s own authentication method (log-in ID and
password) in any way. But it does ensure that what the user types in is not sent in plain
text over the network.

Let’s quickly show sftp in action to fetch a fi le called tp2 from the router. This
shows obvious similarities with FTP use, but is much more secure.

bsdclient# sftp admin@10.10.11.1
Connecting to 10.10.11.1...
admin@10.10.11.1’s password: (not shown)
sftp> ls
.
..
.ssh
CE0-base
mw-graceful-restart
richard-ASP-manual-SA
richard-base
tp2
wjg-ORA-base
wjg-bgp-try
wjg-ipv6-mcast
wjg-with-ipv6
sftp> get tp2
Fetching /var/home/remote/tp2 to tp2
sftp> quit
bsdclient#

The SSH debug sequence for Linux is almost identical to the one for FreeBSD, and
also uses OpenSSH. Although not used here, OpenSSH for Windows XP exists and is
called PuTTY.

654 PART VI Security

FIGURE 25.7

SSH capture with Ethereal, showing how the packet content is encrypted and therefore not parsed
by the utility.

What does SSH look like “on the wire”? Figure 25.7 shows what Ethereal sees at the
start of SSH-TRANS, including a look at an encrypted packet.

CHAPTER 25 Secure Shell (Remote Access) 655

This page intentionally left blank

QUESTIONS FOR READERS
Figure 25.8 shows some of the concepts discussed in this chapter and can be used to
answer the following questions.

1. Which devices are communicating here? Is this message from the server to the
client or in the opposite direction?

2. Which ports are used on the devices? Is one the usual SSH server port?

3. Which version of SSL is used? What type of message is parsed in the fi gure?

4. Which two server host key algorithms are supported?

5. How many compression algorithms are supported?

FIGURE 25.8

SSH capture with Ethereal.

657

CHAPTER

What You Will Learn
In this chapter, you will learn one type of virtual private network architecture: the
MPLS-based VPN, and in particular, a Layer 2 VPN (L2VPN). We’ll also briefl y look at
using PPTP over DSL for remote access, another type of arrangement that is often
considered a VPN.

You will learn how an L2VPN can make CE1 and CE2 appear to be connected
by a single LAN, creating a virtual private LAN service (VPLS) between them. We’ll
also confi gure a complete VPLS based on L2VPNs.

MPLS-Based Virtual
Private Networks 26

In Chapter 17 on Internet Protocol (IP) switching, we introduced the idea of Multi-
protocol Label Switching (MPLS) and confi gured a static label-switched path (LSP). That
chapter showed how the LSP could be used for traffi c engineering (TE) to steer transit
traffi c away from the least-cost hops traversed by local traffi c. This chapter builds on
those concepts and explores the security provided by one type of Virtual Private Net-
work (VPN) Protocol, the Point-to-Point Tunneling Protocol (PPTP), and one type of
VPN architecture, the MPLS-based VPN.

This chapter creates an L2VPN supporting VPLS. It does not create what is known
as an L3VPN or BGP/MPLS IP VPN, which is actually more common. There are a few
reasons we will describe an L3VPN but not confi gure it. Many introductions to VPNs
start with L2VPNs before moving on the more complex L3VPNs. In addition, there is
a much more complete book written about BGP/MPLS VPNs available: MPLS-Enabled
Applications, 2nd edition, by Ina Minei and Julian Lucek (Wiley). We urge all interested
readers to obtain this book after completing this one.

This chapter deals with more general aspects of security (and privacy) on the Inter-
net, as companies, individuals, and government organizations blend increasingly sensi-
tive traffi c onto a single global public network. PPTP allows workers in home offi ces
to access remote corporate resources such as servers and fi les over a public ISP’s unse-
cure network. MPLS-based VPNs allow ISP to offer “private” (virtually private) networks
to customers, while maintaining the global reachabilty and universal connectivity that
Internet users have come to take for granted.

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80:205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Best-

Wireless
in Home

Solid rules � SONET/SDH
Dashed rules � Gig Ethernet
Note: All links use 10.0.x.y
addressing...only the last
two octets are shown.

FIGURE 26.1

VPNs on the Illustrated Network. MPLS-based VPNs are based on routers (not hosts), whereas PPTP
can be used with DSL.

660 PART VI Security

Ace ISP

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80:205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC: 00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

ge-0/0/3

16.2

ge-0/0/3

16.1

AS 65127

Global Public
Internet

CHAPTER 26 MPLS-Based Virtual Private Networks 661

Before we build an L2VPN for LAN1 and LAN2, let’s take a quick look at remote
access using PPTP while employing a popular adjunct device, the RSA SecureID. That’s
how we access the Illustrated Network from the comfort of our home offi ces.

So, we’re really doing two types of VPN at once in this chapter (as shown in Figure
26.1). Both the home DSL link and the routers are highlighted, because this is where
we’ll be building our VPNs (we’ll route LAN1 to LAN2 traffi c away from the links to
the Internet on P4 and P2). Another change is necessary (one we’ve seen before), and
this time the change will be in effect through the end of the book. Ace and Best ISPs
have merged to become Best-Ace ISP, and the network now has only one AS number
(65127). This will simplify the confi gurations used in the rest of the book, starting with
our MPLS-based VPN.

PPTP FOR PRIVACY
The RSA SecurID that one is issued for remote access to the corporate network requires
one to copy the six random numbers that appear on its screen at log-in. There’s also
a four-digit static prefi x that does not change, but the last six digits change every 30
seconds. This has been challenging for some users, who cannot copy the digits cor-
rectly and exceed their retry count (usually three). After that, the account is locked
until an administrator releases it. Newer SecurID tokens plug right into the USB port of
the computer, so no typing is required.

Even though our home offi ce access is using PPP over DSL, the PPTP connection
still has to send the PPP and PPTP control messages to the corporate network device,
the L2TP Access Concentrator (LAC). (We’ll talk about the relationship between PPTP
and L2TP later.) These messages indicate that a connection request is being made with
the PPP Link Control Protocol (LCP). The packet exchange at the beginning of the
connection is shown in Figure 26.2. The actual data are sent inside packets formatted
according to the generic routing encapsulation (GRE) method, which basically adds
another IP header to the existing one.

For the fi rst time in this book, this Ethereal capture fi le has been edited to substitute
the actual addresses used for “Martian” addresses for reasons of security. The client PC
is using 169.254.99.1 and the server is using 250.99.111.4.

The fi rst GRE packet does not come until packet 20. In fact, there are many more
compressed PPP packets than those using GRE. Figure 26.3 shows this relationship in
the packet sequence taken from later in the same session. We’ll talk more about these
PPP and GRE packets later in this chapter.

Types of VPNs
A VPN is a private communications network most often used within a single orga-
nization to communicate over a public network. VPN traffi c is carried over a public
network infrastructure, such as the Internet, using standard and unsecure protocols.

662 PART VI Security

FIGURE 26.2

Start of a PPTP over DSL session, showing the content of the fi rst GRE packet.

FIGURE 26.3

PPP and GRE packets, showing GRE encapsulation of PPP in IP.

CHAPTER 26 MPLS-Based Virtual Private Networks 663

However, the VPN mechanisms make the network look and feel like a private network
composed of network nodes owned and operated by the organization and the leased
lines connecting them, which carry the organization’s traffi c only.

In truth, the “private” network was never really as private as customers thought.
Carriers did a good marketing job, but in fact every customer’s bits were freely mixed
on high-bit-rate backbones, although users could not tell whether this was the case.
But when a massive microwave link was compromised in some way, hundreds or thou-
sands of customers’ data were at risk. Once the carriers all became ISPs, the marketing
material for private circuits was retooled to support the use of virtual circuits over the
public network.

Chapter 17, on frame relay and ATM networks, which also covered MPLS, mentioned
the idea of a virtual circuit (or channel or connection) as something that is “not really a
private circuit/channel/connection, but acts just like one,” at least as far as the customer
is concerned. This chapter extends that concept into the general area of VPNs.

The chapter on MPLS introduced the idea of using MPLS LSP “tunnels” as the basis
for a VPN, because MPLS LSPs are pretty much invisible to IP hackers on the network.
This chapter elaborates on that idea.

Are MPLS LSP Tunnels?
Sometimes MPLS LSPs are loosely called “MPLS tunnels,” and most people will not
object, knowing that LSPs are intended. But some object strenuously, claiming that
the term tunnel is more properly reserved for different types of encapsulation
than in MPLS—such as frame in frame, packet in packet, or some others. MPLS
merely adds a small “shim header” between L3 packet and L2 frame, they claim,
and therefore is not a full encapsulation (some call it “Layer 2.5”).

Of course, if tunneling is defi ned as a “violation of the normal data-packet-frame
encapsulation sequence at some endpoint devices,” MPLS LSPs are certainly tun-
nels. Then again, VLAN tagging (the Layer 2 analog to MPLS labeling) is not called
“VLAN tunneling,” even though it could be.

In this chapter, we’ll use the terms MPLS LSP and VLAN tagging, while avoid-
ing the term tunnel.

Security and VPNs
On modern networks, a fi rewall of some type is used as a security device and sits
between clients and servers. The fi rewall can pass authentication data to an authenti-
cation service for the local network, such as RADIUS. A trusted person with privileged
access (such as root, often only using trusted devices that are physically secure) is
allowed to access resources not available to general users, such as the routers and the
fi rewall itself.

664 PART VI Security

We’ll talk more about fi rewalls in Chapter 28. For now, we’ll just mention them and
note that VPNs can use fi rewalls, and indeed they can be built up from fi rewalls but
don’t have to be. For many people, any type of VPN implies the purchase and use of
specialized devices that form the endpoints of the VPN. To these users, the VPN is
 created by the customer; in brief, it is not offered as a service by the ISP. The exception,
of course, is MPLS-based VPNs, which we will explore in this chapter.

VPNs do not have to be secure. An organization that uses MPLS to create the appear-
ance of the virtual-circuit, network-like frame relay or ATM might call the result a VPN,
but this is not really more secure than any other type of network. Secure VPNs use
encrypted tunneling protocols to add confi dentiality (a counter-sniffi ng notion), user
and resource authentication (to prevent spoofi ng), and message integrity (to detect mes-
sage alteration) to achieve the levels of security and privacy desired (or affordable).

It should be noted that no code is unbreakable (rumors persist to the contrary); no
network is entirely protected against hackers; and some simple attacks, such as denial-
of-service (DOS) attacks, are still painfully effective. What network security seeks to do
is raise the work factor for the bad guys to the point where it takes so long to break
the code that the information is useless and it’s easier to attack another network whose
administrators are less diligent in security areas.

If this sounds too defeatist, consider the fact that Kevin Mitnick (a hacker guru)
admitted in his book, The Art of Intrusion, that most of his exploits relied on manipu-
lating people (“social engineering”) and not frontal attacks on equipment and software
(“I’m with security. We have to change your password. What is it again?”). A lot of secu-
rity dollars are spent protecting users from themselves.

VPNs and Protocols
There are several types of VPNs that can be built, and the choice of which type to use
is not trivial. Many VPN schemes have a lot to do with security. But secure VPN tech-
nologies can be the basis for a security overlay and used to enhance security on the
network.

We’ll just talk generally about all types of VPNs, create an MPLS-based VPN on the
Illustrated Network at the end of the chapter, and consider ways to “harden” it in the
next few chapters. All VPNs are in some sense “trusted” more than simple IP router
 networks. Secure VPN protocols include the following:

IPSec (IP security)—IPSec has been aptly described as “a piece of IPv6 that fell
into IPv4.” A mandatory part of IPv6, IPSec was rushed into the IPv4 world as
an advanced security measure.

SSL—SSL can be used to tunnel the entire network stack, as in the OpenVPN
approach, or to create an SSL VPN to secure certain pieces of the network.

PPTP—A tunneling method developed by Microsoft for remote access to network
resources through a special server.

CHAPTER 26 MPLS-Based Virtual Private Networks 665

L2F (Layer 2 forwarding)—Another secure remote-access method developed by
Cisco.

L2TP (Layer 2 tunneling protocol)—A sort of “compromise” method that includes
contributions by both Cisco and Microsoft. Today, L2TP has pretty much
replaced L2F.

VPNs do not rely on one protocol or another for everything. For example, networks
dominated by Windows software generally use VPNs that employ PPTP and L2TP (along
with IPsec) to construct a secure VPN.

We’ve already talked about SSL, and IPSec is covered (and featured) in the next chap-
ter. Let’s take a look at PPTP and L2TP methods, which are for securing inter mittent
remote user access through dial-up links or (increasingly) from home offi ces over DSL.

PPTP
PPTP was developed by Microsoft as an extension to PPP and is now defi ned in RFC
2637. It is a Layer 2 tunneling protocol, meaning that the payload is the Layer 2 frame
itself, encrypted and preceded by a small PPTP header based on extensions to the
generic routing encapsulation (GRE) header described in RFC 2784. This frame, with
header and trailer, is placed inside another packet and sent over the network between
what PPTP calls a PPTP access concentrator (PAC) and a PPTP network server (PNS).

PPTP is a client/server protocol with the PAC as the client and the PNS as the server.
Control messages are exchanged over TCP port 1723. Encryption is provided by under-
lying PPP mechanisms. Encryption keys are generated from the authentication process,
which normally uses the Challenge Handshake Authentication Protocol (CHAP)—a
three-way handshake using encrypted passwords (defi ned in RFC 1994).

In PPTP, PPP uses compressed data, which is not a form of encryption but does
present an obstacle to unsophisticated hackers who only dabble in eavesdropping. The
GRE encapsulated data are secure. PPTP is still widely used today, often in conjunction
with some type of user authentication token such as an RSA SecurID numerical pass-
code generator. Users dial in to the PAC and log in using the passcode, which changes
every 30 seconds. Dial-in connections are usually very secure because they can follow
any path over the PSTN and use any PAC port available. PPTP covers communication
between the PAC (which might be supporting traveling sales agents on the east coast)
and the main network with the PNS (which might be on the west coast). In addition to
controlling costs, PPTP used this way can use a VPN setup for that purpose.

Today, home workers with DSL often use PPTP to tunnel through the ISP’s unse-
cure network to reach the relative security of the organization’s more protective
environment. Additional security is needed to reach the PAC from the user location.
Between PAC and PNS, a VPN tunnel itself can be built using double encryption; that is,
taking the PPTP data and encrypting it once again. It all depends on how paranoid the
organization is (as the doomed Kurt Cobain noted, just because you’re paranoid doesn’t
mean they’re not out to get you).

666 PART VI Security

L2TP
Cisco fi rst used their L2F as an alternative to Microsoft’s PPTP. But eventually both
companies combined the best of both worlds to produce L2TP, a more fl exible version
of PPTP. L2TP is also a way to send encrypted frames between client and server over
the Internet, and again the client is a remote access point and the server on a protected
network. In L2TP, these are now the L2TP access concentrator (LAC) and L2TP network
server (LNS).

L2TP is designed to work with more than dial-in users seeking Internet connectivity.
The LAC and LNS can be linked not only over the Internet but over frame relay and ATM
networks (L2TP calls them “non-IP WAN technologies”). A special L2TP device, the LAC
client, can attach to the LNS directly without going through the dial-in LAC device. The
overall architecture is shown in Figure 26.4.

Encryption in L2TP is provided with IPSec (why always reinvent the wheel?).
There is a two-step L2TP encapsulation. An initial L2TP frame encapsulation with PPP
is used to build a new IP packet using UDP port 1701 on the server side and an L2TP
header. This step is followed by the IPSec encapsulation. Although it is technically
allowed to send L2TP data without this step, it defeats the purpose. L2TP is defi ned
in RFC 2661.

LAC Client

Home
Gateway

LNSLAC

Remote System

Remote
Resources

Smartcard
or SecurID

Internet, Frame
Relay, ATM

PPTP Runs Here

Smartcard
or SecurID

PSTN

FIGURE 26.4

PPTP architecture, showing how PPTP runs between LAC and LNS.

CHAPTER 26 MPLS-Based Virtual Private Networks 667

PPTP and L2TP Compared
There are many differences between PPTP and L2TP, but the following comprise the
main ones.

■ PPTP cannot support a non-IP network directly, whereas L2TP works with any
network that can provide point-to-point connectivity.

■ PPTP supports only a single tunnel from client to server, whereas L2TP can
 support multiple tunnels—perhaps used as part of a multilevel security and QoS
scheme.

■ PPTP does not support header compression, whereas L2TP can compress its
header for effi ciency purposes.

Nevertheless, PPTP remains more popular than L2TP, and organizations that sup-
port many remote users (traveling or at home) with Windows-based laptops or PCs
generally still use PPTP. The main alternative to PPTP and L2TP to add security to a VPN
connecting an organization’s sites is IPSec. IPSec is discussed in the next chapter.

TYPES OF MPLS-BASED VPNs
Now that MPLS and security protocols have been defi ned, let’s look at the types of
VPNs that can be built from these pieces. There are two major types of VPN: Those that
operate at Layer 3 (the same layer as the routers that make up the network), and those
that operate at Layer 2, the level of LANs linked over the VPN.

Which is “better”? There is no easy answer, and even the question should be framed
more clearly in terms of what is meant by “better.” Better in terms of cost, complexity
(or simplicity), cryptographic sophistication, or something else altogether?

This section describes the major characteristics of each and confi gures one type on
the Illustrated Network, not as an endorsement, but just as an example. The often bewil-
dering terminology applied to VPN types has now been standardized in RFC 4364.

Layer 3 VPNs
Consider an organization with two widely separated sites with LANs running the TCP/IP
protocol suite and using all of the techniques and applications we’ve described earlier in
this book. What would a totally private IP network connecting the two sites look like?
Well, the organization could contract with a carrier for a long link connecting the sites
and install customer routers at each location. Security is provided by the isolated nature
of the traffi c on the leased private line (although that isolation is rarely absolute, as has
been pointed out) and restricted access at the sites themselves. There is no Internet
access, of course, unless a separate router or port is provided for this purpose.

But many carriers have evolved beyond the stage of mere “bandwidth mongers” and
want to provide more sophisticated services as ISPs. Private lines are usually paid for
by the mile as well as by bandwidth, and the bandwidth use for bursty IP applications

668 PART VI Security

is wildly erratic and thus wasted much of the time. Private networks are designed for
peak loads, such as end-of-month or end-of-quarter frenzies, and sit idle most of the
time. The PSTN is no exception, by the way, and is designed (in the United States)
for the 5 days of maximum calling volume: Mother’s Day, Christmas, New Year’s Day,
Thanksgiving, and Father’s Day. Only unpredictable major disasters can swamp the
PSTN at other times.

Adding sites can be a problem in this scenario. Organizations with many sites can
always contract fl oor space at some central point and install their own routers and
leased lines there in a hub confi guration instead of a mesh to cut down on point-to-
point mileage costs and the number of ports required on each router.

Of course, the isolation of the private network is always attractive to customers.
But what if the ISP can promise a network that looks like the rented-fl oor-space router
hub solution with leased private line connectivity? In other words, the ISP provides
a solution that looks like a private router network to the customer—complete with
what appear to be dedicated links and routers that contain routing information for that
customer and that customer only. This is, of course, a VPN.

But what we have described is not just any type of VPN—it’s a Layer 3 VPN (L3VPN)
because the virtual nature of the network is apparent at Layer 3 (the IP layer). It’s really a
network of virtual routers because in reality the ISP is selling the same router resources
to hundreds and even thousands of customers if the router and links are hefty enough
to handle the loads. The different L3VPN customers cannot see each other at all, or
even communicate unless special arrangements are made (this is sometimes called an
“extranet,” the closed VPN being an “intranet”). Each can only see the information in its
own virtual routing and forwarding (VRF) tables, as if the router were divided into
many tiny logical pieces.

L3VPNs are one of the most complicated entities that can be set up on a router
network. They are built on MPLS LSPs, as might be expected, and carefully distribute
routing information only to the VRFs that should receive it. (There is still a “master” rout-
ing table that receives all routing information: Someone has to run the L3VPN itself.)

Basic L3VPN connectivity is bad enough. It is much worse when multicast capabili-
ties must be added to the tunnels, which are essentially point-to-point connections that
do not easily replicate packets.

The RFCs and drafts for L3VPNs, which are numerous, use MPLS and BGP as the
foundations for these types of VPNs—also called PPVPNs (provider-provisioned VPNs).
They also introduce a distinctive architecture and terminology, as shown in Figure 26.5.
The fi gure shows a simple two-site arrangement, but the same terms apply to more
complicated confi gurations.

Customer Edge
Each site has a customer-edge (CE) router, designated CE1, CE2, ... CEn as needed. These
routers are owned and operated by the customer and are at the “edge” of the VPN. At
least one link runs to the ISP and carries customer data to and from the ISP’s network.
The data on the link can be in plain text (the link is generally short, point to point, and
not considered a high security risk) or encrypted with IPSec, SSL, or some other VPN

CHAPTER 26 MPLS-Based Virtual Private Networks 669

protocol. The CEs still run a routing protocol, but only to gather information about
other CE routers belonging to their own L3VPN.

Provider Edge
Each customer site connects to a provider-edge (PE) router, designated PE1, PE2, ... PEn
as necessary. These are owned and operated by the ISP and are at the provider “edge”
of the VPN. A PE router can carry traffi c to and from many CE routers, and even carry
“regular” Internet traffi c for other customers. These are routers with the VRFs and run
MPLS to the other PE routers and BGP to carry customer routing information. In MPLS
terms, these are the ingress and egress routers, but a PE router on one VPN can be a
transit (P) router on another.

Provider
The provider (P) routers are the MPLS transit routers that carry VPN traffi c through the
provider “core” or backbone. As in MPLS, there must be at least one P router, but there
are usually quite a few, depending on the popularity of the L3VPN service. As with PE
routers, the P routers can carry general ISP traffi c that has nothing to do with VPNs.

The major L3VPN is RFC 4364, and Internet drafts are important for understanding
how MPLS and BGP combine to make an L3VPN. MPLS LSPs connect the PE routers
through the P routers, and BGP is used with route distinguishers to ensure that routing
updates go into the proper VRFs.

The routing tables on the CE routers are generally quite simple. They contain just
a few routes to the other CE router sites and a default for generic Internet access,
which might be through a separate router or through the VPN itself (one tunnel leads
to an Internet router “gateway”). If the Internet access (few VPNs can afford to cut
themselves off from the Internet entirely) is on another router at the customer site, a
fi rewall is typically used to protect this “back door” to the VPN. Firewalls are discussed
in the next chapter.

FIGURE 26.5

Basic MPLS-based VPN architecture and terminology. Note that we’ve been using this terminology
all along.

PEs have VRF for each L3VPN

CE PE PE CEInternet

MPLS LSP

PEs use BGP to carry VRF routes

P

670 PART VI Security

Layer 2 VPNs
In an L3VPN, the two CE routers are still on two separate networks—just like LAN1 and
LAN2 on the Illustrated Network. CE0 and CE6 use different IP network addresses, such
as 10.0.50.2/24 and 10.0.16.2/24, on their links to PE5 and PE1 toward the network
backbone.

LANs are Layer 2 constructs at heart. Ethernet frames only care about MAC layer
addresses, not IP addresses. Why not just build the VPN at Layer 2 and connect the two
CE routers into one big “virtual” LAN that seems to be as private as both LANs would
be separately? This is the idea behind an L2VPN.

Even though an L2VPN service is delivered over an ISP’s collection of routers (just
like an L3VPN), the end result is much simpler than an L3VPN. This is because there
is no need to maintain separate virtual routing information for each customer. Both
customer routers can use one IP address space (perhaps 10.99.99.0/24), and do not
need to run a routing protocol between the CE routers at all because they appear to be
directly connected and at opposite ends of the same “link.”

The L2VPN architecture still uses the CE-PE-P terminology and uses MPLS LSPs,
but the basic content of the tunnels are Ethernet frames (other “emulated” LANs are
sometimes supported). The backbone routers in an L2VPN are essentially transformed
into LAN bridges. The VPLS tables on the PE routers are now long lists of MAC layer
addresses more similar to ARP caches than to routing tables.

L2VPN service offerings have a variety of names. A popular offering from many ISPs
is some form of virtual private LAN service (VPLS). The LANs are now virtual LANs
(VLANs), and the Ethernet frames between CE and PE routers must employ VLAN tag-
ging to allow the ISP to tell the frames apart at Layer 2. The PE routers are confi gured
with a VPLS virtual port that forms the endpoint of the MPLS tunnel (LSP) that carries
the frames from one LAN to the other.

There are many other variations on the basic VPN types described here. RFC 4026
lists (in addition to L3VPNs, L2VPNs, and VPLS) seven other types of VPN, mostly varia-
tions on the L2VPN theme.

■ Virtual Private Wire Service (VPWS)
■ IP-only LAN-like Service (IPLS)
■ Pseudo Wire (PW)
■ Transparent LAN Service (TLS)
■ Virtual LAN (VLAN)
■ Virtual Private Switched Network (VPSN)

Why all the interest in linking CE routers over Layer 2 through an ISP’s router net-
work? The trend today is to extend Ethernet’s reach and speed to incredible distances
(about 25 miles) and bandwidths (10 Gbps). Some see Ethernet as the ultimate “univer-
sal” network, and one without all the risks inherent in IP-based router networks. How
many malicious users are busily crafting phony Ethernet frames?

Of course, malicious users followed networking from the PSTN (where they were
fi rst active in securing free long-distance service) onto the Internet, and there is no

CHAPTER 26 MPLS-Based Virtual Private Networks 671

reason to think they won’t follow the action anywhere else. But VPNs and virtual LANs
are at least prepared to address security issues from the start.

VPLS: AN MPLS-BASED L2VPN
To make a good confi guration for VPLS, we’ll have to get a little creative with our
 network. The two routers attached to LAN1 and LAN2, customer-edge routers CE1 and
CE2, will now support VLAN tagging (not diffi cult to do). With VPLS confi gured, both
LANs still use addresses 10.10.11.0/24 and 10.10.12.0/24. (In other words, we’ll start
the VPLS at the ISP, not at the customer routers—not all users want to renumber all of
their IP devices.)

But now it will look like the CE routers are directly connected with a gigabit
Ethernet LAN sharing a common IP network address. In this example, that address
is 10.99.99.0/24 (which should be distinctive enough to easily pick out). So, this
is where the “virtual LAN” comes in—on the link between CE1 and CE2. We’ve also
merged Best-Ace ISP into one AS (the number is not important) so that we can use
IBGP to distribute the routes and avoid more complex confi gurations.

The simplifi ed Illustrated Network confi guration for VPLS, along with interface
designations and IP addresses, is shown in Figure 26.6. The fi gure also shows an
example of the VPLS table on router PE1. This table shows how the MAC addresses
on the interfaces to the CE routers map to MPLS labels instead of IP addresses, as in
an L3VPN.

The VPLS virtual port interfaces on PE1 and PE2 are designated with the vt- (virtual
tunnel) prefi x. These are not physical interfaces on the routers, of course, but logical
interfaces that form the endpoints of the MPLS LSP connecting the routers over the ISP
core backbone. This interface is not confi gured directly, but is the result of the VPLS
confi guration steps.

Router-by-Router VPLS Confi guration
Let’s look at each router individually and show the sections of the confi guration fi les
that directly create the VPLS service between LAN1 and LAN2. Keep in mind that there
could be much more to the confi guration than just these statements.

CE0 Router
All that is needed on the CE0 router is the interface to the PE router and the VLAN iden-
tifi er and IP address associated with it. These values must match the confi guration on
router CE0. (The LAN1 interface is still fe-1/3/0 and is still using 10.10.11.1/24.)

set interfaces ge-0/0/3 vlan-tagging;
set interfaces ge-0/0/3 unit 0 vlan-id 600; # the VLAN ID must must match
 throughout the configurations
set interfaces ge-0/0/3 unit 0 family inet address 10.99.99.1/24;
 # this address space must match the CE6 link address we use

672 PART VI Security

Interface

LAN1
10.10.11.0/24

LAN2
10.10.12.0/24

PE1:
192.168.1.1

VPLS
ge-0/0/3

10.0.17.1/24
so-0/0/2

10.0.59.2/24
so-0/0/0

VPLS
ge-0/0/3

PE5:
192.168.5.1

PE5 PE1
(P9/
P7)CE0 CE6

VPLS Virtual Port

MPLS LSP

ge-0/0/3

 ge-0/0/3
10.99.99.1/24

ge-0/0/3
10.99.99.2/24

so-0/0/0
10.0.59.1/24

so-0/0/2
10.0.17.2/24

vt-0/3/0:32770 bbbb bbbb bbbb

aaaa aaaa aaaa n/a n/a

800000 800002

In Label

VPLS Forwarding Table for PE5

MAC Addr Out Label

vt-0/3/0:32771vt-0/3/0:32770

FIGURE 26.6

Illustrated Network topology for the VPLS confi guration. Note the “new” address space.

PE5 Router
The PE router confi gurations are the most elaborate among the VPLS routers. These
confi gurations are rather lengthy, so comments are used throughout. The PE routers
need BGP, MPLS, OSPF, and RSVP to be confi gured properly for the LSP to work cor-
rectly. RSVP sets up the MPLS LSPs, OSPF handles routine routing chores, and BGP is
used to carry the VPLS MAC layer information between the PE routers.

The PE routers also need to confi gure VLAN tagging and VPLS encapsulation on the
interfaces (physical and logical) to the CE routers. The VLAN ID must match as well, but
no IP address is needed for this “Layer 2” interface. There is a space between major sec-
tions of the confi guration and liberal comments to help track what is being confi gured.

set interfaces ge-0/0/3 vlan-tagging; #interface to CE0
set interfaces ge-0/0/3 encapsulation vlan-vpls;
set interfaces ge-0/0/3 unit 0 encapsulation vlan-vpls;
set interfaces ge-0/0/3 unit 0 vlan-id 600; # must match across the network
set interfaces so-0/0/0 unit 0 family inet address 10.0.59.1; # interface to P9
set interfaces so-0/0/0 unit 0 family mpls;

CHAPTER 26 MPLS-Based Virtual Private Networks 673

set routing-options autonomous-system 65127;
set routing-options forwarding-table export exp-to-fwd;
 # used to distinguish VPLS "routes"

set protocols rsvp interface all; # turn on RSVP

set protocols mpls label-switched-path PE5-to-PE1 to 192.168.1.1;
 # The LSP to connect VPLS routers thru loopback addresses
set protocols mpls interface all;
set protocols bgp group vpls-pe type internal;
set protocols bgp group vpls-pe local-address 192.168.5.1;
set protocols bgp group vpls-pe family l2vpn unicast;
 # this VPLS is an L2VPN type and only cares about unicast traffic
set protocols bgp group vpls-pe neighbor 192.168.9.1;
 # IBGP peer router P9
set protocols bgp group vpls-pe neighbor 192.168.7.1;
 # IBGP peer router P7
set protocols bgp group vpls-pe neighbor 192.168.1.1;
 # IBGP peer router PE1

set protocols ospf traffic-engineering;
set protocols ospf area 0.0.0.0;
set protocols ospf interface all; # run OSPF to all routers

set policy-options policy-statement exp-to-fwd term A
 from community green-community;
 # policy to load forwarding table – the community must also match
set policy-options policy-statement exp-to-fwd term A
 then install-nexthop lsp PE5-to-PE1;
 # makes this LSP the next hop for the VPLS
set policy-options policy-statement exp-to-fwd term A
 then accept;
 # accepts only community = green-community

set policy-options community green-community;
 # sets the community value on BGP routes for the VPLS

set routing-instances green instance-type vpls;
 # creates a special forwarding table for VPLS traffic
set routing-instances green interface fe-0/1/0.0;
set routing-instances green route-distinguisher 10.10.10.1;
set routing-instances green vrf-target target:11111:1;
 # this value must match the community
set routing-instances green protocols vpls site-range 10;
 # this starts the main VPLS configuration
set routing-instances green protocols vpls site greenPE1 site-identifier 1;
 # after the protocols, communities, and the rest, this is simple...

P Router (P9)
The P routers still need the same BGP, MPLS, OSPF, and RSVP to become a transit router
between PE5 and PE1. But at least no major policies need to be applied or tables created.
The confi guration shown, on P9, is mirrored by the one on P7 (which is not shown).

674 PART VI Security

set interfaces so-0/0/1 unit 0 family inet address 10.0.79.2; # interface to P7
set interfaces so-0/0/1 unit 0 family mpls; #needed for the VPN
set interfaces so-0/0/2 unit 0 family inet address 10.0.59.2; # interface to PE5
set interfaces so-0/0/1 unit 0 family mpls; #needed for the VPN

set protocols rsvp interface all; # turn on RSVP for signaling
set protocols mpls interface all; # turn on MPLS for packet parsing
set protocols bgp group vpls-pe type internal; # create IBGP group for VPLS
set protocols bgp group vpls-pe local-address 192.168.9.1 # P9 router
 address
set protocols bgp group vpls-pe family l2vpn unicast # VPLS is for unicast
 traffic
set protocols bgp group vpls-pe neighbor 192.168.5.1 # IBGP peer router PE5
set protocols bgp group vpls-pe neighbor 192.168.7.1 # IBGP peer router P7
set protocols bgp group vpls-pe neighbor 192.168.1.1 # IBGP peer router PE1

set protocols ospf traffic-engineering; # needed to divert VPN packets
set protocols ospf area 0.0.0.0 interface all; # run OSPF everywhere

Note that we’ve added the P routers to the IBGP mesh. Technically, the P routers do
not need to be part of the BGP mesh for the VPN, although the P routers might need to
run BGP for other purposes (which is why we are running it here). All that is needed
for the VPN is a full mesh between the PE routers. This confi guration does no harm on
this little network, but when PEs have thousands of VPNs the signaling and information
moved by BGP can create resource issues. In these cases, it is advisable to have a BGP-
free core (unless, of course, BGP is needed on the P routers for other non–VPN-related
purposes).

PE1 Router
The VPLS confi guration on the PE1 router mirrors the confi guration on the PE5 router.
It is shown because of its importance in the VPLS confi guration.

set interfaces ge-0/0/3 vlan-tagging; #interface to CE6
set interfaces ge-0/0/3 encapsulation vlan-vpls;
set interfaces ge-0/0/3 unit 0 encapsulation vlan-vpls;
set interfaces ge-0/0/3 unit 0 vlan-id 600; # must match across the network
set interfaces so-0/0/2 unit 0 family inet address 10.0.17.1; # interface to P7
set interfaces so-0/0/2 unit 0 family mpls;

set routing-options autonomous-system 65127;
set routing-options forwarding-table export exp-to-fwd;
 # used to distinguish VPLS "routes"

set protocols rsvp interface all; # turn on RSVP

set protocols mpls label-switched-path PE1-to-PE5 to 192.168.5.1;
 # The LSP to connect VPLS routers thru loopback addresses
set protocols mpls interface all;

set protocols bgp group vpls-pe type internal;
set protocols bgp group vpls-pe local-address 192.168.5.1;

CHAPTER 26 MPLS-Based Virtual Private Networks 675

set protocols bgp group vpls-pe family l2vpn unicast;
 # this VPLS is an L2VPN type and only cares about unicast traffic
set protocols bgp group vpls-pe neighbor 192.168.9.1;
 # IBGP peer router P9
set protocols bgp group vpls-pe neighbor 192.168.7.1;
 # IBGP peer router P7
set protocols bgp group vpls-pe neighbor 192.168.5.1;
 # IBGP peer router PE5

set protocols ospf traffic-engineering;
set protocols ospf area 0.0.0.0;
set protocols ospf interface all; # run OSPF to all routers

set policy-options policy-statement exp-to-fwd term A
 from community green-community;
 # policy to load forwarding table – the community must also match
set policy-options policy-statement exp-to-fwd term A
 then install-nexthop lsp PE5-to-PE1;
 # makes this LSP the next hop for the VPLS
set policy-options policy-statement exp-to-fwd term A
 then accept;
 # accepts only community = green-community

set policy-options community green-community;
 # sets the community value on BGP routes for the VPLS

set routing-instances green instance-type vpls;
 # creates a special forwarding table for VPLS traffic
set routing-instances green interface fe-0/1/0.0;
set routing-instances green route-distinguisher 10.10.10.4;
set routing-instances green vrf-target target:11111:1;
 # this value must match the community
set routing-instances green protocols vpls site-range 10;
 # this starts the main VPLS configuration
set routing-instances green protocols vpls site greenPE1 site-identifier 2;
 # after the protocols, communities, and the rest, this is simple...

CE6 Router
Finally, the router that connects to LAN2 mirrors the confi guration of the CE0 router.
(The LAN2 interface is still fe-1/3/0 and is still using 10.10.12.1/24.)

set interfaces ge-0/0/3 vlan-tagging;
set interfaces ge-0/0/3 unit 0 vlan-id 600; # the VLAN ID must must match
 throughout the configurations
set interfaces ge-0/0/3 unit 0 family inet address 10.99.99.2/24;
 # this address space must match the CE0 link address we use

676 PART VI Security

DOES IT REALLY WORK?
Complex confi gurations always pose challenges for verifi cation. How do we know this
VPLS is really working? Well, one way is to see whether the PE routers are learning MAC
addresses.

admin@PE5> show system statistics vpls | match mac
6 mac route learning requests
6 mac router learnt
0 mac routers aged
0 mac router moved

There are many other commands that show VPLS information. But the most impor-
tant information is from the hosts on LAN1 and LAN2 themselves, which now think
their site routers are connected by a single Ethernet LAN instead of six routers.

bsdclient# traceroute 10.10.12.77
traceroute to 10.10.12.77 (10.10.12.77), 64 hops max, 44 byte packets
 1 10.10.11.1 (10.10.11.1) 0.419 ms 0.256 ms 0.343 ms
 2 10.99.99.2 (10.99.99.2) 0.328 ms 0.294 ms 0.346 ms
 3 10.10.12.77 (10.10.12.77) 0.331 ms 0.297 ms 0.346 ms
bsdclient#

The bsdclient and all the other hosts on LAN1 now think that the bsdserver on
LAN2 is only three hops away, although we know there are actually six routers between
the source and destination! The only intermediate address that shows up is the IP
address on the link address on CE6, which is where the MPLS LSP ends.

CHAPTER 26 MPLS-Based Virtual Private Networks 677

This page intentionally left blank

QUESTIONS FOR READERS
Figure 26.7 shows some of the concepts discussed in this chapter and can be used to
answer the following questions.

1. How many LSPs are used to connect the two routers at the ends of the VPLS?

2. Where does the LSP connecting the site router CE0 to CE6 begin and end?

3. Why is the confi guration on the PE router so complex?

4. What is the function of the VPLS virtual port?

5. What if a third site router using the 10.99.99.2/24 address space joined the
network? Could the VPLS be extended to that site as well? If so, how?

FIGURE 26.7

Topology for the VPLS confi guration.

Interface

LAN1
10.10.11.0/24

LAN2
10.10.12.0/24

PE1:
192.168.1.1

VPLS
ge-0/0/3

10.0.17.1/24
so-0/0/2

10.0.59.2/24
so-0/0/0

VPLS
ge-0/0/3

PE5:
192.168.5.1

PE5 PE1
(P9/
P7)CE0 CE6

VPLS Virtual Port

MPLS LSP

ge-0/0/3

 ge-0/0/3
10.99.99.1/24

ge-0/0/3
10.99.99.2/24

so-0/0/0
10.0.59.1/24

so-0/0/2
10.0.17.2/24

vt-0/3/0:32770 bbbb bbbb bbbb

aaaa aaaa aaaa n/a n/a

800000 800002

In Label

VPLS Forwarding Table for PE5

MAC Addr Out Label

vt-0/3/0:32771vt-0/3/0:32770

679

CHAPTER

What You Will Learn
In this chapter, you will learn how NAT (originally used to address the shortage of
IPv4 addresses) is now used to conceal public IPv4 addresses. We’ll talk about the
advantages and disadvantages of using NAT for this purpose.

You will learn that there are four types of NAT and fi nd that using NAT for secu-
rity is not the best use of NAT. We’ll also confi gure the popular NATP and see how
and where the IPv4 addresses on the Illustrated Network are translated.

Network Address
Translation 27

This chapter deals with a common TCP/IP practice, network address translation (NAT).
NAT is used to conceal the true public IPv4 addresses of a device by using substitute
IPv4 addresses in packet headers. NAT is usually performed by customer-edge (site)
routers or hubs, and is more sophisticated today than the older methods of simply
using private RFC 1918 addresses whenever one liked.

Although often presented as a security feature, NAT (properly called “IP NAT” because
there are many types of network addresses that can be translated) was invented in RFC
1631 to address the shortage of IPv4 addresses while the world waited for IPv6. NAT is
still not an offi cial Internet standard, but it is a very common practice and a feature of
many routers, hubs, and remote access devices.

When NAT was introduced, it was immediately embraced to address the simple
fact that IPv4 addresses were limited. Any organization that had only a Class C address
(back then) would be attracted to a way to allow more than 250 or so devices to access
the Internet at the same time.

In this chapter, we’ll be using the equipment shown in Figure 27.1. We’ll confi g-
ure the CE0 at the edge of the network router to do NAT for the clients on LAN1
(bsdclient and wincli1). Before we confi gure NAT, we’ll have to explore all of the
types of NAT we could use and then confi gure one of these types for LAN1.

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80:205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Wireless
in Home

AS 65459

Solid rules � SONET/SDH
Dashed rules � Gig Ethernet
Note: All links use 10.0.x.y
addressing...only the last
two octets are shown.

Best-

FIGURE 27.1

NAT on the Illustrated Network showing NAT confi gured on CE0 for the use of two hosts on LAN1.

682 PART VI Security

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80:205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC: 00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

ge-0/0/3

16.2

ge-0/0/3

16.1

AS 65127

Global Public
Internet

Ace ISP

CHAPTER 27 Network Address Translation 683

USING NAT
With NAT, a network could support 500 or so hosts with private addresses, and the NAT
router could translate these to the public IP address range when the client needed Inter-
net access. After all, the remote server replied blindly to the source IP address, which
only needed to be routable and not private. NAT devices could even allow ports to be
part of the process (and know that a server’s reply to 10.10.11.177:30567 is different
from a reply to 10.10.11.177:31420), even though the IP addresses were the same.

Many DSL access devices (“DSL routers”) still use this “trick” to allow multiple home
computers to share a single IP address from the ISP. Many ISPs are careful to point out
that this arrangement is often not supported, which always boils down to two things:
They won’t tell you how to confi gure it and you can’t report a problem on it if you do
confi gure it and it doesn’t work. Modern NAT devices know which addresses belong to
servers (and should be translated consistently so that clients can fi nd them, or not be
translated at all) and which are clients (and can be changed with abandon).

NAT and IPv6
Why does this chapter only talk about NAT and IPv4? What happened to IPv6?
What happened is that RFC 4864 released in May 2007 contained more than
30 pages in which it was patiently explained that NAT is not a security feature (as
pointed out in this chapter) and should be thought of solely as a way to extend the
availability of IPv4 address space. Once the huge address space in IPv6 is available,
there is no need for NAT.

 RFC 4864 points out that everything NAT does can be done in IPv6 without
any additional protocols. These native IPv6 features include the use of privacy
addresses (RFC 3041), unique local addresses (ULAs, as described in RFC 4193),
the use of DHCPv6, and so on. In other words, they are things that we have already
talked about which can enable internal addressing masking from the global net-
work. For these reasons, as well as the limitations of space, we will not deal with
IPv6 in this chapter.

Advantages and Disadvantages of NAT
Today, NAT still offers advantages, but these often have to be balanced against some
 disadvantages, especially when coupled with current security practices. The advan-
tages to using NAT follow:

Address sharing—A small number of IP addresses can support a larger pool of
devices.

Ease of expansion—If the number of hosts grows beyond the public IPv4 space
assigned, it’s easy to add hosts.

684 PART VI Security

Local control—Administrators essentially run their own private piece of the
 public Internet.

Easy ISP changeover—When host addresses are private, public ISP addresses can
be changed more easily.

Mainly transparent—Usually, only a handful of devices have to know the NAT
rules for a site.

Security—Oversold, but still seen as an advantage. Hackers don’t know the “real”
client’s IP address, true, but the true targets are often servers and the NAT
“firewalls” themselves.

These NAT pluses have to be balanced against the current list of disadvantages.

Complexity—NAT adds management complexity and makes even routine trouble-
shooting more difficult.

Public address sensitivity—Private addresses are favored by hackers. Some appli-
cations and devices raise flags when presented with private addresses. (One
FTP application used for this book insisted on needing to know the “real”
 public network IP address of the host before it would work properly!)

Application compatibility issues—NAT is not totally transparent. Applications
such as FTP, which embed IP addresses and port numbers in data (such as
the PASV and PORT messages), must be handled with special care by NAT
 routers.

Poor host accessibility—NAT makes it difficult to contact local devices from the
outside world. NAT is not a good solution for Web sites, FTP servers, or even
peer protocols (VoIP) running on a local LAN.

Performance concerns—The burden of hundreds of simultaneous Internet access
users today often degrades NAT router performance for its main task: routing
packets.

Security—Both a plus and a minus. Modern protocols such as IPSec raise alarms
when packet fields are changed between end systems. You can still combine
NAT and IPsec (carefully), but keeping NAT as a “security feature” in addition
to IPSec can be tricky.

Four Types of NAT
NAT is still a popular thing to do on a network. There are even the following four
slightly different versions of NAT that are supported in many routers, and most are
known by a number of unoffi cial names.

CHAPTER 27 Network Address Translation 685

■ Unidirectional NAT (outbound or “traditional” NAT)
■ Bidirectional NAT (inbound or “two-way” NAT)
■ Port-based (“overloaded” NAT, or NAPT or PAT)
■ Overlapping NAT (“twice NAT”)

All of these methods are a little different, but all involve use of the same terms to
describe the addresses that are translated. An address can be inside or outside, based
on whether it is used on the local LAN (inside) or on the Internet (outside). Addresses
can also be local or global, based on whether they are drawn from the private RFC 1918
address ranges (local) or publicly registered or obtained from an ISP (global).

NAT therefore encompasses about four address “types,” which are listed in
Table 27.1. In the table, the Martian address ranges 169.254.0.0/16 (used for IPv4 auto-
confi guration) and 250.0.0./8 (experimental) are used as “public” addresses to pre-
serve the Illustrated Network’s policy of never using public IP addresses as examples.

In addition, the translational mappings that NAT performs can be static or dynamic.
Static translations establish a fi xed relationship between inside and outside addresses,
whereas dynamic mappings allow this relationship to change between one translation
and another. These can be mixed, using static mapping for servers (for example) and
dynamic for clients, much like DHCP. DNS can be used for NAT purposes as well. Let’s
look at how each NAT variation uses these address translation terms and procedures.

Table 27.1 Address Types Used in NAT with Chapter’s Example Values

Type of Address Example Common Use

Inside local 10.100.100.27 Client’s “native” address used as source in outbound
packets and destination inbound

Outside local 172.16.100.13 Destination address used by client

Inside global 169.254.99.1 Client’s public address, range assigned by ISP

Outside global 250.99.111.4 Source and destination address used on Internet

Unidirectional NAT
Let’s examine an example for outbound or traditional NAT that will repeat addresses
from one NAT type to the other as we show how they differ. Assume that the LAN
has 250 hosts that use private (inside local) addresses in the 10.100.100.0/24 range.
These hosts use dynamic NAT to share a pool of 20 inside global addresses in the range
169.254.99.1 through 169.254.99.20.

Suppose client host 10.100.100.27 accesses the Web server at public address
250.99.111.4 using unidirectional NAT. What will the router do to the packet addresses
and what will the addresses look like at each step along the way—inside to NAT, NAT to
outside, outside to NAT, and NAT to inside? Figure 27.2 shows the four steps.

686 PART VI Security

The client’s packet to the server at 250.99.111.4 has its source address changed from
10.100.100.27 (inside private) to 169.254.99.1 (outside global, which must be a routable
address). The server replies by swapping source and destination address, and the reply
(matching up in the NAT device to the request) is translated back to 10.100.100.27.
No one outside the organization knows which host “really” has address 10.100.100.27,
although dynamic NAT is better at this concealment than a static NAT mapping.

It might seem that dynamic mapping would always be the proper NAT choice. How-
ever, a complication arises when there are two site routers (as is often the case). If the
request is sent by one NAT router and the reply received by another NAT router, the
translation tables must be the same or chaos will result. Unless the routers constantly
communicate NAT information (how?), this makes it diffi cult to use dynamic mapping.

NAT also handles adjustments other than address translation. The IP checksum must
be changed, as well as UPD/TCP checksums. FTP embeds address and port information
in data, and these should be changed as well. Finally, ICMP messages include initial
header bytes, and even these should be changed when an ICMP message is the reply
to a request.

Traditional NAT only handles this type of outbound translation. It cannot handle
requests from a device on the public Internet to access a server on the private
 network (LAN).

Bidirectional NAT
Let’s use the same basic scenario that we employed in the unidirectional NAT example,
but upgrade the NAT router to use inbound or two-way NAT. The major difference is
that bidirectional NAT allows requests to be initiated from the global public Internet to
hosts on the private inside LAN.

“Inside” LAN “Outside” Internet

Host HostNAT
Device

Request

Dest: 250.99.111.4

Source: 10.100.100.27

Reply

Dest: 10.100.100.27

Source: 250.99.111.4

Reply

Dest: 169.254.99.1

Source: 250.99.111.4

10.100.100.27

Request

Dest: 250.99.111.4

Source: 169.254.99.1

4. NAT on destination 3. Server sends reply

1. Client sends request 2. NAT on source address

250.99.111.4

FIGURE 27.2

Unidirectional NAT. Note that only the LAN source address is translated, and in one direction.

CHAPTER 27 Network Address Translation 687

This type of NAT is more diffi cult to implement because, whereas inside users
 generally know the public addresses of Internet devices, outside devices have no idea
what private addresses represent the device on the LAN. And even if they did know
them, private RFC 1918 addresses are not routable, so there would be no way to get a
packet there anyway. (Home DSL routers, which normally all use NAT by default, have
led to an explosion of 10.0.0.0/8 and 192.168.0.0/16 devices around the world—yet
another reason ISPs refuse to support home servers unless covered by the service
offering.)

Static NAT mapping, one for one from local device to public address, is one way to
handle the “outside request” issue. Of course, this defeats the more-than-public-address-
space support that NAT offers, and makes any security claims hollow. (Packets are
blindly forwarded to the target anyway.)

The other solution is to use DNS. As long as the outside request is by name and not
IP address, DNS can provide the current private global address of the host (it must be
global because it must be routable). In other words, DNS and NAT can work together
(as described in RFC 2694), which adds extensions for NAT to DNS. This solution uses
dynamic NAT and is a four-step process. The outside client sends a request to DNS to
get the IP address that goes, for instance, with www.natusedhere.com.

The authoritative DNS server for the natusedhere.com domain resolves the name
into an inside local (private) address for the host, perhaps 10.100.100.27, as before. The
inside local address is now sent to the local NAT device to create a dynamic mapping
between this private address and an inside global (public and routable) address. This
mapping is used in the NAT translation table. For this example, we’ll use 169.254.99.1,
as before.

“Inside” LAN “Outside” Internet

Host HostNAT
Device

Request

Dest: 10.100.100.27

Source: 250.99.111.4

Reply

Dest: 250.99.111.4

Source: 10.100.100.27

Reply

Dest: 250.99.111.4

Source: 169.254.99.1

10.100.100.27

Request

Dest: 169.254.99.1

Source: 250.99.111.4

3. Server sends reply 4. NAT on source

2. NAT on destination 1. Client sends request

250.99.111.4

FIGURE 27.3

Bidirectional NAT, showing the direction in reverse from the previous fi gure. Note the reversal
of number sequence and initiating client location.

688 PART VI Security

The DNS server replies not with the private (nonroutable) address, but with the
mapped address in the NAT reply (in this case, 169.254.99.1), as established in the
 previous step. Once this DNS/NAT procedure is complete, the transaction in bidirec-
tional NAT continues (as shown in Figure 27.3).

Naturally, requests from local LAN devices are still handled as in unidirectional NAT.

Port-Based NAT
In both unidirectional and bidirectional NAT, the address translation is always one to
one. Even when dynamic mapping is used, the entire inside address is always swapped
out for an outside address. But we set up our examples by saying that 250 LAN hosts
are going to share only 20 public IP addresses.

Unidirectional and bidirectional NAT handles 20 or fewer simultaneous Internet
users on the LAN. But what happens when more than 20 hosts are trying to access the
Internet all at the same time?

That’s where port-based NAT, also called overloaded NAT, comes in. Some devices
even advertise this as network/port address translation (NAPT) or port address transla-
tion (PAT), but we’ll just call it port-based NAT.

We are now essentially translating sockets from inside to outside. With port-based
NAT, we can easily have all 250 devices with outstanding requests on the Internet all at
the same time and never come close to running out of port numbers (which run from
0 to 65,535).

Let’s say that one host on the LAN is already using private address 10.100.100.27
and source port 17000 (perhaps the browser always uses that source port number) to
contact a Web site. No problem. Port-based NAT just translates both IP address and port,
as shown in Figure 27.4.

“Inside” LAN “Outside” Internet

Host Host
NAT

Device

Request

Dest: 250.99.111.4: 80

Source: 10.100.100.27:17000

Reply

Dest: 10.100.100.27: 17000

Source: 250.99.111.4: 80

Reply

Dest: 169.254.99.1: 18395

Source: 250.99.111.4: 80

10.100.100.27

Request

Dest: 250.99.111.4: 80

Source: 169.254.99.1: 18395

4. NAT on dest addr and port 3. Server sends reply

1. Client sends request 2. NAT on source addr and port

250.99.111.4

FIGURE 27.4

Port-based NAT, showing translation on both address and port.

CHAPTER 27 Network Address Translation 689

Port-based NAT is usually how DSL routers share a single ISP address among four
or more home PCs. Most NAT implementations today are capable of port-based opera-
tion. However, this does not mean it’s always done when available. Not all applications
or their packets use UDP or TCP ports, and port-based NAT cannot be done on these
packets.

Overlapping NAT
This last type of NAT, also called “Twice NAT,” is quite different from the three other
types. All three previous types used private nonroutable IP addresses as a “substitute”
for global routable IP addresses. NAT routers immediately assume that any packets
drawn from the local LAN’s private IP address space are a reference to a host within
the local LAN. Anything else belongs to the outside world.

But what if the inside addresses overlap entirely or in part with addresses used in
the outside world? In other words, what if there is another 10.100.100.0/24 address
range on the “outside” that the local device using that private address space must com-
municate with? There are three major cases where inside addresses on a LAN might be
duplicated in the outside world.

Private network to private network—NAT routers tend to use the same pri-
vate address ranges, such as 10.0.0.0/8 (Cisco DSL routers and more) or
192.168.0.0/16 (Linksys products and others). So, this situation arises in DSL
router configurations (such as neighbor to neighbor) all the time. And organi-
zations often merge and find two sites now using the same private IP address
ranges.

Reassigned addresses—Many customers get their IP address space from their ISP.
But what if they change ISPs? The ISP is certainly free to offer that space to
someone else. Instead of flash-cutting every IP address on the network, NAT
can be used for the new ISP until cut-over is complete. And even if customers
pay for their own address spaces, these can be reassigned if the payment is not
up to date.

Private IP networks going “public”—This does not occur as often, but it was once
common to have huge IP networks within an organization with no Internet access
at all. (Networks are for work, the Internet is for play, or so the philosophy went.)
So who cared what IP addresses were used on the private network? But if a space
such as 9.0.0.0/8 is used (which belonged to IBM) something must be done when
Internet connections become essential.

Thus, when a host on the local LAN sends a packet from 10.100.100.27 going to
10.100.100.10, how does it know whether the address is truly local or not? Local
frames have local MAC addresses, but “outside” packets are sent in MAC frames that are
sent to the router.

Someone has to know where the other address is or there will be no solution. As
before, DNS will coordinate with NAT to supply the answer. Overlapping NAT trans-
lates both source and destination address.

690 PART VI Security

Let’s consider a new example. Our local host is on a LAN that uses the public IP
address space 9.0.0.0/8 as a private address. Local host 9.0.0.27 needs to send to a
server that turns out to be at IBM and is also 9.0.0.2. The following is what happens.

Local client 9.0.0.27 sends a DNS request to get the address of the Web server at
www.twicenatusedhere.com. The NAT router (which must support overlapping NAT, of
course) on the local network intercepts the DNS request and uses a table to construct a
special mapping for this query. Let’s assume that it will translate www.twicenatusedhere.
com into address 172.16.32.47 (another private IP address space). The NAT router knows
the real public address of the IBM server, of course.

The NAT router returns this private address to the client, which uses it as the desti-
nation address. The NAT router now knows that packets sent to this IP address are for
the Web server outside the LAN.

The NAT operation now functions as shown in Figure 27.5. Note the use of the
169.254.99.1 address, which is within the public IP address space of the local LAN.

The NAT is still useful for port-based operations where overloading makes sense (as
with home LANs and DSL) and overlapping IP address spaces. However, NAT should
never be used as a security method, if only because it gives a false sense of security to
users and network administrators.

NAT IN ACTION
What type of NAT should we confi gure for the Illustrated Network? This could get
tricky because we’ve been using private IP addresses as public addresses all along. To
make it clear what we’re doing, we’ll limit our NAT activities to LAN1 and use part of

“Inside” LAN “Outside” Internet

Host Host
NAT

Device

Request

Dest: 172.16.32.47

Source: 9.0.0.27

Reply

Dest: 9.0.0.27

Source: 172.16.32.47

Reply

Dest: 169.254.99.1

Source: 9.0.0.2

9.0.0.27

Request

Dest: 9.0.0.2

Source: 169.254.99.1

4. NAT on destination 3. Server sends reply

1. Client sends request 2. NAT on source and dest

9.0.0.2

FIGURE 27.5

Overlapping NAT showing how a large corporation can use this form with public and private
addresses.

CHAPTER 27 Network Address Translation 691

the 172.16.0.0/16 private address space as a public address space for our NAT pool
(which we’ve not used much so far). Because some applications are more sensitive to
substituted addresses than others (such as FTP), we’ll limit our NAT implementation
to clients. Because the servers are affected, we’ll use dynamic source NAT. Finally, we’ll
confi gure the popular port-based NAT (NATP).

First, we have to confi gure a pool of addresses called NATP-address-pool to use for
NAT on CE0. We’ll map our 10.10.11.0/24 address space to the range from 172.16.11.0
to 172.16.11.255. We’ll set port selection to automatic so that we don’t have to worry
about the port range used. We also have to create the “rule” that subjects’ packets arriv-
ing on the LAN1 interface to NAT.

The AS PIC is smart enough to match up returning traffi c. (We apply the rule in
both the input and output direction for LAN1.) In others words, NAT is applied in both
directions for NATP.

set services nat pool NATP-address-pool address-range low 172.16.11.0
 high 172.16.11.255; # establish to address range to use
set services nat pool NATP-address-pool port automatic;
 # port translaton will be done automatically
set services nat rule SOURCE-NAT match-direction input-output;
 # NATP will be applied to all packets in either direction
set services nat rule SOURCE-NAT term NO-NAT-FOR-SERVERS from
 source-address 10.10.11.66; # lnxserver should not be translated
set services nat rule SOURCE-NAT term NO-NAT-FOR-SERVERS from
 source-address 10.10.11.111; # winsrvr1 should not be translated
set services nat rule SOURCE-NAT term NO-NAT-FOR-SERVERS then
 no-translation; # this is a keyword for this action
set services nat rule SOURCE-NAT term SOURCE-NAT then translated
 translation-type source dynamic; # if not a server, translate
set services nat rule SOURCE-NAT term SOURCE-NAT then translated
 source-pool NATP-address-pool; # use automatic port assignments

The absence of a from clause in the term SOURCE-NAT means that the then clause
actions are applied to all packets that do not match the term NO-NAT-FOR-SERVERS,
which is what we want to do. On the Juniper Networks router model used on our net-
work, NAT (and several other specialized services) is performed by a special internal
interface card called an Adaptive Service Physical Interface Card (AS PIC). This archi-
tecture allows the router to forward packets as fast as it can and off-loads any special
packet processing to this service’s interface.

Once confi gured, packets arriving on the LAN1 interface that are subject to NAT
are not forwarded right away but sent to the AS PIC interface, which has an internal IP
address. Once NAT has been performed, the packets are sent back into the main part of
the router for normal table lookups and forwarding.

To get the packet to the AS PIC interface (sp–0/2/0 on CE0), we give the internal
interface an IP address (just as any other interface). Then we apply the confi gured NAT
“service set” (which we’ll call SOURCE–NATP) to the LAN interface we want to apply NAT
source address translation to. Another static “next-hop” routing rule gets the translated

692 PART VI Security

packets back to the forwarding portion of the router. (We also have to advertise a
static route for the NAT address space so that the other routers know where to send
packets sent back to the 172.16.11.0/24 address space, but the complete CE0 router
confi guration for NAT is not shown.) The interface to LAN1 and the AS PIC interface
are confi gured as follows.

set interface fe-1/3/0 unit 0 family inet service input service-set
 SOURCE-NATP;
 # lconfiguration of the SOURCE-NATP service set is not shown
set interface fe-1/3/0 unit 0 family inet service output service-set
 SOURCE-NATP;
set interface fe-1/3/0 unit 0 family inet address 10.10.11.1/24;
 # this is a regular LAN1 interface address

set interface sp-0/2/0 unit 0 family inet address 172.16.1.1/24;
 # the sp- interface needs and IP address too

We’ll say a little more about the “next-hop” confi guration and service sets in
 Chapter 28 (on stateful fi rewalls). How do we know that the NAT translation is work-
ing? Let’s use our little echo test program from the UDP chapter to send packets from
bsdclient on LAN1 at IP address 10.10.11.177 to lnxclient on LAN2 at IP address
10.10.12.166. We’ll capture the packets on lnxclient with tethereal. As expected, the
source address has been translated to one in the 172.16.11.0/24 range.

[root@lnxclient admin]# /usr/sbin/tethereal -V
Capturing on eth0
Frame 1 (60 bytes on wire, 60 bytes captured)
 Arrival Time: Feb 6, 2008 11:16:03.822845000
 Time delta from previous packet: 0.000000000 seconds
 Time relative to first packet: 0.000000000 seconds
 Frame Number: 1
 Packet Length: 60 bytes
 Capture Length: 60 bytes
Ethernet II, Src: 00:0e:0c:3b:8f:94, Dst: 00:b0:d0:45:34:64
 Destination: 00:b0:d0:45:34:64 (Intel_45:34:64)
 Source: 00:0e:0c:3b:8f:94 (Intel_3b:8f:94)
 Type: IP (0x0800)
 Trailer: 0000000000000000000000000000
Internet Protocol, Src Addr: 172.16.11.177 (172.16.11.177), Dst Addr:
 10.10.12.166 (10.10.12.166)
 Version: 4
 Header length: 20 bytes
...

However, LAN1 traffi c from the servers is not translated. This time, we’ll run the echo
test program from lnxserver on LAN1 at IP address 10.10.11.66 to lnxclient on LAN2
at IP address 10.10.12.166. We’ll capture the packets on lnxclient with tethereal. As

CHAPTER 27 Network Address Translation 693

expected, the source address has not been translated to one in the 172.16.11.0/24
range.

[root@lnxclient admin]# /usr/sbin/tethereal -V
Capturing on eth0
Frame 1 (60 bytes on wire, 60 bytes captured)
 Arrival Time: Feb 6, 2008 14:37:24.487934000
 Time delta from previous packet: 0.000000000 seconds
 Time relative to first packet: 0.000000000 seconds
 Frame Number: 1
 Packet Length: 60 bytes
 Capture Length: 60 bytes
Ethernet II, Src: 00:d0:b7:1f:fe:e6, Dst: 00:b0:d0:45:34:64
 Destination: 00:b0:d0:45:34:64 (Intel_45:34:64)
 Source: 00:05:85:88:cc:db (Intel_1f:fe:e6)
 Type: IP (0x0800)
 Trailer: 0000000000000000000000000000
Internet Protocol, Src Addr: 10.10.11.66 (10.10.11.66), Dst Addr:
 10.10.12.166 (10.10.12.166)
 Version: 4
 Header length: 20 bytes
...

694 PART VI Security

QUESTIONS FOR READERS
The captured listing here shows some of the concepts discussed in this chapter and
can be used to answer the following questions.

[root@lnxclient admin]# /usr/sbin/tethereal -V port 7
Capturing on eth0
Frame 1 (60 bytes on wire, 60 bytes captured)
 Arrival Time: Feb 6, 2008 16:43:22.458233000
 Time delta from previous packet: 0.000000000 seconds
 Time relative to first packet: 0.000000000 seconds
 Frame Number: 1
 Packet Length: 60 bytes
 Capture Length: 60 bytes
Ethernet II, Src: 00:d0:b7:1f:fe:e6, Dst: 00:b0:d0:45:34:64
 Destination: 00:b0:d0:45:34:64 (Intel_45:34:64)
 Source: 00:05:85:88:cc:db (Intel_1f:fe:e6)
 Type: IP (0x0800)
 Trailer: 0000000000000000000000000000
Internet Protocol, Src Addr: 176.16.11.78 (176.16.11.78), Dst Addr:
 10.10.12.166 (10.10.12.166)
 Version: 4
 Header length: 20 bytes
...

1. Which host has this capture been run on?

2. Which host is responding to the echo?

3. What is the translated address used on the LAN1 host that responded to the
echo?

4. What is the host name of the device on LAN1 that responded to the echo?

5. The port numbers are not displayed in the listing. Based on the NAT confi gura-
tion on CE0, should the port number be translated as well?

695

CHAPTER

What You Will Learn
In this chapter, you will learn how fi rewalls add security to TCP/IP networks. We’ll
be working with both kinds of router-based fi rewalls: packet fi lters and stateful
inspection.

You will learn about the types of dedicated fi rewalls that run on purpose-built
hardware. We’ll also examine fi rewall architectures and the use of DMZs. And
because fi ltering works exactly the same with IPv6 as with IPv4, we will not have
a special section on IPv6 fi rewalls.

Firewalls 28

If all data traveled the Internet encrypted inside VPNs, and all hosts only sent or
received such data, the Internet would be a safer place. But the reality is messy—very
messy—and denial of service attacks, hacker raids, spyware, spam, viruses, and worms
make life interesting for everyone on-line.

As we write these words, teams are assembled in Las Vegas, Nevada, for the annual
Defcon “contest.” The name derives from Cold War “defense condition” levels and
implies that hackers could have broken into military computers and started WW III, a
plot device in several movies and books. Teams pay a small entry fee and compete in
local and regional contests, all culminating in the fi nale in Las Vegas. The idea is to cap-
ture the secure “fl ags” or tokens on target systems set up for Defcon. All competitors’
tokens are fair game, but, of course, you have to protect your own. (Taking over a com-
peting team’s network or Web server is considered a great coup.) Points are awarded
for various successful exploits, and the winner is admired by all.

A certain percentage of people learning about networks and TCP/IP seem to indulge
in some form of hacking at one time or another. It seems to be a rite of passage, like
clubbing and drug experimentation. But most slackers eventually settle down and get
real jobs, whereas a few others continue their dissolute ways. Some even make a career
of their activities, as “white” or “black” hackers, and show up at places like Defcon.
Hackers should never be judged solely on their appearance or demeanor, but only on
their actions, which usually have consequences for everyone—intended or not.

FIGURE 28.1

Firewalls on the Illustrated Network, showing how the fi rewall fi ltering is performed on the site routers.

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80:205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-
0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Best-

Wireless
in Home

Firewall Filtering

Solid rules � SONET/SDH
Dashed rules � Gig Ethernet
Note: All links use 10.0.x.y
addressing...only the last
two octets are shown.

698 PART VI Security

Ace ISP

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80:205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC: 00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

ge-0/0/3

16.2

ge-0/0/3

16.1

 Performed on Routers

AS 65127

Global Public
Internet

CHAPTER 28 Firewalls 699

This chapter takes a look at fi rewalls, one technique for adding security to TCP/IP
and the Internet. Firewalls can be hardware or software designed to protect individual
hosts, clients, and servers or entire LANs from the one or more of the threats previously
cited. We’ll implement a couple of types of fi rewalls on our site routers, as shown in
Figure 28.1.

WHAT FIREWALLS DO
Although the Illustrated Network has no dedicated fi rewall device (often called a
 fi rewall appliance), there are fairly sophisticated fi rewall capabilities built into our
routers. So, we will confi gure fi rewall protection with two types of router-based fi re-
wall rules: packet fi lters and stateful inspection.

A Router Packet Filter
Let’s do something fairly simple yet effective with a fi rewall packet fi lter on the Juni-
per Networks router on LAN2, CE6. Assume that malicious users on LAN1 are trying
to harm bsdserver (10.10.12.77) on LAN2. We’ll have to “protect” it from some of the
hosts on LAN1.

We’ll allow remote access with Telnet (this is just an example) or SSH from
the bsdclient (10.10.11.177), and allow similar access attempts from wincli1
(10.10.11.51), but log them. (What do those Windows guys want on the Free-
BSD server?) We’ll deny and log access from lnxserver (10.10.11.66) and winsrv1
(10.10.11.111) because security policy for the organization has decided that users
attempting remote access from servers are not allowed to do so.

The following is the fi rewall fi lter confi gured on CE6 and applied to the LAN2
interface. This fi lters IPv4 addresses, but we could easily make another to do the same
thing for these hosts’ IPv6 addresses. It is a good idea to keep in mind that from is more
in the sense of “out of all packets,” especially when the fi lter is applied on the output
side of an interface. We also have to apply the fi lter to the fe-1/3/0 interface, but this
confi guration snippet is not shown. There is a space between the three major terms
of the remote-access-control fi lter: allow-bsdclient, log-wincli, and deny-servers.
These names are strictly up to the person confi guring the fi rewall fi lter.

set firewall family inet filter remote-access-control term
 allow-bsdclient from address 10.10.11.177/32; # bsdclient
set firewall family inet filter remote-access-control term
 allow-bsdclient from protocol tcp; # telnet and ssh use tcp
set firewall family inet filter remote-access-control term
 allow-bsdclient from port [ssh telnet]; # we could use numbers too
set firewall family inet filter remote-access-control term
 allow-bsdclient then accept; # allow bsdclient access

set firewall family inet filter remote-access-control term
 log-wincli1 from address 10.10.11.51/32; # wincli1

700 PART VI Security

set firewall family inet filter remote-access-control term
 log-wincli1 from protocol tcp; # telnet and ssh use tcp
set firewall family inet filter remote-access-control term
 log-wincli1 from port [ssh telnet]; # we could use numbers too
set firewall family inet filter remote-access-control term
 log-wincli1 then log; # log wincli1 access attempts...
set firewall family inet filter remote-access-control term
 log-wincli then accept; # ...and allow wincli1 access

set firewall family inet filter remote-access-control term
 deny-servers from address 10.10.11.66/32; # lnxserver
set firewall family inet filter remote-access-control term
 deny-servers from address 10.10.11.111/32; # winsrv1
set firewall family inet filter remote-access-control term
 deny-servers from protocol tcp; # telnet and ssh use tcp
set firewall family inet filter remote-access-control term
 deny-servers from port [ssh telnet]; # we could use numbers too
set firewall family inet filter remote-access-control term
 deny-servers then log; # log server access attempts...
set firewall family inet filter remote-access-control term
 deny-servers then discard; # ...and silently discard those packets

When we try to remotely log in from bsdclient or wincli1, we succeed (and
 wincli1 is logged). But when we attempt access from the servers, the following is what
happens.

lnxserver# ssh 10.10.12.77

Nothing! We set the action to discard, which silently throws the packet away.
A reject action at least sends an ICMP destination unreachable message back to
the host. When we examine the fi rewall log on CE6, this is what we see. Action "A"
is accept, and "D" is discard. We didn’t log bsdclient, but caught the others. (The
 fi lter name is blank because not all fi lter names that are confi gured are available for
the log.)

admin@CE6> show firewall log
Time Filter A Interface Pro Source address Destination Address
08:36:09 - A fe-1/3/0.0 TCP 10.10.11.51 10.10.12.77
08:37:24 - D fe-1/3/0.0 TCP 10.10.11.66 10.10.12.77

Stateful Inspection on a Router
Simple packet fi lters do not maintain a history of the streams of packets, nor do they
know anything about the relationship between sequential packets. They cannot
detect fl ows or more sophisticated attacks that rely on a sequence of packets with
specifi c bits set. This degree of intelligence requires a different type of fi rewall,
one that performs stateful inspection. (There are three types of fi rewall, as we’ll
see later.)

CHAPTER 28 Firewalls 701

In contrast to a stateless fi rewall fi lter that inspects packets singly and in isolation,
stateful fi lters consider state information from past communications and applications
to make dynamic decisions about new communications attempts. To do this, stateful
fi rewall fi lters look at fl ows or conversations established (normally) by fi ve properties
of TCP/IP headers: source and destination address, source and destination port, and
protocol. TCP and UDP conversations consist of two fl ows: initiation and responder.
However, some conversations (such as with FTP) might consist of two control fl ows
and many data fl ows.

On a Juniper Networks router, stateful inspection is provided by a special hardware
component: the Adaptive Services Physical Interface Card (AS PIC). We’ve already used
the AS PIC to implement NAT in the previous chapter. This just adds some confi gura-
tion statements to the services (such as NAT) provided by the special internal sp- (ser-
vices PIC) interface.

Stateful fi rewalls do not just check a few TCP/IP header fi elds as packets fl y by on
the router. Stateful fi rewalls are intelligent enough that they can recognize a series of
events as anomalies in fi ve major categories.

1. IP packet anomalies
■ Incorrect IP version
■ Too-small or too-large IP header length fi eld
■ Bad header checksum
■ Short IP total packet-length fi eld
■ Incorrect IP options
■ Incorrect ICMP packet length
■ Zero TTL fi eld

2. IP addressing anomalies
■ Broadcast or multicast packet source address
■ Source IP address identical to destination address (land attack)

3. IP fragmentation anomalies
■ Overlapping fragments
■ Missing fragments
■ Length errors
■ Length smaller or larger than allowed

4. TCP anomalies
■ Port 0
■ Sequence number 0 and fl ags fi eld set to 0
■ Sequence number 0 with FIN/PSH/RST fl ags set
■ Disallowed fl ag combinations [FIN with RST, SYN/(URG/FIN/RST)]
■ Bad TCP checksum

702 PART VI Security

5. UDP anomalies
■ Port 0
■ Bad header length
■ Bad UDP checksum

In addition, stateful fi rewall fi lters detect the following events, which are only
detectable by following a fl ow of packets.

■ SYN followed by SYN-ACK packets without an ACK from initiator
■ SYN followed by RST packets
■ SYN without SYN-ACK
■ Non-SYN fi rst packet in a fl ow
■ ICMP unreachable errors for SYN packets
■ ICMP unreachable errors for UDP packets

Stateful fi rewall fi lters, like other fi rewall fi lters, are also applied to an interface in the
outbound or inbound direction (or both). However, the traffi c on the interface must be
sent to the AS PIC in order to apply the stateful fi rewall fi lter rules.

The AS PIC’s sp- interface must be given an IP address, just as any other interface on
the router. Traffi c then makes its way to the AS PIC by using the AS PIC’s IP address as a
next hop for traffi c on the interface. The next hop for traffi c leaving the AS PIC (assuming
the packet has not been fi ltered) is the “normal” routing table for transit traffi c, inet0.

Stateful fi rewall fi lters follow the same from and then structure of other fi rewall
fi lters. Keep in mind that from is more in the sense of “out of all packets,” especially
when the fi lter is applied on the output side of an interface. When applied to the LAN1
interface on the CE0 interface, in addition to detecting all of the anomalies previously
listed, this stateful fi rewall fi lter will allow only FTP traffi c onto the LAN unless it is from
LAN2 and silently discards (rejects) and logs all packets that do not conform to any of
these rules.

set stateful-firewall rule LAN1-rule match direction input-output;
set stateful-firewall rule LAN1-rule term allow-LAN2
 from address 10.10.12.0/24; # find the LAN2 IP address space
set stateful-firewall rule LAN1-rule term allow-LAN2
 then accept; # ...and allow it

set stateful-firewall rule LAN1-rule term allow-FTP-HTTP
 from application ftp; # find ftp flows
set stateful-firewall rule LAN1-rule term allow-FTP-HTTP
 then accept; # ...and allow them

set stateful-firewall rule LAN1-rule term deny-other
 then syslog; # no ‘from’ matches all packets
set stateful-firewall rule LAN1-rule term deny-other
 then discard; # ...and syslogs and discards them

CHAPTER 28 Firewalls 703

In the term deny-other, the lack of a from means that the term matches all pack-
ets that have not been accepted by previous terms. The syslog statement is the way
that the stateful fi rewalls log events. We’ve also confi gured the interface sp-1/2/0 and
applied our stateful rule as stateful-svc-set (but the details are not shown).

Now when we try to run FTP to (for example) lnxserver from bsdclient or wincli1,
we succeed. But watch what happens when we attempt to run FTP from one of the
routers (the routers all support both FTP client and server software).

admin@CE6> ftp 10.10.11.66

Nothing! As before, this packet is silently discarded. But the stateful fi rewall fi lter gath-
ers statistics on much more than simply “captured” packets.

admin@CE0> show services stateful-firewall statistics extensive
Interface: sp-1/2/0
 Service set: stateful-svc-set
 New flows:
 Accept: 7, Discard: 1, Reject: 0
 Existing flows:
 Accept: 35, Discard: 0, Reject: 0
 Drops:
 IP option: 0, TCP SYN defense: 0
 NAT ports exhausted: 0
 Errors:
 IP: 0, TCP: 0
 UDP: 0, ICMP: 0
 Non-IP packets: 0, ALG: 0
 IP errors:
 IP packet length inconsistencies: 0
 Minimum IP header length check failures: 0
 Reassembled packet exceeds maximum IP length: 0
 Illegal source address: 0
 Illegal destination address: 0
 TTL zero errors: 0, IP protocol number 0 or 255: 0
 Land attack: 0, Smurf attack: 0
 Non IP packets: 0, IP option: 0
 Non-IPv4 packets: 0, Bad checksum: 0
 Illegal IP fragment length: 0
 IP fragment overlap: 0
 IP fragment reassembly timeout: 0
TCP errors:
 TCP header length inconsistencies: 0
 Source or destination port number is zero: 0
 Illegal sequence number, flags combination: 0
 SYN attack (multiple SYNs seen for the same flow): 0
 First packet not SYN: 0

704 PART VI Security

 TCP port scan (Handshake, RST seen from server for SYN): 0
 Bad SYN cookie response: 0
 UDP errors:
 IP data length less than minimum UDP header length (8 bytes): 0
 Source or destination port is zero: 0
 UDP port scan (ICMP error seen for UDP flow): 0
 ICMP errors:
 IP data length less than minimum ICMP header length (8 bytes): 0
 ICMP error length inconsistencies: 0
 Ping duplicate sequence number: 0
 Ping mismatched sequence number: 0

ALG drops:
 BOOTP: 0, DCE-RPC: 0, DCE-RPC portmap: 0
 DNS: 0, Exec: 0, FTP: 1
 H323: 0, ICMP: 0, IIOP: 0
 Login: 0, Netbios: 0, Netshow: 0
 Realaudio: 0, RPC: 0, RPC portmap: 0
 RTSP: 0, Shell: 0
 SNMP: 0, Sqlnet: 0, TFTP: 0
 Traceroute: 0

In the last section, ALG drops stands for application-level gateway drops, and we fi nd
the dropped FTP fl ow we attempted from the CE6 router. This shows the power and
scope of stateful fi rewall fi lters.

TYPES OF FIREWALLS
Whether implemented as application software or as a special combination of hardware
and software, fi rewalls are categorized as one of three major types, all of which have
variations. Software fi rewalls can be loaded onto each host, but this only protects the
individual host. Other software-based fi rewalls can be loaded onto a generic platform
(Windows or Unix based) and used in conjunction with routers to protect the entire
site. Alternatively, routers can be confi gured with policies (similar to routing policies),
but designed to protect the networks attached to the router.

Most effective are very sophisticated packages of specialized hardware and state-
of-the-art software, such as Juniper Networks Security Products. These dedicated devices
are often called appliances, and operate much faster and scale much better than their
general-purpose relatives. Software is updated frequently, as often as every 2 weeks, to
ensure that customers have the latest capabilities for the effort to secure a site.

The three major types of fi rewall are the packet fi lter, application proxy, and stateful
inspection. We’ve seen examples of packet fi lters and stateful fi rewalls, but each type
has distinctive properties that should be described in some detail.

CHAPTER 28 Firewalls 705

Packet Filters
Packet fi lters are the oldest and most basic form of fi rewall. Packet fi lters establish
site security access rules (or policies) that examine the TCP/IP header of each packet
and decide if it should be allowed to pass through the fi rewall. Policies can differ for
inbound and outbound packets, and usually do. Many of the fi elds of the IP, TCP, or UDP
header can be examined, but there is no concept of a session or fl ow of packets in this
type of fi rewall.

Even basic DSL routers do a good job of implementing packet fi lters. For home
networks, this might be adequate. But packet fi lters do not know much about the appli-
cation that the packet represents or look at the value of the TCP fl ags. Packet fi lters
 cannot dynamically create access rules that allow responses which are associated
with specifi c requests, for example.

Application Proxy
An application proxy is one of the most secure fi rewall types that can be deployed. The
proxy sits between the protected network and the rest of the world. Every packet sent
outbound is intercepted by the proxy, which initiates its own request and processes
the response. If benign, the response is relayed back to the user. Thus, clients and serv-
ers never interact directly and the entire content of the packet can be inspected byte
by byte if necessary. Even tricky applications such as Java code can be checked in a
Java sandbox to assess effects before passing the applet on to a host.

Yet many organizations do anticipate employing application proxies today, and
many that once did have abandoned them. Why? Well, proxies do not scale well and
must handle twice the number of connections (“inside” and “outside”) as all simultane-
ous users on the protected network. The obvious solution to all network load-related
issues—multiple proxies—do not work well because there is no way to guarantee that
a response is handled by the same proxy that handled the request.

The proxy also has trouble with proprietary or customized TCP/IP applications,
where threats are not obvious or even well defi ned. But for limited use, such as protect-
ing a Web site, an application proxy is a very attractive solution.

Stateful Inspection
A stateful inspection fi rewall is the choice for network protection today. Stateful inspec-
tion is really a very sophisticated version of a packet fi lter. All packets can be fi ltered,
and almost every fi eld and fl ag of the header at the IP and TCP layers can be inspected
in a policy.

Moreover, this form of fi rewall understands the concept of the state of the session.
So, when a client accesses a Web server, the fi rewall recognizes the response and can
associate all of the packets sent in reply. This is a dynamic or refl exive fi rewall opera-
tion, and all reputable fi rewall products use this approach.

706 PART VI Security

Of course, there are TCP/IP protocols, such as UDP or ICMP (and connectionless
protocols in general), that have no defi ned “state” associated with them. Firewall ven-
dors are free to be creative with how they handle these protocols, but the results have
been remarkably consistent.

Many stateful inspection fi rewalls employ a form of application proxy for cer-
tain applications. For example, if the fi rewall is set to do URL fi ltering, an application
proxy function can be coupled with this. This approach is often used with email today
because many attachments are malicious either by accident or on purpose. However, as
with any application proxy, this solution is diffi cult to scale or generalize (email attach-
ment scanning is typically done apart from the fi rewall).

Today, some fi rewalls can also perform deep inspection of packet fl ows. These rules
dig deep into the content of the packet, beyond the IP and TCP/UDP headers, and per-
form application-level scanning. If a fi rewall allows access to port 80 because there is a
Web server on site, hackers will quickly fi nd out that these packets pass right through
the fi rewall. These fi rewalls not only protect Web sites, but can fi nd email worms quickly
and create regular expression (regex) rules to keep them from spreading. The general
architecture of a stateful inspection fi rewall implemented as specialized hardware and
software (an appliance) is shown in Figure 28.2.

An example of this architecture is the fi rewall product from Juniper Networks
 Security Products. It had been developed from the start with performance in mind,
and runs an integrated security application to provide VPN, fi rewall, denial-of-service
countermeasures, and traffi c management.

The operating system is a specialized real-time OS that can preallocate memory
to speed up task execution and help maintain a given rate of service. And in contrast

Integrated Security Application

Security-Specific Real-time OS

RISC CPU Memory ASICs Interfaces

VPNs Firewall
Denial of Service Protection

Traffic Management

High Availability
Central Management

Purpose-Built Hardware Platform

Routing
Virtual Devices

FIGURE 28.2

Firewall appliance general architecture, showing how special hardware and software is used.

CHAPTER 28 Firewalls 707

to packages built on an open-source Unix-based OS no one can review the source
code looking for vulnerabilities. The OS is not distributed as widely as popular propri-
etary packages, and can support routing and virtual device multiplication—along with
 central management and high availability. (Larger fi rewalls pretty much have to support
virtual devices, so this is really making a virtue out of a necessity.) The hardware is RISC
based, with very fast memory (SDRAM) and ASICs—all designed to keep up with the
interfaces’ traffi c fl ows.

DMZ
The biggest question facing fi rewall deployment is how to place the device to best
 protect publicly accessible servers. Cost and number of fi rewalls are related to decisions
made in this area.

The answer to this location question usually involves the construction of a network
DMZ (“demilitarized zone,” another term like many others in the security fi eld borrowed
from the military). The DMZ is most useful when site protection is not absolute—that
is, when it is not possible to deny all probes into the site from outside on the Internet
(such as when a Web server or FTP server is available for general use). Without this
requirement, the position of the fi rewall is almost always simply behind the router (as
shown in Figure 28.3).

Even without a DMZ, it is possible to protect servers that require general Inter-
net access. However, this protection is usually placed on the server itself, which then
becomes a bastion host, which is still an untrusted host from the viewpoint of the
internal network. A bastion host and fi rewall are shown in Figure 28.4.

It might sound odd that the bastion host, which might be the public Web server
for the organization, needs a fi rewall to protect the internal network from the bastion
host itself. But this is absolutely essential, and the bastion host should never be
 considered part of the internal network. Otherwise, if this host were compromised,
the entire internal network would be at risk. For this reason, the bastion host in this
confi guration is not a good candidate for an e-commerce Web site or the endpoint
of a VPN.

Internet
(or untrusted

network)
Router

Firewall

Protected
Resources

FIGURE 28.3

A single fi rewall positioned between router and LAN.

708 PART VI Security

Internet
(or untrusted

network)

Bastion host
(untrusted)

Router

Firewall

Protected
Resources

FIGURE 28.4

A fi rewall with bastion host between router and fi rewall (and therefore untrusted).

Internet
(or untrusted

network)
Router

Firewall

Bastion host
(untrusted)
on screened

subnet

Protected
Resources

FIGURE 28.5

Firewall with bastion host and DMZ. Note the bastion host relation to the fi rewall.

The DMZ concept has the ability to offer multiple types of protection—all in a
 fl exible, scalable, and robust package. (DMZs can be designed with failover capabilities
as well.) DMZs can be constructed with one or two fi rewalls, and two are better for
security purposes.

With one fi rewall, the bastion host is reached only through the fi rewall itself, usually
on a separate interface. The fi rewall can screen outside traffi c (a “screened subnet”),
perhaps allowing only access to port 80 for a Web server. Nothing is allowed in, of
course, except in reply to an internal query (and even that is typically allowed only
from specifi c hosts or on certain ports). This arrangement is shown in Figure 28.5.

The dual-fi rewall DMZ is the most sophisticated arrangement. There are both inner
and outer fi rewalls, and the LAN between them is a true DMZ. Multiple servers, such as
an anonymous FTP download server and a public Web server, can be protected in many
ways. These devices can still be bastion hosts, but the protection on the DMZ servers

CHAPTER 28 Firewalls 709

Internet
(or untrusted

network)
Router

Inner and Outer
Firewalls

Bastion host
(untrusted)

on DMZ

Protected
Resources

FIGURE 28.6

Dual fi rewalls with DMZ, showing how the bastion host is positioned on the DMZ.

Table 28.1 Advantages and Disadvantages of the Basic Firewall Designs

Type Advantages Disadvantages Good for…

Single fi rewall Inexpensive, easy to
confi gure and maintain

Low security level,
 diffi cult to scale

Home or small offi ce,
no servers

Single fi rewall and
 bastion host

Lower cost than most
alternatives

Bastion host vulner-
able, diffi cult to
scale

Small business with
static content

Single fi rewall with
screened subnet

Protects both local
network and bastion
host to some extent

Single point of failure,
uses public addresses
in some cases

Networks that need
protected access to
bastion host

Dual fi rewall and DMZ Best control and very
robust, scales nicely

More hardware and
software, more work

Larger organizations

themselves can be minimal because they all have the full protection of a fi rewall in
whatever direction the traffi c comes from or goes to. The dual-fi rewall DMZ is shown
in Figure 28.6. The characteristics of these four basic fi rewall positions are compared
in Table 28.1.

710 PART VI Security

QUESTIONS FOR READERS
The f ilter listing that follows shows some of the concepts discussed in this chapter and
can be used to answer the following questions.

set firewall family inet filter TEST term A from address 10.10.11.0/24;
set firewall family inet filter TEST term A from address 10.10.12.0/24;
set firewall family inet filter TEST term A from protocol [udp tcp];
set firewall family inet filter TEST term A from port [20 21 22];
set firewall family inet filter TEST term A then log;
set firewall family inet filter TEST term A then reject;

1. In the listing, which IP address will be selected out of all packets seen by the
f ilter?

2. Which transport layer protocols will be selected by the f ilter?

3. Which applications are selected based on the port numbers given?

4. Will a log be kept of the selected packets?

5. Will the sender receive any notice that the packets have been blocked by a
 fi rewall f ilter?

711

CHAPTER

What You Will Learn
In this chapter, you will learn how IPSec adds another level of security to a TCP/IP
network by adding IPSec to the MPLS-based VPN that we built in Chapter 26. We’ll
investigate the IPSec architecture and how its features are usually implemented.

You will learn about security associations and how authentication and encap-
sulation work in IPSec. We’ll briefl y mention the Internet key exchange (IKE) as
a secure way to move keys around the network.

IP Security 29

IPSec, as has been pointed out, is really a piece of IPv6 that was pressed into service for
IPv4, mostly out of desperation after businesses began to use the Internet for more than
just amusement. The formats for IPv4 and IPv6 IPSec are different, given the difference
in header and address formats, but they are still very similar. Optional in IPv4, support for
IPSec is mandatory in IPv6. IPSec is part of a public key infrastructure (PKI) architecture
based on several things that we’ve talked about before: public key encryption, secure
key exchange for the Internet (IKE), and several related concepts and protocols.

There are several key concepts in IPSec, as with anything else in TCP/IP. We’ll talk
about IPSec modes fi rst, followed by security associations (SAs) and a closely related
concept, the security parameter index (SPI). Then we’ll focus on the three main “pro-
tocols” that make up IPSec: the authentication header (AH), the encapsulating security
payload (ESP), and the IKE.

IPSec consists of two main “core protocols”—AH and ESP—although it is often
pointed out that they are not really protocols at all because they cannot function on
their own. AH allows a receiver to verify that the claimed originator of the message
actually did send it, and that none of the data has been altered while in transit. It also
prevents captured messages from being used again in the future (e.g., when a hacker
cannot read the password but knows that this packet will log in the user when sent).
This is called a replay attack.

FIGURE 29.1

IPSec on the Illustrated Network, showing how IPSec adds security to the site routers connected
by the MPLS-based VPN.

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80:205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Best-

Wireless
in Home

Solid rules � SONET/SDH
Dashed rules � Gig Ethernet
Note: All links use 10.0.x.y
addressing...only the last
two octets are shown.

IPSec Added to
Onsite Routers

714 PART VI Security

Ace ISP

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80:205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC: 00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

ge-0/0/3

16.2

ge-0/0/3

16.1

MPLS-Based VPN
CEO and CE6

AS 65127

Global Public
Internet

CHAPTER 29 IP Security 715

ESP encrypts the payload of the message itself. It might sound odd that authentication
and encryption are separate processes in IPSec, and in practice both are normally used
together. Separating the processes allows them to evolve independently, however, so
advances in encryption do not require changes in authentication (and vice versa).

We’ll add IPSec to the MPLS-based VPN we created in the VPN chapter, as shown in
Figure 29.1. We’ll still use that same confi guration on the routers, but add to it.

IPSEC IN ACTION
As with NAT and stateful fi rewalls, the implementation of IPSec on the Juniper Net-
works routers used on the Illustrated Network depends on a special “internal interface”
supported by an adaptive services physical interface card (AS PIC). All of the routers
have these PICs, so we can build IPSec onto the confi guration used for the MPLS-based
VPN that we built for VPLS in Chapter 26.

Our goal here will be to add an IPSec tunnel using ESP between the CE0 and CE6
routers attached to LAN1 and LAN2, and at the same time preserve the VPLS VPN
between routers PE5 at LAN1 and PE1 at LAN2. The packets fl owing between LAN1 and
LAN2 on the links between routers PE5 and PE1 will be encapsulated and encrypted
(with IPSec), and then encapsulated again (for VPLS). Is this paranoia? Perhaps. But the
idea is to raise the hacker work factor on these packets high enough so that the hack-
ers give up and move on to less protected traffi c.

We could confi gure manual SAs on each router and confi gure IKE to carry this
information over the network, but such a procedure is overly complex for this chapter.
We have to confi gure the SAs anyway, so we’ll just (securely) confi gure manual SAs on
routers CE0 and CE6 to run IPSec with ESP in tunnel mode between them, thereby
dispensing with IKE. The VPLS is still there, but transparent to IPSec. The network topol-
ogy appears as shown in Figure 29.2.

Then we’ll show that the IPSec is up and running. (We could show some garbled
Ethereal captures between the routers showing that IPSec encryption is in use, but
these are not very enlightening.) Again, we’ll show the confi guration on each router,
with comments.

CE0
This router has normal interface confi gurations, naturally. But we’ll defi ne a bidirec-
tional manual SA in a “rule” called rule-manual-SA-BiESP and reference it to a “service
set” associated with the interface. We’ll use ESP, and a value of 261 for the SPI. We’ll talk
more about security algorithms later, but we’ll also use HMAC-SHA1-96 for authentica-
tion, DES-CBC for encryption, a 20-bit ASCII authentication key for SHA-1, and an 8-bit
ASCII key for DES-CBC authentication.

To get traffi c onto the PIC and the IPSec tunnel, we have to match the LAN traffi c
with our IPSec VPN selector rule. Fortunately, this rule is already referenced in the

716 PART VI Security

IPSec Tunnel

IPSec Internal Ports

MPLS LSP

VPLS Virtual Port

sp-1/2/0 sp-1/2/0

vt-0/3/0:32770 vt-0/3/0:32771

VPLS
ge-0/0/3

VPLS
ge-0/0/3

10.0.59.2/24
so-0/0/0

10.0.17.1/24
so-0/0/2

ge-0/0/3
10.99.99.1/24

so-0/0/0
10.0.59.1/24

so-0/0/2
10.0.17.2/24

ge-0/0/3
10.99.99.2/24

PE5:
192.168.5.1

PE1:
192.168.1.1

LAN1
10.10.11.0/24

LAN2
10.10.12.0/24

CEO PE5 P9/P7 PE1 CE6

FIGURE 29.2

IPSec topology, showing how it relates to the MPLS LSP and VPLS.

 service set from the VPN confi guration. We’ll also use a fi rewall fi lter to count the pack-
ets entering the IPSec tunnel.

set interfaces ge-0/0/3 vlan-tagging;
set interfaces ge-0/0/3 unit 0 vlan-id 600;
set interfaces ge-0/0/3 unit 0 family inet
 service input service-set service-set-manual-BiESP;
set interfaces ge-0/0/3 vlan-tagging unit 0 family inet
 service output service-set service-set-manual-BiESP;
 # applies the BiESP service set to input and output traffic
set interfaces ge-0/0/3 unit 0 family inet address 10.99.99.1/24;

set interface sp-1/2/0 unit 0 family inet filter input ipsec-tunnel;
 # configure the internal IPSec tunnel interface
set firewall filter ipsec-tunnel term 1 then count ipsec-tunnel;
set firewall filter ipsec-tunnel term 1 then accept;
 # configure a filter to count and process traffic

set services service-set service-set-manual-BiESP interface-service
 service-interface sp-1/2/0;
 # defines the main IPSec tunnel service set applied above

CHAPTER 29 IP Security 717

set services service-set service-set-manual-BiESP ipsec-vpn-options
 local-gateway 10.99.99.1; # the local IPSec tunnel addr
set services service-set service-set-manual-BiESP ipsec-vpn-rules
 rule-manual-SA-BiESP; # references the IPSec rule defined below

set services ipsec-vpn rule rule-manual-SA-BiESP term term-manual-SA-BiESP
 from source address 10.10.11.0/24; # find LAN1 traffic for IPSec
set services ipsec-vpn rule rule-manual-SA-BiESP term term-manual-SA-BiESP
 then remote-gateway 10.99.99.2; # far-end IPSec tunnel address
set services ipsec-vpn rule rule-manual-SA-BiESP term term-manual-SA-BiESP
 then manual direction bidirectional protocol esp; # use ESP for IPSec
set services ipsec-vpn rule rule-manual-SA-BiESP term term-manual-SA-BiESP
 then manual direction bidirectional spi 261; # the SPI is 261
set services ipsec-vpn rule rule-manual-SA-BiESP term term-manual-SA-BiESP
 then manual direction bidirectional authentication algorithm hmac-sha1-96;
set services ipsec-vpn rule rule-manual-SA-BiESP term term-manual-SA-BiESP
 then manual direction bidirectional authentication key ascii-text
 "9v.s8xd24Zk.5bs.5QFAtM8XNVYLGifT3goT369OBxNdw2ajHmFnCZUnCtuEh";
 # the authentication key was enters as 'juniperjuniperjunipe' (20 chars)
set services ipsec-vpn rule rule-manual-SA-BiESP term term-manual-SA-BiESP
 then manual direction bidirectional encryption algorithm des-cbc;
set services ipsec-vpn rule rule-manual-SA-BiESP term term-manual-SA-BiESP
 then manual direction bidirectional encryption key ascii-text
 "$9$3LJW/A0EclLxdBlxdbsJZn/CpOR"; # entered as juniperj (8 characters)
set services ipsec-vpn rule rule-manual-SA-BiESP match-direction output;}

We need a manual SA key entry because this example is not using IKE. Note that
although we type the key in plain text, the result is always displayed in encrypted
form.

CE6
We can use exactly the same confi guration on router CE6 by just swapping the local
and remote gateway addresses on the ge-0/0/3 interface and under ipsec-vpn-
options and ipsec-vpn, so that 10.99.99.1 and 10.99.99.2 are swapped, and chang-
ing the fe-1/3/0 address to 10.10.12.1. So, in the interest of brevity, we won’t show
the CE6 listing.

How do we know that the IPSec VPN tunnel is working? Everything works as
before, but that proves nothing. How do we know that traffi c between LAN1 and LAN2
is now encrypted? An Ethereal trace can verify that, and we can display the value of
the traffi c counter (as long as it is non-zero) on the fi rewall fi lter we set up on the CE
routers.

admin@CE6> show firewall filter ipsec-tunnel
Filter: ipsec-tunnel
Counters:
Name Bytes Packets
ipsec-tunnel 252 3

718 PART VI Security

These counts refl ect three pings that were sent from LAN1 to LAN2 over the IPSec
 tunnel. Other commands can be used to give parameters and details of the SA itself, but
the latter just repeats information stored in the confi guration fi le.

Let’s see what the major portions of the confi guration listing are accomplishing.
To do that, we’ll have to consider some concepts used in IPSec.

INTRODUCTION TO IPSEC

There are three IPSec support components in addition to the transport services pro-
vided by AH and ESP. One of these components is a set of encryption and hashing
algorithms, most of which we’ve met already in the SSL and SSH chapters. AH and ESP
are generic and do not mandate the use of any specifi c mechanism. IPSec endpoints on
a secure path negotiate the ones they will use, as does SSH. For example, two common
hashing methods are Message Digest 5 (MD5) and Secure Hash Alogrithm 1 (SHA-1),
and the endpoints decide which to use with IPSec.

Other important support pieces are the security policies and the SAs that embody
them. The fl exibility allowed in IPSec still has to be managed, and security relationships
between IPSec devices are tracked by the SA and its security policy.

Finally, an IPSec key exchange framework and mechanism (IKE) is defi ned so that
endpoints can share the keys they need to decrypt data. A way to securely send SA
information is provided as well. In summary, IPSec provides the following protection
services at the IP layer itself:

■ Authentication of message integrity to detect changes of the content on the
network

■ Encryption of data for privacy
■ Protection against some forms of attacks, such as replay attacks
■ Negotiation of security methods and keys used between devices
■ Differing security modes, called transport and tunnel, for fl exibility

IPSec RFCs
When it comes to RFCs, aspects of IPSec are covered in a collection of RFCs that defi ne
the architecture, services, and protocols used in IPSec. These are listed in Table 29.1.

IPSec Implementation
Okay, IPSec is wonderful and we all should have it and use it. But how? Where? There
are two places (at least) and three ways that IPSec can be implemented on a network.

First, IPSec can be implemented host to host or end to end. Every host has IPSec
capabilities, and no packets enter or leave the hosts with encryption and authentica-
tion. This seems like an obvious choice; however, the fact is that there are many hosts
and, as with “personal” fi rewalls, this can be a maintenance and management nightmare.

CHAPTER 29 IP Security 719

And because most data are stored on servers in “plain text” formats, all of this work is
often in vain if there is a way into the server itself.

IPSec can also be implemented from router to router, and this approach makes a lot
of sense. There are few routers compared to hosts, and perhaps offsite packets are the
only ones that really need protection. On the local LAN, the network risks are lower
(or should be!), and more damage is caused by users leaving themselves logged in and
leaving their work locations for breaks or lunch than sniffi ng “on the wire.” When used
in combination, IPSec VPNs are a formidable barrier to attacks originating on the Inter-
net. (This is not to say that site security can be ignored when IPSec and VPNs are used
between routers, but it certainly can be different.)

Ideally, in a host or a router, IPSec would be integrated into the architecture of the
device. Where IPv6 is concerned, this is exactly the case. But IPSec is still an IPv4 “add-
on” and so can be implemented in hosts and routers in different ways that mainly con-
cern where in the network the actual IPSec protection actually kicks in.

There are two common ways to look at IPSec architecture in IPv4. These are some-
times called “bump in the stack” (BITS) and “bump in the wire” (BITW).

In the BITS architecture, IPSec bits are a separate layer between the IP layer and the
frames. IPSec “intercepts” the IP packets inbound and outbound and processes them.
The nice thing about this approach is that it can be easily added to (and upgraded on)
IPv4 hosts.

The BITW technique is common when IPSec is implemented site to site by routers,
and devices located next to routers. This architecture is shown in Figure 29.3.

Table 29.1 IPSec RFCs with Title and Purpose

RFC Name Purpose

2401 Security Architecture for the Internet
Protocol

Main document, describes architecture and
how components fi t together

2402 IP Authentication Header AH “protocol” for integrity

2403 The Use of HMAC-MD5-96 within ESP
and AH

Describes a popular algorithm for use in AH
and ESP

2404 The Use of HMAC-SHA-1-96 within ESP
and AH

Describes another popular algorithm for use
in AH and ESP

2406 IP Encapsulating Security Payload The ESP “protocol” for privacy

2408 Internet Security Association and Key
Management Protocol (ISAKMP)

Defi nes ISAKMP methods for key exchange
and negotiating SAs

2409 The Internet Key Exchange (IKE) Describes IKE as ISAKMP method

2412 The OAKLEY Key Determination Protocol Describes a generic protocol for key
exchange, which is used in IKE

720 PART VI Security

The IPSec “device” can be implemented in router software or as a separate appli-
ance. The secure packets can be sent over a VPN or simply routed through the Internet,
although a VPN adds another layer of protection to the data stream. The two approaches
are similar, but have a different impact on each of the two IPSec modes.

IPSec Transport and Tunnel Mode
IPSec modes defi ne the changes IPSec can make to a packet when it is processed for
delivery. Modes in turn affect SAs, so the difference is not trivial by any means.

Transport mode—In this mode, the packet is handled as a unit from the transport
layer (TCP/UDP). The segment is processed by AH/ESP and the appropriate
header added along with a “normal” IP header before being passed down to the
frame layer. The main point is that in transport mode, the IP header itself is not
part of the AH/ESP process.

Tunnel mode—In this mode, IPSec performs its magic on an entire IP packet (original
header included). The IPSec headers are placed in front of the encrypted IP packet
and then a new IP header is placed in front of the entire construction. A nice feature
is that the original IP address is encrypted and the new address can be seen as a
form of NAT.

Transport mode is feasible only for host-to-host IPSec operation because only hosts
have easy access to the transport layer segments. On the other hand, router implemen-
tations make use of tunnel mode because routers handle entire IP packets, tunnels are
a familiar concept in the router world, and this form of IPSec works well with VPNs.
(Some equipment vendors say that tunnel mode is “better” than transport mode, but
that is really making a virtue out of necessity.)

Router
IPSec IPSec

Secure IP Packets

Network 1 Network 2

Internet Router

FIGURE 29.3

IPSec and routers, showing how separate devices can be used to apply IPSec to a network.

CHAPTER 29 IP Security 721

SECURITY ASSOCIATIONS AND MORE
An IPSec device negotiates the precise methods and manages keys used for packets
sent and received. Here comes a packet from somewhere else. So how will we decrypt
it? What is its precise structure (mode)? The same issues come up with outbound pack-
ets. How do we know what was negotiated (or possible) for the partner at the other
end of the secure path? This is turning out to be much more diffi cult in practice than
in theory. We need help to keep it all straight. The following material describes how it’s
done in IPSec.

Security Policies
Security policies are general rules that tell IPSec how it can process packets. The
 security policy can also allow packets to pass untouched or link to places where yet
more detail is provided. Security policies are stored in the device’s security policy
database (SPD).

SAs—This is a set of security information describing a particular type of secure
path between one specific device and another. It is a type of “contractual agree-
ment” that defines the security mechanisms used between the two endpoints.
SAs are unidirectional, so there is one for each direction (inbound and out-
bound). So, there are at least four (and often eight!) SAs that apply to commu-
nications between a pair of devices. The SAs are kept in the device’s security
association database (SAD).

Selectors—Which packets does a given SA apply to? The rule sets are called selec-
tors. A selector might be configured that applies a certain SA to a packet from
a particular range of source IP addresses, or that is going to a certain destina-
tion network. SAs don’t have names, however. SAs are indexed by number, and
the number is really a representation (a “triple”) of three parameters and not
just the SPI.

Security parameter index—The SPI is a 32-bit number picked to uniquely iden-
tify an SA for a connected device. The SPI is placed in the AH or ESP headers
and links the packet to a particular SA. Once the receiver knows some general
information about the packet content, the SPI provides a clue to the rest of it.

IP destination address—The IP address of the device at the “other end” of the
SA path.

Security protocol identifier—Tells whether this SA is for AH or ESP. If both are
used, they need separate SAs.

The nice thing about using this combination is that any one of the parameters can
change to form a “new” entity based on existing pieces. But it can still be confusing.

722 PART VI Security

Authentication Header
AH authenticates by associating a header with a piece of data. The scope of the opera-
tion, and the exact placement of the header, depends on the IP version (IPv4 or IPv6)
and mode (transport or tunnel). As with many other authentication schemes, AH relies
on a hash operation similar in concept to the CRC used on frames. The specifi c hash
(called an integrity check value [ICV]) used is stored in the SA and is known only to
source and destination. The AH provides authentication, but not privacy. No direct con-
tent encryption is used in the AH operation.

AH authentication is simpler for IPv6 than for IPv4 because it was designed for
IPv6. In IPv6, the AH is inserted as an extension header using the usual rules for
extension header linking. The AH value of 51 is inserted into the IPv6 Next Header
field. In transport mode, the AH is in the main IP header and precedes any desti-
nation options and follows an ESP header (if present). In tunnel mode, the AH is
an extension header in the new IP packet header. These differences are shown in
Figure 29.4, with routing (43) and destination option (60) headers in use with a
TCP segment.

Next Hdr
43

IPv6 Hdr

Next Hdr
60

Routing Ext
Hdr (43)

Next Hdr
6

TCP
Hdr (6)

TCP Segment

Dest Opt
Hdr (60) IP Data

IP Data

Next Hdr
43

IPv6 Hdr

Next Hdr
51

Routing Ext
Hdr (43)

TCP
Hdr (6)

TCP Segment
Next Hdr

60

Auth Hdr
(51)

Next Hdr
6

Dest Opt
Hdr (60)

Original IPv6 Packet

IPv6 AH Packet (transport mode)

Authenticated Fields

IPv6 AH Packet (tunnel mode)

Authenticated Fields

IP Data

Next Hdr
51

New IPv6
Hdr

Next Hdr
41

Auth Hdr
(51)

TCP
Hdr (6)

TCP SegmentNext Hdr
43

IPv6 Hdr
(41)

Next Hdr
60

Routing Ext
Hdr (43)

Next Hdr
6

Dest Opt
Hdr (60)

Original IPv6 Packet

FIGURE 29.4

IPv6 AH packet formats, showing how the various fi elds and headers relate to one another.

CHAPTER 29 IP Security 723

Protocol
51

IPv4 Hdr

Next Hdr
6

TCP
Hdr (6)

TCP Segment

Auth Hdr
(51) IP Data

Protocol
6

IPv4 Hdr

TCP
Hdr (6)

TCP Segment

IP Data

Original IPv4 Packet

IPv4 AH Packet (transport mode)

Authenticated Fields

IPv4 AH Packet (tunnel mode)

Authenticated Fields

IP Data

Next Hdr
51

New IPv4
Hdr

Next Hdr
4

Auth Hdr
(51)

TCP
Hdr (6)

TCP SegmentProtocol
6

IPv4 Hdr

Original IPv4 Packet

FIGURE 29.5

IPv4 AH packet formats showing how the various fi elds and headers relate to one another.

In IPv4, the AH has to follow the IPv4 header one way or the other (as shown in
Figure 29.5). The fi elds of the AH itself are described next and shown in Figure 29.6.

Next Header—This 1-byte field gives the protocol number of the next header
after the AH, not the protocol number of the current one.

Payload Length—This 1-byte field measures the length of the AH itself, not really
the “payload.” It is expressed in 32-bit units, minus 2 for consistency with other
IPv6 header calculations.

Reserved—These 2 bytes must be set to all zeros.

Security Parameter Index (SPI)—A 32-bit number that combines with the des-
tination address and type (AH in this case) to identify the SA used for this
packet.

Sequence Number—A 32-bit counter that starts at zero when the SA is formed and
increments with each packet sent using that SA. This prevents replay attacks
with captured packets.

724 PART VI Security

Authentication Data—This is the ICV hash and varies in size depending on hash-
ing algorithm used. It must end on a 32-bit (IPv4) or 64-bit (IPv6) boundary,
and so is padded with zeros as needed.

Encapsulating Security Payload
ESP encrypts data and adds a header and trailer to the result. ESP has its own optional
authentication scheme, and can be used in conjunction with AH or not. Unlike the AH
“unit,” ESP is split up into three distinct pieces. The ESP header precedes the encrypted
data, and its placement depends on whether IPv6 or IPv4 is used and on mode. The
ESP trailer follows the encrypted data because some encryption algorithms require
that any needed padding follow the encryption. The ESP authentication data with ICV
is optional (and redundant when AH is used), so its separation makes sense. It authen-
ticates the ESP header and trailer (and so cannot appear in them). This fi eld follows
everything else.

Placing the ESP headers is different in IPv6 and IPv4, but similar to AH. The trick is
fi nding the ESP trailer because there is no fi eld in the ESP header to give length to or
location of the ESP trailer. If it sounds diffi cult to fi gure out where the trailer is, that’s
one of the points. But it can be done, given the correct SA, and the ESP trailer does have
a next header fi eld to “point back” to the front of the data. Figure 29.7 might make this
clearer for IPv6. In transport mode, the ESP trailer value of 60 “points” (it’s really in no

32 bits

Authentication Data
(integrity check value)

Sequence Number

Security Parameter Index

Next Header Payload Length Reserved (all zeroes)

1 byte 1 byte 1 byte 1 byte

FIGURE 29.6

IPSec AH fi elds.

CHAPTER 29 IP Security 725

FIGURE 29.7

IPv6 ESP packet formats, showing how the various fi elds and headers relate to one another.

Next Hdr
43

IPv6 Hdr

Next Hdr
60

Routing Ext
Hdr (43)

Next Hdr
6

TCP
Hdr (6)

TCP Segment

Dest Opt
Hdr (60) IP Data

Encrypted Fields

Authenticated Fields

Original IPv6 Packet

Original IPv6 Packet

IPv6 ESP Packet (transport mode)

IP Data

TCP
Hdr (6)

TCP Segment
Next Hdr

6

Dest Opt
Hdr (60)

Next Hdr
60

ESP Trlr

ESP
Auth
Data

ESP
Hdr
(50)

ESP
Hdr
(50)

Next Hdr
43

IPv6 Hdr
(41)

Next
Hdr
50

New
IPv6
Hdr

Next
Hdr
41

ESP
Trlr

ESP
Auth
Data

Next Hdr
50

Routing Ext
Hdr (43)

IP Data

TCP
Hdr (6)

TCP Segment
Next Hdr

43

IPv6 Hdr
(41)

Next Hdr
60

Routing Ext
Hdr (43)

Next Hdr
6

Dest Opt
Hdr (60)

Encrypted Fields

Authenticated Fields

IPv6 ESP Packet (tunnel mode)

sense a pointer) to the Destination Options fi eld (value 60) and from there to the TCP
header (IP protocol value 6). In tunnel mode, the ESP trailer next header value is 41 and
indicates that an IPv6 header comes next.

Figure 29.8 shows the same process for IPv4. In this case, the ESP trailer next header
value is 6 for transport mode (TCP header comes next). The value is 4 in tunnel mode,
to indicate that an Ipv4 packet is between the ESP header and trailer.

How it all fi ts together in ESP is shown in Figure 29.9. Note that several fi elds are
only authenticated and not encrypted.

SPI—This 32-bit number is part of the ESP header and is used with destination
address and type (ESP, in this case) to be used for this packet.

Sequence Number—This 32-bit number is part of the ESP header and is initialized
to zero when the SA is formed and incremented to prevent replay attacks (the
same is true in AH).

Payload Data—This is the encrypted data itself and varies in size. Sometimes it
contains an initialization vector, depending on encryption method.

726 PART VI Security

Protocol
6

IPv4 Hdr

TCP
Hdr (6)

TCP Segment

IP Data

TCP
Hdr (6)

TCP Segment

IP Data

Original IPv4 Packet

Original IPv4 Packet

Next Hdr
6

ESP Trlr

ESP
Auth
Data

ESP
Hdr
(50)

Protocol
50

IPv4 Hdr

Next Hdr
4

ESP Trlr

ESP
Auth
Data

ESP
Hdr
(50)

Protocol
50

IPv4 Hdr
IP Data

TCP
Hdr (6)

TCP Segment
Protocol

6

IPv4 Hdr

Encrypted Fields

Authenticated Fields

IPv4 ESP Packet (tunnel mode)

Encrypted Fields

Authenticated Fields

IPv4 ESP Packet (transport mode)

FIGURE 29.8

IPv4 ESP packet formats, showing how the various fi elds and headers relate to one another.

32 bits

Sequence Number

Security Parameter Index

1 byte 1 byte 1 byte 1 byte

Padding

ESP Authentication Data

Pad Length Next Header

ESP Payload Data

A
ut

he
nt

ic
at

ed

E
nc

ry
pt

ed

FIGURE 29.9

IPSec ESP fi elds, showing which fi elds are authenticated and encrypted.

CHAPTER 29 IP Security 727

Padding—This field, from 0 to 255 bytes long, is part of the ESP trailer and is used
to align the data as needed.

Pad Length—This 1-byte field is part of the ESP trailer and gives the length of the
padding.

Next Header—This 1-byte field is part of the ESP trailer and often “points” to the
TCP header (6).

ESP Authentication Data—A variable-length ICV (authentication is optional).

Internet Key Exchange
Our journey through IPSec is almost complete. We’ve found a way for the endpoints to
decide what the formats of the IPSec packets are (the SAs). But what about the keys?
Like SSH, IPSec depends on shared secret keys for encryption and decryption. Obvi-
ously, the entire method is as secure as the steps taken to secure the keys. That’s what
IKE is for.

IPSec was actually used before IKE was implemented. So how did the keys get into
the SAs and the SAs get everywhere they were needed? An “off-Net” method had to be
used. Large organizations used to fl y everyone who needed them to a central location and
simply hand them out (in sealed envelopes, of course). Smaller organizations used FedEx
or some other delivery service. Usually multiple keys, often a great many, were distributed
this way, and they changed on a basis known only to those who had to change them.

This method of manual SA defi nition is still valid and widely used. Sometimes secu-
rity personnel fl y around the country confi guring the SAs locally on each router. Few
trust “secure” remote access methods for this sensitive task because many millions in
fi nancial resources might be at risk. For example, IPSec might have to protect corporate
payroll records sent to the banks for employee direct deposit.

IKE is one of the most baffl ing protocols to understand and explain without a
 fairly deep knowledge of mathematics and cryptography. Some pieces are not that bad:
Diffi e-Hellman is the obvious choice for shared secret key exchange, although it says
nothing about private/public key distribution. But other components are far beyond
the abilities of generalists to understand, let alone know how to explain easily. And
there are those who say that you don’t really understand something until you can
explain it in simple terms to someone else. If that is true, I have yet to fi nd anyone who
really understands IKE.

IKE allows IPSec devices to simply send their SAs securely over the Internet to each
other. In other words, IKE populates the SAD so that both ends know what to do to
send and receive with IPSec. IKE combines (and adds to) the functions of three other
protocols.

ISAKMP—The Internet Security Association and Key Management Protocol is a
general framework protocol for exchanging SAs and key information by nego-
tiation and in phases. Many different methods can be used.

728 PART VI Security

OAKLEY—This extends ISAKMP by describing a specific mechanism for key
exchange through different defined “modes.” Most of IKE’s key exchange is
directly based on OAKLEY.

SKEME—This defines a key exchange process different from that of OAKLEY. IKE
uses some SKEME features, such as public key encryption methods and the
“fast rekeying” feature.

IKE takes ISAKMP and adds the details of OAKLEY and SKEME to perform its magic.
IKE has the two ISAKMP phases.

Phase 1—The first stage is a “setup” process in which two devices agree on how
they will exchange further information securely. This creates an SA for IKE
itself, although it’s called an ISAKMP SA. This special bidirectional SA is used
for Phase 2.

Phase 2—Now the ISAKMP SA is used to create the other SAs for the two devices.
This is where the parameters such as secret keys are negotiated and shared.

Why two phases? Phase 1 typically uses public key encryption and is slow, but
technically only has to be done once. Phase 2 is faster and can conjure different but
very secure secret keys every hour or every 10 minutes (or more frequently for very
sensitive transactions).

CHAPTER 29 IP Security 729

This page intentionally left blank

QUESTIONS FOR READERS
Figure 29.10 shows some of the concepts discussed in this chapter and can be used to
answer the following questions.

1. Which IPSec ESP mode is used in the fi gure—transport or tunnel?

2. Which IP protocol is being tunneled?

3. What does the ESP trailer next header value of 4 indicate?

4. Could NAT also be used with IPSec to substitute the IPv4 addresses and
encrypt them?

5. Is the SPI fi eld encrypted? Is it authenticated?

FIGURE 29.10

IPSec ESP used with an IPv4 packet.

Protocol
17

IPv4 Hdr

UDP
Hdr
(17)

IP Data

Original IPv4 Packet

Original IPv4 Packet

Next Hdr
4

ESP Trlr

ESP
Auth
Data

ESP
Hdr
(50)

Protocol
50

IPv4 Hdr
IP Data

UDP
Hdr
(17)

UDP Datagram
Protocol

17

IPv4 Hdr

Encrypted Fields

Authenticated Fields

UDP Datagram

731

Media

PART

VII
The Internet is not just for data anymore. This part of the book examines how
voice communication has transitioned to the Internet.

■ Chapter 30—Voice over Internet Protocol

CHAPTER

What You Will Learn
In this chapter, you will learn how VoIP is becoming more and more popular as
an alternative to the traditional public switched telephone network (PSTN). We’ll
look at one form of “softphone” that lets users make “voice” calls (voice is really
many things) over an Internet connection to their PC.

You will learn about the protocols used in VoIP, especially for the “data” (RTP
and RTCP) and for signaling (H.323 and SIP). We’ll put it all together and look at a
complete architecture for carrying media other than data on the Internet.

Voice over Internet
Protocol 30

In November 2006, when a person in Cardiff, Wales, made a local telephone call, no
part of the British Telecom (BT) PSTN was involved. Only the “last mile” of the circuit
was the same: No telephone central offi ce, voice switches, or channelized trunks were
used to carry the voice call. Instead, the calls were handled by multiservice access
nodes (MSANs) and carried with IP protocols over the same type of network that
handles BT’s Internet traffi c.

BT was so happy with the results that by 2011 they say their entire PSTN will be
replaced with an IP network using MPLS to both secure and provide QoS for the calls.
Many countries use IP voice on their backbones (such as Telecom Italia), but this is
the fi rst time a national system has decided to spend a huge amount of money (almost
US$20 billion, BT says) to convert everything.

It’s old news that many people, both around the world and in the United States, use
the Internet to talk over the telephone. Not many of these customers know it, however,
because various factors combine to make the use of voice over IP (VoIP) technology
a sensitive subject. There are those who intentionally use the Internet for voice calls,
and many software packages (such as those from Vonage and Avaya) are available. But
not many people know that a percentage of calls (perhaps the majority) made over the
PSTN are carried for part of their journey over the Internet using VoIP. The cellular tele-
phone network is converging on IP protocols even faster than the landline network.

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80:205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65459

Wireless
in Home

Solid rules � SONET/SDH
Dashed rules � Gig Ethernet
Note: All links use 10.0.x.y
addressing...only the last
two octets are shown.

FIGURE 30.1

VoIP setup on the Illustrated Network, showing the host using an Internet telephony package.

736 PART VII Media

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80:205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC: 00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

ge-0/0/3

16.2

ge-0/0/3

16.1

Best ISP Avaya
Server
(172.24.45.78)

AS 65127

Global Public
Internet

CHAPTER 30 Voice over Internet Protocol 737

The exact percentage of PSTN traffi c using VoIP is very diffi cult to pin down because
some telephony carriers are relatively open about this fact and others are not, and all
are as wary of their competitors as they ever were. The use of VoIP is also controversial
because not too long ago the voice quality of such calls was (might as well admit it)
horrible.

This chapter concerns voice, not audio, a distinction often glossed over by users
but never by engineers. Voice is concerned primarily with comprehension of the
spoken word, that is, of what is said rather than how it “sounds.” Audio is generally
a stereo representation of more than just speech. Think of audio as a motion picture
soundtrack. The telephone system is “tuned” to the frequencies used in human speech,
not music or special effects explosions. And that makes all the difference.

VOIP IN ACTION
It’s a little too much to expect seeing a full-blown VoIP server and gateway on the
Illustrated Network, although Juniper Networks does indeed make such software.
 Nevertheless, we can “borrow” an Avaya IP Softphone server for our network and install
the client software on wincli2 (10.10.112.222). Then we can use the VoIP software to
place a call to a desk phone and capture the exchange of signaling and voice packets.
This is shown in Figure 30.1.

Naturally, the server can place the call anywhere in the world, but having a con-
versation with a telephone in a local cubicle makes it easier to complete the call, talk,
hang up, and so on. Figure 30.2 shows the main screen for the Avaya VoIP software. It
doesn’t look much like a phone, and some VoIP clients make an effort to make the user

FIGURE 30.2

Avaya IP Softphone client interface. Note that this is not very “phone-like.”

738 PART VII Media

interface look like a “real” telephone. The best that Avaya does is place a small “keypad”
on the screen so that you don’t have to type the numbers in.

Before you can make a call, you have to log in to the server. A simple log-in ID and
password is used, and then the screen shown in Figure 30.3 appears. It shows the
extension the computer is acting as, its IP address (this capture is not from wincli2, so
the addresses have been changed to the private range), the VoIP server’s IP address, and
the gateway “VoIP” address. The call status is shown also, and this screen was captured
while the call was in progress.

The fi rst thing that becomes obvious when capturing VoIP sessions is the blizzard
of packets presented. The actual session, from “dialing” through conversation to “hang-
up”) lasted less than 30 seconds, and the log-in process, registration, and call setup took
only a few seconds of that time. Yet in this 30-second window, some 756 packets passed
back and forth from the VoIP client to server.

Most of them were small packets using the Real-Time Protocol (RTP), which
 carries 20 bytes of voice coded at 8 Kbps (the G.729 standard). A portion of the

FIGURE 30.3

Avaya log-on screen with a call in progress.

CHAPTER 30 Voice over Internet Protocol 739

 conversation between client and gateway is shown in Figure 30.4. (The gateway
address 172.24.45.65 is now accessed from wincli2, and therefore different from that
shown in Figure 30.3.)

In addition to the TCP packets (which are used to set up the connection to the
server), and the RTP packets carrying the voice bits (and the RTCP packets with status
information), there are other control packets that serve to remind us that we are not in
the data world anymore. The voice world uses a unique language, and an often obscure
one at that. This VoIP implementation speaks H.323, a signaling protocol family for
voice. The main signaling protocols seen during the call follow.

H.225.0 RAS packets—These are the registration, admission, and status packets
used to register the VoIP host on the VoIP server and allow it to use the system
to make calls.

H.225.0 CS packets—The call status packets trace the progress of the call. (Is the
other phone ringing? Did someone answer?)

Q.931 signaling packets—These are not strictly H.323 signaling packets. Q.931
is the “normal” signaling method with packets used on the PSTN. These are
passed from the VoIP client to the server by this VoIP implementation.

Some packets of each type are shown in Figure 30.5, which only shows the expanded
upper pane of a full Ethereal capture window. Signaling protocols in VoIP, as opposed
to the voice “data” itself, use TCP for its sequencing and resending features.

FIGURE 30.4

RTP packets carrying 20 bytes of voice, shown highlighted in the bottom pane.

740 PART VII Media

We’ve done little more than scratch the surface of VoIP, but it is enough to show
that VoIP is acceptable and commercially viable today. Let’s see why, and explore some
of the architectures and protocols in a little more detail.

The Attraction of VoIP
In a very short period of time, we’ve transitioned from a world where data rode on
links optimized for voice by masquerading as sound (that’s what a modem is for) to a
world where voice rides on links optimized for data (unchannelized) by masquerading
as data packets. VoIP is a grand scheme to make this process as easy as possible.

The trick is to have the voice packets preserve the quality-of-service parameters that
regulated telephone companies always have to keep an eye on (or their next request
for a rate increase might be rejected, and some companies have even been forced to
send customers rebates due to poor voice service). In the discussion that follows in this
chapter, it will be a good thing to remember that when engineers say “voice” they really
mean four things (and no, one of them is not audio).

What Is “Voice”?
The PSTN can carry one of four types of “voice” traffi c.

1. Two people talking—This is what most people think of when they say “voice.”
2. Fax—Fax machines use low-speed modems to make digital representations of

images look like sound. And fax traffi c is growing like never before as a result
of several social factors (faxes have higher legal standing than email, for one

FIGURE 30.5

H.225 and Q.931 signaling packets. Note the presence of TCP packets for signaling.

CHAPTER 30 Voice over Internet Protocol 741

thing) and the fact that many languages are still not particularly email and key-
board friendly.

3. Modem data—Not everyone is on DSL, and a good percentage of users around
the world (and, sadly, in the United States) still use analog modems to push
perhaps 30 to 50 Kbps back and forth to their ISP.

4. Touch tone—Offi cially, these are the dual-tone multifrequency (DTMF) sounds
you hear when you press buttons on a telephone keypad. The familiar beeps
are analog (sound) representations of the numbers (digits) pressed.

There are also some economic factors pertinent to VoIP, and VoIP is one reason that
premium long-distance telephone calls (which used to cost many dollars per minute) are
seldom an issue in anyone’s budget. (You used to ask before making a long-distance call
from someone else’s phone, and people rushed out of the shower dripping wet to take
a long-distance call because the rates were higher initially.) The use of VoIP as a PSTN
bypass method has become less attractive, but the goal of convergence remains strong.

VoIP is also attractive to carriers if what is often called in the United States “toll-
quality voice” can be delivered at a reduced bit rate as a stream of TCP/IP packets.
Bandwidth savings directly translates into network savings, which is something anyone
can understand.

The Problem of Delay
Voice quality is tied to more than just bit rate. Two key parameters in assessing voice
quality are latency (delay) and jitter (delay variation). Voice is much more sensitive to
the values of these two network parameters, much more so than the most rigid interac-
tive data requirements. This is because data are usually not processed until the “whole”
of something has arrived, and it makes no difference if the fi rst packets that represent
a fi le arrive faster than the last few packets (this is the jitter). And as long as the delay
remains below a certain timeout threshold the application will work fi ne (this is the
overall delay).

Delay and latency are often used interchangeably, and they will be here. End-to-end
network delays consist of two components: serial delay and nodal processing delay.

Nodal processing delay is the amount of time it takes for the bits that enter a net-
work node (end node or intermediate node alike) to emerge. End nodes can measure
this between application and link, and intermediate nodes as link-to-link delays. Today’s
routers operate in many cases at “line speeds,” but this is a relatively recent develop-
ment. Early routers operated at much too leisurely a pace to route voice packets at
anywhere near the pace required for telephony services (that’s what circuit-switched
voice switches were for), which basically had to span the globe in about one-quarter of
a second. And this had to include the serial delay.

Nodal processing delay also occurs when the analog voice is fi rst digitized. The algo-
rithm used to digitize voice might be complex, adding delay to the entire process. And
the more bits needed to be gathered into a packet (bigger packets mean fewer packets
than can get lost), the higher the nodal processing delay. This initial delay is often called
the packetization delay, but it is just another form of nodal delay.

742 PART VII Media

Serial delay is simply an acknowledgment of the fact that bits are sent on a link one
by one, so it takes a certain amount of time to send a given number of bits at a given
bit rate. If the serial delay is too high for a given application, there are only two ways to
lower it: Put fewer bits in a packet or raise the link bit rate. Of course, you can do both.
You can put fewer bits in voice packet by lowering the bit rate of the voice inside (or
sending more packets—it’s a tradeoff).

Jitter is the variation of the end-to-end delay across the network. As the delay varies,
bits arrive either early or late at the destination. If they arrive too quickly, bits might
overfl ow a buffer. If they arrive too late, silence results. Gaps in the conversation occur
either way. And even less extreme jitter can distort the analog voice that results from
the bits. To smooth out arriving voice, a “jitter buffer” is used to add the delay necessary
to make the voice sound like it all arrives with the same delay.

The delay issues in VoIP are shown in Figure 30.6. Naturally, the same process works
in the other direction.

Just like overall delay, and apart from jitter buffers, jitter can be handled in a couple
of ways. Delay variations usually result from nodal processing load variations and buf-
fer queue depth. In other words, when the node is busy, things slow down. This effect
can be minimized by splitting off the voice for special handling, getting faster network
nodes, or by increasing link bandwidth. (Note that constant appearance of “increased

Analog-to-Digital
Conversion (64 Kbps)

Speech Direction

Serial Link Transmission
Delays

Encoding below 64
Kbps, Packetization
(processing delay)

VoIP

Internet

Jitter
Buffer

Buffer Makes
Delays Seem

Stable

End-to-end delay
Processing delay(s)
Transmission delays

Decoding to
64 Kbps

Digital-to-Analog
Conversion

VoIP EncoderA/D

Decoder D/A

FIGURE 30.6

VoIP processing and transmission delays. Note that the jitter buffer compensates for differences
in delays during different parts of the call.

CHAPTER 30 Voice over Internet Protocol 743

link bandwidth” as a solution to networking problems, a fact that has slowed develop-
ment of alternative solutions to many issues.)

The key to VoIP is not so much digitizing voice at a low bit rate, but rather TCP/IP
and the Internet carrying packetized voice with acceptable latency and jitter as per-
ceived by the humans using it. (Related issues, such as replacing silence with “comfort
noise” and detecting “voice activation,” are beyond the scope of this chapter.)

Packetized Voice
Voice on the PSTN is usually a streaming bidirectional connection at a fi xed 64 Kbps.
Once digitized, there was little incentive to play around with voice too much because
any reduction in bit rate was offset by a loss in voice quality. Regulated carriers had
to maintain certain voice quality levels or risk customers not having to pay for the
call. However, if the “slope” of the decline of voice could be leveled so that quality at
16 Kbps or even 8 Kbps was not that much different than at 64 kbps, more calls
could be carried over the same facilities. Not only that, but any bandwidth not used for
 carrying voice calls could be used for data (packets).

However, low-bit-rate voice with acceptable quality—something achieved with
modern digital signal processing (DSP) chips—is not the same as packetized voice.
Using “spare” voice bandwidth for data was the idea behind ISDN and eventually DSL.
But the voice stayed on the voice channel and the data stayed on the data channel. Only
by truly packetizing voice can voice and data be combined in an effi cient manner.

A “voice” service really consists of two major components: content—which can
take on four different meanings (as we have seen)—and signaling. This signaling is not
the same as touch tones, although the intent is similar. This signaling is already pack-
etized, and is how the number you dial and other information (such as the number you
dialed from) makes its way through the voice signaling network.

This signaling network is as packetized as TCP/IP, uses special network nodes
(which still route), and is known as Signaling System 7 (SS7). The real issue in VoIP is
not so much how to packetize the voice content (gather bits and stick a header on
them and send them out) but how the SS7 signaling packets relate to the Internet and
TCP/IP.

The main stumbling block to universal VoIP service today is not so much that there
are many ways to packetize voice content (there are options in many other TCP/IP
 protocols) but that there are many ways (and many architectures) to carry voice signal-
ing information in a TCP/IP environment. These VoIP protocol controversies are impor-
tant enough for a detailed look.

PROTOCOLS FOR VOIP
Voice, like audio and video, is a “real-time” application. And, as in multicast TCP is a poor
choice for voice connections over the Internet. This sounds odd because voice is as
connection oriented as TCP and requires handshaking overhead to complete a “call.”
(Humans handshake with a ring and a vocalized shared “Hello.”)

744 PART VII Media

The problem is not just TCP overhead, it’s the fact that TCP will always resend
 missing data units. That’s what it’s for. However, the meaningful resending of voice
bits is impossible in VoIP given the real-time nature of voice. So, UDP (which blithely
accepts lost data units with a shrug) is used in VoIP—just as in multicast.

But TCP headers contain a number of fi elds that are very helpful for end-to-end
communications, which are fi elds lost in UDP, such as a sequence number to detect
lost voice packets. So we’ll have to take what fi elds we need from TCP and stick them
inside (after) the UDP header. This new header will have to have a name and a place in
the TCP/IP protocol stack. We’ll call it the Real-Time Protocol (RTP) and use it for the
transport of digitized voice inside our IP packets.

Signaling, however, is another matter. We might want to keep TCP for that because
resending lost signaling packets is actually a good idea (calls that are not completed do
not generate revenue for metered service or friends in the user community). In addi-
tion, the delays for signaling in regulated voice services are much less stringent than the
delays for voice packets, which make TCP connection overhead tolerable. So, in some
cases (especially over a WAN), TCP is acceptable for voice signaling.

But what form should TCP/IP voice signaling packets take? How should voice-
 capable TCP/IP devices fi nd each other by IP address? How are VoIP calls handed off
to (or received from) the PSTN network with SS7? Where are the voice gateways? Who
runs the gateways—the customer or the service provider? In other words, what is the
overall architecture of the TCP/IP voice-signaling network?

Unfortunately, we live in a world where there are competing answers to all of these
signaling questions. Let’s start by looking at RTP and then examining the major differ-
ences between the various systems of VoIP signaling.

RTP for VoIP Transport
RTP grew out of efforts to improve the Streams 2 (ST2) protocol defi ned in RFC 1819.
ST2 was known as IPv5 and is why IPv4 evolved into IPv6. RTP was defi ned in RFC
1889 and deliberately left open-ended to allow room for the protocol to evolve.

RTP is really a framework using application layer framing and was initially aimed
at audio (and video) multicast sessions. However, two-way phone calls are just special
cases of audio multicast, so RTP is a good fi t for VoIP.

RTP can replace TCP for many applications, but in VoIP it is used with UDP. The RTP
architecture also includes another protocol, the Real-Time Control Protocol (RTCP), which
uses IP directly to monitor the job RTP is doing in terms of delay and voice quality.

IP port numbers 5004 and 5005 are used for RTP and RTCP, respectively, and the
ports are the same on both ends of the connection. The overall RTP architecture is
shown in Figure 30.7.

There are many audio and video codecs supported by RTP, but not all of them are
needed for VoIP (especially video codecs, naturally). In addition, the RTP architecture
establishes devices called mixers (to mix multiple sources for conferences) and trans-
lators (to compensate for low and high bit-rate links and LANs). These functions can
be implemented in some type of “voice and audio server” on a LAN, but are not used
in VoIP.

CHAPTER 30 Voice over Internet Protocol 745

Audio

Audio Codecs

Video

RTCP

RTP

UDP

IPv4 or IPv6

Data Link (frame)

Physical Media (LAN)

Video Codecs

FIGURE 30.7

RTP and RTCP protocol stack, showing how these protocols use UDP instead of TCP.

The structure of the basic RTP header is shown in Figure 30.8. Only the fi elds that
apply to two-party calls (point to point) are fully described.

V (version)—This 2-bit field gives the current version of RTP.

Pad (padding)—This 2-bit field aligns the packet to a specific boundary. The
actual padding byte count is given in the last byte of the RTP data.

E (extension)—This 1-bit field extends the length of the RTP header, mostly for
experimental purposes, and is almost always set to zero.

M (marker)—This 1-bit field is used in the first packet sent after a period of
silence.

Payload type—This 7-bit field is used to define 128 types of RTP payloads. Some
are static, and can only be used for the defined type, but newer ones are
dynamic and are assigned by the control protocol (such as SIP).

Sequence number—This 16-bit field increases by one for each RTP packet sent.
Receivers can use this field to detect missing or out-of-sequence packets.

Timestamp—This 32-bit field is most useful for video (all bits from the same frame
have the same timestamp), but it is used for the voice sampling rate as well.

The count fi eld gives the number of “contributors” to a conference. For multiparty
calls, the synchronization source identifi er (SSRC) and a series of contributing source
identifi ers (CSRC) matching the count are not used. The VoIP RTP header adds 8 bytes
to the voice stream. The format of the payload in the RTP data fi eld is determined by
the values in the categories listed in Table 30.1.

746 PART VII Media

V

H
e
a
d
e
r

E M Payload Type Sequence Number

Timestamp

32 bits

Payload

RTP header for VoIP is 8 bytes long

Synchronization Source Identifier (SSRC)

Contributing Source Identifier(s) (CSRC, matches count)

Pad

1 byte 1 byte 1 byte 1 byte

Count

RTP is a pure transport mechanism. Feedback on quality and immediate network
conditions is provided by the receiver to the sender with RTCP. RTCP doesn’t say what
senders should do with this information, such as the revelation that a router is becom-
ing overloaded and dropping more packets than it is sending, but at least the ability to
detect problems is there.

RTP generates periodic “reports” about the RTP session. There are fi ve RTCP mes-
sage types.

1. Sender report—Contains transmission and reception statistics from conference
participants that are active senders.

FIGURE 30.8

RTP header fi elds, which preserve some aspects of TCP fi elds.

Table 30.1 RTP Payload Formats and Their Meanings

Type Meaning

0–34 Static assignment (most popular bit rates and formats here)

35–71 Unassigned

72–76 Reserved

77–95 Unassigned

96–127 Dynamic assignment (under the control of a call control protocol)

CHAPTER 30 Voice over Internet Protocol 747

2. Receiver report—Reception statistics from conference participants that are not
active senders.

3. Source description—Items relating to the source, including the canonical DNS
name.

4. Bye—Used to end a session.
5. Application specifi c—Contains any information that the applications agree to

share.

The possible payload formats that can be used to carry voice bits following the RTP
header are complex, seemingly fi endishly so. These are defi ned in RFC 2833. Fortu-
nately, they are usually of interest only to telephony engineers.

Signaling
I fi rst encountered voice over IP around the same time I encountered the Web, in the
early 1990s. It was in a university setting, where the absolute utility and cost effective-
ness of things are not as rigid as in the business world. In the fl uid environment of
an educational institution, many things happen because they are instructive, ground-
breaking, and just, well, cool.

A graduate student of mine was in the lab one day, busily chattering into a micro-
phone hooked up to a PC and intently listening to the garbled voice coming out of the
PC’s speakers. Much of the conversation consisted of “What?” and “Huh?”

When I asked, he informed me that he was talking over the Internet to an old friend
in a similar lab at RPI in Troy, New York, about 150 miles north of us—and in those days
usually an expensive long-distance call away (especially for graduate students). I asked
him how the friend in Troy knew to be in the lab at the right time to answer his PC. “Oh,”
my student said, “I called his dorm room from your offi ce and told him to go there.”

Things have come a long way since the early 1990s. The trouble back then was
that the world of Internet telephony was a closed world, limited to Internet-attached
devices. There were no signaling gateways to translate phone numbers to IP addresses
and back, and so no way to enable calls with one end on the Internet and the other end
in the PSTN to complete calls.

This is not to say that there were not VoIP gateways. There were. But these used pro-
prietary protocols for the most part, and only connected to their cousin devices from
the same vendor. So, there was a need to create standard signaling protocols for VoIP.

Today, the issue seems to be not a lack of proposed standard protocols for VoIP
but their proliferation. There are three general protocol stacks that can be used for
VoIP. These are shown in Figure 30.9.

Note that the third stack combines two methods known as the Multimedia Gateway
Control Protocol (MGCP) and Megaco/H.248 into a single stack. The two are similar
enough to allow this.

However, things are not as bad as they might seem at fi rst. All three of the signaling
protocols could have a role in the “converged” VoIP architecture of Internet and PSTN.
Before we see how this is possible, let’s take a look at each of the protocols in turn.

748 PART VII Media

H.225
RAS

H.225
Call

Status

H.245
Control

UDP TCP

IP

Data Link

Physical Media

H.323 Signaling Stack SIP Signaling Stack

UDP TCP

SIP

IP

Data Link

Physical Media

MGCP
Megaco/H.248

UDP

IP

Data Link

Physical Media

MGCP, Megaco/H.248
Signaling Stack

FIGURE 30.9

Three VoIP signaling architectures.

H.323, the International Standard
The H.323 signaling protocol framework is the international telephony standard for
all telephony signaling over the packet network (not just the Internet). When work on
H.323 began, the packet network most commonly mentioned for H.323 was X.25, then
ATM, and not the Internet. In a sense, H.323 doesn’t care—it’s just an umbrella term for
what needs to be done.

Like RTP, H.323 was designed for audio and video conferencing, not just point-to-
point voice conversations. A LAN with devices that support H.323 capabilities (H.323
terminals, which have many different subtypes) also has an H.323 multipoint control
unit (MCU) for conference coordination. The LAN includes an H.323 gateway to send
bits to other H.323 zones and an H.323 gatekeeper. The gatekeeper is optional, and is
needed only if the terminals are so underpowered they cannot generate or understand
H.323 messages on their own. (Most can, although H.323 is not trivial.) The H.323
gateway is essentially a router, but with the ability to support packetized voice to PSTN
connections (and the terminals are computers, of course).

The main H.323 signaling protocols used with VoIP are H.225 RAS (Registration,
Admission, and Status), which is used to register the VoIP device with the gatekeeper,
and H.255 CS (call status), which is used to track the progress of the call. The structure

CHAPTER 30 Voice over Internet Protocol 749

of a typical H.323 zone is shown in Figure 30.10. H.323 signaling uses both UDP and
TCP when run on an IP network, and uses RTP and RTCP for transport. Components
that are not strictly needed for VoIP are shown in italics.

H.323 supports not only audio and video conferencing but also data conferenc-
ing, where users can all see the same information on their PCs and changed data are
updated across the network. Cursors are usually distinguished by distinctive colors.

The trouble with H.323 was that it is complete overkill for VoIP. Data and video sup-
port are not needed for VoIP, and some wondered why H.323 was needed in VoIP at all
given its telephony roots and the hefty amount of power needed to run it. Maybe the
Internet people could come up with something better.

SIP, the Internet Standard
The Session Initiation Protocol (SIP), defi ned in RFC 3261, is the offi cial Internet sig-
naling protocol for IP networks. Each session can also include audio and video con-
ferencing, but right now SIP is mainly used for simple voice over the Internet. SIP is
a text-based protocol similar to HTTP and SMTP, uses multicast Session Description
Protocol (SDP) for the characteristics of the media, and is technically independent of
any particular packet protocol.

Both H.323 and SIP defi ne mechanisms for the formal processes of call signaling,
call routing (the path the voice bits will follow), capabilities exchange (the bit rate that
should be used), and supplementary services (such as collect calling). However, SIP
attempts to perform these functions in a more streamlined fashion than H.323.

H.323
Gatekeeper

H.323
Terminal

(user)

H.323
Terminal

(user)

H.323
Terminal

(user)

H.323
Multipoint

Control Unit

H.323
Gateway

Internet, PSTN, LAN, or B-ISDN

FIGURE 30.10

H.323 zone components. (Optional components are shown in italic.)

750 PART VII Media

VoIP combines the worlds of the telephony carriers (H.323) and the Internet (SIP).
Not surprisingly, both telephony carriers and Internet people see their way as the best
way for a unifi ed signaling protocol suitable for both environments.

The SIP architecture is client–server in nature, as expected, but with adaptation for
the peer-to-peer nature of telephony. The main SIP components are the user agent (the
“endpoint” device), the “intermediate servers” (which can be proxy servers or redirect
servers), and the registrar.

Proxy servers forward SIP requests from the user agent to the next SIP server or
user agent and retain accounting and billing information. User agents can be clients
(UACs) when they send SIP requests, and servers (UASs) when they receive them. SIP
redirect servers respond to client requests and tell the UACs the requested server’s
address.

The SIP registrar stores information about user agents, such as their location. This
information is not maintained or accessed by SIP, but by a separate “location service”
that is still part of the SIP framework. SIP is fl exible enough to support stateless requests
or to remember them, and is not tied to any one directory method to locate SIP users
and components.

The general SIP architecture is shown in Figure 30.11. The only piece that is missing
is the registrar, which takes the SIP register request information and uses it to update
the information stored in the location server. The fi gure shows the sequence of SIP
requests and responses to establish a session (call). The details of each step are beyond
the scope of this chapter, but the point is that a lot of messages are required to com-
plete the call. Once the called party is found and alerted in Step 8, however, the call is
quickly completed from proxy to proxy and back to the calling party.

SIP Redirect
Server

SIP
Proxy

12 11

4 7

5, 6

10

9
8

1

2

SIP User
Agent

(calling party)

SIP User
Agent

(calling party)

SIP
Proxy

SIP
Proxy

Location
Server

Request Response Non-SIP

IP Network

FIGURE 30.11

SIP session initiation steps.

CHAPTER 30 Voice over Internet Protocol 751

There are six basic types of SIP requests.

1. Invite—Start a session.
2. ACK—Confi rms that the client has received a fi nal response to an invitation.
3. Options—Provides capabilities information, such as voice bit rates supported.
4. BYE—Release a call.
5. Cancel—Cancel a pending request.
6. Register—Sends information about a user’s location to the SIP registrar server.

SIP responses follow the familiar three-digit codes used in many other TCP/IP
protocols. The major response categories in SIP follow:

■ 1xx Provisional, used for searching, ringing, queuing, and so on
■ 2xx Success
■ 3xx Redirection, forwarding
■ 4xx Server failure
■ 5xx Global failure

SIP even allows PSTN signaling messages (packets) to use the Internet to set up
calls that use the PSTN on both ends, so telephony carriers can send calls directly over
the Internet. This version of SIP is called SIP-T (SIP for Telephony).

MGCP and Megaco/H.248
It’s one thing to describe a network of media gateways leading to the PSTN (as in
H.323), or a series of servers that relay call setup packets across the Internet, as in SIP.
But these elements do not function independently, despite the fact that H323 Media
gateways and SIP proxy servers are on the customer premises and on LANs. If VoIP
must handle the most general situations with endpoints anywhere on the Internet or
PSTN, some type of overall control protocol must be developed.

That’s what the Media Gateway Control Protocol (MGCP) is for. Despite the H.323
terminology, MGCP was defi ned in RFC 2705 as a way to control VoIP gateways from
“external call control elements.” In other words, MGCP allows the service providers
(telephony carriers or ISPs) to control the VoIP aspects of the customer’s network,
whether it uses H.323 or SIP. These control points are known as call agents, and MGCP
only defi nes how a call agent talks to the media gateway—not how the call agents talk
to each other. Call agent communication uses H.323 or SIP, so this is not a limitation.

The terminology for all of these signaling protocols is starting to get confusing. Let’s
back up and see what we’ve got so far.

Media gateways—The H.323 component that handles all voice bits sent to and
from the “zone” (usually a LAN).

Proxy servers—The SIP components that handle requests for SIP-capable user
agents on the LAN.

752 PART VII Media

Call agents—The MGCP components that control the media gateways and can do
so over the Internet link itself.

But wait, didn’t SIP have a media gateway? No, SIP defi nes a signaling framework
that can tell you where the gateway is, but doesn’t include that device in its framework.
If you think about it, it all makes sense and all of the pieces are needed to make VoIP
as useful as possible.

The biggest clash is between parts of H.323 and SIP. You don’t need to have both
running on the “terminals” or “user agents,” no matter which terminology you use. How-
ever, many vendors are hedging their bets and supporting both H.323 and SIP right
now. The funny thing is that they usually don’t support MGCP.

How’s that? Well, MGCP was modifi ed into something called Megaco to make it
more palatable to the telephone carriers. Megaco was standardized as H.248, so the
result often appears as Magaco/H.248. The architecture of Megaco/H.248 is very simi-
lar to that of MGCP.

PUTTING IT ALL TOGETHER
How do H.323, SIP, and Megaco/H.248 relate to one another today? Well, they all have a
place in a VoIP network that can place or take calls to and from the PSTN and handle IP
transport of what appear to customers to be PSTN calls. Figure 30.12 shows the overall
architecture of such a converged VoIP network.

Media
Gateway
Control

(call agent)

Media
Gateway
Control

(call agent)

Media
Gateway

Media
Gateway

PSTN PSTN

SIP, H.323

MGCP,
Megaco/H.248

MGCP,
Megaco/H.248

Voice(media)
using RTP, RTCPSS7, ISDN,

CAS SS7, ISDN,
CAS

PCM Voice PCM Voice

VoiceSignaling

FIGURE 30.12

VoIP converged network architecture, showing how VoIP protocols can work together.

CHAPTER 30 Voice over Internet Protocol 753

We’ve seen ISDN and SS7 signaling before, and channel-associated signaling (CAS) is
used on aggregate circuits with many voice channels. Pulse code modulation (PCM) is a
common way to carry the voice bits on the PSTN. Therefore, the “upper” path through
the fi gure describes the signaling, and the “lower” path shows the “media” channel
using RTP and RTCP over the Internet (or private IP network).

754 PART VII Media

QUESTIONS FOR READERS
Figure 30.13 shows some of the concepts discussed in this chapter and can be used to
answer the following questions.

1. What are the four types of “voice” carried by VoIP?

2. In the fi gure, is wincli2 sending (talking) or receiving (listening)?

3. Which UDP port is the client using for the call?

4. Which international standard protocol is used to set up the stream?

5. Which voice coding standard is used for the “data” in the voice packet?

FIGURE 30.13

Frame 282 using RTP captured from a VoIP call.

755

AA Authoritative Answer
AAAA IPv6 DNS record
ABR Area Border Router
ACD Automatic Call Distribution
ACELP Algebraic-Code-Excited Linear Prediction
ACK Acknowledgment
AD Active Directory
ADPCM Adaptive Differential Pulse Code Modulation
ADSL Asymmetric Digital Subscriber Loop
AF Address Family
AFI Address Family Identifi er (RIP); Authority and Format Identifi er (IS–IS)
AfriNIC African Network Information Center
AH Authentication Header
AIX Advanced Interactive Executive (IBM’s Unix)
AMI Alternate Mark Inversion
ANS Advanced Network Service
ANSI American National Standards Institute
AOL America On-Line
API Application Program Interface
APNIC Asian Pacifi c Network Information Center
APPC Advanced Program-to-Program Communications
APPN Advanced Peer-to-Peer Networking
ARIN American Registry for Internet Numbers
ARP Address Resolution Protocol
ARPA Advanced Research Projects Agency
AS Autonomous System
ASBR Autonomous System Boundary Router
ASCII American Standard Code for Information Interchange (IA-5)
ASIC Application Specifi c Integrated Circuit
ASM Any Source Multicast
ASN.1 Abstract Syntax Notation 1
ASP Active Server Page
AT Advanced Technology
ATM Asynchronous Transfer Mode
ATT Attach segment
AUI Attachment Unit Interface
AUP Acceptable Use Policy
AUX Auxiliary

BBN Bolt, Baranek, and Newman, Inc.
BBS Bulletin Board System
BDR Backup Designated Router
BECN Backward Explicit Congestion Notifi cation
BER Bit Error Rate
BGP Border Gateway Protocol
BIND Berkeley Internet Name Domain
BIOS Basic Input/Output System
B-ISDN Broadband Integrated Services Digital Network
BITNET Because It’s Time Network

List of Acronyms

758 List of Acronyms

BITS Bump in the Stack
BITW Bump in the Wire
BOOTP Bootstrap Protocol
BPSK Binary Phase Shift Keying
BRI Basic Rate Interface
BSD Berkeley Systems (or Software) Distribution

CA Certifi cate Authority
CABS Carrier Access Billing System
CAR Committed Access Rate
CAS Channel Associated Signaling
CBC Cipher Block Chaining
CBGP Confederation Border Gateway Protocol
CBT Core-Based Tree
CCITT Consultative Committee on International Telegraphy and Telephony (French

original)
CCS Common Channel Signaling
CD Call Disconnect; Collision Detection
CDMA Code Division Multiple Access
CDR Call Detail Record
CE Customer Edge
CED Called Station Identifi cation
CELP Code Excited Linear Prediction
CERN European Council for Nuclear Research
CGI Common Gateway Interface
CHAP Challenge Handshake Authentication Protocol
CIA Central Intelligence Agency
CIDR Classless Interdomain Routing
CIP Connector Interface Panel
CIR Committed Information Rate
CIX Commercial Internet Exchange
CLEC Competitive Local Exchange Carrier
CLI Command Line Interface
CLNP Connectionless Network Protocol
CLNS Connectionless Network Service
CLP Cell Loss Priority
CLV Code/Length/Value
CMIP Common Management Information Protocol
CMIS Common Management Information Services
CMOT Common Management Information Services and Protocol Over TCP/IP
CNAME Canonical Name
CNG Calling Number
CO Central Offi ce
CoS Class of Service
CPU Central Processing Unit
CRC Cyclical Redundancy Check
CRL Certifi cate Revocation List
CRM Customer Relationship Management
CS Call Status
CSLIP Compressed Serial Line Interface Protocol
CSMA Carrier Sense Multiple Access
CSNP Complete Sequence Number PDU
CSR Certifi cate Signing Request

List of Acronyms 759

CSRC Contributing Source Identifi er
CSU Channel Service Unit
CTI Computer Telephony Integration

DAM Diagnostic Acceptability Measure
DARPA Defense Advanced Research Project Agency
DC Direct Current; Demand Circuit
DCA Defense Communication Agency
DCE Data Circuit-terminating Equipment; Distributed Computing Environment
DD Database Description
DDDS Dynamic Delegation Discovery System
DDN Defense Data Network
DE Discard Eligible
DES Data Encryption Standard
DF Don’t Fragment
DHAAD Dynamic Home Agent Address Discovery
DHCP Dynamic Host Confi guration Protocol
DIS Designated Intermediate System
DNA Digital Network Architecture
DIX Digital, Intel, and Xerox Ethernet
DLCI Data Link Connection Identifi er
DLL Dynamic Link Library
DLP Data Link Protocol
DM Delta Modulation
DM Dense Mode
DME Distributed Management Environment
DMZ Demilitarized Zone
DNS Domain Name System
DNSSEC Domain Name System Security
DoD Department of Defense
DOS Disk Operating System
DPCM Differential Pulse Code Modulation
DR Designated Router
DRAM Dynamic Random Access Memory
DRT Diagnostic Rhyme Test
DS Digital Signal
DSAP Destination Service Access Point
DSL Digital Subscriber Line
DSP Digital Signal Processor
DSU Digital Service Unit
DTE Data Terminal Equipment
DTMF Dual Tone Multifrequency
DVMRP Distance Vector Multicast Routing Protocol
DWDM Dense Wavelength Division Multiplexing

EA External Attributes; Extended Address
EBGP External Border Gateway Protocol
ECC Error Correction Code
ECM Error Correction Mode
ECN Explicit Congestion Notifi cation
EGP Exterior Gateway Protocol
EIGRP Enhanced Interior Gateway Routing Protocol
EIR Excess Information Rate

760 List of Acronyms

EoF End of File
EoR End of Record
ES End System
ESMTP Extensions to Simple Mail Transfer Protocol
ESF Extended Superframe Format
ESP Encapsulating Security Payload
EUI Extended Unique Identifi er
EXEC Executive (mode)

FA Foreign Agent
FAQ Frequently Asked Questions
FCC Federal Communication Commission
FCS Frame Check Sequence
FDDI Fiber Distributed Data Interface
FDM Frequency Division Multiplexing
FE Fast Ethernet
FEB Forwarding Engine Board
FEC Forward Error Correction, Fast EtherChannel
FECN Forward Explicit Congestion Notifi cation
FEIP Fast Ethernet Interface Processor
FIN Final segment
FIX Federal Internet Exchange
FM Frequency Modulation
FPC Flexible PIC Concentrator
FQDN Fully Qualifi ed Domain Name
FRAD Frame Relay Access Device
FT Forwarding Table
FTAM File Transfer, Access, and Management
FTP File Transfer Protocol

GBE Gigabit Ethernet
GE Gigabit Ethernet
GEO Geosynchronous Earth Orbit
GFC Generic Flow Control
GGP Gateway-to-Gateway Protocol
GIF Graphics Interchange Format
GIP Gateway Interface Protocol
GLP Gateway Location Protocol
GPS Global Positioning System
GRE Generic Routing Encapsulation
GSM Global System for Mobile
GSTN Global Switched Telephone Network
GTLD Generic Top Level Domain
GUI Graphical User Interface

HA Home Agent
HDLC High-Level Datalink Control
HEC Header Error Control
HF High Frequency
HMAC Hashed Message Authentication Check
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol

IA Implementation Agreement; International Alphabet (ASCII is IA.5); Inter-Area
IAB Internet Activities Board; Internet Architecture Board

List of Acronyms 761

IANA Internet Assigned Numbers Authority
ICANN Internet Corporation for Assigned Names and Numbers
ICMP Internet Control Message Protocol
ICV Integrity Check Value
ID Identifi er
IDNS Internationalization of the Domain Name Space
IDRP Inter-domain Routing Protocol
IEEE Institute of Electrical and Electronics Engineers
IEN Internet Engineering Notes
IESG Internet Engineering Steering Group
IETF Internet Engineering Task Force
IGMP Internet Group Management Protocol
IGP Interior Gateway Protocol
IGRP Interior Gateway Routing Protocol
IKE Internet Key Exchange
ILEC Incumbent Local Exchange Carrier
IMAP Internet Mail Access Program
IMP Interface Message Processor
IN Intelligent Network
InARP Inverse Address Resolution Protocol
IOS Internetwork Operating System
IP Internet Protocol
IPLS IP-only LAN-like Service
IPSec IP Security
IRC Internet Relay Chat
IRR Internet Routing Registry
IRTF Internet Research Task Force
IS Information Systems
ISAKMP Internet Security Association and Key Management Protocol
ISATAP Intra-site Automatic Tunnel Addressing Protocol
ISBN International Standard Book Number
ISDN Integrated Services Digital Network
IS–IS Intermediate System to Intermediate System
ISN Initial Sequence Number
ISO International Organization for Standardization (ISO means “equal”)
ISP Internet Service Provider
IT Information Technology
ITU International Telecommunication Union
ITSP Internet Telephony Service Provider
ITU International Telecommunications Union
IVR Interactive Voice Response

JPEG Joint Photographic Experts’ Group

KB Kilobyte

L2F Layer 2 Forwarding
L2TP Layer 2 Tunneling Protocol
LAC L2TP Access Concentrator
LAN Local Area Network
LAPB Link Access Procedure Balanced
LAPD Link Access Procedure on the D-channel
LATA Local Access and Transport Area
LCD Liquid Crystal Diode

762 List of Acronyms

LCP Link Control Protocol
LDAP Lightweight Directory Access Protocol
LDP Label Distribution Protocol
LEC Local Exchange Carrier
LLC Logical Link Control
LNS L2TP Network Server
LOC Location
LPC Linear Predictive Coding
LS Link State
LSA Link State Advertisement
LSB Least Signifi cant Bit (Byte)
LSP Label Switched Path; Link State PDU

MAC Media Access Control
MAN Metropolitan Area Network
MAU Media Access Unit
MB Megabytes
MBGP Multiprotocol Border Gateway Protocol
MBONE Multicast Backbone
MC Multipoint Controller; Multicast
MCS Miscellaneous Control System
MCU Multipoint Control Unit
MD5 Message Digest 5
MED Multi-Exit Discriminator
MF More Fragments
MGCP Multimedia Gateway Control Protocol
MIB Management Information Base
MIME Multipurpose Internet Mail Extensions
M-ISIS Multicast IS–IS
MLD Multicast Listener Discovery
MN Mobile Node
MOSPF Multicast OSPF
MP-BGP Multiprotocol BGP (sometimes)
MPLS Multiprotocol Label Switching
MSDP Multicast Source Discovery Protocol
MSS Maximum Segment Size
MTA Mail Transfer Agent
MTU Maximum Transmission Unit
MUA Mail User Agent
MX Mail Exchange

NAP Network Access Point
NAPT Network Address Port Translation
NAT Network Address Translation
NBMA Non-Broadcast, Multi-Access
NCP Network Control Protocol
NCSA National Center for Supercomputing Applications
ND Neighbor Discovery
NDP Neighbor Discovery Protocol
NET Network Entity Title
NFS Network File System
NIC Network Interface Card/Network Information Center
NID Network Intrusion Detection

List of Acronyms 763

NLA Next Level Aggregator
NLRI Network Layer Reachability Information
NOC Network Operations Center
NSAP Network Service Attachment Point
NSF National Science Foundation
NSP Network Service Provider
NSSA Not-So-Stubby-Area
NVRAM Non-Volatile Random Access Memory
NVT Network Virtual Terminal

OACK Option Acknowledgment
OAM&P Operations, Administration, Maintenance & Provisioning
OC Optical Carrier
OFDM Orthogonal Frequency Division Multiplexing
OL OverLoad
ONC Open Network Computing
OSI Open Systems Interconnection
OSI-RM Open Systems Interconnection Reference Model
OSPF Open Shortest Path First
OUI Organizationally Unique Identifi er

P Provider
PAC PPTP Access Concentrator
PARC Palo Alto Research Center
PAT Port Address Translation
PC Personal Computer
PCG PFE Clock Generator
PCI Peripheral Component Interconnect
PCM Pulse Code Modulation
PD Packet Director
PDA Personal Digital Assistant
PDU Protocol Data Unit
PE Provider Edge
PFE Packet Forwarding Engine
PGM Pretty Good Multicast
PHP Penultimate Hop Popping
PIC Physical Interface Card
PIM Protocol Independent Multicast
PKI Public Key Infrastructure
PLCP Physical Layer Convergence Protocol
PLP Packet Layer Protocol
PNS PPTP Network Server
POP Point of Presence/Post Offi ce Protocol
POS Packet over SONET/SDH
PPDU Physical Protocol Data Unit
PPP Point-to-Point Protocol
PPPoE PPP over Ethernet
PPTP Point-to-Point Tunneling Protocol
PSDU Physical Layer Service Data Unit
PSH Push
PSNP Partial Sequence Number PDU
PSTN Public Switched Telephone Network
PTI Payload Type Indicator

764 List of Acronyms

PTR Pointer
PW Pseudo-Wire

QoS Quality of Service
QR Query Response

RA Routing Arbiter/Recursion Available (DNS)
RADIUS Remote Access Dial-In User Service
RAM Random Access Memory
RARP Reverse Address Resolution Protocol
RAS Registration, Admission, and Status
RD Recursion Desired
RE Routing Engine or Regular Expression
RFC Request for Comment
RIB Routing Information Base
RIP Routing Information Protocol
RIPE NCC Reséaux IP Européens Network Coordination Center
RISC Reduced Instruction Set Computing
ROMMON Read-Only Memory Monitor
RMON Remote Monitor
RP Rendezvous Point (PIM)/Responsible Person (DNS)
RPC Remote Procedure Call
RPF Reverse Oath Forwarding
RPT Rendezvous Point Tree
RQ Request
RR Route Refl ector (BGP)/Resource Records (DNS)
RRQ Read Request
RST Reset
RSVP Resource Reservation Protocol
RT Routing Table
RTCP Real-Time Control Protocol
RTMP Routing Table Maintenance Protocol
RTP Real-time Protocol or Reliable Transport Protocol (Cisco)
RTT Round Trip Time

SA Security Association
SAP Service Access Point/Session Announcement Protocol
SASL Simple Authentication and Security Layer
SCB System Control Board (M40)
scp secure copy
SDH Synchronous Digital Hierarchy
SDK Software Development Kit
SDLC Synchronous Data Link Control
SDP Session Description Protocol
SDU Service Data Unit
SFM Switching and Forwarding Module (M160)
SFTP Secure File Transfer Protocol
SGML Standard Generalized Markup Language
SHA Secure Hash Algorithm
SIG Signature
SIP Session Initiation Protocol
SKA Sender Keeps All
SKIP Simple Key Management for Internet Protocols
SLIP Serial Line Interface Protocol

List of Acronyms 765

SM Sparse Mode
SMDS Switched Multimegabit Data Services
SMI Structure of Management Information
S/MIME Multipurpose Internet Mail Extensions Security
SMTP Simple Mail Transfer Protocol
SNA Systems Network Architecture
SNAP Sub-Network Access Protocol
SNMP Simple Network Management Protocol
SNP Sequence Number PDU
SNPA Subnetwork Point of Attachment
SOHO Small Offi ce/Home Offi ce
SONET Synchronous Optical Network
SPF Shortest Path First
SPI Security Parameter Index
SPT Shortest Path tree
SRV Services
SS7 Signaling System 7
SSAP Source Service Access Point
SSB System Switching Board (M20)
SSH Secure Shell
SSM Source-Specifi c Multicast
SSRC Synchronization Source Identifi er
STP Signaling Transfer Point
SYN Synchronize

TACACS1 Terminal Access Controller Access Control Systems Plus
TC Truncated
TCP Transmission Control Protocol
TE Traffi c Engineering
TFTP Trivial File Transfer Protocol
TGZ tar and gzip
TLA Top Level Aggregator
TLI Transport Layer Interface
TLV Type/Length/Value
TLS Transparent LAN Service
ToS Type of Service
TTL Time To Live
TTY Teletype
TXT Text

UA User Agent
UAC User Agent Client
UAS User Agent Server
UDP User Datagram Protocol
UI Unnumbered Information
UIUC University of Illinois Urbana/Champaign
URG Urgent
URI Uniform Resource Identifi er
URL Universal (or Uniform) Resource Locator
URN Uniform Resource Name
UTP Unshielded Twisted Pair

VCI Virtual Channel Identifi er
VLAN Virtual Local Area Network

766 List of Acronyms

VLSM Variable-Length Subnet Masking
VoIP Voice over IP
VPI Virtual Path Identifi er
VPLS Virtual Private LAN Service
VPN Virtual Private Network
VPSN Virtual Private Switched Network
VPWS Virtual Private Wire Service
VRF Virtual Routing and Forwarding table
VTY Virtual Teletype

WAN Wide Area Network
WEP Wired Equivalent Privacy
WiFi Wireless Fiber/Wireless Fidelity
WRQ Write Request

XDR External Data Representation
XML eXtensible Markup Language

Books
Comer, Douglas E., The Internet Book, 4th ed., Pearson/Prentice Hall, 2007.

Comer, Douglas E., Internetworking with TCP/IP, Volume I: Principles, Protocols, and
 Architectures, 5th ed., Prentice Hall, 2006.

Comer, Douglas E., and David L. Stevens, Internetworking with TCP/IP, Volume II: Design,
 Implementation, and Internals, Prentice Hall, 1991.

Comer, Douglas E., and David L. Stevens, Internetworking with TCP/IP, Volume III: Client–Server
Programming and Applications, Prentice Hall, 1993.

Costales, Bryan, with Eric Allman, sendmail, 3rd ed., O’Reilly, 2002.

Donahoo, Michael J., and Kenneth L. Calvert, TCP/IP Sockets in C: A Practical Guide for
 Programmers, Morgan Kaufmann, 2001.

Doraswamy, Naganand, and Dan Harkins, IPSec, Prentice Hall PTR, 1999.

Doyle, Jeff, OSPF and IS–IS, Addison-Wesley, 2006.

Doyle, Jeff, Routing TCP/IP, Volume I, Cisco Press, Macmillan, 1998.

Doyle, Jeff, and Jennifer DeHaven Carroll, Routing TCP/IP, Volume II, Cisco Press,
Macmillan, 2001.

Forouzan, Behrouz A., TCP/IP Protocol Suite, 3rd ed., McGraw-Hill, 2006.

Goralski, Walter, Juniper and Cisco Routing, Wiley, 2002.

Goralski, Walter, ADSL and DSL Technologies, 2nd ed., McGraw-Hill, 2000.

Goralski, Walter, Introduction to ATM Networking, McGraw-Hill, 1995.

Goralski, Walter, SONET/SDH, 3rd ed., McGraw-Hill/Osborne, 2002.

Gredler, Hannes, and Walter Goralski, The Complete IS–IS Routing Protocol, Springer, 2005.

Greene, Barry Raveendran, and Philip, Smith, Cisco ISP Essentials, Cisco Press, 2002.

Hall, Eric A., Internet Core Protocols, O’Reilly, 2000.

Huston, Geoff, ISP Survival Guide, Wiley, 1999.

Kozierok, Charles M., The TCP/IP Guide, No Starch Press, 2005.

Kumar, Vineet, and Markku Korpi, and Senthil Sengodan, IP Telephony with H.323, Wiley, 2001.

Kurose, James F., and Keith W. Ross, Computer Networking: A Top-Down Approach Featuring
the Internet, 3rd ed., Pearson Addison-Wesley, 2005.

Loshin, Pete, Big Book of Border Gateway Protocol (BGP) RFCs, Morgan Kaufmann, 2000.

Lui, Cricket, and Paul Albitz, DNS and BIND, 5th ed., O’Reilly, 2006.

Naugle, Matthew, Illustrated TCP/IP: A Graphic Guide to the Protocol Suite, Wiley, 1999.

Nemeth, Evi, Garth Snyder, Scott Seebass, Trent R. Hein, et al., UNIX System Administration
Handbook, Prentice Hall PTR, 2001.

Perlman, Radia, Interconnections, 2nd ed., Addison-Wesley, 2000.

Pullen, J. Mark, Understanding Internet Protocols through Hands-On Programming,
Wiley, 2000.

Bibliography

Rhoton, John, Programmer’s Guide to Internet Mail, Digital Press, 2000.

Ruvalcaba, Zak, Build Your Own ASP.NET Website Using C# and VB.NET, Sitepoint, Victoria,
Australia, 2004.

Shah, Stave, and Soyinka Wale, Linux Administration: A Beginner’s Guide, 4th ed., McGraw-Hill/
Osborne, 2005.

Stallings, William, SNMP, SNMPv2, and CMIP, Addison-Wesley, 1993.

Stevens, W. Richard, TCP/IP Illustrated, Volume 1: The Protocols, Addison-Wesley, 1994.

Stevens, W. Richard, TCP/IP Illustrated, Volume 2: The Implementation, Addison-Wesley, 1995.

Stevens, W. Richard, TCP/IP Illustrated, Volume 3: TCP for Transactions, HTTP, NNTP, and the
UNIX Domain Protocols, Addison-Wesley, 1996.

Stewart, John W. III, BGP4, Addison-Wesley1999.

Tanenbaum, Andrew S., Computer Networks, 4th ed., Prentice Hall PTR, 2003.

Wood, David, Programming Internet Email, O’Reilly, 1999.

Zeltserman, David, A Practical Guide to SNMPv3 and Network Management, Prentice
Hall, 1999.

RFCs and Internet Drafts
All RFCs can be obtained from www.ietf.org/rfc.html

Internet drafts are available at www.ietf.org/ID.html

An interesting archive of expired drafts can be found at www.watersprings.org/pub/id/
index-all.html

Related Standards Documents
American National Standards Institute, Inc. (ANSI): www.ansi.org; 11 West 42nd Street,

New York, NY 10036

ITU-T (and CCITT) Recommendations
International Telecommunication Union General Secretariat, Sales Section: www.itu.int;

Place des Nations, CH1211, Gweneva 20, Switzerland; 141 22 730 5285

ETSI, ISO, and IEEE Documents
ETSI Infocentre—Interprets ITU-T standards for application in the European telecommunica-

tions environment. The website for downloads or purchase on paper or CD-ROM:
www.etsi.org; 06921 Sophia Antipolis, Cedex, France; 133(0)4 92 42 22

American National Standards Institute, Inc.: www.ansi.org; 1430 Broadway, New York, NY 10018

IEEE Standards Publications: www.ieee.org; (800) 678-IEEE or (908) 981-1393

768 Bibliography

6 to 4 tunnels, 255
10Base2, 87
10G-base-er (extended range), 88
100BaseT, 87
 Ethernet LANs, 62

A
Abrupt close, 292
Access charges, 338
Access control, 33
Access points (APs), 99–100
Active open, 56
Active Service Pages (ASP), 562, 570
 installation, 562
 pages, 563
Adaptive Service Physical Interface Card

(AS PIC), 692
 interface, 692
 internal interface supported by, 716
 traffi c match-up, 692
Address resolution, 36
 ICMPv6, 152, 153
 IPv6, 152–59
 Neighbor Discovery, 161–62
Address Resolution Protocol (ARP), 51, 58,

143–62, 165
 arriving request, 150
 ATM (ATMARP), 146
 example operation, 155–57
 exchange example, 157
 host to host, 146
 host to router, 146
 Illustrated Network, 144–45
 InARP, 146, 159
 IPv6 and, 159–62
 LANs and, 146–53
 layers and, 146
 Proxy, 157–58
 request and reply process, 156
 results, 143
 RARP, 146, 158
 router to host, 147
 router to router, 147
 scenarios illustration, 147
 tables, 146
 variations, 157–59
 WANs and, 158–59
 Windows XP reply capture, 150
 See also ARP cache; ARP messages

Administratively scoped addresses, 407
AfriNIC (African Network Information

Center), 138
Agent/manager model, 616
Agents
 object values, 618
 proxy, 617
 SNMP message/command acceptance, 627
 software, 616, 617, 621
 SSH, 640
AH. See Authentication header
Alternate host address message, 203
American National Standards Institute

(ANSI), 17
American Standard Code for Information

Interchange (ASCII), 17
Anonymous FTP, 519
Anycast
 addresses, 116–17
 one-to-many relationship, 488
Any-Source Multicast (ASM), 418
Apache Web server software, 562
 capture, 564, 583
 OpenSSL, 588
 SSL test certifi cate, 589
 “success” page, 564
APNIC (Asian Pacifi c Network Informa-

tion Center), 138
Application layer, 30, 41, 59–60
 interface, 52
 tasks, 41
 See also TCP/IP layers
Application programming interfaces

(APIs), 52
Applications
 layers and, 301–4
 multicast, 406, 407
 TCP/IP, 11, 41, 42–43
 UDP, 59
ARIN (American Registry for Internet

Numbers), 138
ARP cache, 143, 156
 entry deletion, 151
 Linux display of, 151
 Windows XP display of, 152
 See also Address Resolution Protocol
ARP messages, 153–55
 fi elds illustration, 154
 Hardware Size fi eld, 155

Index

ARP messages (cont’d)
 Operation fi eld, 155
 Protocol Size fi eld, 155
 Sender’s Ethernet Address fi eld,

155
 Sender’s IP Address fi eld, 155
 Target Ethernet Address fi eld, 155
 Target IP Address fi eld, 155
 Type of Hardware fi eld, 154
 Type of Protocol fi eld, 154
 uses, 163
 See also Address Resolution Protocol

(ARP)
ASN.1 (Abstract Syntax Notation version 1),

618
Asymmetric DSL (ADSL), 95
Asynchronous transfer mode (ATM), 18, 71,

85, 434, 438–41
 ATMARP, 146
 cell header, 439
 cell relay, 439
 connection identifi er, 440
 as international standard, 439
 logical links, 90
 switches, 442
 VCI, 159
 VPI, 159
Attributes, BGP, 393
 AGGREGATOR, 394
 AS_PATH, 394
 ATOMIC_AGGREGATE, 394
 CLUSTER_LIST, 395
 COMMUNITY, 394–95
 discretionary, 393
 list of, 393
 LOCAL_PREF, 394
 mandatory, 393
 MULTI_EXIT_DISC, 394
 NEXT_HOP, 394
 nontransitive, 393
 ORIGIN, 394
 ORIGINATOR_ID, 395
 transitive, 393
 type format, 399
 See also Border Gateway Protocol

(BGP)
Authentication, 594–95
 RIPv2, 361
 servers, 100, 585
 SMTP, 544–45
 SSH, 637–38
 SSH-AUTH, 644–45
 user, 585

Authentication header (AH), 713, 723–25
 Authentication Data fi eld, 725
 fi elds, 724–25
 ICV, 723
 Next Header fi eld, 724
 packet formats, 723
 Payload Length fi eld, 724
 Reserved fi eld, 724
 Sequence Number fi eld, 724
 SPI fi eld, 724
Authoritative servers, 487
Automatic IP addressing, 112
Automatic tunneling, 253
Autonomous system numbers (ASNs),

348–49
Autonomous systems (ASs), 332–34
 border routers (ASBRs), 332, 368, 369, 370
 multihomed, 389
 RIPng and, 345
 router connectivity, 333
Auxiliary port, 248
Avaya VoIP software, 738

B
Backbone routers, 246, 334
 architecture, 246
 running RIPng, 351
Backdoor links, 368
Backup Designated Router (BDR), 370–71
Bandwidth
 in protocol evolution, 3–6
 QOS, 327
Base64 encoding, 545
Beacon frames, 99
Berkeley Internet Name Domain (BIND),

497
Best match, 251
Bidirectional NAT, 687–89
 DNS procedure, 688–89
 illustrated, 688
 static mapping, 688
 See also Network address translation
Binary packet protocol, 643
Bindings, 143
Bit synchronization, 31
Blades, 244
BOOTP, 459, 468–72
 client broadcast, 468
 DHCP message comparison, 481
 fl exibility, 469
 implementation, 469
 messages, 469–71
 relay agents, 464, 471, 472

770 Index

 requests, 468
 servers, 459, 469
 vendor-specifi c area options, 471–72
 See also Dynamic Host Confi guration

Protocol (DHCP)
Bootstrap programs, 245
Border Gateway Protocol (BGP), 337,

379–401
 attributes, 393–95
 birth of, 387–88
 confi guration groups, 383
 confi guring, 382–84
 default behavior, 383
 EBGP, 382, 389–90
 extended communities, 388
 IBGP, 382, 389–90
 Identifi er, 390
 Illustrated Network, 380–81
 import policy, 385
 Internet and, 386–88
 Keepalive messages, 396
 MBGP, 392, 413, 447–48
 message header, 397
 message types, 396
 Multihop, 392
 next hops, 390
 NLRI, 382
 Notifi cation messages, 396, 399–400
 Open messages, 396, 397, 398
 as path vector protocol, 388–89
 route advertisement, 389
 routing policies, 384–86, 395–96
 as routing protocol, 379–86
 scaling, 395–96
 session growth, 395
 speakers, 389
 synchronizing, 391
 types of, 392–93
 universally reachable address level,

389
 Update messages, 396, 397–98
Border routers, 334
 AS, 368
 EGP, 387
Branches, 410
Bridges, 63
 connecting TCP/IP hosts, 64
 illustrated use, 69
 operation, 60
 as protocol independent devices, 64
 spanning tree, 63
Broadband ISDN (B-ISDN), 439
Broadband power line (BPL), 86

Broadcast domains, 58, 61, 116
 collision and, 62
Broadcast/multicast addresses, 116
Broadcasts, VLANs for cutting down, 67
Bus/broadcast topology, 31

C
Cable modems (CMODEMs), 85
Call agents, 753
Captive portal, 100
Carrier-sense multiple access with collision

avoidance (CSMA/CA), 100
Carrier-sense multiple access with collision

detection (CSMA/CD), 87, 101
Cascading style sheets (CSSs), 570
Cell relay, 439
Certifi cate authorities (CAs), 595
Certifi cate revocation lists (CRLs), 595,

603
Certifi cates
 Apache SSL test, 589
 Details tab, 590–91
 fi elds, 590
 private key, 591
 public key, 591
 security warning, 588
 self-signed, 595
 site, 589
 SSL and, 604
 tests, 589
 viewing, 589, 590
Certifi cate singing request (CSR), 604
Chained headers, 124
Challenge Handshake Authentication

Protocol (CHAP), 666
Checksum, 264, 266
Chunked encoding, 573
Cipher Block Chaining (CBC), 601
Cipher Suites, 599, 600
Classful IPv4 addresses, 114, 118
 concepts, 120
 default masks and, 128
 illustrated, 118
 See also IPv4 addresses
Classless interdomain routing (CIDR), 117,

131–35
 address grouping under, 132
 aggregation, 135
 contiguous IP addresses, 132
 in operation, 135
 prefi xes and addressing, 133–34, 135
 RFC, 132
Classless IP addresses, 119, 120

Index 771

Class of service (CoS), 327, 328
Clear text encryption, 638
Clients, 7, 8
 BOOTP broadcast, 468
 DNS, 463
 email, 538
 FTP, 304, 513, 519, 529
 SSH, 639
 VoIP, 738
Client–server model, 54, 55
 application implementation, 56
 peer-to-peer model versus, 55
 TCP/IP layers and, 55–57
Collocation facilities, 334
Command-line interface (CLI), 8, 11–12
Common Management Information Services/

Common Management Information
Protocol (CMIS/CMIP), 612

Communications
 layers, 22
 layers summary, 45
 termination of, 15
Community strings, 627
Compressed SLIP (CSLI), 85
Confederations, 337
Confi guration
 BGP groups, 383
 for DHCP use, 464
 multipoint, 31
 physical layer, 31
 point-to-point, 31
 router-by-router, 672–74
 SSH fi les, 640
 VPLS, 672–74, 679
Confi gured tunneling, 253
Congestion control, 275
 TCP, 294
 UDP, 275
Connection control, 40
ConnectionLess Network Protocol (CLNP)

packets, 372
Connectionless networks, 325–28
 comparison, 325
 QOS, 326–28
Connection-oriented networks, 325–28
 comparison, 325
 QOS, 326–28
Connections, 279, 324
 closing, 291–92
 control, 518, 522–23
 data, 521–24
 data transfer, 289–91
 establishment, 288–89

 FTP, 518, 521–24
 maximum segment size (MSS), 286
 on-demand, 279
 permanent, 279
 procedures, 287
 three-way handshake, 286
Console port, 248
Constrained path LSPs, 447
Contributing source identifi ers (CSRC),

746
Control connection, FTP
 in directory listing, 523
 FTP model, 522
 setup, 518
Convergence, 435–42
 desire for, 431
 on Metro Ethernet links, 435
 on TCP/IP, 441–42
Cookies, 570, 580–81
 issues, 581
 screening/rejecting, 581
 third-party, 581
 as Web state management, 580
 in Windows XP, 580
Core-based trees (CBT), 418
CS packets, 740
Customer-edge (CE) routers, 9, 47, 670
 CE0, 672, 716–18
 CE6, 676, 718–19
Cyclic redundancy check (CRC), 33, 103

D
Data connection, FTP, 521
 active mode, 524
 activity on, 524
 FTP model, 522
 illustrated, 523
 passive mode, 524
 See also File transfer protocol (FTP)
Data Encryption Standard (DES), 601
Datagrams, 55, 165, 259
 conversion errors, 203
 See also User Datagram Protocol (UDP)
Datagram sockets, 306
Data Link Connection Identifi er (DLCI), 159,

437, 438
Data link layer, 30, 32–35, 84–86
 forwarding, 34–35
 frames and, 83–84
 functions, 32–33
 illustrated, 32
 See also TCP/IP layers
Data rate, 31

772 Index

Data transfer
 connections, 289–91
 FTP, 521–24
 SSL, 601
 TCP, 289–91
Dead routers, 213
Decryption, 597–98
Deep inspection, 707
De facto standards, 16–17
Default gateways, 233
De jure standards, 16
Delayed duplicate, 291
Demultiplexing, 301–16
Dense-mode multicast, 410
Designated intermediate system (DIS), 375
Designated Router (DR), 370–71
Destination hosts, 229, 231
DHCPv6, 479–80
 operation, 480
 reasons for use, 479
 router advertisements and, 479–80
 servers, 480
 See also Dynamic Host Confi guration

Protocol (DHCP)
Dialog controllers, 41
Differentiate Services Code Point (DSCP),

169, 170
Diffi e-Hellman, 643
 pocket calculator, 643–44
 SSL use, 599
Digital signatures, 594, 598
Digital signature standard (DSS), 642
Digital subscriber line (DSL), 7–8, 85
 access multiplexer DSLAM, 79, 93–94, 95
 ADSL, 95
 encapsulation, 93–94
 evolution of, 90–96
 forms of, 94–96
 HDSL, 95
 as ISDN extension, 94
 ISDN (IDSL), 95
 links, 7, 78–81
 link setup screen, 80
 Lite (G.Lite), 95
 modulation techniques, 94
 PPP and, 86, 91–92
 protocol stacks, 94
 router log table, 81
 routers, 78, 79, 329
 symmetric (SDSL), 95
 types of, 95
 VDSL, 85, 95
 xDSL, 94

Dijkstra algorithm, 365
Direct delivery, 226
 MAC addresses and, 227
 packets on LANs, 230
 without routing, 230–31
 Windows and, 226
Distance Vector Multicast Routing Protocol

(DVMRP), 417
Distance-vector protocol, 354
Distance-vector routing, 355–56
 consequences, 357–58
 split horizon, 357
 triggered updates, 357–58
Distributed coordination function (DCF),

100
Distribution trees, 409
 branches, 410
 leaves, 409
 See also Multicast
DIX Ethernet, 87
DMZ, 708–10
 dual fi rewalls with, 709, 710
 multiple protection types, 709
 servers, 709
 uses, 708
 See also Firewalls
DNS and BIND (Liu), 506
DNSSec, 489, 496–97
 design, 497
 encryption and, 497
 specifi cations, 497
 See also Domain Name System (DNS)
Domain Internet Groper (dig), 497–98,

504
 feature bloat, 505
Domain Name Space
 resource records, 489
 root, 502
Domain Name System (DNS), 60, 483–507
 in action, 498–506
 authoritative servers, 487
 basics, 486–89
 BIND, 497
 cache poisoning, 497
 clients, 463
 concepts, 489–90
 correct functioning, 483
 delegation, 491–93
 dig, 497–98, 504
 entry update, 463
 glue records, 493
 hierarchy, 486–87
 hosts, adding, 490

Index 773

Domain Name System (DNS) (cont’d)
 host utility, 498
 Illustrated Network, 484–85
 iterative queries, 491
 local, 491, 492
 message format, 495
 message header, 496
 name servers, 489, 491
 nonauthoritative servers, 487
 nslookup utility, 497, 501
 in practice, 493–98
 public, 527
 query message, 495
 records, 499
 recursive queries, 490–91
 referral, 491–93
 resolver, 491
 resource records (RRs), 493–95
 response message, 495
 Security (DNSSec), 489, 496–97
 server log and reply, 500
 servers, 463, 486–87
 service providers, 493
 spoofi ng, 638
 theory, 489–93
 tools, 497–98
Dotted decimal notation, 119
Double Encryption, 666
Downstream interface, 409
DRAM, as working storage, 245
DSL. See Digital subscriber line
Dual protocol stacks, 252
Duplex mode, 32
Dynamic Delegation Discovery System

(DDDS), 569
Dynamic Host Confi guration Protocol

(DHCP), 79, 121, 207, 233, 459–81
 addresses on LAN2, 465–66
 addressing and, 462–68
 BOOTP message comparison, 481
 BOOTP relay agent use, 475
 design functions, 475
 DHCPACK messages, 478
 DHCPDECLINE messages, 477
 DHCPDISCOVER messages, 477
 DHCPINFORM messages, 478
 DHCPNAK messages, 478
 DHCPOFFER messages, 477
 DHCPRELEASE messages, 478
 DHCPREQUEST messages, 477
 discover message details, 467
 with dynamic IP addresses, 493
 fl ags fi eld, 476

 host direction to, 213
 Illustrated Network, 460–61
 message fl ow, 477
 message format, 476
 messages, 465, 466
 message types, 477–78
 multicast, 266
 network use, 466–68
 offer message details, 467
 operation, 475–78
 options fi eld, 476
 relay agent, 464–65
 routers and, 479–80
 sequence of messages, 477
 server confi guration, 462–64
 servers, 480
 Windows confi guration for, 464
 See also DHCPv6
Dynamic IP address assignment, 121
Dynamic link libraries (DLLs), 309, 310
Dynamic ports, 264, 271, 272
Dynamic Web pages, 573

E
ECN Congestion Explicit (ECT-CE), 169
Edge routers, 329, 334
Egress routers, 446, 451–52
Electronic Industries Association

(EIA), 17
Email, 535–57
 access and reading, 541–42
 architectures, 538–47
 clients, 538
 delivery of, 541
 evolution, 544
 headers and, 552–55
 home offi ce, 555
 Illustrated Network, 536–37
 Internet illustration, 539
 MAA, 538
 mailboxes, 538
 message composition, 541
 MTA, 538, 543
 POP3 access, 550–52
 processing, 541
 protocols, 542–44
 sending, 540–42
 submission of, 541
Embedded RP, 415
Encapsulating security payload (ESP), 713,

725–28
 ESP Authentication Data fi eld, 728
 fi elds, 726–28

774 Index

 header, 725
 IPv4 packet formats, 727
 IPv6 packet formats, 726
 Next Header fi eld, 728
 Padding fi eld, 728
 Pad Length fi eld, 728
 Payload Data fi eld, 726
 Sequence Number fi eld, 726
 SPI fi eld, 726
Encapsulation, 24, 28–29
 DSL, 93–94
 fl ow, 29
 sequence, 253
 wireless LANs, 82
Encoding
 base64, 545
 chunked, 573
 MIME, 548–49
Encryption, 598
 double, 666
 P2TP, 667
 public key, 595–98
End systems, 6, 26
End-to-end headers, 576
End-to-end protocols, 570
Enhanced IGRP (EIGRP), 355, 364–65
 as hybrid routing protocol, 365
 as IGRP redesign, 364
Enterprise-specifi c trap type, 626
Entities, 14
Error control, 40
Error correction, 15
Error detection, 15
Error messages, 177, 199
 all-0 unused byte, 198
 ICMP destination unreachable codes,

200
 ICMPv6, 209
 list of, 200
 See also ICMP messages
Ethereal, 13, 74
 capture summary, 50
 graphical interface, 75
 IPv6 traffi c display, 152
 protocol hierarchy statistics, 51
Ethernet, 71, 87
 DIX, 87
 evolution, 86–90
 frames, 74, 76, 79
 frame structure, 88
 interface, manual confi guration, 330
 LAN switches, 9, 33
 links, 72–73

 MIB, 621, 622
 traffi c display, 74–76
 transparent bridging, 63
Ethernet II, 88
Experimental RFCs, 20
Explicit-Congestion-Notifi cation Capable

Transport (ECT), 169
Extensible MIB, 622
Extension Headers, 184
Exterior BGP (EBGP), 382, 389–90
 NLRI, 391
 sessions, 389
 See also Border Gateway Protocol

(BGP)
Exterior Gateway Protocol (EGP), 386
 border routers, 387
 Internet and, 386–87
External Data Representation (XDR)

standard, 531

F
Fast packet switching, 435
Fastream NETfi le FTP server, 516
Federal Communications Commission

(FCC), 18
Fiber Distributed Data Interface (FDDI), 85
File transfer
 Ethereal capture, 13
 FTP commands for, 529
 FTP for, 512, 526
 with GUI, 11
 to routers, 10–11
 types, 526
 for user information, 530
File Transfer Protocol (FTP), 10, 43, 59,

509–31
 active mode, 509, 525
 anonymous, 519
 application-level operation, 513
 basics, 518–19
 block mode, 527
 CLI, 529
 client implementations, 513
 client process, 304
 client programs, 519
 client software, 529
 CLI versions, 512
 commands, 519–21, 527–31
 commercial implementations, 530
 compressed mode, 527
 control connection, 518, 521, 522, 523
 conversation, 521
 data connection, 521, 522, 523

Index 775

File Transfer Protocol (cont’d)
 data transfers, 521–24
 features, 514
 fi le-structure, 526
 fi le transfer types, 526
 FreeBSD, 512
 GUI implementations, 529, 530
 GUIs and, 516–27
 Illustrated Network, 510–11
 Linux and, 514
 model, 521
 passive command, 513
 passive mode, 509, 513, 525
 passive with FreeBSD, 515
 passive with Linux, 515
 ports, 518
 record-structure, 527
 remote access for, 10
 reply codes, 520–21
 RFCs, 518
 servers, 304, 519
 sessions, 297, 520
 sockets applied to, 305
 SONET, 32
 SSH and, 647
 stream mode with fi le-structure, 527
 stream mode with record-structure, 527
 TCP and, 296–98
 TFTP comparison, 472–73
 three-way handshake, 297
 transmission mode, 527
 Web browsers and, 516, 517, 518
FileZilla, 516, 517
Firewalls, 664, 697–711
 appliance general architecture, 707
 appliances, 700, 705
 application proxy, 706
 dedicated, 697
 design advantages/disadvantages, 710
 DMZ, 708–10
 functions, 700–705
 hardware, 700, 705
 ICMP messages and, 195
 Illustrated Network, 698–99
 packet fi lters, 700–701, 706
 as router packet fi lter, 700–701
 software, 700, 705
 stateful inspection, 701–5, 706–8
 types of, 705–10
Flow caching, 124
Flow control, 40, 274
 confusion, 275
 implementation, 292

 TCP, 292–94
 UDP, 274–75
Forwarding, 217, 237–57
 hardware-based, 243
 Illustrated Network, 238–39
 Linux, 243
 reverse-path, 411–13
 software-based, 243
Forwarding tables, 217, 220, 246, 330
 location, 247
 longest match, 250
 lookups, 249–51
Fragmentation, 36, 168
 example, 177–82
 fi elds, 176, 179
 IPv4 and, 172–77
 IPv6 and, 184–86
 path MTU determination and, 176–77
 as processor intensive, 176
 reassembly and, 176
Fragmentation Header fi elds, 186
Frame addressing, 82
Frame relay, 71, 85, 159, 434, 435–38
 frames, 437
 problems, 438
 today, 438
 as X.25 on steroids, 436
Frames, 74
 beacon, 99
 Ethernet, 74, 76, 79
 fi ltering, 63
 fl ooding, 63
 forwarding, 63
 frame relay, 437
 hop-by-hop forwarding, 34
 IEEE 802.3, 88
 link layer and, 83–84, 204
 multicast and, 420–21
 PPP, 93
 SONET, 32, 97
 T1, 32
 types, 83–84
Frame tagging, 66
 VLAN, 66–68, 671
FreeBSD
 fl ags, 223
 FTP, 512, 515
 routing tables and, 329–30
 servers, 498
FTP. See File Transfer Protocol
FTP commands, 519–21, 527–31
 client implementation, 528
 for fi le server access, 528

776 Index

 for fi le transfer, 529
 for remote server fi le management, 528
 for transfer parameters, 529
 See also File transfer protocol (FTP)
Full-duplex mode, 32
Fully qualifi ed domain names (FQDNs), 486

G
Gateways, 7, 8, 222, 329
 default, 233
 residential, 78
 See also Routers
Generic Routing Encapsulation (GRE), 662
 interfaces, 241
 tunnels, 255
Generic top-level domains (GLTD), 502
Gigabit Ethernet (GE), 61, 87
 frames, 89
 links, 7, 67
Gigabit Ethernet Passive Optical Network

(GE-PONS), 85–86
Glue records, 493
Graphical user interface (GUI), 11–12
 example use, 11–12
 fi le transfer with, 11
 FTP and, 516–27
Groups, multicast, 410

H
H.323 standard, 749–50
 signaling stack, 749
 support, 750
 zone components, 750
Half-duplex mode, 32
Handshaking, 15
Hardware addresses, 118
Hardware-based fabric, 246
Hardware-based forwarding, 243
 routers, 247
 switching fabric, 246, 247
 See also Forwarding
Hardware fi rewalls, 700, 705
Headers
 chained, 124
 end-to-end, 576
 hop-by-hop, 576–77
 pseudo, 266–69, 297
 UDP, 267–68
 See also IPv4 packet headers; IPv6 packet

headers; TCP headers
Headers, email
 added after email creation, 554
 characteristics, 552–53

 fi elds, 552–53
 message path, 554–55
Headers, HTTP, 576–77
 entity headers, 579–80
 general, 577
 Last-Modifi ed, 580
 request, 577–78
 response headers, 578–79
 See also Hypertext Transfer Protocol

(HTTP)
Hidden terminal problem, 100, 101
High-level Data Link Control (HDLC), 436
High-speed DSL (HDSL), 95
Home offi ce email, 555
Hop-by-hop forwarding, 34
Hop-by-hop headers, 576–77
Hosts, 6
 addresses, 121
 bridges connecting, 64
 dead, 213
 destination, 229, 231
 Linux, 224
 multicast, 415
 NICs, 231
 routing tables, 222–26, 328–32
 source, 229
 in TCP/IP networks, 14
 Windows, 224
Host-to-host tunnels, 253, 254
Host-to-router tunnels, 253, 254
Host utility, 498
Hypertext Markup Language (HTML), 559,

570
Hypertext Transfer Protocol (HTTP), 42, 60,

547, 559–83
 Apache capture, 564
 caching/proxying support, 571
 capture, 563
 chunked encoding, 573
 commands, 575
 content negotiation, 571
 end-to-end headers, 576
 entity headers, 579–80
 evolution of, 570–71
 exchange, 562
 general headers, 577
 generic message format, 572
 headers, 573, 576–77
 hop-by-hop headers, 576–77
 HTTP 0.9, 569, 570
 HTTP 1.0, 569–70
 HTTP 1.1, 570, 571
 Illustrated Network, 560–61

Index 777

Hypertext Transfer Protocol (cont’d)
 methods, 575–76
 model, 571–72
 multiple host name support, 571
 partial resource selection, 571
 persistent connections, 571
 pipelining, 571
 request headers, 577–78
 request message, 574
 requests, 573–75
 response headers, 578–79
 response message, 574
 responses, 573–75
 security, 571
 status codes, 576

I
ICMP messages, 57
 alternate host address, 203
 Checksum fi eld, 198
 Code fi eld, 197–98
 codes, 198–203
 Destination Unreachable, 198
 Echo reply, 196
 Echo request, 193
 error, 177, 198, 199–201
 fi elds, 197–98
 fi rewalls and, 195
 format, 196–203
 format illustration, 197
 IPv4 packets carrying, 193
 must be sent, 204
 must not be sent, 204
 in path MTU discovery, 206–8
 presence of, 204
 query, 201–2
 router advertisement, 203
 sending, 203–4
 solicitation, 203
 suite, 198
 traceroute, 203
 Type fi eld, 197
 types, 198–203
 See also Internet Control Message

Protocol (ICMP)
ICMPv4, 208
ICMPv6, 152, 153, 196, 208–13
 autoconfi guration, 211–12
 changes, 208–9
 Destination Unreachable message, 210
 Echo Request and Reply messages, 211
 error messages, 209

 message formats, 209
 messages, 209–11
 multicast packets, 428
 neighbor discovery, 211–12
 Neighbor Solicitation messages, 213
 Packet Too Big message, 210
 Parameter Problem message, 211
 Time Exceeded message, 210
IEEE 802.11, 98–104
 CRC frame, 103
 duration byte, 103
 frame, 102–4
 frame control, 102, 103
 frame structure, 102
 IBSS, 98
 MAC addresses, 103–4
 MAC layer protocol, 100–101
 MAU, 87
 payload fi eld, 103
 sequence control fi eld, 103
 SSID, 99
 variations, 87
 Wi-Fi, 98–100
IEEE 802.3, 84, 87
 compliant-hardware, 90
 CSMA/CD frame, 88
 IEEE 802.3ae, 88
 MAU, 87
IEEE 1394, 85
IGPs. See Interior gateway protocols
Illustrated Network, 7–14
 ARP, 144–45
 BGP, 380–81
 connections, 72–73, 74–84
 DHCP, 460–61
 DNS, 484–85
 DSL link display, 78–81
 email, 536–37
 fi rewalls, 698–99
 forwarding, 238–39
 frames and link layer, 83–84
 FTP, 510–11
 ICMP, 190–91
 internetworking, 48–49
 IP addressing, 110–11
 IPSec, 714–15
 IPv4/IPv6 headers, 166–67
 MPLS, 432–33
 multicast, 404–5
 NAT, 682–83
 protocol stacks, 50–51
 routers, 9, 346–47

778 Index

 routing, 218–19
 routing tables, 322–23
 SNMP, 610–11
 sockets, 302–3
 SONET link display, 76–78
 SSH, 634–35
 SSL, 586–87
 TCP, 280–81
 UDP, 260–61
 VLANs, 660–61
 VoIP, 736–37
 VPLS, 673
 Web servers, 560–61
 Web sites, 586–87
 wireless link display, 81–83
In-band management, 248
Independent basic service set (IBSS), 98
Indirect delivery, 229
 packet destination address, 232–33
 router and, 231–34
Informational RFCs, 20
Ingress routers, 446, 450
Institute of Electrical and Electronics

Engineers (IEEE). See IEEE 802.11;
IEEE 802.3

Integrated Information Services (IIS),
562

Integrated Services Digital Network (ISDN),
85, 90

 DSL as extension, 94
Integrity, 593–94
Integrity check value (ICV), 723
Inter-Domain Routing Protocol (IDRP), 379
Interface addresses, 212–13
Interfaces, 27–28
 application layer, 52
 GRE, 241
 for packets, 84
 routers, 233–34
 TCP/IP application, 11
Interior BGP (IBGP), 382, 389–90
 full mesh, 392
 need for, 390
 peers, 391
 sessions, 389
 uses, 389
 See also Border Gateway Protocol (BGP)
Interior gateway protocols (IGPs),

342, 345
 bootstrapping themselves, 354
 next hops, 390
 shortcuts, 447
 types of, 354

Interior Gateway Routing Protocol (IGRP),
355

 Enhanced (EIGRP), 355, 364–65
 RIP improvement, 365
Intermediate device control, 638
Intermediate System–Intermediate System

(IS–IS), 345, 354
 areas, 374
 attraction, 373
 backbone area, 373
 DIS, 375
 IPv6, 376
 as link-state protocol, 354
 LSP handling, 375
 metrics, 375
 M-ISIS, 413
 network addresses, 375
 network types, 375
 OSPF and, 373–74
 OSPF differences, 374–75
 OSPF similarities, 374
 route leaking, 374
 routers, 373
Intermediate systems, 6
 as TCP/IP device category, 26
Internal representation conversion,

41–42
International Standards Organization (ISO),

17–18
International Telecommunications Union -

Telecommunications sector (ITU-T),
18

Internet
 administration, 21–22
 autonomous system and, 332–34
 backbone routers, 246
 connectivity check, 195
 drafts, 18, 19, 21
 standards, 18, 20
 today, 334–36
 zones, 489
Internet Architecture Board (IAB), 22
Internet Assigned Numbers Authority (IANA),

421
Internet Control Message Protocol (ICMP),

189–215
 Destination Unreachable codes, 200
 Destination Unreachable errors, 199, 201
 Illustrated Network, 190–91
 IP packets, 165
 packets, 193
 ping and, 192–96
 round-trip time, 192

Index 779

Internet Control Message Protocol
(cont’d)

 sequence numbers, 192
 time-exceeded errors, 199
 See also ICMP messages
Internet Corporation for Assigned

Names and Numbers (ICANN), 22,
36

Internet Engineering Task Force (IETF),
18

 working groups, 22
Internet exchange points (IXPs), 334
 linking, 336
 running of, 334
Internet Group Management Protocol

(IGMP), 416–17
 backward compatibility, 416
 messages, 204
 multicast group, 408
 versions, 416–17
Internet key exchange (IKE), 713, 719,

728–29
 ISAKMP, 728, 729
 OAKLEY, 729
 protocols, 728–29
 SKEME, 729
Internet Message Access Protocol (IMAP),

542
Internet Network Information Center

(InterNIC), 22
Internet Research Task Force (IRTF), 22
Internet Security Association and Key

Management Protocol (ISAKMP),
728, 729

Internet service providers (ISPs)
 chained, 334
 grid-net, 334, 338
 peering arrangements, 334–35, 339
 peer selection, 340–42
 router/routing protocol use, 319
Internet Society (ISOC), 21
Internetworking, 47
 Illustrated Network, 48–49
Interoperability, 16
Intra-site Automatic Tunnel Addressing

Protocol (ISATAP) tunnels, 255
Inverse ARP (InARP), 146, 159
IP addressing, 36, 112–17
 anycast, 116–17
 assignment, 138–40
 automatic, 112
 broadcast/multicast, 116
 duplicate, 213

 dynamic assignment, 121
 host, 121
 Illustrated Network, 110–11
 packet headers and, 168–70
 private, 121
 public, 120
 static assignment, 121
 unicast, 116
IP layer, 57–58, 165
IP mapping, 44
IPoFW IP over Firewire, 85
IPSec, 665, 713–31
 in action, 716–19
 AH, 713
 BITS, 720
 BITW, 720
 endpoints, 719
 ESP, 713
 IKE, 713, 719
 Illustrated Network, 714–15
 implementation, 719–21
 introduction to, 719–21
 RFCs, 719
 routers and, 721
 SPI, 203
 support components, 719
 topology, 717
 transport mode, 721
 tunnel mode, 721
 tunnels, 717, 718
IP source routing, 638
IP spoofi ng, 638
IPv4
 browsers, 251
 dual protocol stacks, 252
 ESP packet formats, 727
 fragmentation and, 172–77
 fragmentation example, 177–82
 limitations, 179
 multicast, 406–8
 Options, 179
 ping and, 193–95
 routing tables, 221
 transition to IPv6, 256
 tunnels, 255
 UDP pseudo-header, 268
IPv4 addresses, 50, 118–23
 ARP, 58
 classful, 114, 118, 120
 classless, 119, 120
 dotted decimal notation, 119
 formats, 122, 141
 illustrated, 118

780 Index

 Linux assignment, 113
 multicast, 420, 421–23
 overview, 109
 private, 121, 122
 protocol fi eld, 51
 public, 120, 121
 special forms, 123
 subnetting and, 127–31
 understanding, 122–23
IPv4-compatible IPv6 address, 256
IPv4-mapped IPv6 address, 256
IPv4 packet headers, 170–79
 Ethereal interpretation of fi elds,

169
 fi elds, 168, 169
 Flags fi eld, 171
 Fragment Offset fi eld, 171
 Header Checksum fi eld, 172
 Header Length fi eld, 171
 Identifi cation fi eld, 171
 illustrated, 170
 Illustrated Network, 166–67
 IPv6 header comparison, 182–84
 multicast, converting, 421
 Options fi eld, 172
 Padding fi eld, 172
 Protocol fi eld, 172
 Source and Destination Address fi eld,

172
 Total Packet Length fi eld, 171
 ToS fi eld, 171
 TTL fi eld, 172
 Version fi eld, 171
IPv6
 AH packet formats, 723
 ARP and, 159–62
 core routers, 139
 dual protocol stacks, 252
 ESP packet formats, 726
 fragmentation and, 184–86
 Fragmentation Header fi elds, 186
 FTP passive command and, 515
 IS–IS for, 376
 multicast, 427–28
 multicast groups, 160
 NAT and, 684
 OSPFv3 for, 372
 ping and, 195–96
 router announcements, 406
 routers, 212
 routing tables, 221, 332
 transition to, 251, 256
 tunnel-addressing format, 254

 tunnels, 254
 UDP pseudo-header, 268, 269
IPv6 addresses, 123
 address allocation, 139
 address discovery options, 124
 address resolution, 152, 162
 address type, 126
 address types and notation, 125–26
 assignment, 138–40
 chained headers, 124
 details, 135–40
 Ethereal capture and display, 152
 features, 123–25
 fl ow caching, 124
 formats, 136–37, 141
 future of, 109
 header compression and extension,

124
 hexadecimal notation for, 119, 125
 interface, 212–13
 LAN interface, 114
 link-local, 7, 127, 136
 local use, 136
 multicast, 213, 423–24
 multicast, format, 424
 neighbor discovery and address

resolution, 162
 prefi xes, 126–27
 prefi x masks, 137
 private, 127
 provider based, 136
 provider independent, 126, 136
 routable, 349
 router-assigned prefi xes, 113
 routing, 135
 site-local, 126–27
 size increase, 124
 support, 114–15
 transition to, 125
 ULA-L, 137
 unique local-unicast, 127
 use of, 123
IPv6-only address, 256
IPv6 packet headers, 179–82
 64-bit units, 183
 changes, 183–84
 Extension Headers, 184
 Flow Label fi eld, 181, 183
 Hop Limit fi eld, 182
 illustrated, 181
 Illustrated Network, 166–67
 IPv4 header comparison, 182–84
 Next Header fi eld, 182

Index 781

IPv6 packet headers (cont’d)
 Payload Length fi eld, 181, 183
 Traffi c Class fi eld, 181
 Version fi eld, 181
ISDN DSL (IDSL), 95
ISPs. See Internet service providers

J
Java Applets, 570
Java sandbox, 706
Jitter, 742, 743
Juniper Network routers, 237, 241, 246
 DHCP relay agent, 464–65
 enabling SNMP on, 612
 stateful inspection, 702

K
Keepalive message, BGP, 397
Keepalive packets, 78
Kerberos, 514
Key exchange, 643, 644, 652

L
Label Distribution Protocol (LDP), 447
Label stacking, 444, 448–49
Label switched paths (LSPs), 446
 constrained, 447
 nested, 448
 path details, 452
 signaled, 446
 static, 446, 450–53
 traceroute and, 452–53
 traffi c engineering, 447
 VPNs and, 449
Label tables, 449
LACNIC (Latin American and Caribbean

Network Information Center), 138
Latency, 742
Layer 2 forwarding (L2F), 666
Layer 2 tunneling protocol (L2TP), 666, 667
 Access Concentrator (LAC), 662
 encryption, 667
 PPTP comparison, 668
Layer 2 VPNs (L2VPNs), 659, 671–72
 architecture, 671
 creation, 659
 MPLS-based, 672–76
 service delivery, 671
 variations, 671
 See also Virtual private networks (VPNs)
Layer 3 VPNs (L3VPNs), 442, 668–70
 complexity, 669
 connectivity, 669

 customer edge, 669–70
 provider edge, 670
 See also Virtual private networks (VPNs)
Layers, 22–25
 applications and, 301–4
 ARP and, 146
 combining, 24
 encapsulation, 28–29
 IP, 57–58, 165
 protocol, 24–25
 simple networking and, 23–24
 TCP/IP, 14, 25, 26–27, 30–41
 See also specifi c layers
Link Control Protocol (LCP), 92, 662
Link-local IPv6 addresses, 7, 113
Links
 backdoor, 368
 broken, 356–57
 DSL, 78–81
 external, 348
 internal, 348
 SONET, 76–78
 wireless, 81–83
Link-state advertisements (LSAs), 366,

373
Link states, 365–66
Linux
 ARP cache display, 151
 BSD style, 152
 fl ags, 224
 FTP and, 514
 FTP passive using, 515
 hosts, 224
 IP forwarding, 243
 IPv4 address assignment, 113
 Kerberos, 514
 routing tables and, 330–31
 sockets on, 311–16
Listeners, 409
Load balancing, 352
Local area networks (LANs), 7
 100BaseT Ethernet, 62
 ARP and, 146–53
 IEEE 802.11 and, 98–104
 individual address, 420
 linking, 47
 multicasting on, 420–21
 segmentation, 47, 61–62, 87
 subnetting, 130
 switches, 64–65
 virtual, 47, 58, 65–68, 671
 wireless, 82
Longest match, 250

782 Index

M
MAC addresses, 58, 75, 89–90
 all-zero, 149
 destination host, 231
 direct delivery and, 227
 frame IP and, 229
 interplay, 104
 NICs, 231
 wireless LAN frame, 89, 103–4
Mailboxes, 538
Mail user agents (MUAs), 535
Major components, 7
Management information bases (MIBs), 609,

620–22
 access fi eld, 621
 coding/implementing, 621
 compiler, 621
 as database description, 618
 defval fi eld, 621
 description fi eld, 621
 Ethernet, 621, 622
 extensible, 622
 fi elds, 620–21
 index fi eld, 621
 information structure, 618
 MIB-II, 618
 naming tree, 618
 object-code module, 621
 objects, 620
 private, 622–23
 reference fi eld, 621
 sample object defi nitions, 621
 SONET/SDH, 622
 status fi eld, 621
 syntax fi eld, 620
 trees, 620
 variables, 618
Management tasks, 10
Managers, 616
 console database, 617
“Man-in-the-middle” threat, 595
Manually confi gured tunnels, 255
Maximum segment size (MSS), 286
Maximum Transmission Units (MTUs), 112
 default sizes, 172
 fragmentation and, 175–76
 frame size, 234
 minimum size, 176
 path, 206–8
 path determination, 176–77
 small size, 174, 176
 typical sizes, 175

Media access control (MAC), 33
 IEEE 802.11 layer protocol, 100
 See also MAC addresses
Media gateways, 752
Megaco/H.248, 748, 749, 752–53
Memory
 DRAM, 245
 nonvolatile, 243
 packet, 245
 RAM and ROM, 243, 245
 routers, 243, 244
 volatile, 243
Message access agent (MAA), 538
Message delimiters, 15
Message digest, 594
Message formats, 15
Message transfer agent (MTA), 538, 543
Methods, HTTP, 575–76
Metrics
 IS–IS, 375
 netstat command and, 223
 OSPF, 366
 RIP, 355
 RIPv1, 359
 routing tables, 221
 Windows output, 226
Mobile IP, 203
Mobility, in protocol evolution, 3–6
MPLS. See Multiprotocol label

switching
MPLS-Enabled Applications (Minei and

Lucek), 659
Multicast, 266, 403–29
 administratively scoped addresses,

407
 applications, 406, 407
 concepts, 411–14
 dense-mode, 410
 in DHCP, 266
 downstream interface, 409
 frames and, 420–21
 groups, 160, 410
 hosts, 415
 IGMP group, 408
 Illustrated Network, 404–5
 IPv4, 406–8
 IPv6, 427–28
 on LANs, 420–21
 notation, 411
 one-to-many operation, 403
 packet capture, 407
 PGM, 416

Index 783

Multicast (cont’d)
 rendezvous point (RP) model, 414
 rendezvous-point tree (RPT), 414
 reverse-path forwarding, 411–12
 RIP use, 350
 RIPv2, 362
 routers, 409, 415–16
 routing loops and, 409
 RPF table, 412–13
 shortest-path tree (SPT), 413–14
 sparse-mode, 410–11
 TCP/IP, 408
 terminology, 408–10
 upstream interface, 409
Multicast addresses, 421–24
 IPv4, 421–23
 IPv6, 423–24
 for protocols, 422
 ranges, 422, 423
 source addresses and, 421–22
Multicast Listener Discovery (MLD),

415, 417
Multicast Open Shortest Path First (MOSPF),

413, 417
Multicast protocols, 415–28
 ASM, 418–19
 CBT, 418
 characteristics, 418
 DVMRP, 417
 group membership, 416–17
 IGMP, 416–17
 MLD, 415, 417
 MOSPF, 417
 MSDP, 419–20
 PGM, 426
 PIM DM, 417
 PIM SM, 417–18
 routing, 409, 417–18, 426–27
 SSM, 418–19
 suite, 407
 support, 403
Multicast Source Discovery Protocol

(MSDP), 406, 419–20
Multihomed, 389
Multihop BGP, 392
Multimedia, in protocol evolution, 3–6
Multimedia Gateway Control Protocol

(MGCP), 748, 749, 752–53
Multiplexing, 39, 301–16
 need for, 301
 ports, 270
 SSH-CONN, 645
Multipoint confi guration, 31

Multiprotocol BGP (MBGP), 392, 413, 447–48
 backward compatibility, 448
 extensions, 447
Multiprotocol label switching (MPLS), 388,

442–53
 32-bit label fi elds, 444
 architecture, 444
 as BGP shortcut, 443
 domains, 446, 448
 egress router, 446, 451–52
 Illustrated Network, 432–33
 ingress router, 446, 450
 label stacking, 444, 448–99
 label values, 445
 LSP, 664
 management, 445
 rationale, 443
 reconfi guration, 445
 signaling and, 447–48
 static LSPs and, 450–53
 tables, 449–50
 terminology, 446–47
 traffi c engineering, 442
 transit router, 446, 450–51
 tunnels and, 442
 VPNs and, 449
Multipurpose Internet Mail Extensions

(MIME), 543, 547–50
 composite types, 548
 discrete types, 548
 encoding, 548–49
 entity headers and, 579
 media types, 548
 message, 548
 message example, 549–50
 security (S/MIME), 544
Multitasking, Windows, 310

N
Name servers, 491
 application interaction, 489
 referral queries to, 495
Negotiation of parameters, 15
Neighbor discovery
 ICMPv6 functions, 211–12
 routers and, 212
Neighbor Discovery Protocol, 160–61
 address resolution, 161–62
 Neighbor Advertisement message, 161, 162
 Neighbor Solicitation message, 160
 Router Advertisement message, 161
 Router Solicitation message, 161
Neighbor routers, 353

784 Index

Nested MPLS domains, 448
NetBIOS, 310
Netstat command
 lp option, 264
 metrics and, 223
 nr option, 223, 225, 329
 r option, 222
Network address translation (NAT), 525,

681–95
 in action, 691–94
 address types, 686
 advantages, 684–85
 bidirectional, 687–89
 device, 115
 disadvantages, 658
 FTP passive command and, 515
 Illustrated Network, 682–83
 IPv6, 137, 684
 overlapping, 690–91
 port-based, 689–90
 private address translation, 122
 translation, 693
 translational mappings, 686
 types of, 685–86
 unidirectional, 686–87
 using, 684–91
Network File System (NFS), 60, 530–31
 XDR standard, 531
Networking
 fi rst explorations in, 14
 layers and, 23–24
 visions, 91
Network interface cards (NICs), 231
Network intrusion detection (NID), 289
Network layer, 30, 35–38
 fragmentation, 36
 illustrated, 35
 MTUs and, 175–76
 routing, 324–25
 routing tables, 37
 source-to-destination delivery, 37
 switching, 324–25
 See also TCP/IP layers
Network layer reachability information

(NLRI), 382
Network Management Protocol, 617
Network operations centers (NOCs), 341,

609
Network processor engines (NPEs), 244
Networks
 addresses, 36
 connectionless, 325–28
 connection-oriented, 325–28

 host boundary, 117
 illustrated, 4–5
 link technologies, 71–105
 private, 71
 public, 71
 remote device access, 8–10
 router access, 248–49
Network Service Attachment Point (NSAP)

addresses, 126
Network Virtual Terminal (NVT), 42
Next hop, 233
 BGP, 390
 determination, 249
 identifi cation, RIPv2, 361–62
 IGP, 390
 RIPng, 364
 self, 391
Nodal processing delay, 742
Nonauthoritative servers, 487
Non-broadcast multiaccess (NBMA),

159
Nonrepudiation, 594, 603–4
Nonvolatile RAM (NVRAM), 243, 245
 startup-confi g, 245
Notifi cation message, BGP, 396, 399–400
Not-so-stubby areas (NSSAs), 374
Nslookup utility, 497, 501
NULL Cipher Suite, 599

O
OAKLEY, 729
On-demand connections, 279
One-way hash, 594
Online Certifi cate Status Protocol (OCSP),

603
Open message, BGP, 396, 397, 398
Open Shortest Path First (OSPF), 237, 354,

365–72
 area types, 369
 backbone area, 367
 BDR, 370–71
 classless addressing, 367
 DR, 370–71
 equal-cost multipaths, 366
 functions, 366–68
 internal/external routes, 367
 IS–IS and, 373–74
 IS–IS differences, 374–75
 IS–IS similarities, 374
 as link-state routing protocol, 354, 365
 metrics, 366
 MOSPF, 413, 417
 non-backbone, non-stub area, 369

Index 785

Open Shortest Path First (cont’d)
 not-so-stubby area, 370
 OSPFv1, 365
 OSPFv3, 345, 372
 packets, 371–72
 reliable fl ooding, 366
 router hierarchies, 367
 router types, 368–70
 security, 367
 stub area, 369–70
 ToS routing, 367–68
 total stub area, 370
OpenSSH, 637
OpenSSL, 588, 602
 testing certifi cate, 589, 604
 See also Secure socket layer (SSL)
Open Standard Interconnection (OSI)

reference model, 25
Outgoing interface list (OIL), 411
Overfl ows, 274–75
Overlapping NAT, 690–91
 cases, 690
 illustrated, 691
 See also Network address translation

P
Packet fi lters, 700–701, 706
 implementation, 706
 See also Firewalls
Packet headers, 165–87
 addresses and, 168–70
 Extension Headers, 184
 fi elds, 168, 169
 IPv4, 170–79
 IPv6, 179–82
Packetization delay, 742
Packetized voice, 744
Packet memory, 245
Packet over SONET/SDH (POS), 97–98
Packets
 ARP, 153–55
 arriving, 178
 CLNP, 372
 CS, 740
 forwarding, 237–57
 fragmentation, 168, 178
 ICMP, 193
 interfaces for, 84
 IS–IS, 372
 keepalive, 78
 OSPF, 371–72
 processing, 242–43
 on PVCs, 324

 RAS, 740
 reassembly, 176, 178
 RIPv1, 358
 RIPv2, 359–61
 RTP, 740
 signaling, 740, 741
 on SVCs, 324
 tunneling, 237
 X.25, 436
Passive open, 56
Path MTU
 discovery, 206–8
 plateaus, 208
 seed or probe size, 208
 size, tuning, 207
Path Vector Protocol, 388–89
Payload, 24
Peering, 334–35, 339
 candidates, 341
 public points, 340
Peer-to-peer models, 55
Peer-to-Peer Protocol process, 27
Penultimate hop popping (PHP),

446–47
Permanent connections, 279
Permanent virtual circuits (PVCs), 90, 324,

446
 packets on, 324
Physical connections, 15
Physical layer, 30–32
 bit synchronization, 31
 confi guration, 31
 contents, 30
 data rate, 31
 illustrated, 31
 mode, 31–32
 RFCs and, 84
 specifi cation, 30
 topology, 31
 See also TCP/IP layers
Ping, 192, 204–5
 in checking connectivity, 195
 ICMP and, 192–96
 ICMP requests and replies, 194
 implementations, 194, 205
 IPv4 and, 193–95
 IPv6 and, 195–96
 PID identifi er, 205
 quirks, 205
Pocket calculator encryption, 595–98
 at client, 595–96
 Diffi e-Hellman, 643–44
 at server, 597–98

786 Index

Point coordination function (PCF), 100
Points of presence (POP), 334
Point-to-point links, 31
Point-to-Point Protocol (PPP), 78, 84
 compressed data, 666
 DSL and, 91–92
 frames, 93
 framing for packets, 92–93
 Link Control Protocol (LCP), 92, 662
 Network Control Protocol (NCP),

92
Point-to-Point Tunneling Protocol (PPTP),

659, 666–67
 access concatenator (PAC), 666
 architecture, 667
 compressed data, 666
 L2TP comparison, 668
 network server (PNS), 666
 over DSL session, 663
Policy routing, 333
Polling, SNMP, 625, 627
Pop, 446
POP3, 550–52
 capture, 550, 557
 connection, 551
 TCP port, 551
 See also Email
Port addresses, 39
Port address translation (PAT), 689
Port-based NAT, 689–90
Port mapper, 531
Ports
 auxiliary, 248
 console, 248
 dynamic, 264, 271, 272
 dynamically mapping, 531
 echo, 265
 FTP, 518
 input, 243
 LAN switch, 64
 multiplexing and distribution, 270
 numbers, 52, 269–74
 output, 243
 persistent, 270
 registered, 271
 UDP, 260–61, 262–66
 well-known, 269–73
Pragmatic General Multicast (PGM),

416, 426
 goals, 426
Privacy, 593
Private IP addresses, 121
 IPV4, 122

 IPv6, 127
 translation, 122
 See also IP addressing
Private keys, 591
 clear, 602–3
 decryption with, 593
 primes, 596
Private MIB, 622–23
Private networks, 71
Private ports, 264, 271, 272
Process addressing, 39
Process-to-process delivery, 38, 40
Protocol data units (PDUs), 27, 165
Protocol Independent Multicast dense mode

(PIM DM), 417, 426
Protocol Independent Multicast sparse mode

(PIM SM), 417–18, 425
Protocols, 14–21, 27
 bandwidth and mobility, 3–6
 email, 542–44
 end-to-end, 570
 interfaces and, 27–28
 layers, 24–25
 multicast, 403, 407, 415–28
 multimedia use, 3
 new, 6
 security, 6
 specifi cations, 15
 standards versus, 15
 trends, 3–6
 tunneling, 91
 for VoIP, 744–53
 VPNs and, 665–66
 See also specifi c protocols
Protocol stacks
 DSL, 94
 dual, 252
 Illustrated Network, 50–51
 RTP, 746
 SSL, 599–601
 TCP/IP, 624
Provider-edge (PE) routers, 9, 670
 PE1, 675–76
 PE5, 673–74
Provider (P) routers, 9, 670, 674–76
Proxy agents, 617
Proxy ARP, 157–58
Proxy servers, 752
Pseudo-header, 266, 267
 illustrated, 268, 269
 IPv4, 268
 IPv6, 268, 269
 presence, 268

Index 787

Pseudo-header (cont’d)
 TCP, 297
 UDP, 268–69
Pseudorandom number generators (PRNGs),

603
Public IP addresses, 120
 obtaining, 121
 voice traffi c types, 741–42
 See also IP addressing
Public key encryption, 595–98
 example, 596
 pocket calculator, at client, 595–96
 pocket calculator, at server, 597–98
 security, 595
 SSL use, 598
 See also Encryption
Public key infrastructure (PKI), 585, 598
Public keys, 591
 association, 595
 digital signatures, 598
 message encryption, 593
 primes, 596
 with symmetrical encryption, 598
 toolkits, 601–22
Public networks, 71
Public switched telephone network (PSTN),

18, 36
 traffi c percentage, 738
 VoIP and, 735
Push, 446
PuTTY, 654

Q
Quadruple play, 431
Quality of service (QoS), 170, 321, 327
 bandwidth, 327
 connectionless networks, 326–28
 connection-oriented networks,

326–27
 consistency, 328
 jitter, 327–28
 methodology, 326
 parameter list, 327
 parameters, 57, 326–28
 security, 328
Queries
 iterative, 491
 recursive, 490–91
Query messages, 201–2
 DNS, 495
 list of, 201, 202
 See also Internet Control Message

Protocol (ICMP)

R
RAM
 nonvolatile, 243, 245
 as working storage, 245
Random seeds, 640
Raw sockets, 306
 threat, 308–9
 Unix-based access, 309
 Windows and, 308
 See also Sockets
Real-Time Protocol (RTP), 59, 739
 application layer framing, 745
 architecture, 745
 header, 746
 header fi elds, 747
 packets, 740
 payload formats, 747
 protocol stack, 746
 reports, 747–48
 as transport mechanism, 747
 for VoIP transport, 745–78
Reassembly, 176, 178
Recursive queries, 490–91
Regional Internet Registries (RIRs),

138
Registered ports, 271
Relay agents, 464–65
 BOOTP, 464, 471, 472
 DHCP, 464–65
Reliable fl ooding, 366
Remote access, 8–10
 for FTP, 10
 securing, 10
Remote procedure calls (RPCs), 531
Rendezvous point (RP)
 embedded, 415
 model, 414
Rendezvous-point tree (RPT), 414
Repeater operation, 60
Requests for comments (RFCs), 18–19
 CIDR, 132
 Elective, 20
 experimental, 20
 FTP, 518
 informational, 20
 IPSec, 719
 Limited Use, 20
 maturity levels, 19
 Not Recommended, 21
 physical layers and, 84
 Recommended, 20
 Required, 20

788 Index

 requirement levels, 20
 TCP, 285–86
Resource records (RRs), 493
 Class fi eld, 494
 Comments fi eld, 495
 Name fi eld, 493
 Record-Data fi eld, 495
 Record-Type fi eld, 494–95
 TTL fi eld, 494
 types, 494
Resource Reservation Protocol (RSVP),

425–26, 447
Reverse ARP (RARP), 146, 158, 468
Reverse-path forwarding (RPF), 411–13
 check, 412
 table, 412
 table, populating, 412–13
Ring topology, 31
RIPE NCC (Reseaux IP European Network

Coordination Center), 138
RIPng, 345, 352, 362–64
 confi guring, 348, 350
 for IPv6 packet fi elds, 363
 multicast addresses, 350
 next hop, 364
 updates, 364
 See also Routing Information Protocol (RIP)
RIPv1, 355, 358–59
 limitations, 358–59
 metrics, 359
 packets, 358
 subnet masks, 359
 update timer, 358
 wasted space, 358
 See also Routing Information Protocol

(RIP)
RIPv2, 355, 359–62
 authentication, 361
 improvements, 259
 limitations, 362
 multicasting, 362
 next hop identifi cation, 361–62
 packet format, 359–61
 subnet masks, 361
 See also Routing Information Protocol

(RIP)
RMON (remote monitor), 609, 622
ROM, 245
ROM monitor (ROMMON), 245
Root level certifi cate authorities, 595
Root servers, 487–89
 details, 489
 list, 488

 operation, 487–88
 operators, 488
 See also Domain name system (DNS)
Round-trip times, 205
Route distinguishers, 670
Route leaking, 374
Router advertisement, 212
 DHCPv6 and, 479–80
 in host direction to DHCP server, 213
 message, 203
Router architectures, 242–47
 basic, 243–45
 hardware-based, 243, 246–48
 network processor engines (NPEs), 244
 software-based, 243, 244
Router-assigned prefi xes, 113
Router-based networks. See Connectionless

networks
Router-by-router VPLS confi guration,

672–74
 CEO router, 672
 PE5 router, 673–74
Routers, 7, 8, 33, 37, 63–64, 77, 222
 access, 248–49
 auxiliary port, 248
 backbone, 246
 border, 334, 368, 387
 CE, 9, 47, 669–70, 672, 676, 716–19
 console port, 248
 CPU chips, 244
 dead, 213
 delay, 67
 DHCP and, 479–80
 DSL, 78, 79, 329
 edge, 329, 334
 egress, 446, 451–52
 fi le transfer to, 10–11
 function, 220
 Illustrated Network, 9, 346–47
 illustrated use, 69
 in-band management, 248
 indirect delivery and, 231–34
 ingress, 446, 450
 interfaces, 233–34
 Internet core, 127
 IPSec and, 721
 IPv6, 212
 IS–IS, 373
 ISP use, 319
 Juniper Networks, 237, 241, 246
 loopback interface, 221
 memory, 243, 244
 MSDP, 420

Index 789

Routers (cont’d)
 multicast, 409, 415–16
 neighbor, 353
 neighbor discovery and, 212
 network access, 249–50
 as network nodes, 324, 333
 NICs, 231
 NVRAM, 243
 operation, 60
 packet fi lter, 700–701
 packet-handling, 240
 provider, 9, 670, 674–76
 provider edge, 9, 673–74, 697
 Proxy ARP and, 158
 self-booting, 243
 stateful inspection, 701–5
 steps, 242
 in TCP/IP networks, 14
 transit (intermediate), 446, 450–51
Router-to-host tunnels, 253, 254
Router-to-router tunnels, 253, 254
Routing, 37, 217–34
 direct delivery, 226–29, 230–31
 distance vector, 355–56
 domains, 336, 353
 engines, 247
 Illustrated Network, 218–19
 indirect delivery, 229, 231–34
 information exchange, 337
 with IP addresses, 229
 loops, 409
 network layer, 324–25
 policy, 333
 switching comparison, 443
 ToS, 367–68
 at wire speeds, 243
Routing Information Protocol (RIP), 345, 354
 backbone routers running, 351
 as Bellman-Ford routing protocol, 355
 broken links, 356–57
 confi guring, 350
 as distance-vector protocol, 354, 355–56
 enabling, 349
 fl ooding updates, 356
 information fl ow, 350
 links, 348
 metric, 355
 multicast addresses, 350
 RIPng, 362–64
 RIPv1, 355, 358–59
 RIPv2, 355, 359–62
 split horizon, 357
 triggered updates, 357–58

Routing policies, 321, 333
 BGP, 384–86, 395–96
 example illustration, 337
 framework, 337
 function of, 333
 IGPs and, 342
 roles of, 336–38
Routing protocols, 321, 333
 ASs and, 333
 ISP use, 319
 multicast, 409, 417–18, 426–27
 See also specifi c protocols
Routing tables, 217
 asterisk (*), 221, 240
 on CE routers, 670
 Cisco-like display, 240
 default route, 221
 defi ned, 37, 220, 330
 for each IP network, 127
 entries, 329
 FreeBSD and, 329–30
 host, 222–26, 328–32
 Illustrated Network, 322–23
 information display, 331
 IPv4, 221
 IPv6, 221, 241, 332
 Linux and, 330–31
 metric entries, 221
 route preference, 221
 Windows XP and, 331–32
RSA Data Security Code (RC4), 601
RSARef, 601
RTP. See Real-Time Protocol
Running-confi g, 245

S
Safe passage, 585
Scaling, BGP, 395–96
Secret keys, 593
Secure shell (SSH), 249, 633–57
 in action, 649–55
 agents, 640
 architecture, 639–40
 authentication, 636, 637–38
 basics, 636–37
 clients, 636, 639
 as client–server protocol, 636
 confi guration fi les, 640
 Ethereal capture, 655
 features, 637–38
 FTP and, 647
 host key, 640
 Illustrated Network, 634–35

790 Index

 key generator, 639
 keys, 640–41
 known hosts, 639
 model illustration, 637
 OpenSSH, 637
 protocol operation, 641–42
 protocol relationships, 641
 proxy gateway, 638
 random seeds, 640
 as remote access application, 633
 secure client–server communication, 637
 security add-on, 638
 servers, 639
 session key, 640–41
 sessions, 639
 signer, 640
 as slogin implementation, 636
 SSH1 and SSH2, 636–37
 SSH-AUTH, 641, 642, 644–45
 SSH-CONN, 641, 642, 645–46
 SSH-SFTP, 641, 642, 647–49
 SSH-TRANS, 641, 642, 642–44
 transparency, 638
 user key, 640
 using, 633–49
 versatility, 638
Secure socket layer (SSL), 585–605, 665
 Alert Protocol, 599
 Change Cipher Spec Protocol, 599
 clear private keys, 602–3
 computational complexity, 602
 data transfer, 601
 Diffi e-Hellman, 599
 Handshake Protocol, 599
 Illustrated Network and, 586–87
 implementations, 592, 601–2
 issues and problems, 602–4
 MAC, 601
 nonrepudiation, 603–4
 OpenSSL, 588
 page, loading, 591
 as protocol, 598–604
 protocol stack, 599
 pseudorandom numbers, 603
 public key encryption, 598
 Record Protocol, 599, 602
 session establishment, 599–601
 stolen credentials, 603
 TCP limitation, 603
 TCP port, 600
 TLS relationship, 592
 as toolkit library, 601
 Web sites and, 585–92

Security
 areas, 599
 certifi cate warning, 588
 PKI, 598
 protocol, 6
 public key encryption, 595
 remote access, 10
 VLANs for, 66
 VPNs and, 664–65
 Web site, 585
Security association database (SAD),

722
Security associations (SAs), 713, 722–29
Security parameter index (SPI), 713, 722
 AH, 724
 security policy, 722
Security policy database (SPD), 722
Segmentation, 61–62
Segments, 55, 286
 handling, 39
 lost, 290
 request–response pair, 288
Selectors, 722
Self-signed certifi cates, 595
Sender keeps all (SKA), 338, 339
Sending ICMP messages, 203–4
Serial delay, 743
Serial Line Interface Protocol (SLIP), 85
Servers, 7, 8
 authentication, 100, 585
 authoritative, 487
 BOOTP, 459, 469
 DHCP, 462–64, 480
 DHCPv6, 480
 DMZ, 709
 DNS, 463, 486–87, 489
 FreeBSD, 498
 FTP, 304, 519
 GLTD, 502
 identity, 585
 name, 489, 491
 nonauthoritative, 487
 pocket calculator decryption at, 597–98
 proxy, 752
 root, 487–89
 SMTP, 542
 socket, 315, 316
 SSH, 639
 TFTP, 469
 VoIP, 739
 Web, 559, 562
 See also Clients; Client–server model
Service data unit (SDU), 27

Index 791

Services, 27
Session Announcement Protocol and Source

Description Protocol (SAP/SDP)
messages, 407

Session Initiation Protocol (SIP), 750–52
 registrar, 751
 request types, 752
 responses, 752
 sequence of requests/responses, 751
 session initiation steps, 751
 signaling stack, 749
Session support, 41
Settlements, 338
Shared secret key, 593
Shortest-path tree (SPT), 413–14
 building, 413
 size, 414
Short-inter-frame spacing (SIFS), 101
Signaled LSPs, 446
Signaling, 745, 748–49
 H.323 stack, 749
 MGCP stack, 749
 MPLS and, 447–48
 packets, 740, 741
 protocols, 279
 SIP stack, 749
Signers, 640
Simple Key Management for Internet

Protocols (SKIP), 203
Simple Mail Transfer Protocol (SMTP),

59–60, 538, 542, 545–47
 authentication, 544–45, 546
 basic mail exchange, 546
 commands, 547
 mail servers, 542
 message delivery with, 540
 as MTA, 543
 packet sequence, 540
 reply codes, 545, 547
 Service Extensions (ESMTP), 544
Simple Message Transfer Protocol (SMTP), 42
Simple Network Management Protocol

(SNMP), 60, 249, 609–29
 agent/manager model, 616
 agent software, 616, 617
 capabilities, 612–16
 community, 615
 community strings, 627
 as connectionless, 626
 enabling, 612
 Illustrated Network, 610–11
 manager software, 623
 messages, 624, 625

 messages and details, 613
 MIB, 618–22
 model, 616–23
 model illustration, 617
 as network management tool, 616
 operation, 623–27
 PDU structure, 626
 polling, 625, 627
 private MIB, 622–23
 read-only access, 614
 requests, 625
 RMON, 622
 router management, 624
 in security framework, 628
 sessions, 613
 SMI, 618–20
 SNMPv1, 612, 627, 628
 SNMPv1 PDU, 626
 SNMPv1 protocol operation, 625
 SNMPv2, 612
 SNMPv2 enhancements, 627–28
 SNMPv3, 628
 in TCP/IP protocol stack, 624
 traps, 626
Simplex mode, 31
Site certifi cates, 589
SKEME, 729
Sliding window, TCP, 293–94
Socket interface, 304–7
 isolation, 307
 reasons for, 304
 simplicity, 307
 Windows, 309–11
Sockets, 52, 273, 301–16
 client–server TCP stream, 316
 colon (:), 273
 concept applied to FTP, 305
 datagram, 306
 dot (.), 273
 Illustrated Network, 302–3
 libraries, 305–6
 on Linux, 311–16
 listening, displaying, 264
 power of, 316
 as programmer’s identifi er, 305
 raw, 306, 308–9
 server, 315, 316
 stream, 306
 types, 306
 UDP, 260–61, 262–66
 uses, 305–6
 for Windows, 310–11
Software-based forwarding, 243

792 Index

Software fi rewalls, 700, 705
Solicitation message, 203
Source Specifi c Multicast (SSM), 418–19
Spanning tree bridges, 63
Sparse-mode multicast, 410–11
Split horizon, 357
SSH. See Secure shell
SSH-AUTH, 641, 642, 644–45
 request, 644–45
 use of, 653
SSH-CONN, 641, 642, 645–46
 channel requests, 646
 channel types, 645–46
 multiplexing, 645
 See also Secure shell (SSH)
SSH-SFTP, 641, 642, 647–49
 fi le transfer with, 648
 syntax and options, 647–49
SSH-TRANS, 641, 642, 642–44
 binary packet protocol, 643
 key exchange, 643, 644, 652
 negotiation, 651
 See also Secure shell (SSH)
SSL. See Secure socket layer
SSLava, 601
SSLRef, 601
Standards, 16–18
 data communication, 16
 de facto, 16–17
 de jure, 16
 draft, 19
 Internet, 18, 20
 interoperability and, 16
 proposed, 19
 protocols versus, 15
 TCP/IP protocol suite, 17
 See also specifi c standards
Star topology, 31
Stateful inspection, 701–5, 706–8
 anomaly categories, 702–3
 deep, 707
 as dynamic/refl exive fi rewall, 706
 fl ows, 702
 from and then structure, 703
 interface application, 703
 Juniper Networks router, 702
 See also Firewalls
State variables, 41
Static IP address assignment, 121
Static LSPs, 446
 link failure and, 452
 MPLS confi guration with, 450–53
 See also Label switched paths (LSPs)

Stream sockets, 306
Structure of Management Information (SMI)

tree, 618–20
 illustrated, 619
 Network Management Protocol use, 619
 objects, 624
 root, 618
Subconfederations, 337
Subnet masks, 128
 default, 129
 forms, 128–29
 RIPv1, 359
 RIPv2, 361
 use of, 129–30
Subnetting, 117, 127–31
 address masks, 128
 basics, 128–31
 LANs, 130
Supernetting, 117
Swap, 446
Switched Multimegabit Data Services

(SMDS), 85
Switched networks. See Connection-oriented

networks
Switched virtual circuits (SVCs), 324, 446
 packets on, 324
Switches, 37, 324
 ATM, 442
 LAN, 9, 33, 64–65
 See also Routers
Symmetrical encryption, 598
Symmetric DSL (SDSL), 95
Synchronization source identifi er (SSRC),

746
Synchronous Digital Hierarchy (SDH)
 as PPP technology, 86
 SONET frame structure differences, 77
 See also Synchronous Optical Network/

Synchronous Digital Hierarchy
(SONET/SDH)

Synchronous optical network (SONET)
 evolution of, 96–98
 frames, 32
 links, displaying, 76–78
 point-to-point, 7
 SDH frame structure differences, 77
 standard, 77
 transmission-frame payload area, 98
Synchronous Optical Network/Synchronous

Digital Hierarchy (SONET/SDH), 71,
84, 244

 frames, 97
 high-speed WAN links, 96

Index 793

Synchronous Optical Network/Synchronous
Digital Hierarchy (cont’d)

 links, 72–73
 MIB, 622
 Packet over (POS), 97–98
Systems, 6
 AS, 332–34
 end, 6, 26
 intermediate, 6, 26

T
TCP headers, 282–85, 286, 745
 ACK fi eld, 283, 289, 291
 Acknowledgment Number fi eld, 282–83
 Checksum fi eld, 284
 Destination Port fi eld, 282
 ECN fl ags, 283
 fi eld illustration, 283
 FIN fi eld, 283, 289
 Header Length fi eld, 283
 Options fi eld, 284
 PSH fi eld, 283
 Reserved fi eld, 283
 RST fi eld, 283
 Sequence Number fi eld, 282
 Source Port fi eld, 282
 SYN fi eld, 283, 287, 288, 289
 Urgent Pointer fi eld, 284
 URG fi eld, 283
 Window Size fi eld, 283
 See also Transmission Control Protocol
TCP/IP
 convergence on, 441–42
 encapsulation fl ow, 29
 implementations, 86
 model, 25
 multicast, 408
 networks, 14
 number of packets exchanged, 14
 protocol stack, 624
 voice signaling packets, 745
 Windows and, 310
TCP/IP applications, 42–43
 in applications layer, 41
 illustrated, 43
 interfaces, 11
TCP/IP layers, 14, 26–27, 30–41
 application, 30, 41
 contents, 25
 data link, 30, 32–35, 84–86
 illustrated, 26, 44
 interface, 27
 network, 30, 35–38

 overview, 30
 physical, 30–32
 transport, 30, 38–40
TCP/IP protocol suite, 3, 25–29, 43–44
 detail, 56
 device categories, 26
 fl exibility, 27
 illustrated, 44
 open, 25
 peer protocol, 54
 standards, 17
TCP/IP Sockets in C, 311, 406
Telnet, 59
Termination of communications, 15
Tethereal MAC addresses, 229
Third-party cookies, 581
Three-way handshake, 286
 capture, 296
 FTP, 297
 functions, 288
 See also Transmission Control Protocol

(TCP)
Token ring, 84, 87
Topology
 bus/broadcast, 31
 IPSec, 717
 ring, 31
 star, 31
 VPLS confi guration, 679
Traceroute, 205–6
 implementations, 206
 LSPs and, 452–53
 message, 203
 on Unix-based systems, 206
Transit fees, 338
Transit (intermediate) routers, 446
Transmission Control Protocol (TCP), 55,

259, 279–99
 as byte-sequencing protocol, 292
 client–server connections, 280–81
 client–server interaction, 287
 complexity, 294
 congestion control, 294
 as connection-oriented layer, 56
 connections, 279, 282, 286–92
 control bits, 284
 data transfer, 289–91
 data units, 55
 echo using, 298
 fl ow control, 292–94
 FTP and, 296–98
 functions and mechanisms, 59
 Illustrated Network, 280–81

794 Index

 ISN, 288, 289
 lost segment handling, 290
 mechanisms, 285–86
 NID, 289
 on-demand connections, 279
 option types, 284–85
 overhead, 570
 performance algorithms, 294–96
 permanent connections, 279
 pseudo-header, 297
 registered ports, 272
 reliability, 55–56, 58
 RFCs, 285–86
 RTT, 289
 segments, 286
 sessions, 297–98
 sliding window, 293, 294
 stream service calls, 306–7
 three-way handshake, 286, 288
 transactions and, 286
 as virtual circuit service, 285
 well-known ports, 271
 windows, 293–94
 See also TCP header
Transmission framing, 30
Transparent bridging, 63
Transport layer, 30, 38–40, 58–59
 connectionless, 40
 connection-oriented, 40
 error control, 40
 fl ow control, 40
 functions, 39–40
 illustrated, 39
 process addressing, 39
 process-to-process delivery, 38, 40
 protocol packages, 38
 segmentation, 38
 segment handling, 39
 TCP, 55, 58–59
 UDP, 55, 59
 See also TCP/IP layers
Transport Layer Interface (TLI), 309
Transport Layer Security (TLS), 592
 SSL relationship, 592
 TLS 1.0, 592
 TLS 1.1, 604
Traps, 626
Triggered updates, 357–58
Triple DES (3DES), 601
Triple play, 431
Trivial File Transfer Protocol (TFTP), 468,

472–74
 download, 473

 fi le transfer, 474
 FTP comparison, 472–73
 header, 473, 474
 messages, 473, 474
 operation codes, 473
 servers, 469
 transactions, 473
Tunneling, 237, 252–54
 6to4 tunnels, 255
 automatic, 253
 confi gured, 253
 GRE tunnels, 255
 host-to-host, 253, 254
 host-to-router, 253, 254
 IPv4-compatible tunnels, 255
 IPv6 addressing formats, 254
 ISATAP tunnels, 255
 manually confi gured tunnels, 255
 mechanisms, 255
 in mixed IPv4/IPv6 network, 253
 occurrence, 252
 protocols, 91
 router-to-host, 253, 254
 router-to-router, 253, 254
 types illustration, 254
Twice NAT. See Overlapping NAT
Type of Service (ToS) routing,

367–68

U
Unicast addresses, 116
Unidirectional NAT, 686–87
Uniform resource identifi ers (URIs),

565
Uniform resource locators (URLs), 565
 accesses, 568
 fi elds, 566, 567
 locator part, 566
 rules, 568
Uniform resource names (URNs), 565,

568–69
 namespace, 569
 notation, 569
 resource identifi cation by, 569
Unique local-unicast addresses, 127
Universally reachable address level, 389
Unix
 raw sockets access, 309
 TLI, 309
 traceroute and, 206
Update Message, BGP, 396, 397–98
Upstream interface, 409
User authentication, 585

Index 795

User Datagram Protocol (UDP), 51, 55, 59,
259–76

 actions, 274
 applications, 59
 checksum, 264, 266
 congestion control, 275
 as connectionless transport layer, 56
 data unit, 55, 259
 fl ow control, 274–75
 Illustrated Network, 260–61
 operation, 259, 274
 overfl ows, 274–75
 popularity, 259
 port numbers, 269–74
 ports, 260–61, 262–66
 pseudo-header, 266, 268, 269
 registered ports, 272
 for short transactions, 59
 sockets, 260–61, 262–66, 273
 as stateless, 265, 266
 traffi c, 266
 use of, 262
 well-known ports, 271
 See also Datagrams
User Datagram Protocol header,

267–68
 Checksum fi eld, 267, 268
 Destination Port fi eld, 267
 illustrated, 267
 Length fi eld, 267
 Source Port fi eld, 267
User tracking abuse, 581

V
Variable bindings, 626
Variable-length subnet masking (VLSM), 117,

131–32
 use of, 135
Very-high-speed DSL (VDSL), 85, 95
Virtual circuits, 158–59, 324
 support over public network, 664
Virtual LANs (VLANs), 47, 58, 65–66, 671
 frame tagging, 66–68
 identifi er, 66
 Illustrated Network, 660–61
 in LAN switch, 65, 67
 reasons for, 66–67
 space, increasing, 66
 tagging, 66–68, 671
 See also Layer 2 VPNs (L2VPNs)
Virtual path identifi ers (VPIs), 159

Virtual private LAN service (VPLS), 659, 671,
672–76

 confi guration topology, 679
 Illustrated Network, 673
 router-by-router confi guration, 672–74
 virtual port, 671, 672
Virtual private networks (VPNs), 442, 659–79
 Layer 2, 659, 671–72
 Layer 3, 442, 449, 668–70
 LSPs and, 449
 MPLS-based, 449, 668–72
 protocols and, 665–66
 security and, 664–65
 types of, 662–64
Virtual routing and forwarding (VRF) tables,

669
Voice over IP (VoIP), 735–55
 in action, 738–44
 address, 739
 attraction of, 741
 Avaya software, 738
 clients, 738
 converged network architecture,

753
 delays, 742–44
 Illustrated Network, 736–37
 jitter, 742, 743
 packetized voice, 744
 protocols for, 744–53
 as PSTN bypass method, 742
 PSTN traffi c percentage, 738
 RTP for, 745–48
 servers, 739
 sessions, 739
 signaling architectures, 748–49
 signaling protocols, 740

W
Web browsers
 built-in security, 591
 FTP and, 516, 517, 518
 screening/rejecting cookies, 581
 secure lock, 585, 590, 591
Web pages
 defi ned in HTML, 573
 dynamic, 573
 secure, 590
Web servers
 Apache software, 562
 Illustrated Network, 560–61
 stateless, 580

796 Index

Web sites
 Illustrated Network, 586–87
 security, 585
 SSL and, 585–92
 user authentication, 585
Well-known ports, 269–73
 statistically mapping, 304
 TCP, 271
 UDP, 271
 use of, 269
 See also Ports
Wide area networks (WANs)
 ARPs and, 158–59
 links, 7
 routing and switching comparison,

443
Wi-Fi, 98–100
 captive portal, 100
 jungle, 99
Windowing, 58
Windows, Microsoft
 ARP cache display, 152
 ARP reply capture, 150
 confi guration for DHCP use, 464
 cookies in, 580
 DHCP servers for, 462
 direct delivery and, 226
 FTP utility, 296
 hosts, 224
 metrics, 226

 multitasking capabilities, 310
 raw sockets and, 308
 routing tables and, 331–32
 socket interface, 309–11
 sockets for, 310–11
 TCP/IP and, 310
Windows, TCP, 293–94
Windows for Workgroups (WFW), 310
WinSock, 309
 DLL, 310
 interface, 310
Wireless LANs
 architectures, 99
 encapsulation, 82
 frame addressing, 82
 hidden terminal problem, 100, 101
 Wi-Fi, 98–100
 See also Local area networks (LANs)
Wireless links
 data frames and packets on, 82
 displaying, 81–83
Wire speeds, 243

X
X.25, 84, 435–37
 network nodes, 437
 packet routing, 436
 packets, 436
 See also Frame relay
X Windows attacks, 638

Index 797

This page intentionally left blank

	Cover
	Contents
	Foreword
	Preface
	About the Author
	Protocols and Layers 1
	TCP/IP Protocols and Devices 2
	Network Link Technologies 3
	IPv4 and IPv6 Addressing 4
	Address Resolution Protocol 5
	IPv4 and IPv6 Headers 6
	Internet Control Message Protocol 7
	Routing 8
	Forwarding IP Packets 9
	User Datagram Protocol 10
	Transmission Control Protocol 11
	Multiplexing and Sockets 12
	Routing and Peering 13
	IGPs: RIP, OSPF, and IS–IS 14
	Border Gateway Protocol 15
	Multicast 16
	MPLS and IP Switching 17
	Dynamic Host Conf guration Protocol 18
	The Domain Name System 19
	File Transfer Protocol 20
	SMTP and Email 21
	Hypertext Transfer Protocol 22
	Securing Sockets with SSL 23
	Simple Network Management Protocol 24
	Secure Shell (Remote Access) 25
	MPLS-Based Virtual Private Networks 26
	Network Address Translation 27
	Firewalls 28
	IP Security 29
	Voice over Internet Protocol 30
	List of Acronyms
	Bibliography
	Index

