

Taylor Networking Series

Multiplatform Network
Management, 0-07-063295-2

McGraw-Hill Internetworking Command Reference, 0-07-063301-1
The McGraw-Hill Inter networking Handbook, Second Edition, 0-07-063399-1
Network Architecture Design Handbook, 0-07-063333-9 (hardcover)0-07-063362-2 (softcover)

Encyclopedia of Network
Blueprints, 0-07-063406-8

About the Author

Ed Taylor isfounder and chief network architect Information World, Inc, and aformer network architect for
IBM.

Some of Mr. Taylor’s consulting experience includes work for NEC, Orange County, CA, BASF, Chrydler,
Hewlett-Packard, Dow Jones, Ore-lda Foods, Mutual of New York (MONY), and IBM Education.

To order or receive additional information on these or any other McGraw-Hill titles, in the United States
please call 1-800-722-4726, or visit us at www.computing.mcgraw-hill.com. In other countries, contact your
local McGraw-Hill representative.

SNA and TCP/IP Integration
Handbook

Ed Taylor

M cGraw-Hill

New York San Francisco

Washington, D.C. Auckland
Bogota
Caracas Lisbon London Madrid
Mexico City Milan
Montreal New Delhi San Juan
Singapore
Sydney Tokyo Toronto

Library of Congress Cataloging-in-Publication Data

Taylor, Ed, 1958—
SNA and TCP/IP integration handbook / Ed Taylor.
p. cm.
Includes index.
ISBN 0-07-063412-2
1. TCP/IP (Computer network protocol 2. SNA (Computer network
architecture) 3. Internetworking (Telecommunication) I. Title.
TK5105.585.T32 1998
004.6'2—dc21 98-34750
CIP

McGraw-Hill &7

A thivdviiie ol) e Moo H € mpanizs

Copyright © 1999 by The McGraw-Hill Companies, Inc. All rights reserved. Printed in the United States of
America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be
reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the
prior written permission of the publisher.

1234567890 DOC/DOC 90321098
ISBN 0-07-063412-2

The sponsoring editor for this book was Steven Elliot, the editing supervisor was Ruth Mannino, and the
production supervisor was Clare Stanley. It was set in Century Schoolbook by Priscilla Beer of McGraw-Hill’s
Desktop Composition unit.

Printed and bound by R. R. Donnelley & Sons Company.

McGraw-Hill books are available at specia quantity discounts to use as premiums and sales promotions, or for
use in corporate training programs. For more information, please write to the Director of Special Sales,
McGraw-Hill, 11 West 19th Street, New Y ork, NY 10011. Or contact your local bookstore.

@ This book is printed on recycled, acid-free paper containing a minimum of 50%
recycled, de-inked fiber.

Information contained in this work has been obtained by The McGraw-Hill Companies, Inc. (“McGraw-
[Hill”) from sources believed to be reliable. However, neither McGraw-Hill nor its authors guarantee the
accuracy or completeness of any information published herein and neither McGraw-Hill nor its authors shall
be responsible for any errors, omissions, or damages arising out of use of this information. This work is
published with the understanding that McGraw-Hill and its authors are supplying information, but are not
attempting to render engineering or other professional services. If such services are required, the assistancg
of an appropriate professional should be sought.

To Jan Hoover
From Ed Taylor

Acknowledgments

| would like to thank the following for contributions to different aspects of this book.

MJH Sony Corporation

IBM Information World, Inc.
NetOptics DHL Airborne

SCO Emery Airfreight
Creative Labs Federal Express
3ComUSRabotics United Parcel Service (UPS)
SysKonnect Roadway

Hubbell United States Post Office
Liebert McGraw-Hill:

Bud Industries Steve Elliot

Tektronix Ruth Mannino

Hewlett Packard Clare Stanley

McAfee Priscilla Beer

Altec Lansing Cathy Hertz

Wagner Edstrom Suzanne Rapcavage

Microsoft Joe Rivellese

Preface

Purpose of This Book

| wrote this book based upon my experience. | included information that helped me, and | hope it does the same
for you.

To work with both of these network protocolsis a challenge. No single book can contain all the information one
needs to know about them in every environment. The purpose of this book isto get you started in the right
direction. Many good books have been published by McGraw-Hill on SNA and TCP/IP, respectively; |
recommend you look into acquiring some of these to complement this one.

How to Use This Book

Y ou can read this book from front to back. Y ou can use it as areference. It can be used to teach SNA and
TCP/IP principles. | believe you'll find it most helpful approaching it from atopical perspective.

If you would like additional information, | can be reached through any of the following:

Information World, Inc. (IWI): Edtaylor@info.com
Internet: IWlinc@aol.com
IWIlinc@ibm.net

IWIlinc@msn.com
Edtaylor@aol.com
zac0002@ibm.net

AOL: IWIlinc
Edtaylor

Compuserve: 72714,1417

1
Per spective on Systems Networ k Architecture

Systems Network Architecture (SNA) isacomplex topic. If your background does not include experiencein
SNA, you will find this chapter most helpful; if it does, you will find this chapter particularly enlightening. |
included background information here for the benefit of all readers. The blueprintsincluded in this chapter are
based on the terms, concepts, and architecture presented in the early part of this chapter.

SNA networks are built from hardware and software components. These networks vary in size, and different
blueprints presented in this chapter bear this out. Before examining blueprints in this chapter, we will consider
some reference material.

1.1 Hardware Architecture

Much development occurred at IBM during the 1940s and 1950s. History has shown that these two decades led
to the creation of what has become known as the biggest gamble in the history of the IBM corporation: the
System/360 (S/360) hardware architecture. Before exploring the §/360 architecture, we will briefly review
hardware offerings preceding the S/360.

During the 1940s, 1950s, and even into the 1960s, IBM offered approximately six popular solid-state
mainframe computers. However, afundamental problem was lack of interchangeability among these systems.
This meant that IBM programming, support, sales, and tech nical sales advisors all concentrated on their own
areas of expertise and thus that there was seldom any overlap between systems. This was costly and became an
increasing problem for IBM. Not only was this scenario a problem for IBM, but its customers had to contend
with thisif they had more than one type of machine to meet the needs throughout a given corporation.
Following are some examples of these machines and their strengths:

* 604. Thiswas an electronic calculating punch-card machine. It was first available in approximately 1948. The
strength of this machine and its major selling points were speed (which was especially advantageous for the
user), a pluggable circuitry, and its concentrated components in such a small physical location.

* 650. This machine initially became available around 1954 but was not announced until 1953. Thiswas a
magnetic drum storage machine whose primary strength was its general computing capability. This machine
was extremely successful after its introduction into the marketplace.

« 701. This machine, announced in 1952, had faster input/output and higher processing speed than some of its
predecessors and was especially powerful in scientific and related areas of computation. Thus it was not a
general-purpose machine such as the 650, for example.

* 702. This large system, which focused on the ease of character handling, was announced in 1953 and made its
debut in approximately 1955. Interestingly, the concept of this system originated in the late 1940s.

* 1401. This system was announced in 1959. It soon grasped a large market share after shipping began in 1960.
It had increased speed, afast printer, and other peripherals such astape- and card-processing capabilities, which
enhanced its popularity. Also its multiple components had selective capabilities, yet it was reasonably priced.

These systems, and others IBM offered during the 1940s through the early 1960s, proved IBM’s ability to meet
adiversity of needs. However, such system diversity led to complexity in terms of one corporation attempting
to maintain this posture in atechnical environment. IBM was aware of the positive and negative contributions
that these diverse systems offered.

After years of planning, designing, and reengineering, 1964 proved to be a pivotal point in the history of the
IBM corporation. This was when the System/360 was introduced. This system was unique for multiple reasons,
but at the heart of the S/360 was now one architecture capable of accommodating what previously was achieved
by different systems. In addition, the /360 architecture was available in different models, offering customers a
wide selection for their initial purchase to meet their immediate needs with hardware that could be upgraded to
accommodate future architectures as they appeared on the market. At thistime, IBM is four architectures
removed from the S/360, and, according to a personal account, a program originally written for the §360 has
been executed successfully on the S/390 architecture.

Technical highlights of each IBM hardware architecture are presented below.

1.2 System/360

The System/360 (S/360) was successful, to say the least. Some of the characteristics and functions of the
components of this hardware architecture are listed below.

S/360 components included (1) central processing unit (CPU); (2) channels; (3) control unit(s); (4) periphera
devices such as terminals, printers, and tape and disk drives, aswell as card punch and readers; and (5) main
storage.

1. CPU characteristics and functions. The S/360 had a single-processor architecture, but models introduced
later supported multiple processors. There were five classes of interrupts, with interrupt priority. There were 16
general-purpose 32-bit registers and four optional 64-bit floating-point registers, with 24-bit addressing.
Selected models had dynamic address translation. Supervisor facilities included atimer, direct control
capabilities, storage protection, and support for multisystem operation. There was ASCII and EBCDIC
character-set support and channel-to-channel adapters were used for interconnection of multiple processors.

2. Channel characteristics and functions. The S/360 provided a data path to and from control units and devices
and used a protocol for datatransfer. Selector channels were used with tape and disk devices for high-speed
datatransfer, and one subchannel was used. Byte multiplexer channels interleaved input/output (1/0)
operations. Slower operating devices were used with this type of channel, which could logically support up to
256 subchannels.

3. Control unit(s). The $/360 served as an interface between devices such as aterminal, card reader, card
punch, and printer.

4. Peripheral devices. The S/360 terminals, printers, card punches, and card readers served as |/O devices.
Terminals were used interactively, whereas punched cards were used in batch processing.

5. Main storage. Main storage in the early models emphasized speed and size. Virtual storage became available
in later models.

EBeEim
Pimcessor [T

ERAC Mulp e
Chanre Channel

|
el ok nd
LM) — gy
L| — (=)

| Proar

I—

Figure 1-1
Logical view of an S/360.

Consider Fig. 1-1, which isalogical view of the S/360. Interestingly, in ageneral way, it isbasic to current
personal computer (PC) architecture. Granted, PC architecture has evolved to become more complex; this
illustration does provide the rudiments of the PC’ s beginning. Figure 1-2 is aphysical perspective of the S/360.
Ironically, although more components have been inserted into various places, this view is the essence of PC
systems today. Think about it. Systems today have a processor, main storage [random-access memory (RAM)],
input and output (channels), and peripherals to control other devices. Some of the features and built-in functions
of later §/360 models were carried over to the next hardware architectural generation, known as the S/370.

1.3 System/370

System/370 (S/370) architecture, announced in 1970, was the successor to the S/360. During the next 6 years
IBM refined more than 14 models based on this architecture. In this section we examine S/370 features and
functions on the basis of S/370 architecture as awhole (including its components and their characteristics and
functions), not the inception of incremental enhancements.

S/370 components included (1) central processing units (CPUS), (2) channels, (3) control unit(s), (4) peripheral
devices, and (5) main and virtual storage.

(LT

‘ el Slaraan

Chan ngds

1 Dhw o
Urie ol l_
Linit
|

g B o

D=

Cwraizs

Figure 1-2
Physical view of an S/360.

1. CPU characteristics and functions. The $/370 inherited user program upgrade support from the S/360; it
also had multiple processor support. It had six classes of interrupts, with interrupt priority. It had 16 general-
purpose 32-bit registers and four additional 64-bit floating-point registers, with 24-bit addressing. It had a
dynamic address trandation (DAT) facility and an extended real addressing facility as an extension to DAT,
making 64-MB (megabyte) addressability of real storage possible, plus atrangation |ook-aside buffer to
minimize DAT use. It also had a dual-address-space (DAS) facility, supporting semiprivileged programs.
Supervisor facilities included atimer, direct control capabilities, storage protection, and support for multisystem
operation. An optional vector facility was offered on selected models. The /370 had Extended Binary-Coded
Decimal Interchange Code (EBCDIC) character-set support, with removal of American Standard Code for
Information Interchange (ASCII) support as in the S/360. Two page sizes—2 and 4 K (kilobytes)—and two
segment sizes—64 K and 1 MB were available. One operating system was used for multiprocessing. Also, the
S/370 had approximately 50 more instructions than the S/360.

2. Channel characteristics and functions. The S/370 supported three types of channels—sel ector, byte, and
block multiplexer—as well as a 2-byte channel bus-width extension. Each channel had an associated set of
subchannels. The §/370 used channel protocol for data transfer.

Datatransfer rates of 1.5 and 3 MB could be achieved, depending on the channel bus width. The /370 could
suspend and resume facility for programmed control of channel program execution and remove 16-byte channel
prefetching from S/360 channels.

3. Control unit(s). The §370 served as an interface between devices such as aterminal, card reader, card
punch, and printer.

4. Peripheral devices. The S/370'sterminals, printers, card punches, and card readers served as 1/0 devices.
Terminals were used interactively; punched cards were used in batch processing.

5. Sorage. Main storage had addressability of up to 64 MB; virtual storage, up to 16 MB beyond that of main
storage.

Figure 1-3 is arepresentation of implementation of the $/370 architecture which followed the S/360.

1.4 370/eXtended Architecture

The 370/eXtended architecture (370/XA), announced in 1981, followed the §/370 and what IBM called “S/370
compatibility realized in the 4300 series of systems.” From 1981 until 1988 IBM implemented 370/ XA
hardware architecture in their mainframes. The focus here follows the same scheme as the prior two
architectures: the features and functions of 370/XA asawhole.

370/XA components included (1) central processing units (CPUs); (2) a channel subsystem; (3) control unit(s);
(4) periphera devices; and (5) absolute, real, and virtual (addressing types) storage.

1. CPU characteristics and functions. The 370/XA had two addressing modes of operation—24- and 31-
bit—and 2-gigabyte (GB) addressability with 31-bit addressing mode. Thisincluded 13 new instructions;
multiple-processor support; six classes of interrupts, with interrupt priority; and 16 general-purpose 32-bit
registers and four 64-bit floating-point registers, with 24-bit addressing. The 370/XA aso had adynamic
address trandlation (DAT) facility, with extended real addressing as an extension to DAT, permitting 64-MB
real storage addressability, and atrandation look-aside buffer to minimize DAT use. A dual-address-space
(DAYS) facility, supporting semiprivileged programs, was also included. Supervisor facilitiesincluded atimer,
direct control capabilities, storage protection, and support for multisystem operation. An optional vector facility
was offered on selected models. The 370/XA had EBCDIC character-set support and dynamic 1/0O reconnect.
Two page sizes—2 and 4 K—and two segment sizes—64 K and 1 MB—were available. Multiprocessing was
performed with one operating system. Approximately 50 new instructions had been added since the launching
of the S/370.

Procassor Comzlex

4(Maal Sorage

Frosaaser

|

— .
=
I Enannal |"| Ctharwied | P] Chanael
......... ilz . .._H._..... _"_I'_ n...q_..ﬂ-...
G G e L “ - C G
| all]= o e ofllo
W t w H H ™ N H
- - 1 1 1 - s 2
R||nR Rl]nR Rl & nfln
oo alla 3l o ofllo
1 1 1 L L 1 L L
L L L L L 1 1
C E C k [C E E
1] H H] F B n i
||;.:_.~.-||_-,;: | I::'u.:;r J |n'~.' GE W DEVICE
EWK | SEvIoE CEWICE DoV GC
Figure 1-3

A conceptual view of an §/370.

2. Channel subsystem characteristics and functions. The 370/XA channel subsystem was ssimply a processor
that served as an interface between 1/O devices and processors; it performed preprocessing on data between 1/0
devices and processors. A channel path in 370/XA referred to the physical path between the channel subsystem
and a device. Subchannel numbers had a one-to-one relationship with an 1/O device, and there was path-
independent addressing for 1/0 devices. The implementation of paths enabled dynamic data routing from 1/0
device to processor. A channel path identifier (CHPID) in 370/XA was associated with devices such as control
units. Path management was performed by the channel subsystem. Increased Channel Command Word (CCW)
support was included for direct use of 31-bit addressing in channel programs. Thirteen 1/0 instructions had been
added (since the $/370), and two types of channels were supported: byte and block multiplexer. Subchannels
were not owned by the channel asin the S/370. The 370/XA used channel protocol for data transfer with data
transfer rates of 1.5 and 3 MB, depending on the channel bus width. The 370/XA could suspend and resume
facility for programmed control of channel program execution and could remove 16-byte channel prefetching.
Figure 1-4 is aflowchart of a channel subsystem.

3. Control unit(s). These served as an interface between devices such as aterminal, card reader, card punch,
and printer.

4. Peripheral devices. These included terminals, printers, card punches, and card readers, al of which served as
I/O devices. Terminals were used interactively; punched cards were used in batch processing.

5. Sorage. There were three types of storage (differentiated by addressing scheme): absolute, real, and virtual.
In absolute storage, which was an address in main storage, no transformations were performed on the contents
and 2 GB of storage were possible. In real storage—which was also an address in main storage, multiple
processors accessed the same main storage. A CPU prefix number distinguished processors to maintain storage
order. Invirtual storage, the address reflected an abstract location. Virtual storage does not exist in reality;
rather, it is a concept, achieved by main storage, secondary storage, and processor speed as the fundamental
components that make virtual storage possible.

Subsharnsl

i

N urier

cPU

Charanl
Cwasvabarn

Device

Figure 1-4
370/XA channel subsystem.

GrU FAIN o
STORMGE

E CHARMEL SURSYSTEM E

AR T AL GONHT 0L COWTRCL
[FL] LRIT LRIT
| |
DEVIGE DEVICE CEVICE

DEVICE LEVE:: | JEWVHE |
Figure 1-5

370/XA architecture.

The architectural advancement shown in Fig. 1-5 brought about a more segregated and separate function of
system component functions.

Other functionality was added to 370/XA until the announcement of Enterprise System Architecture; however
the highlights mentioned above constitute the bulk of additions to the XA architecture.

1.5 Enterprise System Architecture/370

Enterprise System Architecture (ESA/370), announced in 1988, succeeded the 370/XA. This architecture built
on advances made in 370/XA and S/370. Consequently, different hardware-related functions were implemented.
However, from a systems standpoint, considerable advances were made, including a new operating system, as
we will seein alater section. Highlights of ESA/370 included addressing, storage, and machine-dependent
support.

1. Addressing. Key enhancementsin ESA/370 included 16 new access registers, which provided the hardware
capability for a program to address up to 16 spaces. A home address space was a tranglation mode that
permitted the control program to gain control quickly where principal control blocks were maintained. A
private space, designed to enhance security functions, was also supported in the ESA/370 to prevent use of the
trang ation look-aside buffer for common segments.

2. Sorage. A magjor improvement in the ESA/370 was its storage-handling ability. The storage management
subsystem was designed to stage data. An /O boundary existed, and multiple places were available for storing
data. With a storage subsystem, the framework was in place for a particular processor complex to capitalize on
this feature. (See Fig. 1-6.) This storage hierarchy is quite significant. Today, PCs typically have asimilar
arrangement. Even the implementation of cache to the processor and RAM is now being phased in to a greater
degree with each new model brought to the marketplace. In addition, working with the storage hierarchy in the
ESA/370 was the system control element (SCE), which routed data through the CPU’ s main and expanded
storage, as well as the channels. The SCE kept track of changes made to data and was the key component for
moving data throughout the hierarchy. Notice the centralized connection of the SCE and the other system
componentsin Fig. 1-7.

ertnl Fronosag
v

¥ 4
| P rachi |
L1
Camiral Swage Crutead
aundny
v T /
1 ¢
Sxannced Blangn .l'f
r‘l'
F
&
TITITTIT TTTTTTIT TTTITTRTIT I
B DAED Cacha
LRI L LLIDTIRN |
IRk MART
Figure 1-6

IBM’s storage hierarchy.

cry GFL aPU [}
g1 B 3 B

Coehg Cachn Cache Dacha
| [[

Satam Ganteel Slemart

SLE

Carirnl SAzrage ‘ [Exparded Stangn ‘
[CHANMFLS |
Cont CaTrd Lontral ening
unit unit Wnit T
o -~ = - -
— L
JASD ILE] CASD [ELEHE]
— P — S
Figure 1-7
SCE logical view.

3. Machine-dependent support. A feature known asthe logical partitioned mode (commonly known by its
acronym, LPAR) was a machine-dependent function, tied to hardware and a software component known as the
Processor Resource/Systems Manager (PR/SM, pronounced prism). To function in LPAR mode, the machine
had to be supported by that system and selected on power-up time. LPAR permitted a system to run four logical
partitions (see Fig. 1-8), each running an operating system simultaneously and all independent of one another.
Thelogical partitioning of a processor included the processor’ s resources such as storage, channels, and the
processor itself. Isolation of the LPARs was enforced via hardware. PR/SM itself was an IBM-supplied option
that some machines could take advantage of to offer LPAR. PR/SM was implemented in microcode, which is
IBM’ s synonym for firmware.

Lran L7AnN Lran L PA=:

ke
VG LU ¥5E =Py

Figure 1-8
A logical view of LPAR.

Although there were few physical differences between the ESA/370 and 370/XA architecture, the former
offered storage, addressing, and machine-dependent enhancements; Fig. 1-9 depicts ESA/370 with two
processors.

1.6 System/390

System/390 (§/390), also known as Enter prise Systemy/390, was announced in September 1990. This
announcement was broad in scope, encompassing a new processor line, channel subsystem, many software
announcements, and wide-sweeping networking-related support. A brief view of the hardware highlights
includes $/390 enhancements, ES/9000 processors, Enterprise Systems Connection (ESCON) Architecture, and
networking support.

S/390 enhancements included storage override protection, which provided reliability of executing programs by
keeping a different applica tion from executing simultaneously within that same address space; program event
recording (PER) Facility 2, which provided a more focused method of event control when compared to PER 1;
and Access List Control, which permitted different users different functionality within the same address space.

Carvicn
Ciwird

Uit

— | crancel
——— | P

Corirnd

Rhrat |—‘
Device

WiEn STmgs

M=« & @

TmII»

4

Figure 1-9
ESA/370 architecture.

S/390 built on the framework of ESA/370. Some documents refer to §/390 and ESA/390 simultaneously. IBM
documentation uses ESA/390 to refer to those environments which include one or more of the following:

* Enterprise Systems Connection (ESCON) Architecture
» Common Cryptographic Architecture

» An environment providing data spaces for Virtual Memory.

1.7 Summary

Since the 1950s, IBM has brought five hardware architectures to market; they were described in this chapter.
Although IBM has additional architectures implemented in different offerings such as the AS/400 and
RISC/6000, the architectures presented here were those architectures associated primarily with what were
considered mainframes.

Any way these architectures are evaluated, it is easy to conclude that the advances made by IBM in the latter
half of the twentieth century surpassed the progress made earlier.

2
SNA Hardware Components

SNA isacollection of hardware and software components integrated together to create afunctional network.
The amount and type of hardware and software installed determine the functionality of an SNA network. This
chapter presents the popular hardware used in SNA networks in the past as well as the present.

2.1 Processors

IBM processors are grouped into what IBM calls series. IBM has different series that are based on different
architectures, such as those mentioned in Chap 1. For example, the ES/9000 series is based on ESA/390 or
S/390 architecture. Some processor series IBM has and has offered include ES/9000, 3090, 4300, 303X, 308X,
and 9370.

Processor series have models. For example, the announcement of the ES/9000 included 18 models. Some of
these models included

120 210 440 720
130 260 480 820
150 320 500 900
170 330 580
190 340 620

Each of these models has different processing support levels and other differences such as water-cooled or air-
cooled processor capability. Consider Fig. 2-1.

Some of the processor series IBM has offered provide different functionalities. For example, some modelsin
the 9370 series support direct Ethernet network attachment.

Lol Cenin emal Candral Cnial Canmsl
Praetng [l Processing Prawzaing Prvwanssing || Poooessdng FCaen
Unit Uit Li-a Unit Unit Linit
Evaram Byabe
Okl Syatean -
I‘;;'r:éﬂ L) Caningd Canlno N
R Elarmen: gl Eioruge
1
Inlercarmact [-
Ewpuandin: L i nicaliom Commurimion E:.I)f e
Buregs Flemil Elerwm ki
—— - (™
Frowsur e Channel [|]
and Sadryntn Sbaysiam il
Cimalin:
il | L I . 1]
Mrecsasar Hroacsaar
Corkale’ [
Figure 2-1

A conceptual view of a partitioned ES/9000.

Some 308X series have model numbers that indicate single- or dual-processor capabilities. In genera, the
model number of a particular series indicates a significant amount of information about the processor.
Understanding this numbering scheme helps break the number barrier for those new to IBM equipment and
environments.

2.2 Channels

The saying in IBM circlesisthat all datainbound to a processor must go through a channel to get to the
processor. So far, this author has found that to be the case. Channels, a channel subsystem, and channel paths
are deeply rooted in the hardware architecture dictating how data are manipulated at the lowest layersin a
system. ESCON isIBM’s serial fiber channel, and is discussed in greater detail later in this chapter; however,
for now, consider Fig. 2-2.

Channels used prior to ESCON used heavy copper-stranded cables called bus and tag cables. The distancein
which parallel channels (those prior to ESCON) could operate was approximately 200 ft if devices were daisy
chained. A straight run of 400 ft might be obtained under ideal conditions. The bus cable contains signal lines
used to transport data. Tag cables control data traffic on the bus.

Prior to ESCON, IBM offered three types of channels that moved datain parallel from a source to a destination
point:

Figure 2-2
ESCON configuration.

1. Selector channel. This channel had only one subchannel and could accommodate only one data transfer at a
time. However, multiple devices could be connected to this subchannel such as tape and disk devices. The
selector channel was intended for high-speed devices only. Once alogical connection was established between
adevice and the channel, no interruptions occurred for the duration of the data transfer. The selector channel
was developed in the early days of IBM channels. They are outdated today and were used primarily in the
1960s and to a reduced degree in the early 1970s, when support for selector channels was discontinued. Figure
2-3 shows a selector channel and devices.

2. Byte multiplexer channel. Thiswas afollow-on to the selector channel. Unlike the selector channel, this
channel was intended for low-speed devices. One channel could address up to 256 subchannels. The
subchannels operated in burst mode, meaning that once alogical connection was established between a device
and the channel, the data were pushed to the channel. After release, the next data transfer could occur,
permitting interleaving of data at a byte level. Since these channels were designed to operate with slow-speed
devices, this operation works quite well, exploiting bandwidth and utilizing the available resources. (See Fig. 2-
4 for an overall view of the byte multiplexer channel.)

Subactimre

| apa drves

Figure 2-3
Selector channel.

3. Block multiplexer channel. This was another follow-on to the selector channel and was introduced with the
S/370 hardware architecture. This type of channel had the ability to record the address, byte count, status, and
control information for an /O operation and thus could perform a disconnect from a device if no data were
being transferred. This meant that high-speed devices could have overlapping operations. In this sense a greater
utilization of resourcesis realized. Figure 2-5 depicts an overall view of the block multiplexer channel system
and shows how data are interleaved as they are passed to the channel.

Another type of channel supported by IBM now isthe ESCON channel. Simply stated, it is a fiber-optic data
path. Its channel protocols are different from those of the three channels described above. ESCON isreferred to
asaserial channel, whereas the other three channels have been renamed parallel channels.

CHANKEL

SUBCHAMMELS

Tels sl]

e Conte %
Uri uan

SE

COTET UTIE AN
s

Figure 2-4
A byte multiplexer channel, with its subchannels and devices.

ESCON channels support greater physical cable length because photons, not electrons, are moved; hence no
voltage drop isrealized. ESCON channels also support dynamic connectivity with the use of ESCON directors.
Additionally, ESCON extenders can be used to move the distance in which these cables can operate to
approximately 43 km. Figure 2-6 depicts two processors, an ESCON director, ESCON and parallel channels,
and multiple control units.

—— —_
020
> a
" ___1___ — —
\

Dt Floe:

o] o] v

e

CFmEEEIN
& 3 S BT TE K

| 1115832114 2223%0 |

Mt irbaaasardg
frorm oo 29305

Figure 2-5
Data flow through a block multiplexer channel.

PRCGESECA PRCCESECA

EECN Chanme PRral Charng

N \ v f]
AN o IJ
|:~..n..| \ - l::'ﬂ'd
Lot \\ o -\._\) e Lnd

Canel H_] conesl

Urit \ Unt

Figure 2-6
Seria and parallel channels.

2.3 Communication Controller

This device, also known as a front-end processor (FEP), houses the network control program (NCP), a
component that we will discuss shortly. The communication controller is available in different sizes and models
that dictate the abilities and limitations of the controllers. Communication controllers perform multiple tasks,
including routing, flow control, and the point at which communication lines connect and where certain
specialized programs operate, allowing non-SNA equipment to access an SNA network. The communication
controller system is shown in Fig. 2-7.

Thisis only one example of how a communication controller isimplemented. Later in this chapter the
implementation of this device is shown in different scenarios.

2.4 Cluster Controller

The cluster controller was the forerunner of the establishment controller, explained next. In SNA environments,
cluster controllers were used to attach terminals and printers. The different cluster controller models dictated
how many devices could be attached to the controller. In SNA drawings where a cluster controller isused, it is
represented typically as shownin Fig. 2-8.

PROECF SR

! CoOmPN eIt
/ Lina
} Cormacions

Chanre
ELBwalem

Figure 2-7
Processors, channel's, and communication controller.

The cluster controller is known in SNA environments as a 3274 control unit. The 3274 control unit family has
different models, including the 1A, 21A, 31, and 41.

Depending on the model, two possible modes of operation are possible: local and remote.
There are three methods of identifying the operational method of a particular control unit:
1. An Aindicator means that the control unit is functioning as a channel-attached local device.

2. The B and D designators indicate that the control units are channel-attached using the processor channel
program.

3. The C designator indicates that the control unit is operating as a remote unit with SDLC or BSC data-link

layer protocols.

Figure 2-8
Cluster controller.

The 3274 is till in use today even though it has been replaced by the 3174. Both work well together, and,
depending on the need, justification for a 3274 may be as credible as that for a 3174.

2.5 Establishment Controller

This device succeeded the cluster controller. It provides services offered by the cluster controller and more such
as those used in networking. The establishment controller appears asillustrated in Fig. 2-9.

The establishment controller has numerous modelsin its family. Certain models are capable of performing
functions that others cannot. A brief list of those controllers that have been brought to market includes:

1L 11IR 21R 52R
IR 12 22L 61R
2R 12R 22R 62R
3R 13R 23R 63R

11L 21L 51R

Some characteristics and functions that the establishment controller offers are Token Ring support and Token
Ring gateway support. Multicast support via the concurrent communication adapter and single-link
configuration includes ISDN support, PU2.0 support, PU2.1 support, APPN support, control unit terminal
(CUT) support, distributed function terminal (DFT) support, synchronous data-link control (SDL C) support,
X.21 and X.25 support, parallel-channel support, ESCON support, binary synchronous communication (BSC)
support, 3270 data-stream support, printer support, response-time monitor (RTM) support, Common
Management Information Protocol (CMIP) support, Generic Alert support, and T2.1 Channel Command
support.

The Advanced Peer-to-Peer Networking (APPN) support offered by the establishment controller isa
considerable enhancement over the 3274 cluster controllers, which did not have this support. This device covers
a broader support than its predecessor, and is positioned to fit into either SNA or APPN networks or both.

Figure 2-9
Establishment controller.

2.6 Interconnect Controller

This device, which succeeded the cluster controller, provides the services of the cluster controller and more,
such as those used in networking. The interconnect controller conceptually appears as shown in Fig. 2-10.

The interconnect controller is known numerically asthe 3172. Three models have thus far been introduced to
the market: the 001, 002, and 003. The forte of the 003 model isits versatility. The model 003 supports the
TCP/IP offload function offered by IBM, which enables a customer to purchase TCP/IPtorunasaVTAM
application but select the applications and functions desired and offload TCP, UDP, and IP to the 3172 model
003. In turn, only the desired portion of TCP/IP resides as an active application under VTAM. Theresult is
conservation of resources from a processor standpoint.

The offload function of TCP/IP to the model 003 means that protocol conversion of TCP and/or UDPis
performed on the 3172—not the processor. Additionally, this means that | P performs routing functions on the
3172. Again the benefit is no need for work on the processor for this function.

The 3172 model 003 communicates effectively with a processor through what IBM calls Common Link Access
to Workstation (CLAW) protocol. The 3172 003 can achieve this because it implements a CLAW driver to do
s0. The benefit to thisis how the subchannel is utilized with regard to data transfer rate.

Other benefits of the 3172 model 003 isits support for data-link layer protocols. This model supports FDDI,
Ethernet version 2, 802.3, Token Ring, and channel protocol (to the processor).

Another powerful support aspect of the 3172 isits ability to support not only NetView but also Simple Network
Management Protocol (SNMP). It also provides a system log facility viathe Interconnect Control Program
(ICP) which can be used for debugging if necessary.

Figure 2-10
Interconnect controller.

Since its announcement, the 3172 has undergone multiple changes. Some functions available now did not exist
at the time of itsinception. Other functions have been discontinued because of market conditions.

2.7 Direct-Access Storage Device

Direct-access storage device (DASD) isIBM’sterm for adisk drive. Significant here are the five deliverable
DASD offerings. Many IBM DASD units are still in use in companies and corporations around the world. For
the sake of information, the focus here is on these different offerings and their fundamental significance.

The first DASD devices could be characterized as removable media, as their “platters’—those layers of the
drive in which data are stored—could be removed. The second DA SD devices to appear had more
“intelligence” than their predecessors did. They had removable platters also, but a great improvement was the
increased storage capacity of some modelsin these offerings. Third came the DASD offering which brought
significant improvement of storage in terms of density and also better diagnostic capabilities. Significant
performance was also achieved. The fourth category of DASD offerings from IBM dominated the 1980s. A
resounding word recurring about this category of DASD isreliability. Performance, speed, and flexibility in
regard to implementation aso characterized this category.

Thefifth category of IBM DASD was developed in the 1990s. Many in the technical community, including
IBM, consider it the DASD architectural foundation for this decade and into the twenty-first century. Strengths
of this category include a robust number of models from which to select. Software support used in processors
supporting the IBM storage hierarchy has also caught up significantly. Consequently, leveraging advanced
hardware along with supporting software brings synergy to the storage subsystem offered in this current
category.

Figure 2-11 depicts how referenceto DASD is generally made in SNA. Most references are not to a specific
DASD model, unless an in-depth discussion of the topic at hand is required.

Figure 2-11
Direct-access storage device.

Figure 2-12
Type drive.

2.8 Tape Devices

IBM has two basic groups of tape devices: reel-based and cartridge-based. In many IBM shops tape is a method
of backup for data that may be archived. Figure 2-12 shows the general symbols used when reference is made to
adisk drive.

2.9 Printers

IBM has different types of printers, which can be categorized by speed and type of technology. Figure 2-13
shows a generic example of a printer. Instances of reference to a printer in this chapter include this
representation. Most of IBM’s documentation uses this representation for printers. In most cases this symbol
suffices to convey the information being discussed.

Figure 2-13
Printer.
Figure 2-14
Terminal.

2.10 Terminals

Different types of terminals are used in SNA, but most have one commonality: use of the 3270 data stream. This
will be discussed in further detail later, but it isimportant to note here the general nature of IBM terminals used
in SNA. There are two categories of terminals. those which do and those which do not support graphics.

Terminals can also be classified according to how many columns and rows they support. For example, in the
3278 terminal family, the basic difference between the four terminal types—models 2 through 5—is how many
columns and rows are supported.

Other terminal types are the 3179G, which supports graphic applications, and the 3279, which isalater version
of the 3278 terminal.

Terminals will be discussed later in sections on SNA issues such as the type data stream they support.
References in this book to a 3270 terminal appear as shown in Fig. 2-14.

211 Summary

Categorization of IBM hardware isfairly logical. This chapter presents most of the hardware associated with
SNA. Actual implementation of this hardware and IBM’ s software makes up SNA asit isknown in the
marketplace. IBM hardware has a unigue design—it is designed for functionality. Each piece of equipment
performs one or more identifiable function; however, IBM hardware is aso designed as an integral component
on which the SNA is based.

3
IBM Operating Systems

IBM has many different operating systems. However, this chapter focuses on those three operating systems
which work with the larger-scal e systems and predominate in terms of market share and presence in the SNA
networking environment: Multiple Virtual Storage, Virtual Machine, and Virtual Storage Extended. These three
systems are at different versions and releases and reflect the underlying hardware architecture on which they
operate. The basic characteristics and functions of these operating systems, as well as the software subsystems
(which have considerable market share) that operate under their control, and other pertinent information that
seems to be agreed on in the industry are discussed here. In this chapter, aswe did in Chaps. 1 and 2, we will
attempt to understand the basics of some of the SNA-centered terminology and concepts.

3.1 MultipleVirtual Storage

Multiple Virtual Sorage (MVS) originated in the first versions of Operating System/360 (OS/360) designed in
the early 1960s. It is generally considered a production-oriented operating system. From a historical viewpoint,
this operating system has evolved through many versions and releases, but for our purposes, suffice it to say that
MV S simmediate predecessor was Multiprogramming with a Variable (number of) Tasks (OS/MVT).

Many books have been written about MV S by IBM and others not affiliated with the IBM corporation. The
intent of this section is to focus on the highlights of MV S. Not all of its features and functions are present ed,
just those which this author believes have made significant impact through the versions and releases that MV S
has realized thusfar.

MV S operated with S/370 hardware architecture and followed two earlier versions of operating systems:
OS/VS1 and OS/VS2. MV S could address up to 16 MB of virtual storage. It utilized program areas in the form
of names that referred to an address space, which is an identifiable amount of memory, or address-storing
capacity, that a program can use. Tied to this was the concept of an address-space identifier, which identified a
particular address space. Data areas—known more precisely as common data areas—provided capabilities for
user program messaging, communication with the operating supervisor, and operating system-program
interaction. 1/0 buffers were also utilized to pass data from a telecommunication subsystems to an address space
where that data would be moved for operations to be performed.

A magjor change for MV Sin 1981 was related to addressability. The significance of Multiple Virtual
Sorage/eXtended Architecture (MVS/XA) was that it broke the 16-MB boundary and virtual storage
addressability was supported up to 2 GB; numerically, thisis 2,174,484,684 bytes!

MV S/XA aso provided each user with the perception of having a unique address space and could distinguish
between programs and user data in each address space. Cross-memory services brought the ability for a user to
access other address spaces as necessary.

The concept of task management in MV S XA meant piecework operation, in which jobs were divided into
smaller pieces and each piece “task” was processed as efficiently as possible. This process was controlled by the
supervisor.

MV S/XA supported both 24- and 31-bit addressing. Along with MV S/XA came changesin the 1/O facilities.
The largest change with MV S XA was the 1/0O subsystem, which handles 1/O operations independently of the
processor. Thiswas followed by other changes.

First, the channel, not the operating system, handled channel path selection. Additionally, dynamic reconnection
was added to the I/O portion to support dynamic path selection. Another enhancement to 1/0 facilities that fit
into MV S/XA was the increase in the number of supported devices to 4,096; however, a contingent factor was
dependence on the I/O configuration program. Support for up to 256 channel paths with 8 paths per device was
also supported under MV S/XA.

MV S/XA introduced three types of tracing: address space, branch, and explicit software. The generalized trace
facility (GTF) was changed to support 31-bit addressing. Parallel to this was the improved DUMP facility.

MV S/XA controlled work or managed a resource by identifying a control block. Three types of control blocks
were associated with MV S/XA: resource, which represented a DA SD or processor, for example; system, which
contained systemwide information; and task, which represented one unit of work.

The System Resource Manager (SRM) isused in MV S/XA to make decisions concerning where an address
gpace should remain, that is, in real storage or DASD; these address spaces represent “resources’ inaMV S/XA
environment.

In 1988, Multiple Virtual Storage/Enterprise Systems Architecture (MV SESA) was introduced. Its virtual
storage addressability was (and remains) 16 terabytes (TB). New features and functions made this software and
architecture the most vigorous to date.

With MV S/ESA data spaces—which contain data only, no programs—became available, further extending the
abilities of virtual storage. Since data spaces were available, they had to be managed. A data-space manager
keeps track of those in use in the system and manages them accordingly. A data space may be assigned to one
program only or shared.

Related to data space is the concept of cyberspace, which is data in an address space that has a specia
classification. It is datathat is processed in an address space, but typically uses expanded storage or migrates to
auxiliary storage.

An access list, which is responsible for determining which data spaces a program is authorized to use, is also
part of MVS/ESA. Thisfacility is also used by hardware to exploit it for use with the segment table descriptor.

Also included in MV Sisthe linkage stack facility, which is used to retain information about the state a program
isin during execution when a call is sent to another program.

The virtual look-aside facility (VLF) was designed to reduce the time for partitioned data set (PDS) searches
and reads. It can also perform multiple reads against the same object. VLF operatesin its own address space and
assigns names to objects it manages. The naming convention uses three levels: class, mgor, and minor. This
object naming system is used by the VLF to increase retrieval.

Advanced Program-to-Program Communication (APPC) support under MV S enables peer connectivity outside
the MV S environment; examples are AlX for the RISC/6000, S/38, 0S/400, VM/ESA, V SE, and OS/2.

APPC under MV S by APPC/MV S applications, Time Sharing Option/ Extension (TSO/E) operation, the IBM
Information Management System (IMS), and even APPC batch jobs are shown in Fig. 3-1.

Other examination functionsin MV S/ESA include sysplex, the cross-system coupling facility, the automatic
reconfiguration facility, and hardware configuration definition.

TACME

L

ECich oo

A
P
P
[+
LU
W
5

Figure 3-1
Conceptual view of APPC/MVS.

In sysplex one or more MV S systems are linked via hardware and software services. In this scenario they are
treated as a single complex and initialized as such. To achieve this sysplex concept, an external clock, called the
sysplex timer, must be used to synchronize the systems brought together. Its purpose is to synchronize the time
across the entire central processing complex.

The cross-system coupling facility (XCF) is software providing control of members and groups,
intercommunication among members, and monitoring of members. Explained another way, it provides the
services necessary for programs in a multisystem environment to communicate successfully.

The automatic reconfiguration facility (ARF) can be used in asingle- or multiprocessor configuration
environment. In either case it serves to redistribute aworkload in the event of failure without operator
intervention.

The hardware configuration definition (HCD) facility permits communication between the channel subsystem
and I/O definitions at the same time. Prior to MV S version 4 this process was a two-step function: (1) defining
the I/O subsystem viathe I/O Control Program (I0OCP) and (2) defining software by the MV S Control Program
(MVSCP). Now, with HCD the two are combined.

Other MV S functions are too numerousto list here. For further information about MV S, contact your local IBM
representative.

3.2 Virtual Machine

Virtual Machine/Enter prise Systems Architecture (VM/ESA) combines the VM/System Product (VM/SP),
VM/SP High-Performance Option (VM/SP HPO), and VM/SP XA. VM/ESA facilitiesinclude APPC/VM
VTAM support (AVS), VM/ESA facility that converts APPC/VM into APPC/VTAM protocol for
communication throughout an SNA network; the group control system (GCS), afacility that manages
subsystems that permit VM/ESA to interact within an SNA environment, the interactive problem control system
(IPCS), aVM/ESA component that provides an operator with online capability for problem diagnosis and
management; and the transparent services access facility (TSAF), aVM/ESA component that permits
communication between programs by name specification instead of user or node ID.

The forte of VM/ESA isits ability to run multiple operating systems on the same processor. This concept is
known as multiple preferred guests (MPG) (Fig. 3-2).

The concept of multiple preferred guestsis that totally different operating systems can be executing
simultaneously and one M PG fails but does not cause any other MPG to fail. This type of environment can be
advantageous if a production operating system is needed such as MV SESA and a devel opment-oriented
operating system such as VM/ESA is needed. Both of these can execute under the control of a VM/ESA
operating system.

Asdid MVS, VM originated in the 1970s. Technically, VM dates back to 1965 with what is known as Control
Program 40 (CP-40). By the late 1960s evolution of Control Program 40 was shaping up to what would become
known as VM/370. VM/370 was made available in 1972 according to the IBM System Journal Volume 18,
Number 1, 1979.

A closer view of VM/ESA reveals four components, which are the focus of the remainder of this section: the
control program (CP), the conversational monitoring system (CMYS), the group control system (GCS), and the

interuser communication vehicle (IUCV).
YSEIESA
WRESA

WWE

VIWESS

Figure 3-2
Conceptual view of multiple preferred guests.

The CP is used to manage the actual hardware. It communicates with resources such as the real processor, I/0
subsystem, and storage and is responsible for management of these resources. It is the CP that utilizes the
physical resources to create the logical (virtual machines). CP exploits the hardware architecture mentioned
previoudly. In the case of /390 architecture, many of the resources available with the MV S operating system
are available through the platform where CP isin control. CP has a set of commands that permit the
manipulation of resources, both physical and logical. Some of the commands can be used immediately after
logon to perform system management functions.

Some CP aspects should be noted here. First, the CP is software. It istransferred to real storage when the system
is booted. One way CP works is by defining internal objects by what is called a control block. An example of an
important control block isthe VM definition block (VMDBK), which represents alogged-on virtual machine; it
is created by the CP when one logs onto VM. A trace table existsin VM, and a CP trace table maintains any
events related to system crashes and other problems. The CP knows the real I/O configuration and correlates real
I/0O device capabilities to virtual devices. CP with VM/ESA architecture also supports ESCON I/O architecture.

The conversational monitoring system (CMS), another VM/ESA component, operates with the CP but is used as
atwo-way communication processor between users. IBM has alarge manual of valid CMS commands that can
be used to perform a number of functions. CMS s an operating system for VM users.

CMS communication can occur between users and CM S. Users can enter commands to CM S, and CM S can
issue messages to users. CM S permits a number of user functions; for example, it permits communication with
other users; permits users to create, test, and debug programs; controls workflow inaVM/ESA system; and
permits file sharing.

The concept of file sharing under CMS is achieved via the shared file system (SFS), which is an extension of
CMS and provides file management capabilities. According to IBM’s CMS Shared File System Primer,
document number GG24-3709, SFS features include the following:

* A hierarchical file system.

* Files can be stored in pools.
» User space can be assigned to a spool file.
* A file can be located in more than one directory.

* Files and directories can be shared with users on other systems

* File and directory locks ensure data integrity when multiple users are involved with the same file and/or
directory.

» Users can have concurrent access to files and directories.
* Filesin afile space are stored in a directory.

CMS aso has afacility known as XEDIT, afull-screen editor that permits users the ability to create, edit, and
manipulate files. It runs under the control of CM'S. Some functions capable under XEDIT include CMSfile
creation, file editing, joining existing files, performing searches in files for specific data, creating XEDIT
macros, performing a sort function on datain afile, and providing help for users.

The group control system (GCS), aVM component shipped by IBM with each VM/ESA system, manages
subsystems that permit interoperation with IBM’s SNA. Actually, GCSisasupervisor. IBM’s Virtual
Telecommunication Access Method (VTAM) runs under a GCS group which, in turn, has a supervisor. VTAM
is used for communication between programsin aVM/ESA machine or complex and devices outsideit in an
SNA network.

The interuser communication vehicle (IUCV) facilitates communication between programs running in two
different virtual machines. It isalso aided by CMS. The IUCV serves the function of facilitating the
communication between avirtual machine and a CP service. Some examples of the latter include logging errors,
communication with the system console, performing message system service functions, and other services such
as a SPOOL system service. Figure 3-3 provides a conceptual view of these [IUCV communication functions.

i T}
Hoat H
& a
[[W]
< FucBan Funcics
L4
] i) A
& —
UG
F Syalemn Seivine
P
Fumtaary
Figure 3-3

IUCV communications.

There are many more aspects of the VM environment, but for our purposes here this information should suffice.
IBM has exhaustive documentation about VM and its components, and this author recommends contacting IBM
for further information if needed.

3.3 Virtual Storage Extended

Virtual Sorage Extended/Enterprise System Architecture (VSE/ESA) is another IBM operating system that
operates on some S/370 architectures and the ESA/390 architecture. Its strength isin batch processing
capabilities. Also, according to IBM documentation, it can support high transaction volumes. VSE/ESA is
regenerated, meaning that a generation is not required; IBM ships object code. Thisisin contrast with

MV S/ESA and VM/ESA, which must be generated at installation time for site-specific customization. Because
V SE/ESA is supplied this way, much planning can be eliminated.

Before examining the functionality of VSE/ESA, consider its lineage according to IBM’sVSE/ESA Version 1.3.
An Introduction Presentation Foil Master, document number GG24-4008.

Date Offering

1965 DOS

1972 DOS/Virtual Storage (DOS/VS)

1979 DOS/Virtual Storage Extended (DOS/V SE)
1985 V SE/System Product (V SE/SP) version 2
1989 VSE/SP version 4

1990 VSE/ESA version 1.1

1991 VSE/ESA version 1.2

1993 VSE/ESA version 1.3

V SE/ESA can operate in multiple environments. Some of those environments are

* It can serve as the sole operating system on a processor. As aresult, both local and remote operations can be
realized.

e |t can run under an LPAR.

* It can run as a standal one system, without human intervention, in some cases functioning as a node within a
network.

» VSE/ESA can also operate under VM as a preferred guest.

The following list includes the major enhancements and inherent features and functions of VSE/ESA, aswell as
some of its optional facilities. The purpose hereis to understand the breadth of change that V SE has undergone
with the advent of its support in ESA. Thelist is not exhaustive, but the core aspects of this release are
presented.

* 31-hit virtual addressing

* Support for data spaces

* Support for more I/O devices
* ESCON support

* ESCON director support

* VTAM version 3 release 4 features for VSE/ESA

* National language support including Spanish, German, and Japanese
» Addressahility of £2 GB of real storage and £2 GB of virtual storage
» VSE/ESA POWER operation in a private address space

* Support for the 3172 viaVTAM 3.4

» ES/9000 processor support

* ESCON C-T-C adapter support

* Support for virtual disksin storage

* Support for extended functions of the 3990 DASD

* NetView for VES/ESA

* Support for SQL/DS making aV SE/ESA capable of functioning with Distributed Relational Database
Architecture (DRDA) as a server

* 3174 ESCON connectivity

So many enhancements were made that the V SE/ESA operating system has become more popular in the past
few years (according to reports in credible trade magazines). Beyond the aforementioned enhancementsto V SE,
some of its system components—L.ibrarian, ICCF, POWER, and V SAM—need to be presented and briefly
discussed for those new to the VSE/ESA environment.

The Librarian is a utility program that is used to manipulate libraries. It aids in the creation, maintenance, and
use of libraries. With VSE/ESA the following were included in the Librarian: COPY and COMPARE
commands; a MOV E command; LISTD command, which isalist including the date; a SEARCH command,;
LOCK and UNLOCK commands to provide data integrity to single library members that may be in the process
of being updated; and a BACKUP command, which now supports the backup of an individual member.

Libraries have one or more sublibraries which, in turn, consists of members. These members are where data,
programs, source code, and other “data”’ exist in aVSE/ESA system.

Two types of libraries exist in VSE/ESA: system and ICCF libraries. System library sublibraries can include the
following members. source—source code to be processed; object—a module generated by the output of a
language trandator and used for input by alinkage editor; DUMP—if an abnormal termination results, the
contents will be sent to this type of member in a sublibrary; procedure—a set of procedures, which may be a set
of job control statements; and phase—a member that has a program or sections of a program stored in it that is
(are) ready to run.

Other system-oriented libraries exist, and if further information is needed, look for the appropriate IBM
V SE/ESA manual that explains this information needed or obtain alist of VSE/ESA documentation through
your local IBM representative.

The V SE/Interactive Computing and Control Facility (V SE/ICCF) uses libraries. There are many such libraries,
but relevant here and most frequently used include the public library, which consists of data that may need to be
accessed by a number of users systemwide; the common library, which contains datain which al users are
interested; the main library, which is attached to an individual once that person logs on; and the private library,
which contains data limited to one or afew users.

The interactive computing and control facility (ICCF) serves as the interface between a user and a VvV SE/ESA
system. Technically, it is the subsystem for program development and system administration occurs. Libraries,
sublibraries, and members can be created through ICCF. Priority Output Writers and Execution (Processors and
Input) Readers (POWER) is a subsystem that provides networking support, batch job processing, and spooling
functions. The Virtual Storage Access Method (V SAM) is the access method for storing data, programs, and the
like; thusit provides aform of data management. Its supported data organization includes entry-sequenced files
(smilar to those in a sequential file), key-sequenced data sets (similar to those in an indexed file), relative
record data sets (smilar to those in direct access files), and variable-length relative record data sets.

V SE/ESA has been placed on equal ground with MV S/ESA and VM/ESA. There are many other aspects of
VSE/ESA, but the point of addressing the operating systems mentioned here is to convey some of their strengths
and their prevalence in the marketplace. The enhancements necessary to place VSE/ESA on the same level as
MV S and VM took time. But now IBM has three refined and tested operating systems to offer awide variety of
customer needs.

3.4 Summary

This chapter presented IBM’ s three primary operating systems which work with their large processors. All three
operating systems explained here are prevalent in the marketplace today.

These operating systems had different original design intents and the flavor they bring to the marketplace is still
discernible today. MV Sis basically considered a production-oriented operating system today. Technically, VM
could be considered more research and development (R& D) oriented, but since considerable software
development is available in the marketplace, even VM can be considered a production-oriented operating
system. V SE is primarily production-oriented, but it can be found in many installations that could be considered
R&D.

4
IBM Softwar e Offerings

IBM has many software subsystems that operate with the operating systems previously discussed. This chapter
focuses on software and methods designed especially for large networking systems.

4.1 Virtual Telecommunication Access M ethod

The Virtual Telecommunication Access Method (VTAM) is a software subsystem that operates under the
operating systems described in Chap. 3. It isacritical component in traditional SNA and functions in new ways
with IBM’s APPN. Practically every application that runsin an MV S host runsasaVTAM application.
Applications must be defined to VTAM in such away that they can be used. The same holds true for hardware
and components outside the processor. Figure 4-1 provides a conceptual view of VTAM with some peripherals
attached.

Oneof VTAM’smajor rolesin traditional SNA isaiding in session establishment. When aterminal user asksto
use a software subsystem, the request is first interpreted by VTAM and then passed to the appropriate
subsystem.

VTAM is also the centralized point for network component activation and deactivation. A VTAM component,
the system services control point (SSCP), plays avital role in the area of network management. This role should
not be confused with the software that enables network management to be realized; rather, they work together.
The SSCP network management role has to do with communicating with hardware and other components
throughout the network.

Communizatien Dommar st ion
Totraler Corrallor

o
|{_""—--______ =

____"f";___r___ :“:\

o f— ﬁ:fﬁf:zﬂ
kA .

!
[
Prowwssor ""'|;r.f "
AN T4
i v
Establishment L
Cumilansl b

==
Figure 4-1

Conceptual view of VTAM.

W < =
=

VTAM must know (have defined) software and hardware that operate within an SNA network. Some VTAM
components that must be defined for software and hardware operation are application(s), device(s), session
operating parameters, logon menu (if utilized), and communication controller and attached devices.

Applications must be defined to VTAM for the application to work. For example, if application Z isloaded into
a system, then certain parameters about the application must be defined. Different applications have
requirements for definition. To determine whether this applies, you should consult the IBM VTAM Resource
Definition manuals. Table 4-1 shows a basic example of an application definition.

Table4-1 Application Definition Example

Name of the application VBUILD MYAPP

statement Name of the application TYPE = APPL

Definition statement Operands MYAPP
APPL
ACBNAME
AUTH
DLGMODE
EAS
MODETAB
SSCPFM
USSTAB

Table4-2 Establishment Controller Definitions

MY 3174 VBUILD TYPE = LOCAL

MY 3174 PU CUADDR =
DLOGMODE =

DISCNT =
ISTATUS =
MAXBFRV =
PUTYPE =
USSTAB =

YOUR327401 LU LOCADDR =

Y OUR317406 LU LOCADDR =

Table 4-1 is an example of how each application that operates under VTAM would need to be defined. Not all
the parameters will be the same. The application and VTAM requirements will dictate how the application
should be defined, as will the site requirements.

Devices must be defined to VTAM aswell. A number of factors dictate how a device is defined, including how
the deviceis physically attached and the data-link protocol used and itsrolein the SNA environment (according
to SNA definitions). Table 4-2 presents an example of a 3174 establishment controller defined to VTAM.

In Table 4-2 the definition of the device can be divided into three parts. VTAM requires a VBUILD statement, a
physical unit (PU) statement, and logical unit (LU) statements for those LUs to be used. Physical and logical
unitswill be discussed further later in this book.

The statements and parameters in this example are typical of how adeviceis defined to VTAM. Three factors
determine how a device should be defined to VTAM: the architectural capability of the device, how VTAM
dictates that it must be defined, and how the device is used in a given site.

Session operating parameters must be customized. If aterminal user desires to work with an application, the
terminal parameters must be programmed. The location for these session parameters is known as thelogon
mode table (LOGMODE table).

The LOGMODE table consists of numerous entries, each of which defines the session parameters for a

particular type of session. Sessions will be discussed later in this chapter, but Fig. 4-2 shows aLOGMODE
table.

The logon menu, if utilized, iswhat users see when viewing aterminal under the control of VTAM. Thislogon
menu is formally called the unformatted system services (USS) table. Figure 4-3 is an example of a USS table.

kkkkkkhhkkkhhkhkkhhkhkhhkhkhhkhkkhhkhkhkhhkhkhkkhkhhkhkhhkhkhhkhkhhkkhhkhkkhhkkhkkk,kkk,kkx***%x

* THISISTHE LOGMODE TABLE FOR MY3174 *

kkkhkkkkhhkkhkkhhkhkkhhkhkhhkhkhhkhkhkhhkhkhhkkhkhhkhkhhkkhkkhhkkhhkkhkkk,kkk,kkxk**%x

* LOGMODE TABLE ENTRY FOR 3278-M2 EMULATION *

kkkhkkkkhhkkhkkhhkhkkhhkhkhhkhkhhkhkhkhhkhkhhkkhkhhkhkhhkkhkkhhkkhhkkhkkk,kkk,kkxk**%x

EDMODE MODETAB
EDMODE2 MODEENT LOGMODE = EDM2,
FMPROF = X'03, TSPROF = X'03,
PRIPROT = X'B1,
SECPROT = X'90,
COMPROT = X'3080', RUSIZES = X'F8F8;,
PSERVIC = X'028000000000000000000200'

kkkhkkkkhhkkhkkhhkhkkhhkhkhhkhkhhkhkhkhhkhkhhkkhkhhkhkhhkkhkkhhkkhhkkhkkk,kkk,kkxk**%x

* LOGMODE TABLE ENTRY FOR 3278-M3 EMULATION *

kkkkkkhhkkhkkhhkhkkhhkhkhhkhkhhhkhkhhkkhkhhkhkhhkhkhhkhkkhhkkkhhkkkhkkk,kkk,kkx***%

EDMODE3 MODEENT

LOGMODE = EDMS3, FMPROF = X'03/,
TSPROF = X'03,
PRIPROT = X'B1, SECPROT = X'90,

COMPROQOT = X'3080',
RUSIZES = X'F8F8;,
PSERVIC = X'028000000000185020507F00'

kkkkkkhhkkhkkhhkhkkhhkhkhhkhkhhhkhkhhkkhkhhkhkhhkhkhhkkhkhhkkhkkhhkk kkk kkk,kkxk***%

LOGMODE TABLE ENTRY FOR 3278-M4 EMULATION *

kkkkkkhhkkhkkhhkhkkhhkhkhhkhkhhhkhkhhkkhkhhkhkhhkhkhhkkhkhhkkhkkhhkk kkk kkk,kkxk***%

EDMODE4 MODEENT LOGMODE = EDM4,
FMPROF = X'03, TSPROF = X'03,
PRIPROT = X'B1,
SECPROT = X'90,
COMPROT = X'3080, RUSIZES = X'F8F8/,
PSERVIC = X'02800000000018502B507F00'

kkhkkkhkkhhkkkhhkhkhhkhkhhkhkkhhkhkhhkkhhhkhkhhkhkhhkkhkhhkhkhhkhkkhhkkhkhkkhkkkikxx*%

LOGMODE TABLE ENTRY FOR 3278-M5 EMULATION *

kkhkkkhkkhhkkkhhkhkhhkhkhhkhkkhhkhkhhkkhhhkhkhhkhkhhkkhkhhkhkhhkhkkhhkkhkhkkhkkkikxx*%

Figure 4-2
A LOGMODE table.

EDMODES MODEENT LOGMODE = EDMS5,
FMPROF = X'03, TSPROF = X'03,
PRIPROT = X'B1,
SECPROT = X'90/,
COMPROT = X'3080, RUSIZES = X'F8F8;,
PSERVIC = X'02800000000018501B847F00'

kkhkkkkhhkkkhhkkhkkhhkhkkhhkhkhhkhkkhhkkhhkkhkhhkhkhhkhkhhkkhkhhkhkkhhkhkkhhkkhkkkikkx**

EDMODE MODEEND *

kkhkkkkhhkkkhhkkhkkhhkhkkhhkhkhhkhkkhhkkhhkkhkhhkhkhhkhkhhkkhkhhkhkkhhkhkkhhkkhkkkikkx**

Figure 4-2
(Continued) A LOGMODE table.

*******************TOP OF DATA********************** kkhkkkkhkkkhk*k

IUSS-I-AB TlTLE IETUSS TABL E' kkhkkkkhkkkhkhkkhkkhkkhkkhkkkkkk%k

ETUSS USSTAB LOGON USSCMD

CMD = LOGON,FORMAT =PL1 USSPARM

PARM = APPLID USSPARM PARM = LOGMODE
USSPARM PARM = DATA TSO

USSCMD CMD = TSO,REP = LOGON,FORMAT = PL1

USSPARM PARM = APPLID,DEFAULT = A01TSO

USSPARM PARM = LOGMODE USSPARM

PARM = DATA

CICS USSCMD CMD = CICS,REP = LOGON,FORMAT =PL1

USSPARM PARM = APPLID,DEFAULT = DETTCCICS
USSPARM PARM = LOGMODE

USSPARM PARM = DATA

JES2 USSCMD CMD = JES2,REP = LOGON,FORMAT = PL1
USSPARM PARM = APPLID,DEFAULT = JES2 USSPARM
PARM = LOGMODE USSPARM PARM = DATA
USSMSGS
USSMSG MSG = 0,TEXT ='USSMSG0: @@LUNAME LOGON/LOGOFF IN
PROGRESS
[USSMSG MSG = 1,TEXT ='USSMSG1: @@LUNAME INVALID
COMMAND
SYNTAX'

USSMSG MSG = 2, TEXT ='USSMSG2: @@LUNAME % COMMAND
[UNRECOGNIZED' USSMSG MSG = 3,TEXT ="'USSMSG3:

@@LUNAME %
PARAMETER UNRECOGNIZED' USSMSG MSG = 4,TEXT =

'USSM SG4:

@@LUNAME % PARAMETER INVALID'
USSMSG MSG = 5,TEXT ='USSMSG5: @@LUNAME UNSUPPORTED
FUNCTION'

Figure 4-3
Unformatted system services table.

USSMSG MSG = 6, TEXT ='USSMSG6: @@LUNAME
SEQUENCE ERROR'
USSMSG MSG = 7,TEXT ='USSMSG7: @@LUNAME SESSION
NOT BOUND'
USSMSG MSG = 8, TEXT ='USSMSG8: @@LUNAME
INSUFFICIENT
STORAGE'
USSMSG MSG = 9,TEXT ='USSMSG9: @@LUNAME
MAGNETIC CARD DATA
ERROR' USSMSG MSG = 10,BUFFER =
MSG10 USSMSG
MSG = 11, TEXT ='USSMSG11: @@LUNAME SESSION ENDED'
USSMSG MSG = 12,TEXT ='USSMSG12: @@LUNAME REQ
PARAMETER
OMITTED

USSMSG MSG = 13, TEXT ='USSMSG13: @@LUNAME
IBMECHO %'
USSMSG MSG = 14,TEXT ='USSMSG14: @@LUNAME USS
MESSAGE %
NOT DEFINED' MSGBUFF
MSG10 DC (MSG10E-MSG10-2) DC C

W X'15 DC DC C DC

DC C USING THE CORRECT 'X'15 DC
DC C

' DC

DC C VTAM SYNTAX " X'15 DC
DC C ' DC DC C
THE

MENU OF 'X'15" DC DC C
' DC

DCC CHOICE CAN ' X'15 DC

DC C ' DC

DC C BE DISPLAYED L X'15

DC

DC C ' DC

DC C ' DC

DC C e X'15

DC

DC C o L X'15

DC

DC C YOU CAN CREATE YOUR OWN

W X'15 DC
DC C ' DC
DC C MENU L X'15 DC
DC C ' DC
DC C SO USERS LOGON L X'15 DC
DC C ' DC
DC C BY APPLICATION NAME L X'15' DC
DC C ' DC
DC C SUCH AS L X'15' DC
DC Gl ' DC
DC C TSO L X'15' DC
DC C ' DC
DC C CICS L X'15 DC
DC C
DC
DC C JES2 L X'15' DC
DC C
DC
DC C ' DC
DC Clommm e “X'15 DC
DC Clrmmmmmm e L X'15 DC
DC C ' DC
DC C " X'15 DC
END USSEND

kkkkkkhkkkkhkkkikkkik*%x BOTTOM OF DATA

kkhkkkkhkkkhhkkkhhkhkkhhkhkkhkhkkhkkkik*x

Figure 4-3
(Continued) Unformatted system services table.

The USS table shown in Fig. 4-3 can be divided into three parts. The arrangement of this tableis based on

IBM’s VTAM Resource Definition manual. Some flexibility exists, but generally the following parts are present:
(2) the name of the application a user wants to access is listed, followed by the parameters required to pass the
request to that application; (2) VTAM has 15 messages which may be generated if certain conditions exist; and
(3) the contents of what is displayed on the menu must be coded. Aslong as the table is created and does not
violate any VTAM regulations, much flexibility exists.

A communication controller [also called a front-end processor (FEP)] has specia definitionsto VTAM because
it has a software program known as the Network Control Program (NCP) operating within it. Because thisis so,
knowing what is attached directly and indirectly to the FEP is required.

Creating an NCP is site dependent like VTAM. However, restrictions do apply regarding how the NCP can be
generated. The term generate is often used in a deprecated form known as (GEN). Figure 4-4 shows the location
of an NCP with reference to other components in the network.

VTAM isacritical component in an SNA network. Understanding it is no trivial task. As | have said before, and
believe to be true, “VTAM isthe heart and soul of SNA.”

= Ta
M W —‘\1 = Fiamixd
v 1 { PP - SnBE
5 "‘ b
M

Figure 4-4
NCP location.

4.2 Job Entry Subsystem 2

Job Entry Subsystem 2 (JES2) is a spooling subsystem. According to IBM it isaprimary subsystem. An
interesting concept about software that operates under the control of VTAM (with the exception of third-party
software) isthat this software is collectively referred to as subsystems. One reason for thisis the size of some of
them. Aswe shall see, some subsystems are practically operating systems themselves with sub-subsystems!

JES2 is a spooling subsystem that receives jobs, schedules them, and controls their output. In essence, it serves
as an interface to the operating system for job processing. An example of how JES2 is used could be ajob that is
to be printed. Once the command is issued to print, the job goes to JES2 and then is subsequently printed.

Figure 4-5 provides a conceptual view of JES2.

JES2 functions so that data to be processed (whatever that data may be) may be literally spooled to aDASD for
buffer storage. By doing so delays can be minimized because processing continues and jobs are queued to be
processed.

The term remote job entry (RJE) refers to a site not in the same physical facility as the processor complex that
has terminal capabilities and alink to the processor so that jobs may be submitted to JES2. Network job entry
(NJE) is another term used to refer to a complex of processors where they are dispersed but connected together
in anetwork. NJE functions to provide the ability for multiple JES2 subsystems to communicate as peersin a
network environment. Thisisin contrast to RJE, which permits JES2 interaction with a remote workstation.

|
[12E] | L _I |_EI
’ JESZ — _E

W TSRO

= ¥ 4 =

Figure 4-5
The JES2.

JES2 is adescendant of the Houston Automatic Spooling Priority (HASP). It originated by IBM employeesin
Houston to expedite job processing in atypical university environment—many jobs, short execution times.
Early OS/360 spent more time scheduling a job than for its execution. The benefit of HASP was achieving
overlap in scheduling and execution through spooling.

Another job management subsystem is JES3. Originating from IBM’ s Attached Support Processor (ASP)
system, JES3 broadens the scope of job management. It manages jobs in the job queue, during the execution
phase, and after execution for proper outputting; this management is accomplished by specially tailored
algorithms, furnished by the installation. A fundamental difference between JES2 and JES3 is that JES3
operates in an environment in which one copy of JES3 isthe “master” (called the GLOBAL) and other copies
(called LOCALY) operate throughout a processor complex in communication with this master copy.

4.3 Network Control Program

Network Control Program (NCP) operates on IBM’s communication controllers. It, as does VTAM, plays a
critical rolein IBM’s SNA. The NCP serves two primary functions: routing and flow control. Although it serves
other functions as well, these seem to be the primary ones. An NCP must have devices, paths, communication
lines, and connections defined to it.

The NCP performs two mgjor functions. controlling data flow (1) through a network with other NCPs and
VTAMs and (2) between itself and VTAM. The NCP a so routes data throughout a network. Within an NCP
generation alist of routes (explicit and virtual) is defined. Also, aclass of service (COS) can beusedto aidin
routing data. Depending on how the COS has been implemented, particular data from one source may have a
higher priority than data from another source.

The NCP operates in conjunction with other programs on a communications controller. For example, the
Network Packet Switched Interface (NPSI) option is a program used to permit connectivity with an X.25
network. Another example is the Network Terminal Option (NTO), which worksin conjunction with an NCP to
permit non-SNA devices to connect to the SNA network. NTO’ s fundamental purpose is to convert this non-
SNA protocol into SNA protocol before the data are routed to the processor.

4.4 NetView

NetView, IBM’stool for managing SNA, originated in the 1970s. NetView was announced in 1986. Prior to that
time components were used to selectively manage a network. For example, the Network Communications
Control Facility (NCCF), the command-line interface for NetVeiw, was announced in 1978. At the same time
the Network Problem Determination Application program was announced. Both were released in 1979.

NetView has grown to consist of the Network Communications Control Facility (NCCF), the Network Problem
Determination Application (NPDA), the Network Logical Data Manager (NLDM), the Browse facility, the
Status Monitor, the Graphic Monitor, and the Resource Object Data Manager (RODM). Figure 4-6isa
conceptual view of VTAM and the SNA network.

NetView, VTAM, and MV S system commands can be entered at the command line from NCCF, which isthe
base of NetView. This capability makes it possible to control an SNA network from aremote location.

Typically, SNA management is accomplished via a console (generally inside a data center). However, with the
capability NCCF provides remote operation is possible. Aslong as a connection can be made to the system
running NetView and an individual is authorized to execute system-oriented commands, then NetView, VTAM,
and MV S commands can be issued against the NCCF command prompt.

NPDA isthat part of NetVeiw used to manage hardware. It can collect and maintain data about devices
throughout the network. NPDA has the capability to request data about a particular piece of hardware or accept
data sent to it from a given hardware device.

NLDM isthe session monitor. A session isalogical connection between two endpoints. With NLDM the
following information can be obtained about a session:

* Availability

* Configuration
* Error

* Event

* Explicit route
» Response time
* Session partner
* Trace

« Virtual route

‘ @ h Wi
P ;W Y [omien |
-
.
;iw
Eri“j o
i1

e ! Hf:'ll

I ==it=O] ¢

[]

Figure 4-6
Conceptual view of NetView.

The Browse facility enables an operator to view NetView log data, VTAM definitions of devices within the
network, command lists, and systemwide definitions.

The Status Monitor collects information about parts of an SNA network. It displays the data in columnar form,
or it can be routed to the Graphic Monitor, where the data can be display graphically. The Graphic Monitor isa
menu-driven method for monitoring network operations. It has pull-down menus and displays selected parts of a
network in color. Certain colors are al'so used to highlight problem areas.

The Resource Object Data Manager operates in its own address space in memory. It serves as a central
repository for storing and retrieving information about resources throughout the network. It can obtain execution
information, configuration information, and/or status information. It can make this data available to those
applications which need it because of its object-oriented structure.

NetView can operate under MVS, VM, and V SE. Two commonly used functions of NetView are alerts and
response time. Alerts are messages regarding the status of a given device. These alerts use IBM’s Network
Management Vector Transport (NMVT) protocol. Information such as the day, date, and time of afailure can be
included in an alert. Other status information is aso included and can be site-specific.

The response time monitor (RTM) isatool used to measure the time it takes for data to leave atermina after an
attention identifier (AID) key is pressed, reach the host application, and return.

NetView has been expanded by IBM to support other platforms now such as the RISC/6000. Other capabilities
are possible with NetView, even participating in network management with TCP/IP-based networks.

4.5 Time Sharing Option

The Time Sharing Option (TSO) isIBM’sinteractive facility that operates under MV S. TSO has three modes of
operation: the Interactive System Productivity Facility/Program Development Facility (ISPF/PDF), the
Information Center Facility, and the line mode.

The ISPF/PDF main menu is typically what users see when they log onto TSO. The ISPF/PDF main menu offers
many choices, which lead, in turn, to submenus. Some of the main menu choices and their basic functions are

* ISPF PARMS. These are specific parameters for use with 1SPF.
* Browse. Thisfunction permits viewing only of authorized data sets.

* EDIT. This command invokes the editor and enables a user to create a memo, program, or basically anything
one would use an editor for.

* Utilities. Thisleads to another menu which has a number of selections that permit disk, data-set, and other
maintenance and utility functions.

* Foreground. This causes the language processor to move to the foreground.

* Batch. This enables a user to submit jobs for batch processing.

» Command. If chosen, thistakes the user to TSO line mode of operation. Here valid TSO commands can be
entered.

* Dialog test. Thisfunction provides a user the ability to perform dialog testing.

* LM utility. This provides an individual with capabilities to perform maintenance utility functions.

* EXIT. If salected, this causes |ISPF/PDF to terminate.

Other functions are available from the main menu. Some of the ones listed above have submenus that provide
additional capabilities.

The Information Center Facility (ICF) provides users with a main menu similar in appearance to the ISPF/PDF
main menu. Some of the functions available to users via ICF are News, alowing users to obtain news from the
system; Names, which provides alist of names and phone numbers; Chart, which permits a user to create a chart
or graph; PDF, which (if selected) enables a user to use program devel opment services; and EXIT, which causes
ICF to terminate.

The TSO line mode can be used for multiple reasons. First, valid TSO commands such as LISTCAT can be
entered. For example, this command is used to list data sets that are cataloged and accessible by a user.

Another function of TSO line mode is execution of custom programs. If a customized program needs a certain
protocol for operation, such as terminal interaction, then a program can be created to execute using line mode.

Figure 4-7 depicts a conceptual view of TSO and other subsystems mentioned above.

4.6 Customer Information Control System

The Customer Information Control System (CICYS) is an online transaction-processing system. It is supported
under MVS, VM, and V SE operating systems. It is oriented generally toward business implementations rather
than scientific or engineering computations.

An example of where CICS would typically be implemented is in a banking environment. For example,
transaction programming using CICS could be used for customers who want to access their bank accounts viaan
automatic teller machine (ATM). In this case a program in the ATM communicates with a program running
under CICS control in the bank’ s computer. The program at the teller machine is communicating with the CICS
program in real time. The program running under CICS, in turn, accesses a database that maintains the
requesting ATM account balance. After the program under CICS verifies the requesting party’ s account, it
communicates with the ATM, sending it the appropriate response. Assuming that the money is available, the
ATM dispenses the cash.

Figure 4-7
Conceptual view of TSO.

Customized programming is possible under CICS, making it attractive to users who need to create online
processing programs. CICS also supports communication between transaction programs within one CICS
subsystem.

4.7 DATABASE 2

DATABASE 2 (DB2) isIBM’srelationa database application that provides users with flexibility and power via
the functions it supports. Some of those functions are

* Utilization of asingle VTAM conversation to manipulate multiple request and responses with other DB2
applications throughout a complex.

* Support for Distributed Relational Database Architecture (DRDA).

* Support for Structured Query Language (SQL) request from remote |ocations.

» Site independence and capability for interaction with other DB2 sites.

» Multiuser support for concurrent access, including making updates, deletions, and insertions.
* DB2 fitsinto SAA via CPI-SQL.

» An audit trail can be selectively chosen.

» DB2 can be used in an XRF environment.

* Support for 10,000 open concurrent data sets per address space is provided.

* The maximum number of columnsin aDB2 tableis 750.

» Multiple simultaneous index recovery can be performed on the same table space.

4.8 Remote Spooling Communication Subsystem

The Remote Spooling Communication Subsystem (RSCS) application operates under VM to provide data-
transfer capabilities. According to IBM, it has the following support: file transfer, message, commands, and mail
between VM, MV'S, VSE, NJE, and OS/400; ASCII support to printers and plotters; support for IPDS and SCS
data streams; provision of a gateway programming interface for protocols such as TCP/IP; support for 3270-type
printers with form control buffering; and capability to share printers.

RSCS provides VM users the ability to send mail, specific messages, and jobs to other users within an SNA
network. VM users use RSCS for printing purposes. The basic functionality of RSCS is that the origin node
starts communication with a destination node. And, multiple devices may be along the path between the two.
Because of the wide protocol support, RSCS can function over multiple types of links.

4.9 Local Area Network Resource Extension and Services

The Local Area Network Resource Extension and Services (LANRES) application operatesin MVS and VM
environments. According to IBM sources, it brings the power behind the S/390 architecture to a NetWare
environment. LANRES achieves this by making DASD available to NetWare servers and $/390-based printers
available to NetWare clients.

LANRES also permits authorized MV S users to move data to and from a NetWare server. Additionally,
NetWare server files and directories can be listed, created, and/or deleted.

LANRES also makes LAN printers available to MV S users. In effect, it brings together NetWare environments
with S/390 seamlessly to take advantage of right-positioning of workloads. LANRES aso offers centralization
of LAN management to the MV S host, if desired. It also permits MV S users to send a PostScript fileto a
PostScript printer on aLAN. Figure 4-8 shows a hypothetica LANRES environment.

LANRES is versatile because of the connectivity solutions it supports. The following connectivity solutions are
supported by LANRES: ESCON, parallel channel, APPC connection, host TCP/IP, and VM Programmable
Workstation Services (VM PWSCs).

The method of connection dictates how LANRES is configured on the host. Because of the breadth in support
for connectivity solutions, requirements, installation, and definitions are site dependent and directly related to
how the product is used. For example, if the product is used with TCP/IP under MV'S, LANRES uses sockets
and TCP for connectivity. However, if APPC is used, then it connects to APPC MV S via CPI-C, conforming to
SAA standards.

IBM has many other software products, too many to list here. If your needs have not been covered in this
section, contact your local IBM representative for additional information.

Figure 4-8
Conceptual view of LANRES and NetWare LANS.

4.10 Summary

IBM’s software is the other part of the two-part equation to SNA; IBM hardwareis the first part. The software
presented here is the most popular software in use today, but there are other IBM software offerings. Unless
your background or current work includes exposure to large systems, you probably won’'t come into contact with
the software offerings explained in this chapter.

The nature of the software explained here is such that it lends itself to large systems and hence many users.
Implementation of this software is the backbone of SNA when considered in conjunction with the hardware
offerings. It is through the definition of software that much of SNA is defined and identified.

5
SNA Networking

In 1974 IBM announced SNA. It began as alayered architecture, and traditional SNA remains as such.
Traditional SNA is defined by being more hierarchical than peer-oriented. Succinctly, it is pre-1992 with the
Networking Blueprint announcement. This does not mean that the Networking Blueprint replaces the
functionality of traditional SNA; rather, it provides a different approach to networking in general. A few
examples are presented later, at the end of this chapter.

5.1 SNA Layers
The seven traditional SNA networking layers are shown in Fig. 5-1.

The basic functions at these layers are

Layer 1 Effecting linkage between two or more nodes

Layer 2 Moving data across a link

Layer 3 Routing and flow control

Layer 4 Throttling data movement and performing security functions if required
Layer 5 Synchronizing, correlating, and grouping data

Layer 6 Formatting data to protocol

Layer 7 Providing application-required services

In many installations this hierarchy describes the functionality of dataflow within the network. This model of
networking is considered traditional SNA.

T Tronsneion Seniess

L] PrEeONon SORCHE
& Cata Piow Corwecd
4 T msrasaion Condral
a Fratn Gantsol

2 Dot Link Comr

] Bhvpsical Somirl

Figure 5-1
SNA tradition layers.

5.2 IBM'sBlueprint for Networking

On September 15, 1992, IBM announced their Networking Blueprint, which is a new approach to IBM
networking. The blueprint provides a framework for choices to be selected to fit the needs of a situation. Figure
5-2 isarepresentation of that framework.

The structure of the blueprint, as seenin Fig. 5-2, is entirely different from the layers of traditional SNA.
According to IBM, the blueprint structure consists of four mgjor layers, three switching boundaries, and what
IBM calls the systems management plane. The four layers are addressed first, followed by switching boundaries
and the systems management plane.

1. Subnetworking layer. This constitutes the lower layer, which IBM divides into four categories: local area
network (LAN), wide area network (WAN), channel, and emerging. These categories can be further divided into
protocols. For example, protocols that would generally fall into the LAN category include Ethernet, Token Ring,
and FDDI; protocols applicable to the WAN category could include FDDI, frame relay, SDLC, and others;
protocols applicable to the channel category could include byte multiplexer and block multiplexer channels and
ESCON; and protocols applicable to the emerging-technol ogy category include Asynchronous Transfer Mode
(ATM) and Fast Ethernet. Thislist is not exhaustive, but conveys the idea behind the supported protocols at this
layer. And, to a considerable degree, these can be selected for what best fits the site requirements.

2. Transport/networking layer. This layer is represented by six networking capabilities. The
transport/networking capabilities apply differently according to the following supported protocols: SNA, APPN,
TCP/IP, OSl, NetBIOS, and NetWare. The functions of this layer are contingent on the protocol selected. This
means that TCP/IP works in a particular fashion whereas APPN works according to its structural definitions at
this layer. Users have the flexibility to select the protocol of choice.

By

RS TN f!'. Systems Marag t Fy
Apccations | Apphaabon & Erabless
A':'“micr Agphcaicn Progme inkidacols)
Chanmes pl: L] M:w:: ?-lﬂ‘d Ctarioumd
e . il LA
Call [TP A fiens
et S — -
e Common Traped Semantics
A - NJI:' i
APRR TOPP Le:>4 s
Eulbs
arane LAr AN CHAMMEL EMENGING
Preyzacal | l::.'
Figure 5-2

IBM’s Networking Blueprint

3. Application support layer. This layer provides service support for applications. According to IBM, the
prevalent interfaces and services that work at thislayer are conversational services (known as CPI-C), dealing
with streams of related interactions; remote procedure call (RPC), which is capable of passing parametersto a
subroutine; and message queue (known as MQI), which manages the queues that relate messages. The following
services may also apply at thislayer: distributed system services; different vendor applications such as TELNET
for remote login, FTP for file transfer, and SNMP for network management; and other non-transport-layer-
dependent applications

4. Application layer. This layer comprises applications inherent to the protocols available. These applications
include print, mail, file transfer, and remote logon.

5. Switching boundaries. The applicable switching boundaries include application program interface (API),
common transport semantics (CTS), and subnetwork-access boundary (SAB). The primary purpose of the API
switching boundary serves to make the underlying architecture transparent. The CTS switching boundary
enables any protocol above it to access any protocol below it. The SAB switching boundary resides between the
transport/network part and the physical part of the blueprint. It serves to make link services available to the
protocols driving the network.

IBM’s stance on its Networking Blueprint indicates a more flexible networking approach than in traditional
SNA.. IBM has published two documents that are good references on its blueprint: GC31-7057, Networking
Blueprint Executive Overview; and GC31-7074, Multiprotocol Transport Networking (MPTN) Architecture:
Formats. To obtain these and other IBM documents, contact your local IBM representative or obtain their World
Wide Web (WWW) location.

5.3 Traditional SNA Concepts

This section explains terms and concepts that make up the core of SNA. SNA as a network protocol is
implemented via hardware and software.

Nodes

Theterm nodeisused in IBM documentation, and depending on the context, it can take on different meanings.
In traditional SNA, which is sometimes referred to as subarea SNA, different type nodes exist. These popular
nodes in subarea SNA include

* Host node. Also known as a subarea node, this provides end-user services. It isatype 5 node. (Node types will
be explained later.)

» Communication controller node. This communication controller (also known as an FEP) is atype 4 node.

* Peripheral node. Thisisacluster controller or an establishment controller. Depending on the device, it may be
atype 2.0 or 2.1 node.

Figure 5-3 shows al three types of nodes.
Subareas

Subareas exist in traditional SNA. No areas are defined. A subareais defined as either a subarea node and
peripheral node(s), a subarea node, or a subarea node and communication controller node. Figure 5-4 depicts
these three subareas.

Network-accessible units (NAUS)

IBM defines an NAU categorically as a system services control point (SSCP), physical unit (PU), or alogical
unit (LU).

! Favighwiral . H
i Hae T mi
3 H
] D T2 §
1 Fangnaral Hinpagas|
Nezln Pty
Fe iy dwual — H
His : 1
Mo H Commun cassn
i L TS
3 hasis
....... I 1_,.:::
Py 4 SEETEEE J__'..;:-"
COmimunicamon ..-:"_'_.,.-"'
(=R LA] r H
Heds
e
4 e maEEa A E R m A iy
- L i
H : (S e g WL :
IotRa H Corieiien 3
H Mcds :
E Porighcac] i
MR " H
Pesigharal |7 H
Pesiphany el :
Mode H
|
............................. H Il '
Ficadir

Figure 5-3
Conceptua view of nodes.

The characteristics, functions, and locations of these NAUs are

System services control point (SSCP). Thisisacontrolling point in SNA and is located in the Virtual
Telecommunications Access Method (VTAM) (see Fig. 5-5). Some of its characteristics and functions are
network control, session management, resource activation and deactivation, focal point for receipt of PU data,
passing data to and from NetView, and command execution.

Physical unit (PU). A physical unit pertains more to the functions or capabilities of a node than to describing a
particular hardware device. The PU typeis architecturally related and part of macrocode and software. Some
basic characteristics and functions of PUs are:

* A PU isdefined in software or microcode, receives messages from an SSCP, and provides internal network
functions, not user-related functions.

T .
T ‘i
H

| e !

et | : Cartralber |

N | | Howl Paela :

i | oso |

- | |

........... | i :

R
[T "
i Commumnicaion Td |
. [l Y B .
MocH I
i TEO if" 23
i Panpreal Pa—
. Mod= (e .

Figure 5-4

SNA subareas.

* Participating entities in an SNA network are known by their node type.

» A PU can manage links and link stations, set up virtual and explicit routes in certain nodes, and communicate
with one or more control points.

¥

My
-]

[4

SECP

Figure 5-5
Conceptual view of an SSCP.

Four types of PUs—types 5, 4, 2.0, and 2.1—are presented here and are best described according to their
functional characteristics:

1. A PU type 5 (T5) node is a host subarea node and functions as a processor, practically speaking, or can
provide T5 functions, including management of subarea resources, facilitating session establishment, and
monitoring resources.

2. A PU type 4 (T4) node is acommunication controller node. It is an FEP or has the capability to emulate PU4
functions; for instance, the control point is called a physical unit control point (PUCP), the PU manages its
peripheral nodes, and it can communicate with an SSCP.

3. A PU type 2.0 isaperiphera node and is totally dependent on a T5 node for session establishment. The
control point for this node is a PUCP, and the PU communicates with a T4 PUCP or an SSCP, monitorsits local
resources, and sends status related data to an SSCP.

For practical purposes, it is correct to associate a physical device with aPU, but this can be elusive because
some devices can act as different PU types depending on how they are GENed. Also, the location where
terminals and printers connect on controllers can be considered an LU. Granted IBM documentation does not
say this (at least | have not seen any), but it is accurate. The same holds true for PU2.1 devices.

A PU2.1 node is also a peripheral node. Its control point isaPUCP. This node differs from a T2.0 node because
it supports peer communications to some degree. It can perform the functions of a T2.0 node, but it can aso
perform functions native to T2.1 architecture. Additional details on T2.1 nodes are provided in Chap. 6.

Logical units (LU). IBM defines alogical unit as an addressable endpoint. This applies to hardware and
software. The LU types of concern here and their functions (protocol support) are:

LUO Create your own program

LUL SNA Character String printing (SCS)

LU2 A 3270 data stream

LU3 A 3270 data stream for printers

LUG.2 Advanced Program-to-Program Communication (APPC) protocol

LU7 5250 data stream for AS/400 systems

There are two categories of logical units: dependent and independent. The former requires VTAM for session
establishment and the latter does not, after initial download of tables.

Figure 5-6 is an example of hardware, software, and concepts presented to this point. It is agood example for
obtaining a holistic perspective on SNA.

| I — oo J

P
=
e
=

n [=]

Estazlahmesnl
vl (e

Figure 5-6
Conceptual view of atypical SNA network.

Figure 5-6 shows two processors, with software on each, communication controllers, an establishment
controller, a cluster controller, printers, and terminals. It aso shows two CICS subsystems communicating with
one another viaan LUG6.2 session. Additionally, it shows aterminal communicating with TSO via LUZ2 protocol.

Sessions

As mentioned previously, sessions are defined as alogical connection between two endpoints. Four types of
sessions are considered here: SSCP-SSCP, SSCP-PU, SSCP-LU, and LU-LU.

The SSCP-SSCP session is an example of two VTAM subsystems communicating with one another. There are
numerous reasons for this; for instance, a session can be set up between aterminal user and a software
subsystem that is not in the same processor. An SSCP-PU session is used to activate a device. Other functions of
this type of session include management-related data flows across the session. An SSCP-LU session can be used
by VTAM to activate or deactivate an LU. An LU-LU session could be aterminal user communicating with a
software subsystem. In this case the LU-LU session could be described as primary logical unit (PLU) and
secondary logical unit (SLU), where the former is a software subsystem and the latter is the terminal user. This
is considered a dependent logical unit (DLU). The LU-LU session can also be described as independent. When
thisisthe case, the LU isreferred to as an independent logical unit (ILU).

Link stations

A link station (LS) isthe intelligence in a device defined as being that point in a device where the datalink is
managed. IBM’s SNA Technical Overview document GC30-3073 describes this concept very well, and Fig. 5-7,
which is based on their model, depictsthis.

Link stations perform functions such as receiving requests from and responding to its control point, controlling
link-level dataflow, moving datafrom one link station to another via the medium, and managing error recovery
at the link level on the node.

I
I

| L:
Foada B
DTE

Figure 5-7
Conceptual view of alink station.

Link

In SNA alink refersto the data link. SNA links include parallel channel, ESCON, frame relay, Token Ring,
SDLC, and Ethernet.

Technically, IBM defines alink as that connection between two link stations. Hence, this includes the medium,
data communication equipment (DCEs), and link connection. The link connection is defined as that part
consisting of the DCEs and transmission medium.

Domains

Another concept in SNA isthe domain, which is that area whose components have a single point for control. In
a T5 node the control point isthe SSCP; in a T4 node, thisisthe NCP.

Parallel to the concept of domainsis ownership. In SNA all resources are owned; the question is by which
device. This concept of ownership isrelated to the domain. Resources in a given domain are normally owned by
acontrol point in that domain.

Once the concept of adomain isunderstood, it is necessary to understand the concept of cross-domain
resources. The latter is defined as aresource in a domain other than where the requesting party islocated.

Figure 5-8 shows two different domains.

In Fig. 5-8 two processors have application subsystems. Each processor owns the applications on that host. If
defined appropriately to VTAM, usersin domain A can access application subsystems in domain B and vice
versa.

5.4 SNA Protocol Structure

SNA protocol structure can be explained by layers. Figure 5-9 isaview of what SNA considers as a message
unit.

Three distinct components of the message unit are the basic link unit (BLU), the path information unit (PIU),
and the basic information unit (BIU).

1. Basic link unit. The BLU isassembled at the data-link layer of the network. It includes data and protocols that
have been passed from layers aboveit. In front of the BLU isalink header (LH). Next isthe information field,
followed by the link trailer (LT) at the end of the message unit.

2. Path information unit. The PIU consists of the transmission header (TH), request or response header (RH),
and the request or response unit (RU). The PIU operates at that |ayer in the network responsible for routing data
(message units) through SNA.

3. Basic information unit. The BIU consists of arequest or response header, then arequest or response unit. A
request or response unit islocated on top of the BIU. Depending on the direction of the mes sage unit flow
either aresponse or some type data end user or SNA data which includes data streams is sent.

Figure 5-8
Conceptual view of domains.

Considerably more information abounds on this topic of message units. IBM document GA27-3136 is the
source for present and future information on discussing data streams, profile concepts, function management
header concepts, and request and response concepts. For greater detail on these topics, the IBM document is the
best reference.

CATA
ETHEAME

P\ Heuacleas
PE Headers
TG Molios
FB Proibes

Hegatve FEEEVE

Fapona - Shaa CATA
maTn

[
I

FiLl ™ | [+ 1] | AU I

SLL | T

Inlormanon Fad LT |

Figure 5-9
Structural view of the message unit.

5.5 SNA Data Streams

IBM has defined data streams which are used in SNA. An example of adominant data stream is the 3270, which
isused by terminals and printers that operate with MV S, VM, and V SE operating systems. Briefly, the data
streams used include the SNA Character String (SCS), the 3270, the General Data Stream (GDS) variable,
Information Interchange Architecture (11A), and the Intelligent Printer Data Stream (IPDS).

1. SNA Character Sring. This character string is a protocol used with printers and certain terminals. LU1 and
LUG.2 can use this data stream. One unique aspect of this data stream isits lack of dataflow control functions.

2. 3270 data stream. This data stream contains user-defined data. It also includes commands that aid in LU-LU
control. LU2 and LU3 use this data stream for terminals and printers, respectively. It can be used by LU6.2 asan
option data stream.

3. General Data Stream. This data stream is used by transaction programs to interpret data records as they were
sent and received. This data stream is used by LUG6.2

4. Information Interchange Architecture. This data stream is used to define a collection of data streams. It is
used by applications exchanging programs. This means that Open Document Architecture (ODA) can be used.
Document Content Architecture (DCA) can also be used.

5. Intelligent Printer Data Stream. This data stream is used between a host and a printer and can be used with an
all-points addressable printer. IPDS can intermix text and graphics-both vector- and raster-based.

5.6 Profile Concepts
Two profiles for examination here include the transmission service and function management profile.

Transmission service profiles are used at the transmission layer in the network. They represent protocols that
may be selected at session activation:

TS1 Used with SSCP-PU and SSCP-LU sessions

TS2 Used with LU-LU sessions
TS3 Also used on LU-LU sessions
THA Used on LU-LU sessions
TS5 Used on SSCP-PU sessions
TS7 Used on LU-LU sessions
TS17 Used on SSCP-SSCP sessions

These profiles provide a variety of services. They are used at a developmental and debugging level.

The following are function management profiles:

FMO Used on SSCP-PU and SSCP-LU sessions
FM2 Used on LU-LU sessions

FM3 Used on LU-LU sessions

FM4 Used on LU-LU sessions

FM5 Used on SSCP-PU T5 and T4 sessions
FM6 Used on SSCP-LU sessions

FM7 Used on LU-LU sessions

FM17 Used on SSCP-SSCP sessions

FM18 Used on LU-LU sessions

FM19 Used on LU-LU sessions

As do the transmission service profiles, function management profiles provide a variety of service on the basis
of session type and need. For in-depth information about these profiles, refer to IBM manual GA27-31-36.

5.7 Function Management Header Concepts

The concept behind a function management header (FMH) isthat if a session supports these headers, arequest
header can contain an option indicating that an FMH is present. If present, they indicate specific functionality.
Consider the following FMHs:

FMH1 Used to select a destination logical unit

FMH2 Used to handle data management for atask

FMH3 Used for the same purposes as FMH2, but does not have a stack reference
FMH4 Carrieslogical block commands that are used to define different parameters
FMH5 An LU6.2 ATTACH header; used to carry arequest for a conversation; with

non-LU6.2 ATTACH originates from the sending half-session program to the
destination manager

FMHG6 Used during an active transaction program conversation

FMH7 Provides error information for LU6.2 and in asimilar fashion for non-LU6.2
FMH8 Used with an IM'S application with LU6.1 protocols

FMH10 Prepares a session for sync-point processing

FMH12 Used with LUG6.2 for security

5.8 Request/Response Header Concept

These headers are used to perform bit-level operationsinside message units. IBM identifies an exhaustive list of
RHs to accomplish avariety of tasks. They perform functions such as

* To provide aformat indicator
* To indicate sense data

* To indicate beginning of chain

* Toindicate the end of achain

* To indicate the types of aresponse

* To request alarger window

* To indicate the beginning and end of a bracket

RH formats are dependent on the type of session used. Details provided by these formats are used in the
formatting of SNA data.

5.9 SNA Commands

SNA commands differ according to the type of LU and session used. Some commonalities exist in theory, but
specific commands can differ.

The theory of command flow can be exemplified as follows. Assume that aterminal user wants to sign onto
TSO. What is the theoretical operation and commands that flow between the two? Figure 5-10 depicts this
scenario.

The following scenarios describe some of the commands that flow between the terminal user and TSO:

1. A user enters TSO and it isreceived by VTAM. VTAM sees this as a character-coded logon.

2. A logon exit is scheduled for the primary logical unit.

3. After the PLU receives control of the logon exit, the PLU passes an open session request to the SSCP.

4. As aresult of the open session request, the BIND command is sent to the secondary logical unit (SLU).

5. Assuming that the terminal sends back a positive response, the session is bound.

| |

74

=) A
. TS :‘: I!il Prinigr
4 /|
] (f
e
Figure 5-10

Conceptual view of a TSO user.

6. If anegative responseisreturned, a BIND failure command is generated.

IBM has devoted an entire manual (GA27-3136, SNA Formats) to describing SNA commands. However, SNA
commands fit into the request or response structure explained above. Some examples of SNA commands and

their functions are

ACTLU
ACTPU
DACTLU
DACTPU
BIND
CDINIT
CINIT
LUSTAT
NOTIFY
SDT
SESSEND
UNBIND

Activate logical unit

Activate physical unit

Deactivate logical unit

Deactivate physical unit

Activate a session between LUs

Cross-domain initiate sent between two SSCPs
Control initiate; request the PLU to send aBIND
Used to send status information

Used to synchronize awareness of an SSCP and PLU
Used to start datatraffic

LU notification to the SSCP that a session has ended
Send to UNBIND two LUs

5.10 Flow Control

SNA has amethod for data control. The following three paragraphs partially explain how SNA controls data.

1. Explicit route (ER). In SNA, an explicit route is a defined set of nodes and transmission groups (TG) of a
path. For example, an explicit route could be subarea node X, TG2, subareanode T, TG2, and subareaD. An
explicit route is the definition of a path in subarea SNA. It isaphysical connection.

2. Virtual route (VR). These routes are logical connections between two endpoints. A virtual route is mapped
atop explicit routes. Consequently, a virtual route reflects the characteristics of an explicit route. For example, in
most scenarios where multiple FEPs are installed, multiple links connect them. These links are physical and
defined as explicit. The logical route is then mapped to the route that best fits the need of the session.

3. Class of service (COS). Thisincludes characteristics such as transmission priority, bandwidth, and security.
The following classes can be defined according to COS: a class that provides response times reflect ing high
priority, aclass reflecting best availability, a class with higher levels of security, and a class for batch
processing.

Transmission priority is also used with flow control. The combination of these abilities makes flow control
possible in the network.

5.11 Advanced Program-to-Program Communication

Advanced Program-to-Program Communication (APPC) isIBM’s premier peer-oriented protocol. It is based on
LUG.2. Theflexibility of the protocol enablesit to be implemented across a variety of platforms.

Origins and evolution

APPC originated in the early 1980s. It evolved from limited support and is now supported by MV S/ESA and
many application subsystems operating under VTAM. Some benefits of using APPC are that one protocol can
be used across a variety of architectures and that APPC provides security, offers a distributed approach to
transaction processing, and offers multiple ways to create transaction programs. APPC is now widespread
among MV'S, VM, and V SE operating systems. It is also fundamental to Advanced Peer-to-Peer Networking
(APPN). APPC iswidely used in the marketplace by third-party vendors.

Conceptual overview

The idea behind APPC is peer communication between programs. This means that customized programs can be
written to utilize the power behind APPC. Consider an example of two banks. one in Dallas and the other in
Research Triangle Park. Now assume that daily information needs to be exchanged between a bank in Dallas
and a bank in Research Triangle Park. Figure 5-11 shows an example of two programs exchanging information
between the two banking institutions.

Conversations

Sessions have been explained as being alogical connection between two endpoints. A conversation is
communication between two or more transaction programs using an LU6.2 session through a defined
independent logical unit (ILU). Figure 5-12 explains this concept.

Figure 5-12 illustrates the following components: Node A, multiple transaction programs (TPs), an LU6.2
session, apoint at which an ILU is defined, and a conversation between two TPs.

Figure 5-12 also depicts the idea behind a conversation. In this figure any of the transaction programsin node A
can communicate with any of the TPs on node B.

There are two types of conversation: basic and mapped. A basic conversation provides alow-level interface for
those transactions pro grams that need support for privileged functions. A mapped conversation provides a
protocol boundary in the same way as the basic conversation does but enables arbitrary transmission of message
format. System- or user-defined mappers can be used.

Hataarch Tnargks Fars

Yowowmit Bans

Figure5-11
Conceptual view of APPC implementation.

Transaction program

IBM defines atransaction program as an application that is executed within the LU6.2 protocol. It is atype of
application, typically user-written to meet the needs of a specific installation.

Convdrialion Hoda D

N
|/E

P’)I—
", Tesmcicsin
Frograma
Figure 5-12
Conceptual view of aconversation.
Types of Verbs

APPC isahigh-level language and uses “verbs’ to achieve communication. There are two verb categories:

1. Conversation operator verbs. This category includes mapped, basic, and type-independent verbs. Mapped
verbs are used by application programs and provide services for programs written in high-level languages. Basic
verbs are used by LU service programs that provide end-user services or protocol boundaries for application
programs. Type-independent verbs can be used with basic and mapped conversations. They provide a variety of
generic services needed by both conversations.

2. Control operator verbs. This category includes several subcategories, such aschange number of sessions
(CNOS), session control, LU definition, and miscellaneous. CNOS verbs are used to change the session limit
that controls the number of LU-LU sessions per mode name available between two LUs allocated for
conversations. Session control verbs are used for session control. This includes activation and deactivation
sessions and deactivate conversation groups. LU definition verbs define or modify local LU operating
parameters. Miscellaneous verbs are those verbs needed but not defined to another category.

LUG.2 Session Considerations

Some of the concepts and functions of APPC are parallel sessions, single sessions, session pools, session
selection, session limits, the concept of contention polarity, and winners and losers.

Parallel sessions are based on the concept of multiple pairs of sessions communicating with the same pair of
LUs. Typically, one pair of TPs use a session at a given instance. LU6.2 supports multiple concurrent sessions.
Applications must be capable of multiple session support, including the processors and workstations. The
concept of multiple session support is called parallel sessions. Single sessions are defined as LUs that cannot
support more than one session against agiven LU in agiven instance. Session pools are a collection of hamed
LUsthat contain active sessions which can be allocated to different conversations if required. Session selection
indicates how atransaction program controls selection of a session. TPs cannot control session selection
directly, but they can map thisto a set of characteristics using the mode name parameter. A session limit is
simply the maximum number of sessions that can be active at agiven LU at onetime.

The concept of contention polarity can beillustrated by two LUs attempting to initiate a session simultaneously.
Contention polarity is amethod of preventing this by defining multiple LUs for operation to function asa
contention winner or contention loser. Typically, multiple winners and losers are defined in each node to prevent
astate of contention.

Sync-point Processing

In LUG.2, sync-point processing lets transaction programs synchronize their resources at specified time periods
called sync points. Thisisimportant because multiple transaction programs are exchanging data; thus TPs must
bein “sync.”

Many additional LUG6.2-based concepts exist. Many books have been written on the topic. A helpful oneis
IBM’s SNA Transaction Programmer’ s Reference Manual for LU Type 6.2 (GC30-3084).

5.12 A Perspective on Blueprints

The information provided earlier in this chapter is foundational to the blueprints that follow. Most any SNA
network can be viewed in light of the following blueprints. Regardless of the network size, SNA networks
contain components and abstract infrastructures that can be identified and explained.

The following blueprints are only examples. Further information can be obtained in Taylor, Network
Architectural Design Handbook (McGraw-Hill, 1998).

Blueprint 1

This blueprint could be explained by listing its major components, which include a processor, a controller, user
devices, an operating system, a communication control subsystem, and application programs. (See Fig. 5-13.)

= -

Lh‘:lllll SYATEM
PRINTER
e e
e e

TS0
omz
JLGE

s B

Figure 5-13
SNA blueprint 1.

This figure shows a processor, controller, and user devices such as a printer and terminals. It also shows
applications operating under the MV S operating system.

Blueprint 1 shows an SNA implementation. This blueprint is typical for small SNA environments. Although the
blueprint is simple, the implementation could accommodate hundreds of users.

This type of blueprint is recommended for use in scenarios where large amounts of data entry are performed and
databases are maintained. An ideal example would be a customer service center where a large database is used
and numerous operators need access to it. If this scenario were “real,” many more controllers would be required
to accommodate increased users by way of terminals.

Blueprint 1 isagood place to begin when an SNA network is needed and growth is anticipated. This blueprint is
the core of most SNA network blueprints. It can be expanded on and enhanced in every way from the addition of
processors, controllers, printers, terminals, and other equipment (as shown later in this chapter) to accommodate
remote equipment (hardware and software) and users.

Blueprint 1 can use software different from that shown in Fig. 5-13. For example, a different operating system
could be used. Additional software could be used or some of the software referred to in this figure could be
replaced with software to meet the needs of a given location.

Blueprint 1 isareference point for beginning and planning SNA networks. Since SNA networks consist of
hardware and software, this blueprint is an example of hardware and software that can be used. Few SNA
networks areinitially large. Since thisis the case, this blueprint can be considered the base blueprint for any
network planning for SNA.

Blueprint 2

The next blueprint for SNA network design includes expansion of users and functionality of the network. Some
may disagree that diagrams such as Figs. 5.13 and 5.14 do not represent “real” SNA networks. However, they
do. Consider Fig. 5-14.

This blueprint illustrates the next logical extension to growth in an SNA network. Here there are two sites
located within the same geographic plant. Consider this figure as an example to afacility in which the data
center houses the actual processor and controller used to interface the terminals and printer in site A (top).
Consider terminal usersin site A to be the customer service department, which isin alarge room of a company
where numerous customer service representatives have their own cubicles.

Now consider site B (bottom) to be the technical support for the same company. In this example, sitesA and B
are under the same physical “roof” but located in entirely different places in the facility. Consider site B to be
located on the second floor of the physical plant. Also, consider site B to be alarge area where employees have
desks, personal computers in addition to the 3270-based terminals, and a lab areaas well in order to test product
problems as they are taken by each employee and logged into the company database which is maintained in the
SNA network.

Blueprint 2 isan ideal example of a single data center supporting two entirely different divisions within a
company. Both customer service and technical support need access to the same database in which customer
information is maintained; however, each department in this example has entirely different corporate missions
with respect to the customer. This blueprint is a good example of how to lay a strong technical foundation in
regard to hardware and software that can be easily enhanced and upgraded as demands grow.

Blueprint 3

SNA blueprint 3 begins a move toward a more complex SNA environment. Figure 5-15 illustrates this migration
aswell as the complexity involved in SNA network blueprints.

Note that Fig. 5-15 shows the processor (thus core operations) of the SNA network located in Dallas. This site
also shows a controller, terminals, and system printer at the Dallas location. In addition, the Dallas location also
has a communication controller which houses the NCP.

This blueprint adds an entirely new twist to SNA blueprints. The use of a communications device means a more
complex configuration for the processor’ s telecommunication access method. Where an NCPisused in
conjunction with VTAM, considerably more intelligence is required to make the network function.

- Cara Enwy Doparimaent
Bemmman e mman e

TEO
nR2

ma

CONTROLLFR

:
ﬂj

i
aaon H o & I:TI—D
I}dﬂl:l-r.lﬁh‘l- I'Il!.ﬂl nu’.'.\- I:ME-EI |

woo o Em

UAED 5 RED = DABD E'Aiﬂ = DvED i

i

I
I
I
I
|
I
I
I
I
I
I
I
I
I
mrrmmmsararnmmmnr s rnmnnsrrrnmnall fo v nemna s r e s |
Hil
I
I
I
I
I
I
I
I
|
I
I
I
I
I

Corporats
| Dhatiic avda e
[T
I SEingie Physical Locatio
b e e e
Figure5-14

SNA blueprint 2.

This blueprint seemsto be fairly simple; however, it is not. The remote location in San Jose shows a
communication controller with an NCP, controller, terminals, and printer. Technically, the San Jose location has
the same functionality as the Dallas |ocation. This blueprint is common in many locations where SNA networks
are implemented.

"I HTET ="
: ~—

O b

i |commoum [~ | mmmml
1] \ll,ll
— ==l

San Jowe, CA

=
3
3

Figure 5-15
SNA blueprint 3.

Blueprint 3 introduces three basic topics for consideration:

1. Operation of such an environment presupposes the existence of a staff to implement and maintain it. It isfair
to say that most sites today where this blueprint applies could have staff capable of implementing and
maintaining it. However, knowledge of VTAM does not necessarily imply knowledge of NCP. These are two
powerful and significant software packages that are complex and require time to master.

2. Thisblueprint does not explicitly show any network management. In most sites where this blueprint would
adequately reflect the hardware and software, network management may in fact not be required. | have worked
in ablueprint 3 scenario in which knowledgeable staff could extrapolate functionality of the network without
any formal network management software. | do not mean to discourage the reader from using network
management products; | smply mean that a sufficiently small SNA network, even though it can be physically
dispersed, can be implemented and managed to some degree.

3. Thisblueprint shows a variable not present in the former blueprints: data-link communication through lines
outside the facility in which the processor lies. Regardless of whether the link between Dallas and San Jose in
this example is dedicated, the simple fact that distance separates the processor and the remote site requires
consideration.

The matter of distance between locations presents some degree of uncertainty regarding manageability. For
example, all things being equal, no significant problems should arise. However, line quality, maintenance of the
data communication lines themselves, and other factors contribute to some degree of uncertainty.

This blueprint also implies some degree of accessibility to the NCP at the San Jose site if the processor in Dallas
isnot functional. This blueprint also implies that no redundant links exist between NCPs.

In summary, this blueprint brings link management, remote user operation, and growth in the remote (San Jose)
location to mind. This information alone suffices to suggest that functional SNA represent more than simple
implementations of hardware and software.

5.13 Summary

SNA networking was presented in this chapter, and these insights make it much easier to understand. SNA isa
complex topic. If you really want to learn it well, | suggest that you spend time rereading the first five chapters
until the information seemsto jell in your mind and you can understand the practical hardware and software
offeringsin terms of the SNA terminology and concepts presented here.

It takes time to learn any computer architecture. Thisinformation is presented to bring the bulk of important
topics together and to synthesize it. Many well-written IBM manuals are available; | suggest that you spend the
time and money to obtain them. They will be able to take you to the inner depths of SNA.

6
SNA Internetwor king with APPN

Advanced Peer-to-Peer Networking (APPN) is a peer-oriented architecture. It predates most of the personal
computers (PCs) used in the marketplace today. Most applications in use today are peer-oriented; however, this
has not always been the case.

In 1986 IBM announced support for T2.1 node support with System 36 (S/36). That same year IBM introduced
its SNA Type 2.1 Node Reference Manual (SC30-3422). It defined the beginnings of APPN implementation.
Nodes can be understood best by knowing the services they provide or the characteristics that represent them.
Both the architectural design and the characteristics supported reflect or define a node type.

It is best to view APPN from this abstract viewpoint because it does not matter (to a certain degree) which host
or model number isor isnot adevice. The core of APPN isthat the devices use LU6.2, not that a certain device
exists. The question to ask is“Which functions and features are supported by a certain device with respect to
APPN?’

6.1 Originsand Evolution

Version 1 can be characterized by low-entry networking end nodes or Advanced Peer-to-Peer Networking end
nodes. According to the IBM Type 2.1 Architecture Manual (SC30-3422), published in 1991, these two
references to an end node are synonymous.

IBM documentation also states that “a T2.1 node is that node which uses protocols that require less system
requirements.” A T2.1 node provides peer connectivity and session-level connectivity using LU6.2 protocols.

LEH
Cnd

Sl

AN
Ena
MNoda

Figure 6-1
Conceptual view of a network node.

APPN version 1 can best be described as an evolution. According to the Type 2.1 Architecture Manual, three
node types were identifiable with T2.1 architecture: APPN network node (NN), APPN end node (APPN EN),
and LEN end node (LEN EN).

APPN NNs are capable of performing intermediate session routing, performing directory searches and route
selection, and providing LU-LU service for their local LUs. (See Fig. 6-1.)

APPN ENs can perform limited directory services, register their LUs with an NN, and be attached to multiple
NNSs. (See Fig. 6-2.)

LEN ENSs cannot register their LUs with an NN, must have predefined remote LUs via the system, and use T2.1
protocols without APPN enhancements. (See Fig. 6-3.)

AR
[

Figure 6-2
Conceptual view of two APPN end nodes.

EN BN

Figure 6-3
Conceptual view of two LEN end nodes.

Traces of version 1 can be seen through IBM product offerings from 1986 to 1992. An example of one such
offering supporting APPN is the AS/400, announced in 1988. Other products were announced during that
period, but a significant break with version 1 came in 1992.

APPN version 2 can be identified by IBM’s APPN Architecture Reference (SC30-3422), published in March
1993. In these 1000-plus pages, IBM clearly defines extensions to earlier APPN and LEN networking.

It seems IBM started to bring APPN together in 1992 with the announcement of VTAM version 4 release 1. In
short, VTAM 4.1 (shipped in May 1993) permits VTAM to participate with other nodes in an APPN network
and appear as another peer node. Technically this capability was available in VTAM version 3 release 2, and
then as support for causal connectionsin VTAM 3.3, according to the VTAM manuals.

APPN isrooted in T2.1 architecture. It has extended beyond that; nevertheless, its beginnings can be traced back
to the mid-1980s with T2.1 node architecture. APPN has evolved into its present offering and it seems IBM will
continue to enhance it thus perpetuating its evolution.

APPN simplifies network definition. It also permits dynamic route selection. APPN also provides a distributed
directory service. This function determines remote LUs that may be known locally only by name. This means
that manual definitions for routes or location of remote LUs is not required.

APPN implementations can select routes according to user-defined criteria. A component in each NN called a
control point (CP) is used to determine the best route from the initiating LU to the destination LU. APPN also
supports intermediate session routing, in which data are routed through the NN for sessions that do not originate
or terminate with that NN. Transmission priority is based on the class of service (COS) specified by the user.

6.2 APPN Node Types

APPN’ s approach to networking parallels that of the client/server. This architectural nature lends APPN to a
“peer” -oriented network. The pivotal issues concern what node types exist, what functions they perform, and
what additional APPN option sets exist. The remainder of this section discusses these points.

6.2.1 APPN Network Node

A magjor role of the NN is performing the function of server. In this context, other nodes participate as clients.
This client/server concept is somewhat similar to TCP/IP clients/servers. An NN functions as a server to the end
nodes attached to it. The NN and its attached end nodes are considered a domain. NN services include directory
and routing services, intermediate LU-LU routing, end-node management services, LU-LU session services,
support for any APPN or LEN node attachment with the same network ID, functioning as aserver for clients,
and supporting SNA subarea boundary nodes.

6.2.2 APPN End Node

In light of the client/server parallel that APPN purports, an end node functions like a client. End nodes support
LUG6.2. Without an NN, ENs can communicate only via LU-LU sessions with the partner LU locat ed in an
adjacent node. However, with an NN an EN can communicate with remote LUs. These nodes have the ability to
inform an NN of their local LUs. ENs can have active links to multiple nodes at any given time, but an EN can
have CP-CP sessions with only one NN at a given instance. ENs can have attachments to multiple NNsin case
one NN fails. (Examine Fig. 6-4.)

WM
MM

A
/
[/f

t
LEH] o —
Bl i APPH

- dFoaeew 1r =

e —

CH

[
i

Figure 6-4
Conceptual view of CP-CP session.

This type of node can make a connection to any LEN or APPN node. An EN cannot have CP-CP sessions with
another EN.

6.2.3 LEN End Node

This type of node implements basic T2.1 protocols; no APPN enhancements are included. The LEN end nodeis
not capable of having a CP-CP session. Connections with destinations must be predefined. An LEN EN
communicates with remote LUs through system definition. At system definition time, the CP name of its
adjacent node is defined and indicates how the local LUs can be accessed. The LEN EN accesses some remote
LUs by the services provided viathe NN server functions. (Consider Fig. 6-5.)

6.2.4 Peripheral Border Node

These nodes do not support intermediate network routing, but they do support directory services, session
establishment, route selection, and session establishment of LUs between adjacent subnetworks. Figure 6-6 is an
example of thistype of node.

6.2.5 Extended-Border Node

This type node supports intermediate network routing, but the subnetworks must be predefined. Additionally,
they provide directory ser vices, session establishment, and route selection, and they permit the partitioning of a
subnetwork into two or more clusters.

LEN
L]
EH |
-~

LFH LEN

Figure 6-5
LEN ENsdefined to the NN.

L] °R] i b T bk
2 1 [: - B

Figure 6-6
Conceptual view of a peripheral border node.

Figure 6-7 depicts four networks with an LU-LU session between peripheral networks via intermediate networks
with extended boundary node function support.

i Mebwark 1

AFPH Mo i B tverak 3
Fu
{OLEM |
HE "N i | 7
i MK fPIH
HH H {Bcuncay :B{..n:hry
LIS 20 H e ,-" 1)
EN ¢
[
| F
2msssssm——nns I peam @Al J Inemacar
Sgriphgral Motwek Hatwak J,"' Mtk
'
lrlrul'
é Flalenwk d4f
apPoy
H h-_f — EmM

HH IFH

Penizhersl Hiahicak

Figure 6-7
Conceptua view of an extended-border node.

.2.6 APPN Subarea I nterchange Node

ThisisaT5 node in SNA feature/function. It permits connectivity between APPN networks and SNA networks.
An interchange node (IN) achieves this by mapping routing, directory, session setup, and route selection for
both network types. Figure 6-8 is an example of this.

6.2.7 Migration Data Host

Beginning with VTAM 4.1, ahost node could emulate an APPN end node in an APPN network, support subarea
connections, and perform Cross Domain Resource Manager functions. It does not participate in broadcast
searchesin APPN networks.

The migration data host is primarily a host dedicated to processing applications. It not only functions as an EN
in an APPN network but also supports subarea connectionsin traditional SNA.

6.2.8 High-Performance Routing Node

High-performance routing (HPR) is fundamentally an extension to APPN as defined by IBM. Operationally,
HPR isimplemented into APPN network nodes or APPN end nodes. Practically, HPR implemented in APPN
provides a high-performance method for routing, and the realization of the routing function is enhanced because
of the high-speed links that connect. HPR, in APPN, provides a method to control congestion in the network and
enables enhanced throughput in the network. Another function of HPR in APPN isits ability to perform routing
of sessions away from nodes or links that have become unavailable.

A key component of HPR is the Rapid Transport Protocol (RTP). This protocol is connection-oriented and full-
duplex. Consequently, these characteristics enable higher speeds within the bandwidth in which the technol ogy
isused. A function of RTP is the nondisruptive path switch, which provides a sort of dynamic path allocation
ability. Another key function of RTP is the error recovery it employs from end to end. Thisis performed in all
network links. A by-product of this end-to-end error recovery is the congestion control mechanism built into
RTP.

Another key component of HPR is the Automatic Network Routing (ANR) protocol, which minimizes storage
and processing requirements for routing functions. Part of these functions include fast packet switching. Many
functions that make ANR possible occur at RTP connection endpoints. Another characteristic of ANR islack of
session awareness, which results in absence of the requirement for maintenance of routing tables related to
session connectors. ANR is characteristically a source routing protocol. Hence, required routing information is
carried in the network header in each packet. In a sense this could be viewed as “on-the-fly” routing, as this
author refersto it.

Figure 6-8
APPN and subarea SNA via an interchange node.

tvede Qperatoe ALEISERIN
Transactian
Made Cpeaator Foclity Fangpum
Carired nlermedate
Faint Sesgian Legeal
Ao fing Linid
Path Contral
Lkt Link Coanlbrg

Figure 6-9
Conceptual view of APPN node structure.

6.3 APPN Node Structure

At the core of APPN lie the three nodes mentioned previously: APPN network node, APPN end node, and LEN
end node. These nodes are built around the structure displayed in Fig. 6-9.

Components of this node are data-link control, path control, logical unit, intermediate session routing, control
point, and node operator facility.

Each component, which has subcomponents and multiple functions, is explained below.
6.3.1 Data-Link Control

The data-link control (DLC) isthe interface with the link connection. It provides data-link protocols. The
functions of DLC are to provide communication establishment between nodes, maintain the synchronization
between the two, issue acknowledgments, perform error recovery when required, and sequence data flow. Figure
6-10 shows how the DLC appears conceptually.

i

| DLE Managse | | DLC Eomaont |

|
" Physical Link [

; Conraction !

Figure 6-10
Conceptual view of data-link control.

| Halh Lorrdl |
F

b
Elmzn

s K

Figure 6-11
Role of the element.

This part of the node is responsible for communication with the physical link. It consists of two components.
The DLC element is responsible for the following functions: moving data to the physical medium, performing
retransmissions, moving data to and from other DLC elements, managing the DLC and path control (PC)
boundary, and receiving traffic from the session.

Figure 6-11 depicts how the element functions within the node.

The DLC manager performs the following functions: activating and deactivating the DLC element, activating
and deactivating links, passing parameters to the control point (CP) when a station becomes operative or
otherwise, and controlling the boundary between the CP and the DLC.

Figure 6-12 depicts the relationship between the DLC manager and other node components.

Figure 6-13 shows how the DLC communicates with the medium, internally, with the session, and with the
control point.

Crmim
Fain

T Par Conig

(w Bt

Figure 6-12
Functionality of the manager.

[REpgyiom

Lol gL == H

L 4 X

Munugar |.(—p| Eamgn|

Figure 6-13
Functionality of DLC asawhole.

6.3.2 Path Control

Similar to the DLC, the path control (PC) component in the node has an element and a manager. Functions of
these PC components include the following:

1. Element functions. The element portion of the PC performs functions such as error checking on messages
received from the DLC element; generation of segments for outbound messages; converting messages from
messages received from the DLC; prioritizing message transmission to the DLC component; and routing
messages between the PC manager, the half-session (HS), the session connector (SC), and the DLC component.
Figure 6-14 depicts the relationship between the PC components and the DLC component.

2. Manager functions. The manager portion of the PC performs functions such as session connection and
disconnection, stopping outbound data traffic on notification, and interaction with the control point (CP). Figure
6-15 shows the relationship between the PC, the CP, and the parts that aid in session establishment.

General characteristics of the PC include routing messages between destination nodes and LUs residing in the
same node. The PC routes messages from the DL C to the appropriate component, including the CP, LU, or the
intermediate session routing (ISR) component.

[| [Fomm

Path Bowdrol

oLz Elleanart

Figure 6-14
Conceptual view of path control.

AdanegE

[+
=Pacd
Manage" Hall
L Semion
LY

cP Managamwr I Irtarmadiane
Cofiguration o Surom SECON Fouling
Sarvicas ry BOGEIEA Lornagtar
As o Hal (IGASG]
Eg3gicn
& ”~
N
Ny y ¥ ¥ o
Mamuger i Elomont

F
Palk Cortred

¥

13K

Figure 6-15

Relationship between PC, CP, and session establishment.

6.3.3 Logical Unit

The LU has many ports that enable it to communicate with the PC, LUs in another node, and other components
within the same node. Figure 6-16 is a conceptual view of an LU correlated to the APPN node structure as a
whole.

The LU serves as a port (addressable point) for application transaction programs. The components that make up
an LU include the LU-LU half-session, session manager, presentation service component, resource manager,
and service transaction programs.

LU-LU Half-Session

This part of the LU comprises two components. data flow control and transmission control. The half-session
component controls local and remote LU communications. The data flow control part of the half-session creates
request/response headers (RHs), ensures that proper RH parameters are in place, ensures proper function
management (FM) profile for the session, manages bracket protocol, flushes rejected brackets, and is
responsible for generating chaining.

The transmission control part of the LU performs session-level pacing, examines received sequence numbers for
possible BIU errors, reassembles request/response units (RUs), enforces the exchange of cryptography
verification when it is used, enciphers or deciphers session cryptography when used or required, and provides
reassembly for RUs that have been segmented.

o1 i i b
X}Ftr.?lfl - TFArg action
Fiogiam
Hodda Oeibis | mppicaton ek N
T:‘_‘“’“M Ping-ams
Moo Dporabar Fasity W
e
Conal | Fiermadiais | Lages R aica Mresenlefion
Bemab 1 B
Fart Fng el IH'JE:” | A
Path Conncl Baspduin LUl
Wanzgar Hall Soasian
1M {HE
Sl Link Coalrgl
Path Condeal
Likals Lk Leshiol

Figure 6-16
The LU with respect to node structure.

Session M anager

The session manager sends and receives the BIND, creates half-session instances, connects half-sessions to the
path control, supplies session parameters during the BIND exchange, negotiates parameters during the BIND
exchange, and informs the resource manager when session outage occurs.

Presentation services component

The presentation services component calls a transaction program, loads a transaction program, keeps the SEND
or RECEIVE state alive with the transaction program, puts datainto logical records, maps transaction program
data into mapped conversation records, confirms logical record length, generates function management (FM)
headers for an ATTACH, and provides error information.

There are other functions in addition to these; however, those listed here cover the major operations of this LU
component.

Resource Manager (RM)

The resource manager works in conjunction with presentation services and conversations flowing between
transaction programs. Some basic functions of the RM include the creation and destruction of presentation
service instances and of conversation resources, connection of conversation resources to the half-session and to
presentation services, maintaining data structures, enforcing session-level security, and generating the FM
Header 12 (security header).

Service Transaction Programs (STPs)

These programs make up the transaction services layer. They can be used to change the number of sessions
(CNOS). They also interact with the node operator facility (NOF).

Figure 6-17 shows the structure of the intermediate session routing (ISR) facility.

Seankon
Conmgcer

SEssia
oA
Wanager e

(5L

Imermad abd Sotsion Rouling

{15R)

Figure 6-17
Conceptual view of ISR component.

The ISR consists of two components: the session connector (SC) and the session connection manager. An SC is
allocated for each session and performs routing, pacing, reassembly of basic information units (BlUS),
monitoring of the session for errors, and intermediate reassembly.

This component is responsible for routing session traffic through intermediate nodes. The companion
component in the ISR is the session connection manager (SCM), which performs the following functions:
intermediate BIND and UNBIND processing; creating, initializing, and eliminating session connectors,
connecting SCs to the PC, and buffer reservation.

Figure 6-18 shows the correlation between ISR components and other components in the node.

oo
Oparaton
Foril by
Ceortr= Seasicn Hmmsbnan
-p - o el CLoviasin Cornactor
L managee
L]
¢
Padi
Conr
Siata
Link
Canlrad
L]
?ﬁ
hd=acimin
P —"
Figure 6-18

ISR communication with other components.

6.3.4 Control Point

The control point (CP) manages resources within a node. The CP uses CP-to-CP sessions to exchange
management information. According to IBM documentation, the CP may be merged with the LU; thisisan
implementation issue. If thisis done, certain implications do apply. For purposes here, the CPistreated asa
separate entity.

Another way of defining the CP is based on the IBM APPN Architecture manual (SC30-3422). The definitionin
the glossary states:

(1) A component of an APPN or LEN node that manages the resources of that node. In an APPN node, the CP is capable of
engaging in CP-CP sessions with other APPN nodes. In an APPN network node, the CP provides services to adjacent end nodes
in the APPN network. (2) A component of a node that manages resources of that node and optionally provides services to other
nodes in the network. Examples are a system services control point (SSCP) in atype 5 node, aphysical unit control point
(PUCP) in atype 4 subarea node, a network node control point (NNCP) in an APPN network node, and an end node control
point (ENCP) in an APPN or LEN end node. An SSCP and an NNCP can provide services to other nodes.

The focus here is on the components and their functions within the CP. Figure 6-19 is a conceptual example of
how the CP appears.

P Flirgasl Do Ay Send | Footed gllﬁ:‘“:‘l-l- Rpstivi-J Frossal e
Copekdines] -CF- L% B neiwo) uetmond Seseace]| fag. T o | N
n CRTE F I‘: Saaren | Eaaron i'tr?- (& T o
™" " T L
o
— \
-
e,
o
T
~ i
8 fus |6 |98 DS T
. H St
= Tramasie
W = Proy wm
STPa)
L C
I m CPRCF M
i |:D Halk, Ll E
P2 H
\ mmam -':
Figure 6-19

Control point components.
The following explains the component function as it appears in Fig. 6-19.

Configuration Services (CS)
This component manages physical-link connections of the node itself. Its functions include

* Link activation. The CS exchanges information with the DLC. Exchange Identification parameters (XIDs) are
passed to ensure that each node’ s abilities are understood by the other. Figure 16.19 shows the CSrelative to the
DLC and the PC.

* Link deactivation. When alink is deactivated, the CS performs cleanup functions and then notifies the
appropriate components within the node.

* Link queries.

 Exchange of XID3. This can occur if link or node characteristics change while the link is active.
* Link definition verification. The CS saves this definition during link activation and deactivation.
Management Services (M S)

This component handles dert level at alocal level. Other componentsin the node log alert information in the
local node. This component communicates with a number of other components within the node such asthe ISR,
the NOF, and the PC.

Address Space Manager (ASM)

The ASM handles the address spaces related to each local transmission group (TG) within anode. In APPN, a
TG is synonymous with alink. In each address space alocal form session identifier (LFSID) is defined.
Additionally, one address space correlates with a TG (link).

The ASM designates session addresses, activates and deactivates address spaces, frees address spaces on
request, routes nonrelated session data, and paces BINDs via adaptive pacing. If BINDs are received segmented,
the ASM assembles them.

The ASM communicates with the PC, NOF, and other components within the node.

Session Services (SS)

SS focuses primarily on initialization and termination of both CP-CP and LU-LU sessions. Specific functions
SS performs include procedure correlation identifiers [also known as fully qualified procedure correlation
identifiers (FQPCIDs)], initiation of sessions, CP-CP session activation and deactivation, session termination,
and monitoring of the active number of sessions.

Directory Services (DS)

DS functions depend on the node type. It functions differently with NNs and ENs. Basically, the DS maintains
the node directory within that node, but thisis not the casein LEN end nodes. It does, however, provide the
ability to search and update directories in other nodes throughout the network. Other functions it performs
include

* End-node searches. Three types of searches can be identified in end nodes (ENS): a search initiated locally, a
search initiated from a remote node, and sending of a search request to an NN. In thislatter case the NN actually
performs the search; in a sense it functions as a proxy.

* Network node searches. DS examines its own directory to determine whether resources are owned by that node
or by its associated end nodes.

* End-node updates. Local directory updates are performed via system definition.

* Network node updates. Thisis achieved in one of three ways: (1) as aresult of systems definition, (2) when
dynamic updates occur as aresult of communication with the NN server’s client nodes, and (3) after network
search completion updates may be performed by data cached during the search.

* End-node registration and deletion. This function occurs only if the end node is authorized for this function.

* Network node directory maintenance. An NN performs updates and deletions on the basis of information
received from nodes in which their registration applies.

Topology and Routing Services
This component of the CP performs three primary functions:

* Class-of-service management (COSM). The COS manager keeps the database updated. It notifies route
selection services (RSS) when a class of service changes.

* Route selection service (RSS). This component functions differently in NNs and end nodes. In an NN the RSS
determines preferred routes within the network and determines what transmission priority to use on selected
routes. It also updates the topology database to reflect the most current topology and specifies routes computed
by the COS requested. The TG from origin to destination is selected by the RSS. In an end node, RSS selects a
TG and transmission priority.

* Topology database management (TDM). This function is based on the node type. In an end node the TD
manager maintains the topology database. In an NN it broadcasts to the network once changes are made locally.
It performswhat is called a periodic broadcast—a broadcast throughout the network in interval's of
approximately five 24-h days. It also deletes resources from the database if no data have been received about a
resource in 15 days. It also responds to remote queries.

Service Transaction Programs (STPs)

STPsexist in an APPN node. They exchange information over CP-CP sessions. They do not exist in LEN end
nodes. Ten transaction programs (TPs) are described here:

*CP Capabilities/Sent Qutside the Node (SON).Thisistheonly SSTP used to attach by a
remote node. Its purpose is twofold: to send the PC capabilities to another participating node and to perform
processing for session outage.

* Request _CP_CP_TP. When the SS wishesto start a CP-CP session with another node, this TP is used to
invokethe Request CP Capabilities TP.

* Deact _Sessi on_TP. This deactivates a CP-CP session to a specific node.
* Recei ve_Net wor k_Sear ch_TP. This program receives alocate search from an adjacent APPN node.

* Send_Net wor k_Sear ch_TP. Thisisan APPN node that sends a locate search request/reply to aremote
directory service.

* Recei ve_Resource_Regi strati on_TP. Thisiswherean APPN NN sends registration and deletion
variables to an APPN end node pertaining to specified resources.

* Request _Resour ce_Regi strati on_TP. Thisoccurs when an APPN end node sends registration and
delete information to the target APPN NN.

* Recei ve_TDU_TP. This occurs when an NN TRS communicates with a TDP_TP receiving information
from an adjacent node.

*Process_CQut put _TDU TP. TDM sendsasignal tothePr ocess_Qut put _TDU_ TP when aloca node
wants to broadcast topology information.

* NOF_TP. Thisisinvolved in the start-up of a node operator facility.
6.3.5 Node Operator Facility

This component initializes the CP and ISR on starting the node; functions as the user interface for the CP, ISR,
and LUs; and enables the following functions: activating and deactivating links; creating and deleting LUS;
ascertaining status information; retrieving database information; and defining directory information, local and
remote LUSs, node characteristics, session limits, transaction programs, links, TP start-up, and other CP names.

The NOF is discussed in more detail later in this chapter.

6.4 Directory Services

The concept behind the directory services (DS) component is the responsibility for resource searches for the
local node and those throughout an APPN network. Directory servicesis responsible for the registration of
resources to network nodes (NNs) where they function as a server for directory services.

The DS component of the control point itself has three major components: (1) directory database function, (2)
CP status function maintenance, and (3) network search function. (See Fig. 6-20.)

The directory database function (DDB) performs lookup and maintenance for directory services.

The CP status maintenance function keeps alog of other CPs that wish to communicate with the CP in that
node. In NNs it keeps track of end nodes (clients) and also maintains information as to other NNs with which it
can establish CP-CP sessions.

The network search function component sends and receives resource search request to and from other nodesin
the network.

Understanding the terminology is important for examining the DS component.
6.4.1 Directory Service Terminology

Authorized node When thisterm is used in conjunction with DS, it means that information sent about itself is
accepted. An unauthorized node cannot use certain protocols and is denied registration of its LUsin the
distributed directory.

Border node Thisisan NN connecting APPN networks that maintain different databases reflecting their
topology. Periphera border nodes support directory services, session setup, and route selection between
networks of different identifiers. A border node does not support intermediate routing. An extended-border node
provides session setup, directory services, and routing through a boundary of different networks where these
networks have different topologies.

L ‘ [MZHE HE

Dy 3mvices

Figure 6-20
Conceptual view of directory service components.

Central directory server (CDS) Thisfunction residesin an NN and function differs from that of directory
services (DS) because the CDS maintains al resource information within a network. More than one CDS can
exist in the same network.

CP send/receive session The DS uses CP-CP sessions between APPN EN and the NN server. This session
carriestheLocat e_Sear ch function.

Distributed directory database (DDD) Directories of resources exist throughout the APPN network. The
concept of DDD isthe collective whole of the databases throughout the network.

DSuser A component in a node which usesthe DS.
Local Directory Database (LDD) Thisrefers specifically to the local directory database in a given node.

Locate Search Thisisthe method a DS finds resources not in that node. A Locate Search can be either a
broadcast search—sent throughout the entire network, a directed search—sent to a known location for
verification, or adomain search—an NN communication with its client ENs to verify resourcesin agiven
location.

Subnetwork A collection of nodes which have common characteristics such as a common network address or a
database in common.

6.4.2 Directory Service Functions

The function of the DS component is present in each T2.1 node; the degree to which it is exploited depends on
the node itself. The DS functionsin an NN are as follows: (1) a database is maintained of local resources and
resources that have been cached because of alocate search function, (2) the DSis able to determine the location
of a specified resource, (3) the DS registers resources in a domain viathe NOF or an end node (client), (4) the
DS deactivates CP-CP sessionsif the node isin a state of deadlock with respect to sending alocate search, and
(5) the DS provides support for intermediate nodes in locate searches.

Directory servicein an APPN EN provides these functions: (1) once notification of a CP-CP session failure has
occurred, it cleans up any outstanding searches; (2) it sends and receives locate resource searches with the NN;
(3) it registers resources with the NN; (4) it supports CP-CP sessions with the NN; and (5) it maintains a
directory database of local resources and adjacent node resources.

6.4.3 Directory Database Function

The directory database (DD) is a distributed database containing lists of resources throughout the APPN
network. For example, ENs keep information about their resourcesin their DD. An NN maintains anode
operator facility (NOF), defines directory entries of resources in that node and in the nodes it serves. A major
function is keeping the database within the storage requirements for that node. The directory database contains
different entries.

Typesof Entries

Fundamentally, the directory database maintains information about its own resources. Additionally, the
following types of entries may be found:

Domain entries including resources in that domain, but located in one of the client nodes (end nodes).
Other domain entries maintaining information about resources in other domains as its name implies.
Other network entries keeping information about resources that can be reached by a different net ID.
Origination of Entries

As mentioned previously, a distributed directory contains individual, local databases viewed as awhole.
Information gets into these directories by either NOF definition or APPN end-node registration with an NN
server viaa CP-CP session. Information may also be entered by the caching function as aresult of the locate
search function.

The Network Sear ch Function

The network search function (NSF) maintains the protocols used while searching the distributed database. This
function also maintains control of the transport directory services. It also enforces logic with regard to the
sending of directory service messages. However, its primary purpose is locations of network resources and
control flow throughout the network of request and replies.

Within the NSF a need may arise to send a request to another node asking for information about the directory in
that node; in this case the message that flowsis called alocate search. Three types of locate searches can be
identified: (1) one-hop search, (2) directed search, and (3) broadcast search. Theone-hop search isalocate
search request exchanged between an APPN end node and an NN.

A directed search traverses a predefined path from one NN to another NN. In this case the originating NN
calculates a CP-CP path to the target node and adds routing information to the search. This works because each
NN on the path uses this information to select the next hop. By functioning in this manner, it ensures that the
most direct route to the destination node is obtained.

The broadcast search is used by NN to send alocate search request to multiple CPs. Two common types of
broadcast searches are domain and network. The domain broadcast search sends alocate search for the resource
to adjacent APPN end nodes. Because more than one reply may return, the directory service used the first
positive reply. The network broadcast search is sent to all NN nodes. It is used to ascertain aresource location
when it cannot be found otherwise. It is used as the last attempt because this type of search permeates the
network with request for the location of the resource.

Locate searches can carry non-DS information. If thisis the case, it is used by other CP components normally
for the use of transport control data. When this non-DS information is used, the user is theoretically an
application. For example, session services could use this to transport information variables. Some examples of
some information capable of being transported as non-DS information are fully qualified procedure correlation
identifier (FQPCID), destination LU, mode name, class of service (COS), originating LU, and endpoint vectors.

6.4.4 Central Directory Server

The Central Directory Server (CDS) residesin an APPN network. More than one can exist. The CDS accepts
registration of resources from other network nodes. Once information is received from the registrations of other
nodes a central directory is maintained.

6.4.5 Directory Entry Contents

The contents of a directory entry depends on node type. Briefly the contents found in directory entries are
resource name, resource type (NN CP, EN CP, LU information), EN control point (uses a pointer to an adjacent
CP status control block), information about the hierarchy (LU entries for NN servers, adjacent entries for an LU
entry, the “child” LU entriesfor adjacent EN control points), classification (home, cached, or registered), and
information as to whether the resource has been or can be registered with the central directory server.

6.5 Topology and Routing Services

Topology and routing services (TRS) are present in each NN and in alesser form (with respect to functionality)
in APPN ENs and LEN ENSs. In NNs TRS creates and maintains the COS database and is responsible for
maintaining a copy of the network topology database.

In end nodes the TRS creates and maintains the local topology database. It is also responsible for the COS table.

LES

Menager Tk LE]

Figure 6-21
Conceptual view of topology and routing services
components.

The TRS has three components: (1) class-of-service manager, (2) route selection service, (3) and topol ogy
database manager (see Fig. 6-21).

The COS manager enables trandation of amode name to a COS name. Thisisabasic function for NNs,
however it isoptional for end nodes. Route selection service computes routes. It selects the path from origin to
destination. Technically, it computes the most efficient route between nodes in an APPN network. The topology
database manager maintains the COS and topology databases. In NNs the TDM maintains the network topology
database, and, on one or the other ends, it maintains local topology information.

6.5.1 Class-of-Service Database

The COS database existsin all NNS and in those end nodes which support them. The COS database contains
mode names that include a pointer to a COS name; COS names which have COS definitions representing
characteristics of the node, transmission priority, and weight assigned; and weight index structure for computing
the actual transmission group weight.

Each COS entry in the COS database contains some basic information, such as COS name, transmission
priority, transmission group characteristics, security-level, cost per byte, and propagation delay.

6.5.2 Route Selection Service

A routein APPN is a path between two endpoints. This includes the intermediate components that may exist,
such as links, NNs, domains, and transmission groups.

The following minimum criteria are used to determine the best route in an APPN network:
* Route characteristics must be known.

* All possible routes are cal cul ated.

* If aresource is not acceptable, it must be excluded; hence, determination of this factor about resources must
be performed.

* All resources that will be used during the route must be accounted for and calculated accordingly.
6.5.3 Topology Database

The topology database contains information about the logical structure of the APPN network and about all
nodes in the network, transmission groups, intermediate transmission groups, and other pertinent information.

There are two types of topology database: (1) network and (2) local.
Network Topology Database

A network topology database is maintained in all NNs. This database includes information on NNs connections
to other NNs and connectionsto virtual routing nodes. Each NN participating in the APPN network is aware of
this database because the database is on each NN.

The structure of the network topology database includes two categories: node table, which includes information
about the node such as CP name, network 1D, characteristics, and resource sequence number; and TG table,
which includes information about transmission groups. Some of that information includes CP-CP session
support, status, a pointer to the TG vector, and a pointer to the weight (amount of resource requirement).

L ocal-T opology Database

Local-topol ogy databases are located in end nodes. This database contains information about each endpoint
attached to that node. It is created and maintained by the topology database manager. The local-topology
database is used when no CP-CP session existsin an NN, to establish sessions to predefined LUs, and to send
information to the NN for the route selection process.

6.6 Configuration Services

This component of the control point (CP), known as configuration services (CS) (see Fig. 6-22), isresponsible
for managing local node resources like links to other nodes.

CS performs a number of functions, including node configuration definition (data-link type, ports, adjacent
nodes and links), link activation and deactivation, and nonactivation of an XID exchange. On node
initialization, CSs receive the node name, network ID, link station support information, and information
concerning TGs.

HOF

Canbigurabaan Seranas

¥ v

Fah Pl

Canirol Link
Cotral

Figure 6-22
Conceptual view of configuration services.

Through CS, the NOF defines the basic node configuration. First is the data-link type. This CP component
communicates with the data-link control manager for definition purposes. Ports are also defined by the NOF via
CSs. They are considered hardware.

Port type is defined: switched, nonswitched, or as a shared-access facility. Information includes buffer size,
limits, timeout values, TG characteristics, and any associated DL C process.

Link stations may be defined at activation time, or their parameters can be negotiated; either way they must
match. Nodes require system definition for their local link station. These definitions include role (primary or
secondary), address or defined as negotiable, inactivity timer, retry limit on mode setting, and modem delay
limits.

6.7 Management Services

The concept of management services (MS) isimplemented in each T2.1 node and is known as the control point
management services (CPM S)—a component of the CPin T2.1 nodes. Its functionality is straightforward.

The NOF sends messages to the CPM S. These messages are converted into local management services, where
they are carried out by the receiving component in the T2.1 node.

With respect to the CP, management services interacts with each of the following: (1) session services, (2)
configuration services, (3) session manager, (4) resource manager, (5) address-space manager, (6) topology and
routing services, (7) directory services, and (8) presentation services.

Some information CPM S can receive from CP components and other components, respectively, islisted below.
Some information must be solicited and some need not be.

1. Information about currently active sessions—problems detected in a node by the CP
2. Domain information

3. Information about currently active LU6.2 sessions

4. Information about session conversations

5. Unsolicited information about problems related to this component

6. Information about routing information

7. Locating network resources for the CPMS

8. Providing LUG.2 protocol boundary information

The LU session manager provides information about currently active sessions. The LU resource manager
provides information about conversations across an LUG6.2 session. The LU management service component
provides unsolicited information about the LU. The session connection manager provides information about
data passing through the node.

The path control manager reports unsolicited information about any problems detected at this component. The
data-link control manager provides avehicle for testing resources such as links and modems.

Other management information is ascertainable, but the point here is that management services actually interacts
with al T2.1 node components, not only the CP.

6.8 Address-Space Manager

The address-space manager (ASM) residesin NNs and APPN ENs. Fundamental functions of the ASM include
management of session addresses [also known aslocal form session identifiers (LFSIDs); these addresses are
used for routing data traffic and local path control] and of flow control of session activation messages (the
BIND), informing the appropriate session manager component when alink fails, and routing session activation
and deactivation messages.

The ASM is created on initialization of the node by the NOF. Once thisis performed, the ASM is notified by the
NOF of the CP name, network ID, and nature of BIND assembly supported.

6.8.1 Functions of the ASM

For communication to occur between LUs or CPs and other CPs, alocal form session identifier (LFSID) must
be allocated by the ASM. By performing this function, the ASM achieves address control in the node. The ASM
bases the LFSID on path control instance identifier for that session. The ASM maintains an address-space list
and alist of assigned LFSIDsin use.

Address spaces are defined by the ASM in relation to the transmission group attached to the node. The ASM
assigns an address space consisting of a number large enough to allocate sufficient LFSIDs for that TG.

Whenever a TG is activated or deactivated, the ASM isinformed. At that time the ASM creates or destroys the
tables used to control that TG’ s address space. ASM handles the assigned address space by dividing it into
groups. These groups consist of 256 LFSIDs. However, the ASM allocates the LFSIDs only as necessary.

6.8.2 LFSIDs
LFSIDs are 17-bit session identifiers used by the path control to route session traffic and have two components:

1. A 1-bit assignor indicator. Every ASM in the nodes connected by a TG selects an LFSID fromthe TG
address space with a different value, so no duplication exists.

2. A 16-bit session identifier. Thisis further broken into an 8-bit identifier (considered high) and an 8-bit
identifier (considered low).

An LFSID assigned to a session maintains its active state as long as the session exists. The ASM isthe
component that terminates the association between the LFSID and the session once the ASM receives
notification that an UNBIND or response to UNBIND is delivered from the path control component.

This LFSID is used because on each session hop between two endpoints each node uses distinct session
identifiersto identify a session; consequently, the term local form session identifier (LFSID) is used.

Considerably more detail accompanies thistopic, but thisis not a section on programming! For further
information on the topic, refer to IBM’s APPN Reference manual number SC30-3422.

6.9 Session Services

In general, the session services (SS) functional part of the control point (CP) aids in generating unique session
identifiers, LU-LU session ini tiation and deactivation, and CP-CP session activation and session deactivation.

hP
Topaem
F S 00
Roaring age

cF ce
Dragctony Cenligmlion
BnaGHE EWVIEOE

Pl or
Dperatsr Maraqomes
Faolty Sanrces

3 A
\ .&u\ \ .r'“’ / /
\ v Y ‘

Figure 6-23
Relationships between session services and other components.

Figure 6-23 depicts the relationship between SSs and other components.
6.9.1 Fully Qualified Path Control I dentifier

The session identifiers generated by this part of the CP should not be confused with the LFSIDs generated by the
address-space manager (ASM) mentioned previously. The session identifiers described here are called fully
qualified procedure correlation identifiers (FQPCIDs).

Session services assign a network unigue session identifier, known more commonly as the FQPCID. This
FQPCID correlates request and replies between APPN nodes and identifies a session for problem determination,
auditing, accounting, performance, cleanup, and other purposes, or to perform recovery actions.

FQPCID is assigned at the originating node and it is of fixed length. It contains an 8-byte session identifier field
that includes the network qualified name which generated it.

6.9.2 LU-LU Session Initiation and Deactivation

With APPN NNs, APPN ENs, and LEN ENs, LUs can initiate sessions and respond to the session initiation
requisition from another LU, or CP, for that matter. The session activation request (also called aBIND) is sent
by aparticular LU; that LU is considered the primary LU (PLU). The BIND recipient, on the other hand, is
called the secondary LU (SLU). The LUs go into session once the BIND is sent and is received by the target,
and the target LU sends a response (RSP) to the BIND back to the sending LU. Thisis an “active’ session.

Some of the information specified in a BIND request includes network-qualified name of the PLU or SLU, route
traversed through the network to the SLU, the FQPCID, and the maximum request/response unit size.

On the other hand, a session is stopped when an UNBIND is sent to the target and the target responds with a
response (RSP) back to the originator of the UNBIND. Thisis session deactivation, or an “inactive’ session.

Sometimes the terms PLU and SLU are substituted with the terms origin LU (OLU) and destination LU (DLU).
6.9.3 CP-CP Session Activation and Deactivation

CP sessions are always LUG6.2, which means that the possibility for contention may exist if thereisa CP in two
nodes. Contention is best explained by both CPs attempting to establish a session with the other at the same
time. Since this possibility exists, the question of how to overcome this scenario isin order.

Contention can be overcome by what are called contention “winners” and “losers.” Each CP has contention
winner LUs defined and generally the same number of contention losers defined. Because CP-CP sessions are
established in parallel, each CP has winner and loser LUs defined. With this configuration, contention can be
overcome.

Establishment of CP-CP sessions begins when the session services notifies directory services that asession is
pending active. Then the directory service queues network operations that may involve the CP session LU.
Session services notifies the resource manager to attempt activation of awinner LU with the destination LU in
the target node. The session services is once again invoked to assign FQPCID having a codename of
CPSVCMG.

The following information is part of information that flows across CP-CP sessions. topology database updates,
session activity, request for data management support, reply to a request for data management support, and a
resource search capability.

CP-CP session deactivation may occur for one of two reasons:. (1) in the event of normal deactivation, which
usually means that the node, or its partner, no longer requires the session; or (2) if an abnormal CP-CP session
termination occurs, which could be the result of protocol violation during the session or alink failure or, in
remote cases, both.

6.10 Node Operator Facility

The NOF is the interface between the operator and the T2.1 node. Its purpose is to enable operators to control
node operation. A node operator can be either a human, a command list for execution, or a transaction program.
Either of these entities can perform node operator functions. A human operator can execute a specific dialog
between the NOF and the individual and make changes possibly not anticipated or capable of by a program. A
command list issimply afile with alist of node operator commands to be executed. The NOF interpreter logs
the commands and responses from the NOF and maintains this for future reference. Transaction program
control is used in remote operations. This works when a transaction program actually issues a command against
the NOF which isin aremote location. These three forms of communication with the NOF are illustrated in Fig.
6-24.

6.10.1 NOF Functions

Briefly NOF functions include creating other components in the node, issuing commands to initialize the node,
converting commands to sig nals capable of being understood of components within the node, starting alog of
commands issued and the results of issuing these commands, receiving results from node components, routing
signals to the appropriate node components, and managing unsolicited messages from any hode components.

Trensericn =prmn Crammand
Program Opanainr L] comrand
[e

™1 | | —
rdion o T tia
! |
” Mafdghi
CAMMANCS Piziog Fia
Marsger FAERR
(LT Y
-'h I & I
dienbans | vmwmeeks Eeloiae |ooemank
-csrll: i_ FERURE
I I

MU QPEHATUH FALZILITY

w

Node Componials

Figure 6-24
A perspective of the node operator facility.

Oninitialization, the NOF creates the following components in order: (1) address-space manager, (2) session
services, (3) directory services, (4) configuration services, (5) management services, (6) topology and routing
services, (7) session connector manager, and (8) session manager of the control point (CP).

6.10.2 Commands Listing and Function

When a command is entered and received, the NOF parses the command into a form understood by the NOF. At
this time the syntax is verified.

The following are node operator commands which are architecturally defined; brief descriptions of their
functions are given in the right column.

CHANGE_SESSION LIM T
DEFI NE_ADJACENT _NODE

DEFI NE_CLASS_OF_SERVI CE
DEFI NE_CONNECTI ON_NETWORK

DEFI NE_DI RECTORY_ENTRY
DEFI NE_DLC

DEFI NE_| SR_ TUNI NG

DEFI NE_LI NK_STATI ON
DEFI NE_LOCAL_LU

DEFI NE_MODE

DEFI NE_NODE_CHARS

DEFI NE_PARTNET_LU
DEFI NE_PORT
DEFI NE_TP

DELETE_ADJACENT _NODE
DELETE_CLASS OF SERVI CE
DELETE_CONNECTI ON_NETWORK
DELETE_DI RECTORY_ENTRY
DELETE_DLC

DELETE_| SR_TUNI NG
DELETE_LI NK_STATI ON
DELETE_LOCAL_LU
DELETE_MODE
DELETE_PARTNER LU

DELETE_PORT
DELETE_TP

INITIALI ZE_ SESSION LIM T
QUERY_CLASS_OF SERVI CE
QUERY_CONNECTI ON_NETWORK
QUERY_DLC

Changes the session limit
Defines an adjacent node to alocal node
Changes or updates the COS

Defines a connection network to the local APPN
node

Defines or updates directory entries

Defines a data-link control

Adds or updates the session connector manager
Defines a connection to alink station

Used to defineanew LU

Used to create a new mode definition for alocal
LU

Defines or updates current characteristicsin the
local node

Defines or changesaloca LU
Defines a port to alocal node

Defines or changes aloca LU’ s operation with a
local transaction program

Removes a definition of an adjacent node
Removes a COS definition

Removes connection network from alocal node
Removes an entry from the directory services
Removes a data-link control instance

Removes one or more session connector managers
Removes adjacent link station definition
Removes alocal LU from anode

Removes a mode definition from alocal LU

Remove definition that alocal LU useswith a
remote LU

Removes a port definition in the local node
Removes alocal transaction program definition
Initializes the number of sessions allowed

Used to obtain the values defined for a COS
Used to obtain the status of a connection network

Used to obtain the status of a specific data-link
control instance within anode

QUERY_| SR_TUNI NG

QUERY_LI NK_STATI ON

QUERY_PORT
QUERY_STATI STI CS

RESET SESSION LIM T
START DLC
START_LI NK_STATI ON

START_NODE
START _PORT
START_TP

STOP_DLC

STOP_LI NK_STATI ON

STOP_PORT

Used to ascertain information about the session
connector manager

Used to obtain the status within the node of an
adjacent link station

Used to obtain status of a port within the node

Used to obtain detailed information about alink
station

Resets the number of sessions allowed
Starts a specified data link

Establishes communication between aloca link
station and an adjacent link station

Brings up the SNA node

Starts a specified port and local link stations
Requestsalocal LU to start a TP in anode
Stops the named data-link control

Stops communication with a specified adjacent
link station

Stops a specified port and associated local link

stations

6.11 APPN Conceptsand Traditional SNA

APPN and SNA are philosophically different. APPN is peer-oriented, using LU6.2 protocols, and is
implemented across a variety of equipment. SNA has been hierarchical in nature. This meant that VTAM was
involved in practically all session establishment. This began to change with VTAM version 3release 2 and is
more prevalent with VTAM version 4 release 1.

APPN and traditional SNA are becoming less clear-cut. They are evolving into a cooperative way of networking
when both are present in one environment. This section explores some differences between the two and presents
examples of areas where they are somewhat coming together.

6.11.1 APPN structure

APPN builds on different types of nodes that provide services such as routing, database maintenance, directory
services, and end-user services. The growth in different types of APPN nodes has changed and continues to
change. No longer isan APPN network considered implemented with midrange and PS/2 systems. Now, APPN
can be implemented with SNA viaVTAM support.

APPN uses LU6.2, an independent LU capable of initiating a BIND (request for a session with another LU).
6.11.2 SNA Structure

SNA has been built around hardware architectures and VTAM becoming the centerpiece of software for the
network. SNA has been hierarchical (some also call it subarea SNA) in nature; but it has had support for peer
operations. Now, those peer operations are expanding by embracing APPN viaVTAM and the NCP.

SNA uses LUG6.2, but it primarily utilizes other LU types such as LU1, LU2, and LU3, which are dependent on
VTAM for session establishment. As aresult, the question becomes “How can LU2s be implemented into an
APPN network and accessaVTAM host?’

6.11.3 APPN-SNA Mixture

Subarea SNA supports dependent logical units. SNA’s roots are in this functionality. This means that an LU
requesting a session with aVTAM application must have the services of VTAM (SSCP) or aid viathe NCP
boundary function. For LUs residing on adjacent nodesto VTAM or the NCP, they traverse the VTAM or NCP
boundary function.

If VTAM isconfigured as an end node, VTAM cannot perform intermediate session routing. However, nodes
can attach to VTAM using the boundary function of SNA. Consequently, dependent LUs must access VTAM
viathis boundary function.

Two terms need clarification and explanation: dependent logical unit requestor (DLUR) and dependent logical
unit server (DLUYS). Implementation involving DLUR and DLUS provides the following scenario. When APPN
nodes are mixed in networks with nodes such as a PU2.0 device, this PU2.0 must have SSCP-PU sessions and
SSCP-LU sessions. Once support for these two sessions is achieved, a dependent LU-LU session can be
achieved from the PU2.0 device and a subsystem application.

Toredlize thisin APPN and mixed subarea SNA, these data must be encapsulated within an LU6.2 session and
passed to the SSCP and PU, respectively. When thisisrealized, the need for a T2.0 node to be directly attached,
or data-link-switched, to the SSCP, thus providing SSCP access is removed. Hence, integration of PU2.0 and
PU2.1 APPN and subarea dependent LU can be achieved.

Comoosis ""-.,__ MNP

g —_——

S — = —— — — ——— — ——

Figure 6-25
A mixed APPN-SNA network.

Figure 6-25 depicts an APPN network and a subarea network with VTAM functioning as a composite network
node.

Asaresult of the implementation shown in Fig. 6-25, session establishment can occur between any LU in the
subarea network and any LU in the APPN network. In this case APPN VTAM must be implemented and
converts subareato APPN protocols and vice-versa.

6.11.4 APPN Integration into SNA
Example 1

APPN can be implemented numerous ways. Figure 6-26 shows one illustration of APPN implementation.

In Fig. 6-26, note that two LEN end nodes are communicating via an APPC between Dallas and Houston. This
peer-oriented network design shows two hosts in different locations sharing information between two different
geographic locations.

Example 2
APPN can be implemented as shown in Fig. 6-27.

InFig. 6-27, aVTAM and NCP host is acting as an intermediate node. This node is functioning as another LEN
end node. This means that the CP information session flow is occurring between end nodes, therefore making
the routing function more efficient.

LEH ENC MODE i

Figure 6-26
APPN-SNAintegration example 1.

6.12 APPN and SNA Summary

This chapter has presented APPN architecture and aspects of APPN-SNA integration. In many respects APPN
and SNA are becoming one. The lines are increasingly blurred between pure SNA and pure APPN. The mixture
of these once separate ways of networking is making solutions more robust in the marketplace for businesses
worldwide.

APPN has its own architecture. It is peer-oriented, whereas SNA is hierarchical in nature. VTAM version 4
release 1 isatool for integrating APPN and subarea SNA. This integration feature was enhanced in VTAM
version 4 release 2.

T2.1 architecture consists of many components. T2.1 node components can be viewed two ways: (1) the
components that make up the node itself and (2) those components that constitute the CP.

APPN and subarea SNA are different. Neither is better; they are simply different. Much more information is
available about APPN. Y our IBM representative can tell you how you can obtain more information on this
topic.

[[[[[[[[[[

Figure 6-27
APPN-SNA integration example 2.

7
Evolution and Characteristicsof TCP/IP

The Transmission Control Protocol/Internet Protocol (TCP/IP) is an upper-layer network protocol. It isin
widespread use around the world today. This chapter presents the core components and issues related to TCP/IP,
beginning with an historical perspective.

7.1 Historical Perspective

A good place to begin isin the late 1960s. An entity in the U.S. government, the Advanced Research Projects
Agency (ARPA), was exploring technologies of all sorts. One of those technologies led to aneed (desire) to
create a network based on packet switching technology to help them experiment with what they built. It was also
seen as a means of using the then current telephone lines to connect scientists and personnel in physically
different locations to work together in this network.

By late 1969 the necessary components had come together to create the ARPAnNet. In short order afew
individuals had put together a network that was capable of exchanging data. Time passed, and additions and
refinements were made to the ARPAet.

7.1.1 The1970s

In 1971 the Defense Advanced Research Projects Agency (DARPA) succeeded ARPA. As aresult, the
ARPAet came under the control of DARPA. DARPA’s strength was concentration on satellite, radio, and
packet switching technology.

During this same time period ARPAnet was using a Network Control Program (NCP). Since the NCP was so
closely tied to the characteristics of ARPAnNet, it had limitations for coping with the areas of research,
capabilities, and other requirements. These protocols ARPAnNet utilized (viz., the NCP) were characteristically
slow and had periods where the network was not stable. Since ARPAnet was now officially under DARPA’s
umbrella and the realization that a new approach to ARPANet was needed, a different direction was taken.

Around 1974 DARPA sponsored development for a new set of protocols to replace the onesin use at that time.
This endeavor led to the development of protocols that were the basis for TCP/IP. The first TCP/IP began to
appear in the 1974-1975 timeframe. While these technical matters were in full force, another phenomenon was
occurring.

In 1975 the U.S. Department of Defense (DoD) put the ARPAnNet under the control of the Defense
Communication Agency (DCA); the DCA was responsible for operational aspects of the network. It was then
that the ARPAnet became the foundation for the Defense Data Network (DDN).

Time passed and TCP/IP enhancements continued. Many networks emerged working with and connecting to
ARPAet with TCP/IP protocols. In 1978 TCP/IP was sufficiently stable for a public demonstration from a
mobile location connecting to a remote location via a satellite. It was a success.

7.1.2 The 1980s

From 1978 until 1982 TCP/IP gained momentum and was continually refined. In 1982 multiple strides were
made. First, the DoD issued a policy statement adopting the TCP/IP protocol and rendering it the overseeing
entity for uniting distributed networks. The next year, 1983, the DoD formally adopted TCP/IP as the standard
for the protocol to use when connecting to the ARPANet.

Early 1983, when the DoD formally discontinued support for the Network Control Program (NCP) and adopted
TCP/IP protocol, marks the birth of the Internet. The term Internet was an outgrowth of the term
internetworking, a technical term referring to the interconnection of networks. Nevertheless, this term has
maintained its association reflecting the multiple networks around the world today.

7.1.3 The 1990s

The Internet today consists of numerous interconnected networks. The National Research and Education
Network (NREN) is adominant part of the Internet today. Other Internet networks include the National Science
Foundation (NSF) network, NASA, Department of Education, and many others including educational
ingtitutions.

Commercial, educational, and other types of organizations are connected to the Internet. An industry of service
providers for the Internet seems to be emerging.

7.2 Forces Contributing to TCP/IP Growth
7.2.1 Technology

The history reviewed sheds some light on the technology surrounding TCP/IP and the Internet, but does not
explain certain aspects of the Internet that may aid in understanding the technological impact it had on TCP/IP.

The Internet (uppercase) is based on TCP/IP as the U.S. government made it the standard. The Internet is
worldwide, and all sorts of entities are connected to it. Knowing this, we can deduce that those entities
connected to it are using TCP/IP. This alone counts for atremendous amount of TCP/IP in the marketplace. And
at the current rate, it isincreasing rapidly.

The 1980s can be characterized as a decade of rapid technological growth. Many companies capitalized on the
U.S. government endorsement of TCP/IP as the standard for the Internet and began producing products to meet
this need.

Thisinflux of TCP/IP products nursed the need for additional products. For example, in the 1980s two
technol ogies dominated: PCs and LANSs. With the proliferation of PCs and LANSs an entirely new industry
began emerging. These technological forces seemed to propel TCP/IP forward because TCP/IP and PCs made
for agood match when implementing LANs. TCP/IP implemented on an individual basisisreferred to asan
internet (lowercasei).

7.2.2 Market forces

A factor that contributed to the growth of TCP/IP in the market was corporate downsizing. This may seem
strange, but during the 1980s | witnessed many cases where TCP/IP-based networks grew while others shrank.
Granted this was not the only reason for TCP/IP s healthy market share, but it did contribute.

For example, | observed a similar scenario. A corporation (which | will not identify by name) had its corporate
officesin the northeastern United States. This corporation had many (over 50) satellite offices around the nation.
It needed these satellite offices to ensure independence for daily operations and at the same time be connected to
the corporate data center. They achieved this by implementing TCP/IP-based LANs in their satellite offices, then
connecting them to the data center. This example is one of many | have observed.

7.2.3 Availability

TCP/IP could be purchased off the shelf of many computer stores by the end of the 1980s. This degree of
availability saysalot for a product which at the beginning of the decade was not readily available to end users.

Another factor played arole in the availability of TCP/IP. The DoD not only encouraged use of TCF/IP; they
funded a company called Bolt, Deranek, and Newman to port TCP/IP to UNIX. In addition, the DoD
encouraged the University of California, Berkeley to include TCP/IP in their BSD LICB UNIX operating
system. This meant that by acquiring Berkeley UNIX, users got TCP/IP free. Soon after this TCP/IP was added
to AT& T’ s System V UNIX operating system. | suppose this conveys how available it was becoming.

7.2.4 Individual knowledge

By the late 1970s and surely into the 1980s TCP/IP was installed in most colleges and many educational
institutions. Since by the mid-1980s it was shipped free with Berkeley UNIX and was available there, it became
dominant in learning institutions. The obvious occurred—individual s everywhere began graduating from
educational institutions and if their background included computer science, odds were they had been exposed to
TCPIIP.

Granted this premise, consider this. These individuals entered the workplace and began penetrating the technical
and manageria echelons of corporations. When it came to contributing to a decision about a network protocol,
which would be the likely choice in many cases?

In the 1980s the marketplace paid a premium for those who understood TCP/IP. By the mid-1990s the market
already had considerable numbers of individuals with varying degrees of TCP/IP knowledge.

All these factors weave together to make TCP/IP as dominant asit istoday. Surely other factors have
contributed as well and TCP/IP has become a prevalent upper-layer protocol world wide.

7.3 Layer Analysis

In the early days of the Internet the term gateway became commonplace. It generally meant a connection from a
specific location into the Internet. This was adequate at the time; however, confusion now abounds with the use
of thisterm.

According to the American Heritage Dictionary, the term gateway is defined as: “1. An opening, asin awall or
afence, that may be closed by gate. 2. A means of access.” | believe the original meaning of thisterm was“a
means of access.” Thisisfine, and you are probably wondering why it is even mentioned. Well, today an entire
industry called internetworking and integration has appeared, and with it specialized devices exist. One such
device isagateway.

A consensus among integrators and those who integrate heterogeneous networks agrees on the definition of the
term gateway. It is a device that at minimum converts upper-layer protocols from one type to another. It can,
however, convert all seven layers of protocols.

The purpose of explaining this here is ssmple. Throughout the presentation on TCP/IP the term gateway may
appear. The term has such afoothold in the TCP/IP community that it is still used. Ironically, when the term
gateway is used in many instances with TCP/IP and the Internet, technically the term should be router.

7.4 Overview and Correlation tothe OSI M ode€

TCP/IP is an upper-layer protocol. TCP/IP isimplemented in software; however, some specific implementations
have abbreviated TCP/IP protocol stacksimplemented in firmware. TCP/IP can, however, operate on different
hardware and software platforms, and it supports more than one data-link layer protocol.

The OSI model is arepresentation of the layers that should exist in a network. Figure 7-1 compares TCP/IP to
the Open Systems Interconnection (OSI) model.

Note that TCP/IP has three layers; network, transport, and the upper three layers combined together functioning
aggregately as the application layer. TCP/IP isflexible at the lower two layers. It can be implemented in a
variety of ways.

TCP/IP can operate with a number of data-link layer protocols. Some are listed in Fig. 7-1. The remainder of
this chapter highlights popular components at each layer.

7.5 Network Layer Components and Functions

OSl model layer 3 isthe network layer. In TCP/IP it is the lowest layer in the TCP/IP protocol suite. TCP/IP
network layer components include the following:

Internet Protocol (1P) IP has an addressing scheme used to identify the host in which it resides and isinvolved
in routing functions.

J‘::ﬁ TERIP Pootoend Rack
M |e| K 5 N
E) n
r': mIF '__ ikF Pransin W I_ A N E
x| BT Hame . 3 [
Gl ; BofF
& z e |E[*lp| w Beam i I:- .
T|m|H T . B aoa
o
[3] ASMLI
4 oo 1]
" AHE i AARS Gty
FRE A \CTaF Fromonis
P ot SOLT
ET-ERHET MAST CTHEMMET Todiern Fing
) Ll o £as
Figure 7-1
TCP/IP and OSl.

Internet Control Message Protocol (ICMP) ICMP isarequired component in each TCP/IP implementation.
It is responsible for sending messages through the network viathe IP header.

Address Resolution Protocol (ARP) ARP dynamically trandates IP addresses into physical (hardware
interface card) addresses.

Rever se Address Resolution Protocol (RARP) RARP requestsits host IP address by broadcasting its
hardware address. Typically an RARP server is designated and responds.

Routing Information Protocol (RIP) RIP isarouting protocol used at the network layer. If implemented, it
performs routing of packets in the host in which it resides.

Open Shortest Path First (OSPF) Thisisarouting protocol implemented at the network layer as RIP, but it
utilizes knowledge of the internet topology to route messages by the quickest route.

7.6 Transport Layer Components and Functions

Layer 4 of both the OSI model and TCP/IP is the transport layer. Transport layer components include the
Transmission Control Protocol (TCP), which is considered reliable and performs retransmissions if necessary;
and the User Datagram Protocol (UDP), which is considered unreliable and does not perform retransmissions,
this task remains for the application using its services.

7.7 Popular Application Layer Offerings

Above the transport layer in TCP/IP there are a number of popular applications, including
X A windowing system that can be implemented in a multivendor environment.
TELNET An application that provides remote logon services.

File Transfer Protocol (FTP) An application that provides file transfer capabilities among heterogeneous
systems.

Simple Mail Transfer Protocol (SMTP) An application that provides electronic-mail (email) services for
TCP/IP-based users.

Domain Name Service (DNS) An application designed to resolve destination addresses in a TCP/IP network.
This application is an automated method of providing network addresses without the need to update host tables
manually.

Trivial File Transfer Protocol (TFTP) This UDP application is best used in initialization of network devices
where software must be downloaded to adevice. Since TFTP isasimplefile transfer protocol, it meets this need
well.

Simple Networ k M anagement Protocol (SNMP) Thisis how most TCP/IP networks are managed. SNMP is
based on an agent-and-manager arrangement. The agent collects information about a host, and the manager
maintai ns status information about hosts participating with agents.

Network File Server (NFS) An application that causes remote directories to appear to be part of the directory
system to the host which the user is using.

Remote Procedure Call (RPC) An application protocol that enables aroutine to be called and executed on a
server.

Custom Applications Applications that can be written using UDP as a transport layer protocol. By doing so,
peer communications can be achieved between applications.

7.8 TCP/IP Network Requirements

Before exploring details of TCP/IP, basic requirements should be known for a TCP/IP network to function. For
example, TCP/IP net works require all participating hosts to have TCP/IP operating on them, and they must be
connected directly or indirectly to acommon link. This may require some gateway functionality for some
systems, but Fig. 7-2 is an example of atypical TCP/IP network with different vendor computers.

Apeia IEM Ll PL

TCRIP TCAP

=

¢ \\‘;}\ \ ""_"?Z’ — 2

C R T - SEC
Egn P & b ——

— -
- -
- TCR P Mok P
P

,ﬁ“xj'f qr/ix_h_

HP

! 1
MEL TERP TCRIP

P BY

Figure 7-2
TCP/IP networking requirements.

Figure 7-2 includes vendors whose operating systems are different. They also have different hardware platforms.
However, if the link to the TCP/IP network is established, the vendor computers shown in Fig. 7-2 can
communicate effectively.

With this overview in mind, in the next section we will summarize detailed information about the TCP/IP
protocols and applications presented in this chapter.

7.9 Summary

TCP/IP has evolved over the past few decades. Its origins were in devel opment, education, and research entities.
Many technologies and market forces converged in the 1980s and caused TCP/IP to gain market momentum.

TCP/IPistechnically afour-layer protocol. It can be compared and contrasted to the OSI model. TCP/IP can
operate with numerous lower-layer protocols, as we saw in this chapter.

Many of the applications that operate on top of TCP and UDP have become popular today. Their functionalities
have become common in many software packages that incorporate them.

One of the many reasons for the popularity of TCP/IP is the unifying factor this protocol offers. It is possible to
use TCP/IP with every magjor operating system in the marketplace today.

8
Common TCP and UDP Applications

This chapter presents popular applications that use TCP and UDP. These are the two transport-layer protocols
used by TCP/IP.

8.1 X Window System

X, asit isknown in the marketplace, is a distributed windowing system. At MIT (Massachusetts Institute of
Technology) in the early 1980s devel opers were |ooking for away to develop applications in a distributed
computing environment, which was considered cutting-edge technology at the time. During their work these
developersrealized that distributed windowing system would meet their needs very well.

After meeting and sharing information with individuals at Stanford University who had performed similar work,
these MIT devel opers managed to give a considerable starting point to begin this endeavor. However, the group
at Stanford working with this technology had dubbed it W, for windowing. Theindividuals at MIT renamed it X
simply because this was the next letter in the a phabet. The name stuck.

By the late 1980s X commanded a considerable market share specifically in a UNIX-based environment; X
provides a dominant user interface in the UNIX environment, and it has spread into MS-DOS (Microsoft Disk
Operating System) and VMS environments as well. One reason for its growth was nondependence on hardware
and software.

X isasynchronous and is based on a client/server model. It can manipulate two-dimensional graphicson a
bitmapped display. Before examining some of the operational aspects of X, consider the X layer and its
relationship to the TCP/IP protocol suite shown in Fig. 8-1.

£

{1

=2

ASELAlCRS

Inianaca

Concephual View o X Lavers
Tkt I Fespoct e TGRIF

Lit:rary

- g B A ogm

Pndoon

manwc Y
Liyars
T E]
Elwlel| % K | : A
Demain n
* : ; T u Hama u Fim) e [
& H T A L I A I
o po Bl .
T m
RERLT
d ToF ng
1= iy
Prooy ASP ARR CMP HARE | Pronaooks
o = rilfa's.
HERNF o = ANl
Tokor Feng i
1 Ard D0i b
FTIAME RELAY FAST FTHERKFT
Figure 8-1

X and the TCP/IP protocol suite.

Although Fig. 8-1 shows the TCP/IP protocol suite, to help the reader understand the relationship between X
and TCP/IP, the focus hereis on X. X isnot atransport-layer protocol; however, it uses TCP for atransport
protocol.

From a TCP/IP perspective X comprises layers 5 to 7. However, X itself hasfive layers:

Protocol. Thisisthelowest layer in X. It hooksinto TCP and contains actual X protocol components.

Library. The X library consists of a collection of language routines based on the X protocol. X library routines
perform functions such as responding to pressing the left mouse button.

Toolkit. The X toolkit isahigher level of programming tools. Examples of support provided from this layer are
the functions they provide in programming related to scrollbar and menu functions.

Interface. Theinterfaceiswhat auser sees. Examples of interface software are Sun, Microsystem’s OpenL ook,
Hewlett-Packard (HP)'s OpenView, Open Software Foundation (OSF)’s Motif, and NeXT Software’' sinterface
to name only afew.

Applications. X applications can be defined as client applications that use X and conform to X programming
standards that interact with the X server.

8.1.1 The X Theory of Operation

X clients and servers do not function in the same way as other clients and serversin the TCP/IP environment. In
“normal” operation, aclient initiates something and servers serve or answer the client’ srequest. In X the
concept is skewed.

An X display manager existsin the X environment. Its basic function isto start and maintain X server operation.
The X display manager (Xdm) itself can be started either manually or automatically and is a client application.

An X display server (Xds) interfaces between hardware components (e.g., akeyboard or amouse) and X client
applications. The Xds operates by catching data entered and directs the data to the appropriate X client
application.

The Xdm-Xds relationship can be illustrated by the following scenario. Consider two active windows on a
physical display. Each window functions as a client application. From this perspective, the idea of directing data
to the appropriate X client application assumes a different meaning. This architectural arrangement is required
to maintain order because multiple windows may be on the display (say, four or five).

In summary, the X display manager and the X server control the operations on the display, which iswhat a user
sees. Most entitiesin an X environment function as X client applications. An example of thisisthe Xclock, an
Xterm which is an emulator, or even a TN3270 emulation software package used to access a 3270 data stream in
an SNA environment.

8.2 TELNET

TELNET, aTCP application consisting of a client and a server, provides the ability to perform remote logons to
adjacent hosts. The majority of TCP/IP software implementations have TELNET, simply because it is part of the
protocol suite. As stated above, clientsinitiate something (in this case aremote logon) and servers serve client
requests. Figure 8-2 shows the TCP/IP protocol suite with TELNET highlighted.

Mihwork

TE.MLT

I s T

Layard Pl
K 1 & o
7 =fafC] 1| wiue H W
“ LIP|R =T TR M F [i] M g L
P ml|E T = Harg " FF b
=lF|E |7 p| M Eyviury p G A M
1 |1|R 1
3 o P m
- AONA
|
F (] uze
Tl ,
. aRE RARP Tarbearay
Cl Sray MAP WME i
z CTHETHET Frwmes Relay v C
| . FART ET=EANE]
1 — s Wi
Figure 8-2

The TELNET client/server arrangement shown in Fig. 8-2 represents practically all TCP/IP host
implementations in which the protocol suite has been devel oped according to the request-for-change (RFC)
order. Exceptions do apply, however; for example, TCP/IP on a DOS-based PC cannot implement a TELNET
server because of the architectural constraints of the PC. In short, the PC cannot truly multitest, and other
nuances apply as well. Furthermore, on some network devices this implementation cannot work. However, the
point is that on most host implementations such as UNIX, VMS, MVS, VM, V SE, and some other operating

TELNET client and server.

systemsthe TELNET client and server will function.

Anple lnksys finl P
TCRIP _ ___
. TLEA= TLFAE
1 - \ / &
S N
an [P .“_ y—
v =]
| p:?:q.—L'—— _q__lf?.lgfl‘h\m p
d S .
y ‘?{ - Ty N
/ \
TCPIP TORARS,

——

Figure 8-3

TELNET client and server interaction.

Figure 8-3 illustrates TELNET client/server interaction on different hosts.

Figure 8-3 shows a RISC/6000 user invoking a TELNET client, native to that machine because it isin the
TCP/IP protocol suite. The RISC/6000 user wants to log on to the Sun host. The Sun host has TELNET in its
TCP/IP protocol suite; thusthe TELNET server answers the client’ s request and alogical connection is
established between the RISC/6000 user and the Sun host; the RISC/6000 user perceives this as aphysical
connection.

This TELNET function works with the majority of major vendors in the marketplace today. The key to
understanding the client/server con cept isto remember that clientsinitiate and servers serve client requests.

8.2.1 TN3270 client

A TELNET protocol is presented in this section for readers who wish to design a program based on this
protocol. The most common program written using a TELNET (TN) protocol is an emulator application
providing data translation services between ASCII and EBCDIC and vice versa. This program (application) is
the TN3270 client.

TELNET (within a native TCP/IP protocol stack) has ASCII-based data, which are not compatible with
EBCDIC-based SNA. In SNA, the EBCDIC goes a step further and defines data streams. The predominant data
stream is the 3270 data stream, which is used with terminals interactively.

Because of the ASCII-EBCDIC dataincompatibility, it is necessary to convert ASCII into EBCDIC,
specifically, into a 3270 or a 5250 data stream. The question is where this process will take place. With the data
stream dilemma between TCP/IP networks and SNA networks, this fundamental issue must be resolved.

So, how do users on a TCP/IP-based network have ASCII data converted into the EBCDIC? There are two
possible solutions:

1. Araw TELNET client can be used to establish alogical connection between a UNIX or other non-EBCDIC-
host and a EBCDIC-based host. If thisis the case, then ASCII to EBCDIC translation will occur on the EBCDIC
host (except when a gateway is used between the two and translation services are provided).

2. A TN3270 client application can be used like araw TELNET to gain entry into the SNA environment, but a
TN3270 client application performs data translation. This meansthat it sends an EBCDIC (3270 or 5250) data
stream to the destination host. The point hereis that the TN3270 client application translates ASCII data into an
EBCDIC, which is usually a 3270 or 5250 data stream. In the scenario shown in Fig. 8-4 the Sun user is
invoking a TN3270 client and making a connection to the MV S host utilizing the offloaded TCP/IP-activated
TELNET server. Note that this figure shows multiple hosts in the network. Because of the TCP/IP configuration
on the MV S host many different scenarios can exist, even from remote users.

In Fig. 8-4 the TN3270 client is shown establishing alogical connection with the TELNET server native to the
TCP/IP protocol on the MV'S machine. The data stream leaving the ASCII-based host is EBCDIC. Thisworks
because the data format (either ASCII or EBCDIC) isformatted at layer 6 within a network. By the time the data
gets down to the interface card connecting it to the network, the data are represented by voltages or light pulses,
whichever the network is based on.

& {2000 WO LBR DY

Modem Sl
HI‘ s Line
12 L e

LT Bdh-F441

!

T—=~=04

HP

L ERES F

|
L

THET___ L
Chard P

[T Y
K

o ; - —
i = .
M 3 S
' I — o

oM
o
h‘_j

Figure 8-4
TCP/1P-based network.

The net effect of having TN3270 clientsis that they do pay for themselves over a period of time. In some
instances TN3270 applications are not needed and provide little, if any, benefit to the end user. Both araw
TELNET and a TN3270 client provide the user with remote logon capability, and both are client applications,
the difference is merely where data trandation is performed.

8.2.2 TELNET Client Usage

As mentioned previously, TELNET consists of aclient and aserver. A client always initiates alogical
connection, and a server always answers the client’ s request. To use TELNET, a command must be entered to
invoke the TELNET client. The command to invoke the TELNET client from the TCP/IP suiteis TELNET.
Assuming that TCP/IP has been installed properly and normal setup occurred, entering the TELNET command
invokes the TELNET client from the TCP/IP protocol stack.

If the TELNET command is entered without a target host name, alias, or Internet address, the following prompt
appears: t el net >. Thiscommand is generated from the TELNET client on that host. When a previous prompt
appears, valid TELNET client commands can be entered against it.

8.2.3 Valid TELNET Client Commands

Valid TELNET client commands can be entered at the TELNET client prompt. If a user does not know valid
commands to execute against a TELNET client prompt, a question mark (?) can be entered and alist of valid
TELNET commands will be displayed. Following is an abbreviated list of valid TELNET client commands,
with brief explanations:

? cl ose- This closes a current connection if one is established.

? display- This command will display the operating parameters in use
for TELNET. Because these paraneters can be changed, they
are site-dependent.

? node- Thi s command i ndi cates whether entry can be nade |ine by
line or in one-character-at-a-tine node

? open- This conmand is required prior to the target host name in
order for session establishment to occur.

? quit- This conmand is entered to exit the tel net> pronpt, thus
exiting TELNET.

? send- This command nay be entered to accombdat e sonme of the
speci al characters that nay need to be transmtted.

? set- This command is used to set certain paraneters to be
enforced during a TELNET session.

? status- Thi s conmand provides i nformation regardi ng the connection
and any operating paraneters in force for the TELNET
sessi on.

? toggl e- This conmand is used to toggle (change) operating
paraneters.

? z- This conmand will suspend the tel net> pronpt.

? ?- This conmand prints valid TELNET comands that can be

entered against the tel net> pronpt.

8.24 TELNET Use

Using TELNET is straightforward once the newness of the technology wears off. Learning TELNET is easier
when one understands basic TELNET operation, TELNET commands, and how to log on to hosts appropriately.

Since TELNET is part of the TCP/IP protocol suite, it does work with other components in the suite. For
example, if one attempts to establish a remote logon with atarget host, and after a period of time a response
such as “host unreachable” is displayed on the terminal, anon-TELNET-related problem may exist. In this
example, the “host unreachable” message comes from the Internet Control Message Protocol (ICMP)
component, which is an integral part of the IP layer, providing messages responding to different conditions.
Here, adestination host is not reachable by the TELNET client. The obvious question is Why? There are two
possible reasons for this. The host may be (1) unreachable because of a break in the physical cable connecting
the hosts together or (2) located on another segment of the network and inaccessible at the moment. There are
other possibilities as well.

When messages such as these appear, they are usually generated from the ICMP portion of the TCP/IP suite. It
would be helpful to familiarize yourself with common messages and understand their meaning. This can prove
to be a valuable troubleshooting tool.

8.3 FileTransfer Protocol

TheFile Transfer Protocol (FTP) isafile transfer application that uses TCP for a transport protocol. FTP has a
client and a server as does TELNET; operationally they are similar. The differenceisthat TELNET enables
remote logon whereas FTP permitsfile transfers.

FTP does not actually transfer afile from one host to another—it copiesit. Hence, a copy of the original file has
been put on a different machine. Figure 8-5 depicts this scenario.

Figure 8-5 shows a user on a Sun host performing two steps:. (1) the Sun user executes FTP HP and alogon is
established and (2) the Sun user issues the FTP command GET and designates the filename as FILEABC. The
line with the arrowheads indicates that the file is copied from the HP disk to the Sun disk.

Anpie Inisys fasil Bt
TCR P
"\.\ TCPaF TE=a= =
__{_ '\I " C
ST 7|
< N
T “PP hirhiwvors ('J P
N J
T _._._I-"
fle n!\ \
Ml P wn Te=1E
) F":_/ 1BM
L
e
1-FTP HP o
- GET File ABC e
REC
Figure 8-5

File transfer protocol.

Thisillustration shows multiple hosts. The same operation can be performed by any of these hosts. The Digital
Equipment Corp. (DEC) host can perform any of the TCP/IP functions just as the SUN or HP.

8.4 HyperText Transfer Protocol

The Hyper Text Transfer Protocol (HTTP) is an application-level protocol for distributed, collaborative, and
hypermedia information systems. It is a generic, stateless, object-oriented protocol which can be used for many
tasks, such as name servers and distributed object management systems, through extension of its request
methods. A feature of HTTP is the typing and negotiation of data representation, allowing systems to be built
independently of the data being transferred. HTTP has been in use by the World Wide Web (WWW) global
information initiative since 1990, and it is continuing to evolve.

8.4.1 HTTP Perspective and Purpose

Thefirst version of HTTP, the HTTP/0.9, was a simple protocol for raw data transfer across the Internet.
HTTP/1.0, as defined by RFC 1945, improved the protocol by allowing messagesto be in the format of
Multipurpose Internet Mail Extension (MIME)-like messages, containing metainformation about the data
transferred and modifiers on the request/response semantics. However, HTTP/1.0 does not sufficiently take into
consideration the effects of hierarchical proxies, caching, the need for persistent connections, and virtual hosts.
In addition, the proliferation of incompletely implemented applications calling themselves HTTP/1.0 has
necessitated a protocol version change to enable two communicating applications to determine each other’ strue
capabilities.

Practical information systems require more functionality than simple retrieval, including search, front-end
update, and annotation. HTTP allows an open-ended set of methods that indicate the purpose of arequest. It
builds on the discipline of reference provided by the Uniform Resource Identifier (URI), as alocation (URL) or
aname (URN), for indicating the resource to which amethod isto be applied. Messages are passed in aformat
similar to that used by Internet mail as defined by MIME.

HTTPisalso used as a generic protocol for communication between user agents and proxies/gateways to other
Internet systems, including those supported by the SMTP, NNTP, FTP, Gopher, and Wide Area Information
Server (WAIS) protocols. In thisway, HTTP alows basic hypermedia access to resources available from diverse
applications.

8.4.2 HTTP Terminology

A number of terms, specific primarily to HTTP, need to be understood to better comprehend the HTTP protocol
and its operation. Consider the terms presented here.

age The age of aresponse isthe time since it was sent by, or successfully validated with, the origin server.

cache A program’slocal store of response messages and the subsystem that controls message storage, retrieval,
and deletion. A cache stores cacheable responses in order to reduce the response time and network bandwidth
consumption on future, equivalent requests. Any client or server may include a cache, but a cache cannot be
used by a server that is acting as a tunnel.

cacheable A responseis cacheableif acacheisalowed to store a copy of the response message for use in
answering subsequent requests. Even if aresource is cacheable, there may be additional constraints on whether a
cache can use the cached copy for a particular request.

client A program that establishes connections for the purpose of sending requests.

connection A transport-layer virtual circuit established between two programs for the purpose of
communication.

content negotiation The mechanism for selecting the appropriate representation when servicing arequest. The
representation of entitiesin any response can be negotiated (including error responses).

entity The information transferred as the payload of arequest or response. An entity consists of
metainformation in the form of entity-header fields and content in the form of an entity body.

explicit expiration time Thetime at which the origin server intends that an entity should no longer be returned
by a cache without further validation.

firsthand A responseisfirsthand if it comes directly and without unnecessary delay from the origin server,
perhaps via one or more proxies. A response is also firsthand if its validity has just been checked directly with
the origin server.

fresh A responseisfreshif its age has not yet exceeded its freshness lifetime.
freshnesslifetime The length of time between the generation of aresponse and its expiration time.

gateway A server which acts as an intermediary for some other server. Unlike a proxy, a gateway receives
requests asif it were the origin server for the requested resource; the requesting client may not be awarethat it is
communicating with a gateway.

heuristic expiration time An expiration time assigned by a cache when no explicit expiration time is available.

message The basic unit of HTTP communication, consisting of a structured sequence of octets matching the
syntax and transmitted via the connection.

origin server The server on which a given resource resides or isto be created.

proxy Anintermediary program which acts as both a server and a client to make requests on behalf of other
clients. Requests are serviced internally or by passing them on, with possible trandlation, to other servers. A
proxy must implement both the client and server requirements of this specification.

representation An entity included with aresponse that is subject to content negotiation. Multiple
representations may be associated with a particular response status.

request An HTTP request message.

resource A network data object or service that can be identified by a URI. Resources may be available in
multiple representations (e.g., multiple languages, dataformats, size, resolutions) or vary in other ways.

response An HTTP response message.

semantically transparent A cache behavesin a“semantically transparent” manner, with respect to a particular
response, when its use affects neither the requesting client nor the origin server, except to improve performance.
When a cache is semantically transparent, the client receives exactly the same response (except for hop-by-hop
headers) that it would have received had its request been handled directly by the origin server.

server An application program that accepts connections in order to service requests by sending back responses.
Any given program may be capable of being both a client and a server; our use of these terms refers only to the
role being performed by the program for a particular connection, rather than to the program’ s capabilitiesin
general. Likewise, any server may act as an origin server, proxy, gateway, or tunnel, switching behavior
according to the nature of each request.

stale A responseisstaleif its age has passed its freshness lifetime.

tunnel Anintermediary program which is acting as a blind relay between two connections. Once active, a
tunnel is not considered a party to the HT TP communication, although the tunnel may have been initiated by an
HTTP request. The tunnel ceases to exist when both ends of the relayed connections are closed.

user agent The client which initiates arequest. These are often browsers, editors, spiders (Web-traversing
robots), or other end-user tools.

validator A protocol element (e.g., an entity tag or aLast - Modi f i ed time) that is used to find out whether a
cache entry is an equivalent copy of an entity.

variant A resource may have one, or more than one, representation(s) associated with it at any given instant.
Each of these representations istermed avariant. Use of the term variant does not necessarily imply that the
resource is subject to content negotiation.

8.4.3 HTTP Overall Operation

HTTP protocol is arequest/response protocol. A client sends arequest to the server in the form of arequest
method, URI, and protocol version, followed by a MIME-like message containing request modifiers, client
information, and possible body content over a connection with a server. The server responds with a status line,
including the message’ s protocol version and a success or error code, followed by a MIME-like message
containing server information, entity metainformation, and possible entity-body content.

Most HTTP communication isinitiated by a user agent and consists of a request to be applied to aresource on
some origin server. In the simplest case, this may be accomplished via a single connection (v) between the user
agent (UA) and the origin server (O).

request chain --------------- >
UA -----mmeeeee- Vemmmmmaene O
Commmmmmmmemeee response chain

A more complicated situation occurs when one or more intermediaries are present in the request/response chain.
There are three common forms of intermediary: proxy, gateway, and tunnel. A proxy is aforwarding agent,
receiving requests for a URI in its absolute form, rewriting all or part of the message, and forwarding the
reformatted request toward the server identified by the URI. A gateway is areceiving agent, acting as alayer
above some other server(s) and, if necessary, transating the requests to the underlying server’s protocol. A
tunnel acts as arelay point between two connections without changing the messages; tunnelsare usedin a
situation when the communication must pass through an intermediary (such as afirewall) even when the
intermediary cannot understand the contents of the messages.

request chain ---------------- >
UA--v--A--V-B--v--C--v--0
Commmmmmmmemeeeee response chain

This program fragment shows three intermediaries (A, B, and C) between the user agent and the origin server. A
request or response message that travels the whole chain will pass through four separate connections. This
distinction is important because some HT TP communication options may apply only to the connection with the
nearest, nontunnel neighbor, only to the endpoints of the chain, or to all connections along the chain. Although
the diagram is linear, each participant may be engaged in multiple, simultaneous communications. For example,
B may be receiving requests from many clients other than A, and/or forwarding requests to servers other than C,
at the sametime that it is handling A’ s request.

Any party to the communication which is not acting as atunnel may employ an internal cache for handling
requests. The effect of a cache isthat the request/response chain is shortened if one of the participants along the
chain has a cached response applicable to that request. The following illustrates the resulting chain if B has a
cached copy of an earlier response from O (via C) for arequest which has not been cached by UA or A:

request chain ---------------- >
UA -V -—-A -V ---B--C---0
Commmmmmmmemeeees response chain

Not all responses are usefully cacheable, and some requests may contain modifiers which place special
requirements on cache behavior. In fact, awide variety of architectures and configurations of caches and proxies
are currently being experimented with or deployed across the World Wide Web; these systems include national
hierarchies of proxy caches to save transoceanic bandwidth, systems that broadcast or multicast cache entries,
organizations that distribute subsets of cached data via CD-ROM, and so on. HTTP systems are used in
corporate intranets over high-bandwidth links, and for access via personal digital assistants (PDAS) with low-
power radio links and intermittent connectivity. The goal of HTTP/1.1 isto support the wide diversity of
configurations already deployed while introducing protocol constructs that meet the needs of those who build
Web applications that require high reliability and, failing that, at |east reliable indications of failure.

HTTP communication usually takes place over TCP/IP connections. The default port is TCP 80, but other ports
can be used. This does not preclude HTTP from being implemented on top of any other protocol on the Internet,
or on other networks. HTTP only presumes a reliable transport; any protocol that provides such guarantees can
be used; the mapping of the HTTP/1.1 request and response structures onto the transport data units of the
protocol in question is outside the scope of this specification.

In HTTP/1.0, most implementations used a new connection for each request/response exchange. INnHTTP/1.1, a
connection may be used for one or more request/response exchanges, although connections may be closed for a
variety of reasons.

8.4.4 HTTP Notational Conventions and Generic Grammar
Augmented BNF

All the mechanisms specified in this document are described in both prose and an augmented Backus-Naur
Form (BNF) similar to that used by RFC 822. Implementers will need to be familiar with the notation in order to
understand this specification. The augmented BNF includes the following constructs.

nanme = definition The name of aruleis simply the nameitself (without any
enclosing “<” and “>") and is separated from its definition
by the equal “ =" character. Whitespace is only significant
in that indentation of continuation linesis used to indicate a
rule definition that spans more than one line. Certain basic
rules are in uppercase, such as SP, LWS, HT, CRLF,
DIGIT, and ALPHA. Angle brackets are used within
definitions whenever their presence will facilitate
discerning the use of rule names.

"literal™” Quotation marks surround literal text. Unless stated
otherwise, the text is case-insensitive.

rulel | rule2 Elements separated by a bar (“|") are aternatives; for
instance, yes | no will accept yes or no answers.
(rulel rule2) Elements enclosed in parentheses are treated as asingle

element. Thus, (elem (foo | bar) elem) allows the token
sequences elem foo elem and elem bar elem.

rul e The asterisk character () preceding an element indicates
repetition. The full form is <n>*<m>element indicating at
least <n> and at most <m> occurrences of element. Default
values are 0 and infinity so that * (element) allows any
number, including zero; 1*element requires at least one;
and 1* 2element allows one or two.

[rul e] Square brackets enclose optional elements; “[foo bar]” is
equivaent to * 1(foo bar).
N rule Specific repetition: <n>(element) is equivalent to

<n>*<n>(element); that is, exactly <n> occurrences of
(element). Thus 2DIGIT is atwo-digit number, and
3ALPHA isastring of three aphabetic characters.

#rule A construct “#” is defined, similar to the asterisk (*) for
defining lists of elements. The full formis
<n>#<m>element indicating at least <n> and at most <m>
elements, each separated by one or more commeas (,) and
optional linear whitespace (LWS). This makes the usual
form of lists very easy; arule such as (*LWS element *(
LWS,” *LWS element)) can be shown as 1#element.
Wherever this construct is used, null elements are allowed,
but do not contribute to the count of elements present. That
is, (element), , (element) is permitted, but counts as only
two elements. Therefore, where at least one element is
required, at least one nonnull element must be present.
Default values are 0 and infinity so that #element allows
any number, including zero; 1#element requires at |east
one; and 1#2element allows one or two.

; comrent A semicolon, set off some distance to the right of rule text,
starts a comment that continues to the end of line. Thisisa
simple way of including useful notes in parallel with the
specifications.

i nplied *LW5 The grammar described by this specification is word-based.
Except where noted otherwise, linear whitespace (LWS)
can be included between any two adjacent words (token or
guoted-string), and between adjacent tokens and delimiters
(tspecials), without changing the interpretation of afield. At
least one delimiter (tspecials) must exist between any two
tokens, since they would otherwise be interpreted as a
single token.

8.45 HTTP Version Protocol Parameters

HTTP uses a <magjor>.<minor> numbering scheme to indicate versions of the protocol. The protocol versioning
policy isintended to allow the sender to indicate the format of a message and its capacity for understanding
further HTTP communication, rather than the features obtained via that communication. No change is made to
the version number for the addition of message components which do not affect communication behavior or
which only add to extensible field values.

The <minor> number is incremented when the changes made to the protocol add features that do not change the
general message parsing algorithm, but which may add to the message semantics and imply additional
capabilities of the sender. The <mgjor> number isincremented when the format of a message within the
protocol is changed.

The version of an HTTP message is indicated by an HTTP- Ver si on field in the first line of the message:
HTTP-Version=“HTTP” “/* 1*DIGIT “.” 1*DIGIT

NOTE: The major and minor numbers must be treated as separ ate integers and each may be incremented
higher than a single digit. Thus, HTTP/2.4 isa lower version than HTTP/2.13, which, in turn, is lower than
HTTP/12.3. Leading zeros must be ignored by recipients and must not be sent.

Applications sending request or response messages, as defined by this specification, must includean HTTP
version of HTTP/1.1. Use of this version number indicates that the sending application is at |east conditionally
compliant with this specification. The HTTP version of an application is the highest HTTP version for which
the application is at least conditionally compliant.

Proxy and gateway applications must be careful when forwarding messages in protocol versions different from
that of the application. Since the protocol version indicates the protocol capability of the sender, a
proxy/gateway must never send a message with aversion indicator which is greater than its actual version; if a
higher version request is received, the proxy/gateway must either downgrade the request version, respond with
an error, or switch to tunnel behavior. Requests with a version lower than that of the proxy/gateway’ s version
may be upgraded before being forwarded; the proxy/gateway’ s response to that request must be in the same
major version as the request.

Converting between versions of HTTP may involve modification of the header fields that are required or
forbidden by the versions involved.

8.4.6 Uniform Resource | dentifiersin HTTP

URIs have been known by many names. WWW addresses, Universal Document Identifiers, Universal Resource
Identifiers, and finally the combination of Uniform Resource Locators (URL) and Names (URN). Asfar as
HTTPis concerned, Uniform Resource Identifiers are simply formatted strings which identify—by name,
location, or any other characteristic—a resource.

General Syntax

URIsin HTTP can be represented in absolute form or relative to some known base URI, depending on the
context of their use. The two forms are differentiated by the fact that absolute URIs always begin with a scheme
name followed by a colon.

URI = (absoluteURI |relativeURI) [“#" fragment |

absoluteURI = scheme“:” *(uchar | reserved)

relativeURI = net_path | abs_path | rel_path

net_path ="/I" net_loc[abs path]

abs path =“/" rel_path

rel_path =[path] [“;” params] [“?" query]

path = fsegment *(“/” segment)

fsegment = 1*pchar

segment = *pchar

params = param *(“;” param)

param =*(pchar |“/")

scheme = 1*(ALPHA |DIGIT | “+" |“-" |“.")

net_loc =*(pchar |[“;" |[“?")

query =*(uchar | reserved)

fragment =*(uchar | reserved)

pchar =uchar [“" |"@" |“&" |“ =" |“+"

uchar = unreserved | escape

unreserved = ALPHA | DIGIT | safe | extra | national

escape ="“%" HEX HEX

reserved =5 @ | & =T

extra =P Py

safe =AY

unsafe =CTL |SP|<">|“# |"%" |“<” |“>”

national = <any OCTET excluding ALPHA, DIGIT, reserved, extra, safe, and
unsafe>

For definitive information on URL syntax and semantics, see RFC 1738 and RFC 1808. The BNF presented
above includes national characters not allowed in valid URLs as specified by RFC 1738, since HTTP servers are
not restricted in the set of unreserved characters allowed to represent ther el _pat h part of addresses, and
HTTP proxies may receive requests for URIs not defined by RFC 1738.

The HTTP protocol does not place any apriori limit on the length of a URI. Servers must be able to handle the
URI of any resource they serve, and should be able to handle URIs of unbounded length if they provide GET-
based forms that could generate such URIs. A server should return 414 (Request - URI Too Long) statusif
aURI islonger than the server can handle.

NOTE: Servers should be cautious about depending on URI lengths above 255 bytes, because some older client
or proxy implementations may not properly support these lengths.

HTTP URL Syntax and Semantics.

The “http” scheme is used to locate network resources viathe HTTP protocol. This section defines the scheme-
specific syntax and semanticsfor HTTP URLSs.

http_URL =*“http:” “//” host [“:” port] [abs path]

host = <A legal Internet host domain name or IP address (in dotted-decimal form).
(Defined in RFC 1123)>
port =*DIGIT

If the port is empty or not given, port 80 is assumed. The semantics are that the identified resource islocated at
the server listening for TCP connections on that port of that host, and the Request - URI for the resourceis
abs_pat h. Theuseof IP addressesin URLSs should be avoided whenever possible (refer to RFC 1900). If the
abs_pat h isnot present in the URL, it must be given as a sash (/) when used asaRequest - URI for a
resource.

URI Comparison in HTTP

When comparing two URIs to decide whether they match, a client should use a case-sensitive octet-by-octet
comparison of the entire URIs, except when a port that is empty or not given is equivalent to the default port for
that URI; comparisons of host names or scheme names must be case-insensitive, or an empty abs_pat h is
equivalent to anabs_pat h of “/”.

Characters other than those in the “reserved” and “unsafe” sets are equivalent to their" " % HEX HEX"
encoding. For example, the following three URIs are equivalent:

http://abc.com:80/~smith/home.html
http://ABC.com/%7Esmith/home.html
http://ABC.com/%7esmith/home.html

8.4.7 Dateand Time Formatsin HTTP
Full Date
HTTP applications have historically allowed three different formats for the representation of date/timestamps:

Sun, 06 Nov 1994 08:49:37 GMT; RFC 1123
Sunday, 06-Nov-94 08:49:37 GMT; RFC 1036
Sun Nov 6 08:49:37 1994; ANSI C'sascti nme() format

Thefirst format is preferred as an Internet standard and represents a fixed-length subset of that defined by RFC
1123 (an update to RFC 822). The second format isin common use, but is based on the obsolete RFC 850 date
format and lacks afour-digit year. HTTP/1.1 clients and servers that parse the date value must accept all three
formats (for compatibility with HTTP/1.0), although they must generate the RFC 1123 format only for
representing HTTP-date values in header fields.

Recipients of date values are encouraged to be robust in accepting date values that may have been sent by non-
HTTP applications, as is sometimes the case when retrieving or posting messages via proxies/gateways to
SMTP or NNTP.

All HTTP date/timestamps must be represented in Greenwich Mean Time (GMT), without exception. Thisis
indicated in the first two formats by the inclusion of “GMT” as the three-letter abbreviation for time zone, and
must be assumed when reading theasct i nme format.

HTTP-date = rfc1123-date | rfc850-date | asctime-date

rfc1123-date = wkday “,” SP datel SPtime SP*GMT”

rfc850-date = weekday “,” SP date2 SPtime SP“GMT”

asctime-date = wkday SP date3 SP time SP 4DIGIT

datel = 2DIGIT SP month SP 4DIGIT; day month year (02 Jun 1982)
date2 = 2DIGIT “-" month “-” 2DIGIT; day-month-year (e.g., 02-Jun-2)
date3 = month SP (2DIGIT | (SP 1DIGIT)); month day (e.g., Jun 2)
time=2DIGIT “:” 2DIGIT “:” 2DIGIT; 00:00:00 - 23:59:59

wkday =“Mon” |“Tue” |“Wed” |“Thu” | “Fri” | “Sat” | “Sun”

weekday =

“Monday” [* Tuesday” |*Wednesday” | Thursday” | Friday” [* Saturday” [* Sunday”
month = “Jan” [*Feb”|*Mar” |* Apr” [*May”

[*Jun”[* Jul” |*Aug” |* Sep” |* Oct” |“Nov” [Dec”

delta-seconds = 1*DIGIT

HTTP requirements for the date/timestamp format apply only to their usage within the protocol stream. Clients
and servers are not required to use these formats for user presentation, request logging, or similar functions.

8.4.8 Character-Set Usein HTTP

HTTP uses the same definition of the term “character set” asthat described for MIME, presented here for the
sake of the reader:

The term “character set” is used in this document to refer to a method used with one or more tables to convert a sequence of
octets into a sequence of characters. Note that unconditional conversion in the other direction is not required, in that not all
characters may be available in a given character set and a character set may provide more than one sequence of octets to
represent a particular character. This definition isintended to allow various kinds of character encoding, from simple single-
table mappings such as US-ASCII to complex table switching methods such as those that use 1SO 2022’ s techniques. However,
the definition associated with aMIME character set name must fully specify the mapping to be performed from octetsto
characters. In particular, use of external profiling information to determine the exact mapping is not permitted.

NOTE: Use of the term“ character set” is more commonly referred to asa “ character encoding.” However,
since HTTP and MIME share the same registry, it isimportant that the terminology also be shared.

HTTP character sets are identified by case-insensitive tokens. The complete set of tokens is defined by the
IANA character-set registry.

charset = token

Although HTTP alows an arbitrary token to be used as a character-set value, any token that has a predefined
value within the IANA character-set registry must represent the character set defined by that registry.
Applications should limit their use of character sets to those defined by the IANA registry.

8.4.9 Content Codingsin HTTP

Content coding values indicate an encoding transformation that has been or can be applied to an entity. Content
codings are primarily used to allow a document to be compressed or otherwise usefully transformed without
losing the identity of its underlying media type and without loss of information. Frequently, the entity is stored
in coded form, transmitted directly, and decoded only by the recipient.

content-coding = token

All content-coding values are case-insensitive. HTTP/1.1 uses content-coding values in the accept-encoding and
content-encoding header fields. Although the value describes the content coding, what is more important is that
it indicates what decoding mechanism will be required to remove the encoding.

The Internet Assigned Number Authority (IANA) acts as aregistry for content-coding value tokens. Initially, the
registry contains the following tokens:

gzip An encoding format produced by the file compression program gzip
(GNU zip) as described in RFC 1952. Thisformat isaLempel-Ziv
coding (LZ77) with a32-bit CRC (cyclical redundancy check).

conpress The encoding format produced by the common UNIX file compression
program compress. Thisformat is an adaptive Lempel-Ziv-Welch coding
(LZW). (Use of program names for the identification of encoding formats
is not desirable and should be discouraged for future encodings. Their use
here is representative of historical practice, not good design. For
compatibility with previous implementations of HTTP, applications
should consider x-gzip and x-compress to be equivalent to gzip and
compress, respectively.)

defl ate The zlib format defined in RFC 1950[31] in combination with the deflate
compression mechanism described in RFC 1951.

New content-coding value tokens should be registered; to allow interoperability between clients and servers,
specifications of the content coding algorithms needed to implement a new value should be publicly available
and adequate for independent implementation, and conform to the purpose of content coding.

8.4.10 Transfer Codingsin HTTP

Transfer coding values are used to indicate an encoding transformation that has been, can be, or may need to be
applied to an entity-body in order to ensure safe transport through the network. This differs from a content
coding in that the transfer coding is a property of the message, not of the original entity.

transfer-coding = “chunked” | transfer-extension
transfer-extension = token

All transfer-coding values are case-insensitive. HTTP/1.1 uses transfer-coding values in the transfer-encoding
header field.

Transfer codings are analogous to the Cont ent - Tr ansf er - Encodi ng values of MIME, which were
designed to enable safe transport of binary data over a 7-bit transport service. However, safe transport has a
different focus for an 8-bit clean transfer protocol. In HTTP, the only unsafe characteristic of message-bodiesis
the difficulty in determining the exact body length, or the desire to encrypt data over a shared transport.

The chunked encoding modifies the body of a message in order to transfer it as a series of chunks, each with its
own size indicator, followed by an optional footer containing entity-header fields. This allows dynamically
produced content to be transferred along with the information necessary for the recipient to verify that it has
received the full message.

Chunked-Body = * chunk

“0" CRLF

footer

CRLF

chunk = chunk-size [chunk-ext] CRLF
chunk-data CRLF
hex-no-zero = <HEX excluding “0">
chunk-size = hex-no-zero *HEX
chunk-ext = * (*;” chunk-ext-name[* =" chunk-ext-value])
chunk-ext-name = token
chunk-ext-val = token | quoted-string =
chunk-data = chunk-size (OCTET)
footer = *entity-header

The chunked encoding is ended by a zero-sized chunk followed by the footer, which is terminated by an empty
line. The purpose of the footer isto provide an efficient way to supply information about an entity that is
generated dynamically; applications must not send header fields in the footer which are not explicitly defined as
being appropriate for the footer, such asCont ent - VD5 or future extensionsto HTTP for digital signatures or
other facilities.

All HTTP/1.1 applications must be able to receive and decode the “chunked” transfer coding, and must ignore
transfer-coding extensions they do not understand. A server that receives an entity-body with a transfer coding it
does not understand should return 501 (unimplemented), and close the connection. A server must not send
transfer codingsto an HTTP/1.0 client.

8.4.11 Media Typesand HTTP

HTTP uses Internet Media Typesin the Cont ent - Type and Accept header fieldsin order to provide open
and extensible data typing and type negotiation.

media-type =type“/” subtype*(“;” parameter)
type = token
subtype = token

Parameters may follow the type/subtype in the form of attribute/ value pairs.

parameter = attribute“ =" value
attribute = token
value = token | quoted-string

The type, subtype, and parameter attribute names are case-insensitive. Parameter values may or may not be case-
sensitive, depending on the semantics of the parameter name. Linear whitespace (LWS) must not be used
between the type and subtype, nor between an attribute and its value. User agents that recognize the mediatype
must process (or arrange to be processed by any external applications used to process that type/subtype by the
user agent) the parameters for that MIME type as described by that type/subtype definition to the and inform the
user of any problems discovered.

Some older HTTP applications do not recognize media-type parameters. When sending datato older HTTP
applications, implementations should use media-type parameters only when they are required by that
type/subtype definition.

Media-type values are registered with the Internet Assigned Number Authority (IANA). The media-type
registration processis outlined in RFC 2048. Use of non-registered media types is discouraged.

Canonicalization and Text Defaults

Internet media types are registered with a canonical form. In general, an entity-body transferred viaHTTP
messages must be represented in the appropriate canonical form prior to its transmission; the exception ist ext
types, as defined in the next paragraph.

When in canonical form, media subtypes of thet ext type use CRLF asthe text line break. HTTP relaxes this
requirement and allows the transport of text mediawith plain CR or LF alone representing aline break when it is
done consistently for an entire entity body. HTTP applications must accept CRLF, bare CR, and bareLF as
being representative of aline break in text mediareceived viaHTTP. In addition, if the text isrepresented in a
character set that does not use octets 13 and 10 for CRand LF, respectively, asis the case for some multibyte
character sets, HTTP alows the use of whatever octet sequences are defined by that character set to represent
the equivalent of CRand LF for line breaks. This flexibility regarding line breaks applies only to text mediain
the entity body; a bare CR or LF must not be substituted for CRLF within any of the HTTP control structures
(such as header fields and multipart boundaries).

If an entity-body is encoded with aCont ent - Encodi ng, the underlying data must be in aform as defined
above prior to being encoded. Thechar set parameter is used with some media types to define the character
set of the data. When no explicit char set parameter is provided by the sender, media subtypes of thet ext
type are defined to have adefault char set vaue of 1SO-8859-1 when received viaHTTP. Datain character
sets other than 1SO-8859-1 or its subsets must be labeled with an appropriate char set value.

Some HTTP/1.0 software has interpreted aCont ent - Type header without achar set parameter incorrectly
to mean “recipient should guess.” Senders wishing to defeat this behavior may include achar set parameter
even when the character set is 1SO-8859-1 and should do so when it is known that it will not confuse the
recipient.

Unfortunately, some older HTTP/1.0 clients did not deal properly with an explicit char set parameter.
HTTP/1.1 recipients must respect the char set label provided by the sender; and those user agents that have a
provisionto “guess’ achar set must usethechar set from the content-type field if they support that

char set, rather than the recipient’s preference, when initially displaying a document.

Multipart Types

MIME provides for anumber of “multipart” types—encapsulations of one or more entities within asingle
message-body. All multipart types share a common syntax, as defined in MIME, and must include a boundary
parameter as part of the media-type value. The message-body isitself a protocol element and must therefore use
only CRLF to represent line breaks between body-parts. Unlikein MIME, the epilog of any multipart message
must be empty; HT TP applications must not transmit the epilog (even if the original multipart contains an

epilog).

In HTTP, multipart body-parts can contain header fields which are significant to the meaning of that part. A
Cont ent - Locat i on header field should be included in the body-part of each enclosed entity that can be
identified by a URL.

In general, an HTTP user agent follows the same or similar behavior asaMIME user agent would on receipt of
amultipart type. If an application receives an unrecognized multipart subtype, the application must treat it as
being equivalenttormul ti part/ m xed. Thenul ti part/form dat a type has been specifically defined
for carrying form data suitable for processing viathe POST request method, as described in RFC 1867.

Product Tokens

Product tokens are used to allow communicating applications to identify themselves by software name and
version.

Most fields using product tokens also allow subproducts which form a significant part of the application to be
listed, separated by whitespace. By convention, the products are listed in order of their significance for
identifying the application.

product =token[“/” product-version]

product-version = token
Examples. User-Agent: ACE-LineMode/2.15 mewww/2.17b3
Server: Joker/0.8.4

Product tokens are generally short and to the point. Use of them for advertising or other nonessential
information is explicitly forbidden. Although any token character may appear in apr oduct - ver si on, this
token should be used only for aversion identifier; that is, a successive version of the same product should only
differ inthe pr oduct - ver si on portion of the product value.

8.4.12 HTTP Quality Values

HTTP content negotiation uses short floating-point numbers to indicate the relative importance (weight) of
various negotiable parameters. A weight is normalized to areal number intherange O to 1, where O isthe
minimum and 1 the maximum value. HTTP/1.1 applications must not generate more than three digits after the
decimal point. User configuration of these values should also be limited in this fashion:

vaue = (“0” [“.” 0*3DIGIT])
[(“1" [*." 0%3(*0")])

The term quality values is a misnomer, since these values merely represent relative degradation in desired
quality.

8.4.13 HTTP Language Tags

A language tag identifies a natural language spoken, written, or otherwise conveyed by human beings for
communication of information to other human beings. Computer languages are explicitly excluded. HTTP uses
language tags within the Accept - Language and Cont ent - Language fields. The syntax and registry of
HTTP language tags is the same as that defined by RFC 1766. In summary, alanguage tag is composed of 1 or
more parts: A primary language tag and a possibly empty series of subtags:

language-tag = primary-tag * (“-” subtag)
primary-tag = 1* SALPHA
subtag = 1*8ALPHA

Whitespace is not allowed within the tag and all tags are case-insensitive. The name space of language tags is
administered by the IANA. Exampletagsincludeen, en-US, en-cockney, i-cherokee, andx-
younne- | ati n. Inthiscaseany two-letter pri mary-t ag isan SO 639 language abbreviation and any
two-letter initial subtag isan 1SO 3166 country code. (The last three tags above are not registered tags; all
except the last are examples of tags which could be registered in the future.)

8.4.14 HTTP Entity Tags

Entity tags are used for comparing two or more entities from the same requested resource. HTTP/1.1 uses entity
tagsintheETag, If-Match, |f-None-Match, andlf- Range header fields. An entity tag consists of
an opaque quoted string, possibly prefixed by a weakness indicator.

entity-tag = [weak] opague-tag
weak ="W/"
opaque-tag = guoted-string

A strong entity tag may be shared by two entities of aresource only if they are equivalent by octet equality. A
weak entity tag, indicated by the W/ prefix, may be shared by two entities of aresource only if the entities are
equivalent and could be substituted for each other with no significant change in semantics. A weak entity tag can
be used only for weak comparison. An entity tag must be unique across al versions of all entities associated
with a particular resource. A given entity-tag value may be used for entities obtained by requests on different
URIs without implying anything about the equivalence of those entities.

8.4.15 HTTP Range Units

HTTP/1.1 alows aclient to request that only part (arange) of the response entity be included within the
response. HTTP/1.1 uses range unitsin the Range and Cont ent - Range header fields. An entity may be
broken down into subranges according to various structural units.

range-unit = bytes-unit | other-range-unit
bytes-unit = “bytes”
other-range-unit = token

The only range unit defined by HTTP/1.1is* byt es” . HTTP/1.1 implementations may ignore ranges
specified using other units. HTTP/1.1 has been designed to allow implementations of applications that do not
depend on knowledge of ranges.

8.4.16 HTTP Message Types
HTTP messages consist of requests from client to server and responses from server to client.

HTTP-message = Request | Response ; HTTP/1.1 messages

Request | Response messages use the generic message format of RFC 822 to transfer entities (the
“payload” of the message). Both types of message consist of a start line, one or more header fields (also known
as “headers’), an empty line (i.e., aline with nothing preceding the CRLF) indicating the end of the header
fields, and an optional message body.

generic-message = start-line
* message-header
CRLF

[message-body |
start-line = Request-Line | Status-Line

In the interest of robustness, servers should ignore any empty line(s) received where aRequest - Li ne is
expected. In other words, if the server is reading the protocol stream at the beginning of a message and receives
aCRLF first, it should ignore the CRLF.

Certain buggy HTTP/1.0 client implementations generate an extra CRLF after a POST request. To restate what

isexplicitly forbidden by the BNF, an HTTP/1.1 client must not preface or follow arequest with an extra
CRLF.

8.4.17 Message Headersand HTTP

HTTP header fields, which include general-header, request-header, response-header, and entity-header fields,
follow the same generic format as that given in RFC 822. Each header field consists of a name followed by a
colon (;) and the field value. Field names are case-insensitive. The field value may be preceded by any amount
of LWS, although asingle SPis preferred. Header fields can be extended over multiple lines by preceding each
extraline with at least one SP or HT. Applications should follow “common form” when generating HTTP
constructs, since there might exist some implementations that fail to accept anything beyond the common forms.

message-header = field-name “:” [field-value] CRLF
field-name = token

field-value = *(field-content | LWS)

field-content = <the OCTETs making up the field-value
and consisting of either * TEXT or combinations

of token, tspecials, and quoted-string>

The order in which header fields with differing field names are received is not significant. However, it is good
practice to send general-header fields first, followed by request-header or response-header fields, and ending
with the entity-header fields.

Multiple message-header fields with the same field-name may be present in amessage if and only if the entire
field value for that header field is defined as a comma-separated list [i.e., #(val ues)]. It must be possible to
combine the multiple header fields into one “field name-field value” pair, without changing the semantics of the
message, by appending each subsequent field value to the first, each separated by a comma. The order in which
header fields with the same field-name are received is therefore significant to the interpretation of the combined
field value, and thus a proxy must not change the order of these field values when a message is forwarded.

8.4.18 HTTP Message Body

The message-body (if any) of an HTTP message is used to carry the entity body associated with the request or
response. The message body differs from the entity body only when atransfer coding has been applied, as
indicated by the Tr ansf er - Encodi ng header field.

message-body = entity-body
|<entity-body encoded as Transfer-Encoding>

Tr ansf er - Encodi ng must be used to indicate any transfer codings applied by an application to ensure safe
and proper transfer of the message. Tr ansf er - Encodi ng isaproperty of the message, not of the entity, and
thus can be added or removed by any application along the request/response chain.

The rules for when a message body is allowed in a message differ for requests and responses. The presence of a
message body in arequest is signaled by the inclusion of aCont ent - Lengt h or Tr ansf er - Encodi ng
header field in the request’ s message headers. A message body may be included in arequest only when the
request method allows an entity body.

For response messages, whether a message body is or is not included with a message is dependent on both the
request method and the response status code. All responses to the HEAD request method must not include a
message body, even though the presence of entity-header fields might lead one to believe they do.

8.4.19 HTTP Message Length

When a message body is included with a message, the length of that body is determined by one of the following
(in order of precedence):

1. Any response message which must not include a message body is always terminated by the first empty line
after the header fields, regardless of the entity-header fields present in the message.

2. 1f aTransf er - Encodi ng header field is present and indicates that the “chunked” transfer coding has been
applied, then the length is defined by the chunked encoding.

3. If aCont ent - Lengt h header field is present, its value in bytes represents the length of the message-body.

4. If the message uses the mediatypenul ti part/ byt er anges, which isself-delimiting, then that defines
the length. This media type must not be used unless the sender knows that the recipient can parse it; the presence
in arequest of aRange header with multiple byte-range specifiersimplies that the client can parse

mul ti part/ byt eranges responses.

5. By the server closing the connection. (Closing the connection cannot be used to indicate the end of arequest
body, since that would leave no possibility for the server to send back aresponse.)

For compatibility with HTTP/1.0 applications, HTTP/1.1 requests containing a message body must include a
valid Cont ent - Lengt h header field unless the server is known to be HTTP/1.1 compliant. If arequest
contains a message body and aCont ent - Lengt h isnot given, the server should respond with * it cannot
determine the length of the message,” or with “it wishesto insist on receiving avalid Cont ent - Lengt h. ”

All HTTP/1.1 applications that receive entities must accept the “ chunked” transfer coding, thus allowing this
mechanism to be used for messages when the message length cannot be determined in advance. M essages must
not include both aCont ent - Lengt h header field and the “chunked” transfer coding. If both are received, the
Cont ent - Lengt h must beignored.

When aCont ent - Lengt h isgiven in amessage where a message body is allowed, itsfield value must
exactly match the number of OCTETS in the message body. HTTP/1.1 user agents MUST notify the user when
an invalid length is received and detected.

8.4.20 HTTP General Header Fields

A few header fields have general applicability for both request and response messages but do not apply to the
entity being transferred. These header fields apply only to the message being transmitted.

genera-header = Cache-Control
| Connection
| Date
| Pragma
| Transfer-Encoding
| Upgrade
| Via

CGener al - header field names can be extended reliably only in combination with a change in the protocol
version. However, new or experimental header fields may be given the semantics of general-header fieldsif all
parties in the communication recognize them to be general-header fields. Unrecognized header fields are treated
as entity-header fields.

8.4.21 HTTP Request

A request message from a client to a server includes, within the first line of that message, the method to be
applied to the resource, the identifier of the resource, and the protocol version in use.

Request = Request-Line
*(general-header
| request-header
| entity-header)
CRLF
[message-body |

Request-Line

The Request - Li ne begins with a method token, followed by the Request - URI and the protocol version,
and ending with CRLF. The elements are separated by SP characters. No CR or LF are allowed except in the
fina CRLF sequence.

Request-Line = Method SP Request-URI SPHTTP-Version CRLF
Method

The Met hod token indicates the method to be performed on the resource identified by the Request - URI .
The method is case-sensitive.

Method= “OPTIONS’
| “GET”
| “HEAD”
| “POST”
| “PUT”
| “DELETE”
| “TRACE"
| extension-method
extension-method = token

The list of methods allowed by a resource can be specified in an Al | ow header field. The return code of the
response aways notifies the client whether a method is currently alowed on aresource, since the set of allowed
methods can change dramatically. Servers should return the status code 405 (“ method not allowed”) if the
method is known by the server but not allowed for the requested resource, and 501 (* not implemented”) if the
method is unrecognized or not implemented by the server. The list of methods known by a server can be listed
inaPubl i ¢ response- header field. The methods GET and HEAD must be supported by all general-
purpose servers.

HTTP Request-URI
The Request - URI isaUniform Resource Identifier and identifies the resource on which to apply the request.
Request-URI = “*” | absoluteURI | abs _path

The three options for Request - URI are dependent on the nature of the request. The asterisk “*” means that
the request does not apply to a particular resource, but to the server itself, and is only allowed when the method
used does not necessarily apply to aresource. One example would be OPTI ONS * HTTP/ 1. 1/.

The absolute URI form is required when the request is being made to a proxy. The proxy is requested to forward
the request or service it from avalid cache, and return the response. Note that the proxy may forward the request
on to another proxy or directly to the server specified by theabsol ut eURI . In order to avoid request loops, a
proxy must be able to recognize all of its server names, including any aliases, local variations, and the numeric
|P address. Consider the following request-line example:

GET http://www.w3.ora/pub/WWW/TheProject.ntml HTTP/1.1

To alow for transition to absol ut eURI s inall requestsin future versionsof HTTP, all HTTP/1.1 servers
must accept the absolute URI form in requests, even though HTTP/1.1 clients will generate them only in
requests to proxies.

The most common form of Request - URI isthat used to identify aresource on an origin server or gateway. In
this case the absolute path of the URI must be transmitted as the Request - URI , and the network location of
the URI (net _| oc) must be transmitted in aHost header field. For example, a client wishing to retrieve the
resource above directly from the origin server would create a TCP connection to port 80 of the host
www.w3.org and send the lines:

GET /pub/WWW/TheProject.ntml HTTP/1.1

Host: www.w3.0rg

Then, it isfollowed by the remainder of the Request . Note that the absolute path cannot be empty; if noneis
present in the original URI, it must be given as/ (the server root). If a proxy receives arequest without any path
inthe Request - URI and the method specified is capable of supporting the asterisk form of request, then the
last proxy on the request chain must forward the request with an askerisk (*) asthe final Request - URI . For
example, the request

OPTIONS http://www.ics.uci.edu:8001 HTTP/1.1

would be forwarded by the proxy as
OPTIONS* HTTP/1.1

Host; www.ics.uci.edu:8001

after connecting to port 8001 of host www.ics.uci.edu.

The origin server must decode the Request - URI in order to properly interpret the request. Servers should
respond to invalid Request - URI s with an appropriate status code.

In requests that they forward, proxies must not rewrite theabs_pat h part of aRequest - URl in any way
except as noted above to replace anull abs _pat h with an asterisk, no matter what the proxy doesin its
internal implementation.

NOTE: The no rewrite rule prevents the proxy from changing the meaning of the request when the origin server
isimproperly using a nonreserved URL character for a reserved purpose. |mplementers should be aware that
some pre-HTTP/1.1 proxies have been known to rewrite the Request - URI .

The Resour ce I dentified by a Request

HTTP/1.1 origin servers should be aware that the exact resource identified by an Internet request is determined
by examining both the Request - URI and the Host header field. An origin server that does not allow
resources to differ by the requested host may ignore the Host header field value. An origin server that does
differentiate resources on the basis of the host requested (virtual hosts) must use the following rules for
determining the requested resource on an HTTP/1.1 request:

1. If Request - URI isan absolute URI, the host is part of the Request - URI . Any Host header field value
in the request must be ignored.

2. If theRequest - URI isnot an absolute URI, and the request includesaHost header field, the host is
determined by the Host header field value.

3. If the host as determined by rule 1 or 2 isnot avalid host on the server, the response nust be a 400 (“bad
request”) error message.

Recipients of an HTTP/1.0 request that lacks aHost header field may attempt to use heuristics (e.g.,
examination of the URI path for something unique to a particular host) in order to determine what exact
resource is being requested.

HTTP request-header fields.

The request-header fields allow the client to pass additional information about the request, and about the client
itself, to the server. These fields act as request modifiers, with semantics equivalent to the parameters on a
programming language method invocation.

request-header = Accept
| Accept-Charset
| Accept-Encoding
| Accept-Language
| Authorization
| From
| Host
| I1f-Modified-Since
| If-Match
| I1f-None-Match
| 1f-Range
| If-Unmodified-Since
| Max-Forwards
| Proxy-Authorization
| Range
| Referer
| User-Agent

Request-header field names can be extended reliably only in combination with a change in the protocol version.
However, new or experimental header fields may be given the semantics of request-header fieldsif all partiesin
the communi cation recognize them to be request-header fields. Unrecognized header fields are treated as entity-
header fields.

8.4.22 HTTP Message Response

After receiving and interpreting a request message, a server responds with an HT TP response message.

Response = Status-Line
*(general-header
| response-header
| entity-header)
CRLF
[message-body |

HTTP Status-Line

Thefirst line of aresponse messageisthe St at us- Li ne, consisting of the protocol version followed by a
numeric status code and its associated textual phrase, with each element separated by SP characters. No CR or
LF isallowed except in the final CRLF sequence.

Status-Line = HTTP-Version SP Status-Code(SP)Reason-Phrase CRLF
HTTP Status-Code and Reason-Phrase

The St at us- Code element isathree-digit integer result code of the attempt to understand and satisfy the
request. The Reason- Phr ase isintended to give a short textual description of the St at us- Code. The

St at us- Code isintended for use by automata and the Reason- Phr ase isintended for the human user. The
client is not required to examine or display the Reason- Phr ase. Thefirst digit of the St at us- Code
defines the class of response. The last two digits do not have any categorization role. There are five values for
thefirst digit:

1xx: Informational Request received, continuing process.

2xx: 3Success The action was successfully received, understood, and
accepted.

3xx: Redirection Further action must be taken in order to complete the
request.

4xx: Cient Error Therequest containsbad syntax or cannot be fulfilled.
S5xx: Server Error The server failed to fulfill an apparently valid request.

The individual values of the numeric status codes defined for HTTP/1.1, and an example set of corresponding
Reason- Phr ases, are presented below. The reason phrases listed here are only recommended is that they
may be replaced by local equivalents without affecting the protocol.

Status-Code = “100" ; Continue
|“101” ; Switching Protocols
[“200” ; OK
|“201" ; Created
| “202" ; Accepted
|“203" ; Non-Authoritative Information
| “204” ; No Content

| “205"; Reset Content
| “206”; Partial Content
| “300"; Multiple Choices
| “301”; Moved Permanently
| “302"; Moved Temporarily
| “303"; See Other
| “304”; Not Modified
| “305”; Use Proxy
| “400”; Bad Request
| “401”; Unauthorized
| “402"; Payment Required
| “403”; Forbidden
| “404”; Not Found
| “405”; Method Not Allowed
| “406”; Not Acceptable
| “407”; Proxy Authentication Required
| “408"; Request Time-out
| “409”; Conflict
| “410”; Gone
|“411”; Length Required
| “412"; Precondition Failed
| “413"; Request-Entity Too Large
| “414”; Request-URI Too Large
| “415”; Unsupported Media Type
| “500”; Internal Server Error
| “501”; Not Implemented

| “502"; Bad Gateway
| “503"; Service Unavailable
| “504”; Gateway Time-out
| “505”; HTTP Version not supported
| extension-code
extension-code = 3DIGIT
Reason-Phrase = *<TEXT, excluding CR, LF>

HTTP status codes are extensible. HT TP applications are not required to understand the meaning of all
registered status codes, although such understanding is obviously desirable. Neverthel ess, applications must
understand the class of any status code, as indicated by the first digit, and treat any unrecognized response as
being equivalent to the x00 status code of that class; however, an unrecognized response must not be cached.
For example, if an unrecognized status code of 431 isreceived by the client, it can safely assume that there was
something wrong with its request and treat the response asif it had received a 400 status code. In such cases,
user agents should present to the user the entity returned with the response, since that entity islikely to include
human-readabl e information which will explain the unusual status.

HTTP response-header fields

Ther esponse- header fieldsallow the server to pass additional information about the response which
cannot be placed in the St at us- Li ne. These header fields give information about the server and about
further access to the resource identified by theRequest - URI .

response-header = Age
| Location
| Proxy-Authenticate
| Public
| Retry-After
| Server
| Vary
| Warning
| WWW-Authenticate

Response-header field names can be extended reliably only in combination with a change in the protocol
version. However, new or experimental header fields may be given the semantics of response-header fieldsif all
parties in the communication recognize them to be response-header fields. Unrecognized header fields are
treated as entity-header fields.

8.4.23 HTTP Entity

Request and response messages may transfer an entity if not otherwise restricted by the request method or
response status code. An entity consists of entity-header fields and an entity body, although some responses will
only include the entity headers.

Entity-header Fields

Entity-header fields define optional metainformation about the entity body or, if no body is present, about the
resource identified by the request.

entity-header = Allow
| Content-Base
| Content-Encoding
| Content-Language
| Content-Length
| Content-Location
| Content-M D5
| Content-Range
| Content-Type
|ETag
| Expires
| Last-Modified
| extension-header
extension-header = message-header

The extension-header mechanism allows additional entity-header fields to be defined without changing the
protocol, but these fields can not be assumed to be recognizable by the recipient. Unrecognized header fields
should be ignored by the recipient and forwarded by proxies.

HTTP Entity Body

The entity body (if any) sent with an HTTP request or response isin aformat and encoding defined by the
entity-header fields.

entity-body = *OCTET

An entity body is present in a message only when a message body is present. The entity body is obtained from
the message body by decoding any Tr ansf er - Encodi ng that may have been applied to ensure safe and
proper transfer of the message.

When an entity body isincluded with a message, the data type of that body is determined via the header fields
Cont ent - Type and Cont ent - Encodi ng. These define atwo-layer, ordered encoding model:

entity-body : = Content-Encoding(Content-Type(data))

Cont ent - Ty pe specifies the mediatype of the underlying data. Cont ent - Encodi ng may be used to
indicate any additional content codings applied to the data, usually for the purpose of data compression, that are
aproperty of the requested resource. There is no default encoding.

Any HTTP/1.1 message containing an entity body should include aCont ent - Type header field defining the
mediatype of that body. If and only if the mediatype is not given by aCont ent - Type field, the recipient may
attempt to guess the media type viainspection of its content and/or the name extension(s) of the URL used to

identify the resource. If the media type remains unknown, the recipient should treat it astype
appl i cation/octet-stream

The length of an entity body is the length of the message body after any transfer codings have been removed.

8.4.24 HTTP Persistent Connections

Prior to persistent connections, a separate TCP connection was established to fetch each URL, increasing the
load on HTTP servers and causing congestion on the Internet. The use of inline images and other associated data
often requires a client to make multiple requests of the same server in a short amount of time. Analyses of these
performance problems are available; analysis and results from a prototype implementation are in. Persistent
HTTP connections have a number of advantages:

* By opening and closing fewer TCP connections, CPU time is saved, and memory used for TCP protocol
control blocksis also saved.

* HTTP requests and responses can be pipelined on a connection. Pipelining allows a client to make multiple
requests without waiting for each response, allowing a single TCP connection to be used much more efficiently,
with much lower elapsed time.

» Network congestion is reduced by reducing the number of packets caused by TCP opens, and by allowing TCP
sufficient time to determine the congestion state of the network.

HTTP can evolve more gracefully; since errors can be reported without the penalty of closing the TCP
connection. Clients using future versions of HTTP might optimistically try a new feature, but if communicating
with an older server, retry with old semantics after an error is reported.

HTTP Persistent Connection Operation

A significant difference between HTTP/1.1 and earlier versions of HTTP is that persistent connections are the
default behavior of any HTTP connection. That is, unless otherwise indicated, the client may assume that the
server will maintain a persistent connection.

Persistent connections provide a mechanism by which a client and a server can signal the close of aTCP
connection. This signaling takes place using the Connect i on header field. Once a close has been signaled, the
client must not send any more requests on that connection.

1. Negotiation. An HTTP/1.1 server may assume that an HTTP/1.1 client intends to maintain a persistent
connection unlessaConnect i on header including the Connect i on-t oken “close” was sent in the
request. If the server chooses to close the connection immediately after sending the response, it should send a
Connect i on header including the Connect i on-t oken close. An HTTP/1.1 client may expect a
connection to remain open, but would decide to keep it open if the response from a server contains a
Connect i on header with the Connect i on-t oken close. In case the client does not want to maintain a
connection for more than that request, it should send aConnect i on header including the Connect i on-

t oken close.

If either the client or the server sends the close token in the Connect i on header, that request becomes the last
one for the connection. Clients and servers should not assume that a persistent connection is maintained for
HTTP versionslessthan 1.1 unlessit is explicitly signaled. In order to remain persistent, all messages on the
Connect i on must have a self-defined message length; that is, one not defined by closure of the connection.

2. Pipelining. A client that supports persistent connections may “pipeline” its requests (i.e., send multiple
requests without waiting for each response). A server must send its responses to those requests in the same order
that the requests were received.

Clients which assume persistent connections and pipeline immediately after connection establishment should be
prepared to retry their connection if the first pipelined attempt fails. If aclient does such aretry, it must not
pipeline before it knows the connection is persistent. Clients must also be prepared to resend their requestsiif the
server closes the connection before sending al of the corresponding responses.

HTTP Proxy Servers

It is especially important that proxies correctly implement the properties of the Connect i on header field. The
proxy server must signal persistent connections separately with its clients and the origin servers (or other proxy
servers) that it connects to. Each persistent connection applies to only one transport link. A proxy server must
not establish a persistent connection with an HTTP/1.0 client.

8.4.25 HTTP Caching

HTTPistypically used for distributed information systems, where performance can be improved by the use of
response caches. The HTTP/1.1 protocol includes a number of elements intended to make caching work as well
as possible. Because these elements are inextricable from other aspects of the protocol, and because they interact
with each other, it is useful to describe the basic caching design of HTTP separately from the detailed
descriptions of methods, headers, response codes, and so on.

Caching would be useless if it did not significantly improve performance. The goal of cachingin HTTP/1.1isto
eliminate the need to send requests in many cases, and to eliminate the need to send full responses in many other
cases. The former reduces the number of network round trips required for many operations; we use an expiration
mechanism for this purpose. The latter reduces network bandwidth requirements; we use a*“validation”
mechanism for this purpose.

Requirements for performance, availability, and disconnected operation require us to be able to relax the goal of
semantic transparency. The HTTP/1.1 protocol allows origin servers, caches, and clients to explicitly reduce
transparency when necessary. However, because nontransparent operation may confuse nonexpert users, and
may be incompatible with certain server applications (such as those for ordering merchandise), the protocol
requires that transparency be relaxed only by an explicit protocol-level request when relaxed by client or origin
server; or the other case is only with an explicit warning to the end user when relaxed by cache or client.

Therefore, the HTTP/1.1 protocol provides these important elements:
1. Protocol features that provide full semantic transparency when thisisrequired by all parties.

2. Protocol featuresthat allow an origin server or user agent to explicitly request and control nontransparent
operation.

3. Protocol features that allow a cache to attach warnings to responses that do not preserve the requested
approximation of semantic transparency.

A basic principleisthat it must be possible for the clients to detect any potential relaxation of semantic
transparency. The server, cache, or client implementers may be faced with design decisions not explicitly
discussed in this specification. If a decision may affect semantic transparency, the implementers ought to err on
the side of maintaining transparency unless a careful and complete analysis shows significant benefitsin
breaking transparency.

8.4.26 HTTP History Lists

User agents often have history mechanisms, such as BACK buttons and history lists, which can be used to
redisplay an entity retrieved earlier in a session. History mechanisms and caches are different. In particular,
history mechanisms should not try to show a semantically transparent view of the current state of a resource.
Rather, a history mechanism is meant to show exactly what the user saw at the time when the resource was
retrieved.

By default, an expiration time does not apply to history mechanisms. If the entity is still in storage, a history
mechanism should display it even if the entity has expired, unless the user has specifically configured the agent
to refresh expired history documents.

This should not be construed to prohibit the history mechanism from telling the user that a view may be stale. If
history-list mechanisms unnecessarily prevent users from viewing stale resources, thiswill tend to force service
authorsto avoid using HTTP expiration controls and cache controls when they would otherwise like to. Service
authors may consider it important that users not be presented with error messages or warning messages when
they use navigation controls (such as BACK) to view previously fetched resources. Even though sometimes
such resources ought not to be cached, or ought to expire quickly, user interface considerations may force
service authors to resort to other means of preventing caching (e.g., “once-only” URLS) to avoid the effects of
improperly functioning history mechanisms.

8.4.27 HTTP Header Field Definitions

This section defines the syntax and semantics of all standard HTTP/1.1 header fields. For entity-header fields,
both sender and recipient refer to either the client or the server, depending on who sends and who receives the
entity.

Accept

The Accept request - header field can be used to specify certain media types which are acceptable for the
response. Accept headers can be used to indicate that the request is specifically limited to a small set of
desired types, as in the case of arequest for an in-line image.

Accept = “Accept” “.”
#(media-range [accept-params])
media-range = (“* 7
| (type"s” *=")
| (type“/" subtype)
) *(“;" parameter)
accept-params=";" “q” “ = "qvaue * (accept-extension)
accept-extension = “;” token [“ =" (token|guoted-string)]

The asterisk (*) character is used to group media types into ranges, with the slash bar (/) indicating all media
typesandt ype/ * indicating all subtypes of that type. The mediarange may include media-type parameters that
are applicable to that range. Each mediarange may be followed by one or moreaccept - par ans, beginning
with the q parameter for indicating arelative quality factor. Thefirst q parameter (if any) separates the media-
range parameter(s) from theaccept - par ans. Quality factors allow the user or user agent to indicate the
relative degree of preference for that mediarange, usingtheq val ue scalefrom Oto 1. The default valueisq
= 1. Use of the g parameter name to separate media-type parameters from Accept extension parametersis due
to historical practice. Although this prevents any media- type parameter named g from being used with amedia
range, such an event is believed to be unlikely given the lack of any g parametersin the IANA media-type
registry and the rare usage of any media-type parametersin Accept . Future mediatypes should be
discouraged from registering any parameter named g. Consider the following example:

Accept: audio/*; g= 0.2, audio/basic

This should be interpreted as “1 prefer audi o/ basi ¢, but send me any audio type if it isthe best available
after an 80 percent markdown in quality.” If no Accept header field is present, then it is assumed that the
client accepts all mediatypes. If an Accept header field is present, and if the server cannot send a response
which is acceptable according to the combined Accept field value, then the server should send a 406 (not
acceptable) response. A more elaborate example is

Accept: text/plain; g = 0.5, text/html
text/x-dvi; q = 0.8, text/x-c

Verbally, thiswould be interpreted as“t ext / ht M andt ext / x- ¢ arethe preferred mediatypes, but if they
do not exist, then send thet ext / x- dvi entity, and if that does not exist, send thet ext / pl ai n entity.”

Media ranges can be overridden by more specific mediaranges or specific mediatypes. If more than one media
range applies to a given type, the most specific reference has precedence. Consider the following:

Accept: text/*, text/ntml, text/ntml;level = 1, */*

The following apply to the previous example and have precedence: (1) Text/ ht ml ; | evel =1, (2)
text/htm ,(3)text/*,and(4)*/*.

The media-type quality factor associated with a given type is determined by finding the media range with the
highest precedence which matches that type. Consider the following:

Accept: text/*;q = 0.3, text/html;q = 0.7, text/html;level =1
text/html;level = 2;,0=0.4, */*;0=0.5

The previous example would cause the following values to be associated:

text/htm;level = 1 -1

text/html = 0.7
text/plain =03
image/jpeg = 05
text/ntml;level = 2 =04

text/html;level = 3 = 0.7

A user agent may be provided with a default set of quality values for certain media ranges, unlessser agent isa
closedm which cannot interact with other rendering agents.

Accept-Char set

The Accept - Char set request - header field can be used to indicate what character sets are acceptable
for the response. Thisfield allows clients capable of understanding more comprehensive or special-purpose
character setsto signal that capability to a server which is capable of representing documents in those character
sets. The ISO-8859-1 character set can be assumed to be acceptable to all user agents.

Accept-Charset = “Accept-Charset” “:”
1#(charset [*;” “g” “ =" qvalue])

Each char set may be given an associated quality value which represents the user’ s preference for that
char set . Thedefault valueisq = 1. An exampleis the following:

Accept-Charset: i1s0-8859-5, unicode-1-1;q = 0.8

If no Accept - Char set header is present, the default is that any character set is acceptable. If an Accept -
Char set header is present, and if the server cannot send a response which is acceptable according to the
Accept - Char set header, then the server should send an error response with the 406 (“ not acceptable™)
status code, even though sending an unacceptabl e response is also allowed.

Accept-Encoding

The Accept - Encodi ng r equest - header fieldissimilar to Accept, but restricts the content-coding
values which are acceptable in the response.

Accept-Encoding = “ Accept-Encoding” “:”
#(content-coding)
Accept-Encoding: compress, gzip

If no Accept - Encodi ng header is present in arequest, the server may assume that the client will accept any
content coding. If an Accept - Encodi ng header is present, and if the server cannot send aresponse whichis
acceptable according to the Accept - Encodi ng header, then the server should send an error response with the
406 (“not acceptable’) status code. An empty Accept - Encodi ng value indicates none are acceptable.

Accept-L anguage

The Accept - Language request - header fieldissimilar to Accept, but restricts the set of natural
languages that are preferred as a response to the request.

Accept-Language = “ Accept-Language” “:”
1#(language-range [*;” “q” * =" qvalue])
language-range = ((1*BALPHA *(“-" 1*8ALPHA)) | “*")

Each| anguage- r ange may be given an associated quality value which represents an estimate of the user’s
preference for the languages specified by that range. The quality value defaultstoq = 1. For example:

Accept-Language: da, en-gb;q=0.8, en;q=0.7

The previous example means. “| prefer Danish, but will accept British English and other types of English.” A

| anguage- r ange matchesal anguage-t ag if it exactly equalsthe tag, or if it exactly equals a prefix of
the tag such that the first tag character following the prefix is” - " . The specia range™ * ", if present in the
Accept - Language field, matches every tag not matched by any other range present in the Accept -
Language field. This use of a prefix matching rule does not imply that |anguage tags are assigned to languages
in such away that it is aways true that a user who understands a language with a certain tag will also understand
all languages with tags for which thistag is a prefix. The prefix rule smply allows the use of prefix tagsif thisis
the case.

The language quality factor assigned to alanguage tag by the Accept - Language field is the quality value of
thelongest | anguage- r ange in the field that matches the language tag. If nol anguage- r ange inthe
field matches the tag, the language quality factor assigned is 0. If no Accept - Language header ispresent in
the request, the server should assume that all languages are equally acceptable. If an Accept - Language
header is present, then all languages which are assigned a quality factor greater than O are acceptable.

It may be contrary to the privacy expectations of the user to send an Accept - Language header with the
complete linguistic preferences of the user in every request. As intelligence is highly dependent on the
individual user, it is recommended that client applications make the choice of linguistic preference available to
the user. If the choice is not made available, then the Accept - Language header field must not be givenin
the request.

Accept-Ranges

The Accept - Ranges response- header field allowsthe server to indicate its acceptance of range
requests for aresource:

Accept-Ranges = “ Accept-Ranges” “:” acceptable-ranges
acceptable-ranges = 1#range-unit | “none”

Origin servers that accept byte-range requests may send the following:
Accept-Ranges: bytes

This may be sent but is not required. Clients may generate byte-range requests without having received this
header for the resource involved. Serversthat do not accept any kind of range request for a resource may send
the following to advise the client to not attempt a range request:

Accept-Ranges: none

Age

The Age response-header field conveys the sender’ s estimate of the amount of time since the response (or its
revalidation) was generated at the origin server. A cached responseis “fresh” if its age does not exceed its
freshness lifetime.

Age="Age” “:” age-value
age-value = delta-seconds

Age values are nonnegative decimal integers, representing time in seconds. If a cache receives avalue larger
than the largest positive integer it can represent, or if any of its age calculations overflow, it must transmit an
Age header with avalue of 2147483648. HTTP/1.1 caches must send an Age header in every response. Caches
should use an arithmetic type of at least 31 bits of range.

Allow

The Al | ow entity-header field lists the set of methods supported by the resource identified by the Request -
URI . The purpose of thisfield is strictly to inform the recipient of valid methods associated with the resource.
An Al | owheader field isrequired in a405 (“method not allowed”) response.

Allow =*“Allow” “:” 1#method
Example of use: Allow: GET, HEAD, PUT

Thisfield cannot prevent a client from trying other methods. However, the indications given by the Al | ow
header field value should be followed. The actual set of allowed methods is defined by the origin server at the
time of each request.

The Al | ow header field may be provided with aPUT request to recommend the methods to be supported by the
new or modified resource. The server is not required to support these methods and include an Al | ow header in
the response giving the actual supported methods.

A proxy cannot modify the Al | ow header field even if it does not understand all the methods specified, since
the user agent may have other means of communicating with the origin server.

The Al | ow header field does not indicate what methods are implemented at the server level. Servers may use
the Publ i ¢ response-header field to describe what methods are implemented on the server as awhole.

Authorization

A user agent that wishes to authenticate itself with a server, usually but not necessarily, after receiving a 401
response, may do so by including an Aut hor i zat i on request-header field with the request. The

Aut hori zat i on field value consists of credentials containing the authentication information of the user
agent for the realm of the resource being requested.

Authorization = “ Authorization” “:” credentials

If arequest is authenticated and a realm specified, the same credentials should be valid for all other requests
within this realm. When a shared cache receives arequest containing an Aut hor i zat i on field, it must not
return the corresponding response as areply to any other request, unless one of the following specific
exceptions holds:

1. If theresponse includesthe pr oxy-r eval i dat e Cache- Cont r ol directive, the cache may use that
response in replying to a subsequent request, but a proxy cache must first revalidate it with the origin server,
using ther equest - header s from the new request to allow the origin server to authenticate the new request.

2. If theresponseincludesthenust - r eval i dat e Cache- Cont r ol directive, the cache may use that
response in replying to a subsequent request, but all caches must first revalidate it with the origin server, using
the request headers from the new request to allow the origin server to authenticate the new request.

3. If theresponseincludesthe publ i ¢ Cache- Cont r ol directive, it may be returned in reply to any
subsequent request.

Cache-Control

The Cache- Cont r ol genera-header field is used to specify directives that must be obeyed by all caching
mechanisms along the request/response chain. The directives specify behavior intended to prevent caches from
adversely interfering with the request or response. These directives typically override the default caching
algorithms. Cache directives are unidirectional in that the presence of a directive in arequest does not imply
that the same directive should be given in the response. HTTP/1.0 caches may not implement Cache-

Cont r ol and may only implement Pr agnma; that is, no- cache.

Cache directives must be passed through by a proxy or gateway application, regardless of their significance to
that application, since the directives may be applicable to al recipients along the request/response chain. It is
not possible to specify acache di recti ve for aspecific cache.

Cache-Control = “Cache-Control” “:” 1#cache-directive
cache-directive = cache-request-directive

| cache-response-directive
cache-request-directive = “no-cache” [* = “<">1#field-name<”>]

| “no-store”

| “max-age” “ =" delta-seconds

| “max-stale” [* =" delta-seconds]
| “min-fresh” “ =" delta-seconds

| “only-if-cached”

| cache-extension

cache-response-directive = “public”
| “private” [“ =" <"> 1#field-name <’> |
| “no-cache” [“ =" <"> 1#field-name <">]
| “no-store”
| “no-transform”
| “must-revalidate’
| “proxy-revalidate”
| “max-age” “ =" delta-seconds
| cache-extension
cache-extension = token [* =" (token | quoted-string)]

When a directive appears without any 1#f i el d- nane parameter, the directive applies to the entire request or
response. When such a directive appears with a1#f i el d- name parameter, it applies only to the named field
or fields, and not to the rest of the request or response. This mechanism supports extensibility; implementations
of future versions of the HTTP protocol may apply these directives to header fields not defined in HTTP/1.1.
Thecache- cont r ol directives can be broken down into these general categories:

* Restrictions on what is cacheable; these may be imposed only by the origin server.

* Restrictions on what may be stored by a cache; these may be imposed by either the origin server or the user
agent.

» Modifications of the basic expiration mechanism; these may be imposed by either the origin server or the user
agent.

» Controls over cache revalidation and rel oad; these may only be imposed by a user agent.

* Control over transformation of entities.
* Extensions to the caching system.
8.4.28 HTTP Security Considerations

The basic authentication scheme is not a secure method of user authentication, nor does it in any way protect the
entity, which is transmitted in clear text across the physical network used as the carrier. HT TP does not prevent
additional authentication schemes and encryption mechanisms from being employed to increase security or the
addition of enhancements (such as schemes to use one-time passwords) to basic authentication.

The most serious flaw in basic authentication isthat it resultsin the essentially clear text transmission of the
user’s password over the physical network. It is this problem which digest authentication attempts to address.

Because basic authentication involves the clear text transmission of passwords, it should never be used (without
enhancements) to protect sensitive or valuable information.

A common use of basic authentication is for identification purposes requiring the user to provide a user name
and password as a means of identification, for example, for purposes of gathering accurate usage statistics on a
server. When used in thisway, it is tempting to think that there is no danger in itsuse if illicit accessto the
protected documents is not amajor concern. Thisisonly correct if the server issues both user name and
password to the users and in particular does not allow the user to choose his or her own password. The danger
arises because naive users frequently reuse a single password to avoid the task of maintaining multiple
passwords.

If aserver permits usersto select their own passwords, then the threat is not only illicit access to documents on
the server but alsoillicit access to the accounts of all users who have chosen to use their account password. If
users are allowed to choose their own password that also means the server must maintain files containing the
(presumably encrypted) passwords. Many of these may be the account passwords of users perhaps at distant
sites. The owner or administrator of such a system could conceivably incur liability if thisinformation is not
maintained in a secure fashion.

Basic authentication is also vulnerable to spoofing by counterfeit servers. If acommon user can be led to believe
that sheis connecting to a host containing information protected by basic authentication when in fact sheis
connecting to a hostile server or gateway, then the attacker can request a password, storeit for later use, and
feign an error. Thistype of attack is not possible with digest authentication. Server implementers should guard
against the possibility of this sort of counterfeiting by gateways or Common Gateway Interface (CGlI) scripts. In
particular it is very dangerous for a server to simply turn over a connection to a gateway since that gateway can
then use the persistent connection mechanism to engage in multiple transactions with the client while
impersonating the original server in away that is not detectable by the client.

AnHTTP/1.1 server may return multiple challenges with a 401 (“authenticate”) response, and each challenge
may use a different scheme. The challenges are returned to the user agent in the same order that the server would
prefer they be chosen. The server should order its challenges with the “most secure”’ authentication scheme first.
A user agent should choose as the challenge to be made to the user the first one that the user agent understands.

When the server offers choices of authentication schemes using the WAV Aut hent i cat e header, the
“security” of the authentication is such that only malicious users could capture the set of challenges and try to
authenticate themselves using the weakest of the authentication schemes. Thus, the ordering serves more to
protect the user’ s credential s than the server’ s information.

A possible person-in-the-middle (PITM) attack would be to add aweak authentication scheme to the set of
choices, hoping that the client will use one that exposes the user’ s credentials (e.g., password). For this reason,
the client should always use the strongest scheme that it understands from the choices accepted. An even better
PITM attack would be to remove all offered choices, and to insert a challenge that requests basic authentication.
For this reason, user agents that are concerned about this kind of attack could remember the strongest
authentication scheme ever requested by a server and produce a warning message that requires user confirmation
before using aweaker one. A particularly insidious way to mount such a PITM attack would be to offer a“free”
proxy caching service to gullible users.

A server isin the position to save personal data about a user’ s requests which may identify their reading patterns
or subjects of interest. Thisinformation is clearly confidential in nature and its handling may be constrained by
law in certain countries. People using the HTTP protocol to provide data are responsible for ensuring that such
material is not distributed without the permission of any individuals that are identifiable by the published

results.

Like any generic data-transfer protocol, HT TP cannot regulate the content of the data that is transferred, nor is
there any a priori method of determining the sensitivity of any particular piece of information within the context
of any given request. Therefore, applications should supply as much control over thisinformation as possible to
the provider of that information. Four header fields are worth special mention in this context: Ser ver, Vi a,
Ref errer, and Fr om Revealing the specific software version of the server may allow the server machine to
become more vulnerable to attacks against software that is known to contain security holes. Implementers
should make the Ser ver header field a configurable option.

Proxies which serve as a portal through a network firewall should take special precautions regarding the transfer
of header information that identifies the hosts behind the firewall. In particular, they should remove, or replace
with sanitized versions, any Vi a fields generated behind the firewall.

The Ref err er field alows reading patterns to be studied and reverse links drawn. Although it can be very
useful, its power can be abused if user details are not separated from the information contained in the

Ref er r er . Even when the personal information has been removed, the Ref er r er field may indicate a
private document’ s URI whose publication would be inappropriate. The information sent in the Fr omfield
might conflict with the user’ s privacy interests or their site’ s security policy, and hence it should not be
transmitted without the user being able to disable, enable, and modify the contents of the field. The user must be
able to set the contents of this field within a user preference or application defaults configuration.

We suggest, though do not require, that a convenient toggle interface be provided for the user to enable or
disable the sending of Fr omand Ref er r er information.

Implementations of HTTP origin servers should be careful to restrict the documents returned by HTTP requests
to be only those that were intended by the server administrators. If an HTTP server translates HTTP URIs
directly into file system calls, the server must take special care not to serve files that were not intended to be
delivered to HTTP clients. For example, UNIX, Microsoft Windows, and other operating systemsuse “..” asa
path component to indicate a directory level above the current one. On such a system, an HT TP server must
disallow any such construct in the Request - URI if it would otherwise allow access to a resource outside
those intended to be accessible viathe HTTP server. Similarly, filesintended for reference only internally to the
server (such as access control files, configuration files, and script code) must be protected from inappropriate
retrieval, since they might contain sensitive information. Experience has shown that minor bugs in such HTTP
server implementations have turned into security risks.

HTTP clients are often privy to large amounts of personal information (the user’ s name, location, mail address,
passwords, encryption keys, etc.), and should be very careful to prevent unintentional leakage of this
information viathe HTTP protocol to other sources. A convenient interface may be provided for the user to
control dissemination of such information, and consequently designers and implementers should be particularly
careful in this area. History shows that errorsin this area are often both serious security and/or privacy
problems, and often generate highly adverse publicity for the implementer’ s company.

Accept request - header s canrevea information about the user to all servers which are accessed. The
Accept - Language header in particular can reveal information the user would consider to be of a private
nature, because the understanding of particular languages is often strongly correlated to the membership of a
particular ethnic group. User agents which offer the option to configure the contents of an Accept -
Language header to be sent in every request are strongly encouraged to let the configuration process include a
message which makes the user aware of the loss of privacy involved.

An approach that limits the loss of privacy would be for a user agent to omit the sending of Accept -
Language headers by default, and to ask the user whether it should start sending Accept - Language
headersto a server if it detects, by looking for any Vary r esponse- header fields generated by the server,
that such sending could improve the quality of service.

Elaborate user-customized Accept header fields sent in every request, in particular if these include quality
values, can be used by servers as relatively reliable and long-lived user identifiers. Such user identifiers would
allow content providersto do click-trail tracking, and would allow collaborating content providers to match
cross-server click-trails or form submissions of individual users. Note that for many users not behind a proxy,
the network address of the host running the user agent will also serve as along-lived user identifier. In
environments where proxies are used to enhance privacy, user agents should be conservative in offering
Accept header configuration options to end users. As an extreme privacy measure, proxies could filter the
Accept headersin relayed requests. General-purpose user agents which provide a high degree of header
configurability should warn users about the loss of privacy which can be involved.

8.4.29 HTTP and DNS Spoofing

Clientsusing HTTP rely heavily on the Domain Name Service, and are thus generally prone to security attacks
based on the deliberate misassociation of IP addresses and DNS names. Clients need to be cautious in assuming
the continuing validity of an IP number/DNS name association.

In particular, HTTP clients should rely on their name resolver for confirmation of an IP number/DNS name
association, rather than caching the result of previous host name lookups. Many platforms already can cache
host name lookups locally when appropriate, and they should be configured to do so. These lookups should be
cached, however, only when the TTL (time to live) information reported by the name server makes it likely that
the cached information will remain useful.

If HTTP clients cache the results of host name lookups in order to achieve a performance improvement, they
must observe the TTL information reported by DNS. If HTTP clients do not observe thisrule, they could be
spoofed when a previously accessed server’s IP address changes. As network renumbering is expected to
become increasingly common, the possibility of thisform of attack will grow. Observing this requirement thus
reduces this potential security vulnerability.

This requirement also improves the |oad-balancing behavior of clients for replicated servers using the same
DNS name and reduces the likelihood of a user’s experiencing failure in accessing sites which use that strategy.
If asingle server supports multiple organizations that do not trust one another, then it must check the values of
Locat i on and Cont ent - Locat i on headersin responses that are generated under control of said
organizations to make sure that they do not attempt to invalidate resources over which they have no authority.

8.4.30 Additional information on HTTP

The following documents provide further information on HTTP:
Tags for the Identification of Languages, RFC 1766
The Internet Gopher Protocol, RFC 1436

Universal Resource Identifiersin WMV A Unifying Syntax for the Expression of Names and Addresses
of Objects on the Network as used in the World-Wide Web, RFC 1630

Uniform Resource Locators (URL), RFC 1738
Hyper Text Markup Language Specification 2.0, RFC 1866
Hypertext Transfer Protocol HTTP/1.0, RFC 1945

Multipurpose Internet Mail Extensions (MIME), Part One: Format of Internet Message Bodies, RFC
2045

Requirements for Internet Hosts, Applications, and Support, RFC 1123
Sandard for the Format of ARPA Internet Text Messages, RFC 822

WAI S Interface Protocol Prototype Functional Specification Relative Uniform Resource Locators, RFC
1808

Standard for Interchange of USENET Messages, RFC 1036

Network News Transfer Protocol. A Proposed Standard for the Stream-Based Transmission of News,
RFC 977

MIME (Multipurpose Internet Mail Extensions), Part Three: Message Header Extensions for Non-ASCI|
Text, RFC 2047

Form-Based File Upload in HTML, RFC 1867

Smple Mail Transfer Protocol, RFC 821

Media Type Registration Procedure, RFC 2048

File Transfer Protocol (FTP), RFC 959

Assigned Numbers, RFC 1700

Functional Requirements for Uniform Resource Names, RFC 1737

US-ASCII. Coded Character Set—7-Bit American Sandard Code for Information Interchange.
International Standard Information Processing 8-bit Sngle-Byte Coded Graphic Character Sets,
Standard ANSI X3.4-1986, ANSI

Part 1:
Part 2:
Part 3:
Part 4:
Part 5:
Part 6:
Part 7:
Part 8:
Part 9:

SO-8859.
Latin Alphabet No. 1, 1ISO 8859-1:1987

Latin Alphabet No. 2, 1ISO 8859-2, 1987
Latin Alphabet No. 3, 1SO 8859-3, 1988
Latin Alphabet No. 4, 1SO 8859-4, 1988
Latin/Cyrillic Alphabet, 1SO 8859-5, 1988
Latin/Arabic Alphabet, 1SO 8859-6, 1987
Latin/Greek Alphabet, 1SO 8859-7, 1987
Latin/Hebrew Alphabet, 1SO 8859-8, 1988
Latin Alphabet No. 5, 1SO 8859-9, 1990

The Content-MDS5 Header Field, RFC 1864

Renumbering Needs Work, RFC 1900

GZIP file format specification version 4.3, RFC 1952

Analysis of HTTP Performance, <URL.: http://www.isi.edu/lsan ib/http-perf/>

Network Time Protocol, V.3, Specification, Implementation, & Analysis, RFC 1305
DEFLATE Compressed Data Format Specification V.1.3, RFC 1951

Analysis of HTTP Performance Problems, <URL:_http:// sunsite.unc.edu/mdma-r el ease/http-prob.html>

ZL1B Compressed Data Format Specification V.3.3, RFC 1950

An Extension to HTTP: Digest Access Authentication, RFC 2069

8.5 SimpleMail Transfer Protocol

The Smple Mail Transfer Protocol (SMTP) is another TCP application. It does not use a client and server, but
the functionality issimilar. SMTP utilizes what is called a user agent and a message transfer agent. Figure 8-6 is
asimple example of how SMTP operates.

Sending mail is accomplished by invoking a user agent, which, in turn, causes an editor to appear on the user’s
display. After the mail message is created and sent from the user agent, it istransferred to the sending message
transfer agent, who is responsible for establishing communication with the message transfer agent on the
destination host. Once thisis accomplished, the sending message transfer agent sends the message to the
receiving message transfer agent, which then stores it in the appropriate queue for the user. The recipient of the
mail only needs to invoke the user agent on that machine to read the mail.

Hrest & Host B
[LEE] Ml Wi ks
Agent Bax Bax Agant
I) ' (Y
Mrssage Krssare
Cusue Cuale
aiea e
W
M sarm M sare
Trangior Trangior
dgen figmnt
"'F._._..._ '\._“_-‘- R— o e - ---""-\\
I.“.“- “‘I
C} TCRIP network '“3
- ——— —— e — -
Figure 8-6
SMTP components.

8.6 Domain Name System

In the beginning, the Internet used hosts files to keep track of hosts on the Internet. This meant that when new
hosts were added to the Internet, all participating hosts had to have their hosts file updated. Asthe Internet grew,
thistask of updating the hosts file became insurmountable. The Domain Name System (DNS) grew from the
need to replace such a system.

The philosophy of DNS was to replace the need to FTP updated hosts files throughout the entire network. Thus,
the foundation of DNS was built around a distributed database architecture.

DNS Structure

DNSisahierarchical structure that in theory resembles an upside-down tree. Theroot is at the top and layers
below. Figure 8-7 illustrates an example of how DNS isimplemented on the Internet.

The legend for the DNS structure in Fig. 8-7 is ROOT—the root server contains information about itself and the
top-level domainsimmediately beneath it; GOV—government entities; EDU—any educational institutions;
ARPA—any ARPAnet (Internet) host ID; COM—any commercial organizations; MIL—military organizations;
ORG—serves as a miscellaneous category for those not formally covered; CON—counties conforming to 1ISO
standards.

L=ty

Figure 8-7
DNS structure.

Figure 8-7 shows the Internet implementation of DNS. Three examples are shown to clarify the structure. Notice
that IBM isunder COM (which is commercial), beneath IBM are Boulder and Austin, beneath Austin are
research and marketing, and beneath Boulder are printing and RISC. The other examples are MIT and Berkeley.
The example with MIT shows beneath it two zones: engineering and science. The Berkeley example has one
layer beneath it entitled engineering.

At alocal level, such asin a corporation, most sites follow the naming scheme and structure becauseit is
consistent and if a connection is ever made to the Internet restructuring of DNS is not necessary.

DNS Components

To better understand DNS knowing the components that make it functional is helpful. These components
include:

domain The last part in adomain name is considered the domain. An exampleiseng. mi t . edu; hereedu is
the domain.

domain name Defined by the DNS as being the sequence of names and domain. For example, adomain name
couldbeeng. m t . edu.

label The DNS identifies each part of adomain name as alabel. For example, eng. m t . edu hasthree labels:
eng. mt. edu.

name cache Storage used by the name resolver to store frequently used information.

nameresolver Thisis software that functions as a client regarding its interaction with a name server.
Sometimes referred to ssmply as the client.

name server A program operating on a host that translates names to addresses; it does this by mapping domain
names to IP addresses. Also, name server may be used to refer to a dedicated processor running name server
software.

zone A contiguous part of adomain.

Figure 8-8 shows a TCP/IP network with five hosts.

1. Theory of operation. Of the five hosts shown in Fig. 8-8, host B has been designated as the name server. It has
adatabase with alist of aliases and IP addresses of participating hosts in the network. When the user on host A
wants to communicate with host C, the name resolver checksitslocal cache; if no match is found, then the name
resolver (client) sends arequest (also known as a query) to the name server, which then checks its cache for a
match. If no match is found, then the name server checks its database. Although not shown in thisfigure, if the
name server were unable to locate the name in its cache or database, it would forward the request to another
name server then return the response back to host A. In an Internet environment that implements DNS, some
givens are assumed. For example, a name resolver is required, a name server, and usually aforeign name server
is part of the network.

Heest & Hord B

e
— Rasporse
| p— | <
Marw
| Hesower o Nl
Catha |_‘,_..--r kot Rincjunst Fer
\
| I
<

o T~— 1—%& X

Humsl

Figure 8-8
Conceptual view of DNS

2. Implementation with UDP. The DNS provides service for TCP and UDP; thisis why figures have shown
DNS residing above part of TCP and part of UDP. It serves the same purpose for both transport-layer protocols.

3. Obtaining additional information. Additional information can be obtained in any issue where DNSis
implemented. RFCs 882, 883, 920, 973, 974, 1032-1035, and 1123 are a good starting point.

8.7 Popular UDP Applications

This section presents popular UDP applications, including a Simple Network Management Protocol (SNMP),
Trivial File Transfer Protocol (TFTP), Network File System (NFS), Remote Procedure Call (RPC), custom
applications, and Packet Internet Groper (PING) and FINGER.

8.8 Simple Network Management Protocol

The Simple Network Management Protocol (SNMP) is considered the de facto standard for managing TCP/IP
networks as of thiswriting. SNM P uses agents and application managers (or simply managers). A user agent can
reside on any node that supports SNMP, and each agent maintains status information about the node on which it
operates. These nodes, which may be a host, gateway, router, or other type of network device, are called
network elementsin SNMP lingo. Thisterm element is merely a generic reference to anode.

Normally, multiple elements exist in a TCP/IP network and each hasits own agent. Typically, one nodeis
designated as a network management node. Some refer to this node as the network manager. This host (network
management node) has an application that communicates with each network element to obtain the status of a
given element. The network management node and the element communicate via different message types. Some
of these messages are:

GET REQUEST Thisrequest is used by the network manager to
communicate with an element to request a variable or list
about that particular network element.

GET RESPONSE Thisisareply toaGET REQUEST, SET REQUEST, and
GET NEXT REQUEST.

GET NEXT Thisrequest is used to sequentially read information about

REQUEST an element.

SET REQUEST Thisrequest enables variable valuesto be set in an
element.

TRAP This message is designed to report information such as

link status, whether a neighbor responds, whether a
message is received, or status of the element.

Information stored on elements are maintained in a management information base (M1B), a database containing
information about a particular element; each element has an MIB. MIB information includes statistical
information regarding segments transferred to and from the manager application, a community name, interface
type, and other element-specific information.

MIB information structure is defined by the Sructure of Management Information (SM1) language, which is
used to define a data structure and methods for identifying an element for the manager application. This
information identifies object variablesin the MIB. Object descriptions defined by SMI include at least the
following:

access Object access control is maintained viathis description.

definition This provides atextual description of an object.

names Thisterm isalso synonymous with object identifiers. Thisrefers to a sequence of integers.
object descriptor Thisisatext name ascribed to the object.

object identifier Thisisanumeric ID used to identify the object.

status This describes the level of object support for status.

SNMP implementations use ASN.1 for defining data structures in network elements. Because this language is
based on a data-type definition, it can be used to define practically any element on a network.

SNMP itself is event-oriented. An event is generated when a change occurs to an object. SNMP operation is
such that approximately every 10 to 15 min, the manager application communicates with all network elements
regarding their individual MIB data.

Additional information can be obtained from RFCs 1155 to 1157.

8.9 TheTrivial File Transfer Protocol

The Trivial File Transfer Protocol (TFTP) is an application that uses UDP as a transport mechanism. The
program itself is simpler than its counterpart FTP, which uses TCP as a transport mechanism. TFTPis
sufficiently small in size so that it can be part of ROM on diskless workstations.

TFTP maximum packet sizeis 512 bytes. Because of this and the nature of operation, TFTP is popular with
network devices such as routers and bridges. If implemented, it is normally used on initial device boots.

TFTP utilizes no security provision or authentication; however, it does have some basic timing and
retransmission capabilities. TFTP uses five basic types of protocol data units (PDUs): acknowledgment, data,
error, read request, and write request. These PDUs are used by TFTP during file transfer. The first packet TFTP
establishes a session with the target TFTP program. It then requests a file transfer between the two. Next it
identifies a filename and whether afile will be read or written. These five PDUs represent the operational ability
of TFTP. It is straightforward and not as complex as FTP. Additional information can be obtained from RFCs
783 and 1068.

8.10 Remote Procedure Call

RPC isaprotocol. Technically speaking, it can operate over TCP or UDP as a transport mechanism.
Applications use RPC to call aroutine, thus executing like a client and making a call against a server on a
remote host. This type of application programming represents a high-level, peer-oriented relationship between
an application and an RPC server. Consequently, this means that these applications are portable to the extent
that RPC isimplemented.

Within RPC isthe eXterna Data Representation (XDR) protocol. XDR data description language can be used to
define datatypes when heterogeneous hosts are integrated. Having the capability to overcome the inherent
characteristics of different architectures lends RPC and XDR arobust solution for distributed application
communication. This language permits parameter requests to be made against afile of an unlike type. In short,
XDR permits datatype definition in the form of parameters and transmission of these encoded parameters.

XDR provides data transparency by way of encoding (or encapsulating) data at the application layer, so lower
layers and hardware do not have to perform any conversions. A powerful aspect of XDR is automatic data
conversion performed via declaration statements and the XDR compiler. The XDR compiler generates required
XDR calls, thus somewhat automating the operation. Figure 8-9 shows an example of this type implementation.

Cliew : : Sorvar

J— aaptston
|I'f'|::r- _;'T D
. .
AN /7
a8 \\R ,,7{ —
1{‘#.1pn¢t":: '

Figure 8-9
Conceptual view of RPC and XDR.

RPC implements a port mapper, which starts on RPC server initialization. When RPC services start, the
operating system assigns a port number to each service. These services inform the port mapper of this port
number, its program number, and other information required by the port mapper to know for it to match a
service with arequestor.

Client applications issue a service request to a port mapper. The port mapper, in turn, identifies the requested
service and returns the appropriate parameters to the requesting client application. In other words, the port
mapper is similar in function to a manager knowing what services are available and their specific addressable
location.

The port mapper can be used in a broadcast scenario. For example, arequesting RPC call can broadcast acall to
all hosts on a network. Applicable port mappers report back to the information sought after by the client; hence,
the term remote procedure call (RPC).

Additional information on RPC and related components can be found in RFCs 1057 and 1014.

8.11 Network File System

The Network File System (NFS) isaproduct of Sun Microsytems. It permits users to execute files without
knowing the location of these files. They may be local or remote in respect to the user. Users can create, read, or
remove adirectory. Files themselves can be written to or deleted. NFS provides a distributed file system that
permits a user to capitalize on access capabilities beyond their local file system.

MHFS
e

I:-l::nl

Cle LDP

Romie:

ARR SRR

EMP pape

Figure 8-10
Conceptual view of NFS, RPC, and UDP.

NFS uses RPC to enable execution of aroutine on aremote server. Conceptually, NFS, RPC, and UDP (which it
typically uses) appear as shown in Fig. 8-10.

The idea behind NFSisto have one NFS copy of it on aserver that all users on a network can access. Asa
consequence, software (and updates) can be installed on one server and not on multiple hosts in a networked
environment. NFS is based on a client/server model. However, with NFS a single NFS server can function to
serve the request of many client requests.

NFS originated in UNIX, where it isimplemented in a hierarchical (tree) structure. However, NFS can operate
with IBM’s VM and MV S operating systems. It can also operate with Digital Equipment’s VMS operating
system.

NFS uses a mount protocol, which identifies afile system and remote host to alocal user’sfile system. The NFS
mount is known by the port mapper of RPC; and thus is capable of being known by requesting client
applications.

NFS also uses the NFS protocol; it performs file transfers among systems. NFS uses port number 2049 in many
cases, however, thisis not awell-known port number (at least at the time of thiswriting). Consequently, the best
approach to the use of NFSisto use the NFS port number with the port mapper.

In some respects an NFS server operates with little information identified to it. A loose analogy of NFS
operation is UDP. UDP assumes a custom application (or other entity operating on top of it) will perform
requirements such as retransmissions (if required) and other procedures that would otherwise be performed by a
connection-oriented transport protocol such as TCP. NFS assumes that required services are implemented in
other protocols.

From a user perspective, NFSistransparent. Typical user commands are entered, and then passed to the NFS
server, and in most cases a user does not know the physical location of afile in a networked environment.

Additional information about the Network File System and related components can be obtained through RFCs
1014, 1057, and 1094.

8.12 Custom Applications

Custom applications can be written and use UDP as a transport mechanism. One scenario could be where two
hosts need peer program communication through a network. Writing a custom application using UDP can
achieve thistask as shownin Fig. 8-11.

Figure 8-11
Custom applications using UDP.

8.13 PING and FINGER

Packet Internet Groper (PING) is actually a protocol that uses UDP as a transport mechanism to achieveits
function. It is used to send a message to a host and wait for that host to respond to the message (if the target host
is“alive’). PING uses ICMP echo messages along with the echo reply messages.

PING isahelpful tool on TCP/IP networks that is used to determine whether a device can be addressed. It is
used in a network to determine whether a network itself can be addressed. A PING can also beissued against a
remote host name. The purpose for this function is name verification and is generally used by individuals who
troubleshoot TCP/IP networks.

FINGER is acommand issued against a host which will cause the target host to return information about users
logged onto that host. Some information retrievable via FINGER includes user name, user interface, and job
name that the user is running.

Additional information on FINGER can be obtained in RFC 1288.

8.14 Summary

TCP/IP is an upper-layer protocol that has a proven track record. It began around 1975, public demonstration of
its capabilities were presented in 1978, and in 1983 the DoD endorsed it as the protocol to use for connection to
the Internet.

Many vendors supply TCP/IP products today. TCP/IP can operate on different hardware and software platforms.
Thisflexibility, aong with its cost-efficient pricing, does put it in afavorable position for those looking for a
protocol that provides a variety of services such as remote logon, file transfer, electronic mail (email), a
windowing system, and programmatic interface support.

Network management capabilities include distributed processing support and other offerings as well.

TCP/IP has two transport-layer protocols which make usability flexible; some need the reliability of transport
such as TCP; others, a connectionless transport such as UDP. TCP/IP supports both.

TCP/IP has in many ways become a de facto standard in many different institutions. It is used in government,
commercia business, educational, nonprofit organizations, and individual use as well. TCP/IP is dominant
throughout the global marketplace today; most major vendors around the world support it to varying degrees. Its
flexibility with data-link-layer protocols makes it attractive.

9
TCP/IP Routing IP V.4

9.1 1P V.4 Perspective and Functions

The Internet Protocol (IP), also called a catenet, was originally designed for use in interconnected systems of
packet-switched computer communication networks. It provides for transmitting blocks of data called
datagrams from sources to destinations, where sources and destinations are hosts identified by fixed-length
addresses. |P also provides for fragmentation and reassembly of long datagrams, if necessary, for transmission
through small packet networks.

IP was originally limited in purpose to provide the functions necessary to deliver a package of bits (Internet
datagrams) from a source to a destination through an interconnected group of networks. IP has no mechanisms
to augment end-to-end data reliability, flow control, sequencing, or other services commonly found in host-to-
host protocols. However, IP can capitalize on the services of its supporting networks to provide various types
and qualities of service.

IPisinvoked by host-to-host protocolsin the Internet environment. This protocol calls on local network
protocols to carry the Internet datagram to the next gateway or destination host. In this case, a TCP module
would call on the IP part to take a TCP segment (the TCP header and user data) as the data portion of an
Internet datagram.

IP implements two basic functions: addressing and fragmentation. Internet modul es use these addresses carried
in the Internet header to transmit Internet datagrams toward their destinations. The selection of a path for
transmission is called routing. Fieldsin the IP are used to fragment and reassembl e Internet datagrams when
necessary for transmission through small packet-oriented networks.

An Internet module resides in each host engaged in Internet communication and in each router that interconnects
networks. These modules share common rules for interpreting address fields and for fragmenting and
assembling Internet datagrams and have procedures for making routing decisions and other functions.

IP treats each Internet datagram as an independent entity unrelated to any other Internet datagram. Hence, there
are no connections or logical circuits. IP uses four key mechanismsin providing its service: type of service, time
to live, options, and header checksum.

1. Type of serviceisused to indicate the quality of the service desired. Thisis an abstract or generalized set of
parameters to be used to determine the selection of the actual service parameters employed when transmitting a
datagram through a particular network. This type-of-service indication is used by routers to select the actual
transmission parameters for a particular network, the network for the next hop, or the next router when routing
an Internet datagram.

2. Timeto liveindicates an upper boundary of an IP datagram lifetime. It is set by the datagram sender and
reduced at points along the route where it is processed. If the time to live reaches zero before the Internet
datagram reaches its destination, the Internet datagram is destroyed.

3. Options provide for control functions needed or useful in some situations but unnecessary for the most
common communications. This makes timestamps, security, and special routing possible.

4. Header checksum provides a verification that the information used in processing an Internet datagram has
been transmitted correctly. The data may contain errors. If the header checksum fails, the Internet datagram is
discarded at once by the entity which detects the error. IP does not provide a reliable communication facility.
There are no acknowledgments either end to end or hop by hop; nor is there any error control for data, only a
header checksum. IP does not perform any retransmissions and has no flow control. Any errors detected are
reported via the Internet Control Message Protocol (ICMP), arequired component that accompanies IP.

9.2 IP Operation
Transmitting a datagram from one application program to another isillustrated by the following example.

Assume that an intermediate router is operating in the environment depicted in this example. A sending
application program prepares its data and calls on its P modul e to send the data as a datagram. It passes the
destination address and other parameters as arguments to this call. The IP module prepares a datagram header
and attaches the data to it. The IP module determines alocal network address for this Internet address, in this
case it isthe address of arouter. The IP module sends this datagram and the local network address to the
network interface. The network interface, in turn, creates alocal network header, and attaches the datagram to it.
It then sends the result via the local network.

The datagram arrives at arouter wrapped in the local network header, the local network interface strips off this
header, and turns the datagram over to the Internet module. The Internet module determines from the Internet
address that the datagram is to be forwarded to another host in a second network. The Internet module
determines alocal net address for the destination host. It calls on the local network interface for that network to
send the datagram.

Thislocal network interface creates alocal network header and attaches the datagram sending the result to the
destination host. Here the destination host datagram is stripped of the local net header by the local network
Interface and handed to the Internet module. The Internet modul e determines that the datagram is intended for
an application program in this host; it then passes the data to the application program in response to a system
call, passing the source address and other parameters as aresult of the call (see Fig. 9-1).

The purpose of IP isto move datagrams through a set of networks. Datagrams are passed from one Internet
module to another until the destination is reached. The Internet modules reside in hosts and routersin the
Internet. Datagrams are routed from one Internet module to another through individual networks according to
the interpretation of an Internet address. Thus, one important mechanism of the Internet Protocol is the Internet
address.

Because datagrams may have to traverse multiple internal networks within the Internet, the routing of messages
from one Internet module to another may be achieved by fragmentation, which is necessary to traverse a
network whose maximum packet size is smaller than the datagram.

Applicator Appdication

Pregram T rag AT
| [

Incarnel Modwa ITemel Module Internet Modula

| | | I

L HL | kit LM LN a2

| L |
Lacal Matwick 01 Local Metwack @2

Figure 9-1
Using the Internet module to send a datagram.

9.2.1 Fragmentation

Fragmentation of an Internet datagram is necessary when the datagram originates in alocal net that allows a
large packet size but, to reach its destination, must traverse alocal net that accepts smaller packets only.

Any Internet datagram marked “don’t fragment” cannot be fragmented under any circumstances and will be
discarded if it cannot be delivered to its destination without fragmenting.

Fragmentation, transmission, and reassembly across alocal network which isinvisible to the IP moduleis called
intranet fragmentation. The combined fragmentation-reassembly procedure must be able to break a datagram
into an amost arbitrary number of pieces that can be reassembled later. The receiver of the fragments uses the
identification field to ensure that fragments of different datagrams are not mixed. The fragment offset field
informs the receiver of the position of afragment in the original datagram. The fragment offset and length
determine the portion of the original datagram covered by this fragment. The no-more-fragments flag indicates
(by being reset) the last fragment. These fields provide sufficient information to reassemble datagrams.

Theidentification field is used to distinguish the fragments of one datagram from those of another. The
originating protocol module of an Internet datagram sets the identification field to a value that must be unique
for that source-destination pair and protocol for the time the datagram will be active in the Internet system. The
originating protocol module of a complete datagram sets the more-fragments flag to zero and the fragment offset
to zero.

To fragment along Internet datagram, an IP modul e creates two new Internet datagrams and copies the contents
of the Internet header fields from the long datagram into both new Internet headers. The data of the long
datagram are divided into two portions on an 8-octet (64-bit) boundary (the second portion might not be an
integral multiple of 8 octets, but the first must be). Call the number of 8-octet blocks in the first portion number
of fragment blocks (NFB). The first portion of the datais placed in the first new Internet datagram, and the total
length field is set to the length of the first datagram. The more-fragments flag is set to one. The second portion
of the data is placed in the second new datagram, and the total length field is set to the length of the second
datagram. The more-fragments flag carries the same value as the long datagram. The fragment offset field of the
second new datagram is set to the value of that field in the long datagram plus NFB.

This procedure can be generalized for an n-way split, rather than the two-way split described. To assemble the
fragments of an Internet datagram, an IP module (e.g., at a destination host) combines Internet datagrams that all
have the same value for four fields: identification, source, destination, and protocol.

The combination is done by placing the data portion of each fragment in the relative position indicated by the
fragment offset in that fragment’ s Internet header. The first fragment will have the fragment offset zero, and the
last fragment will have the more-fragments flag reset to zero.

9.2.2 Addressing

Names, addresses, and route are distinguished: aname indicates what we seek, an address indicates whereit is,
and aroute indicates how to get there. IP deals primarily with addresses. It is the task of higher-level protocols
to map from names to addresses. The Internet module maps Internet addresses to local net addresses. It isthe
task of lower-level (i.e., local net or gateways) procedures to map from local net addresses to routes.

Addresses are fixed length of 4 octets (32 bits). An address begins with a network number, followed by local
address (called therest field). There are three formats or classes of Internet addresses:

ClassA The high-order bit is zero, the next 7 bits are the network, and the last 24 bits are
the local address.

ClassB The high-order 2 bits are one-zero, the next 14 bits are the network address, and
the last 16 bits are the local address.

ClassC The high-order bits are one-one-zero, the next 21 bits are the network address,
and the last 8 bits are the local address.

Care must be taken in mapping Internet addresses to local net addresses; a single physical host must be able to
act asif it were several distinct hosts to the extent of using several distinct Internet addresses. Some hosts will
also have severa physical interfaces; thisis also called amultihomed host.

A host must be provided with several physical interfaces to the network, each having severa logical Internet
addresses.

9.3 IP Terminology

|P-related terms have specific meanings. Sometimes these terms are misunderstood; for that reason | am
including the following for your reference.

ARPAnNet leader The control information on an ARPAnet message at the host-IMP interface.

ARPAnNet message The unit of transmission between ahost and an IMP in the ARPAnNet. The maximum sizeis
about 1012 octets (8096 bits).

ARPAnet packet A unit of transmission used internally in the ARPAnet between IMPs. The maximum sizeis
about 126 octets (1008 hits).

Destination The destination address, an Internet header field.

DF The don’t-fragment bit carried in the flags field.

flags An Internet header field carrying various control flags.

fragment offset An Internet header field indicating where in the Internet datagram a fragment belongs.

GGP Gateway-to-Gateway Protocol, used primarily between gateways to control routing and other gateway
functions.

Header Control information at the beginning of a message, segment, datagram, packet, or block of data.

ICMP Internet Control Message Protocol, implemented in the Internet module, and used from gateways to
hosts and between hosts to report errors and make routing suggestions.

Identification An Internet header field carrying the identifying value assigned by the sender to aid in
assembling the fragments of a datagram.

IHL The Internet header field length; length of the Internet header measured in 32-bit words.

IMP The Interface Message Processor, the packet switch of the ARPAnNet.

Internet Address A 4-octet (32-bit) source or destination address consisting of a network field and alocal
address field.

Internet datagram The unit of data exchanged between a pair of Internet modules (includes the Internet
header).

Internet fragment A portion of the data of an Internet datagram with an Internet header.

local address The address of a host within a network. The actual mapping of an Internet local address on to the
host addresses in a network is quite general, allowing for many to one mappings.

MF The more-fragments flag carried in the Internet header flags field.
module Animplementation, usually in software, of a protocol or other procedure.

mor e-fragmentsflag A flag indicating whether the Internet datagram in question contains the end of an
Internet datagram, carried in the Internet header flags field.

NFB The number of fragment blocks in the data portion of an Internet fragment; the length of a portion of data
measured in 8-octet units.

octet An 8-bit byte.

options An Internet header field that may contain several options, and each option may be severa octetsin
length.

padding An Internet header padding used to ensure that the data begin on 32-bit word boundary. The padding
IS zero.

protocol In this document, the next-higher-level protocol identifier, an Internet header field.
rest Thelocal-address portion of an Internet address.
source The source address, an Internet header field.

TCP Transmission Control Protocol; a host-to-host protocol for reliable communication in Internet
environments.

TCP segment The unit of data exchanged between TCP modules (including the TCP header).
TFTP Trivia File Transfer Protocol; asimple file transfer protocol built on UDP.

timetolive (TTL) An Internet header field which indicates the upper bound on how long this Internet
datagram may exist.

total length An Internet header field indicating the length of the datagram in octets, including Internet header
and data.

Type of service (TOS) An Internet header field indicating the type (or quality) of service for this Internet
datagram.

UDP User Datagram Protocol; a user-level protocol for transaction-oriented applications.

user The user of the Internet protocol. This may be a higher-level protocol module, an application program, or a
gateway program.

version A field indicating the format of the Internet header.

9.4 Routersand IP

Routers (previously termed gateways) implement Internet protocols to forward datagrams between networks and
implement the Gateway-to-Gateway Protocol (GGP) to coordinate routing and other Internet control
information.

In arouter the higher-level protocols need not be implemented and the GGP functions are added to the IP
module. See Fig. 9-2.

O —
I lmterraat Frotoosd 8 WP & GGFI
P —

Loscal et 11 Local Kt |

T P

Figure 9-2
GGP functions added to the |P module.

9.5 IP Header Format
The contents of the Internet header are shown in Fig. 9-3. The specifics of these fields are as follows:
1. Version: 4 bits. Thisfield indicates the format of the Internet header. This document describes version 4.

2. IHL: 4 bits. The length of the Internet header is measured in 32-bit words, and thus points to the beginning of
the data. Note that the minimum value for a correct header is 5.

3. Type of service: 8 hits. This feature provides an indication of the abstract parameters of the quality of service
desired. These parameters are to be used to guide the selection of the actual service parameters used when
transmitting a datagram through a particular network. Several networks offer service precedence, which
somehow treats high-precedence traffic as more important than other traffic (generally by accepting only traffic
above a certain precedence at time of high load). The maor choice is athree-way tradeoff between low delay,
high reliability, and high throughput. Bit priority (Fig. 9-4) is asfollows: bits 0 to 2—precedence; bit 3—0 =
normal delay, 1 = low delay; bit 4—0 = normal throughput, 1 = high throughput; bit 5—0 = normal reliability, 1
= high reliability; bits 6 and 7—reserved for future use.

1 # a

QIZIABETEDOIZIABETEROGIZISEGETIOG]

T T B e e e SR ST R T

Versinnl IHL [Type of Servcal Toral Langth
T R A S S S S R Y
N GO IFlagsl Fragmanm e |
T
Tirme b Liwz | Prodocsd | Headew Tk |

e e
Source ACkraas |
L Bt e o e T T e By Tt I o B B TR BT O T Y S B I R B |
Castingtizn Sdoress i
S S S S——
iphions | Parlding

L e L o o e e I B e e ot o S

Figure 9-3
The Internet header.

| 2 5 a =] & r
R
I [
FRECEDERCE 12 1T I RIDIQI
I [

a)

b b—t—t
1D IR
IR |

e T
1]

Figure 9-4
Bit priority.

Precedence is broken down as follows: 111—network control; 110—internetwork control; 101—CRITIC/ECP;
100—flash override; 011—flash; 010—immediate; 001—priority; 000—routine. Delay, throughput, and
reliability indications may increase the cost (in some sense) of the service. In many networks better performance
for one of these parameters is coupled with worse performance on another. Except for very unusual cases, only
two of these three indications should be set. The type of service is used to specify the treatment of the datagram
during its transmission through the Internet system. The network control precedence designation is intended for
use within a network only. The actual use and control of that designation is up to each network. The
internetwork control designation isintended for use by gateway control originators only. If the actual use of
these precedence designations is of concern to a particular network, that network must control the access to, and
use of, those precedence designations.

4. Total length: 16 bits. Thisisthe length of the datagram, measured in octets, including Internet header and
data. Thisfield allows the length of a datagram to be up to 65,535 octets. Such long datagrams are impractical
for most hosts and networks. All hosts must be prepared to accept datagrams of up to 576 octets (whether they
arrive whole or in fragments). It is recommended that hosts send datagrams larger than 576 octets only if they
have assurance that the destination is prepared to accept the larger datagrams. The number 576 is selected to
allow areasonable-sized data block to be transmitted in addition to the required header information. For
example, this size allows a data block of 512 octets plus 64 header octets to fit in a datagram. The maximum
Internet header is 60 octets, and atypical Internet header is 20 octets, allowing amargin for headers of higher-
level protocols.

5. Identification: 16 bits. Anidentifying value assigned by the sender to aid in assembling the fragments of a
datagram.

6. Flags: 3 bits. Various control flags. Breakdown is as follows: bit 0—reserved, must be zero; bit 1—(DF) 0 =
may fragment, 1 = don’t fragment; bit 2—(MF) 0 = last fragment, 1 = more fragments.

012
+—+++

1D M]

| O] F | F]
++—++

7. Fragment offset: 13 bits. Thisfield indicates where in the datagram this fragment belongs. The fragment
offset is measured in units of 8 octets (64 bits). The first fragment has offset zero.

8. Timeto live: 8 bits. Thisfield indicates the maximum time the datagram is alowed to remain in the Internet
system. If this field contains the value zero, then the datagram must be destroyed. Thisfield is modified in
Internet header processing. The time is measured in units of seconds, but since every module that processes a
datagram must decrease the TTL by at least one even if it processes the datagram in less than a second, the TTL
must be regarded only as an upper bound on the time a datagram may exist. The intention isto cause
undeliverable datagrams to be discarded, and to bound the maximum datagram lifetime.

9. Protocol: 8 bits. Thisfield indicates the next-level protocol used in the data portion of the Internet datagram.

10. Header checksum: 16 bits. A checksum on the header only. Since some header fields change (e.g., timeto
live), thisis recomputed and verified at each point that the Internet header is processed. The checksum field is
the 16-bit one’s complement of the one’s complement sum of all 16-bit wordsin the header. For purposes of
computing the checksum, the value of the checksum field is zero. This checksum is simple to compute, and
experimental evidence indicatesit to be adequate, but it is provisional and may be replaced by a CRC procedure,
depending on further experience.

11. Source address: 32 hits.
12. Destination address; 32 bits.

13. Options: variable. The options may or may not appear in datagrams. They must be implemented by all 1P
modules (host and routers). What is optional istheir transmission in any particular datagram, not their
implementation. In some environments the security option may be required in all datagrams. The option field is
variable in length, containing zero or more options. There are two cases for the format of an option: (1) asingle
octet of option type and (2) an option-type octet, an option-length octet, and the actual option-data octets. The
option-length octet counts the option-type octet and the option-length octet as well as the option-data octets. The
option-type octet is viewed as having three fields: 1 bit, copied flag; 2 bits, option class; 5 bits, option number.
The copied flag indicates that this option is copied into all fragments on fragmentation: 0—not copied,;
1—copied. Option classes are 0—control; 1—reserved for future use; 2—debugging and measurement;
3—reserved for future use. Internet options are defined as shown in Table 9-1 and Fig. 9-5.

This option indicates the end of the option list. This might not coincide with the end of the Internet header
according to the Internet header length. Thisis used at the end of all options, not the end of each option, and
need be used only if the end of the options would not otherwise coincide with the end of the Internet header.
This option may be copied, introduced, or deleted on fragmentation, or for any other reason.

The no-operation option (see Fig. 9-6) may be used between options, for example, to align the beginning of a
subsequent option on a 32-bit boundary. It may be copied, introduced, or deleted on fragmentation, or for any
other reason.

The security option provides away for hosts to send security, compartmentation, handling restrictions, and TCC
(closed user group) parameters. The format for the security option is shownin Fig. 9-7.

Table9-1 Internet Options

Class Number Length Description

0 0 — End of option list. This option occupies only 1 octet; it has no
length octet.

0 1 — No operation. This option occupies only 1 octet; it has no
length octet.

0 2 11 Security. Used to carry security, compartmentation, user group
(TCC), and handling restriction codes compatible with DoD
requirements.

0 3 Variable Loose source routing. Used to route the Internet datagram per
information supplied by the source.

0 9 Variable Strict source routing. Used to route the Internet datagram per
information supplied by the source.

0 7 Variable Record route. Used to trace the route taken by an Internet
datagram.

0 8 4 Sream ID. Used to carry the stream identifier.

2 4 Variable Inter net timestamp.

Specific option definitions
End of option list

-
ICOCOTanM
¥

Type=C

Figure 9-5
Internet options.

Figure 9-6
The no-operation option.

| NS | S

1COTOCIDO0DI0N T 155 BESIC0L CLEHHH HHAI TCU |
L] =i i it i L i N I
Figure 9-7

The security option.

1. Security (Sfield): 16 bits. Specifies one of 16 levels of security (eight of which are reserved for future use):

00000000 00000000 Unclassified

11110001 00110101 Confidentia

01111000 10011010 EFTO

10111100 01001101 MMMM

01011110 00100110 PROG

10101111 00010011 Restricted

11010111 10001000 Secret

01101011 11000101 Top secret

00110101 11100010 (Reserved for future use)
10011010 11110001 (Reserved for future use)
01001101 01111000 (Reserved for future use)
00100100 10111101 (Reserved for future use)
00010011 01011110 (Reserved for future use)
10001001 10101111 (Reserved for future use)
11000100 11010110 (Reserved for future use)
11100010 01101011 (Reserved for future use)

2. Compartments (C field): 16 bits. An all-zero value is used when the information transmitted is not
compartmented. Other values for the compartments field may be obtained from the Defense Intelligence Agency
(DIA).

3. Handling restrictions (H field): 16 bits. The values for the control and release markings are alphanumeric
digraphs and are defined in the DIA manual DIAM 65-19, Sandard Security Markings.

4. Transmission control code (TCC field): 24 bits. Provides a means to segregate traffic and define controlled
communities of interest among subscribers. The TCC values are trigraphs, and are available from HQ DCA
Code 530. Must be copied on fragmentation. This option appears at most once in a datagram.

The loose source and record route (LSRR) option (see Fig. 9-8) provides a means for the source of an Internet
datagram to supply routing information to be used by the gateways in forwarding the datagram to the
destination, and to record the route information. The option begins with the option type code. The second octet
is the option length which includes the option type code and the length octet, the pointer octet, and length-3
octets of route data. The third octet is the pointer into the route data indicating the octet which begins the next
source address to be processed. The pointer isrelative to this option, and the smallest legal value for the pointer
is4. A route datum is composed of a series of Internet addresses. Each Internet address is 32 bits or 4 octets. If
the pointer is greater than the length, the source route is empty (and the recorded route full) and the routing is to
be based on the destination address field.

SRR | So—

10070091 erglh | poirder] soute date |

R | B——

Ispo=131

Figure 9-8
The loose source and record route option.

If the address in the destination address field has been reached and the pointer is not greater than the length, the
next address in the source route replaces the address in the destination address field, and the recorded route
address replaces the source address just used, and the pointer isincreased by 4. The recorded route address is the
Internet modul€’ s own Internet address as known in the environment into which this datagram is being
forwarded. This procedure of replacing the source route with the recorded route (although it isin reverse order
of the order it must be in to be used as a source route) means that the option (and the IP header as a whole)
remains a constant length as the datagram progresses through the Internet.

This option is aloose source route because the gateway or host IP is allowed to use any route of any number of
other intermediate gateways to reach the next address in the route. Must be copied on fragmentation appears at
most once in a datagram.

The strict source and record route (SSRR) option (see Fig. 9-9) provides a means for the source of an Internet
datagram to supply routing information to be used by the gateways in forwarding the datagram to the
destination, and to record the route information.

The option begins with the option type code. The second octet is the option length which includes the option
type code and the length octet, the pointer octet, and length-3 octets of route data. The third octet is the pointer
into the route data indicating the octet which begins the next source address to be processed. The pointer is
relative to this option, and the smallest legal value for the pointer is 4.

SRR | S—

10010010 erglh | poirded soute date |

i i M

Type=137

Figure 9-9
The strict source and record route option.

A route datum is composed of a series of Internet addresses, each Internet address is 32 bits or 4 octets. If the
pointer is greater than the length, the source route is empty (and the recorded route full) and the routing isto be
based on the destination address field.

If the address in destination address field has been reached and the pointer is not greater than the length, the next
address in the source route replaces the address in the destination address field, and the recorded route address
replaces the source address just used, and the pointer isincreased by 4. The recorded route address is the
Internet modul€’ s own Internet address as known in the environment into which this datagram is being
forwarded. This procedure of replacing the source route with the recorded route (although it isin reverse order
of the order it must be in to be used as a source route) means the option (and the IP header as a whole) remains a
constant length as the datagram progresses through the Internet.

This option is a strict source route because the gateway or host P must send the datagram directly to the next
address in the source route through only the directly connected network indicated in the next address to reach
the next gateway or host specified in the route. Must be copied on fragmentation appears at most oncein a
datagram.

The record route option (Fig. 9-10) provides a means to record the route of an Internet datagram. The option
begins with the option-type code. The second octet is the option length which includes the option type code and
the length octet, the pointer octet, and length-3 octets of route data. The third octet is the pointer into the route
data indicating the octet which begins the next area to store a route address. The pointer is relative to this option,
and the smallest legal value for the pointer is 4.

A recorded route is composed of a series of Internet addresses. Each Internet addressis 32 bits or 4 octetsin
length. The pointer in the orig inating host must compose this option with a route data area large enough to hold
all the addresses expected. The size of the option does not change when addresses are added. Theinitial contents
of the route data area must be zero.

Rexiond Foule

S | S
1T 0T [angtn | poirdec] pedte dale

Typa—=T

Figure 9-10
The record route option.

Elrocm ldanFar
S TR W

NOOIONGO0Z02° 0] Srewam 1D |
S + -4

Tedi=" 35 Linihie=q

Figure 9-11
The stream identifier option.

When an Internet module routes a datagram, it checks to seeif the record route option is present. If it is, it
insertsits own Internet address as known in the environment into which this datagram is being forwarded into
the recorded route beginning at the octet indicated by the pointer, and increments the pointer by 4.

If the route data areais already full (the pointer exceeds the length), the datagram is forwarded without inserting
the address into the recorded route. If there is not enough room for a full address to be inserted, the original
datagram is considered to be in error and is discarded. In either case an ICMP parameter problem message may
be sent to the source host. Not copied on fragmentation, goes in first fragment only appears at most oncein a
datagram.

The stream identifier option (Fig. 9-11) provides away for the 16-bit SATNET stream identifier to be carried
through networks that do not support the stream concept. Must be copied on fragmentation appears at most once
in adatagram.

9.6 Internet Timestamp

The Internet timestamp, an integral tool in the implementation and use of 1P, appears as shown in Fig. 9-12.

The option length is the number of octets in the option counting the type, length, pointer, and overflow/flag
octets (maximum length 40). The pointer is the number of octets from the beginning of this option to the end of
timestamps plus one (i.e., it points to the octet beginning the space for the next timestamp). The smallest legal
valueis 5. The timestamp areais full when the pointer is greater than the length. The overflow (oflw) (4 bits) is
the number of 1P modules that cannot register timestamps because of lack of space. Theflag (flg) (4 bits) values
are

0 Timestamps only, stored in consecutive 32-bit words.

1 Each timestamp is preceded with the Internet address of the registering
entity.

3 The Internet address fields are prespecified.

CIOL0I0C] lengih | poirerk g
P S P
et ackiress I

S S S—

tmastamc |

Figure 9-12
The Internet timestamp.

An IP module registersits timestamp only if it matches its own address with the next specified Internet address.
The timestamp is aright-justified, 32-bit timestamp in milliseconds since midnight UT (universal time). If the
time is not available in milliseconds or cannot be provided with respect to midnight UT, then any time may be
inserted as a timestamp provided the high-order bit of the timestamp field is set to one to indicate the use of a
nonstandard value.

The originating host must compose this option with a sufficiently large timestamp data areato hold all the
timestamp information expected. The size of the option does not change with the addition of timestamps. The
initial contents of the timestamp data area must be zero or Internet address/zero pairs.

If the timestamp data areais already full (the pointer exceeds the length), the datagram is forwarded without
inserting the timestamp, but the overflow count isincremented by one. If there is some room but not enough for
afull timestamp to be inserted, or if the overflow count itself overflows, the original datagram is considered to
bein error and is discarded. In either case an ICMP parameter problem message may be sent to the source host.

The timestamp option is not copied on fragmentation. It is carried in the first fragment. It appears at most once
in a datagram.

The Internet header padding is variable and is used to ensure that the Internet header ends on a 32-bit boundary.
The padding is zero.

Fragmentation and Reassembly

The Internet identification field (ID) is used together with the source and destination address, and the protocol
fields, to identify datagram fragments for reassembly. The more-fragments flag bit (MF) is set if the datagram is
not the last fragment. The fragment-offset field identifies the fragment location relative to the beginning of the
original unfragmented datagram. Fragments are counted in units of 8 octets. The fragmentation strategy is
designed so that an unfragmented datagram has al-zero fragmentation information (MF = 0, fragment offset =
0). If an Internet datagram is fragmented, its data portion must be broken on 8 octet boundaries.

Thisformat allows 2** 13 = 8192 fragments of 8 octets each for atotal of 65,536 octets. Note that thisis
consistent with the datagram total length field (of course, the header is counted in the total length and not in the
fragments).

When fragmentation occurs, some options are copied but others remain with the first fragment only. Every
Internet module must be able to forward a datagram of 68 octets without further fragmentation. Thisis because
an Internet header may be up to 60 octets, and the minimum fragment is 8 octets. Every Internet destination
must be able to receive a datagram of 576 octets either in one piece or in fragments to be reassembled.

The fields which may be affected by fragmentation include the (1) options field, (2) more-fragments flag, (3)
fragment offset, (4) Internet header-length field, (5) total-length field, and (6) header checksum.

If the don’t-fragment flag (DF) bit is set, then Internet fragmentation of this datagram is not permitted, although
it may be discarded. This can be used to prohibit fragmentation in cases where the receiving host does not have
sufficient resources to reassemble Internet fragments. One example of use of the don’t-fragment feature isto
download asmall host. A small host could have a bootstrap program that accepts a datagram, storesitin
memory, and then executesit.

The fragmentation and reassembly procedures are most easily described by examples. The following procedures
are example implementations.

General notation in the following pseudo programsis as follows: “=<" meansless than or equal, “#’ means not
equal, “=" meansequal, “<-" meansis set to. Also, “xtoy” includes x and excludesy; for example, “4 to 7"
would include 4, 5, and 6 (but not 7).

Fragmentation procedure example. Thelargest datagram that can be transmitted through the next network is called the
maximum transmission unit (MTU).

If the total length islessthan or equal to the maximum transmission unit, then submit this datagram to the next step in datagram
processing; otherwise cut the datagram into two fragments: (1) the largest fragment and (2) the rest of the datagram. The first
fragment is submitted to the next step in datagram processing, while the second fragment is submitted to this procedure in case it
isstill too large.

1. Notation. Notation is as follows: FO—fragment offset; IHL—Internet header length; DF—don’ t-fragment
flag; MF—more-fragments flag; TL—total length; OFO—old fragment offset; OIHL—old Internet header
length; OMF—old more-fragments flag; OTL—old total length; NFB—number of fragment blocks;
MTU—maximum transmission unit.

2. Procedure. IF TL =<MTU THEN submit this datagram to the next step in datagram processing ELSE | F
DF = 1 THEN discard the datagram ELSE). To produce the first fragment: (a) copy the original Internet header;
(b) O HL <- IHL; OTL <- TL; OFO <- FO; OMF <- MF; (c) NFB <- (MTU-IHL*4)/8; (d) attach the first

NFB* 8 data octets; (e) correct the header, MF <- 1; TL <- (IHL*4)+(NFB*8); (Recomputed checksum); (f)
submit this fragment to the next step in datagram processing; then, to produce the second fragment (g)
selectively copy the Internet header (some options are not copied, see option definitions); (h) append the
remaining data; (i) correct the header, | HL <- (((OIHL*4)-(length of options not copied))+3)/4; TL <- OTL -
NFB*8 - (OIHL-IHL)*4); FO <- OFO + NFB; MF <- OMF (recomputed checksum); () submit this fragment to
the fragmentation test; DONE. In this procedure each fragment (except the last) was made the maximum
allowable size. An aternative might produce less than the maximum-size datagrams. For example, one could
implement a fragmentation procedure that repeatedly divided large datagrams in half until the resulting
fragments were less than the maximum transmission unit size.

Reassembly procedure example. For each datagram the buffer identifier is computed as the concatenation of the source,
destination, protocol, and identification fields. If thisis awhole datagram (i.e, both the fragment-offset and the more-fragments
fields are zero), then any reassembly resources associated with this buffer identifier are released and the datagram is forwarded
to the next step in datagram processing.

If no other fragment with this buffer identifier is on hand, then reassembly resources are allocated. The reassembly resources
consist of adata buffer, a header buffer, afragment block bit table, atotal-data-length field, and atimer. The data from the
fragment are placed in the data buffer according to its fragment offset and length, and bits are set in the fragment block bit table
corresponding to the fragment blocks received.

If thisisthefirst fragment (i.e., the fragment offset is zero), this header is placed in the header buffer. If thisis the last fragment
(i.e., the more-fragmentsfield is zero), the total datalength is computed. If this fragment completes the datagram (tested by
checking the bits set in the fragment block table), then the datagram is sent to the next step in datagram processing; otherwise
the timer is set to the maximum of the current timer value and the value of the time-to-live field from this fragment; and the
reassembly routine relinquishes control.

If the timer runs out, then all reassembly resources for this buffer identifier are released. The initial setting of the timer isalower
bound on the reassembly waiting time. This is because the waiting time will be increased if the time-to-live value in the arriving
fragment is greater than the current timer value but will not be decreased if it isless. The maximum this timer value could reach
is the maximum time to live (approximately 4.25 min). The current recommendation for the initial timer setting is 15 s. This may
be changed as experience with this protocol accumulates. Note that the choice of this parameter value is related to the buffer
capacity available and the data rate of the transmission medium; that is, data rate times timer value equals buffer size (e.g., 10
kbits/s x 15 s = 150 kbits).

1. Notation reference: FO—fragment offset; IHL—Internet header length; MF—more-fragments flag;
TTL—timeto live; NFB—number of fragment blocks, TL—total length; TDL—total data length;
BUFID—buffer identifier; RCVBT—fragment-received bit table; TLB—timer lower bound.

2. Procedure: (a) BUFID ,- source | destination | protocol | identification; (b) IFFO50AND MF50; (c)
THEN IF buffer with BUFID is alocated; (d) THEN flush all reassembly for this BUFID; (e) submit datagram
to next step; DONE; (f) ELSE IF no buffer with BUFID is allocated; (g) THEN allocate reassembly resources
with BUFID; TIMER ,- TLB; TDL ,- O; (h) put data from fragment into data buffer with BUFID from octet
FO*8to octet (TL-(IHL*4))+FO*8; (i) set RCVBT bits from FO to FO+((TL-(IHL*4)+7)/8); () IFMF50
THEN TDL ,- TL-(IHL*4)+(FO*8); (k) IF FO 50 THEN put header in header buffer; (1) IF TDL #0; (m) AND
all RCVBT bitsfrom0to (TDL 1 7)/8 are set; (n) THEN TL ,- TDL+(IHL*4); (0) submit datagram to next
step; (p) free all reassembly resources for this BUFID; DONE; () TIMER ,- MAX(TIMER,TTL); (r) giveup
until next fragment or timer expires; (s) timer expires: flush all reassembly with this BUFID; DONE. If two or
more fragments contain the same data either identically or through a partial overlap, this procedure will use the
more recently arrived copy in the data buffer and datagram delivered.

| dentification

The choice of the Identifier for a datagram is based on the need to provide away to uniquely identify the
fragments of a par ticular datagram. The protocol module assembling fragments judges fragments to belong to
the same datagram if they have the same source, destination, protocol, and Identifier. Thus, the sender must
choose the Identifier to be unique for this source, destination pair, and protocol for the time the datagram (or any
fragment of it) could be alive in the Internet.

It seems, then, that a sending protocol module needs to keep atable of Identifiers, one entry for each destination
with which it has communicated in the last maximum packet lifetime for the Internet. However, since the
Identifier field allows 65,536 different values, some host may be able to ssmply use unique identifiers
independent of destination.

It is appropriate for some higher-level protocolsto choose the identifier. For example, TCP protocol modules
may retransmit an identical TCP segment, and the probability for correct reception would be enhanced if the
retransmission carried the same identifier as the original transmission since fragments of either datagram could
be used to construct a correct TCP segment.

Type of Service

The type of service (TOS) isfor Internet service quality selection. The type of serviceis specified along the
abstract parameters of precedence, delay, throughput, and reliability. These abstract parameters are to be mapped
into the actual service parameters of the particular networks the datagram traverses.

Precedence—thisis an independent measure of the importance of this datagram.

Delay—prompt delivery isimportant for datagrams with this indication.

Throughput—high data rate is important for datagrams with this indication.

Reliability—a higher level of effort to ensure delivery isimportant for datagrams with this indication.
Timeto Live

Thetimeto live is set by the sender to the maximum time the datagram is allowed to be in the Internet system. If
the datagram isin the Internet system longer than the time to live, then the datagram must be destroyed.

Thisfield must be decreased at each point that the Internet header is processed to reflect the time spent
processing the datagram. Even if no local information is available on the time actually spent, the field must be
decremented by 1. The timeis measured in units of seconds (i.e., the value 1 means 1 s). Thus, the maximum
timeto liveis 255 s or 4.25 min. Since every module that processes a datagram must decrease the TTL by at
least one even if it processes the datagram in less than a second, the TTL must be regarded only as an upper
bound on the time a datagram may exist. The intention is to cause undeliverable datagrams to be discarded, and
to bound the maximum datagram lifetime.

Some higher-level reliable connection protocols are based on assumptions that old duplicate datagrams will not
arrive after a certain time elapses. The TTL isaway for such protocols to have an assurance that their
assumption is met.

Options

These are optional in each datagram, but required in implementations. In other words, the presence or absence of
an option is the choice of the sender, but each Internet module must be able to parse every option. Several
options can be present in the option field.

The options might not end on a 32-bit boundary. The Internet header must be filled out with octets of zeros. The
first of these would be interpreted as the end-of-options option; the remainder, as Internet header padding.

Every Internet module must be able to act on every option. The security option isrequired if classified or
restricted, or if compartmented traffic isto be passed.

Checksum

The Internet header checksumis recomputed if the Internet header is changed, as aresult of, for example, a
reduction in the time to live, additions or changes to Internet options, or fragmentation. This checksum at the
Internet level isintended to protect the Internet header fields from transmission errors.

In certain applications afew data bit errors are acceptable while retransmission delays are not. If the Internet
protocol enforced data correctness, such applications could not be supported.

Errors

Internet protocol errors may be reported via the ICM P messages.

9.7 Interfacesand | Pv4

The functional description of user interfacesto the IPis, at best, fictional, since every operating system will have
different facilities. Consequently, we must warn readers that different IP implementations may have different
user interfaces. However, all IPs must provide a certain minimum set of services to guarantee that all IP
implementations can support the same protocol hierarchy. This section specifies the functional interfaces
required of all IPimplementations.

Internet Protocol interfaces on one side to the local network and on the other side to either a higher-level
protocol or an application program. In the following, the higher-level protocol or application program (or even a
gateway program) will be called the “user” sinceit isusing the Internet module. Since IP is a datagram protocol,
there is minimal memory or state maintained between datagram transmissions, and each call on the Internet
Protocol module by the user supplies all information necessary for the IP to perform the service requested.

The following two upper-level example calls satisfy the requirements for the user for IP module communication
(* =>" means returns):

SEND:src, dst, prot, TOS, TTL, Buf PTR, len, 1d, DF, opt = >result, wheresrc =
source address, dst = destination address, pr ot = protocol, TOS = typeof service, TTL =timetolive,
Buf PTR = uffer pointer,| en = length of buffer,| d = identifier, DF = don’t fragment, opt = option
data, resul t = response, OK = datagram sent ok, and Er r or = error in arguments or local network error.
Note that the precedence isincluded in the TOS and the security/compartment is passed as an option.

RECV: Buf PTR, prot, = >result, src, dst, TOS, len, opt, where Buf PTR = buffer pointer, prot =
protocol, r esul t = response, OK = datagram received ok, Er r or =error in arguments, | en length of
buffer, sr ¢ source address, dst = destination address, TOS = type of service, and opt = option data.

When the user sends a datagram, it executes the SEND call supplying all the arguments. The IP module, on
receiving this call, checks the arguments and prepares and sends the message. If the arguments are good and the
datagram is accepted by the local network, the call returns successfully. If either the arguments are bad, or the
datagram is not accepted by the local network, the call returns unsuccessfully. On unsuccessful returns, a
reasonable report must be made as to the cause of the problem, but the details of such reports are up to
individual implementations.

When a datagram arrives at the IP module from the local network, there either isor is not a pending RECV call
from the user addressed. In the first case, the pending call is satisfied by passing the information from the
datagram to the user. In the second case, the user addressed is notified of a pending datagram. If the user
addressed does not exist, an ICMP error message is returned to the sender, and the data are discarded.

The notification of auser may be via a pseudointerrupt or similar mechanism, as appropriate in the particular
operating system environment of the implementation.

A user’sRECV call may then either be immediately satisfied by a pending datagram, or the call may be pending
until adatagram arrives. The source addressisincluded in the SEND call in case the sending host has severa
addresses (multiple physical connections or logical addresses). The Internet module must check to see that the
source address is one of the legal addresses for this host.

Q 2 ¥
O1E3486TAGOIZI4EATACOIZIA56TADON
B e e e R e A e R e e A A R TECE EEE T e r)
Var— 4 [IHL- S IType o' Sarveal Tatel Leasgrh - 21 |
P IS B R T O P IR A B O T IO W DN R B N TR N R RS TN T A
Idemtiization = 111 Flg=01 Fragman: CHzet=0 |
T o o R e 1 o = LY TT S e T
Timz = 1#3 | Protoeol =11 headar ciechs om |
R e e e e e L e e o ot e e o e o et s e o
SV AHrGES I
...
Chis tinma livn s s |
B e e e R e A e R e e A A R TECE EEE T e r)
clats |

L o o o b

Figure 9-13
Minimal data-carrying Internet datagram.

An implementation may also allow or require acall to the Internet module to indicate interest in or reserve
exclusive use of aclass of datagrams (e.g., al those with a certain value in the protocol field).

This section functionally characterizes a user/IP interface. The notation used is similar to most function call
procedures in high-level languages, but this usage is not meant to rule out trap-type service calls [e.g., switched
virtual circuits (SVCs), UUOs, EMTSg], or any other form of interprocess communication.

| Pv4 Datagram

Figure 9-13 is an example of the minimal data-carrying Internet datagram (where each tickmark represents one
bit position).

This Internet datagram reflects version 4 of IP. The IP header consists of five 32-bit words, and the total length
of the datagram is 21 octets. This datagram is a complete datagram (not a fragment).

| Pv4 Datagram Fragment

Figure 9-14 shows a moderate size IP datagram (452 data octets), then two Internet fragments that might result
from the fragmentation of this datagram if the maximum-sized transmission allowed were 280 octets.

1] 1 2 3
1o 4bb /80U d04bE BRI E22bE/ B0
bt B St Y S S SR B S e B e e

= & lIHL= 3 [Type ol Seawiced Tolal Lewgih = 472 |

e T e T e R T T T
I Idertdization - 111 IFig-i Fragment (Mi=al - 11
L Bt St Sl RE et S S B R B et B S RS BE i Sl S B St B B
| Tma=133 IPoggedd = § | readar ChECKEWTY |

B e o o o o
1 srinca Aiddress |
T e L e St SR

| e NERIN ACIrGES

- B B o B o B SRR R
1 el |

e B e B o o e B e B o o B o o S o
| = |

Y !

! [

1 el |

e B e B o o e B e B o o B o o S o
| a1 I

St o B8 o I8 L TRt At ot o Bt an T et DO

Figure 9-14
Moderate-size | P diagram.

| Pv4 First Datagram Fragment

Figure 9-15 is an example of the first fragment that results from splitting the datagram after 256 data octets.
| Pv4 Second Datagram Fragment

Figure 9-16 is an example of the second fragment.

| Pv4 Datagram with Options

Figure 9-17 is an example of a datagram with options.

Order of IP Data Transmission

The order of transmission of the header and data described in this document is resolved to the octet level.

Izanification = 11 IFig=1l Fregment O'feet =0/
R R i Al e L e]
limeg = 119 | Protcecl = 6 | Heacar Uhessum
| R R e R B R R R B B ot R B R B o R R R SR YR BT B B
SOUrCH Adkdress |

S PP U P -
riastination addness

R e e T B e e e T o T T o A B e o o o

Ay |
B e e e B e R e o D R e e
data |
\
]
dala |

e e Bt B A e e R e e T A e T o R
dnta |

L e e IR I b B o e T o T T o o S A S B A e o S

Figure 9-15
IPv4 first datagram fragment.

Whenever a diagram shows a group of octets, the order of transmission of those octetsis the normal order in
which they are read in English. For example, in Fig. 9-18 the octets are transmitted in the order they are
numbered.

Whenever an octet represents a numeric quantity, the leftmost bit in the diagram is the high-order or most-
significant bit; that is, the bit 1abeled 0 is the most-significant bit. For example, Fig. 9-19 represents the value
170 (decimal).

Whenever a multioctet field represents a numeric quantity, the leftmost bit of the whole field is the most-
significant bit. When a multioctet quantity is transmitted, the most-significant octet is transmitted first.

] 1 2 a
012545578901 254557890 224557890
B T R e B T e e S O o R BT Y SR I S R A Bt 2
=& lI4L= 5 Typa of Sarvicel Total Langih — 3TE I
B T T T O S I e

denlificefion = 111 IFlgat Fragment Offsat = 01

L e e L R B o o B e e SLEE A o ot St o
B T T e e T R

I
| Timep = 118 | Srooced =3 Heazer Chegeum |
I

Ao s Adde |
—tp=tt bt bttt bt bt bbbt Bttt
| declinaton a3d e
T A N P N P Py S
| =t |
L b b Al St i e e i et e B e e b bt e B B Sl Bl B

dats |

h
daks !
Frdegrbedader o dododn e g o g g e n o o e frsn o
| g3 |

B A o P P e

Figure 9-16
IPv4 second datagram fragment.

1 2 E
CT2HAAETRA012R4BET R0 2NA86TRAO

(=]

_—
Mer- 4 IHL= O Mype of Secdeel Tedal Langht - 506
F I B B B e I S At 0 S it S S U S S o
|deraization = 191 |A3=Cl Fracmen Cifeel = O
e
Time =123 Protocd = A Haadkar Checksain 1

L b o i i e Bk o B o LB b e Sl b B i Lt e B o e Sk +

F0UITe KOs |

e e R T e o B o R e e e e e e R i e o ot oo B o Bt

dharytination address |

-
Opt. Cada - % 1 Opl. Len.- 51 sption wales | Opt Code =

L T T B B L S S o S IR IS
Cpl e =11 cplion walug 1O CrdE = 1 |
e
Cipt Code =y 10p1 Len = 21 opdion walue | Op Boda =0

L b o i i e Bk o B o LB b e Sl b B i Lt e B o e Sk +

Jata |

e B e B L B e e o
Jaln |

e e R T e o B o R e e e e e e R i e o ot oo B o Bt

Figure 9-17
Datagram with options.

o 1 2 4
D1234587EA012234587RA01234547E0901

et e e e e " L et Ll L i o

| 1 | 2 | & | q |

L e R B e B e B R o B R e B o R B L R B B B R o |
[& 17T 1 8 |

| a | 10 | 11 12 |

o e L L o e e e e e e A S i i

Figure 9-18
IP data transmission order.

Q1234567

L B e e
MTaT@r T
e b o S B

Figure 9-19
The value 170 (decimal).

10
I nternet Protocol Version 6

10.1 Perspective

Internet Protocol version 6 (IPv6) isanew version of the Internet Protocol, designed as a successor to |P
version 4 (1Pv4) (RFC 791). The changes from IPv4 to IPv6 fall primarily into the following categories:

Expanded Addressing Capabilities

IPv6 increases the | P address size from 32 to 128 bits, to support more levels of addressing hierarchy, a much
greater number of addressable nodes, and simpler autoconfiguration of addresses. The scalability of multicast
routing is improved by adding a“ scope” field to multicast addresses. And a new type of address called an
“anycast address” is defined, and is used to send a packet to any one of agroup of nodes.

Header Format Simplification

Some |Pv4 header fields have been dropped or rendered optional, to reduce the common-case processing cost of
packet handling and to limit the bandwidth cost of the IPv6 header.

I mproved Support for Extensions and Options

Changes in the way | P header options are encoded allows for more efficient forwarding, less stringent limits on
the length of options, and greater flexibility for introducing new options in the future.

Flow Labeling Capability

A new capability is added to enable the labeling of packets belonging to particular traffic “flows” for which the
sender requests special handling, such as nondefault quality of service or real-time service.

Authentication and Privacy Capabilities

Extensions to support authentication, data integrity, and data confidentiality are specified for IPv6. This
document specifies the basic I1Pv6 header and the initially defined IPv6 extension headers and options. It also
discusses packet size issues, the semantics of flow labels and priority, and the effects of 1Pv6 on upper-layer
protocols. The format and semantics of |Pv6 addresses are specified separately in RFC 1884. The IPv6 version
of ICMP, which all 1Pv6 implementations are required to include, is specified in RFC 1885.

10.2 IPv6 Terminology

address In IPv6-layer identifier for an interface or a set of interfaces.
host Any node that is not arouter.

interface A node's attachment to alink.

link A communication facility or medium over which nodes can communicate at the link layer (i.e., the layer
immediately below |Pv6). Examples are Ethernets (ssmple or bridged); PPP links; X.25, framerelay, or ATM
networks; and Internet (or higher)-layer tunnels, such as tunnels over I1Pv4 or IPv6 itself.

link MTU The maximum transmission unit, that is, maximum packet size in octets, that can be conveyed in
one piece over alink.

neighbors Nodes attached to the same link.

node A device that implements IPv6.

packet An IPv6 header plus payload.

path MTU The minimum link MTU of all the linksin a path between a source node and a destination node.
router A node that forwards IPv6 packets not explicitly addressed to itself.

upper layer A protocol layer immediately above IPv6. Examples are transport protocols such as TCP and
UDP, control protocols such as ICMP, routing protocols such as OSPF, and Internet or lower-layer protocols
being “tunneled” over (i.e., encapsulated in) IPv6 such as IPX, AppleTalk, or IPv6 itself.

It is possible for a device with multiple interfaces to be configured to forward non-self-destined packets arriving
from some set (fewer than all) of itsinterfaces, and to discard non-self-destined packets arriving from its other
interfaces. Such adevice must obey the protocol requirements for routers when receiving packets from, and
interacting with, neighbors over the former (forwarding) interfaces. It must obey the protocol requirements for
hosts when receiving packets from, and interacting with, neighbors over the latter (nonforwarding) interfaces.

i ool i s o e B o o =l e e e el
Wersirml Prin | Slows | Ao |
L T e o e o B B e oo oo o
Pavond Length I oeeed Hender | Hop Lire |
S I SR P S S S SRS T S BT S T S S
|
+
|
Sourte Adores
|
-
|
S

Dustirlion b ey +

Figure 10-1
IPv6 header.

10.3 IPv6 Header For mat

Figure 10-1 is arepresentation of the IPv6 header.

Version 4-bit Internet Protocol version number = 6.

Priority 4-bit priority value.
Flow label 24-bit flow label.
Payload length 16-bit unsigned integer. Length of payload, i.e., the rest of the

packet following the IPv6 header, in octets. If zero, indicates that
the payload length is carried in a Jumbo payload hop-by-hop
option.

Next header 8-hit selector. Identifies the type of header immediately following
the IPv6 header. Uses the same values as the IPv4 protocol field.

Hop limit 8-bit unsigned integer. Decremented by 1 by each node that
forwards the packet. The packet is discarded if hop limit is
decremented to zero.

Source address 128-bit address of the originator of the packet.

Destination address 128-hit address of the intended recipient of the packet (possibly
not the ultimate recipient, if arouting header is present).

10.4 |1Pv6 Extension Headers

In 1Pv6, optional Internet-layer information is encoded in separate headers that may be placed between the IPv6
header and the upper-layer header in a packet. There are asmall number of such extension headers, each
identified by adistinct Next Header value. An IPv6 packet may carry zero, one, or more extension headers,
each identified by the Next Header field of the preceding header. See Fig. 10-2.

| P roadsr | TCP hoazer - Cal
| |

| Mexl Healir =

I TP |

]

| |Fwa rogdor | Roudting hosder | TCP nesder + deia
| | [

| Mgzt Hoader - | ket Hestder = |

| Routing EF

[

Sy ——
M6 Pasdar | Pooting heades | Pagmen] heades | agmer! 2 TSP
| | | heager « daka

| haxt Haacer = | Mext Hoeader = | ke« Header = |

| Rzuting | Fragoment TSR |

ir]

Figure 10-2
IPv6 extension header examples.

With one exception, extension headers are not examined or processed by any node along a packet’ s delivery
path, until the packet reaches the node (or each of the set of nodes, in the case of multicast) identified in the
Destination Address field of the IPv6 header. There, normal demultiplexing on the Next Header
field of the IPv6 header invokes the module to process the first extension header, or the upper-layer header if no
extension header is present. The contents and semantics of each extension header determine whether to proceed
to the next header. Therefore, extension headers must be processed strictly in the order they appear in the
packet; areceiver must not, for example, scan through a packet looking for a particular kind of extension header
and process that header prior to processing all preceding ones.

The exception referred to in the preceding paragraph isthe Hop-by-Hop Options header, which carries
information that must be examined and processed by every node along a packet’ s delivery path, including the
source and destination nodes. The Hop-by-Hop Options header, when present, must immediately follow
the IPv6 header. Its presence isindicated by the value zero in the Next Header field of the IPv6 header.

If, asaresult of processing a header, anode is required to proceed to the next header but the Next Header
value in the current header is unrecognized by the node, it should discard the packet and send an ICMP
Parameter Problem message to the source of the packet, with an ICMP code value of 2 (“unrecognized Next
Header type encountered”) and the ICMP Pointer field containing the offset of the unrecognized value
within the original packet. The same action should be taken if a node encountersa Next Header value of
zero in any header other than an I1Pv6 header.

Each extension header is an integer multiple of 8 octets long, in order to retain 8-octet alignment for subsequent
headers. Multioctet fields within each extension header are aligned on their natural boundaries, that is, fields of
width n octets are placed at an integer multiple of n octets from the start of the header, for n=1, 2, 4, or 8.

A full implementation of 1Pv6 includes implementation of the following extension headers: Hop-by-Hop
Options, Routing (Type 0), Fragment, Destination Options, Authentication,
and Encapsulating Security Payload.

10.5 Extension Header Order

When more than one extension header is used in the same packet, it is recommended that those headers appear
in the following order:

|Pv6 header

Hop-by-Hop Options header

Destination Options header

Routing header

Fragment header

Authentication header

Encapsulating Security Payload header
Destination Options header

upper-layer header

Additional recommendations regarding the relative order of the Authentication and Encapsulating
headers are for options to be processed by the first destination that appearsin the IPv6 Destination
Address field plus subsequent destinations listed in the Routi1ng header and for options to be processed only
by the final destination of the packet.

Each extension header should occur at most once, except for the Destination Options header, which
should occur at most twice (once before a Routing header and once before the upper-layer header). If the
upper-layer header is another IPv6 header (if 1Pv6 istunneled over or encapsulated in IPv6), it may be followed
by its own extensions headers, which are separately subject to the same ordering recommendations.

If and when other extension headers are defined, their ordering constraints relative to the headers listed above
must be specified.

IPv6 nodes must accept and attempt to process extension headersin any order and occurring any number of
times in the same packet, except for the Hop-by-Hop Options header, which is restricted to appear
immediately after an IPv6 header only. Nonetheless, it is strongly advised that sources of 1Pv6 packets adhere to
the recommended order shown above until and unless subsequent specifications revise that recommendation.

Options

Two of the currently defined extension headers—the Hop-by-Hop Options header and the
Destination Options header—carry avariable number of type-length-value (TLV)-encoded options, of
the format shown in Fig. 10-3, where

Option Type 8-hit identifier of the type of option.

Optional Data Length 8-bit unsigned integer. Length of the Option. Datafield of this
option, in octets.

Option Data Variable-length field. Option-Types specific data.

The sequence of options within a header must be processed strictly in the order they appear in the header; a
receiver must not, for example, scan through the header looking for a particular kind of option and process that
option prior to processing all preceding ones.

T i B Bt T B B o e Btk B B A B

I Catian Type | Opt Cabs Lar | Optas Data

Figure 10-3
TLV-encoded options.

The option-type identifiers are internally encoded such that their highest-order two bits specify the action that
must be taken if the processing 1Pv6 node does not recognize the option type:

00 Skip over this option and continue processing the header.
01 Discard the packet.

10 Discard the packet and, regardless of whether the packet’ s destination address
was a multicast address, send an ICMP Parameter Problem, Code 2, message to
the packet’ s Source Address, pointing to the unrecognized option type.

11 Discard the packet and, only if the packet’ s destination address was not a
multicast address, send an ICMP Parameter Problem, Code 2, message to the
packet’ s Source Address, pointing to the unrecognized option type.

The third-highest-order bit of the option type specifies whether the option data of that option can change en
route to the packet’ sfinal destination. When an Authentication header is present in the packet, for any
option whose data may change en route, its entire option-data field must be treated as zero-valued octets when
computing or verifying the packet’ s authenticating value: 0—option data does not change en route, 1—option
data may change en route.

Individual options may have specific alignment requirements, to ensure that multioctet values within option-
datafieldsfall on natural boundaries. The alignment requirement of an option is specified using the notation xn
+y, meaning that the option type must appear at an integer multiple of x octets from the start of the header, plus
y octets. For example, 2n means any 2-octet offset from the start of the header, and, 8n+2 means any 8-octet
offset from the start of the header, plus 2 octets.

Two padding options are used when necessary to align subsequent options and to pad out the containing header
to amultiple of 8 octets in length. These padding options must be recognized by all IPv6 implementations (see
Fig. 10-4).

FEd1 option (ERGNMENT MEJUINBMERT Nore)
demmdo e g ik
| a |

L e]

(a)

FadN optica 1aignment -equiremaTt none)
g o fr ke o 5w e
| 1 i Mata _en | Cption Data

L e ah o t e i e e e
iz
Figure 10-4

IPv6 option recognition. (a) Padl option,
(b) PadN option.

The format of the Pad1 option (Fig. 10-4a) is a special case—it does not have length and value fields. Pad1l
option is used to insert one octet of padding into the Options area of a header. If more than one octet of padding
isrequired, the PadN option, described next, should be used, rather than multiple Padl1 options.

The PadN option (Fig. 10-4b) is used to insert two or more octets of padding into the Options area of a header.
For N octets of padding, the Opt Data Len field contains the value N — 2, and the Option Data consists of N
— 2 zero-valued octets.

10.6 IPv6 Options Header (Hop-by-Hop)

The hop-by-hop options header is used to carry optional information that must be examined by every node
along a packet’ s delivery path and isidentified by a Next Header value of 0 in the IPv6 header, and has the
format shown in Fig. 10-5, where

Next Header 8-bit selector. |dentifies the type of header immediately following
the hop-by-hop options header. Uses the same values as the IPv4
protocol field.

Hdr Ext LenG 8-hit unsigned integer. Length of the hop-by-hop options header
in 8-octet units, not including the first 8 octets.

Options Variable-length field, of length such that the complete hop-by-
hop options header is an integer multiple of 8 octets long.
Contains one or more TLV-encoded options.

I Mot Feoder | Hdr Ex1 Ler | !
fet e e i i

I I
Cyplicas
1 |

PRSI PF I ST E P DT P DR T BF IS BT P DR TF S D S e e

Figure 10-5
I Pv6 options header.

In addition to the Pad1 and PadN options the hop-by-hop option, the Jumbo Payload option, is defined as
shown in Fig. 10-6.

The Jumbo Payload option is used to send IPv6 packets with payloads longer than 65,535 octets. The
Jumbo Payload Length isthelength of the packet in octets, excluding the IPv6 header but including the
hop-by-hop options header; it must be greater than 65,535. If a packet is received with a Jumbo Payload
option containing aJumbo Payload Length lessthan or equal to 65,535, an ICMP Parameter Problem
message, Code 0, should be sent to the packet’ s source, pointing to the high-order octet of the invalid Jumbo
Payload Length field.

ThePayload Length field in the IPv6 header must be set to zero in every packet that carries the Jumbo
Payload option. If apacket isreceived with avalid Jumbo Payload option present and a nonzero |1Pv6
Payload Length field, an ICMP Parameter Problem message, Code 0, should be sent to the packet’s source,
pointing to the Option Type field of the Jumbo Payload option. The Jumbo Payload option must not be
used in a packet that carries a Fragment header. If aFragment header is encountered in a packet that
containsavalid Jumbo Payload option, an ICMP Parameter Problem message, Code O, should be sent to the
packet’ s source, pointing to the first octet of the Fragment header.

| T34 CpILiaI&Le-":-;I B

| Jumbe Fevipad Length |

B R L e A B B I A . = o ST]

Figure 10-6
Jumbo Payload option.

An implementation that does not support the Jumbo Payload option cannot have interfaces to links whose
link MTU is greater than 65,575 (40 octets of 1Pv6 header plus 65,535 octets of payload).

10.7 1Pv6 Routing Header

The routing header is used by an |Pv6 source to list one or more intermediate nodes to be “visited” on the way
to a packet’ s destination. Thisfunction is very similar to IPv4’s source route options. The routing header is
identified by aNext Header value of 43 in theimmediately preceding header, and has the format shown in
Fig. 10-7, where

Next Header 8-bit selector. Identifies the type of header immediately following
the routing header. Uses the same values as the | Pv4 protocol
field.

Hdr Ext Len 8-bit unsigned integer. Length of the routing header in 8-octet
units, not including the first 8 octets.

Routing Type 8-hit identifier of a particular routing header variant.

Segments Left 8-bit unsigned integer. Number of route segments remaining, i.e.,

number of explicitly listed intermediate nodes still to be visited
before reaching the final destination.

type-specific data Variable-length field, of format determined by the routing type,
and of length such that the complete routing header is an integer
multiple of 8 octets long.

e et bbb e e e e e b e b
| kot Hgader | Hdr Ext Lan | FoJting Tvoe | Segments Laft |
B e T L e L e e e e L R)

WeE-E00aEle data

Figure 10-7
IPv6 routing header.

If, while processing a received packet, a node encounters a routing header with an unrecognized routing-type
value, the required behavior of the node depends on the value of the Segments Left field, asfollows. If
Segments Left iszero, the node must ignore the routing header and proceed to process the next header in
the packet, whose type isidentified by the Next Header field in the routing header. If Segments Leftis
nonzero, the node must discard the packet and send an ICM P Parameter Problem, Code 0, message to the
packet’ s Source Address, pointing to the unrecognized routing type. Figure 10-8 shows the Type 0 routing
header format, where

Next Header 8-bit selector. |dentifies the type of header immediately following
the routing header. Uses the same values as the |Pv4 protocol
field.

Hdr Ext Len 8-bit unsigned integer. Length of the routing header in 8-octet
units, not including the first 8 octets. For the type 0 Routing
header, Hdr Ext Len is equal to twice the number of addressesin
the header, and must be an even number less than or equal to 46.

Routing Type 0.
Segments Left 8-bit unsigned integer. Number of route segments remaining, i.e.,

number of explicitly listed intermediate nodes still to be visited
before reaching the final destination. Maximum legal value = 23.

Reserved 8-hit reserved field. Initialized to zero for transmission; ignored
on reception.

Strict/Loose Bit 24-hit bitmap, numbered 0 to 23, |eft to right.

Map

Thisindicates, for each segment of the route, whether the next destination address must be a neighbor of the
preceding address: 1 means strict (must be a neighbor), 0 means loose (need not be a neighbor).

Address[1..n] Vector of 128-hit addresses, numbered 1 to n.

Multicast addresses must not appear in arouting header of type O, or in the IPv6 Destination Address
field of a packet carrying arouting header of type O. If bit number O of the Strict/Loose Bit Map has
value 1, the Destination Address field of the IPv6 header in the original packet must identify aneighbor of the
originating node. If bit number 0 has value O, the originator may use any legal, nonmulticast address as the
initial destination address. Bits numbered greater than n, where n is the number of addresses in the routing
header, must be set to 0 by the originator and ignored by receivers.

A i e o B o o o B o L B R S e e
| hgut Haader | kdr Ex; Lan | Rouling Type=01 Sagmenis Lk
B T T e L o
| Basarved | Strctd nosa B4 Map |

e B L B e B B B

- Ackdrans 1 .

Tl e e i e e i

- Acklisss 2 .

B Y Y o N W N ¥

B L LT R R A R T N N T¥ 8
| I
+* +
I |
Aadraee|n| +
| I
| I
Sl S S N S BE R B SER B S S I SR ST S I S SRS R SRR A S S I S AT A
Figure 10-8
Type 0 routing header.

A routing header is not examined or processed until it reaches the node identified in the destination address
field of the IPv6 header. In that node, dispatching on the Next Header field of theimmediately preceding
header causes the routing header module to be invoked, which, in the case of routing type 0, performs the
following algorithm:

if SegmentsLeft=0

{

proceed to process the next header in the packet, whose type isidentified by the
Next Header field in the routing header

}
elseif Hdr Ext Lenisodd or greater than 46

{

send an ICMP Parameter Problem, Code 0, message to the Source Address, pointing
to the Hdr Ext Len field, and discard the packet

}

else

{

compute n, the number of addresses in the Routing header, by dividing Hdr Ext Len
by 2 if Segments Left is greater than n

{

send an ICMP Parameter Problem, Code 0, message to the Source Address, pointing
to the Segments L eft field, and discard the packet

}

else

{

decrement Segments Left by 1; compute i, the index of the next address to be visited
in the address vector, by subtracting Segments Left from n if Address[i] or the IPv6
Destination Address is multicast

{
discard the packet

}

else

{

swap the |Pv6 Destination Address and Addresg[i] if bit i of the Strict/Loose Bit map
has value 1 and the new Destination Addressis not the address of a neighbor of this
node

{

send an ICMP Destination Unreachable — Not a Neighbor message to the Source
Address and discard the packet

}
elseif the IPv6 Hop Limit islessthan or equal to 1

{

send an ICMP Time Exceeded — Hop Limit Exceeded in Transit message to the
Source Address and discard the packet

}

else
{
decrement the Hop Limit by 1 and resubmit the packet to the IPv6 module for trans-
mission to the new destination
}
}

Consider the case of a source node S sending a packet to destination node D, using a Routing header to cause
the packet to be routed viaintermediate nodes 11, 12, and 3. The values of the relevant 1Pv6 header and routing
header fields on each segment of the delivery path would be as follows, as the packet travels from Sto | 1.

Source Address= S Hdr ExtLen=6

Destination Address =11 Segments Left = 3
Addresg[1] =12

(if bit O of the Bit Map is 1, Addresg[2] =13

Sand 11 must be neighbors, Address[3] =D
thisis checked by S)
Asthe packet travelsfrom 11 to 12:

Source Address= S Hdr Ext Len=6

Destination Address=12 Segments Left = 2
Addresg[1] =11

(if bit 1 of the Bit Map is 1, Address[2] =13

11 and |2 must be neighbors; Addresq[3] =D
thisis checked by 11)
Asthe packet travelsfrom 12 to I 3:

Source Address= S Hdr ExtLen=6

Destination Address=13 SegmentsLeft =1
Addresg[1] =11

(if bit 2 of the Bit Map is 1, Addresg[2] =12

12 and 13 must be neighbors; Address3] =D
thisis checked by 12)
Asthe packet travels from I3 to D:

Source Address= S Hdr Ext Len=6

Destination Address=D SegmentsLeft =0
Addresg[1] =11

(if bit 3 of the Bit Map is 1, Address[2] =12

I3 and D must be neighbors; Addresy[3] =13
thisis checked by 13)

10.8 IPv6 Fragment Header

The fragment header is used by an IPv6 source to send packets larger than would fit in the path MTU to their
destinations. (Unlike IPv4, fragmentation in IPv6 is performed only by source nodes, not by routers along a
packet’ s delivery path. The fragment header is identified by a Next Header value of 44 in the immediately
preceding header, and has the format shown in Fig. 10-9, where

Next Header 8-bit selector. Identifiestheinitial header type of the fragmental
part of the original packet. Uses the same values as the |Pv4
protocol field.

Reserved 8-hit reserved field. Initialized to zero for transmission; ignored
on reception.

L R e R e A
el Heazer | Feserad | Fagment Oelset [SecBd
e e B e e e e o o L o o 8 S B At e i o o
ldanci cation

e T . 1 e Lk o Bl LY B =T PR e Ry S B P R R e e

Figure 10-9
IPv6 fragment header.

Fragment Offset 13-bit unsigned integer. The offset, in 8-octet units, of the data
following this header, relative to the start of the fragmental part
of the original packet.

Res 2-bit reserved field. Initialized to zero for transmission; ignored
on reception (M flag 1 = more fragments; 0 = last fragment).
Identification 32 bits. See description in text below.

In order to send a packet that istoo large to fit in the MTU of the path to its destination, a source node may
divide the packet into fragments and send each fragment as a separate packet, to be reassembled at the receiver.
For every packet that isto be fragmented, the source node generates an identification value. The identification
must be different from that of any other fragmented packet sent recently (i.e., within the maximum likely
lifetime of a packet, including transit time from source to destination and time spent awaiting reassembly with
other fragments of the same packet) with the same source address and destination address. If a Routing header
is present, the destination address of concern is that of the final destination. However, it is not required that a
source node know the maximum packet lifetime. Rather, it is assumed that the requirement can be met by
maintaining the Identification value as a simple, 32-bit, “wraparound” counter, incremented each time a packet
must be fragmented. It is an implementation choice whether to maintain a single counter for the node or
multiple counters, for instance, one for each of the node’ s possible source addresses, or one for each active
(source address, destination address) combination.

P S ——

1 Urdragrmeniabde | Fragme lable

| Part | Part |
.

Figure 10-10
Original packet.

Theinitial, unfragmented packet is referred to as the origina packet, and it is considered to consist of two parts,
an unfragmentable and a fragmentable part (Fig. 10-10). The unfragmentable part consists of the |Pv6 header
plus any extension headers that must be processed by nodes en route to the destination, that is, all headers up to
and including the routing header if present, else the hop-by-hop options header if present, else no extension
headers. The fragmentable part consists of the rest of the packet, that is, any extension headers that need be
processed only by the final destination node(s), plus the upper-layer header and data. The fragmentable part of
the original packet is divided into fragments; each, except possibly the last (“rightmost”) one, is an integer
multiple of 8 octets long. The fragments are transmitted in separate “fragment packets’ asillustrated in Fig. 10-
11. Each fragment packet is composed of

1. The unfragmentable part of the original packet, with the payload length of the original 1Pv6 header changed
to contain the length of this fragment packet only (excluding the length of the IPv6 header itself), and the Next
Header field of the last header of the unfragmentable part changed to 44.

2. A fragment header containing (a) the Next Header value that identifies the first header of the
fragmentable part of the original packet; (b) a Fragment Offset containing the offset of the fragment, in 8-octet
units, relative to the start of the fragmentable part of the original packet—the fragment offset of the first
(“leftmost”) fragment is O; (c) an M flag value of 0 if the fragment is the last rightmost one, else an M flag value
of 1; and (d) the identification value generated for the original packet.

3. The fragment itself. The lengths of the fragments must be chosen such that the resulting fragment packets fit
within the MTU of the path to the packets destination(s).

At the destination, fragment packets are reassembled into their original, unfragmented form, asillustrated in
Fig. 10-12. The following rules govern reassembly. An original packet is reassembled only from fragment
packets that have the same source address, destination address, and fragment I dentification.

| Urlrsgreteboe | firsl | assezad | 1 leat |
| Fart fragman’ ‘ragmant | L. | Sgrient
e m—— e e m——— s e e e e e

1]

frmm s = e e m e v m o m e e e e

| Urbgrnetabee [Fragmenll first
| Part Heades f A

S — *

ek e S e e
| Urdagnetebde IFagmentl secord 1
| Part Header | Fagmen

S — +
| Urimgmeticve IFragmentl last |
| Fart Hoador | freqment |

L T TRy FEP T

]

Figure 10-11
Transmitting the (a) origina packet in
(b) fragment packages.
SRS | S —
I Juﬂr:ugw-nlm [} Fm;:reu'uua [}
I Part I Pari I
.................................. S
Figure 10-12

Reassembling the fragment packets.

The Unfragmentable Part of the reassembled packet consists of all headers up to, but not including, the
fragment header of the first fragment packet (i.e., the packet whose Fragment Offset is zero), with the following
two changes: (1) the Next Header field of the last header of the Unfragmentable Part is obtained from the
Next Header field of thefirst fragment’s fragment header, and (2) the payload length of the reassembled
packet is computed from the length of the unfragmentable part and the length and offset of the last fragment.
For example, aformulafor computing the payload length of the reassembled original packet is

PL.orig = PL first - FL.first - 8 1 (8 * FO.last) + FL.last

where PL . orig = payload-length field of reassembled packet; PL . Fi rst = payload-length field of first
fragment packet; FL . First = length of fragment following fragment header of first fragment packet;

FO. last = fragment-offset field of fragment header of last fragment packet; FL . last = length of fragment
following fragment header of last fragment packet.

The fragmentable part of the reassembled packet is constructed from the fragments following the Fragment
headers in each fragment packet. The length of each fragment is computed by subtracting from the packet’s
payload length the length of the headers between the IPv6 header and fragment itself; its relative positionin
fragmentable part is computed from its fragment-offset value.

The Fragment header is not present in the final, reassembled packet. The following error conditions may arise
when reassembling fragmented packets. If insufficient fragments are received to complete reassembly of a
packet within 60 s of the reception of the first-arriving fragment of that packet, reassembly of that packet must
be abandoned and all the fragments that have been received for that packet must be discarded. If the first
fragment (i.e., the one with a fragment offset of zero) has been received, an ICMP “time exceeded—fragment
reassembly time exceeded” message should be sent to the source of that fragment.

If the length of afragment, as derived from the fragment packet’ s payload-length field, is not amultiple of 8
octets and the M flag of that fragment is 1, then that fragment must be discarded and an ICMP Parameter
Problem, Code 0, message should be sent to the source of the fragment, pointing to the Payload Length field of
the fragment packet.

If the length and offset of afragment are such that the payload length of the packet reassembled from that
fragment would exceed 65,535 octets, then that fragment must be discarded and an ICMP Parameter Problem,
Code 0, message should be sent to the source of the fragment, pointing to the fragment-offset field of the
fragment packet.

The following conditions are not expected to occur, but are not considered errors if they do. The number and
content of the headers preceding the fragment header of different fragments of the same origina packet may
differ. Whatever headers are present, preceding the fragment header in each fragment packet, are processed
when the packets arrive, prior to queuing the fragments for reassembly. Only those headers in the offset zero-
fragment packet are retained in the reassembled packet.

The Next Header valuesin the Fragment headers of different fragments of the same origina packet may
differ. Only the value from the offset zero-fragment packet is used for reassembly.

10.9 IPv6 Destination Options Header

The destination-options header is used to carry optional information that need be examined only by a packet’s
destination node(s). This header isidentified by a Next Header value of 60 in the immediately preceding header,
and has the format shown in Fig. 10-13, where

Next Header 8-bit selector. Identifies the type of header immediately
following the destination-options header. Uses the same values
asthe IPv4 Protocol field.

Hdr Ext Len 8-bit unsigned integer. Length of the destination-options header
in 8-octet units, not including the first 8 octets.
Options Variable-length field, of length such that the complete

destination-options header is an integer multiple of 8 octets
long. Contains one or more TLV-encoded options.

The only destination options defined in this document are the Padl and PadN options.

Note that there are two possible ways to encode optional destination information in an IPv6 packet: either as an
option in the destination-options header or as a separate extension header. The fragment header and the
authentication header are examples of the latter approach. Which approach can be used depends on what action
isdesired of a destination node that does not understand the optional information

f -t t-F-— -ttt

4+
Maxi Hizader | Hdr Ex Len

bttt b=t

Cplicnz

[R e REEE B R T N S B0 ST RE TR T N S Nk o TERE BN B R S S RER

Figure 10-13
IPv6 destination options header.

If the desired action is for the destination node to discard the packet and, only if the packet’ s destination address
is not amulticast address, send an | CMP unrecognized-type message to the packet’ s source address, then the
information may be encoded either as a separate header or as an option in the destination-options header whose
Option Type hasthe value 11 in its highest-order 2 bits. The choice may depend on such factors as which takes
fewer octets, or which yields better alignment or more efficient parsing.

If any other action is desired, the information must be encoded as an option in the destination-options header
whose option type has the value 00, 01, or 10 in its highest-order two bits, specifying the desired action.

10.10 1Pv6 No Next Header

The value 59 in the Next Header field of an IPv6 header or any extension header indicates that there is nothing
following that header. If the Payload Length field of the IPv6 header indicates the presence of octets past
the end of a header whose Next Header field contains 59, those octets must be ignored, and passed on
unchanged if the packet is forwarded.

10.11 I1Pv6 Packet Size Considerations

IPv6 requires that every link in the Internet have an MTU of 576 octets or greater. On any link that cannot
convey a576-octet packet in one piece, link-specific fragmentation and reassembly must be provided at alayer
below IPv6. From each link to which anode is directly attached, the node must be able to accept packets as
large asthat link’' sMTU. Links that have a configurable MTU (e.g., PPP links must be configured to have an
MTU of at least 576 octets; it is recommended that alarger MTU be configured, to accommodate possible
encapsulations (i.e., tunneling) without incurring fragmentation.

It is strongly recommended that I1Pv6 nodes implement Path MTU Discovery, in order to discover and take
advantage of paths with MTU greater than 576 octets. However, aminimal IPv6 implementation (e.g., in a boot
ROM) may simply restrict itself to sending packets no larger than 576 octets, and omit implementation of Path
MTU Discovery.

In order to send a packet larger than apath’s MTU, a nhode may use the IPv6 fragment header to fragment the
packet at the source and have it reassembled at the destination(s). However, the use of such fragmentation is
discouraged in any application that is able to adjust its packets to fit the measured path MTU (i.e., down to 576
octets).

A node must be able to accept afragmented packet that, after reassembly, is as large as 1500 octets, including
the IPv6 header. A node is permitted to accept fragmented packets that reassemble to more than 1500 octets.
However, a node must not send fragments that reassemble to a size greater than 1500 octets unlessit has
explicit knowledge that the destination(s) can reassemble a packet of that size.

In response to an |Pv6 packet that is sent to an IPv4 destination (i.e., a packet that undergoes tranglation from
IPv6 to 1Pv4), the originating |Pv6 node may receive an “1CMP packet too big” message reporting a next-hop
MTU lessthan 576. In that case, the IPv6 node is not required to reduce the size of subsequent packets to less
than 576, but must include a Fragment header in those packets so that the |Pv6-to-1Pv4 transating router can
obtain a suitable identification value to use in resulting |Pv4 fragments. Note that this means the payload may
have to be reduced to 528 octets (576 minus 40 for the IPv6 header and 8 for the Fragment header), and smaller
still if additional extension headers are used.

The Path MTU Discovery must be performed even in cases where a host “thinks’ a destination is attached to the
same link asitself. Unlike IPv4, it is unnecessary in IPv6 to set a“Don’t Fragment” flag in the packet header in
order to perform Path MTU Discovery; that is an implicit attribute of every IPv6 packet. Also, those parts of the
RFC-1191 procedures that involve use of atable of MTU “plateaus’ do not apply to IPv6, because the IPv6
version of the “datagram too big” message always identifies the exact MTU to be used.

10.12 |1Pv6 Flow Labels

The 24-bit flow-label field in the IPv6 header may be used by a source to label those packets for which it
requests special handling by the I1Pv6 routers, such as nondefault quality of service or real-time service. This
aspect of IPv6 is, at the time of writing, still experimental and subject to change as the requirements for flow
support in the Internet become clearer. Hosts or routers that do not support the functions of the flow-label field
are required to set the field to zero when originating a packet, pass the field on unchanged when forwarding a
packet, and ignore the field when receiving a packet.

A flow is a sequence of packets sent from a particular source to a particular (unicast or multicast) destination for
which the source desires specia handling by the intervening routers. The nature of that special handling might
be conveyed to the routers by a control protocol, such as aresource reservation protocol, or by information
within the flow’ s packets themselves, such as in a hop-by-hop option. The details of such control protocols or
options are beyond the scope of this document.

There may be multiple active flows from a source to a destination, as well astraffic that is not associated with
any flow. A flow is uniquely identified by the combination of a source address and a nonzero flow label.
Packets that do not belong to aflow carry aflow label of zero. A flow label is assigned to aflow by the flow’s
source node. New flow labels must be chosen (pseudo-)randomly and uniformly from the range 1 to FFFFFF
hex. The purpose of the random allocation is to make any set of bits within the flow-label field suitable for use
as a hash key by routers, for looking up the state associated with the flow.

All packets belonging to the same flow must be sent with the same source address, destination address, priority,
and flow label. If any of those packets includes a hop-by-hop options header, then they all must be originated
with the same hop-by-hop options header contents (excluding the Next Header field of the hop-by-hop
options header). If any of those packets includes a routing header, then they all must be originated with the
same contentsin all extension headers up to and including the routing header (excluding the Next Header
field in the routing header). The routers or destinations are permitted, but not required, to verify that these
conditions are satisfied. If aviolation is detected, it should be reported to the source by an ICMP Parameter
Problem message, Code 0, pointing to the high-order octet of the flow-label field (i.e., offset 1 within the IPv6
packet).

Routers are free to “opportunistically” set up aflow-handling state for any flow, even when no explicit flow
establishment information has been provided to them via a control protocol, a hop-by-hop option, or other
means. For example, on receiving a packet from a particular source with an unknown, nonzero flow label, a
router may processits IPv6 header and any necessary extension headers as if the flow label were zero. That
processing would include determining the next-hop interface, and possibly other actions, such as updating a
hop-by-hop option, advancing the pointer and addresses in a Routing header, or deciding on how to queue the
packet based onits Priority field. The router may then choose to “remember” the results of those processing
steps and cache that information, using the source address plus the flow label as the cache key. Subsequent
packets with the same source address and flow label may then be handled by referring to the cached information
rather than examining all those fields that, according to the requirements of the previous paragraph, can be
assumed unchanged from the first packet seen in the flow.

A cached flow-handling state that is set up opportunistically, as discussed in the preceding paragraph, must be
discarded no more than 6 s after it is established, regardless of whether packets of the same flow continue to
arrive. If another packet with the same source address and flow label arrives after the cached state has been
discarded, the packet undergoes full, normal processing (asif its flow label were zero), which may result in the
re-creation of cached flow state for that flow.

The lifetime of flow-handling state that is set up explicitly, for example, by a control protocol or a hop-by-hop
option, must be specified as part of the specification of the explicit setup mechanism; it may exceed 6 s. A
source must not reuse aflow label for a new flow within the lifetime of any flow-handling state that might have
been established for the prior use of that flow label. Since flow-handling state with alifetime of 6 smay be
established opportunistically for any flow, the minimum interval between the last packet of one flow and the
first packet of anew flow using the same flow label is 6 s. Flow labels used for explicitly setup flows with
longer flow-state lifetimes must remain unused for those longer lifetimes before being reused for new flows.

When a node stops and restarts as aresult of a crash, it must be careful not to use aflow label that it might have
used for an earlier flow whose lifetime may not have expired yet. This may be accomplished by recording flow
label usage on stable storage so that it can be remembered across crashes, or by refraining from using any flow
labels until the maximum lifetime of any possible previously established flows has expired (at least 6 s; more if
explicit flow setup mechanisms with longer lifetimes might have been used). If the minimum time for rebooting
the node is known (often more than 6 s), that time can be deducted from the necessary waiting period before
starting to allocate flow labels.

There is no requirement that all, or even most, packets belong to flows, that is, carry nonzero flow labels. This
observation is placed here to remind protocol designers and implementers not to assume otherwise. For
example, it would be unwise to design arouter whose performance would be adequate only if most packets
belonged to flows, or to design a header compression scheme that worked only on packets that belonged to
flows.

10.13 1Pv6 Packet Priority Field

The 4-bit Priority field in the IPv6 header enables a source to identify the desired delivery priority of its
packets, relative to other packets from the same source. The priority values are divided into two ranges. Values
0 through 7 are used to specify the priority of traffic for which the source is providing congestion control,
specifically, traffic that “backs off” in response to congestion, such as TCP traffic. Vaues 8 through 15 are used
to specify the priority of traffic that does not back off in response to congestion, such as “real-time”’ packets
being sent at a constant rate.

For congestion-controlled traffic, the following Priority values are recommended for particular application
categories:

0 Uncharacterized traffic

1 “Filler” traffic (e.g., Nethews)

2 Unattended data transfer (e.g., email)

3 (Reserved)

4 Attended bulk transfer (e.g., FTP, NFS)

5 (Reserved)

6 Interactivetraffic (e.g., TELNET, X)

7 Internet control traffic (e.g., routing protocols, SNMP)

For non-congestion-controlled traffic, the lowest priority value (8) should be used for those packets that the
sender is most willing to have discarded under conditions of congestion (e.g., high-fidelity video traffic), and
the highest value (15) should be used for those packets that the sender is least willing to have discarded (e.g.,
low-fidelity audio traffic). Thereis no relative ordering implied between the congestion-controlled priorities
and the non-congestion-controlled priorities.

10.14 IPv6 and Upper-Layer Protocols
10.14.1 Upper-Layer Checksums

Any transport or other upper-layer protocol that includes the addresses from the | P header in its checksum
computation must be modified for use over I1Pv6, to include the 128-bit IPv6 addresses instead of 32-bit IPv4
addresses. In particular, the following program fragment in Fig. 10-14 shows the TCP and UDP “ pseudoheader”
for IPv6.

1. If the packet contains a Routing header, the destination address used in the pseudoheader is that of the final
destination. At the orig inating node, that address will be in the last element of the routing header; at the
recipient(s), that address will be in the destination-address field of the IPv6 header.

} ST U O S EN“E DU A SO S SRRt SIS (U S S O

SR
Max Header | Hdr Ex Len

e Rt DR L e B e et SR

Opticnz

B e B T e e e e e T e e R e A s St R 3

Figure 10-14
IPv6 TCP and UDP “pseudoheader.”

2. TheNext Header valuein the pseudoheader identifies the upper-layer protocol (6 for TCP or 17 for
UDP). It will differ from the Next Header value in the |Pv6 header if there are extension headers between the
|Pv6 header and the upper-layer header.

3. ThePayload Length used in the pseudoheader isthe length of the upper-layer packet, including the
upper-layer header. It will be less than the Payload Length inthe IPv6 header (or in the Jumbo
Payload option) if there are extension headers between the 1Pv6 header and the upper-layer header.

4. Unlike IPv4, when UDP packets are originated by an IPv6 node, the UDP checksum is not optional. That is,
whenever originating a UDP packet, an |Pv6 node must compute a UDP checksum over the packet and the
pseudoheader, and, if that computation yields a result of zero, it must be changed to hex FFFF for placement in
the UDP header. |Pv6 receivers must discard UDP packets containing a zero checksum, and should log the
error.

The IPv6 version includes this pseudoheader in its checksum computation; thisis a change from the IPv4
version of ICMP, which does not include a pseudoheader in its checksum. The reason for the changeis to
protect ICMP from misdelivery or corruption of those fields of the IPv6 header on which it depends, which,
unlike IPv4, are not covered by an Internet-layer checksum. The Next Header field in the pseudoheader for
ICMP contains the value 58, which identifies the IPv6 version of ICMP.

Maximum Packet Lifetime

Unlike IPv4, 1Pv6 nodes are not required to enforce maximum packet lifetime; that is why the IPv4 time-to-live
field was renamed “hop limit” in IPv6. In practice, very few, if any, IPv4 implementations conform to the
requirement that they limit packet lifetime, so thisis not a change in practice. Any upper-layer protocol that
relies on the Internet layer (whether IPv4 or IPv6) to limit packet lifetime ought to be upgraded to provide its
own mechanisms for detecting and discarding obsolete packets.

Maximum Upper-Layer Payload Size

When computing the maximum payload size available for upper-layer data, an upper-layer protocol must take
into account the larger size of the IPv6 header relative to the IPv4 header. For example, in IPv4, TCP sMSS
option is computed as the maximum packet size (a default value or avaue learned through Path MTU
Discovery) minus 40 octets (20 octets for the minimum-length 1Pv4 header and 20 octets for the minimum-
length TCP header). When using TCP over IPv6, the MSS must be computed as the maximum packet size
minus 60 octets, because the minimum-length 1Pv6 header (i.e., an IPv6 header with no extension headers) is 20
octets longer than a minimum-length 1Pv4 header.

10.14.2 Formatting Guidelinesfor Options

Following are some guidelines on how to lay out the fields when designing new options to be used in the hop-
by-hop options header or the destination-options header. These guidelines are based on the following
assumptions:

* One desirable feature is that any multioctet fields within the option-data area of an option be aligned on their
natural boundaries, that is, fields of width n octets should be placed at an integer multiple of n octets from the
start of the hop-by-hop or destination-options header, for n=1, 2, 4, or 8.

» Another desirable feature is that the hop-by-hop or destination-options header take up as little space as
possible, subject to the requirement that the header be an integer multiple of 8 octets long.

* It may be assumed that, when either of the option-bearing headers are present, these headers carry avery small
number of options, usually only one.

These assumptions suggest the following approach to laying out the fields of an option: order the fields from
smallest to largest, with no interior padding, then derive the alignment requirement for the entire option based
on the alignment requirement of the largest field (up to a maximum alignment of 8 octets). This approachis
illustrated in the following examples.

If an option X required two data fields, one of length 8 octets and one of length 4 octets, it would be laid out in
Fig. 10-15. Its alignment requirement is 8n + 2, to ensure that the 8-octet field starts at a multiple-of-8 offset
from the start of the enclosing header. A complete hop-by-hop or destination-options header containing this one
option is shownin Fig. 10-16.

P T T T T T R S
| Uplice Typo=X 1Upt Laca Len=1El
B s e B L e Tt T IR
I depcdnt Sl |
R B RYRN B RO S R B Y B B R EY R B R B BN B R B R Y |
I |+ Sl Fed
| |

I L e e e e B R e e B IR T S N o

Figure 10-15
Option X with two datafields.

B e el et o B B T T S R T
| Mast Hapder | Hdr Bt Len=1 | Option [ypa=X 1000 Dala Lon= 12
L e B L R Y o B e T Y S T E PR P S E R S P RS PR
| el fiadd
B e Bt Al T L e
| I

Bl liadd
| I

e o e o R o o B o e B i o o i o St

Figure 10-16
Hop-by-hop head for option X.

If an option Y required three datafields, one of length 4 octets, one of length 2 octets, and one of length 1 octet,
it would be laid out as shown in Fig. 10-17.

Its alignment requirement is 4n + 3, to ensure that the 4-octet field starts at a multiple-of-4 offset from the start
of the enclosing header. A complete hop-by-hop or destination-options header containing this one option is
shown in Fig. 10-18.

A hop-by-hop or destination-options header containing both options X and Y from the first two examples would
have one of the two formats shown in Fig. 10-19.

TR —
1 Orrtion Type= |
L e e

10pd Deda Len-7 " -acket field | E-odel fie'd 1
1 el T 1
e e e R e e e L e e it et A o e A e o

Figure 10-17
Option Y with three data fields.

R e B o e e R B o o o o i ok B e e

| Mist Haddeo | Hdr Ext Len=1 | FE0T Cplianel | UpEan Type=Y |

10p1 Drala Len=T | 1 -0cie! Buld | @iyl Faid |

B e T T
| e lat Baldd

B e e e
I Hack Cption=1 1ot Jata Lan=2t | L | o

e o e o e s e o o o s g e o e e

Figure 10-18
Hop-by-hop head for option Y.

10.15 |Pv6 Addresses
10.15.1 Address Architecture

The remainder of this chapter focuses upon the address architecture of the IP version 6 protocol. It includes
|Pv6 addressing model, text representations of |Pv6 addresses, definition of 1Pv6 unicast addresses, anycast
addresses, and multicast addresses, and | Pv6 nodes required addresses.

10.15.2 A Perspective
|Pv6 addresses are 128-bit. There are three types of addresses:

1. Unicast: Anidentifier for asingle interface. A packet sent to a unicast address is delivered to the interface
identified by that address.

2. Anycast: An identifier for aset of interfaces (typically belonging to different nodes). A packet sent to an
anycast address is delivered to one of the interfaces identified by that address (the “ nearest” one, according to
the routing protocols measure of distance).

3. Multicast: Anidentifier for a set of interfaces (typically belonging to different nodes). A packet sent to a
multicast address is delivered to al interfaces identified by that address.

There are no broadcast addresses in IPv6. This type of address is superseded by one or more multicast

addresses. Here address fields are given a specific name, for example, subscriber. When this name is used with
the ID for identifier after the name subscriber 1D, it refers to the contents of that field. When it is used with the
term prefix, it refersto all the address up to and including thisfield. In IPv6, all zeros and ones are legal values
for any field unless specifically excluded. Specifically, prefixes may contain zero-valued fields or end in zeros.

t—t+ 4+ t+t++t -ttt tt it -+ttt
| Mot Feadoe | HdT ExLon=3 | Optize Typa=X 109 Deta Lens121
Bactapabafapafaobafatnpatopababaiepafatahosopatepufipedatofabopat
| [B I
e e e e e e
| |

¥ B2 01 Tkl t

| |
S R RS T P S
| Padtl Opfion=1 Klpt Oata Lenst | 1] Opion Typasy |

B e S e at e B D e e e e R e it st B S S e e 3
10 Jana Lamsy | 1-o21e isd 2-oon fick
Bactapabafapafaobafatnpatopababaiepafatahosopatepufipedatofabopat
| [B I
e e e e e e
| Fad Jchan=1 Kip! Baa en=2 | L] 1} |

L B e B B B B R o I S B B P PO B
Bactapabafapafaobafatnpatopababaiepafatahosopatepufipedatofabopat
| et Feadzr | Hi Exl Len=3 1 Padd Opdons=i | Oplica Typa=¥ 1

e e e e i o e e s oo o+ i = e e e =

ot Data Lan=3 1 1-031E0 heed 2-ootel held

L e R e R e e e o e e B B B B R e e ot o o R it R B
| danctit fied I
S R RS T P S
| Padtl Opfion=1 Klpt Daca Lened | 1] i] |

L e i R SEE L e e B o R e o AT SF T S S T e T 3
| o | ol 1 O0tion Teaesx 00 Oana Lon=13

Backnfaderfadadind dafa s fadofatbadad s o s i b a g ade s
| dennze] faadd I

L e e e e A e Al i L A A]
| I

E-gztat Tiokd '

| |

[RER R B BTSN BERY STIE ST TP B BRI SIS BSTEE S T BESt PrRt BIL

Figure 10-19
Hop-by-hop head for both options X and Y.

10.15.3 Address Assignment

|Pv6 addresses of all types are assigned to interfaces, not nodes. Since each interface belongs to a single node,
any of that node’sinterfaces’ unicast addresses may be used as an identifier for the node.

An IPv6 unicast address refers to asingle interface. A single interface may be assigned multiple 1Pv6 addresses
of any type (unicast, anycast, and multicast). There are two exceptions to thismodel: (1) asingle address may
be assigned to multiple physical interfacesif the implementation treats the multiple physical interfaces as one
interface when presenting it to the Internet layer, or (2) routers may have unnumbered interfaces on point-to-
point links to eliminate the necessity to manually configure and advertise the addresses.

Addresses are not required for point-to-point interfaces on routers if those interfaces are not to be used as the
origins or destinations of any |Pv6 datagrams.

IPv6 continues the I1Pv4 subnet model that is associated with one link. Multiple subnets may be assigned to that
link. There are three conventional forms for representing | Pv6 addresses as text strings:

1. The preferred form is x:x:x:x:x:x:x:X, where the “x” s are the hexadecimal values of the eight 16-bit pieces of
the address. Examples are FEDC:BA 98:7654:3210:FEDC:BA98:7654:3210 and 1080:0:0:0:8:800: 200C:417A.

2. Because of the method of allocating certain styles of 1Pv6 addresses, it is common for addresses to contain
long strings of zero bits. To facilitate writing of addresses containing zero bits, a special syntax is available to
compress the zeros. The use of “::” indicates multiple groups of 16 bits of zeros. The“::” can appear only once
in an address. The“::” can also be used to compress the leading and/or trailing zeros in an address. For
example, the following addresses 1080:0:0:0:8:800:200C:417A (aunicast address), FF01:0:0:0:0:0:0:43 (a
multicast address), and 0:0:0:0:0:0:0:1 (the loopback address), and 0:0:0:0:0:0:0:0 (the unspecified addresses)
may be represented as 1080::8:800:200C:417A (aunicast address), or FF01::43 (a multicast address), ::1
indicating the loopback address and :: indicating the unspecified addresses

3. An alternative form that is sometimes more convenient when dealing with a mixed environment of IPv4 and
IPv6 nodesis x:x:x:x:x:x:d.d.d.d, where the “x” s are the hexadecimal values of the six high-order 16-bit pieces
of the address, and the “d” s are the decimal values of the four low-order 8-bit pieces of the address (standard

| Pv4 representation). Examples are 0:0:0:0:0:0:13.1.68.3 and 0:0:0:0:0: FFFF:129.144.52.38. In compressed
form these appear as ::13.1.68.3 and ::FFFF:129.144.52.38, respectively.

10.15.4 Address-Type Representation

The specific type of an IPv6 addressisindicated by the address's leading bits. The variable-length field
comprising these leading bitsis called the format prefix (FP). The initial allocations of these prefixes are listed
in Table 10-1.

The “unspecified address,” the loopback address, and the IPv6 addresses with embedded 1Pv4 addresses are
assigned out of the 0000 0000 format prefix space. This allocation supports the direct provider address
allocation, local-use addresses, and multicast addresses. Space isreserved for NSAP addresses, |1PX addresses,
and geographic addresses. The remainder of the address space is unassigned for future use (this can be used for
expansion of existing use or new uses); 15 percent of the address space isinitially allocated. The remaining 85
percent is reserved for future use.

Table 10-1 Address Format Prefix Allocations

Fraction of address

Allocation space Prefix (binary) space
Reserved 0000 0000];_jﬁ .
Unassigned 0000 0001 r"{:: "
Reserved for NSAP Allocation 0000 001 e
e
Reserved for IPX Allocation 0000 010 xl’if"k
s
Unassigned 0000 011 L,
Slén
Unassigned 0000 1 14
Unassigned 0001 "ﬂs
Unassigned 001 17

Provider-based unicast address 010 1/

Unassigned 011 17

Reserved for geographically based 1/
unicast addresses 100 e

Unassigned 101 14

]
Unassigned 110 14

]
Unassigned 1110 I{6
Unassigned 11110 Vi
Unassigned 111110 5 4
Unassigned 1111 110 L

Flie
Unassigned 111111100 1.,
Link local-use addresses 1111 1110 10 L
Site local-use addresses 1111111011 L
Multicast addresses 1111 1111 L, o

© ol

Unicast addresses are distinguished from multicast addresses by the value of the high-order octet of the
addresses. avalue of FF (11111111) identifies an address as a multicast address; any other value identifies an
address as a unicast address. Anycast addresses are taken from the unicast address space, and are not
syntactically distinguishable from unicast addresses.

10.15.5 Unicast Addresses

The IPv6 unicast address is contiguous bitwise maskable, similar to IPv4 addresses under classless interdomain
routing (CIDR). There are several forms of unicast address assignment in |Pv6, including the global-provider-
based unicast address, the geographically based unicast address, the NSAP address, the IPX hierarchical
address, the site-local-use address, the link-local-use address, and the 1Pv4-capable host address. Additional
address types can be defined in the future.

IPv6 nodes (Fig. 10-20) may have considerable or little knowledge of the internal structure of the IPv6 address,
depending on what the host does. Remember that a host is not necessarily a computer in the sense that a user
doeswork onit; it could be any valid network device. At aminimum, a node may consider that unicast
addresses (including its own) have no internal structure (Fig. 10-20a). A slightly sophisticated host (but till
rather simple) may additionally be aware of subnet pre fix(es) for the link(s) it is attached to and different
addresses can have different n values (Fig. 10-20Db).

| 126 cits

1 mode addrass

o

| nbits 1 T2E-n b I
e s s |
1 aubnet predic | imtgefacy 10 I

BT P ————

L]

Figure 10-20
IPv6 nodes: (a) simple host. (b) slightly sophisticated host.

n bita Hil-n hita 1 B QIA] gmmmm e e eeefm e s e m e
s risar prafic sbnef 0 | mbarfce 10
[| |

Figure 10-21
Unicast address format for IEEE 802 MAC addresses.

More sophisticated hosts may be aware of other hierarchical boundaries in the unicast address. Although avery
simple router may have no knowledge of the internal structure of 1Pv6 unicast addresses, routers will more
generally have knowledge of one or more of the hierarchical boundaries for the operation of routing protocols.
The known boundaries will differ from router to router, depending on what positions the router holds in the
routing hierarchy.

Figure 10-21 shows a unicast address format which will likely be common on LANs and other environments
where |EEE 802 MAC addresses are available.

In this last algorithm the 48-bit Interface ID is an IEEE 802 MAC address. The use of IEEE 802 MAC
addresses as ainterface ID is expected to be very common in environments where nodes have an |EEE 802
MAC address. In other environments, where IEEE 802 MAC addresses are not available, other types of link-
layer addresses can be used, such as E.164 addresses, for the interface ID.

Theinclusion of aunique global interface identifier, such as an IEEE MAC address, makes possible avery
simple form of autoconfiguration of addresses. A node may discover asubnet ID by listening to router
advertisement messages sent by arouter on its attached link(s), and then fabricating an 1Pv6 address for itself by
using its IEEE MAC address as the interface ID on that subnet.

Figure 10-22 shows another unicast address format example where a site or organization requires additional
layers of internal hierarchy. In this example the subnet ID is divided into an area ID and asubnet ID. This
technique can be continued to allow a site or organization to add additional layers of internal hierarchy. It may
be desirable to use an interface ID smaller than a 48-bit IEEE 802 MAC address to allow more space for the
additional layers of internal hierarchy. These could be interface IDs which are administratively created by the
site or organi zation.

| SUbBSr b i 1d'ed 10 | atnel D1 Akl D 1

Figure 10-22
Unicast address format for internal hierarchy.

The address 0:0:0:0:0:0:0:0 is called the unspecified address. It must never be assigned to any node. It indicates
the absence of an address. One example of itsuse isin the Source Address field of any 1Pv6 datagrams sent by
an initializing host before it has learned its own address. The unspecified address must not be used as the
destination address of 1Pv6 datagrams or in IPv6 Routing Headers. The unicast address 0:0:0:0:0:0:0:1 is called
the loopback address. It may be used by a node to send an |Pv6 datagram to itself. It may never be assigned to
any interface. The loopback address must not be used as the source address in |1Pv6 datagrams that are sent
outside a single node. An IPv6 datagram with a destination address of loopback must never be sent outside of a
single node.

10.15.6 1Pv6 Versus | Pv4 Addresses

The IPv6 transition mechanisms include a technique for hosts and routers to dynamically tunnel IPv6 packets
over IPv4 routing infrastructure. IPv6 nodes that utilize this technique are assigned specia 1Pv6 unicast
addresses that carry an 1Pv4 addressin the low-order 32 bits. This type of addressistermed an “1Pv4-
compatible IPv6 address’ and has the format shown in Fig. 10-23.

A second type of 1Pv6 address which holds an embedded 1Pv4 addressis also defined (see Fig. 10-24). This
address is used to represent the addresses of |Pv4-only nodes (those that *do not* support IPv6) as IPv6
addresses. Thistype of addressistermed an “1Pv4-mapped | Pv6 address.”

Figures 10.25 and 10.26 show the mapping of NSAP addresses and IPX addresses, respectively, into IPv6
addresses. Thisinitial assignment plan for global unicast addressesis similar to assignment of |Pv4 addresses
under the CIDR scheme. The IPv6 global-provider-based unicast address format is shown in Fig. 10-27.

The high-order bit part of the address is assigned to registries, which assigns portions of the address space to
providers, which assigns portions of the address space to subscribers, and so forth.

I s | 1] | a2 b5 |

13000 ... Q00000 . OCEP S iy

1 R 8 T e

Figure 10-23
IPv4-compatible IPv6 address.

| 30 s 16 I 52 bits |

D000, OIFFFE | 1P andrage

S S ——

Figure 10-24
| Pv4-mapped | Pv6 address.

la 1 sl
........................

070NN o ba dafred |

Figure 10-25
Mapping an NSAP address into an |Pv6 address.

I Fl | 121 s |
e Ly
IR0 D | b bed i |

Figure 10-26
Mapping an IPX address into an |Pv6 address.

131 mcits |m bis | o bits | 125 mermeo bits 1
BRI E TR R R R
i1 Blregisiny | Riprouides Mkshecrber (Rintra-sabscriber |

0 R

Figure 10-27
IPv6 global-provider-based unicast address.

Theregistry 1D identifies the registry which assigns the provider portion of the address. The term registry prefix
refers to the high-order part of the address up to and including the registry ID. The provider ID identifiesa
specific provider which assigns the subscriber portion of the address. The term provider prefix refersto the
high-order part of the address up to and including the provider ID. The subscriber 1D distinguishes among
multiple subscribers attached to the provider identified by the provider ID. The term subscriber prefix refersto
the high-order part of the address up to and including the subscriber ID.

The intrasubscriber portion of the address is defined by an individual subscriber and is organized according to
the subscriber’ s local Internet topology. It islikely that many subscribers will choose to divide the
intrasubscriber portion of the address into a subnet ID and an interface ID. In this case the subnet ID identifiesa
specific physical link and the interface 1D identifies asingle interface on that subnet.

| Pv6 Unicast Addresses

Two types of local-use unicast addresses are defined: link-local and site-local (see Fig. 10-28). The link-local
addressisfor use on asingle link; the site-local addressisfor usein asingle site.

Link-local addresses (Fig. 10-28a) are designed for addressing on a single link for purposes such as autoaddress
configuration, neighbor discovery, or when no routers are present. Routers are not permitted to forward any
packets with link-local source addresses.

Site-local addresses have the format shown in Fig. 10-28b. Site-local addresses may be used for sites or
organizations that are not (yet) connected to the global Internet. They do not need to request or “steal” an
address prefix from the global Internet address space. |Pv6 site-local addresses can be used instead. When the
organization connects to the global Internet, it can then form global addresses by replacing the site-local prefix
with a subscriber prefix.

148 beis | o bafs | 1481 it |
N
Hti4i4ia | & I inerdace R |

S A A R 8 R 8 e

(8]

110 ks | a0 Cits L Beds | 19 3anenm bats |
R B 1 1 B A R 4 B R
H4d - 6 | ewonsst 10] nbesface (0l

R 0 8 e 0 S R B B

]

Figure 10-28
Local-use unicast addresses: (a link-local
and (b) site-local.

Routers must not forward any packets with site-local source addresses outside of the site.
10.15.7 Anycast Addresses

An IPv6 anycast address is assigned to more than one interface (typically belonging to different nodes), with
the property that a packet sent to an anycast address is routed to the nearest interface having that address,
according to the routing protocols measure of distance.

Anycast addresses are allocated from the unicast address space, using any of the defined unicast address
formats. Thus, anycast addresses are syntactically indistinguishable from unicast addresses. When a unicast
address is assigned to more than one interface, thus turning it into an anycast address, the nodes to which the
address is assigned must be explicitly configured to know that it is an anycast address.

For any assigned anycast address, there is alongest address prefix P that identifies the topological region in
which all interfaces belonging to that anycast address reside. Within the region identified by P, each member of
the anycast set must be advertised as a separate entry in the routing system (referred to as a host route); outside
the region identified by P, the anycast address may be aggregated into the routing advertisement for prefix P.

Note that in, the worst case, the prefix P of an anycast set may be the null prefix; thus the members of the set
may have no topological locality. In that case, the anycast address must be advertised as a separate routing entry
throughout the entire Internet, thus presenting a severe scaling limit on how many such “global” anycast sets
may be supported. Therefore, it is expected that support for global anycast sets may be unavailable or very
restricted.

One expected use of anycast addressesis to identify the set of routers belonging to an Internet service provider.
Such addresses could be used as intermediate addresses in an |Pv6 routing header, to cause a packet to be
delivered via a particular provider or sequence of providers. Some other possible uses are to identify the set of
routers attached to a particular subnet, or the set of routers providing entry into a particular routing domain.

Thereislittle experience with widespread, arbitrary use of Internet anycast addresses, and some known
complications and hazards when using them in their full generality [ANYCST]. Until more experience has been
gained and solutions agreed on for those problems, the following restrictions are imposed on 1Pv6 anycast
addresses. An anycast address must not be (1) used as the source address of an |Pv6 packet or (2) be assigned to
an IPv6 host—that is, it may be assigned to an |Pv6 router only.

110 heis | mlafs | 1181 it |
N

Htitima 1o I imtertaca 1|

S A 1 S B e
(2]

110 heks | a0 Gits L Beds D 1930 bats |

A 8 1 B A B 41 A R

H 41 6 | swonst 10] nbesface (0

8 8 o 0 R 2 B B

Figure 10-29
Subnet-router anycast address.

The subnet-router anycast address (Fig. 10-29) is predefined. The subnet prefix in an anycast addressis the
prefix which identifies a specific link. This anycast address is syntactically the same as a unicast address for an
interface on the link with the interface identifier set to zero.

Packets sent to the subnet-router anycast address will be delivered to one router on the subnet. All routers are
required to support the subnet-router anycast addresses for the subnets with which they interface.

The subnet-router anycast addressis intended for use in applications where a node needs to communicate with
one of a set of routers on a remote subnet, such as when a mobile host needs to communicate with one of the
mobile agents on its “home” subnet.

10.15.8 Multicast Addresses

An IPv6 multicast address (Fig. 10-30) is an identifier for agroup of nodes. A node may belong to any number
of multicast groups.

The high-order three flags are reserved, and must be initialized to 0. T = 0 indicates a permanently assigned
(“well-known”) multicast address, assigned by the global Internet numbering authority; T = 1 indicates a
non—permanently assigned multicast address (it is also referred to as transient).

Scope is a4-bit multicast scope value used to limit the scope of the multicast group. The values are
O—reserved, 1—node-local scope, 2—Ilink-local scope, 3—(unassigned), 4—(unassigned), 5—site-local scope,
6—(unassigned), 7—(unassigned), 8—organization-local scope, 9—(unassigned), A—(unassigned),
B—(unassigned), C—(unassigned), D—(unassigned), E—global scope, F—reserved.

2idi4 112 nite !
Y —— +
11111 iglscopl grup

- S —— S—

PIRTIET at the sar of tha address daniilies tha sdomse as baing a mubicas acdrss.

PO
fags is a snd ol & flaps GKIKET]

ettt

Figure 10-30
IPv6 multicast address format.

Group ID identifies the multicast group, either permanent or transient, within the given scope. The “meaning”
of a permanently assigned multicast address is independent of the scope value. For example, if the “NTP servers
group” is assigned a permanent multicast address with a group 1D of 43 (hex), then

FF01:0:0:0:0:0:0:43 means all NTP servers on the same node as the sender.
FF02:0:0:0:0:0:0:43 means all NTP servers on the same link as the sender.
FF05:0:0:0:0:0:0:43 means all NTP servers at the same site as the sender.
FFOE:0:0:0:0:0:0:43 means all NTP serversin the Internet.

Non-permanently assigned multicast addresses are meaningful only within a given scope. For example, a group
identified by the nonpermanent, site-local multicast address FF15:0:0:0:0:0:0:43 at one site bears no
relationship to a group using the same address at a different site, nor to a nonpermanent group using the same
group 1D with different scope, nor to a permanent group with the same group ID.

Multicast addresses must not be used as source addresses in | Pv6 datagrams or appear in any routing header.
Predefined Multicast Addresses
The following well-known multicast addresses are predefined:

1. Reserved Multicast Addresses:

FF00:0:0:0:0:0:0:0 FF04:0:0:0:0:0:0:0 FF08:0:0:0:0:0:0:0
FFOC:0:0:0:0:0:0:0 FF01:0:0:0:0:0:0:0 FF06:0:0:0:0:0:0:0
FF09:0:0:0:0:0:0:0 FFOD:0:0:0:0:0:0:0 FF02:0:0:0:0:0:0:0
FF06:0:0:0:0:0:0:0 FFOA:0:0:0:0:0:0:0 FFOE:0:0:0:0:0:0:0
FF03:0:0:0:0:0:0:0 FFO07:0:0:0:0:0:0:0 FFOB:0:0:0:0:0:0:0
FFOF:-0:0:0:0:0:0:0

These multicast addresses are reserved and shall never be assigned to any multicast group.

2. All-nodes Addresses. FF01:0:0:0:0:0:0:1 and FF02:0:0:0:0:0:0:1. These multicast addresses identify the
group of all IPv6 nodes, within scope 1 (node-local) or 2 (link-local).

3. All-routers addresses. FF01:0:0:0:0:0:0:2 and FF02:0:0:0:0:0:0:2. These multicast addresses identify the
group of all IPv6 routers, within scope 1 (node-local) or 2 (link-local).

4. DHCP server/relay agent: FF02:0:0:0:0:0:0:C. These multicast addresses identify the group of al 1Pv6
DHCP servers and relay agents within scope 2 (link-local).

5. Solicited-node address: FF02:0:0:0:0:1: XXX X:XXXX. This multicast address is computed as a function of a
node’ s unicast and anycast addresses. The solicited-node multicast address is formed by taking the low-order 32
bits of the address (unicast or anycast) and appending those bits to the 96-bit prefix FF02:0:0:0:0:1, resulting in
amulticast address in the range FF02:0:0:0:0:1:0000:0000 to FF02:0:0:0:0:1: FFFF:FFFF. For example, the
solicited-node multicast address corresponding to the |Pv6 address 4037::01:800: 200E:8C6C is
FF02::1:200E:8C6C. | Pv6 addresses that differ only in the high-order bits, for example, due to multiple high-
order prefixes associated with different providers, will map to the same solicited-node address thereby reducing
the number of multicast addresses a node must join. A nodeis required to compute and support a solicited-node
multicast address for every unicast and anycast address to which it is assigned.

10.15.9 Node Address Requirement

A host isrequired to recognize the following addresses as identifying itself: (1) itslink-local address for each
interface, (2) assigned unicast addresses, (3) loopback address, (4) all-nodes multicast address, (5) solicited-
node multicast address for each of its assigned unicast and anycast addresses, and (6) multicast addresses of all
other groups to which the host belongs.

A router isrequired to recognize the following addresses as identify ing itself: (1) itslink-local address for each
interface, (2) assigned unicast addresses, (3) loopback address, (4) the Subnet-Router anycast addresses for the
links with which it interfaces, (5) al other Anycast addresses with which the router has been configured, (6) all-
nodes multicast address, (7) all-router multicast address, (8) solicited-node multicast address for each of its

assigned unicast and anycast addresses, and (9) multicast addresses of all other groups to which the router
belongs.

The only address prefixes which should be predefined in an implementation are the (1) unspecified address, (2)
loopback address, (3) multicast prefix (FF), (4) local-use prefixes (link-local and site-local), (5) predefined
multicast addresses, and (6) 1Pv4-compatible prefixes.

I mplementations should assume that all other addresses are unicast unless specifically configured (e.g., anycast
addresses).

10.16 Summary

IP version 6 is more robust than its predecessor. Its ability to accommodate more networks and host addressesis
only one of its many advantages.

11
Transmission Control Protocol

The Transmission Control Protocol (TCP) isintended for use as areliable host-to-host protocol between hosts
in packet-switched computer communication networks, and in interconnected systems of such networks. As
strategic and tactical computer communication networks increase, it is essential to provide means of
interconnecting them and to provide standard interprocess communication protocols which can support a broad
range of applications.

11.1 TCP: A Perspective

TCP is a connection-oriented, end-to-end reliable protocol designed to fit into alayered hierarchy of protocols
which support multinetwork applications. The TCP provides for reliable interprocess communication between
pairs of processesin host computers attached to distinct but interconnected computer communication networks.
Very few assumptions are made as to the reliability of the communication protocols below the TCP layer. TCP
assumes that it can obtain a simple, potentially unreliable datagram service from the lower-level protocols. In
principle, the TCP should be able to operate above a wide spectrum of communication systems ranging from
hard-wired connections to packet-switched or circuit-switched networks.

TCP interfaces on one side to user or application processes and on the other side to a lower-level protocol such
asthe Internet Protocol (1P). The interface between an application process and TCP consists of a set of calls
much like the calls that an operating system provides to an application process for manipulating files. For
example, there are calls to open and close connections and to send and receive data on established connections.
It is also expected that the TCP can asynchronously communicate with application programs. Although
considerable freedom is permitted to TCP implementers to design interfaces which are appropriate to a
particular operating system environment, a minimum functionality is required at the TCP/user interface for any
valid implementation.

The interface between TCP and lower-level protocol is essentially unspecified except that it is assumed that
there is a mechanism by which the two levels can asynchronously pass information to each other. Typically, one
expects the lower-level protocol to specify thisinterface. TCP is designed to work in avery general

environment of interconnected networks.

11.2 TCP Operation

As noted above, the primary purpose of the TCP isto provide reliable, securable logical circuit or connection
service between pairs of processes. To provide this service on top of aless reliable Internet communication
system requires facilities in the following areas:

1. Basic data transfer. TCP is able to transfer a continuous stream of octets in each direction between its users
by packaging some number of octets into segments for transmission through the Internet system. In general,
TCP decides when to block and forward data at their own convenience. Sometimes users need to ensure that all
the data they have submitted to TCP have been transmitted. For this purpose a push function is defined. To
assure that data submitted to TCP is actually transmitted the sending user indicates that they should be pushed
through to the receiving user. A push causes the TCPs to promptly forward and deliver data up to that point to
the receiver. The exact push point might not be visible to the receiving user, and the push function does not
supply arecord boundary marker.

2. Reliability. TCP must recover from data that are damaged, lost, duplicated, or delivered out of order by the
Internet communication system. Thisis achieved by assigning a sequence number to each octet transmitted, and
requiring a positive acknowledgment (ACK) from the receiving TCP. If the ACK is not received within atimeout
interval, the data are retransmitted. At the receiver, the sequence numbers are used to correctly order segments
that may be received out of order and to eliminate duplicates. Damage is handled by adding a checksum to each
segment transmitted, checking it at the receiver, and discarding damaged segments. Aslong asthe TCPs
continue to function properly and the Internet system does not become completely partitioned, no trans mission
errors will affect the correct delivery of data. TCP recovers from Internet communication system errors.

3. Flow control. TCP provides a means for the receiver to govern the amount of data sent by the sender. Thisis
achieved by returning a“window” with every ACK indicating a range of acceptable sequence numbers beyond
the last segment successfully received. The window indicates an allowed number of octets that the sender may
transmit before receiving further permission.

4. Multiplexing. To allow for many processes within a single host to use TCP communication facilities
simultaneously, the TCP provides a set of addresses or ports within each host. Concatenated with the network
and host addresses from the Internet communication layer, this forms a socket. A pair of sockets uniquely
identifies each connection. In other words, a socket may be simultaneously used in multiple connections. The
binding of ports to processes is handled independently by each host. However, it proves useful to attach
frequently used processes (alogger or timesharing service) to fixed sockets which are made known to the
public. These services can then be accessed through the known addresses. Establishing and learning the port
addresses of other processes may involve more dynamic mechanisms.

5. Connections. The reliability and flow-control mechanisms described above require that TCPsinitialize and
maintain certain status information for each data stream. The combination of thisinformation, including
sockets, sequence numbers, and window sizes, is called a connection. Each connection is uniquely specified by
apair of socketsidentifying its two sides. When two processes wish to communicate, their TCPs must first
establish a connection (initialize the status information on each side). When their communication is compl ete,
the connection is terminated or closed to free the resources for other uses. Since connections must be
established between unreliable hosts and over the unreliable Internet communication system, a handshake
mechanism with clock-based sequence numbersis used to avoid erroneous initialization of connections.

6. Precedence and security. TCP users may indicate the security and precedence of their communication.
Provision is made for default values to be used when these features are not needed.

11.3 TCP and the Host Environment

TCPisassumed to be a module in an operating system or a part of the protocol suite running on a given host.
The users access the TCP much like they would access the file system. TCP may call on other operating system
functions, for example, to manage data structures. The actua interface to the network is assumed to be
controlled by adevice driver module. The TCP does not call on the network device driver directly, but rather
calls on the Internet datagram protocol module, which may, in turn, call on the device driver.

The mechanisms of TCP do not preclude implementation of the TCP in afront-end processor. However, in such
an implementation, a host-to-front-end protocol must provide the functionality to support the type of TCP user
interface described in this document.

I nterfaces and TCP

The TCP/user interface provides for calls made by the user on the TCP to OPEN or CLOSE a connection, to
SEND or RECEIVE data, or to obtain STATUS about a connection. These calls are like other calls from user
programs on the operating system, for example, the calls to open, read from, and close afile.

TCP/Internet interface provides calls to send and receive datagrams addressed to TCP modules in hosts
anywhere in the Internet system. These calls have parameters for passing the address, type of service,
precedence, security, and other control information.

TCP Reliability

A stream of data sent on a TCP connection is delivered reliably and in order at the destination. Transmission is
made reliable via the use of sequence numbers and acknowledgments. Conceptually, each octet of datais
assigned a sequence number. The sequence number of the first octet of datain a segment is transmitted with that
segment and is called the segment sequence number. Segments also carry an acknowledgment number which is
the sequence number of the next expected data octet of transmissionsin the reverse direction. When the TCP
transmits a segment containing data, it puts a copy on a retransmission queue and starts a timer; when the
acknowledgment for that data is received, the segment is deleted from the queue. If the acknowledgment is not
received before the timer runs out, the segment is retransmitted.

An acknowledgment by TCP does not guarantee that the data have been delivered to the end user; It does mean
that the receiving TCP has taken the responsibility to do so. To govern the flow of data between TCPs, a flow-
control mechanism is employed. The receiving TCP reports a“window” to the sending TCP. This window
specifies the number of octets, starting with the acknowledgment number, that the receiving TCP is currently
prepared to receive.

TCP Connection Establishment and Clearing

To identify the separate data streams that a TCP may handle, the TCP provides a port identifier. Since port
identifiers are selected independently by each TCP, they might not be unique. To provide for unique addresses
within each TCP, we concatenate an Internet address identifying the TCP with a port identifier to create a
socket which is unique throughout all networks connected together.

A connection is fully specified by the pair of sockets at the ends. A local socket may participate in many
connectionsto different foreign sockets. A connection can be used to carry datain both directions; it isfull-
duplex.

TCPs are free to associate ports with processes in any way they choose. However, several basic concepts are
necessary in any implementation. There must be well-known sockets which the TCP associates only with the
appropriate processes by some means. We envision that processes may own ports, and that processes can
initiate connections only on the ports they own. (Means for implementing ownership is alocal issue, but we
envison aREQUEST PORT user command, or a method of uniquely alocating a group of portsto agiven
process, by associating the high-order bits of a port name with a given process.)

A connection is specified in the OPEN call by the local port and foreign socket arguments. In return, the TCP
supplies a (short) local connection name by which the user refers to the connection in subsequent calls. Severa
things must be remembered about a connection. To store this information, we imagine that there is a data
structure called a transmission control block (TCB). One implementation strategy would have the local
connection name be a pointer to the TCB for this connection. The OPEN call also specifies whether the
connection establishment is to be actively pursued, or to be passively waited for.

A passive OPEN request means that the process wants to accept incoming connection requests rather than
attempt to initiate a connection. Often the process requesting a passive OPEN will accept a connection request
from any caller. In this case aforeign socket of all zerosis used to denote an unspecified socket. Unspecified
foreign sockets are allowed only on passive OPENSs. A service process that wished to provide services for
unknown other processes would issue a passive OPEN request with an unspecified foreign socket. Then a
connection could be made with any process that requested a connection to this local socket. It would help if this
local socket were known to be associated with this service.

Well-known sockets are a convenient mechanism for a priori associating a socket address with a standard
service. For instance, the TELNET server process is permanently assigned to a particular socket, and other
sockets are reserved for file transfer, remote job entry, text generator, echoer, and sink processes. A socket
address might be reserved for access to alookup service which would return the specific socket at which a
newly created service would be provided. The concept of awell-known socket is part of the TCP specification,
but the assignment of sockets to servicesis outside this specification. Processes can issue passive OPENs and
wait for matching active OPENSs from other processes and be informed by the TCP when connections have been
established. Two processes which issue active OPENSs to each other at the same time will be correctly
connected. This flexibility is critical for the support of distributed computing in which components act
asynchronously with respect to each other.

There are two principal cases for matching the sockets in the local passive OPENs and an foreign active
OPENSs: (1) the local passive OPENS has fully specified the foreign socket, in which case the match must be
exact; and (2) the local passive OPENS has left the foreign socket unspecified, in which case any foreign socket
is acceptable aslong as the local sockets match. Other possibilitiesinclude partially restricted matches.

If there are several pending passive OPENS (recorded in TCBs) with the same local socket, aforeign active
OPEN will be matched to a TCB with the specific foreign socket in the foreign active OPEN, if suchaTCB
exists, before selecting a TCB with an unspecified foreign socket. The procedures to establish connections
utilize the synchronize (SY N) control flag and involve an exchange of three messages. This exchange has been
termed a three-way handshake.

A connection isinitiated by the rendezvous of an arriving segment containing a SYN and awaiting TCB entry
each created by a user OPEN command. The matching of local and foreign sockets determines when a
connection has been initiated. The connection becomes established when sequence numbers have been
synchronized in both directions. The clearing of a connection also involves the exchange of segments, in this
case carrying the FIN control flag.

TCP and Data Communication

The data that flow on a connection may be thought of as a stream of octets. The sending user indicates in each
SEND call whether the datain that call (and any preceding calls) should be immediately pushed through to the
receiving user by the setting of the PUSH flag.

A sending TCP is allowed to collect data from the sending user and to send those datain segments at its own
convenience, until the push function is signaled; then it must send all unsent data. When areceiving TCP sees
the PUSH flag, it must not wait for more data from the sending TCP before passing the data to the receiving
process. There is no necessary relationship between push functions and segment boundaries. The datain any
particular ssgment may be the result of asingle SEND call, in whole or part, or of multiple SEND calls.

The purpose of the push function and the PUSH flag is to push data through from the sending user to the
receiving user. It does not provide arecord service. There is a coupling between the push function and the use
of buffers of datathat cross the TCP/user interface. Each time a PUSH flag is associated with data placed into
the receiving user’s buffer, the buffer is returned to the user for processing even if the buffer is not filled. If data
arrive that fills the user’ s buffer before a PUSH is seen, the data are passed to the user in buffer-size units. TCP
also provides a means to communicate to the data receiver that at some point further along in the data stream
than the receiver is currently reading there are urgent data. TCP does not attempt to define what the user
specifically does on being notified of pending urgent data, but the general notion is that the receiving process
will take action to process the urgent data quickly.

TCP Precedence and Security

The TCP makes use of the IP-type of service field and security option to provide precedence and security on a
per-connection basis to TCP users. Not all TCP modules will necessarily function in amultilevel secure
environment; some may be limited to unclassified use only, and others may operate at only one security level
and compartment. Consequently, some TCP implementations and services to users may be limited to a subset of
the multilevel secure case.

TCP modules which operate in a multilevel secure environment must properly mark outgoing segments with the
security, compartment, and precedence. Such TCP modules must also provide to their users or higher-level
protocols such as TELNET or THP an interface to allow them to specify the desired security level,
compartment, and precedence of connections.

11.4 TCP Header For mat

TCP segments are sent as Internet datagrams. The | P header carries severa information fields, including the
source and destination host addresses. A TCP header (Fig. 11-1) follows the IP header, supplying information
specific to the TCP protocol. Thisdivision allows for the existence of host-level protocols other than TCP.

Source Port 16 bits. The source port number.
Destination Port 16 bits. The destination port number.
Sequence Number 32 bits. The sequence number of the first data octet in this

segment (except when SY N is present). If SYN is present,
the sequence number isthe initial sequence number (1SN)
and the first data octet isISN + 1.

Acknowledgment 32 bits. If the ACK control bit is set, this field contains the

Number value of the next sequence number that the sender of the
segment is expecting to receive. Once a connection is
established, thisis always sent.

o 1 BED 4 Faeq EEFITD
1 cuern 1 Llcbllr:.ﬂln\:; :-'\c: IIIIII
: T pacaaaar 1
| , ;H;;u; i ,;” ,,,,,,,,,,
10N | I,.IIII.IPIH- I, | :_Ilﬂsl,:' .I-.I;l,,.l,"..l,-i'_l HLIEI=IY I W
1 Hwaikaen Lisgeeni P
1 [x i Fathiing
Figure 11-1
TCP header format.
Data Offset 4 bits. The number of 32-bit words in the TCP header.

This indicates where the data begin. The TCP header
(even one including options) is an integral number of 32

bits long.
Reserved 6 bits. Reserved for future use. Must be zero.
Control Bits 6 bits (from left to right): URG—urgent-pointer field

significant, ACK—acknowledgment field significant,
PSH—push function, RST—reset the connection,

SY N—synchronize sequence numbers, FIN—no more
data from sender.

Window 16 bits. The number of data octets beginning with the one
indicated in the acknowledgment field which the sender of
this segment is willing to accept.

Checksum 16 bits. The checksum field is the 16-bit one's
complement of the one' s-complement sum of all 16-bit
words in the header and text.

If a segment contains an odd number of header and text octets to be checksummed, the last octet is padded on
the right with zeros to form a 16-bit word for checksum purposes. The pad is not transmitted as part of the
segment. While computing the checksum, the checksum field itself is replaced with zeros. The checksum also
covers a 96-hit pseudoheader conceptually prefixed to the TCP header. This pseudoheader (Fig. 11-2) contains
the Source Address, theDestination Address, theProtocol, and TCP Length. Thisgives
the TCP protection against misrouted segments. Thisinformation is carried in the Internet Protocol and is
transferred across the TCP/network interface in the arguments or results of calls by the TCP on the IP.

I P TS p—

| Sowics Ackdimss
S

| Laasbmation Acdraas |
P —

I zame | FTCL | TCP Length |

P —

Figure 11-2
Checksum pseudoheader.

The TCP Length isthe TCP header length plus the data length in octets (this is not an explicitly transmitted
guantity, but is computed), and it does not count the 12 octets of the pseudoheader. The urgent-pointer field is
16 bitsin length. This field communicates the current value of the urgent pointer as a positive offset from the
sequence number in this segment. The urgent pointer points to the sequence number of the octet following the
urgent data. Thisfield isinterpreted only in segments with the URG control bit set. The options field is variable.
Options may occupy space at the end of the TCP header and are a multiple of 8 bitsin length. All options are
included in the checksum. An option may begin on any octet boundary. There are two cases for the format of an
option:

Case 1: asingle octet of option-kind
Case 2: an octet of option-kind, an octet of option-length, and the actual option-data octets.
The option-length counts the two octets of option-kind and option-length as well as the option-data octets.

The list of options may be shorter than the data offset field might imply. The content of the header beyond the
end-of-option option must be header padding (i.e., zero). A TCP must implement all options. Currently defined
optionsinclude (kind indicated in octals):

Kind Length Meaning
0 — End-of-option list
1 — No operation
2 4 Maximum segment size

Specific option definitions are shown in the end-of-option list code (Fig. 11-3) and no-operation option
code (Fig. 11-4).

The end-of-option list code indicates the end of the option list. This might not coincide with the end of the TCP
header according to the data-offset field. Thisis used at the end of all options, not the end of each option, and
need be used only if the end of the options would not otherwise coincide with the end of the TCP header. The
no-operation option code may be used between options, for example, to align the beginning of a subsequent
option on aword boundary. There is no guarantee that senders will use this option, so receivers must be
prepared to process options even if they do not begin on aword boundary.

Themaximum segment size option (Fig. 11-5) datais 16 bits. If this option is present, then it

communi cates the maximum receive segment size at the TCP which sends this segment. This field must be sent
only in theinitial connection request (i.e., in segments with the SYN control bit set). If thisoption is not used,
any segment sizeis allowed.

Padding is variable. The TCP header padding is used to ensure that the TCP header ends and data begin on a
32-bit boundary. The padding is composed of zeros.

PN

“ind=0

Figure 11-3
End-of-option list code.

HreCiperation

P +
ULHEOLT]
+

=1

Figure 11-4
No-operation option code.

g e b i 2 e et s b

CONOIAMNOMD0] max sag size
Kirds=2 Lergi=1

Figure 11-5
Maximum segment size.

11.5 TCP Terminology

It isimportant to understand some detailed terminology. Consider the following information. The maintenance
of a TCP connection requires the user to remember several variables. We conceive of these variables as being
stored in a connection record called a transmission control block (TCB). Among the variables stored in the TCB
are the local and remote socket numbers, the security and precedence of the connection, pointersto the user’s
send and receive buffers, pointers to the retransmit queue, and pointers to the current segment. In addition,
severa variables relating to the send and receive sequence numbers are stored in the TCB.

1. Send sequence variables: SND . UNA—send unacknowledged; SND . NXT—send next; SND . WND—send
window; SND . UP—send urgent pointer; SND . WL 1—segment sequence number used for last window update;
SND . WL2—segment acknowledgment number used for last window update; 1 SS—initial send sequence
number.

2. Receive sequence variables: RCV . NXT—receive next; RCV . WND—receive window; RCV . UP—receive
urgent pointer; IRS—initial receive sequence number.

Consider the following to relate some of these variables to sequence space.

1. Send sequence space:

SND.UNA SND.NXT SND.UNA
+SND.WND

where 1 = old sequence numbers which have been acknowledged; 2 = sequence numbers of unacknowledged
data; 3 = sequence numbers allowed for new data transmission; 4 = future sequence numbers which are not yet
allowed.

2. Receive sequence space:

S " -
RCV.NXT RCV.NXT

+RCV.WND

where 1 = old sequence numbers which have been acknowledged; 2 = sequence numbers allowed for new
reception; 3 = future sequence numbers which are not yet allowed.

There are also some variables mentioned frequently in the discussion that take their values from the fields of the
current segment:

SEG.SEQ segment sequence number
SEG.ACK segment acknowledgment number
SEG.LEN segment length

SEG.WND segment window

SEG.UP segment urgent pointer

SEG.PRC segment precedence value

A connection progresses through a series of states during its lifetime. The statesare LISTEN, SYN-SENT,
SYN-RECEIVED, ESTABLISHED, FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING,
LAST-ACK, TIME-WAIT and CLOSED.

The state CLOSED isfictional because it represents the state when there is no TCB, and therefore, no
connection. Briefly the meanings of the states are as follows: L 1STEN—represents waiting for a connection
request from any remote TCP and port; SYN-SENT represents waiting for a matching connection request after
having sent a connection request; SYN-RECE 1'VED represents waiting for a confirming connection request
acknowledgment after having both received and sent a connection request; ESTABL I SHED represents an open
connection, indicating that data received can be delivered to the user.

The normal state for the data transfer phase of the connection is as follows: FIN-WAIT-1 represents waiting
for a connection termination request from the remote TCP, or an acknowledgment of the connection termination
request previously sent; FIN-WA1T-2 represents waiting for a connection termination request from the remote
TCP;, CLOSE-WAIT represents waiting for a connection termination request from the local user; CLOSING
represents waiting for a connection termination request acknowledgment from the remote TCP; LAST-ACK
represents waiting for an acknowledgment of the connection termination request previously sent to the remote
TCP (which includes an acknowledgment of its connection termination request); TIME-WAIT represents
waiting for enough time to pass to be sure the remote TCP received the acknowledgment of its connection
termination request; and CLOSED represents no connection state at all.

A TCP connection progresses from one state to another in response to events. The events are the user calls,
OPEN, SEND, RECEIVE, CLOSE, ABORT, and STATUS; theincoming segments, particularly those
containing the SYN, ACK, RST, and FIN flags; and timeouts.

A state diagram would illustrate only state changes, together with the causing events and resulting actions, but
addresses neither error conditions nor actions which are not connected with state changes. The reaction of the
TCPto eventsis discussed in more detail later.

11.6 TCP Sequence Numbers

A fundamental notion in the design isthat every octet of data sent over a TCP connection has a sequence
number. Since every octet is sequenced, each of them can be acknowledged. The acknowledgment mechanism
employed is cumulative; thus an acknowledgment of sequence number X indicates that all octets up to but not
including X have been received. This mechanism allows for straightforward duplicate detection in the presence
of retransmission. Numbering of octets within a segment isthat the first data octet immediately following the
header is the lowest-numbered, and the following octets are numbered consecutively.

It is essential to remember that the actual sequence number space isfinite, although very large. This space
ranges from 0 to 2**32 — 1. Since the space isfinite, all arithmetic dealing with sequence numbers must be
performed modulo 2**32. This unsigned arithmetic preserves the relationship of sequence numbers as they
cyclefrom 2**32 — 1 to 0 again. There are some subtleties to computer modul o arithmetic, so great care should
be taken in programming the comparison of such values. The symbol “ = <’ means “less than or equal to”
(modulo 2**32).

Thetypical kinds of sequence number comparisons which the TCP must perform include determining that (1)
an acknowledgment refers to some sequence number sent but not yet acknowledged, (2) al sequence numbers
occupied by a segment have been acknowledged (e.g., to remove the segment from a retransmission queue), and
(3) an incoming segment contains sequence numbers which are expected (i.e., that the segment “overlaps’ the
receive window).

In response to sending data, the TCP will receive acknowledgments. The following comparisons are needed to
process the acknowledgments.

SND.UNA Oldest unacknowledged sequence number

SND . NXT Next sequence number to be sent

SEG.ACK Acknowledgment from the receiving TCP (next sequence
number expected by the receiving TCP)

SEG.SEQ First sequence number of a segment

SEG.LEN The number of octets occupied by the datain the segment

(counting SYN and FIN)
SEG.SEQ + SEG.LEN-1 Last sequence number of a segment

A new acknowledgment (called an “acceptable ack”), is one for which the inequality below holds:
SND.UNA < SEG.ACK =< SND.NXT

A segment on the retransmission queue is fully acknowledged if the sum of its sequence number and length is
less than or equal to the acknowledgment value in the incoming segment. When data are received, the following
comparisons are needed:

RCV.NXT Next sequence number expected on an incoming segment;
the left or lower edge of the receive window

RCV_NXT + RCV.WND-1 [ast sequence number expected on an incoming segment;
the right or upper edge of the receive window

SEG.SEQ First sequence number occupied by the incoming segment
SEG.SEQ + SEG.LEN-1 Last sequence number occupied by the incoming segment

A segment is judged to occupy a portion of valid receive sequence space if
RCV.NXT =< SEG.SEQ < RCV.NXT + RCV.WND

or

RCV.NXT =< SEG.SEQ + SEG.LEN-1 < RCV.NXT + RCV.WND

Thefirst part of thistest checks to seeif the beginning of the segment falls in the window; the second part of the
test checksto seeif the end of the segment fallsin the window. If the segment passes either part of the test, it
contains datain the window. Actually, it isalittle more complicated than this. Because there are zero windows
and zero length segments, we have four cases for the acceptability of an incoming segment:

Segment Receive
Length Window Test

0 0 SEG.SEQ = RCV.NXT

0 >0 RCV .NXT = < SEG.SEQ < RCV.NXT + RCV.WND

>0 0 Not acceptable

>0 >0 RCV .NXT = < SEG.SEQ < RCV.NXT + RCV.WND or
RCV.NXT =< SEG.SEQ + SEG.LEN-1 < RCV.NXT +
RCV.WND

When the receive window is zero, no segments should be acceptable except ACK segments. Thus, it is possible
for a TCP to maintain a zero receive window while transmitting data and receiving ACKs. However, even when
the receive window is zero, a TCP must process the RST and URG fields of all incoming segments.

We have taken advantage of the numbering scheme to protect certain control information aswell. Thisis
achieved by implicitly including some control flags in the sequence space so that they can be retransmitted and
acknowledged without confusion (i.e., one and only one copy of the control will be acted on). Control
information is not physically carried in the segment data space. Consequently, we must adopt rules for
implicitly assigning sequence numbersto control. The SYN and FIN are the only controls requiring this
protection, and these controls are used only at connection opening and closing. For sequence number purposes,
the SYN is considered to occur before the first actual data octet of the segment in which it occurs, while the
FIN isconsidered to occur after the last actual data octet in a segment in which it occurs. The segment length
(SEG.LEN) includes both data and sequence space occupying controls. When a SYN is present, then SEG . SEQ
is the sequence number of the SYN.

Initial Sequence Number Selection

The protocol places no restriction on a particular connection being used over and over again. A connection is
defined by a pair of sockets. New instances of a connection will be referred to as incarnations of the connection.
The problem that arises from thisis how the TCP identifies duplicate segments from previous incarnations of
the connection. This becomes apparent if the connection is being opened and closed in rapid succession, or if
the connection breaks with loss of memory and is then reestablished.

To avoid confusion, we must prevent segments from one incarnation of a connection from being used while the
same sequence numbers may still be present in the network from an earlier incarnation. We want to ensure this,
even if aTCP crashes and loses all knowledge of the sequence numbersit has been using. When new
connections are created, an initial sequence number (I1SN) generator is employed which selects a new 32-bit
ISN. The generator isbound to a (possibly fictitious) 32-bit clock whose low-order bit isincremented roughly
every 4 us. Thus, the ISN cycles approximately every 4.55 h. Since we assume that segments will stay in the
network no more than the maximum segment lifetime (MSL) and that the MSL isless than 4.55 h we can
reasonably assume that ISNswill be unique.

For each connection there is a send sequence number and a receive sequence number. The initial send sequence
number (ISS) is chosen by the data sending TCP, and the initial receive sequence number (IRS) islearned
during the connection establishing procedure. For a connection to be established or initialized, the two TCPs
must synchronize on each other’ sinitial sequence numbers. Thisis done in an exchange of connection
establishing segments carrying a control bit called SYN (for synchronize) and the initial sequence numbers. Asa
shorthand, segments carrying the SYN bit are also called SYNs. Hence, the solution requires a suitable
mechanism for picking an initial sequence number and a slightly involved handshake to exchange the ISNs.

The synchronization requires each side to send its own initial sequence number and to receive a confirmation of
it in acknowledgment from the other side. Each side must also receive the other side’ sinitial sequence number
and send a confirming acknowledgment.

1. A —> B SYN my sequence number is X.
2. A <— B ACK your sequence number is X.
3. A <— B SYN my sequence number is'Y.
4. A —> B ACK your sequence number isY.

Steps 2 and 3 can be combined in a single message; thisis called the three-way (or three-message) handshake.
A three-way handshake is necessary because sequence numbers are not tied to aglobal clock in the network,
and TCPs may have different mechanisms for picking the ISNs. The receiver of the first SYN has no way of
knowing whether the segment was an old delayed one, unless it remembers the last sequence number used on
the connection (which is not aways possible), and so it must ask the sender to verify this SYN.

Knowing When to Keep Quiet

To ensure that a TCP does not create a segment that carries a sequence number which may be duplicated by an
old segment remaining in the network, the TCP must keep quiet for a maximum segment lifetime (MSL) before
assigning any sequence numbers on starting up or recovering from a crash in which memory of sequence
numbers in use was lost. For this specification the MSL is taken to be 2 min. Thisis an engineering choice, and
may be changed if experience indicatesthat it is desirable to do so. Note that if a TCP isreinitialized in some
sense, yet retains its memory of sequence numbersin use, then it need not wait at al; it must only be sure to use
sequence numbers larger than those recently used.

TCP Quiet-time Concept

This specification provides that hosts which “crash” without retaining any knowledge of the last sequence
numbers transmitted on each active (i.e., not closed) connection shall delay emitting any TCP segments for at
least the agreed maximum segment lifetime (MSL) in the Internet system of which the host is a part. This
specification is explained in the following paragraphs.

TCP implementers may violate the “quiet time” restriction, but only at the risk of causing some old datato be
accepted as new or new data rejected as old duplicated by some receiversin the Internet system. TCPs consume
sequence number space each time a segment is formed and entered into the network output queue at a source
host. The duplicate detection and sequencing algorithm in the TCP protocol relies on the unique binding of
segment data to sequence space to the extent that sequence numbers will not cycle through all 2**32 values
before the segment data bound to those sequence numbers has been delivered and acknowledged by the receiver
and all duplicate copies of the segments have “drained” from the Internet. Without such an assumption, two
distinct TCP segments could conceivably be assigned the same or overlapping sequence numbers, causing
confusion at the receiver as to which data are new and which are old. Remember that each segment is bound to
as many consecutive sequence numbers as there are octets of datain the segment.

Under normal conditions, TCPs keep track of the next sequence number to emit the oldest awaiting
acknowledgment so as to avoid mistakenly using a sequence number over before its first use has been
acknowledged. This aone does not guarantee that old duplicate data are drained from the net, so the sequence
space has been made very large to reduce the probability that a wandering duplicate will cause trouble on
arrival. At 2 Mbitg/sit takes 4.5 h to use up 2** 32 octets of sequence space. Since the maximum segment
lifetimein the net is not likely to exceed afew tens of seconds, thisis deemed ample protection for foreseeable
nets, even if data rates escalate to tens of megabits per second. At 100 Mbitg/s, the cycle timeis 5.4 min, which
may be alittle short, but still within reason.

The basic duplicate detection and sequencing algorithm in TCP can be defeated, however, if a source TCP does
not have any memory of the sequence numbers it last used on a given connection. For example, if the TCP were
to start all connections with sequence number 0, then on crashing and restarting, a TCP might re-form an earlier
connection (possibly after half-open connection resolution) and emit packets with sequence numbers identical
to or overlapping with packets still in the network which were emitted on an earlier incarnation of the same
connection. In the absence of knowledge about the sequence numbers used on a particular connection, the TCP
specification recommends that the source delay for MSL seconds before emitting segments on the connection,
to allow time for segments from the earlier connection incarnation to drain from the system.

Even hosts which can remember the time of day and use it to select initial sequence number values are not
immune to this problem (i.e., even if time of day is used to select an initial sequence number for each new
connection incarnation).

Suppose that a connection is opened starting with sequence number S. Suppose that this connection is not used
much and that eventually theinitial sequence number function I SN(t) takes on a value equal to the sequence
number, say S, of the last segment sent by this TCP on a particular connection. Now suppose, at this instant,
that the host crashes, recovers, and establishes a new incarnation of the connection. The initial sequence number
chosenis S = 1SN(t)—the last used sequence number on old incarnation of the connection! If the recovery
occurs quickly enough, any old duplicates in the net bearing sequence numbers in the neighborhood of S, may
arrive and be treated as new packets by the receiver of the new incarnation of the connection. The problem is
that the recovering host may not know for how long it crashed nor whether there are till old duplicatesin the
system from earlier connection incarnations. One way to deal with this problem isto deliberately delay emitting
segments for one MSL after recovery from a crash—this is the quiet-time specification. Hosts which prefer to
avoid waiting are willing to risk possible confusion of old and new packets at a given destination and may
choose not to wait for the quiet time. Implementers may provide TCP users with the ability to decide on a
connection-by-connection basis whether to wait after a crash, or may informally implement the quiet time for
all connections.

Obvioudly, even where a user selectsto “wait,” thisis not necessary after the host has been “up” for at least
MSL seconds. To summarize: (1) every segment emitted occupies one or more sequence numbersin the
sequence space; (2) the numbers occupied by a segment are busy or in use until MSL seconds have passed; (3)
upon crashing, a space-time block is occupied by the octets of the last emitted segment; and (4) if anew
connection is started too soon and uses any of the sequence numbers in the space-time footprint of the last
segment of the previous connection incarnation, there is a potential sequence number overlap area which could
cause confusion at the receiver.

11.7 Establishinga TCP Connection

The three-way handshake is the procedure used to establish a connection. This procedure normally isinitiated
by one TCP and responded to by another TCP. The procedure also works if two TCPs simultaneously initiate
the procedure. When simultaneous attempts occur, each TCP receives a SYN segment which carries no
acknowledgment after it has sent a SYN. Of course, the arrival of an old duplicate SYN segment can potentially
make it appear, to the recipient, that a Simultaneous connection initiation isin progress. Proper use of RST
(reset) segments can disambiguate these cases. Although examples do not show connection synchronization
using data-carrying segments, thisis perfectly legitimate, aslong as the receiving TCP doesn’'t deliver the data
to the user until it is clear that the data are valid; that means the data must be buffered at the receiver until the
connection reaches the ESTABL I SHED state. The three-way handshake reduces the possibility of false
connections. It isthe implementation of atradeoff between memory and messages to provide information for
this checking.

The simplest three-way handshake is shown in the tabular format that follows this paragraph. This should be
interpreted in the following way. Each line is numbered for reference purposes. Right arrows (—>) indicate
departure of a TCP segment from TCP A to TCP B, or arrival of asegment at B from A. Left arrows (<—),
indicate the reverse. Ellipses (...) indicate a segment which is still in the network (delayed). An “XXX”
indicates a segment which islost or rejected. Comments appear in parentheses. TCP states represent the state
after the departure or arrival of the segment (whose contents are shown in the center of each line). Segment
contents are shown in abbreviated form, with sequence number, control flags, and ACK field. Other fields such
as window, addresses, lengths, and text have been |eft out for clarity.

TCPA TCPB

1 CLOSED LISTEN

2 SYN-SENT —> <SEQ = 100><CTL = SYN>—> SYN-RECEIVED

3 ESTABLISHED <-<SEQ = 300><ACK = 101> SYN-RECEIVED
<CTL = SYN, ACK>

4 ESTABLISHED -><SEQ = 101><ACK = 301> ESTABLISHED
<CTL = ACK>—>

5 ESTABLISHED-><SEQ = 101><ACK = 301> ESTABLISHED

<CTL = ACK><DATA>->

Inline 2 TCP A begins by sending a SYN segment indicating that it will use sequence numbers starting with
sequence number 100. In line 3, TCP B sends a SYN and acknowledges the SYN it received from TCP A.

Note that the acknowledgment field indicates that TCP B is now expecting to hear sequence 101,
acknowledging the SYN which occupied sequence 100. At line 4, TCP A responds with an empty segment
containing an ACK for TCPB’sSYN; and inline 5, TCP A sends some data. Note that the sequence number of
the segment in line 5 isthe same asin line 4 because the ACK does not occupy sequence number space (if it did,
we would wind up ACKing ACKs!).

Simultaneous initiation is only slightly more complex. Each TCP cycles from CLOSED to SYN-SENT to SYN-
RECEIVED to ESTABL I SHED.

TCPA TCPB
1 CLOSED CLOSED
2 SYN-SENT—> <SEQ = 100><CTL = SYN>
3 SYN-RECEIVED <-<SEQ = 300><CTL = <- SYN-SENT
SYN>
4 ..<SEQ = 100><CTL = SYN>-> SYN-RECEIVED

5 SYN-RECEIVED -><SEQ = 100><ACK = 301> <CTL = SYN,ACK>...

6 ESTABLISHED <-<SEQ = 300><ACK =101> <CTL =SYN,ACK><-SYN-
RECEIVED

7 ...<SEQ = 101><ACK =301><CTL = ESTABLISHED
ACK>—>

The principal reason for the three-way handshake is to prevent old duplicate connection initiations from causing
confusion. To deal with this, a specia control message, reset, has been devised. If thereceiving TCPisina
nonsynchronized state (i.e., SYN-SENT, SYN-RECEIVED), it returnsto LISTEN on receiving an acceptable
reset. If the TCPisin one of the synchronized states (ESTABLISHED, FIN-WAIT-1, FIN-WAIT-2,
CLOSE-WAIT, CLOSING, LAST-ACK, TIME-WAIT), it abortsthe connection and informsits user.

Consider the following half-open connections:

TCPA TCPB
1 CLOSED LISTEN
2 SYN-SENT-><SEQ = 100><CTL = SYN>
3 (duplicate)..<SEQ = 90><CTL = SYN>—> SYN-RECEIVED>

4 SYN-SENT <-<SEQ = 300><ACK = 91>- SYN-RECEIVED
<CTL = SYN,ACK><

5 SYN-SENT-><SEQ = 91><CTL = RST>-> LISTEN
6 ...<SEQ = 100><CTL = SYN>-> SYN-RECEIVED

7 SYN-SENT<-<SEQ = 400><ACK = 101>- SYN-RECEIVED
<CTL = SYN,ACK>

8 ESTABL ISHED-><SEQ = 101><ACK =401> ESTABLISHED
<CTL = ACK>->

Atline 3, an old duplicate SYN arrives at TCP B. TCP B cannot tell that thisis an old duplicate, so it responds
normally (line 4). TCP A detects that the ACK field isincorrect and returnsa RST (reset) with its SEQ field
selected to make the segment believable. TCP B, on receiving the RST, returnsto the LISTEN state.

When the original SYN (pun intended) finally arrives at line 6, the synchronization proceeds normaly. If the
SYN at line 6 had arrived before the RST, a more complex exchange might have occurred with RSTs sent in
both directions.

Half-open Connections and Other Anomalies

An established connection is said to be half-open if one of the TCPs has closed or aborted the connection at its
end without the knowledge of the other, or if the two ends of the connection have become desynchronized
because of a crash that resulted in loss of memory. Such connections will automatically become reset if an
attempt is made to send data in either direction. However, half-open connections are expected to be unusual,
and the recovery procedure is mildly involved.

If the connection no longer exists at site A, then an attempt by the user at site B to send any dataon it will result
in the site B TCP receiving areset control message. Such a message indicates to the site B TCP that something
iswrong, and it is expected to abort the connection.

Assume that two user processes—A and B—are communicating with one another when a crash occurs causing
loss of memory to A’s TCP. Depending on the operating system supporting A’s TCP, it islikely that some
error-recovery mechanism exists. When the TCP isup again, A islikely to start again from the beginning or
from arecovery point. Asaresult, A will probably try to OPEN the connection again or try to SEND on the
connection it believes open. In the latter case, it receives the error message “ connection not open” from the
local (A’s) TCP. In an attempt to establish the connection, A’s TCP will send a segment containing SYN.

After TCP A crashes, the user attempts to reopen the connection. TCP B, in the meantime, thinks the connection
isopen. Consider the following:

TCPA TCPB

1 (CRASH) (send 300<receive
100)

2 CLOSED ESTABLISHED

3 SYN-SENT-><SEQ = 400><CTL = SYN>-> (??)

4 (11)<-<SEQ = 300><ACK = 100><CTL = <-ESTABLISHED

ACK>

5 SYN-SENT-><SEQ = 100><CTL = RST>-> (Abort!!

6 SYN-SENT CLOSED

7 SYN-SENT-><SEQ = 400><CTL = SYN> —>

When the SYN arrives at line 3, TCP B, which isin a synchronized state, and the incoming segment outside the
window, responds with an acknowledgment indicating what sequence it next expects to hear (ACK = 100). TCP
A sees that this segment does not acknowledge anything it sent and, being unsynchronized, sends areset (RST)
because it has detected a half-open connection. TCP B aborts at line 5. TCP A will continue to try to establish
the connection; the problem is now reduced to the basic three-way handshake.

An interesting alternative case occurs when TCP A crashes and TCP B tries to send data on what it thinksisa
synchronized connection. Thisisillustrated in the following example, where the data arriving at TCP A from
TCP B (line 2) are unacceptable because no such connection exists, so TCP A sendsa RST (the RST is
acceptable, so TCP B processes it and aborts the connection):

TCPA TCPB
1 (CRASH) (end 300, receive
100)
2 (??) <-<SEQ=300><ACK = 100><DATA =10> <-ESTABLISHED
<CTL = ACK>
3-><SEQ = 100><CTL = RST>-> (ABORTI)

In the format following this paragraph two TCPs A and B with passive connections are waiting for SYN. An
old duplicate arriving at TCP B (line 2) stirs B into action. A SYN-ACK isreturned (line 3) and causes TCP A
to generate aRST (the ACK in line 3 is not acceptable). TCP B accepts the reset and returnsto its passive
LISTEN state.

TCPA TCPB
1LISTEN LISTEN
2 ...<SEQ=2Z><CTL =SYN>-> SYN-RECEIVED
3 (??)<-SEQ=X><ACK =Z + 1> SYN-RECEIVED
<CTL = SYN,ACK><-
4 -><SEQ =Z + 1><CTL = RST>-> (return to LISTEND)

SLISTEN LISTEN

The old duplicate SYN Initiates a reset on two passive sockets according to the rules for RST generation and
processing described in the following paragraphs.

Reset Generation

Asagenera rule, reset (RST) must be sent whenever a segment arrives which apparently is not intended for the
current connection. A reset must not be sent if it isnot clear that thisis the case. There are three groups of
states:

1. If the connection does not exist (CLOSED), then areset is sent in response to any incoming segment except
another reset. In particular, SYNs addressed to a nonexistent connection are rejected by this means. If the
incoming segment has an ACK field, the reset takes its sequence number from the ACK field of the segment,
otherwise the reset has sequence number zero and the ACK field is set to the sum of the sequence number and
segment length of the incoming segment. The connection remains in the CLOSED state.

2. If the connection isin any nonsynchronized state (LISTEN, SYN-SENT, SYN-RECEIVED), and the
incoming segment acknowledges something not yet sent (the segment carries an unacceptable ACK), or if an
incoming segment has a security level or compartment which does not exactly match the level and compartment
requested for the connection, areset is sent. If our SYN has not been acknowledged and the precedence level of
the incoming segment is higher than the precedence level requested, then either raise the local precedence level
(if allowed by the user and the system) or send areset; or if the precedence level of the incoming segment is
lower than the precedence level requested, then continue as if the precedence matched exactly (if the remote
TCP cannot raise the precedence level to match ours, thiswill be detected in the next segment it sends, and the
connection will be terminated then). If our SYN has been acknowledged (perhaps in this incoming segment), the
precedence level of the incoming segment must match the local precedence level exactly, if it does not a reset
must be sent. If the incoming segment has an ACK field, the reset takes its sequence number from the ACK field
of the segment, otherwise the reset has sequence number zero and the ACK field is set to the sum of the
sequence number and segment length of the incoming segment. The connection remains in the same state.

3. If the connection isin asynchronized state (ESTABLISHED, FIN-WAIT-1, FIN-WAIT-2, CLOSE-
WAIT, CLOSING, LAST-ACK, TIME-WAIT), any unacceptable segment (out of window sequence
number or unacceptable acknowledgment number) must licit only an empty acknowledgment segment
containing the current send-sequence number and an acknowledgment indicating the next sequence number
expected to be received, and the connection remainsin the same state. If an incoming segment has a security
level, compartment, or precedence which does not exactly match the level, compartment, and precedence
requested for the connection, areset is sent and connection goes to the CLOSED state. The reset takes its
sequence number from the ACK field of the incoming segment.

TCP Reset Processing

In all states except SYN-SENT, all reset (RST) segments are validated by checking their SEQ-fields. A reset is
valid if its sequence number isin the window. In the SYN-SENT state (aRST received in response to aninitial
SYN), the RST is acceptable if the ACK field acknowledges the SYN.

Thereceiver of aRST first validates it, then changes state. If the receiver wasinthe LISTEN state, it ignoresiit.
If the receiver wasin SYN-RECE1VED state and had previously been in the LISTEN state, then the receiver
returnsto the LISTEN state, otherwise the receiver aborts the connection and goes to the CLOSED state. If the
receiver was in any other state, it aborts the connection and advises the user and goes to the CLOSED state.

11.8 Closing a TCP Connection

CLOSE is an operation meaning “| have no more data to send.” The notion of closing afull-duplex connection
is subject to ambiguous interpretation, of course, since it may not be obvious how to treat the receiving side of
the connection. We have chosen to treat CLOSE in a simplex fashion. The user who CLOSEs may continue to
RECEIVE until being told that the other side has CLOSED also. Thus, a program could initiate several SENDs
followed by a CLOSE, and then continue to RECEIVE until signaled that a RECEIVE failed because the other
side has CLOSED. We assume that the TCP will signal a user, even if no RECEIVEs are outstanding, that the
other side has closed, so the user can terminate his side gracefully. A TCP will reliably deliver al buffers SENT
before the connection was CLOSED so a user who expects no datain return need only wait to hear the
connection was CLOSED successfully to know that all his data were received at the destination TCP. Users
must keep reading connections they close for sending until the TCP says that there are no more data.

Essentially three cases exist: (1) the user initiates by telling the TCP to CLOSE the connection, (2) the remote
TCPinitiates by sending aF IN control signal, and (3) both users CLOSE simultaneously.

Case 1. Local user initiates the close. In this case, a F IN segment can be constructed and placed on the
outgoing segment queue. No further SENDs from the user will be accepted by the TCP, and it entersthe FIN-
WAIT-1 state. RECEIVEs are allowed in this state. All segments preceding and including FIN will be
retransmitted until acknowledged. When the other TCP has both acknowledged the FIN and sent aFIN of its
own, thefirst TCP can ACK thisFIN. Notethat a TCP receiving a FIN will ACK but not send its own FIN
until its user has CLOSED the connection al so.

Case 2: TCP receivesa FIN from the network. If an unsolicited FIN arrives from the network, the receiving
TCP can ACK it and tell the user that the connection is closing. The user will respond with a CLOSE, on which
the TCP can send aF IN to the other TCP after sending any remaining data. The TCP then waits until its own
FIN isacknowledged, whereupon it deletes the connection. If an ACK is not forthcoming, after the user timeout
the connection is aborted and the user istold.

Case 3: Both users CLOSE simultaneously. A simultaneous CLOSE by users at both ends of a connection
causes F IN segments to be exchanged. When all segments preceding the FINs have been processed and
acknowledged, each TCP can ACK the FIN it has received. Both will, upon receiving these ACKs, delete the
connection.

TCPA TCPB

1ESTABLISHED ESTABLISHED

2Close FIN-WAIT-1-><SEQ =100><ACK = 300>
<CTL =FIN,ACK>->CLOSE-WAIT

3 FIN-WAIT-2<-<SEQ = 300><ACK = 101>
<CTL = ACK><-CLOSE-WAIT

4Close TIME-WAIT<-<SEQ = 300><ACK =101>
<CTL = FIN,ACK><-LAST-ACK

STIME-WAIT-><SEQ = 101><ACK = 301> CLOSED
<CTL = ACK>->

62 MSL CLOSED

TCPA TCPB
1ESTABLISHED ESTABLISHED

2Close Close
FIN-WAIT-1-><SEQ = 100><ACK = 300>

<CTL =FIN,ACK...>FIN-WAIT-1<—<SEQ = 300>

<ACK =100><CTL =FIN,ACK><...<SEQ = 100>

<ACK = 300><CTL = FIN,ACK>->

3 CLOSING-><SEQ = 101><ACK = 301><CTL = CLOSING
ACK>. ..

<— <SEQ = 301><ACK =101><CTL = ACK>

<—...<SEQ = 101><ACK = 301><CTL = ACK>—>

4 TIME-WAIT TIME-WAIT
2 MSL 2 MSL
CLOSED CLOSED

Precedence and Security

The intent is that connection be allowed only between ports operating with exactly the same security and
compartment values and at the higher precedence level requested by the two ports. The precedence and security
parameters used in TCP are exactly those defined in the Internet Protocol (1P). Throughout this TCP
specification the term security/compartment is intended to indicate the security parameters used in 1P including
security, compartment, user group, and handling restriction. A connection attempt with mismatched
security/compartment values or alower precedence value must be rejected by sending areset. Rejecting a
connection due to too low a precedence occurs only after an acknowledgment of the SYN has been received.
TCP modules which operate only at the default value of precedence will still have to check the precedence of
incoming segments and possibly raise the precedence level they use on the connection.

The security parameters may be used even in a nonsecure environment (the values would indicate unclassified
data), thus hosts in nonsecure environments must be prepared to receive the security parameters, athough they
need not send them.

11.9 TCP and Data Communication

Once the connection is established, data are communicated by the exchange of segments. Because segments
may be lost as aresult of errors (checksum test failure), or network congestion, TCP uses retransmission (after a
timeout) to ensure delivery of every segment. Duplicate segments may arrive following network or TCP
retransmission. As discussed in the section on sequence numbers, the TCP performs certain tests on the
sequence and acknowledgment numbersin the segments to verify their acceptability.

The data sender keeps track of the next sequence number to use in the variable SND . NXT . The receiver of data
keeps track of the next sequence number to expect in the variable RCV .NXT . The sender of data keeps track of
the oldest unacknowledged sequence number in the variable SND . UNA . If the data flow is momentarily idle
and all data sent have been acknowledged, then the three variables will be equal. When the sender creates a
segment and transmits it, the sender advances SND . NXT . When the receiver accepts a segment it advances
RCV .NXT and sends an acknowledgment. When the data sender receives an acknowledgment, it advances

SND . UNA. The extent to which the values of these variables differ is a measure of the delay in the
communication.

The amount by which the variables are advanced is the length of the datain the segment. Note that once in the
ESTABL I SHED state all segments must carry current acknowledgment information. The CLOSE user call
implies a push function, as doesthe FIN control flag in an incoming segment.

TCP Retransmission Timeout

Because of the variability of the networks that compose an internetwork system and the wide range of uses of
TCP connections, the retransmission timeout must be dynamically determined. One procedure for determining a
retransmission timeout is described here.

An example retransmission timeout procedure is to measure the elapsed time between sending a data octet with
a particular sequence number and receiving an acknowledgment that covers that sequence number (segments
sent do not have to match segments received). This measured elapsed time is the round-trip time (RTT). Next
compute a smoothed round-trip time (SRTT) as

SRTT = (ALPHA * SRTT) 1 ((1-ALPHA) * RTT)
and, from this, compute the retransmission timeout (RTO) as
RTO = minf[UBOUND,max[LBOUND,(BETA*SRTT)]]

where UBOUND is an upper bound on the timeout (e.g., 1 min), LBOUND is alower bound on the timeout (e.g., 1
), ALPHA is a smoothing factor (e.g., .8t0.9), and BETA isadelay variance factor (e.g., 1.3 t0 2.0).

TCP Communication of Urgent Information

The objective of the TCP urgent mechanism is to allow the sending user to stimulate the receiving user to
accept some urgent data and to permit the receiving TCP to indicate to the receiving user when all the currently
known urgent data have been received by the user. This mechanism permits a point in the data stream to be
designated as the end of urgent information. Whenever this point isin advance of the receive sequence number
(RCV.NXT) at the receiving TCP, that TCP must tell the user to go into urgent mode; when the receive
sequence number catches up to the urgent pointer, the TCP must tell the user to go into normal mode. If the
urgent pointer is updated while the user isin urgent mode, the update will be invisible to the user.

This method employs an urgent field which is carried in all segments transmitted. The URG control flag
indicates that the urgent field is meaningful and must be added to the segment sequence number to yield the
urgent pointer. The absence of this flag indicates that there is no urgent data outstanding.

To send an urgent indication the user must also send at least one data octet. If the sending user also indicates a
push, timely delivery of the urgent information to the destination process is enhanced.

Managing the Window

The window sent in each segment indicates the range of sequence numbers that the sender of the window (the
datareceiver) is currently prepared to accept. There is an assumption that thisisrelated to the currently
available data buffer space available for this connection.

Indicating alarge window encourages transmissions. If more data arrive than can be accepted, they will be
discarded. Thiswill result in excessive retransmissions, adding unnecessarily to the load on the network and the
TCPs. Indicating a small window may restrict the transmission of datato the point of introducing a round-trip
delay between each new segment transmitted.

The mechanisms provided allow a TCP to advertise alarge window and to subsequently advertise a much
smaller window without having accepted that much data. This, so-called shrinking the window, is strongly
discouraged. The robustness principle dictates that TCPs will not shrink the window themselves, but will be
prepared for such behavior on the part of other TCPs.

The sending TCP must be prepared to accept from the user and send at |east one octet of new data even if the
send window is zero. The sending TCP must regularly retransmit to the receiving TCP even when the window
is zero. Two minutes is recommended for the retransmission interval when the window is zero. This
retransmission is essential to guarantee that when either TCP has a zero window, the reopening of the window
will be reliably reported to the other.

When the receiving TCP has a zero window and a segment arrives, it must still send an acknowledgment
showing its next expected sequence number and current window (zero). The sending TCP packages the data to
be transmitted into segments which fit the current window, and may repackage segments on the retransmission
gueue. Such repackaging is not required, but may be helpful.

In a connection with a one-way data flow, the window information will be carried in acknowledgment segments
that all have the same sequence number so there will be no way to reorder them if they arrive out of order. This
is not a serious problem, but it will allow the window information to be on occasion temporarily based on old
reports from the data receiver. A refinement to avoid this problem is to act on the window information from
segments that carry the highest acknowledgment number (i.e., segments with acknowledgment number equal to
or greater than the highest previously received).

Window management procedure has significant influence on communication performance. The following
comments are suggestions:

1. Allocating a small window causes data to be transmitted in many small segments when better performanceis
achieved using fewer large segments.

2. Another suggestion for avoiding small windows is for the receiver to defer updating a window until the
additional allocation is at least X percent of the maximum allocation possible for the connection (where X might
be 20 to 40).

3. Another suggestion is for the sender to avoid sending small segments by waiting until the window islarge
enough before sending data. If the user signals a push function, then the data must be sent evenif it isa small
segment.

Acknowledgments should not be delayed, or unnecessary retransmis sions will result. One strategy would be to
send an acknowledgment when a small segment arrives (without updating the window information), and then to
send another acknowledgment with new window information when the window islarger. The segment sent to
probe a zero window may also initiate a breakup of transmitted datainto smaller and smaller segments. If a
segment containing a single data octet sent to probe a zero window is accepted, it consumes one octet of the
window now available. If the sending TCP simply sends as much as it can whenever the window is nonzero, the
transmitted data will be broken into alternating big and small segments. As time passes, occasional pausesin the
receiver making window allocation available will result in breaking the big segmentsinto a small and not quite
so big pair. And after awhile the data transmission will be in mostly small segments.

TCP implementations need to actively attempt to combine small window allocations into larger windows, since
the mechanisms for managing the window tend to lead to many small windows in the ssmplest minded
implementations.

11.10 TCP Interfaces
There are, of course, two interfaces of concern: the user/TCP interface and the TCP/lower-level interface.
11.10.1 User/TCP Interface

The following functional description of user commands to the TCP s, at best, fictional, since every operating
system will have different facilities. Consequently, we must warn readers that different TCP implementations
may have different user interfaces. However, all TCPs must provide a certain minimum set of services to
guarantee that all TCP implementations can support the same protocol hierarchy.

TCP User Commands

The following sections functionally characterize a user/TCP interface. The notation used is similar to most
procedure or function callsin high-level languages, but this usage is not meant to rule out trap-type service calls
(e.g., SVCs, UUOs, EMTS).

User commands described below specify the basic functions the TCP must perform to support interprocess
communication. Individual implementations must define their own exact format, and may provide combinations
or subsets of the basic functionsin single calls. In particular, some implementations may wish to automatically
OPEN a connection on the first SEND or RECEIVE issued by the user for a given connection.

In providing interprocess communication facilities, the TCP must not only accept commands but also return
information to the processes it serves. The latter consists of (1) general information about a connection (e.g.,
interrupts, remote close, binding of unspecified foreign socket) and (2) replies to specific user commands
indicating success or various types of failure.

Open

Format: OPEN (local port, foreign socket, active/passive [, timeout] [, precedence] [,
security/compartment] [, options]) -. < local connection name.

We assume that the local TCP is aware of the identity of the processes it serves and will check the authority of
the process to use the connection specified. Depending on the implementation of the TCP, the local network and
TCP identifiers for the source address will be supplied by either the TCP or the lower-level protocol (e.g., IP).
These considerations are the result of concern about security, to the extent that no TCP be able to masquerade
as another one, and so on. Similarly, no process can masguerade as another without the collusion of the TCP.

If the active/passive flag is set to passive, then thisisacall to LISTEN for an incoming connection. A passive
open may have either afully specified foreign socket to wait for a particular connection or an unspecified
foreign socket to wait for any call. A fully specified passive call can be made active by the subsequent
execution of a SEND.

A transmission control block (TCB) is created and partialy filled in with data from the OPEN command
parameters. On an active OPEN command, the TCP will begin the procedure to synchronize (i.e., establish) the
connection at once. The timeout, if present, permits the caller to set up atimeout for all data submitted to TCP.
If data are not successfully delivered to the destination within the timeout period, the TCP will abort the
connection. The present global default is5 min.

The TCP or some component of the operating system will verify the user’ s authority to open a connection with
the specified precedence or security/compartment. The absence of precedence or security/compartment
specification in the OPEN call indicates that the default values must be used.

TCP will accept incoming requests as matching only if the security/compartment information is exactly the
same and only if the precedence is equal to or higher than the precedence requested in the OPEN call.

The precedence for the connection is the higher of the values requested in the OPEN call and received from the
incoming request, and fixed at that value for the life of the connection. Implementers may want to give the user
control of this precedence negotiation. For example, the user might be allowed to specify that the precedence
must be exactly matched, or that any attempt to raise the precedence be confirmed by the user.

A local connection name will be returned to the user by the TCP. The local connection name can then be used
as a shorthand term for the connection defined by the <local socket, foreign socket= pair.

Send
Format: SEND (local connection name, buffer address, byte count, PUSH flag, URGENT flag [,timeout]).

This call causes the data contained in the indicated user buffer to be sent on the indicated connection. If the
connection has not been opened, the SEND is considered an error. Some implementations may allow users to
SEND first, in which case an automatic OPEN would be done. If the calling process is not authorized to use this
connection, an error is returned.

If the PUSH flag is set, the data must be transmitted promptly to the receiver, and the PUSH bit will be set in
the last TCP segment created from the buffer. If the PUSH flag is not set, the data may be combined with data
from subsequent SENDs for transmission efficiency.

If the URGENT flag is set, segments sent to the destination TCP will have the urgent-pointer set. The receiving
TCP will signal the urgent condition to the receiving process if the urgent pointer indicates that data preceding
the urgent pointer have not been consumed by the receiving process. The purpose of signaling urgent isto
stimulate the receiver to process the urgent data and to indicate to the receiver when all the currently known
urgent data have been received. The number of times the sending user’s TCP signals urgent will not necessarily
be equal to the number of times the receiving user will be notified of the presence of urgent data.

If no foreign socket was specified in the OPEN, but the connection is established (e.g., because a LISTENing
connection has become specific due to the arrival of aforeign segment for the local socket), then the designated
buffer is sent to the implied foreign socket. Users who make use of OPEN with an unspecified foreign socket
can make use of SEND without ever explicitly knowing the foreign socket address.

However, if a SEND is attempted before the foreign socket becomes specified, an error will be returned. Users
can use the STATUS call to determine the status of the connection. In some implementations the TCP may
notify the user when an unspecified socket is bound.

If atimeout is specified, the current user timeout for this connection is changed to the new one. In the ssmplest
implementation, SEND would not return control to the sending process until either the transmission was
complete or the timeout had been exceeded. However, this ssmple method is both subject to deadlocks (e.g.,
both sides of the connection might try to do SENDs before doing any RECEIVEs) and offers poor performance,
so it is not recommended. A more sophisticated implementation would return immediately to allow the process
to run concurrently with network 1/0, and, furthermore, to allow multiple SENDs to be in progress. Multiple
SENDs are served in first-come, first-served order, so the TCP will queue those it cannot service immediately.

We have implicitly assumed an asynchronous user interface in which a SEND later elicits some kind of
SIGNAL or pseudointerrupt from the serving TCP. An alternative is to return aresponse immediately. For
instance, SENDs might return immediate local acknowledgment, even if the segment sent had not been
acknowledged by the distant TCP. We could optimistically assume eventual success. If we are wrong, the
connection will close anyway because of the timeout. In implementations of this kind (synchronous), there will
still be some asynchronous signals, but these will deal with the connection itself, and not with specific segments
or buffers.

In order for the process to distinguish among error or success indications for different SENDSs, it might be
appropriate for the buffer address to be returned along with the coded response to the SEND request. TCP-to-
user signals are discussed below, indicating the information which should be returned to the calling process.

Receive

Format: RECEIVE (loca connection name, buffer address, byte count) -< byte count, URGENT flag, PUSH
flag.

This command allocates a receiving buffer associated with the specified connection. If no OPEN precedes this
command or the calling process is not authorized to use this connection, an error is returned. In the ssmplest
implementation, control would not return to the calling program until either the buffer was filled, or some error
occurred, but this scheme is highly subject to deadlocks. A more sophisticated implementation would permit
several RECEIVEs to be outstanding at once. These would be filled as segments arrive. This strategy permits
increased throughput at the cost of a more elaborate scheme (possibly asynchronous) to notify the calling
program that a PUSH has been seen or a buffer filled.

If enough data arrive to fill the buffer before a PUSH is seen, the PUSH flag will not be set in the response to
the RECEIVE. The buffer will be filled with as much dataasit can hold. If a PUSH is seen before the buffer is
filled, the buffer will be returned partially filled and PUSH indicated. If there is urgent data, the user will have
been informed as soon as it arrived viaa TCP-to-user signal. The receiving user should thus be in urgent mode.
If the URGENT flag is on, additional urgent dataremains; if the URGENT flag is off, this call to RECEIVE has
returned all the urgent data, and the user may now leave urgent mode. Note that data following the urgent
pointer (nonurgent data) cannot be delivered to the user in the same buffer with preceding urgent data unless the
boundary is clearly marked for the user.

To distinguish among several outstanding RECEIV Es and to accommodate a buffer that is not completely filled,
the return code is accompanied by both a buffer pointer and a byte count indicating the actual length of the data
received.

Alternative implementations of RECEIVE might have the TCP allocate buffer storage, or the TCP might share a
ring buffer with the user.

Close

Format: CLOSE (local connection name). This command causes the connection specified to be closed. If the
connection is not open or the calling process is not authorized to use this connection, an error is returned.
Closing connections is intended to be a graceful operation in the sense that outstanding SENDs will be
transmitted (and retransmitted), as flow control permits, until all have been serviced. Thus, it should be
acceptable to make several SEND calls, followed by a PUSH, and expect all the data to be sent to the
destination. It should also be clear that users should continue to RECEIVE on CLOSING connections, since the
other side may be trying to transmit the last of its data. Thus, CLOSE means “1 have no more to send” but does
not mean “I will not receive any more.” It may happen (if the user level protocol is not well thought out) that
the closing side isunable to get rid of al its data before timing out. In this event, CLOSE turnsinto ABORT,
and the closing TCP gives up.

The user may CL OSE the connection at any time on his own initiative, or in response to various prompts from
the TCP (e.g., remote close executed, transmission timeout exceeded, destination inaccessible). Because closing
a connection requires communication with the foreign TCP, connections may remain in the closing state for a
short time. Attempts to reopen the connection before the TCP replies to the CLOSE command will result in
error responses. Close also implies a push function.

Status

Format: STATUS (local connection name) -> status data. Thisis an implementation-dependent user command
and could be excluded without adverse effect. Information returned would typically come from the TCB
associated with the connection.

This command returns a data block containing the following information: local socket, foreign socket, local
connection name, receive window, send window, connection state, number of buffers awaiting
acknowledgment, number of buffers pending receipt, urgent state, precedence, security/compartment, and
transmission timeout.

Depending on the state of the connection, or on the implementation itself, some of this information may not be
available or meaningful. If the calling process is not authorized to use this connection, an error is returned. This
prevents unauthorized processes from gaining information about a connection.

Abort

Format: ABORT (local connection name). This command causes all pending SENDs and RECEIVEsto be
aborted, the TCB to be removed, and a special RESET message to be sent to the TCP on the other side of the
connection.

Depending on the implementation, users may receive abort indica tions for each outstanding SEND or
RECEIVE, or may simply receive an ABORT-acknowledgment.

TCP-to-User M essages

It is assumed that the operating system environment provides a means for the TCP to asynchronously signal the
user program. When the TCP does signal a user program, certain information is passed to the user. Often in the
specification the information will be an error message. In other cases there will be information relating to the
completion of processing a SEND or RECEIVE or other user call. The following information is provided:

Local connection name Always

Response string Always
Buffer address Send and receive
Byte count (counts bytes received) Receive
Push flag Receive
Urgent flag Receive

11.10.2 TCP/Lower-Level Interface

The TCP calls on alower-level protocol module to actually send and receive information over a network. One
caseisthat of the ARPA internetwork system where the lower-level module is the Internet Protocol (1P). If the
lower-level protocol is|P it provides arguments for atype of service and for atimeto live. TCP usesthe
following settings for these parameters:. (1) type of service = precedence, routine; delay, normal; throughput,
normal; Reliability, normal; or 00000000; (2) timeto live = 1 min, or 00111100. The assumed maximum
segment lifetimeis2 min.

Here we explicitly ask that a segment be destroyed if it cannot be delivered by the Internet system within 1 min.

If the lower level is 1P (or other protocol that provides this feature) and source routing is used, the interface
must allow the route information to be communicated. Thisis especially important to ensure that the source and
destination addresses used in the TCP checksum are the originating source and ultimate destination. It isalso
important to preserve the return route to answer connection requests.

Any lower-level protocol will have to provide the source address, destination address, and protocol fields, and
some way to determine the “TCP length,” both to provide the functional equivalent service of IP and to be used
in the TCP checksum.

11.11 TCP Event Processing

The processing depicted in this section is an example of one possible implementation. Other implementations
may have dightly different processing sequences. The activity of the TCP can be characterized as responding to
events. The events that occur can be cast into three categories. user calls, arriving segments, and timeouts. The
TCP does processing in response to each of the events. In many cases the processing required depends on the
state of the connection.

Events that occur are user calls—OPEN, SEND, RECEIVE, CLOSE, ABORT, and STATUS,; arriving
segments—SEGMENT ARRIVES,; timeouts—USER TIMEOUT, RETRANSMISSION TIMEOUT, and TIME-
WAIT TIMEOUT.

The model of the TCP/user interface is that user commands receive an immediate return and possibly a delayed
response via an event or pseudointerrupt. In the following descriptions, the term signal means cause a delayed
response. Error responses are given as character strings. For example, user commands referencing connections
that do not exist receive error: connection not open.

Please note in the following that all arithmetic on sequence numbers, acknowledgment numbers, windows, et
cetera, is modulo 2** 32, the size of the sequence number space. Also note that “ = <” means less than or equal
to (modulo 2**32).

A natural way to think about processing incoming segmentsis to imagine that they are first tested for proper
sequence number (i.e., that their contents lie in the range of the expected receive window in the sequence
number space) and then that they are generally queued and processed in sequence number order.

When a segment overlaps other already received segments, we reconstruct the segment to contain just the new
data, and adjust the header fields to be consistent.

Note that if no state change is mentioned, the TCP stays in the same state.
OPEN call

1. CLOSED STATE (i.e., TCB does not exist). Create a new transmission control block (TCB) to hold
connection state information. Fill in local socket identifier, foreign socket, precedence, security/compartment,
and user timeout information. Note that some parts of the foreign socket may be unspecified in a passive OPEN
and are to befilled in by the parameters of the incoming SYN segment. Verify the security and precedence
regquested are allowed for this user, if not return “error: precedence not allowed” or “error:
security/compartment not allowed.” If passive, enter the LISTEN state and return. If active and the foreign
socket is unspecified, return “error: foreign socket unspecified”; if active and the foreign socket is specified,
issue a SYN segment. An initial send sequence number (I1SS) is selected. A SYN segment of the form <SEQ =
ISS><CTL = SYN>issent. Set SND.UNA to ISS, SND.NXT to ISS + 1, enter SYN-SENT state, and return.
If the caller does not have access to the local socket specified, return “error: connection illegal for this process.”
If there is no room to create a new connection, return “error: insufficient resources.”

2. LISTEN STATE. If active and the foreign socket is specified, then change the connection from passive to
active, select an 1SS . Send a SYN segment, set SND.UNA to ISS, SND.NXT to ISS + 1. Enter SYN-SENT
state. Data associated with SEND may be sent with SYN segment or queued for transmission after entering
ESTABL ISHED state. The urgent bit if requested in the command must be sent with the data segments sent asa
result of this command. If there is no room to queue the request, respond with “error: insufficient resources.” If
foreign socket was not specified, then return “error: foreign socket unspecified.” For SYN-SENT STATE,
SYN-RECEIVED STATE, ESTABLISHED STATE, FIN-WAIT-1 STATE, FIN-WAIT-2 STATE,

CLOSE-WAIT STATE, CLOSING STATE, LAST-ACK STATE, and TIME-WAIT STATE, return
“error: connection already exists.”

SEND call

1. CLOSED STATE (i.e., TCB does not exist). If the user does not have access to such a connection, then
return “error: connection illegal for this process’; otherwise, return “error: connection does not exist.”

2. LISTEN STATE. If theforeign socket is specified, then change the connection from passive to active,
select an 1SS. Send aSYN segment, set SND.UNA to ISS, SND._NXT to ISS + 1. Enter SYN-SENT state.
Data associated with SEND may be sent with SYN segment or queued for transmission after entering

ESTABL ISHED state. The urgent bit if requested in the command must be sent with the data segments sent asa
result of this command. If there is no room to queue the request, respond with “error: insufficient resources.” If
foreign socket was not specified, then return “error: foreign socket unspecified.” For SYN-SENT STATE and
SYN-RECEIVED STATE queue the data for transmission after entering ESTABL I SHED state. If no space to
gueue, respond with “error: insufficient resources,” for ESTABLISHED STATE and CLOSE-WAIT STATE,
segment the buffer and send it with a piggybacked acknowledgment (acknowledgment value = RCV . NXT). If
thereisinsufficient space to remember this buffer, simply return “error: insufficient resources.” If the urgent
flag isset, then SND.UP <- SND.NXT-1 and set the urgent pointer in the outgoing segments. For FIN-WAIT-
1 STATE, FIN-WAIT-2 STATE, CLOSING STATE, LAST-ACK STATE, and TIME-WAIT

STATE, return “error: connection closing” and do not service request.

RECEIVE call

1. CLOSED STATE (i.e., TCB does not exist). If the user does not have access to such a connection, return
“error: connection illegal for this process.” Otherwise return “error: connection does not exist.” For LISTEN
STATE, SYN-SENT STATE, and SYN-RECEIVED STATE, queue for processing after entering

ESTABL I SHED state. If there is no room to queue this request, respond with “error: insufficient resources.” For
ESTABLISHED STATE, FIN-WAIT-1 STATE, and FIN-WAIT-2 STATE, if insufficient incoming
segments are queued to satisfy the request, queue the request. If there is no queue space to remember the
RECEIVE, respond with “error: insufficient resources.” Reassemble queued incoming segments into receive
buffer and return to user. Mark “push seen” (PUSH) if thisisthe case. If RCV . UP isin advance of the data
currently being passed to the user, notify the user of the presence of urgent data. When the TCP takes
responsibility for delivering datato the user, that fact must be communicated to the sender viaan
acknowledgment. The formation of such an acknowledgment is described below in the discussion of processing
an incoming segment.

2. CLOSE-WAIT STATE. Sincetheremote side has already sent FIN, RECEIVEs must be satisfied by text
already on hand, but not yet delivered to the user. If no text is awaiting delivery, the RECEIVE will get a“error:
connection closing” response. Otherwise, any remaining text can be used to satisfy the RECEIVE. For
CLOSING STATE, LAST-ACK STATE, and TIME-WAIT STATE, return“error: connection closing.”

CLOSE call

1. CLOSED STATE (i.e., TCB does not exist). If the user does not have access to such a connection, return
“error: connection illegal for this process.” Otherwise, return “error: connection does not exist.”

2. LISTEN STATE. Any outstanding RECEIVEs are returned with “error: closing” responses. Delete TCB,
enter CLOSED state, and return. For SYN-SENT STATE, deletethe TCB and return “error: closing” responses
to any queued SENDs, or RECEIVEs. For SYN-RECEIVED STATE, if no SENDs have been issued and there
is no pending data to send, then form a FIN segment and send it, and enter FIN-WAIT-1 state; otherwise
gueue for processing after entering ESTABL I SHED state. Queue ESTABLISHED STATE until all preceding
sends have been segmented, then form a FIN segment and send it. In any case, enter FIN-WAIT-1 state. Then
FIN-WAIT-1 STATE and FIN-WAIT-2 STATE—strictly speaking, thisisan error and should receive an
“error: connection closing” response. An “ok” response would be acceptable, too, aslong asasecond FIN is
not emitted (the first FIN may be retransmitted, though). Queue the CLOSE-WAIT STATE request until all
preceding SENDs have been segmented; then send a FIN segment, enter CLOSING state. Then for CLOSING
STATE, LAST-ACK STATE, and TIME-WAIT STATE, respond with “error: connection closing.”

ABORT call

1. CLOSED STATE (i.e., TCB does not exist). If the user should not have access to such a connection, return
“error: connection illegal for this process.” Otherwise return “error: connection does not exist."

2.LISTEN STATE. Any outstanding RECEIVEs should be returned with “error: connection reset” responses.
Delete TCB, enter CLOSED state, and return.

3. SYN-SENT STATE. All queued SENDs and RECEIV Es should be given “connection reset” notification;
delete the TCB, enter CLOSED state, and return.

4. SYN-RECEIVED STATE, ESTABLISHED STATE, FIN-WAIT-1 STATE, FIN-WAIT-2
STATE, and CLOSE-WAIT STATE. Send areset segment: <SEQ = SND.NXT><CTL = RST>

All queued SENDs and RECEIV Es should be given “connection reset” notification; all segments queued for
transmission (except for the RST formed above) or retransmission should be flushed, delete the TCB, enter
CLOSED state, and return.

5.CLOSING STATE, LAST-ACK STATE, and TIME-WAIT STATE. Respond with OK and delete the
TCB, enter closed state, and return.

STATUS call

1. CLOSED STATE (i.e., TCB does not exist). If the user should not have access to such a connection, return
“error: connection illegal for this process.” Otherwise return “error: connection does not exist,” for LISTEN
STATE, return “state = LISTEN” and the TCB pointer. For SYN-SENT STATE, return “state = SYN-
SENT” and the TCB pointer. For SYN-RECEIVED STATE, return “state = SYN-RECEIVED” and the TCB
pointer. For ESTABLISHED STATE, return “state = ESTABLISHED” and the TCB pointer. For FIN-
WAIT-1 STATE, return “state= FIN-WAIT-1" and the TCB pointer. For FIN-WAIT-2 STATE, return
“state = FIN-WAI1T-2" and the TCB pointer. For CLOSE-WAIT STATE, return “state = CLOSE-WAIT” and
the TCB pointer. For CLOSING STATE, return “state = CLOSING” and the TCB pointer. For LAST-ACK
STATE, return “state = LAST-ACK” and the TCB pointer. For TIME-WAIT STATE, return “state=TIME-
WAIT” and the TCB pointer. For SEGMENT ARRIVES, if the stateis CLOSED (i.e., TCB does not exist), then
all datain the incoming segment are discarded. An incoming segment containing a RST isdiscarded. An
incoming segment not containing aRST causes aRST to be sent in response. The acknowledgment and
sequence field values are selected to make the reset sequence acceptable to the TCP that sent the offending
segment. If the ACK bit is off, sequence number zero is used; <SEQ = 0><ACK = SEG.SEQ +
SEG.LEN><CTL = RST,ACK>. If the ACK bit ison, then <SEQ = SEG.ACK><CTL = RST> and return. If the
stateis LISTEN, then first check for aRST. Anincoming RST should be ignored. Return. Then check for an
ACK . Any acknowledgment is bad if it arrives on a connection still in the LISTEN state. An acceptable reset
segment should be formed for any arriving ACK-bearing segment. The RST should be formatted as follows:
<SEQ = SEG.ACK><CTL = RST>, then return, then check for aSYN. If the SYN bit is set, check the security.
If the security/compartment on the incoming segment does not exactly match the security/compartment in the
TCB, then send areset and return.

2. ARRIVES: <SEQ = SEG.ACK><CTL = RST>. If the SEG. PRC is greater than the TCB . PRC, then, if
allowed by the user and the system, set TCB . PRC<-SEG.PRC; if not allowed, send areset and return. Then
<SEQ = SEG.ACK><CTL = RST>. If the SEG.PRC islessthan the TCB.PRC, then continue. Set RCV .NXT
to SEG.SEQ + 1, IRSisset to SEG.SEQ and any other control or text should be queued for processing later.
ISS should be selected and a SYN segment sent of the form <SEQ = ISSS<ACK = RCV.NXT><CTL =
SYN,ACK>. Then SND .NXT isset to 1SS + 1 and SND.UNA to ISS. The connection state should be changed
to SYN-RECEIVED . Note that any other incoming control or data (combined with SYN) will be processed in
the SYN-RECEIVED state, but processing of SYN and ACK should not be repeated. If the listen was not fully
specified (i.e., the foreign socket was not fully specified), then the unspecified fields should be filled in now.
Thisisfollowed by other text or control. Any other control or text-bearing segment (not containing SYN) must
have an ACK and thus would be discarded by the ACK processing. An incoming RST segment could not be
valid, since it could not have been sent in response to anything sent by thisincarnation of the connection. So
you are unlikely to get here, but if you do, drop the segment, and return. If the stateis SYN-SENT , then first
check the ACK hit.

If the ACK bitisset If SEG.ACK =<ISS, or SEG.ACK < SND.NXT, send areset (unlessthe RST bit is set, if
so drop the segment and return) <SEQ = SEG.ACK><CTL = RST> and discard the segment. Return. If
SND.UNA =< SEG.ACK =< SND.NXT, then the ACK is acceptable. Then check the RST bit.

3. SEGMENT ARRIVES. If theRST bhitisset and if the ACK was acceptable, then signal the user “error:
connection reset,” drop the segment, enter CLOSED state, delete TCB, and return. Otherwise (no ACK) drop the
segment and return. Then check the security and precedence. If the security/compartment in the segment does
not exactly match the security/compartment in the TCB, send areset. If thereisan ACK, then <SEQ =
SEG.ACK><CTL = RST<. Otherwise <SEQ = 0><ACK = SEG.SEQ + SEG.LEN><CTL = RST,ACK>. If
thereisan ACK, the precedence in the segment must match the precedence in the TCB, if not, send a reset
<SEQ = SEG.ACK><CTL = RST>.

If thereisno ACK, and if the precedence in the segment is higher than the precedence in the TCB, then, if
allowed by the user and the system, raise the precedence in the TCB to that in the segment, if not allowed to
raise the precedence then send a reset.

<SEQ = 0><ACK = SEG.SEQ + SEG.LEN><CTL = RST,ACK>

If the precedence in the segment is lower than the precedence in the TCB, continue. If areset was sent, discard
the segment and return. Then check the SYN bit. This step should be reached only if the ACK is OK, or thereis
no ACK, and if the segment did not contain aRST . If the SYN bit is on and the security/compartment and
precedence SEGMENT ARRIVES are acceptable, then RCV .NXT isset to SEG.SEQ + 1, IRSisset to
SEG.SEQ. SND.UNA should be advanced to equal SEG . ACK (if thereis an ACK), and any segments on the
retransmission queue which are thereby acknowledged should be removed. If SND.UNA < ISS (our SYN has
been ACKed), change the connection state to ESTABLISHED, form an ACK segment

<SEQ = SND.NXT><ACK = RCV.NXT><CTL = ACK>

and send it. Data or controls which were gqueued for transmission may be included. If there are other controls or
text in the segment then continue processing at the sixth step below where the URG bit is checked, otherwise
return. Otherwise enter SYN-RECEIVED, form aSYN, ACK segment

<SEQ = ISS><ACK = RCV.NXT><CTL = SYN,ACK>

and send it. If there are other controls or text in the segment, queue them for processing after the
ESTABL I SHED state has been reached, return. Then, if neither of the SYN or RST bitsis set, drop the segment
and return. Otherwise, first check sequence number

SYN-RECEIVED STATE
ESTABLISHED STATE
FIN-WAIT-1STATE
FIN-WAIT-2 STATE
CLOSE-WAIT STATE
CLOSING STATE
LAST-ACK STATE
TIME-WAIT STATE

Segments are processed in sequence. Initial tests on arrival are used to discard old duplicates, but further
processing isdone in SEG. SEQ order. If a segment’ s contents straddle the boundary between old and new, only
the new parts should be processed.

There are four cases for the acceptability test for an incoming segment:

Segment Receive

Length Window Test
0 0 SEG.SEQ=RCV.NXT
0 >0 RCV.NXT =<SEG.SEQ<
RCV.NXT + RCV.WND
>0 0 Not acceptable
>0 >0 RCV.NXT =<SEG.SEQ<

RCV.NXT + RCV.WND or
RCV.NXT =< SEG.SEQ +
SEG.LEN-1 < RCV.NXT +
RCV.WND

If the RCV . WND is zero, no segments will be acceptable, but special allowance should be made to accept valid
ACKs, URGs, and RSTs. If an incoming segment is not acceptable, an acknowledgment should be sent in reply
(unlessthe RST bit is set, if so drop the segment and return):

<SEQ = SND.NXT><ACK = RCV.NXT><CTL = ACK>
After sending the acknowledgment, drop the unacceptable segment and return.

In the following it is assumed that the segment is the idealized segment that begins at RCV . NXT and does not
exceed the window. One could tailor actual segments to fit this assumption by trimming off any portions that lie
outside the window (including SYN and FIN), and only processing further if the segment then begins at
RCV_NXT . Segments with higher beginning sequence numbers may be held for later processing. Then check
the RST bit, SYN-RECEIVED STATE, if the RST bit is set. If this connection was initiated with a passive
open (i.e., came from the LISTEN state), then return this connection to L1STEN state and return. The user need
not be informed. If this connection was initiated with an active OPEN (i.e., came from SYN-SENT state), then
the connection was refused; signal the user “connection refused.” In either case, al segments on the
retransmission queue should be removed. And in the active OPEN case, enter the CLOSED state and delete the
TCB, and return.

ESTABLISHED
FIN-WAIT-1
FIN-WAIT-2
CLOSE-WAIT

If the RST bit is set then, any outstanding RECEIV Es and SEND should receive “reset” responses. All segment
gueues should be flushed. Users should also receive an unsolicited general “connection reset” signal. Enter the
CLOSED state, delete the TCB, and return.

CLOSING STATE
LAST-ACK STATE
TIME-WAIT

If the RST bit is set, then enter the CLOSED state, delete the TCB, and return.

1. SEGMENT ARRIVES. Check security and precedence.

2. SYN-RECEIVED . If the security/compartment and precedence in the segment do not exactly match the
security/compartment and precedence in the TCB, then send a reset, and return.

3. ESTABLISHED STATE. If the security/compartment and precedence in the segment do not exactly match
the security/compartment and precedence in the TCB, then send a reset; any outstanding RECEIV Es and SEND
should receive “reset” responses. All segment queues should be flushed. Users should also receive an
unsolicited genera “connection reset” signal. Enter the CLOSED state, delete the TCB, and return. This check is
placed following the sequence check to prevent a ssgment from an old connection between these ports with a
different security or precedence from causing an abort of the current connection.

Then check the SYN bit:

SYN-RECEIVED
ESTABLISHED STATE
FIN-WAIT STATE-1
FIN-WAIT STATE-2
CLOSE-WAIT STATE
CLOSING STATE
LAST-ACK STATE
TIME-WAIT STATE

If the SYN isin the window, it is an error, then send areset. Any outstanding RECEIV Es and SEND should
receive “reset” responses, all segment queues should be flushed, the user should also receive an unsolicited
general “connection reset” signal, enter the CLOSED state, delete the TCB, and return.

If the SYN is not in the window, this step would not be reached and an ACK would have been sent in the first
step (sequence number check). Then check the ACK field; if the ACK bit is off, drop the segment and return if
the ACK bitison SYN-RECEIVED STATE. If SND.UNA =<SEG.ACK =< SND.NXT, then enter
ESTABL I SHED state and continue processing. If the segment acknowledgment is not acceptable, form a reset
segment <SEQ = SEG.ACK><CTL = RST> and send it.

1. ESTABLISHED STATE. If SND.UNA <SEG.ACK =< SND.NXT, then set SND.UNA <- SEG.ACK.
Any segments on the retransmission queue which are thereby entirely acknowledged are removed. Users should
receive positive acknowledgments for buffers which have been SENT and fully acknowledged (i.e., SEND
buffer should be returned with OK response). If the ACK isaduplicate (SEG.ACK < SND.UNA), it can be
ignored. If the ACK acks something not yet sent (SEG.ACK > SND.NXT), then send an ACK, drop the
segment, and return. If SND _.UNA < SEG.ACK =< SND.NXT, the send window should be updated. If
(SND.WL1 < SEG.SEQor (SND.WL1 =SEG.SEQ and SND.WL2 =< SEG.ACK)), set SND.WND <-
SEG.WND, set SND.WL1 <- SEG.SEQ, and set SND.WL2 <- SEG.ACK.SND.WND isan offset from

SND . UNA; then SND . WL 1 records the sequence number of the last segment used to update SND.WND, and
then SND . WL 2 records the acknowledgment number of the last segment used to update SND .WND . The check
here prevents using old segments to update the window. For FIN-WAIT-1 STATE, in addition to the
processing for the ESTABL I SHED state, if our FIN isnow acknowledged, then enter FIN-WAIT-2 and
continue processing in that state. For FIN-WAIT-2 state in addition to the processing for the ESTABL 1 SHED
state, if the retransmission queue is empty, the user’s close can be acknowledged (OK), but do not delete the
TCB.

2. CLOSE-WAIT STATE. Do the same processing as for the ESTABL I SHED state.

3. CLOSING STATE. Inaddition to the processing for the ESTABL I SHED state, if the ACK acknowledges
our FIN, then enter the TIME-WAIT state; otherwise ignore the segment.

4. LAST-ACK STATE. Theonly thing that can arrive in this state is an acknowledgment of our FIN . If our
FIN isnow acknowledged, delete the TCB, enter the CLOSED state, and return.

5. TIME-WAIT STATE. Theonly thing that can arrive in this state is a retransmission of the remote FIN .
Acknowledge it, and restart the 2 MSL timeout. Then check the URG bit.

ESTABLISHED STATE
FIN-WAIT-1 STATE
FIN-WAIT-2 STATE

If the URG bit is set, RCV . UP <- max(RCV.UP,SEG.UP), and signal the user that the remote side has urgent
dataif the urgent pointer (RCV . UP) isin advance of the data consumed. If the user has already been signaled
(or is till in the “urgent mode”) for this continuous sequence of urgent data, do not signal the user again.

CLOSE-WAIT STATE
CLOSING STATE
LAST-ACK STATE
TIME-WAIT

This should not occur, since a FIN has been received from the remote side. Ignore the URG . Then, process the
segment text,

ESTABLISHED STATE
FIN-WAIT-1 STATE
FIN-WAIT-2 STATE

Onceinthe ESTABL ISHED state, it is possible to deliver segment text to user RECEIVE buffers. Text from
segments can be moved into buffers until either the buffer isfull or the segment is empty. If the segment
empties and carries a push flag, then the user isinformed, when the buffer is returned, that a PUSH has been
received.

When the TCP takes responsibility for delivering the data to the user, it must also acknowledge the receipt of
the data. Once the TCP takes responsibility for the data it advances RCV . NXT over the data accepted, it adjusts
RCV .WND as appropriate to the current buffer availability. The total of RCV .NXT and RCV . WND should not be
reduced.

Send an acknowledgment of the form
<SEQ = SND.NXT><ACK = RCV.NXT><CTL = ACK>

This acknowledgment should be piggybacked on a segment being transmitted if possible without incurring
undue delay.

CLOSE-WAIT STATE
CLOSING STATE
LAST-ACK STATE
TIME-WAIT STATE

This should not occur, since a FIN has been received from the remote side. Ignore the segment text. Then,
check the FIN bit. Do not processthe FIN if the stateis CLOSED, LISTEN, or SYN-SENT since the
SEG . SEQ cannot be validated; drop the segment and return.

If the FIN bit is set, signal the user “connection closing” and return any pending RECEIV Es with the same
message, advance RCV . NXT over the FIN, and send an acknowledgment for the FIN. Note that FIN implies
PUSH for any segment text not yet delivered to the user.

SYN-RECEIVED STATE
ESTABLISHED STATE

Enter the CLOSE-WAIT state: FIN-WAIT-1 STATE.

If our FIN has been ACKed (perhaps in this segment), then enter TIME-WAI T, start the time-wait timer, turn
off the other timers; otherwise enter the CLOSING state.

1. FIN-WAIT-2 STATE. Enter the TIME-WAIT state. Start the time-wait timer, and turn off the other
timers.

2. CLOSE-WAIT STATE. Remaininthe CLOSE-WAIT state.

3. CLOSING STATE. Remaininthe CLOSING state.

4. LAST-ACK STATE. Remaininthe LAST-ACK state.

5. TIME-WAIT STATE. Remaininthe TIME-WAIT state. Restart the 2 MSL time-wait timeout and return.

6. USER TIMEOUT. For any stateif the user timeout expires, flush all queues, signal the user error:
connection aborted because of user timeout in general and for any outstanding calls, delete the TCB, enter the
CLOSED state, and return.

7. RETRANSMISSION TIMEOUT . For any state, if the retransmission timeout expires on a segment in the
retransmission queue, send the segment at the front of the retransmission queue again, reinitialize the
retransmission timer, and return.

8. TIME-WAIT TIMEOUT. If thetime-wait timeout expires on a connection delete the TCB, enter the
CLOSED state and return.

11.12 TCP Glossary

ACK A control bit (acknowledge) occupying no sequence space, which indicates that the acknowledgment field
of this segment specifies the next sequence number the sender of this segment is expecting to receive, hence
acknowledging receipt of all previous sequence numbers.

ARPAnNet message The unit of transmission between a host and an IMP in the ARPAnet. The maximum
sizeisabout 1012 octets (8096 bits).

ARPAnNet packet A unit of transmission used internally in the ARPAnNet between IMPs. The maximum
sizeis about 126 octets (1008 bits).

connection A logical communication path identified by apair of sockets.

datagram A message sent in a packet switched computer communications network.

destination address The destination address, usually the network and host identifiers.

FIN A control bit (finis) occupying one sequence number, which indicates that the sender will send no more
data or control occupying sequence space.

fragment A portion of alogical unit of data, in particular an Internet fragment is a portion of an Internet
datagram.

FTP A file-transfer protocol.
header Control information at the beginning of a message, segment, fragment, packet, or block of data.

host A computer; in particular, a source or destination of messages from the point of view of the
communication network.

identification An Internet Protocol field. Thisidentifying value assigned by the sender aids in assembling
the fragments of a datagram.

IMP The Interface Message Processor, the packet switch of the ARPANet.
Internet address A source or destination address specific to the host level.

Internet datagram The unit of data exchanged between an Internet module and the higher-level protocol
together with the Internet header.

Internet fragment A portion of the data of an Internet datagram with an Internet header.
P Internet Protocol.
IRS Theinitial receive sequence number. The first sequence number used by the sender on a connection.

ISN Theinitial sequence number. The first sequence number used on a connection, (either ISS or IRS).
Selected on a clock-based procedure.

ISS Theinitial send sequence number. The first sequence number used by the sender on a connection.

leader Control information at the beginning of a message or block of data. In particular, in the ARPANet,
the control information on an ARPANnet message at the host-IMP interface.

left sequence Thisisthe next sequence number to be acknowledged by the data receiving TCP (or the
lowest currently unacknowledged sequence number) and is sometimes referred to as the left edge of the
send window.

local packet The unit of transmission within alocal network.
module Animplementation, usually in software, of a protocol or other procedure.

MSL Maximum segment lifetime, the time a TCP segment can exist in the internetwork system.
Arbitrarily defined to be 2 min.

octet An 8-bit byte.

options A field may contain several options, and each option may be several octetsin length. The options
are used primarily in testing situations; for example, to carry timestamps. Both the Internet Protocol and
TCP provide for options fields.

packet A package of datawith a header which may or may not be logically complete. More often a
physical packaging than alogical packaging of data.

port The portion of a socket that specifies which logical input or output channel of a processis associated
with the data.

process A program in execution. A source or destination of data from the point of view of the TCP or
other host-to-host protocol.

PUSH A control bit occupying no sequence space, indicating that this segment contains data that must be
pushed through to the receiving user.

RCV .NXT Receive next sequence number.

RCV.UP Receive urgent pointer.

RCV.WND Receive window.

Receive next sequence number Thisisthe next sequence number the local TCP is expecting to receive.

Receive window This represents the sequence numbers the local (receiving) TCP iswilling to receive.
Thus, the local TCP considers that segments overlapping the range RCV . NXT to RCV .NXT+RCV.WND —1
carry acceptable data or control. Segments containing sequence numbers entirely outside of thisrange are
considered duplicates and discarded.

RST A control bit (reset), occupying no sequence space, indicating that the receiver should del ete the
connection without further interaction. The receiver can determine, on the basis of the sequence number
and acknowledgment fields of the Incoming segment, whether it should honor the reset command or ignore
it. In no case does receipt of a segment containing RST giveriseto aRST in response.

RTP Real time protocol: a host-to-host protocol for communication of time-critical information.
SEG.ACK Segment acknowledgment.
SEG.LEN Segment length.
SEG.PRC Segment precedence value.
SEG.SEQ Segment sequence.
SEG.UP Segment urgent-pointer field.
SEG.WND Segment window field.

segment A logical unit of data, in particular a TCP segment is the unit of data transferred between a pair
of TCP modules.

segment acknowledgment The sequence number in the acknowledgment field of the arriving segment.

segment length The amount of sequence number space occupied by a segment, including any controls which
occupy sequence space.

segment sequence The number in the sequence field of the arriving segment.

send sequence Thisisthe next sequence number the local (sending) TCP will use on the connection. Itis
initially selected from an initial sequence number curve (I1SN) and is incremented for each octet of data or
sequenced control transmitted.

send window This represents the sequence numbers which the remote (receiving) TCPiswilling to
receive. It isthe value of the window field specified in segments from the remote (data receiving) TCP.
The range of new sequence numbers which may be emitted by a TCP lies between SND . NXT and

SND . UNA+SND .WND — 1. (Retransmissions of sequence numbers between SND . UNA and SND . NXT are
expected, of course.)

SND .NXT Send sequence.

SND.UNA Left sequence.

SND.UP Send urgent pointer.

SND.WL1 Segment sequence number at last window update.

SND .WL2 Segment acknowledgment number at last window update.
SND.WND Send window.

socket An address which specifically includes a port identifier, that is, the concatenation of an Internet
Address with a TCP port.

sour ce address The source address, usually the network and host identifiers.

SYN A control bit in the incoming segment, occupying one sequence number, used at the initiation of a
connection, to indicate where the sequence numbering will start.

TCB Transmission control block, the data structure that records the state of a connection.
TCB.PRC The precedence of the connection.

TCP Transmission Control Protocol: a host-to-host protocol for reliable communication in internetwork
environments.

TOS Type of service, an Internet Protocol field.
type of service An Internet Protocol field which indicates the type of service for this Internet fragment.

URG A control bit (urgent), occupying no sequence space, used to indicate that the receiving user should
be notified to do urgent processing as long as there is data to be consumed with sequence numbers less than
the value indicated in the urgent pointer.

urgent pointer A control field meaningful only when the URG bit is on. This field communicates the value of
the urgent pointer which indicates the data octet associated with the sending user’ s urgent call.

11.13 Summary

TCPisatransport-level protocol that operates at layer five when compared to the OSI network layer model.
TCP is connection-oriented, performs retransmissions, and provides flow-control capabilities.

TCP s counterpart is UDP. TCP has a considerable number of popular programs that use it. Examples are FTP,
TELNET, HyperText Transfer Protocol (HTTP), X-Windows, and SMTP. TCP isrobust and reliable. In the
TCP/IP network environment, TCP is the transport protocol of choice.

12
User Datagram Protocol

12.1 Perspective

The User Datagram Protocol (UDP) is defined to make available a datagram mode of packet-switched
computer communication in the environment of an interconnected set of computer networks. This protocol
assumes that the Internet Protocol (IP) is used as the underlying protocol.

This protocol provides a procedure for application programs to send messages to other programs with a
minimum of protocol mechanism. The protocol is transaction-oriented, and delivery and duplicate protection
are not guaranteed.

12.2 UDP Header Format

0] 78 15 16 23 24 31
o —_— Fo——_ o Fom +

| Source | Destination |
| Port | Port |

o —_— Fo——_ o Fom +

| | |

| Length | Checksum |
R Fom e o ———— e +

12.3 UDP Field Descriptions

Sour ce port—an optional field. When meaningful, it indicates the port of the sending process, and may be
assumed to be the port to which areply should be addressed in the absence of any other information. If not
used, avalue of zero isinserted.

Destination port—has a meaning within the context of a particular Internet destination address.

Length—the Iength in octets of this user datagram including this header and the data. (This means that the
minimum value of the length is 8.)

Checksum—the 16-bit one's complement of the one’s-complement sum of a pseudoheader of information from
the IP header, the UDP header, and the data, padded with zero octets at the end (if necessary) to make a
multiple of two octets.

The pseudoheader conceptually prefixed to the UDP header contains the source address, the destination address,
the protocol, and the UDP length (Fig. 12-1). This information gives protection against misrouted datagrams.
This checksum procedure isthe same asisused in TCP.

If the computed checksum is zero, it is transmitted as all ones (the equivalent in one’ s-complement arithmetic).
An all-zero transmitted checksum value means that the transmitter generated no checksum (for debugging or for
higher-level protocols that don’t care).

A user interface should alow the creation of new receive ports; receive operations on the receive ports that
return the data octets and an indication of source port and source address; and an operation that allows a
datagram to be sent, specifying the data, source, and destination ports and addresses to be sent.

o TA 1316 23 Gl
e e s e se e
| aource addmeas |

1 ' 1 I
| dastination addracs

NSRS
| rare Ipabocad LIDF langts |

S - S ——

Figure 12-1
UDP pseudoheader.

12.4 IP Interface

The UDP module must be able to determine the source and destination Internet addresses and the protocol field
from the Internet header. One possible UDP/IP interface would return the whole Internet datagram including all
of the Internet header in response to areceive operation. Such an interface would aso allow the UDP to pass a
full Internet datagram compl ete with header to the IP to send. The IP would verify certain fields for consistency
and compute the Internet header checksum.

12.5 Protocol Application

The major uses of this protocol isthe Internet Name Server, and the Trivial File Transfer. The protocol number
is 17 (21 octal) when used in the Internet Protocol.

12.6 Summary

UDP s strength isthat it provides the vehicle that an application can hook into, thus providing atransport
protocol. Many custom applications use this protocol in the TCP/IP environment.

UDP applications do not have the support infrastructure in UDP that TCP applications have in TCP. Since this
isthe case, UDP applications must do much of network work that TCP applications leave to TCP to perform.

13
TELNET

The purpose of the TELNET protocol isto provide afairly general, bidirectional, 8-bit byte-oriented
communications facility. Its primary goal isto provide a standard method of interfacing terminal devices and
terminal-oriented processes to each other. It is envisioned that the protocol may also be used for terminal-
terminal communication (linking) and process-process communication (distributed computing).

13.1 ThreePrimary Functions

A TELNET connection is a Transmission Control Protocol (TCP) connection used to transmit data with
interspersed TELNET control information.

The TELNET Protocol is built on three main ideas: (1) the concept of a network virtual terminal, (2) the
principle of negotiated options, and (3) a symmetrical view of terminals and processes.

When a TELNET connection isfirst established, each end is assumed to originate and terminate at a network
virtual terminal (NVT), an imaginary device which provides a standard, networkwide, intermediate
representation of a canonical terminal, eliminating the need for “server” and “user” hosts to keep information
about the characteristics of each other’s terminals and terminal-handling conventions. All hosts, both user and
server, map their local device characteristics and conventions so as to appear to be dealing with an NVT over
the network, and each can assume a similar mapping by the other party. The NVT isintended to strike a balance
between being overly restricted (not providing hosts a sufficiently rich vocabulary for mapping into their local
character sets) and too inclusive (penalizing users with modest terminals).

Note: The“ user” host isthe host to which the physical terminal is normally attached, and the “ server” host is
the host which is normally providing some service. As an alternate point of view, applicable even in terminal-
to-terminal or process-to-process communications, the user host is the host which initiated the communication.

The principle of negotiated options recognizes that many hosts will wish to provide additional services over and
above those available within an NVT, and many users will have sophisticated terminals and would like to have
elegant, rather than minimal, services. Independent of, but structured within the TELNET Protocol are various
options that will be sanctioned and may be used with the DO, DON"T, WILL, WON"T structure (discussed
below) to allow a user and server to agree to use amore elaborate (or perhaps just different) set of conventions
for their TELNET connection. Such options could include changing the character set, the echo mode, and other
features.

The basic strategy for setting up the use of options is to have either party (or both) initiate a request that some
option take effect. The other party may then either accept or reject the request. If the request is accepted, the
option immediately takes effect; if it is rejected, the associated aspect of the connection remains as specified for
an NVT. Clearly, aparty may always refuse arequest to enable, and must never refuse arequest to disable some
option since all parties must be prepared to support the NV T.

The syntax of option negotiation has been set up so that if both parties request an option simultaneously, each
will see the other’ s request as the positive acknowledgment of its own.

The symmetry of the negotiation syntax can potentially lead to nonterminating acknowledgment loops, in which
each party sees the incoming commands not as acknowledgments but as new requests which must be
acknowledged. To prevent such loops, the following rules prevail:

1. Parties may only request a change in option status; they may not send out a “request” merely to announce
what modeitisin.

2. If aparty receives what appears to be arequest to enter some mode it is already in, the request should not be
acknowledged. This nonresponse is essential to prevent endless loops in the negotiation. It isrequired that a
response be sent to requests for a change of mode—even if the mode is not changed.

3. Whenever one party sends an option command to a second party, whether as arequest or an
acknowledgment, and use of the option will have any effect on the processing of the data being sent from the
first party to the second, then the command must be inserted in the data stream at the point where it should take
effect. (It should be noted that some time will elapse between the transmission of arequest and the receipt of an
acknowledgment, which may be negative. Thus, a host may wish to buffer data, after requesting an option, until
it learns whether the request is accepted or rejected, in order to hide the “uncertainty period” from the user.)

Option requests are likely to flurry back and forth when a TELNET connection isfirst established, as each party
attempts to get the best possible service from the other party. Beyond that, however, options can be used to
dynamically modify the characteristics of the connection to suit changing local conditions. For example, the
NVT, aswill be explained later, uses atransmission discipline well suited to the many “line at atime’
applications such as Beginner’s All-purpose Symbolic Instruction Code (BASIC), but poorly suited to the many
“character at atime” applications such as natural-language software (NLS). A server might elect to devote the
extra processor overhead required for a“character at atime” discipline when it was suitable for the local
process and would negotiate an appropriate option. However, rather than being permanently burdened with the
extra processing overhead, it could switch (i.e., negotiate) back to NV T when the detailed control was no longer
necessary.

It is possible for requests initiated by processes to stimulate a nonterminating request loop if the process
responds to a rejection by merely rerequesting the option. To prevent such loops from occurring, rejected
requests should not be repeated until something changes. Operationally, this can mean that the processis
running a different program, or the user has given another command, or whatever makes sense in the context of
the given process and the given option. A good rule of thumb isthat a repeated request should occur only asa
result of subsequent information from the other end of the connection or when demanded by local human
intervention.

Option designers should not feel constrained by the somewhat limited syntax available for option negotiation.
The intent of the simple syntax isto make it easy to have options—since it is correspondingly easy to profess
ignorance about them. If some particular option requires a richer negotiation structure than possible within DO,
DON"T, WILL, WON®T, the proper tack isto use this structure to establish that both parties understand the
option, and once thisis accomplished, a more exotic syntax can be used freely. For example, a party might send
areguest to alter (establish) line length. If it is accepted, then a different syntax can be used for actually
negotiating the line length—such a * subnegotiation” might include fields for minimum allowable, maxi mum
allowable, and desired line lengths. The important concept is that such expanded negotiations should never
begin until some prior (standard) negotiation has established that both parties are capable of parsing the
expanded syntax.

In summary, wi Il XXX is sent, by either party, to indicate that party’ s desire (offer) to begin performing
option XXX, and do XXX and dont XXX are its positive and negative acknowledgments; similarly, do XXX
is sent to indicate a desire (request) that the other party (i.e., the recipient of the do) begin performing option
XXX, wherewi Il XXX and wont XXX are the positive and negative acknowledgments, respectively. Since
the NVT iswhat is left when no options are enabled, the dont and wont responses are guaranteed to leave the
connection in a state which both ends can handle. Thus, all hosts may implement their TELNET processes to be
totally unaware of options that are not supported, ssmply returning arejection to (i.e., refusing) any option
request that cannot be understood.

As much as possible, the TELNET protocol has been made server-user symmetrical so that it easily and
naturally covers the user-user (linking) and server-server (cooperating processes) cases. It is hoped, but not
absolutely required, that options will further thisintent. In any case, it is explicitly acknowledged that symmetry
is an operating principle rather than an ironclad rule.

A companion document, TELNET Option Specifications, should be consulted for information about the
procedure for establishing new options.

13.2 Network Virtual Terminal

The NVT isabidirectional character device, with a printer and a keyboard. The printer responds to incoming
data and the keyboard produces outgoing data which are sent over the TELNET connection and, if “echoes’ are
desired, to the NV T’s printer aswell. Echoes will not be expected to traverse the network (although options
exist to enable aremote echoing mode of operation, no host is required to implement this option). The code set
is7-bit ASCII in an 8-bit field, except as modified herein. Any code conversion and timing considerations are
local problems and do not affect the NVT.

Data Transmission

Although a TELNET connection through the network isintrinsically full-duplex, the NV T isto be viewed as a
half-duplex device operating in aline-buffered mode. Thus, unless and until options are negotiated to the
contrary, the following default conditions pertain to the transmission of data over the TELNET connection:

1. Insofar asthe availability of local buffer space permits, data should be accumulated in the host where they
are generated until a complete line of dataisready for transmission, or until some locally defined explicit signal
to transmit occurs. This signal could be generated by either a process or a human user. The motivation for this
rule is the high cost, to some hosts, of processing network input interrupts, coupled with the default NVT
specification that echoes do not traverse the network. Thus, it is reasonable to buffer some amount of data at
their source. Many systems take some processing action at the end of each input line (even line printers or card
punches frequently tend to work this way), so the transmission should be triggered at the end of aline. On the
other hand, a user or process may sometimes find it necessary or desirable to provide data which do not
terminate at the end of aline; therefore implementers are cautioned to provide methods of locally signaling that
all buffered data should be transmitted immediately.

2. When a process has completed sending datato an NVT printer and has no queued input from the NV T
keyboard for further processing (i.e., when a process at one end of a TELNET connection cannot proceed
without input from the other end), the process must transmit the TELNET GO AHEAD (GA) command. This
ruleis not intended to require that the TELNET GA command be sent from aterminal at the end of each line,
since server hosts do not normally require a special signal (in addition to end-of-line or other locally defined
characters) in order to commence processing. Rather, the TELNET GA is designed to help auser’sloca host
operate a physically half-duplex terminal which has a*“lockable” keyboard such asthe IBM 2741. A description
of thistype of terminal may help to explain the proper use of the GA command.

The terminal-computer connection is always under control of either the user or the computer. Neither can
unilaterally seize control from the other; rather, the controlling end must relinquish its control explicitly. At the
terminal end, the hardware is constructed so as to relinquish control each time that a“line” isterminated [i.e.,
when the “new line” (ENTER) key is pressed by the user]. When this occurs, the attached (local) computer
processes the input data, and decides if output should be generated and if not, returns control to the terminal. If
output should be generated, control is retained by the computer until all output has been transmitted.

The difficulties of using this type of terminal through the network should be obvious. The “local” (user)
computer isno longer able to decide whether to retain control after seeing an end-of-line signal; this decision
can be made only by the “remote” (server) computer which is processing the data. Therefore, the TELNET GA
command provides a mechanism whereby the remote computer can signal the “local” computer that it istimeto
pass control to the user of the terminal. It should be transmitted at those times, and only at those times, when the
user should be given control of the terminal. Note that premature transmission of the GA command may result
in the blocking of output, since the user is likely to assume that the transmitting system has paused, and
therefore will fail to turn the line around manually.

The foregoing, of course, does not apply to the user-to-server direction of communication. In this direction,
GAs may be sent at any time, but need not ever be sent. Also, if the TELNET connection is being used for
process-to-process communication, GAs need not be sent in either direction. Finally, for terminal-to-terminal
communication, GAs may be required in neither, one, or both directions. A host that plans to support terminal-
to-terminal communication should provide the user with a means of manually signaling that it istime for a GA
to be sent over the TELNET connection; this, however, is not a requirement on the implementers of a TELNET
process.

Note: The symmetry of the TELNET model requires that there be an NVT at each end of the TELNET
connection, at least conceptually.

13.3 Standard Presentation of Control Functions

As stated previoudly, the primary goal of the TELNET protocol isthe provision of a standard interfacing of
terminal devices and terminal-oriented processes through the network. Early experience with this type of
interconnection showed certain functions to be implemented by most servers but wide variation in methods of
invoking these functions. For a human user who interacts with severa server systems, these differences are
highly frustrating. TELNET, therefore, defines a standard representation for five of these functions, as
described below. These standard representations have standard, but not required, meanings [with the exception
that the interrupt process (I1P) function may be required by other protocols which use TELNET]; that is, a
system which does not provide the function to local users need not provide it to network users and may treat the
standard representation for the function as a no-operation. On the other hand, a system which does provide the
function to alocal user is obliged to provide the same function to a network user who transmits the standard
representation for the function.

I nterrupt Process (1P)

Many systems provide a function which suspends, interrupts, aborts, or terminates the operation of a user
process. Thisfunction is frequently used when one believes one’s processisin an unending loop, or when an
unwanted process has been inadvertently activated. | P is the standard representation for invoking this function.
Implementers should note that P may be required by other protocols which use TELNET, and therefore should
be implemented if these other protocols are to be supported.

Abort Output (AO)

Many systems provide a function which allows an output-generating process to run to completion (or to reach
the same stopping point it would reach if running to completion) but without sending the output to the user’s
terminal. Further, this function typically clears any output already produced but not yet actually printed (or
displayed) on the user’ sterminal. AO is the standard representation for invoking this function. For example,
some subsystem might normally accept a user’s command, send along text string to the user’ sterminal in
response, and finally signal readiness to accept the next command by sending a prompt character (preceded by
<CR><LF>) to the user’ sterminal. If the AO were received during transmission of the text string, a reasonable
implementation would be to suppress the remainder of the text string, but transmit the prompt character and the
preceding <CR><LF>. (Thisis possibly in distinction to the action which might be taken if an IP were
received; the IP might cause suppression of the text string and an exit from the subsystem.)

Server systems which provide this function may need to clear buffers external to the system (in the network and
the user’ slocal host); the appropriate way to do thisisto transmit the SYNC signal (described below) to the
user system.

AreYou There (AYT)?

Many systems provide a function which provides the user with some visible (e.g., printable) evidence that the
system is still up and running. This function may be invoked by the user when the system is unexpectedly silent
for along time, because of the unanticipated (by the user) length of a computation or an unusually heavy system
load. For instance, AYT isthe standard representation for invoking this function.

Erase Character (EC)

Many systems provide a function which deletes the last preceding undeleted character or print position from the
stream of data being supplied by the user. This function istypically used to edit keyboard input when
typographic errors occur. EC is the standard representation for invoking this function.

Note: A print position may contain several characterswhich are the result of overstrikes or of sequences such
as, <charl> BS <char2>....

EraseLine(EL)

Many systems provide a function which deletes all the datain the current “line” of input. Thisfunctionis
typically used to edit keyboard input. EL is the standard representation for invoking this function.

13.4 TELNET SYNC Signal

Most timesharing systems provide mechanisms which allow aterminal user to regain control of arunaway
process; the |P and AO functions described above are examples of these mechanisms. Such systems, when used
locally, have accessto all the signals supplied by the user, whether these are normal characters or special out-
of-band signals such as those supplied by the teletype BREAK key or the IBM 2741 ATTN key. Thisis not
necessarily true when terminals are connected to the system through the network; the network’ s flow-control
mechanisms may cause such asignal to be buffered elsewhere, such asin the user’s host.

To counter this problem, the TELNET SYNC mechanismisintroduced. A SYNC signal consists of aTCP
URGENT notification, coupled with the TELNET command DATA MARK. The URGENT natification, which
IS not subject to the flow control pertaining to the TELNET connection, is used to invoke special handling of
the data stream by the process which receivesit. In this mode, the data stream is immediately scanned for
“interesting” signals as defined below, discarding intervening data. The TELNET command DATA MARK
(DM) isthe synchronizing mark in the data stream which indicates that any special signal has already occurred
and the recipient can return to normal processing of the data stream. The SYNC is sent viathe TCP send
operation with the URGENT flag set and the DM as the last (or only) data octet.

When several SYNCs are sent in rapid succession, the URGENT notifications may be merged. It is not possible
to count URGENTSs since the number received will be less than or equal to the number sent. When in normal
mode, a DM is ano-operation; when in URGENT mode, it signals the end of the URGENT processing. If TCP
indicates the end of URGENT data before the DM is found, TELNET should continue the specia handling of
the data stream until the DM is found.

If TCP indicates more URGENT data after the DM are found, it can only be because of a subsequent SYNC.
TELNET should continue the special handling of the data stream until another DM is found.

“Interesting” signals are defined as the TELNET standard representations of IP, AO, and AY T (but not EC or
EL); the local analogs of these standard representations (if any); all other TELNET commands; and other site-
defined signals which can be acted on without delaying the scan of the data stream.

Since one effect of the SYNC mechanism is the discarding of essentially all characters (except TELNET
commands) between SY NC sender and recipient, this mechanism is specified as the standard way to clear the
data path if desired. For example, if auser at atermina causes an AO to be transmitted, the server which
receivesthe AO (if it provides that function at al) should return a SYNC to the user.

Finally, just asthe TCP URGENT notification is needed at the TELNET level as an out-of-band signal, other
protocols which make use of TELNET may also require a TELNET command which can be viewed as an out-
of-band signal at adifferent level.

By convention the sequence [P, SYNC] isto be used as such asignal. For example, suppose that some other
protocol which uses TELNET defines the character string STOP analogously to the TELNET command AO.
Imagine that a user of this protocol wishes a server to process the STOP string, but the connection is blocked
because the server is processing other commands. Users should instruct their systemsto send the (1) TELNET
IP character, (2) TELNET SYNC sequence [i.e., send the DM as the only character in a TCP URGENT-mode
send operation], (3) character string STOP, and (4) other protocol’ s analog of the TELNET DM, if any. The
user (or process acting on the user’ s behalf) must transmit the TELNET SY NC sequence of step 2 to ensure that
the TELNET IP gets through to the server’s TELNET interpreter.

The URGENT notification should wake up the TELNET process; the I P should wake up the next-higher-level
process.

13.5 TheNVT Printer and Keyboard

The NVT printer has an unspecified carriage width and page length and can produce representations of all 95
ASCII graphics (codes 32 through 126). Of the 33 ASCII control codes (0 through 31 and 127), and the 128
uncovered codes (128 through 255), the following have specified meaning to the NV T printer:

Name Code Meaning
NULL (NUL) 0 No operation
Linefeed (LF) 10 Moves the printer to the next print line, keeping the same

horizonta position.

Carriage return (CR) 13 Moves the printer to the left margin of the current line.

The following codes aso have defined, but not required, effects on the NVT printer. Neither end of a TELNET
connection may assume that the other party will take, or will have taken, any particular action on receipt or
transmission of these:

Name Code Meaning

BELL (BEL) 7 Produces an audible or visible signal (which does NOT move the print head).

Backspace (BS) 8 Moves the print head one character position toward the left margin.

Horizontal tab (HT) 9 Moves the printer to the next horizontal tab stop. It remains unspecified how
either party determines or establishes where such tab stops are located.

Vertical tab (VT) 11 Moves the printer to the next vertical tab stop. It remains unspecified how either
party determines or establishes where such tab stops are located.

Formfeed (FF) 12 Moves the printer to the top of the next page, keeping the same horizontal
position.

All remaining codes do not cause the NVT printer to take any action.

The sequence CR LF, as defined, will causethe NVT to be positioned at the left margin of the next print line (as
would, e.g., the sequence LF CR). However, many systems and terminals do not treat CR and LF

independently, and will have to go to some effort to simulate their effect (e.g., some terminals do not have a CR
independent of the LF, but on such terminals it may be possible to simulate a CR by backspacing). Therefore,
the sequence CR LF must be treated as a single new-line character and used whenever their combined action is
intended, the sequence CR NUL must be used where a carriage return alone is actually desired, and the CR
character must be avoided in other contexts. This rule gives assurance to systems which must decide whether to
perform a new-line function or a multiple backspace that the TELNET stream contains a character following a
CR that will allow arational decision.

Note that CR LF or CR NUL isrequired in both directions (in the default ASCII mode), to preserve the
symmetry of the NVT model. Even in situations (e.g., with remote echo and suppress-GA optionsin effect) in
which characters are not being sent to an actual printer, for the sake of consistency, the protocol requires that a
NUL beinserted following a CR not followed by an LF in the data stream. The converse of thisisthat aNUL
received in the data stream after a CR (in the absence of options negotiations which explicitly specify
otherwise) should be stripped out beforethe NVT is applied to local character-set mapping.

The NVT keyboard has keys, key combinations, or key sequences for generating all 128 ASCII codes. Note that
although many have no effect on the NVT printer, the NVT keyboard is capable of generating them. In addition
to these codes, the NVT keyboard shall be capable of generating the following additional codes which, except
as noted, have defined—but not required—meanings. The actual code assignments for these “characters’ arein
the TELNET command section, because they are viewed as being, in some sense, generic and should be
available even when the data stream is interpreted as being some other character set.

* SYNC. Thiskey alowsyou to clear your data path to the other party. Activation of this key causesa DM (see
command section) to be sent in the data stream and a TCP URGENT notification is associated with it. The pair
DM-URGENT isto have the required meaning as defined previously.

* Break (BRK). Thiscodeis provided becauseit isasigna outside the ASCII character set which is currently
given local meaning within many systems. It is intended to indicate that the BRK key or the ATTN key was hit.
Note, however, that thisisintended to provide a 129th code for systems which require it, not as a synonym for
the | P standard representation.

* Interrupt process (IP). Suspend, interrupt, abort, or terminate the process to which the NV T is connected.
Also, part of the out-of-band signal for other protocols which use TELNET.

* Abort output (AO). Allow the current process to (appear to) run to completion, but do not send its output to
the user. Also, send a SYNC to the user.

* Areyou there (AYT)? Send back to the NVT some visible (i.e., printable) evidence that the AYT was
received.

* Erase character (EC). The recipient should delete the last preceding undeleted character or “ print position
from the data stream.

* Eraseline (EL). The recipient should delete characters from the data stream back to, but not including, the
last CR LF sequence sent over the TELNET connection.

The spirit of these “extra’ keys, and a so the printer format effectors, is that they should represent a natural
extension of the mapping that already must be done from NVT into the local terminal. Just asthe NV T data
byte 68 (104 octal) should be mapped into whatever the local code for uppercase D is, so the EC character
should be mapped into whatever the local EC function is. Further, just as the mapping for 124 (174 octal) is
somewhat arbitrary in an environment that has no vertical-bar character, the EL character may have a somewhat
arbitrary mapping (or none at al) if thereisno local erase-line facility. Similarly for format effectors; if the
terminal actually does have avertical tab, then the mapping for VT is obvious, and only when the terminal does
not have avertical tab should the effect of VT be unpredictable.

TELNET Command Structure

All TELNET commands consist of at |east a 2-byte sequence: the interpret as command (IAC) escape character
followed by the code for the command. The commands dealing with option negotiation are 3-byte sequences;
the third byte is the code for the option referenced. This format was chosen so that as more comprehensive use
of the data space is made—by negotiations from the basic NVT, of course—collisions of data bytes with
reserved command values will be minimized, all such collisions requiring the inconvenience, and inefficiency,
of “escaping” the data bytes into the stream. With the current setup, only the IAC need be doubled to be sent as
data, and the other 255 codes may be passed transparently.

TELNET commands are defined in the following table. Note that these codes and code sequences have the
indicated meaning only when immediately preceded by an IAC.

Name Code Meaning

SE 240 End of subnegotiation parameters

NOP 241 No operation

Data mark 242 The data stream portion of a SYNC; should always be accompanied by a TCP
URGENT notification

Break 243 NVT character BRK

Interrupt process 244 Thefunction IP

Abort output 245 Thefunction AO

Areyou there? 246 Thefunction AYT

Erase character 247 The function EC

Eraseline 248 Thefunction EL

Go ahead 249 The GA signal

SB 250 Indicates that what follows is subnegotiation of the indicated option

WILL (option code) 251 Indicates the desire to begin performing, or confirmation that you are now
performing, the indicated option

WON'T (option 252 Indicates the refusal to perform, or continue performing, the indicated option

code)

DO (option code) 253 Indicates the request that the other party perform, or confirmation that you are
expecting the other party to perform, the indicated option

DON'T (option 254 Indicates the demand that the other party stop performing, or confirmation that

code) you are no longer expecting the other party to perform, the indicated option

IAC 255 Data byte 255

1. Connection establishment. The TELNET TCP connection is established between the user’s port U and the
server’sport L. The server listens on its well-known port L for such connections. Since a TCP connection is
full-duplex and identified by the pair of ports, the server can engage in many simultaneous connections
involving its port L and different user ports U.

2. Port assignment. When used for remote user access to service hosts (i.e., remote terminal access), this
protocol is assigned server port 23 (27 octdl; i.e., L = 23).

13.6 TELNET Option Specifications

The intent of providing for optionsin the TELNET Protocol isto permit hosts to obtain more el egant solutions
to the problems of communication between dissimilar devices than is possible within the framework provided
by the network virtual terminal (NVT). It should be possible for hosts to invent, test, or discard options at will.
Nevertheless, it is envisioned that options which prove to be generally useful will eventually be supported by
many hosts; therefore it is desirable that options be carefully documented and well publicized. In addition, it is
necessary to ensure that a single option code is not used for severa different options.

The TELNET RFC specifies amethod of option code assignment and standards for documentation of options.
The individual responsible for assignment of option codes may waive the requirement for complete
documentation for some cases of experimentation, but in general documentation will be required prior to code
assignment. Options will be publicized by publishing their documentation as RFCs; inventors of options may,
of course, publicize them in other ways as well.

TELNET Subnegotiation

Some options will require more information than a single option code to be passed between hosts; an example
would be any option which requires a parameter. The strategy to be used consists of two steps: (1) both parties
agree to “discuss’ the parameter(s), and (2) the “discussion” takes place. Step 1, agreeing to discuss the
parameters, takes place in the normal manner; one party proposes use of the option by sending a DO (or WILL)
followed by the option code, and the other party accepts by returning aWILL (or DO) followed by the option
code. Once both parties have agreed to use the option, subnegotiation takes place by using the command SB,
followed by the option code, followed by the parameter(s), followed by the command SE. Each party is
presumed to be able to parse the parameter(s), since each has indicated that the option is supported (viathe
initial exchange of WILL and DO). On the other hand, the receiver may locate the end of a parameter string by
searching for the SE command (i.e., the string IAC SE), even if the receiver is unable to parse the parameters.
Of course, either party may refuse to pursue further subnegotiation at any time by sending aWONT or DONT to
the other party.

For example, for option ABC, which requires subnegotiation, the TELNET command formats are IAC WILL
ABC, an offer to use option ABC (or favorable acknowledgment of the other party’s request); IAC DO ABC, a
request for the other party to use option ABC (or favorable acknowledgment of the other party’s offer); and IAC
SB ABC , <PARAMETERS> IAC SE, one step of subnegotiation, used by either party.

Options requiring subnegotiation must avoid unending loops in the subnegotiation process. For example, if each
party can accept any value of a parameter, and both parties suggest parameters with different values, then oneis
likely to have an infinite oscillation of acknowledgments (where each receiver believesit is only acknowledging
the new proposals of the other). Finally, if parameters in an option subnegotiation include a byte with a value of
255, it is necessary to double this byte in accordance with the general TELNET rules.

13.6.1 TELNET environment option

This section explains away to pass environment information between a TELNET client and server. Use of this
mechanism enablesa TELNET user to propagate configuration information to a remote host when connecting.
The TELNET command names and codes are

NEW-ENVIRON 39 VAR 0
IS 0 VALUE 1
SEND 1 ESC 2
INFO 2 USERVAR 3

Command M eanings

IAC WILL NEW-ENVIRON

IAC WONT NEW-ENVIRON

IAC DO NEW-ENVIRON

IAC DONT NEW-ENVIRON

IAC SB NEW-ENVIRON SEND

[type ... [type ...
[---]
1 1 1AC SE

IAC SB NEW-ENVIRON 1S

type ... [VALUE ...]
[type ... [VALUE ...]
[--- 11 IAC SE

The sender of this command iswilling to send
environment variables.

The sender of this command refuses to send environment
variables.

The sender of this command iswilling to receive
environment variables.

The sender of this command refuses to accept
environment variables.

The sender of this command requests that the remote side
send its environment variables. The type may be either
VAR or USERVAR, to indicate either well-known or user-
defined variable names. Only the side that is DO NEW-
ENVIRON may initiate a SEND command. If alist of
variablesis specified, then only those variables should be
sent. If no list is specified, then the default environment,
of both well-known and user-defined variables, should be
sent. If one of the variables has no name, then all the
variables of that type (well-known or user-defined) in the
default environment should be sent.

The sender of this command is sending environment
variables. This command is sent in response to a SEND
request. Only the side that is WILL NEW-ENVIRON may
send an IS command. The type/VALUE pairs must be
returned in the same order as the SEND request specified
them, and there must be aresponse for each type. . .
explicitly requested. The type will be VAR or uservar.
Multiple environment variables may be sent. The
characters following a type up to the next type or value
specify the variable name. The characters following a
VALUE up to the next type specify the value of the
variable. If atypeisnot followed by aVALUE (e.g., by
another VAR, USERVAR, or IAC SE), then that variable
isundefined. If aVALUE isimmediately followed by a
type or IAC, then the variable is defined, but has no value.
If an IAC is contained between the IS and the IAC SE, it
must be sent as IAC IAC. If avariable or avalue contains
aVAR, it must be sent asESC VAR. If avariable or a
value contains a USERVAR, it must be sent as ESC
USERVAR. If avariable avalue containsa VALUE, it
must be sent as ESC VALUE. If avariable or avalue
contains an ESC, it must be sent as ESC ESC.

IAC SB NEW-ENVIRON INFO The sender of this command is sending information about

type... [VALUE...] environment variables that have changed. It isidentical to

[type. .. the IS command, except that the command is INFO

g\E/A'-UE- --1 [---1 1 1AC ingend of IS, Only the side that is WILL NEW-
ENVIRON may send an INFO command. The INFO
command is not to be used to send initia information; the
SEND/IS sequenceis to be used for that. The INFO
command is to be used to propagate changesin
environment variables, and may be spontaneously
generated.

The default specification for this option is

WONT NEW-ENVIRON
DONT NEW-ENVIRON

This means that there will not be any exchange of environment information.
M otivation

Many operating systems have start-up information and environment variables that contain information that
should be propagated to remote machines when TELNET connections are established. Rather than create a new
TELNET option each time someone comes up with some new information that they need propagated through a
TELNET session, but that the TELNET session itself doesn’t really need to know about, this generic
information option can be used.

Well-known Variables

USER Thisvariable is used to transmit the user or account name that the
client wishes to log into on the remote system. The format of the
value of the USER variable is system dependent, as determined by
the remote system.

JOB Thisvariable is used to transmit the job ID that the client wishesto
use when logging into the remote system. The format of the value the
JOB variable is system-dependent, as determined by the remote
system.

ACCT This variableis used to transmit the account 1D that the client wishes
to use when logging into the remote system. The format of the value
the ACCT variable is system-dependent, as determined by the remote
system.

PRINTER Thisvariable is used to identify the default location for printer
output. Because there is as yet no standard way of naming a printer
on anetwork, the format of this variableis currently undefined.

SYSTEMTYPE Thisis used to transmit the type of operating system on the system
that sendsthisvariable. Itsvalue isidentical to the value of the
SYSTEM (SY ST) command in FTP (File Transfer Protocol). The
format of the value shall have asiits first word one of the system
names listed in the current version of the Assigned Numbers
document.

DISPLAY Thisvariable is used to transmit the X display location of the client.
The format for the value of the DISPLAY variableis host:
<dispnum> [.<screennum>].

Thisinformation isidentical to the information passed using the TELNET X-DISPLAY-LOCAT ION option. If
both this option and the DISPLAY environment variable are received, and both contain conflicting information,
the most recently received information received should be used.

Because it isimpossible to anticipate all variables that users may wish to exchange, the USERVAR typeis
provided to alow usersto transmit arbitrary variable/value pairs. The use of an additional type allows
implementations to distinguish between values derived by the remote host software and values supplied by the
user. Paranoid implementations will most likely treat both types with an equal level of distrust. The results of a
name-space collision between a well-known and a user-defined variable are implementation specific.

I mplementation Rules

WILL and DO are used only at the beginning of the connection to obtain and grant permission for future
negotiations. Once the two hosts have exchanged aWILL and aDO, the sender of the DO NEW-ENVIRON is
free to request that environment variables be sent. Only the sender of the DO may send requests (1AC SB
NEW-ENVIRON SEND IAC SE) and only the sender of the WILL may transmit actual environment
information (viathe IAC SB NEW-ENVIRON [IS...1AC SE command). Although this option may be used
at any time throughout the life of the TELNET connection, the exchange of environment information will
usually happen at connection start-up. Thisis because many operating systems have mechanisms for
propagating environment information only at process creation, so the information is needed before the user logs
in.

The receiving host is not required to put all variables that it receives into the environment. For example, if the
client should send across USERVAR “TERM” VALUE ““xterm’ asan environment variable, and the
TERMINAL-TYPE option has already been used to determine the terminal type, the server may safely ignore
the TERM variable. Also, some start-up information may be used in other ways;, for example, USER, ACCT,
and PROJ values might be used to decide which account to log into, and might never be put into the user’s
environment. In general, if the server has already determined the value of an environment variable by some
more accurate means, or if it does not understand a variable name, it may ignore the value sent in the NEW-
ENVIRON option. The server may also prefer to just put all unknown information into the user’ s environment.
Thisisthe suggested method of implementation, because it allows the user the most flexibility.

The following is an example of use of the option:
HOST1 HOST2

IAC DO NEW-ENVIRON IAC WILL NEW-ENVIRON
[Host1 is now free to request environment information]
IAC SB NEW-ENVIRON SEND VAR

“USER” VAR “ACCT” VAR USERVAR
IAC SE

The server has now explicitly asked for the USER and ACCT variables, the default set of well-known
environment variables, and the default set of user-defined variables. Note the client includes the USER
information twice: once because it was explicitly asked for, and once because it is part of the default
environment.

IAC SB NEW-ENVIRON ISVAR “USER”
VALUE “joe” VAR“ACCT” VALUE
“kernel” VAR “USER” VALUE “joe”
VAR “DISPLAY” VALUE “f00:0.0"
USERVAR “SHELL” VALUE “/bin/csh”
IAC SE

Itislegal for aclient to respond with an empty environment (no data between the IAC SB and IAC SE) when
no well-defined or user-defined variables are currently defined. For example, IAC SB NEW-ENVIRON 1S
IAC SE isavalid response to any of the following:

IAC SB NEW-ENVIRON SEND IAC SE

IAC SB NEW-ENVIRON SEND VAR IAC SE

IAC SB NEW-ENVIRON SEND USERVAR IAC SE

IAC SB NEW-ENVIRON SEND VAR USERVAR IAC SE
(The last exampleis equivalent to thefirst. . .)

An earlier version of this specification incorrectly reversed the values for VAR and VALUE , which put the
specification at odds with existing implementations. To resolve that problem, as well as other minor problems, a
new option number has been assigned to the NEW-ENV IRON option. This allows implementations of this memo
to interoperate with no ambiguity. Any implementation that supports the TELNET NEW-ENV IRON optionis
expected to support all of this specification.

Security Concerns

It isimportant for implementers of the NEW-ENV IRON option to understand the interaction of setting options
and the login/authentication process. Specifically, careful anaysis should be done to determine which variables
are “safe’ to set before the client logsin. An example of a poor choice would be permitting a variable to be
changed that allows an intruder to circumvent or compromise the login/authentication program itself.

13.6.2 TELNET Linemode Option

This section explains an elective standard for the Internet community. Hosts on the Internet that support
TELNET linemode within the TELNET protocol are expected to adopt and implement this standard.

Linemode TELNET isaway of doing terminal character processing on the client side of a TELNET connection.
While in linemode with editing enabled for the local side, network traffic is reduced to a couple of packets per
command line, rather than a couple of packets per character typed. Thisis very useful for long delay networks,
because the user has local response time while typing the command line, and incurs network delays only after
the command istyped. It is aso useful to reduce costs on networks that charge on a per-packet basis.

Command Names and Codes

LINEMODE
MODE

EDIT

TRAPSIG
MODE_ACK
FORWARDMASK
sLC

SLC_SYNCH

SLC BRK

SLC IP

SLC_AO

SLC AYT
SLC_EOR
SLC_ABORT
SLC_EOF
SLC_SUSP

SLC EC

SLC EL

Command Meanings

@OO\I@(H-PWNHOON#NHH&

[
= O

SLC_EW 12

SLC RP 13
SLC_LNEXT 14
SLC_XON 15
SLC_XOFF 16
SLC_FORW1 17
SLC_FORW2 18
SLC_DEFAULT 3
SLC_VALUE 2
SLC_CANTCHANGE 1
SLC_NOSUPPORT 0
SLC_LEVELBITS 3
SLC_ACK 128
SLC_FLUSHIN 64
SLC_FLUSHOUT 32
EOF 236
SUSP 237
ABORT 238

The TELNET linemode function is broken down as follows:

IAC WILL LINEMODE

IAC WONT LINEMODE

IAC DO LINEMODE

IAC DONT LINEMODE

LINEMODE suboption
MODEIAC SB LINEMODE MODE permission for, a switch to the mode defined by mask.

mask IAC SE

The sender of this command requests permission to begin
subnegotiation of the editing/signaling status. This should
be sent only by the client side of the connection.

The sender of this command demands that subnegotiation
of the editing/signaling status not be allowed.

The sender of this command requests that the remote side
begin subnegotiation of the editing/signaling status. This
should only be sent by the server side of the connection.

The sender of this command demands that the remote side
not begin subnegotiation of the editing/signaling status.

The sender of this command confirms, or requests or

In the last command, the mask is a bit mask of various modes that the connection can be in. Under normal
operation, the server side of the connection will initiate mode changes, and the client will confirm them. The
currently defined modes are:

EDIT When set, the client side of the connection should process all input lines,
performing any editing functions, and only send completed linesto the
remote side. When unset, the client side should not process any input from
the user, and the server side should take care of all character processing that
needs to be done.

TRAPSIG When set, the client side should translate appropriate interrupts/signals to
their TELNET equivalents (viz. 1P, BRK, AYT, ABORT, EOF, and
SUSP). When unset, the client should pass interrupts/signals as their normal
ASCII values.

FLOW Logically, this belongs in the mask. However, this would overlap the
TELNET TOGGLE-FLOW-CONTROL option, so the TELNET TOGGLE-
FLOW-CONTROL option is used instead. When DO/WILL LINEMODE is
negotiated, DO/WILL TOGGLE-FLOW-CONTROL should also be
negotiated.

ECHO Logically, this belongs in the mask. However, this would overlap the
TELNET ECHO option, so the TELNET ECHO option is used instead. The
client side should never negotiate WILL ECHO. When the server has
negotiated WILL ECHO, the client should not echo data typed by the user
back to the user. When the server has negotiated WONT ECHO, the client is
responsible for echoing data typed by the user back to the user.

When the client side of a connection receivesa MODE command, it must agree with at least the state of the
EDIT and TRAPSIG bits. If aMODE command is received with a mode mask that is currently in use (ignoring
the MODE_ ACK hit), the MODE command isignored. If aMODE command is received that is different from
the current mode mask, then areply is sent with either the new mode mask and the MODE_ ACK bit set, or a
subset of the new mode mask. The only exception isthat if the server receives aMODE with either the EDIT or
TRAPSIG bits not set, it may set the EDIT and TRAPSIG bitsin the response, and if the client receives a
MODE withthe EDIT or TRAPSIG bits set, it may not clear them in the response.

When a MODE command is received with the MODE_ ACK bit set, and the mode differs from the current mode,
the client will ignore the new mode and the server will switch to the new mode. This ensures that both sides of
the connection will resolve to the same mode. In all cases, aresponse is never generated to aMODE command
that has the MODE_ACK bit set.

LINEMODE suboption FORWARDMASK

IAC SB LINEMODE DO The sender of this command requests that the other side

FORWARDMASK maskO send any buffered datawhen any of the ASCII characters

maskl... mask31l IAC SE efined by the bit mask are received. Only the side of the
connection that sent DO LINEMODE (the server side)
may negotiate this. The mask is up to 32 octets long. Each
octet represents 8 ASCII character codes. The high-order
bit of mask0 corresponds to ASCII code O; the low-order
bit of maskO0, to ASCII code 7; the high-order bit of
mask1, to ASCII code 8; the low-order bit of mask1,
corresponds to ASCII code 15; and so on. The mask list
may be terminated before the end of thelist, in which case
all remaining mask octets are assumed to be reset (equal
to zero). When the server sideisin DONT TRANSMIT-
BINARY mode, then only the first 16 octets of the mask
(ASCII codes 0 through 127) are used. If any individual
octet of the mask is equal to IAC, it must be sent asa

double IAC.

IAC SB LINEMODE DONT The sender of this command requests that the other side

FORWARDMASK IAC SE stop using the forward mask to determine when to send
buffered data.

IAC SB LINEMODE WILL This command is sent in response to aDO

FORWARDMASK 1AC SE FORWARDMASK command. It indicates that the
forward mask will be used to determine when to send
buffered data.

IAC SB LINEMODE WONT This command is sent in response to aDO

FORWARDMASK 1AC SE FORWARDMASK command. It indicates that the
forward mask will not be used to determine when to send
buffered data.

LINEMODE suboption SLC TheSLC (set local characters) suboption uses alist of
octet triplets. The first octet specifies the function, the
second octet specifies modifiers to the function, and the
third octet specifies the ASCII character for the function.

IAC SB LINEMODE SLC The sender of this command requests that the list of octet
<list of octet triplets> trpletsbe used to set the local character to be used to
1AC SE perform the specified function.

A function may be set to one of four levels: SLC_NOSUPPORT isthe lowest level, SLC_ CANTCHANGE isthe
next-higher level, SLC_VALUE isabove that, and SLC_DEFAULT isthe highest level.

* If the SLC_LEVEL bitsin the second octet are equal to SLC_DEFAULT, then this particular function should
use the system default on the other side of the connection.

* If the SLC_LEVEL bitsin the second octet are equal to SLC_VALUE, then thisfunction is supported, and the
current value is specified by the third octet.

o If the SLC_LEVEL bitsin the second octet are equal to SLC_CANTCHANGE, then thisisafunction that is
supported, but the value for this function, specified in the third octet, cannot be changed.

* If the SLC_LEVEL bitsin the second octet are equal to SLC_NOSUPPORT, then this particular functionis
not supported and should be disabled by the other side.

* If thisis aresponse to a previous request to change a special character, and we are agreeing to the change, then
the SLC_ACK bit must be set in the second octet.

o If the SLC_FLUSHIN bit is set in the second octet, then whenever this functionis sent, aTELNET SYNC
should be sent at the same time to flush the input stream.

* If the SLC_FLUSHOUT bit is set in the second octet, then whenever this function is sent, output data should
be flushed.

Only the client may send an octet triplet with the first octet equal to zero. In this case, the SLC_LEVEL bits
may only be set to SLC_DEFAULT or SLC_VALUE, and the third octet does not matter. When the server
receives0 SLC_DEFAULT 0, it should switch to its system default special character settings, and send all
those special charactersto the client. When the server receives0 SLC_VALUE 0, it should just send its
current special-character settings. Note that if the server does not support some of the editing functions, the
functions should be sent as XXX SLC_DEFAULT O, rather than as XXX SLC_NOSUPPORT 0, so that the
client may choose to use its own values for those functions, rather than have to disable them even if it supports
them. If any of the octetsin the list of octet tripletsis equal to IAC, it must be sent as adouble IAC.

When a connection is established, the client must either request the remote default values for the special
characters or send across what all the specia characters should be set to.

The function values can be put into two groups: (1) functions that are to be translated to their TELNET
equivalents before being sent across the TELNET connection and (2) functions that are to be recognized and
processed locally.

First, we have those characters that are to be mapped into their TELNET equivalents:

SLC_SYNCH Sync

SLC_BRK Break

SLC_IP Interrupt process
SLC_AO Abort output
SLC_AYT Areyou there?
SLC_EOR End of record
SLC_ABORT Abort

SLC_EOF End of file

SLC_SUSP Suspend

Next, we have the locally interpreted functions:

SLC_EC

SLC_EL

SLC_EW

SLC_RP

SLC_LNEXT

SLC_XON

SLC_XOFF

SLC_FORW1

SLC_FORW2

Erase character. This character istyped to erase one character from
the input stream.

Erase line. This character is typed to erase the entire contents of the
current line of input.

Erase word. This character is typed to erase one word from the input
stream. When backing up in the input stream, aword is defined to be
(optionally) whitespace (tab or space characters), and a string of
characters up to, but not including, whitespace or line delimiters.

Reprint line. This character is typed to cause the current line of input
to be reprinted, leaving the cursor at the end of the line.

Literal next. This character istyped to indicate that the next character
isto be taken literally, no character processing should be done with
it, and if it isa special character that would normally get mapped into
aTELNET option, that mapping should not be done.

Start output. This character is sent to resume output to the user’s
terminal.

Stop output. This character is sent to stop output to the user’s
terminal.

Forwarding character. This character should cause all data currently
being buffered, and this character, to be sent immediately.

Forwarding character. Thisis another character that isto be treated in
the same manner asSLC_FORW1 .

Additional Control Characters

IAC ABORT

IAC SUSP

IAC EOF

Abort. Similar to IAC IP, but means only to abort or terminate
the process to which the NV T is connected. (The TELNET
specification says that P may “suspend, interrupt, abort or
terminate” the process.) If a system does not have two
methods of interrupting a process, then ABORT and IP should
have the same effect.

Suspend the execution of the current process attached to the
NVT in such away that another process will take over control
of the NVT and the suspended process can be resumed at a
later time. If the receiving system does not support this
functionality, it should be ignored.

End of file. The recipient should notify the process connected
to the NVT that an end of file has been reached. Thisis
intended for systems that support the ability for the user to
type in an EOF character at the keyboard.

The default specification for thisoption is

WONT LINEMODE
DONT LINEMODE

This means that there will not be any subnegotiation of the mode of the connection.
If WILL LINEMODE is negotiated, the defaults are

IAC SB LINEMODE MODE OIAC SE
IAC SB LINEMODE WONT FORWARDMASK IAC SE

If DO LINEMODE is negotiated, the defaults are

IAC SB LINEMODE MODE O IAC SE
IAC SB LINEMODE DONT FORWARDMASK |IAC SE

Character values for SLC default to SLC_NOSUPPORT .
Motivations Behind Design

With increasing TELNET usage, it is apparent that the ability to do command-line processing on the local
machine and send completed lines to the remote machine is necessary in several environments. First, in the case
of a connection over long delay equipment, users become very frustrated when echoing of their data takes
several seconds. Second, some supercomputers inherently do not handle and process single-character input
well. For these machines, it is better to have the front-end computer do the character processing, and leave the
supercomputer’s cycles available to perform vectored number crunching.

There have been attempts to make local line editing work within the existing TELNET specs. Indeed, the 4.3-
BSD (Berkeley Software Division) tape includes aversion of TELNET that attempts to do this through
recognition of the state of the ECHO and SUPRESS-GO-AHEAD options; other implementations do this
recognition purely through the ECHO option. There are problems with both of these methods. Using just the
ECHO provides no mechanism to have ECHO to the user turned off, and leave local character processing on, for
example, when a user is typing a password.

Usage of the SUPRESS-GO-AHEAD comes from reading into RFC 858, where it states:

In many TELNET implementations it will be desirable to couple the SUPRESS-GO-AHEAD option to the echo option so
that when the echo option isin effect, the SUPPRESS-GO-AHEAD option isin effect simultaneously: both of these options
will normally have to bein effect simultaneously to effect what it commonly understood to be character-at-a-time echoing by the
remote computer.

The reverse reading of thisis that without the ECHO option or the SUPPRESS-GO-AHEAD option, you arein
line-at-a-time mode, implying local line editing. This has the obvious problem that that is not what the
SUPPRESS-GO-AHEAD option is supposed to mean.

Other shortcomings are that the TELNET specification is not rich enough to handle all of the special characters
that some of the current operating systems support. For example, the ECHO/SGA implementation supports two
ways of interrupting a process, by borrowing the BRK option for the second interrupt. Some implementations
have taken the EOR option to send an EOF. Obviously, this means using things for which they were not
intended, and the correct solution would be to define new options.

Another problem is that some linemode implementations buffer up the input until the end of the line, and then
send the whole line across, editing characters and all. No local editing of the line has been done.

After examining several implementations, it has become clear that the correct thing to do is to implement new
options to enhance the current TELNET specification so that it can support local line editing in a reasonable,
reliable, and consistent manner.

Three states are of interest: (1) local line editing and local signal trapping; (2) remote line editing, local signal
trapping; and (3) remote line editing, remote signal trapping.

A fourth possible state, local line editing and remote signal trapping, would not be very interesting, because you
wouldn’t recognize the signals and could not send them to the remote side for it to recognize until the line has
been completed. Also, special signals usually will have an effect on the line editing function, and if they are not
being trapped locally, the desired action will not take place.

Local line editing means that all norma command-line character processing, such as ERASE CHARACTER
and ERASE LINE, happen on the local system, and only when CR LF (or some other specia character) is
encountered are the edited data sent to the remote system.

Signal trapping means, for example, that if the user types the character associated with the I P function, then the
IAC IP function instead of the character typed is sent to the remote side. Remote signal trapping means, for
example, that if the user types the character associated with the | P function, then the IAC IP function is not sent
to the remote side, but rather the actual character typed is sent to the remote side.

Implementation Rules and User Interface

Any implementation that supports the TELNET linemode option will theoretically support all of this
specification.

Normally, the entire user interface is left up to the implementers. However, the user should be able to specify
certain functionality on the client side of the connection. During a TELNET session, the client side should allow
some mechanism for the user to give commands to the local TELNET process. These commands should at |east
allow the user to (1) change the mode of the connection—the user should be able to attempt to turn EDIT,
FLOW, TRAPSIG, and ECHO on and off, while the server may refuse to change the state of the EDIT and
TRAPSIG bits; (2) import or export SLC—the user should be able to tell the local TELNET process whether to
use the local or the current or default remote definitions of the special characters; and (3) manual sending of
options—the user should be able to tell the local TELNET process to explicitly send any of the TELNET
options (IP, ABORT, AYT, etc.).

End-of-line Terminators

When L INEMODE isturned on, and when in EDIT mode, when any normal line terminator on the client-side
operating system is typed, the line should be transmitted with CR LF as the line terminator. When EDIT mode
isturned off, a carriage return should be sent as CR NUL, alinefeed should be sent as LF, and any other key
that cannot be mapped into an ASCII character, but means that the line is complete (e.g., aDOIT or ENTER
key), should be sent asCR LF.

Output Processing

Regardless of what mode has been negotiated, the server side is responsible for doing all output processing.
Specifically, it should send CR LF when it wants the newl 1ne function, CR NUL when it wants just a carriage
return, and LF when it wants just a linefeed.

A TELNET Terminal Driver

Conforming implementations need not do all the line editing themselves. There is nothing wrong with letting
the system terminal driver handle the line editing, and have it hand to the TELNET application the compl eted
and edited line, which is then sent to the remote system.

Setting of Local Characters

Originally the thought of setting local characters was for both sides of the connection to use their own defaults
for the special characters, even if they were not the same on both sides of the connection. If this schemeis used,
though, the user perceives that the local special characters are being used, and the remote character settings
don’t matter. It was decided that the client side of the connection should be in control of the character settings.

When L INEMODE is negotiated, the client must either export the local character settings to the server or send a
request (SLC O SLC_DEFAULT O0) toimport the server’s specia characters. The usual action would be that a
client running on afull-fledged computer would export the special characters, and a client running where there
are no local defaults (as on some terminal servers) would import the special characters.

When an SLC command is received, the action taken should be:
1. Ignore the command if it is the same as the current settings.

2. 1f the SLC_LEVEL bits are the same as the current level bits, but the value is different and the SLC_ACK bit
is set, no reply is generated. On the server side, the command is ignored, and on the client side, a switch is made
to the new value. Thisisto ensure that if arequest to change the same character is generated by both the server
and the client, they will both settle on the client’ s requested value.

3. If we agree with the new setting, we switch to it and reply with the same value, but also set the SLC_ACK hit.

4. 1f we don’t agree, we send a response with what we think the value should be. The SLC_ACK bit isnot set in
this case. You may disagree with avalue only by sending a different value at alower level.

If the remote system doesn’t support some of the line editing characters but the front end does, then the front
end may use the local definitions for those characters when in LINEMODE. In this case, the server should send
SLC xxx SLC DEFAULT Oinresponsetoan SLC O SLC DEFAULT O request, and just acknowledge
whatever value the client requests to set the function to.

The SLC_FORW2 character should be used only if SLC_FORW1 isalready in use.

FORWARDMASK and SLC_FORW1 and SLC_FORW?2

To facilitate implementation of the client side, two methods of setting forwarding characters are provided. The
SLC_FORW1 and SLC_FORW2 allow for the setting of two additional characters on which to forward buffered
input data. Since many terminal drivers have the ability to set one or more line delimiters, it isfairly easy to
support these without having to implement through the local terminal driver, rather than putting aterminal
driver into TELNET. If the local terminal driver has functionality that maps easily into the FORWARDMASK ,
then it can also be easily supported. If the local terminal driver does not support that, then it would require more
work to support FORWARDMASK .

Also note that the client side is required to forward data when it seesone of SLC_FORW1, SLC_ FORW2, or
FORWARDMASK characters, or when any normal line termination or special signal is encountered. The client
sideisalso free to forward on other characters that it chooses. For example, if the server side sent a
FORWARDMASK that asked for data to be forwarded on the first 20 control characters (ASCII codes 1 through
024), and the client side cannot have itslocal terminal driver forward on just the first 20 control characters but
can have the local terminal driver forward on any control character (ASCII codes 1 through 039), then the client
side could validly accept the FORWARDMASK , and forward on any control character. When in EDIT mode,
care should be taken not to forward at random times, since once that data are forwarded, no more editing on the
forwarded part of the line can be done. The only time (other than the normal times) that data should be
forwarded when in EDIT mode would be if asingle input line istoo long to handle locally.

Valid and Invalid Modes and Values

At no time should DO L INEMODE be negotiated in both directions of the TELNET connection. The side that is
the DO L INEMODE isconsidered to be the server side, and the sidethat isWILL L INEMODE isthe client side.

At notime should SB LINEMODE DO/DONT FORWARDMASK, be sent unlessDO L INEMODE was
previously negotiated. At no time should SB LINEMODE WILL/WONT FORWARDMASK be sent unlessWILL
L INEMODE was previously negotiated.

If an ABORT, EOF, or SUSP request is received and the system does not support that functionality, it may
simply beignored.

Flushing Input and Output

When an IP, BRK, or ABORT issent, it isusually desirable to be able to flush the input stream, and to flush
output to the user until the IP, BRK, or ABORT is processed. The SLC_FLUSHIN and SLC_FLUSHOUT bits
are used to indicate what action should be done. These bits are advisory only, but should be honored if possible.
The standard method for processing the SLC_FLUSHIN isto usethe TEL NET SYNC signal, and the
SLC_FLUSHOUT is processed using the TIMING-MARK option. If both are to be sent, the IAC DM is sent
beforethe DO TIMING-MARK. Thus, the sender would send IAC XXX ITAC DM 1AC DO TIMING-
MARK, where XXX may be IP, BRK, or ABORT, or any other special character. The IAC DM is sent as TCP
urgent datawith the DM asthe last (or only) data octet; thisis used to flush the input stream. The 1AC DO
TIMING-MARK is used to determine when to stop flushing output; onceit is sent, all data are discarded until an
IAC WILL TIMING-MARK or an IAC WONT TIMING-MARK isreceived.

Sincethe SLC_FLUSHIN and SLC_FLUSHOUT bit are only advisory, the user interface should provide a
method so that the user can override the sending (or not sending) of the SYNC and TIMING-MARK, but the
default action should be to send them according to the SLC_FLUSHIN and SLC_FLUSHOUT bhits.

Whenever an IAC AO isreceived, a SYNC must be returned. Whenever a SYNC is being processed (by the
TCP connection going into urgent mode), all data must be discarded (but not TELNET commands!) until an
IAC DM isfound and the connection goes out of URGENT mode. (See Fig. 13.1.)

Receive Response

f,.SLC_DEFAULT x f,.SLC_VALUE\v
f,.SLC_CANTCHANGE,v
f,SLC_NOSUPPORT x

f,.SLC_VALUEV f,.SLC_ACK|SLC_VALUEyv
f,SLC_CANTCHANGE,w
f,SLC_NOSUPPORT x

f,.SLC_CANTCHANGE,v f,.SLC_ACK|SLC_CANTCHANGE,v

f,.SLC_NOSUPPORT x
f,.SLC_NOSUPPORT ,x f,.SLC_ACK|SLC_NOSUPPORT x
X,SLC_ACK]x,x No response

Examples of a Connection

In these exampl es, the symbolic names are used rather than the actual values, to make them readable. When two
or more symbolic names are joined by a |, the actual value will be the logical OR of the values of the symbolic
names. In the interest of clarity, for these examples the leading IAC and IAC SB sequences and the trailing IAC
SE sequences have been omitted. Also, the SLC_prefix has been left off wherever it would normally occur.

Client Server
WILL TOGGLE-FLOW-CONTROL DO TOGGLE-FLOW-CONTROL
WILL LINEMODE DO LINEMODE

A== - - [R——— P ——— P ———
1 IOLE |
' 3 i 1 + 4
" . 1 | | | |
| | | LS v | I I 1 r 11
| |] Smmmmmsd dnmsja=i | | RAAEAHPREFHE | |
| | 1 Cek | | Bemd I | 11K Get £11
| | 1 SPCO |1 SREGR 0 | K 0.DEE.O # 1 1
| | 1 ———— i pmm— g | | HeEHHEUBEHE | |
| | | I - | | [|
| | | u | o I 1 " I 1
| | 1 FY | e Ee | RERHEFHEFER | |
| | 1 ¢ % | Send I | H Switch # 1 1
| Ebeasdastt Iypad Sare oas % | VAT, | B to "N
| * Chamge * #==¢ rCurremc? a | A E-dresbes | | B dafauls B | |
| = T new *) P ¥ | RAERERHEFER | |
I " wnlue L] LY r I LR I I
| mees e o | + Emansd & v 11
| 1K | 4 G,0EF, 0 ¢ JEHEHBEN | |
| | Yo v | emsskemeass 4 fend == |
| Iy P I # SFC=R B]
| ¢ . I % | AEAHEAEEH]
I # Is AZK %\ dea’ OSamc | - I
|< hic set? =<-< lewel aa » | 1
(B I W ocarrent | HAEHEEHEEHE |
| ! & bl I | R L= 14 Pr==4
| hoF wF d=t===3 A U WAL U B
| (1] 1Rz | Bat 1 REEHHEHEEEE
| e | AcK
i v | B || * = Slienl mide colp
| Y dmm——— % = Server side omly
[— / 5
1 | Sand 1 He f Do we % Yes
F---1 FPCL |4—--< agree? s-—-+
——— y '
b 4
vor

SPCL Imdtiml setting for s agpecial charecter
ARC1 B cchanged apecial chasacier < SO0
SPC=i B11 cuerent special character sectings
VL LT WALUE Leével

DEF SLC_DEFAULT Lewel

Levela: BREFRULT, WALLE, CANT CHAMGE, HESUPPORT
Elags: ACEK

Figure 13.1
State diagram for SLC.

(Subnegotiation may now proceed in both directions. The client sendsthe list of specia characters.)

LINEMODE SLC SYNCH DEFAULT 0
IPVALUE | FLUSHIN | FLUSHOUT 3 AO
VALUE 15 AYT DEFAULT 0 ABORT
VALUE | FLUSHIN | FLUSHOUT 28 EOF
VALUE 4 SUSPVALUE | FLUSHIN 26
ECVALUE 127 EL VALUE 21 EW
VALUE 23 RPVALUE 18 LNEXT
VALUE 22 XON VALUE 17 XOFF
VALUE 19

(Now that L INEMODE is enabled, the server sets the initial mode and acknowledges the special characters.)

LINEMODE MODE EDIT

LINEMODE SLC SYNCH NOSUPPORT O IP
VALUE | FLUSHIN | FLUSHOUT | ACK 3 A0
NOSUPPORT 0 AYT NOSUPPORT 0 ABORT
VALUE | FLUSHIN | FLUSHOUT | ACK 28 EOF
VALUE | ACK 4 SUSP NOSUPPORT 0 EC
VALUE | ACK 127 EL VALUE |ACK 21 EW
VALUE |ACK 23RPVALUE |ACK 18 LNEXT
VALUE | ACK 22 XON VALUE | ACK 17 XOFF
VALUE |ACK 19

(The client gets the mode and ACK of the specia characters, and acknowledges the mode and any special
characters that the server changed.)

LINEMODE MODE EDIT | MODE_ACK

LINEMODE SLC SYNCH

NOSUPPORT | ACK 0 AO

NOSUPPORT | ACK O AYT | ACK NOSUP-PORT 0 SUSP OSUPPORT |ACK 0
“Login:”

“my_account”

(Turn off echo to the user.)

WILL ECHO
DO ECHO
“Password:”
“my_password’

(Turn back on echo to the user.)

WONT ECHO
DONT ECHO

(User does some stuff, and then runs an application that wants to use single character mode, doing its own
echoing of characters, but keeping signal trapping on.)

WILL ECHO

DO ECHO

LINEMODE MODE TRAPSIG

LINEMODE MODE TRAPSIG | MODE_ACK

(Application finishes.)

WONT ECHO

DONT ECHO

LINEMODE MODE EDIT | TRAPSIG
LINEMODE MODE

EDIT | TRAPSIG | MODE_ACK

(Another application, that wants full control of everything.)

WILL ECHO

DO ECHO

LINEMODE MODE 0

LINEMODE MODE 0 | MODE_ACK

(Application finishes.)

WONT ECHO

DONT ECHO

LINEMODE MODE EDIT | TRAPSIG
LINEMODE MODE

EDIT | TRAPSIG | MODE_ACK

(The user changes his erase character to H.)

LINEMODE SLC EC VALUE 8
LINEMODE SLC ECVALUE |ACK 8

(The user decidesto revert to al the original client-side special characters.)

LINEMODE SLC SYNCH DEFAULT 0O
IPVALUE | FLUSHIN | FLUSHOUT 3 AO
VALUE 15AYT DEFAULT 0 ABORT
VALUE | FLUSHIN | FLUSHOUT 28 EOF
VALUE 4 SUSPVALUE | FLUSHIN 26
ECVALUE 127 EL VALUE 21 EW

VALUE 23 RPVALUE 18 LNEXT

VALUE 22 XON VALUE 17 XOFF

VALUE 19

LINEMODE SLC SYNCH NOSUPPORT 0 AO
NOSUPPORT 15 AYT NOSUPPORT 0 SUSP
NOSUPPORT | FLUSHIN 26 EC VALUE | ACK
127 EW VALUE | ACK 23 RPVALUE | ACK
18 LNEXT VALUE | ACK 22 XON

VALUE |ACK 17 XOFF VALUE | ACK 19
LINEMODE SLC SYNCH

NOSUPPORT |ACK 0 AO

NOSUPPORT |ACK 15 AYT

NOSUPPORT | ACK 0 SUSP

NOSUPPORT | ACK | FLUSHIN 26

(The user decides to import the remote-side default special characters.)

LINEMODE SLC O DEFAULT O
LINEMODE SLCIP

VALUE | FLUSHIN | FLUSHOUT 3 ABORT
VALUE | FLUSHIN | FLUSHOUT 28 EOF
VALUE4 ECVALUE 127 EL VALUE 21

(Since these are the same as the current local settings, no response is generated.)

This next example is what would happen if an editor were fired up and wanted to let the client side do the
echoing and buffering of characters, but did not want it to do any line editing, and forward the data only when it
got acontrol character. Note that we have preceded all the 0377sin the FORWARD MASK with an 1AC.

LINEMODE MODE 0

LINEMODE DO FORWARDMASK |AC 0377

IAC 0377 IACO0377IAC03770000000000001
LINEMODE MODE 0

LINEMODE WILL FORWARDMASK

(Application runs to completion, and then things are to be set back to what they were before.)

LINEMODE MODE EDIT | TRAPSIG
LINEMODE DONT FORWARDMASK
LINEMODE MODE EDIT | TRAPSIG
LINEMODE WONT FORWARDMASK

13.6.3 TELNET Echo Option

This section reflects the standard for the Internet community using the TELNET echo option. The command
name is ECHO; the command codeis 1.

Command Meanings

IAC WILL ECHO The sender of this command requests to begin, or confirms
that it will now begin, echoing data characters it receives over
the TELNET connection back to the sender of the data
characters.

IAC WONT ECHO The sender of this command demands to stop, or refusesto
start, echoing the data characters it receives over the TELNET
connection back to the sender of the data characters.

IAC DO ECHO The sender of this command requests that the receiver of this
command begin echoing, or confirms that the receiver of this
command is expected to echo, data characters it receives over
the TELNET connection back to the sender.

IAC DONT ECHO The sender of this command demands that the receiver of this
command stop, or not start, echoing data charactersit receives
over the TELNET connection.

TELNET Default

WONT ECHO
DONT ECHO

No echoing is done over the TELNET connection.

Motivation for the Option

The NVT has a printer and a keyboard which are nominally interconnected so that “echoes’ need never traverse
the network; in other words, the NVT nominally operates in a mode where characters typed on the keyboard are
(by some means) locally turned around and printed on the printer. In highly interactive situationsit is
appropriate for the remote process (command language interpreter, etc.) to which the characters are being sent
to control the way they are echoed on the printer. To support such interactive situations, a TELNET optionis
needed to alow the parties at both ends of the TELNET connection to agree that characterstyped on an NVT
keyboard are to be echoed by the party at the other end of the TELNET connection.

Description of the Option

When the echoing option isin effect, the party at the end performing the echoing is expected to transmit (echo)
data characters it receives back to the sender of the data characters. The option does not require that the
characters echoed be exactly the characters received (e.g., a number of systems echo the ASCII ESC character
with something other than the ESC character). When the echoing option is not in effect, the receiver of data
characters should not echo them back to the sender; this, of course, does not prevent the receiver from
responding to data characters received.

The normal TELNET connection istwo-way. That is, data flow in each direction on the connection
independently; and neither, either, or both directions may be operating simultaneously in echo mode. There are
five reasonable modes of operation for echoing on a connection pair:

€
Process 1 Process 2
_______________________ >
Neither end echoes
€
\
Process 1 / Process 2
_______________________ >
One end echoes for itself
€
\
Process 1 / Process 2
_______________________ >
One end echoes for the other
€ e
\ /
Process 1 / \ Process 2
_______________________ >
Both ends echo for them-
selves
€
\ /
Process 1 / \ Process 2
_______________________ >
One end echoes for both ends

This option provides the capability to decide whether either end will echo for the other. It does not, however,
provide any control over whether an end echoes for itself; this decision must be |eft to the sole discretion of the
systems at each end (although they may use information regarding the state of “remote” echoing negotiationsin
making this decision).

It should be noted that if both hosts enter the mode of echoing characters transmitted by the other host, then any
character transmitted in either direction will be “echoed” back and forth indefinitely. Therefore, in each
implementation care should be taken to ensure that if one site is echoing, echoing is not turned on at the other.

Asdiscussed in the TELNET Protocol Specification, both partiesto afull-duplex TELNET connection initially
assume that each direction of the connection is being operated in the default mode which is nonecho (nonecho
is not using this option, and the same as DONT ECHO, WONT ECHO).

If either party desiresto echo charactersto the other party or vice versa, that party gives the appropriate
command (WILL ECHO or DO ECHO) and waits (and hopes) for acceptance of the option. If the request to
operate the connection in echo mode is refused, then the connection continues to operate in nonecho mode. If
the request to operate the connection in echo mode is accepted, the connection is operated in echo mode.

After a connection has been changed to echo mode, either party may demand that it revert to nonecho mode by
giving the appropriate DONT ECHO or WONT ECHO command (which the other party must confirm, thereby
allowing the connection to operate in nonecho mode). Just as each direction of the TELNET connection may be
put in remote echoing mode independently, each direction of the TELNET connection must be removed from
remote echoing mode separately.

Implementations of the echo option, asimplementations of all other TELNET options, must follow the loop-
preventing rules given in the General Considerations section of the TELNET Protocol Specification. Also, so
that switches between echo and nonecho mode can be made with minimal confusion (momentary double
echoing, etc.), switches in mode of operation should be made at times precisely coordinated with the reception
and transmission of echo requests and demands. For instance, if one party respondsto aDO ECHO withaWILL
ECHO, all data characters received after the DO ECHO should be echoed and the WILL ECHO should
immediately precede the first of the echoed characters.

The echoing option alone will normally not be sufficient to effect what is commonly understood to be remote
computer echoing of characters typed on atermina keyboard—the SUPPRESS-GO AHEAD option will
normally have to be invoked in conjunction with the ECHO option to effect character-at-a-time remote echoing.

A Sample I mplementation of the Option

A possible implementation for a simple user system called UHOST is described here. Suppose that for each user
terminal, the UHOST would keep three state bits: (1) whether the terminal echoes for itself (UHOST ECHO
aways) or not (echo mode possible), (2) whether the (human) user prefersto operate in echo mode or in
nonecho mode, and (3) whether the connection from this terminal to the server isin echo or nonecho mode. We
will call these three bits P (physical), D (desired), and A (actual). When aterminal dials up the UHOST the P bit
is set appropriately, the D bit is set equal to it, and the A bit is set to nonecho mode. The P and D bits may be
manually reset by direct commands if the user so desires. For example, auser in Hawaii on a full-duplex
terminal might choose not to operate in echo mode, regardless of the preference of amainland server and thus
should direct the UHOST to change the D bit from echo to nonecho mode.

When a connection is opened from the UHOST terminal to a server, the UHOST would send the server aDO
ECHO command if the MIN (with ECHO less than ECHO) of the P and D bitsis different from that of the A bit. If
aWONT ECHO or WILL ECHO arrivesfrom the server, the UHOST will set the A bit to the MIN of the received
request, the P bit, and the D bit. If this changes the state of the A bit, the UHOST will send off the appropriate
acknowledgment; if it does not, then the UHOST will send off the appropriate refusal if not changing meant that
it had to deny the request (i.e., the MIN of the P and D bits was less than the received A request).

If, while a connection is open, the UHOST terminal user changes either the P or D bit, the UHOST will repeat the
abovetests and send off aDO ECHO or DONT ECHO, if necessary. When the connection is closed, the UHOST
would reset the A bit to indicate UHOST echoing.

While the UHOST’ s implementation would not involve DO ECHO or DONT ECHO commands being sent to the
server except when the connection is opened or the user explicitly changes the echoing mode, bigger hosts
might invoke such mode switches quite frequently. For instance, while aline-at-a-time system were running,
the server might attempt to put the user in local echo mode by sending the WONT ECHO command to the user;
but if a character-at-a-time system were running, the server might attempt to invoke remote echoing for the user
by sending the WILL ECHO command to the user. Furthermore, while the UHOST will never send aWILL
ECHO command and will send aWONT ECHO only to refuse a server sent aDO ECHO command, a server host
might often send the WILL and WONT ECHO commands.

13.7 TELNET 5250 Interface and Additional Option Formats

This section explains the interface to the IBM 5250 TELNET implementation. The purpose here is to describe
the details of the interface to enable a human user to implement a client TELNET which emulates an IBM 5250
workstation. It does not include all 5250 commands, aid codes, and other information specific to the 5250 data
stream.

13.7.1 TELNET 5250 Options

No new TELNET options are defined for 5250 mode of operation. However, to enable 5250 mode, both client
and server must agree to at least support the binary, end-of-record (EOR), and terminal-type TEL NET options.
The complete list of 5250 terminal typesis maintained in the Assigned Numbers RFC and includes the
following:

IBM-5555-C01 24 x 80 double-byte character-set color display
IBM-5555-B01 24 x 80 double-byte character-Set (DBCS)
IBM-3477-FC 27 x 132 color display

IBM-3477-FG 27 x 132 monochrome display

IBM-3180-2 27 x 132 monochrome display

IBM-3179-2 24 x 80 color display

IBM-3196-A1 24 x 80 monochrome display

IBM-5292-2 24 x 80 color display

IBM-5291-1 24 x 80 monochrome display

IBM-5251-11 24 x 80 monochrome display

An example of atypical negotiation process to establish the 5250 mode of operation is shown below. In this
example, the server initiates the negotiation by sending the DO TERMINAL-TYPE request.

SERVER: 1AC DO TERMINAL-TYPE

CLIENT: TAC WILL TERMINAL-TYPE

SERVER: IAC SB TERMINAL-TYPE SEND IAC SE

CLIENT: IAC SB TERMINAL-TYPE IS IBM-5251-11 1AC SE

(The client has specified that its terminal typeisan IBM-5251-11.)

SERVER: IAC DO END-OF-RECORD
CLIENT: IAC WILL END-OF-RECORD
SERVER: IAC WILL END-OF-RECORD
CLIENT: IAC DO END-OF-RECORD

(The server and the client have both agreed to transmit EORs.)

SERVER: IAC DO TRANSMIT-BINARY
CLIENT: 1AC WILL TRANSMIT-BINARY
SERVER: IAC WILL TRANSMIT-BINARY
CLIENT: TAC DO TRANSMIT-BINARY

(The server and the client have both agreed to binary transmission.)
13.7.2 Data-stream Format

The actual data stream that is exchanged between client and server is composed of a header followed by the
5250 workstation data stream. [For information about this data stream refer to the IBM 5250 Information
Display System, Functions Reference Manual (SA21-9247).] The header which prefixes the 5250 data stream
was originally designed for the 5250 Display Station Pass-Through (DSPT) application. 5250 DSPT isan
application similar to TELNET which runs on the IBM AS/400, System/36, and System/38 over an SNA
network. This header is designed to be variable in length and is composed of two parts. Thefirst, fixed part is
aways 6 octets long and has the following format:

Logical Record

—t ettt =t —F—
Reserved
—4—t—F—t—t—F—F—F—F—F—F—F—F—+—+—+
Logical Record Length: 16 bits

F=—+—t0O0
+
|
|
|
+
|
+
|
+
|
+
|
+
|
T
totor
+2 P

Thisfield indicates the length, in octets, of thislogical record including the header length. Thelengthis
calculated before doubling any IAC characters in the data stream. The length does not include the
<IAC><EOR> that is appended to the end of the data stream to mark the end of thislogical record. The lengthis
specified with the most significant octet first. For example, alength of 36 (decimals) would be specified as
0024 X.

Record Type: 16 bits

Thisfield indicates the SNA record type. It should always be set to *12A0 " X to indicate the General Data
Stream (GDS) record type.

Reserved: 16 bits
Thisfield is currently not used.

The second part of the header is designed to be variable in length. The length of this variable part is specified in
the first octet. Currently this portion of the header will always be 4 octets long and has the following format:

0 1 2 3
01234567890123456789012345678901
+—+—+—+—F+—F—F—F—F—+—+—+—F+—F—F—F—F—F—F—F—F—F—F—F—F+—F+—F—F—F—+—+—+—+
| IEIAL | | ISITIHI | I

| Var Hdr Len IRITI 1 | IRIRIL] | Opcode |

| IRIHL 11 1QIQIPI | |
+—+—+—+—F+—F—F—F—F—+—+—+—F+—F—F—F—F—F—F—F—F—F—F—F—F+—F+—F—F—F—+—+—+—+

Var Hdr Len: 8 bits
The length, in octets, of the variable portion of the header. Currently thisisalways 04" X.
Flags: 16 bits

Bit 0: ERR This bit is set to indicate a data-stream output error. The negative response code is sent as data
following the opcode field.

Bit 1: ATN Thisbit is set to indicate that the 5250 attention key was pressed.

Bits 2-4: * These bits are reserved (set to zero).

Bit 5: SRQ Thisbit is set to indicate that the 5250 SY STEM REQUEST key was pressed.
Bit 6: TRQ Thisbit is set to indicate that the 5250 TEST REQUEST key was pressed.

Bit 7: HLP Thisbit is set to indicate the HEL P in error-state function. The error code is sent as data following
the header and is afour-digit packed-decimal number. For example, an error code of *0005 " X indicates that
the operator attempted to type in an area of the display that is not enabled for input.

Bits 8-15: * These bits are reserved (set to zero).
Opcode: 8 hits

Thisfield contains the operation code. It is set to indicate the type of operation requested by the sender. The
following are the valid values:

"00"X No operation

"01°X Invite operation

"027X Output only

"03"X Put/get operation
"04°X Save screen operation
"05"X Restore screen operation
06" X Read immediate operation
"07°X Reserved

"08"X Read screen operation
"09°X Reserved

"0A"X Cancel invite operation
"0B"X Turn on message light

"0C*X Turn off message light

The actual 5250 workstation data stream will immediately follow the opcode field in the header and will be
terminated by the <l AC><EOR> pair. For some operations the header will be immediately followed by an
<IAC><EOR> without any 5250 workstation data stream in between. For example, the following request to
turn on the message light could be sent by the server:

O0O0OA 12A0 0000 0400 O0Ob FFEF

| | | (.
| | End of Record Marker

| |
| | | |
| | | Opcode = Turn On Message Light (‘OB’X)
| | |
| | Flags ='0000" X
| |
| Variable Header Length ='04'X
|
R

eserved - Set to "00007"X

T e ————————— —

|
|
|
|
|
|
|
|
|
|
|
| ecord Type = Genera Data Stream (‘ 12A0' X)
|

L

ogical Record Length ='000A’X for thisrecord

In this example the requested operation is indicated by the opcode and there is no associated workstation data
stream.

Examples of Data Flow

The following examplesillustrate the flow of data between client and server for some of the more common
operations. These examples are intended to show the order in which the logical records are exchanged between
client and server, aswell as the content and hexadecimal (hex) representation of these records. The way in
which a client implements the various operations will differ between implementations; those details are not
discussed here. In these examples, when the value of afield is dependent on the length of the screen datafor a
particular logical record, it will be represented as‘LLLL".

1. Device query example. A query command may be sent by the server system in order to determine the
attributes of the deviceit istalking to. When a client receives a query command, it must send the query reply
back to the server.

Server:Sends Write Structured 001112A0 00000400 000304F3 0005D970
Field Query command OOFFEF

Client:Responds with a query 004712A0 00000400 00000000 88003AD9
Reply, in this case, 70800600 01030000 00000000 00000000
fora3180-2 00000000 00000001 F3F1F8FO FOFOF202
00000061 50000100 00000018 11000000
00000000 000000FF EF

2. Cancel i1nvite example. Theserver will send acancel 1nvite when it needsto reverse the normal
flow direction. When aclient receivesacancel invite, itshouldreply withacancel invite andnot
send any user data until the server has once again “invited” the workstation. A workstation is said to be
“invited” when the server has sent aread command to the client. The cancel invite flowisasfollows:

Server: Sends header with the 000A12A0 00000400 O00AFFEF

Opcode = Cancel Invite

Client: Sends header with the 000A 12A0 00000400 O00A FFEF

Opcode = Cancel Invite to indicate that the workstation is no longer invited

3. System Request example. The5250 System Request operation isinvoked when a client wants to
interrupt the server job to perform some function. In atypical scenario, the user presses the SY STEM
REQUEST key, or whatever key is mapped to such akey, which would cause the client TELNET to initiate the
following flow:

Client: Sends header with the 000A 12A 0 00000404 0000FFEF
System Request bit set.

Note: A client might include user data in this record following the header. The server would interpret these
data as an option to be selected from the system request menu. If this were the case, the server would not send
the system request menu and the flow would continue per the option selected. For this example, the client does
not send any user data and the flow would continue as follows:

Server: Sends header with the 000A 12A0 00000400 O00A FFEF
Opcode = Cancel Invite

Client:Sends header with the 000A 12A 0 00000400 000A FFEF
Opcode = Cancel Invite
to indicate that the workstation is no
longer invited

Server: Sends Save (Immediate) 000C12A0 00000400 00040402 FFEF
command with
Opcode = Save Screen

Client: Sendsthe screenimage LLLL12A0 00000400 00040412
tobesaved <Screen Image> FFEF

Server: Sends System Request LLLL12A0 00000400 0003
menu with <System Request Menu> FFEF
Opcode = Put/Get

Client: SendsUser Inputto LLLL12A0 00000400 0000
the SysRegmenu <User Input> FFEF

Note: What happens next will depend on the system-request option selected by the user. After any system-
request processing has completed, the server will continue with the following restore operation:

Server: Sendsthe saved LLLL12A0 00000400 00050412
screento berestored, <Saved Screen> FFEF
Opcode = Restore Screen
[No reply is necessary from the client]
Server: Sends Read Modified ~ 000E12A0 00000400 00010452
OOO0OFFEF
Data Tag (MDT) command,
opcode = Invite

At this point the client would “invite” the workstation and enter the state it was in before the SY STEM
REQUEST key was pressed.

5250 Data-stream Enhancements

This section is intended as an addendum to the IBM 5250 Information Display System, Functions Reference
Manual (SA21-9247-6). Enhancements to the 5250 data stream which are not yet documented in the current
version of that manual (SA21-9247-6) are described in this section, as are corrections to erroneous information
contained therein. The specific corrections and enhancements, with approximate page-number referencesto the
SA21-9247-6 manual, are given in the following paragraph.

1. Errorsor inconsistenciesin SA21-9247-6. The Insert Cursor (IC) order on pages 2-136 and 2-137 is
incorrectly listed with avalue of Hex 03; the correct valueis Hex 13.

On page 2-137, the listed “ Restrictions’ for the Insert Cursor, Repeat to Address, and Set Buffer Address orders
should be updated to describe how Row and Column values must be valid for the current display screen size
(either 24 x 80 or 27 x 132 pixels).

2. Enhancements to existing 5250 data-stream commands and orders. A new flag is added to the second byte
of the Control Character on page 2-40. Thisflag is used to specify whether the cursor should be moved at the
end of the Write to Display processing. Bit 1 of the second byte, which was previously reserved, will now be
used for thisflag. If bit 1 isa0, the cursor continues to be moved to the system | C address on a L ock-to-Unlock
keyboard transition. If bit 1 isa1, the cursor is not moved. A new Field Control Word (FCW) will be added on
page 2-65 to indicate that an entry field contains transparent data. This means that the entry-field contents are
sent from the display screen directly to the host at read time with no formatting. Therefore, an entry field can
contain any values (Hex 00 to Hex FF). A transparent field isindicated by a Hex 84xx FCW, where xx is any
value. Unpredictable results will occur if afield is defined as both signed numeric and a transparent field. The
Read Immediate, Read Input Fields, and Read MDT Fields commands have been enhanced to include support
for transparent fields (page 2-5). If atransparent FCW isfound for an input field, the field data are not
formatted (e.g., nulls are not converted to blanks). The restriction listed for the Set Buffer Address (SBA) order
(page 2-138) on the column address equal to zero is no longer always the case. A reference to Start of Field
(SF) Row 1/Column 1 field support should be made. A note should be added in SF to describe Row 1/Column 1
field support. A Row 1/Column 1 field is defined by an SBA of Row 1/Column O, followed by an SF. For a
Row 1/Column 1 input field, the first input-capable position is Row 1/Column 1. If the SF defines an input
field, the screen attribute is not allowed to be nondisplay. Writing of the screen attribute is suppressed for a
Row 1/Column 1 field and the attribute discarded.

3. New 5250 data-stream commands and orders. The Read MDT Fields Alternate input command has been
added. It isthe same as the Read MDT Fields command except the command isindicated by an X*82* .
Leading and embedded nulls within the field remain as nulls. The Read MDT Fields Immediate Alternate input
command has been added. It is the same asthe Read MDT Fields Alternate command except the command is
indicated by an X*83" . The command is an immediate read command like Read Immediate; therefore, no
control characters follow the command byte, field data are returned immediately, and the aid code is X’ 00'.

The Move Cursor order (MC) has been added. The MC order moves the cursor to the location specified by the
two bytes following the order. Byte 1 gives the row address, and byte 2 gives the column address. The MC
order is useful when the cursor is to be moved without affecting the system I1C address. The MC order is
unaffected by the Write to Display control character valuesincluding the “Leave Cursor” flag (CC1 bit 1). If
more than one MC or IC are found in the data stream, the cursor will move to the address specified in the last
MCor IC.

1. Restrictions. A parameter error will be posted when there are fewer than 2 bytes following the order, the row
addressis zero or greater than the number of rows on the display screen, or the column address is zero or
greater than the number of columns on the display screen.

2. Format

Move Cursor Order Bytel Byte?2
X’14" Row Address Column Address

3. Results. The address specified by the MC order is used to move the cursor when the Write to Display is
completed.

The Transparent Data order (TD) has been added (page 2-137). The TD order isfollowed by two length bytes
and transparent data. The transparent data are written to the display screen at the current display address; any
values (Hex 00 to Hex FF) are allowed in the transparent data. All length values are valid aslong as the end of
the display screen is not overwritten.

1. Restrictions. A parameter error will be posted when there are fewer then 2 bytes following the order, there
are fewer bytesin the data stream than specified in the length field, or one attempts to write beyond the end of
the display screen.

2. Format

TD Order Bytes1 and 2 Bytes3to ?
X’10’ Length of transparent Transparent data
data (not counting
length bytes)

3. Results. The transparent data are written to the display.

The Query command is a new input command (page 2-5) and is used by the server to obtain information on the
functional capabilities of the client 5250 display. When the client receives a Query command, the client sends a
Query Reply describing its capabilities back to the server.

The Query command must follow an Escape (" 04 * X) and Write Structured Field command (" F3*X). The
format of the Query command is as follows:

Byte Value Description
0-1 X'0005’ Length of command
2 X'DY Command Class
3 X'70 Command Type—Query
4 X'00 Flag Byte
Bit O: B0 -Query Command
Bit 1-7: -Reserved (set to zero)

The format of the Query Reply is asfollows:

Byte Value Description
0-1 X’ 0000’ Cursor Row/Column (set to zero)

\l@(ﬂtl\)

1012

13-28
29

30-33
34-36
37

38
39
4043
4445

4648
49-53

X' 88
X'003A’
X'D9
xX'70
X' 80
Bit O:

Bit 1-7:

X'0001
X'0061

X'0101

X'0103
X'0200°
X'0300°
X'0400°
X'0500°

X’ 0600

X’010300'

X'00

xX'or
C'ceec’

C'ccc

X'02
X'82
X'00'
X'00'

X7 XXXXXXXX

X'0100°

X'00'

Bit 0-1:

Inbound Write Structured Field Aid
Length of Query Reply

Command Class

Command Type - Query

Flag Byte

B'l -Query Reply

-Reserved (set to zero)

Controller Hardware Class

-Local Twinax Controller

-Local ASCII Controller
-SDLC/X.21/X.25 Twinax Controller

(5394 emulating a 5294)

-SDLC/X.21/X.25 Twinax Controller (5394)

-PC DOS non-DBCS WSF

-0S/2 non-DBCS WSF

-PC DOS DBCS WSF

-0OS/2 DBCSWSF

-Other WSF or any other 5250 Emulator
Controller Code Level

-For example, Version 1 Rel 3.0

Reserved (set to zero)

Device Type

-5250 Display or 5250 Emulation
Device Type (e.g., 3180 for 3180 Mod 2)
Device Model (e.g., 002 for 3180 Mod 2)
Keyboard ID

-Standard Keyboard

-G Keyboard

Extended Keyboard ID

Reserved

Display Serial Number

Maximum number of input fields
-Typicaly = 256 input fields

Reserved (set to zero)

Controller/Display Capability

B’00' -No Row 1/Col 1 support

B'01 -Row 1/Col 1 support

Bit 2: B’'0’ - No Read MDT Alternate Command support
B'1 -Read MDT Alternate Command support
Bit 3: B’'0’ - Display does not have PA1/PA2 support
B'1 - Display does have PA1/PA2 support
Bit 4: B’'0’ - Display does not have PA3 support
B'1 - Display does have PA3 support
Bit 5: B’0’ - Display does not have Cursor Select support
B'1 -Display does have Cursor Select support
Bit 6: B’0’ - Display does not have Move Cursor Order support
B'1 - Display does have Move Cursor Order support
Bit 7: B’'0’ - No Read MDT Immediate Alt Command support
B'1 - Read MDT Immediate Alt Command support
50 Bit 0-3: B’0001’ - 24 x 80 Screen Size
B’0011’ - Capable of 24 x 80 and 27 x 132
Bit 4: B’0" - Nolight pen support
B'1 - Light pen support
Bit 5: B'0" - No Mag Stripe Reader support
Bl - Mag Stripe Reader support
Bit 6-7: B’00' - Mono display
B0l - 5292/3179 style color, including color PCs
51 X'00' - Reserved
52 Bit 0-2: B’000" - No Double Byte Character Set (DBCS) capability
B’001 - Presentation screen DBCS capability only
Bit 3-7: B'00000" - Reserved
53 Bit 0-2: B’000" - No graphics capability
B’001 - 5292-2 style graphics
Bit 3-7: B'00000" - Reserved
54-60 X'00 Reserved (set to zero)

13.7.3 TELNET Terminal-type Option
The command name for thisoption is TERMINAL-TYPE; the codeis 24.

Command Meanings

IAC WILL TERMINAL-TYPE Sender iswilling to send terminal-type
information in a subsequent

subnegotiation.

IAC WONT TERMINAL-TYPE Sender refuses to send terminal-type
information.

IAC DO TERMINAL-TYPE Sender iswilling to receive terminal-
type information in a subsequent
subnegotiation.

IAC DONT TERMINAL-TYPE Sender refuses to accept terminal-type
information.

IAC SB TERMINAL-TYPE SEND Server requests client to transmit its

IAC SE next terminal type, and switch

emulation modes (if more than one
terminal type is supported). The code

for SEND is 1.
IAC SB TERMINAL-TYPE Client is stating the name of its current
1S...1AC SE (or only) terminal type. The code for IS

1S 0. (Seetext below.)

TELNET Default

WONT TERMINAL-TYPE Terminal-type information will not be
exchanged.

DONT TERMINAL-TYPE Terminal-type information will not be
exchanged.

Motivation for the Option

On most machines with bitmapped displays (e.g., PCs and graphics workstations), a client terminal emulation
program is used to simulate a conventional ASCII terminal. Most of these programs have multiple emulation
modes, frequently with widely varying characteristics. Likewise, modern host system software and applications
can deal with avariety of terminal types. What is needed is ameans for the client to present alist of available
terminal emulation modes to the server, from which the server can select the one it prefers (for arbitrary
reasons). Thereis also need for a mechanism to change emulation modes during the course of a session, perhaps
according to the needs of applications programs.

Existing terminal -type passing mechanisms within TELNET were not designed with multiple emulation modes
in mind. Although multiple names are alowed, they are assumed to be synonyms. Emulation mode changes are
not defined, and the list of modes can be scanned only once.

This document defines a simple extension to the existing mechanisms, which meets both criteria described
above. It makes one assumption about the behavior of implementations coded to the previous standard in order
to obtain full backward-compatibility.

Description of the Option

Willingness to exchange terminal-type information is agreed on via conventional TELNET option negotiation.
WILL and DO are used only to obtain and grant permission for future discussion. The actual exchange of status
information occurs within option subcommands (IAC SB TERMINAL-TYPE. . .).

Once the two hosts have exchanged aWILL and aDO, the sender of the DO TERMINAL-TYPE (the server) is
free to request type information. Only the server may send requests (IAC SB TERMINAL-TYPE SEND IAC
SE), and only the client may transmit actual type information (withinan 1AC SB TERMINAL-TYPE
IS...AC SE command). Terminal-type information may not be sent spontaneously, but only in responseto a
request. The terminal-type information isan NVT ASCII string; within this string, upper- and lowercase are
considered equivalent.

The transmission of terminal-type information by the TELNET client in response to a query from the TELNET
server implies that the client must simultaneously change emulation mode, unless the terminal type sentisa
synonym of the preceding terminal type, or there are other prerequisites for entering the new regime (e.g.,
having agreed on the TELNET binary option). Receipt of such information by the TELNET server does not
imply any immediate change of processing. However, the information may be passed to a process, which may
alter the data it sendsto suit the particular characteristics of the terminal. For example, some operating systems
have aterminal driver that accepts a code indicating the type of terminal being driven. Using the TERMINAL -
TYPE and BINARY options, a TELNET server program on such a system could arrange to have terminals
driven asif they were directly connected, including special functions not available to a standard network virtual
terminal.

This specification is deliberately asymmetrical. It is assumed that server operating systems and applicationsin
general cannot change terminal types at arbitrary pointsin a session. Thus, the client may only send a new type
(and potentially change emulation modes) when the server requests that it do so.

I mplementation Consider ations

The terminal-type information may be any NVT ASCII string meaningful to both ends of the negotiation. The
list of terminal-type namesin the Internet Assigned Number Authority (IANA) isintended to minimize
confusion caused by alternative “ spellings’ of the terminal type. For example, confusion would arise if one
party wereto call atermina “1BM3278-2" while the other called it “IBM-3278/2.” Thereis no negative
acknowledgment for aterminal type that is not understood, but certain other options (such as switching to
BINARY mode) may be refused if avalid terminal-type name has not been specified.

In some cases, either a particular terminal may be known by more than one name, for example, a specific type
and amore generic type, or the client may be a workstation with integrated display capable of emulating more
than one kind of terminal. In such cases, the sender of the TERMINAL-TYPE 1S command should reply to
successive TERMINAL-TYPE SEND commands with the various names. In thisway, a TELNET server that
does not understand the first response can prompt for alternatives. If different terminal emulations are supported
by the client, the mode of the emulator must be changed to match the last type sent, unless the particul ar
emulation has other TELNET options (e.g., BINARY) as prerequisites (in which case the emulation will switch
to the last type sent when the prerequisite is fulfilled). When types are synonyms, they should be sent in order
from most to least specific.

When the server (the receiver of the TERMINAL-TYPE 1S) receives the same response two consecutive
times, thisindicates the end of the list of available types. Similarly, the client should indicate it has sent all
available names by repeating the last one sent. If an additional request is received, thisindicates that the server
(the sender of the 1S) wishesto return to the top of thelist of available types (probably to select the least of N
evils).

Server implementations conforming to the previous standard will cease sending TERMINAL-TYPE SEND
commands after receiving the same response two consecutive times, which will work according to the old
standard. It is assumed that client implementations conforming to the previous standard will send the last type
on thelist in response to athird query (as well as the second). New-style servers must recognize this and not
send more queries.

The type UNKNOWN should be used if the type of the terminal is unknown or unlikely to be recognized by the
other party. The maximum length of aterminal type name is 40 characters.

User Interfaces

TELNET clients and servers conforming to this specification should provide the following functionsin their
user interfaces:

1. Clients supporting multiple emulation modes should allow the user to specify which of the modesis preferred
(which name is sent first), prior to connection establishment. The order of the names sent cannot be changed

after negotiation has begun. Thisinitial mode will also become the default with servers which do not support
TERMINAL-TYPE.

2. Servers should store the current terminal-type name and the list of available names in a manner such that they
are accessible to both the user (viaa keyboard command) and any applications which need the information. In
addition, there should be a corresponding mechanism to request a change of terminal types, by initiating a series
of SEND/ 1S subnegotiations.

TELNET Implementation Examples
In the following example, the server finds the first type acceptable.

SERVER: IAC DO TERMINAL-TYPE
CLIENT: IAC WILL TERMINAL-TYPE

(Server may now request aterminal type at any time.)

SERVER: IAC SB TERMINAL-TYPE SEND 1AC SE
CLIENT: IAC SB TERMINAL-TYPE IS IBM-3278-2 IAC SE

In the next example, the server requests additional terminal types, and accepts the second (and last on the
client’slist) type sent:

SERVER: IAC DO TERMINAL-TYPE
CLIENT: TAC WILL TERMINAL-TYPE

(Server may now request aterminal type at any time.)

SERVER: IAC SB TERMINAL-TYPE SEND IAC SE

CLIENT: IAC SB TERMINAL-TYPE IS ZENITH-H19 IAC SE
SERVER: IAC SB TERMINAL-TYPE SEND IAC SE

CLIENT: IAC SB TERMINAL-TYPE IS UNKNOWN IAC SE
SERVER: IAC SB TERMINAL-TYPE SEND IAC SE

CLIENT: IAC SB TERMINAL-TYPE IS UNKNOWN IAC SE

In the following example, the server requests additional terminal types, and proceeds beyond the end of the list,
to select the first type offered by the client (new-type client and server):

SERVER: IAC DO TERMINAL-TYPE
CLIENT: TAC WILL TERMINAL-TYPE

(Server may now request aterminal type at any time.)

SERVER: IAC SB TERMINAL-TYPE SEND IAC SE
CLIENT: IAC SB TERMINAL-TYPE IS DEC-VT220 IAC SE
SERVER: IAC SB TERMINAL-TYPE SEND IAC SE
CLIENT: IAC SB TERMINAL-TYPE IS DEC-VT100 IAC SE
SERVER: IAC SB TERMINAL-TYPE SEND IAC SE
CLIENT: IAC SB TERMINAL-TYPE IS DEC-VT52 IAC SE
SERVER: IAC SB TERMINAL-TYPE SEND IAC SE
CLIENT: IAC SB TERMINAL-TYPE IS DEC-VT52 IAC SE
SERVER: IAC SB TERMINAL-TYPE SEND IAC SE
CLIENT: IAC SB TERMINAL-TYPE IS DEC-VT220 IAC SE

13.7.4 TELNET CHARSET Option

This section explains a mechanism for passing character set and translation information between a TELNET
client and server. Use of this mechanism enables an application used by a TELNET user to send and receive
datain the correct character set. Either side can (subject to option negotiation) at any time request that a (new)
character set be used.

Command Names and Codes

CHARSET 42

REQUEST 01
ACCEPTED 02
REJECTED 03
TTABLE-1S 04
TTABLE-REJECTED 05
TTABLE-ACK 06
TTABLE-NAK 07

For convenience, standard TELNET text and codes for commands used are presented here. All TELNET
commands consist of at |east a 2-byte sequence: the “interpret as command” (IAC) escape character followed by
the code for the command. The commands dealing with option negotiation are 3-byte sequences; the third byte
being the code for the option referenced. Only the 1ac need be doubled to be sent as data, and the other 255
codes may be passed transparently. The following are some defined TELNET commands. Note that these codes
and code sequences have the indicated meaning only when immediately preceded by an IAC.

Name Code Meaning

SE 240 End of subnegotiation parameters

SB 250 Indicates that what follows is subnegotiation of the indicated option

WILL 251 Indicates the desire to begin performing, or confirmation that you are now
performing, the indicated option

WONT 252 Indicates the refusal to perform, or continue performing, the indicated option

DO 253 Indicates the request that the other party perform, or confirmation that you are
expecting the other party to perform, the indicated option

DONT 254 Indicates the demand that the other party stop performing, or confirmation that
you are no longer expecting the other party to perform, the indicated option

IAC 255 Data Byte 255

Command Meanings

A very simple metasyntax is used, where most tokens represent previously defined items (such as1AC); angle
brackets (<>) are used for items to be further defined; curly braces ({}) are used around optional items; ellipses
represent repeated sequences of items; and quotes are used for literal strings.

IAC WILL CHARSET The sender requests permission to, or agreesto, use
CHARSET option subnegotiation to choose a character set.

IAC WONT CHARSET The sender refuses to use CHARSET option subnegotiation to
choose a character set.

IAC DO CHARSET The sender requests that, or agrees to have, the other side use
CHARSET option subnegotiation to choose a character set.

IAC DONT CHARSET The sender demands that the other side not use the
CHARSET option subnegotiation.

IAC SB CHARSET REQUEST { “[TTABLE]” <Version>} <char set list>1AC SE
Char set list: <sep> <character set> {. . .<sep> <character set> }

This message initiates anew CHARSET subnegotiation. It can be sent only by a side that has received a DO
CHARSET message and sent aWlLL CHARSET message (in either order). The sender requests that all text sent
to and by it be encoded in one of the specified character sets.

If the string [TTABLE] appears, the sender iswilling to accept a mapping (translation table) between any
character set listed in <charset list> and any character set desired by the receiver.

<Version> is an octet whose binary value is the highest-version level of the TTABLE- 1S message which can
be sent in response. Thisfield must not be zero. See the TTABLE- IS message for the permitted version values.

<Charset list> is a sequence of 7-bit ASCII printable characters. The first octet defines the separator character
(which must not appear within any character set). It isterminated by the IAC SE sequence. Caseis not
significant. It consists of one or more character sets. The character sets should appear in order of preference
(most preferred first).

<Sep> is a separator octet, the value of which is chosen by the sender. Examples include a space or a semicolon.
Any value other than 1AC is alowed. The obvious choice is a space or any other punctuation symbol which
does not appear in any of the character set names.

<Character set> is a sequence of 7-bit ASCII printable characters. Case is not significant.

If arequested character set name does not start with X— or x—-, it must be registered with the Internet Assigned
Number Authority (IANA).

The receiver responds in one of four ways:

1. If thereceiver is already sending text to and expecting text from the sender to be encoded in one of the
specified character sets, it sends a positive acknowledgment (CHARSET ACCEPTED); it must not ignore the

message.

2. If the receiver is capable of handling at least one of the specified character sets, it can respond with a positive
acknowledgment for one of the requested character sets. Normally, it should pick the first set it is capable of
handling but may choose one on the basis of its own preferences. After doing so, each side must encode
subsequent text in the specified character set.

3. If the string [TTABLE] is present, and the receiver prefers to use a character set not included in <char set
list>, and is capable of doing so, it can send atrandate-table (TTABLE-IS) response.

4. If the receiver is not capable of handling any of the specified character sets, it sends a negative
acknowledgment (CHARSET REJECTED).

Becauseit isnot valid to reply to a CHARSET REQUEST message with another CHARSET REQUEST
message, if aCHARSET REQUEST message is received after the sending side has just sent one, then both sides
have sent them simultaneoudly. In this case, the server side must issue a negative acknowledgment and the
client side must respond to the one from the server.

IAC SB CHARSET ACCEPTED <Charset> IAC SE

Thisis apositive acknowledgment response to a CHARSET REQUEST message; the receiver of this message
acknowledges its receipt and accepts the indicated character set. <Charset> is a character sequence identical to
one of the character setsin the CHARSET REQUEST message. It isterminated by the 1AC SE sequence.

Text messages which follow this response must now be coded in the indicated character set. This message
terminates the current CHARSET subnegotiation.

IAC SB CHARSET REJECTED IAC SE

Thisis a negative acknowledgment response to a CHARSET REQUEST message; the receiver of the CHARSET
REQUEST message acknowledges its receipt but refuses to use any of the requested character sets. Messages
cannot be sent in any of the indicated character sets. This message can aso be sent by the sender of a TTABLE-
IS message, if multiple TTABLE-NAK messages were sent in response. This message terminates the current
CHARSET subnegotiation.

IAC SB CHARSET TTABLE-IS <version> <syntax for version> |AC SE

In response to a CHARSET REQUEST message in which [TTABLE] was specified, the receiver of the
CHARSET REQUEST message acknowledges its receipt and is transmitting a pair of tables which define the
mapping between specified character sets. <Version> is an octet whose binary value isthe version level of this
TTABLE- 1S message. Different versions have different syntax. The lowest version level is one (zero is not
valid). The current highest version level isalso one. Thisfield is provided so that future versions of the
TTABLE-SEND message can be specified, for example, to handle character sets for which there is no simple
one-to-one character-for-character translation. This might include some forms of multi-octet character sets for
which trandlation algorithms or subsets need to be sent.

Syntax for version 1 isasfollows:

<sep> <char set name 1> <segp> < char size 1> < char count 1> <char set name 2> <segp> <char size 2> <char
count 2> <map 1> <map 2>

<sep> is aseparator octet, the value of which is chosen by the sender. Examples include a space or a semicolon.
Any value other than 1AC is allowed. The obvious choice is a space or any other punctuation symbol which
does not appear in either of the character set names.

<Char set name 1> and <Char set name 2>

These are sequences of 7-bit ASCII printable characters which identify the two character sets for which a
mapping is being specified. Each is terminated by <sep>. Caseis not significant. If a character set name does
not start with X- or x-, it must be registered with IANA. <Charset name 1> must be chosen from the <char set
list>inthe CHARSET REQUEST message. <Char set name 2> can be arbitrarily chosen. Text on the wire must
be encoded using <char set name 2>.

<Char size 1> and <char size 2>

These are single octets each. The binary value of the octet is the number of bits nominally required for each
character in the corresponding table. It should be amultiple of eight.

<Char count 1> and <char count 2>

These are each 3-octet binary fields in network byte order. Each specifies how many characters (of the
maximum 2**<char size>) are being transmitted in the corresponding map.

<Map1> and <Map 2>

These consist of the corresponding <char count> number of characters. These characters form a mapping from
al or part of the charactersin one of the specified character sets to the correct charactersin the other character,
set. If theindicated <char count> isless than 2**<char size>, the first <char count> characters are being
mapped, and the remaining characters are assumed to not be changed (and thus map to themselves). In other
words, each map contains characters 0 through <char count> -1. <Map 1> maps from <char set name 1> to
<char set name 2>. <Map 2> maps from <char set name 2> to <char set nhame 1>. Translation between the
character setsis thus an obvious process of using the binary value of a character as an index into the appropriate
map. The character at that index replaces the original character. If the index exceeds the <char count> for the
map, no trandation is performed for the character.

Since TELNET works in octets, it is possible for octets of value 255 to appear “ spontaneously” when using
multioctet or non-8-bit characters. All octets of value 255 (other than 1AC) must be quoted to conform with
TELNET requirements. This applies even to octets within atable, or text in amultioctet character set.

IAC SB CHARSET TTABLE-ACK IAC SE

The sender acknowledges the successful receipt of the trand ate table. Text messages which follow this response
must now be coded in the character set specified as <char set name 2> of the TTABLE- IS message. This
message terminates the current CHARSET subnegotiation.

IAC SB CHARSET TTABLE-NAK IAC SE

The sender reports the unsuccessful receipt of the transate table and requests that it be resent. If subsequent
transmission attempts also fail, a TTABLE-REJECTED or CHARSET REJECTED message (depending on
which side sendsit) should be sent instead of additional futile TTABLE-1S and TTABLE-NAK messages.

IAC SB CHARSET TTABLE-REJECTED IAC SE

In response to a TTABLE-1S message, the receiver of the TTABLE- 1S message acknowledges its receipt and
indicates it is unable to handle it. This message terminates the current CHARSET subnegotiation.

Any system which supports the CHARSET option must fully support the CHARSET REQUEST, ACCEPTED,
REJECTED, and TTABLE-REJECTED subnegotiation messages. It may optionally fully support the
TTABLE-1S, TTABLE-ACK, and TTABLE-NAK messages. If it does fully support the TTABLE-1S
message, it must also fully support the TTABLE-ACK and TTABLE-NAK messages. The default is

WONT CHARSET
WONT CHARSET

Motivation for the Option

Many TELNET sessions need to transmit datawhich isnot in 7-bit ASCII. Thisisusually done by negotiating
BINA RY, and using local conventions (or terminal-type kludges) to determine the character set of the data.
However, such methods seldom interoperate well, and have difficulties when multiple character sets need to be
supported by different sessions.

Many computer systems now utilize a variety of character sets. Increasingly, a server computer needs to
document character sets or trandate transmissions and receptions using different pairs of character sets on a per-
application or per-connection basis. This is becoming more common as client and server computers become
more geographically disperse (and as servers are consolidated into large hubs, serving increasingly wide areas).
For files, databases, and so on to contain correct data, the server must determine the character set in which the
user is sending and the character set in which the application expectsto receive.

In some cases, it is sufficient to determine the character set of the end user (because every application on the
server expects to use the same character set, or because applications can handle the user’ s character set), but in
other cases different server applications expect to use different character sets. In the former case, an initial
CHARSET subnegotiation suffices. In the latter case, the server may need to initiate additional CHARSET
subnegotiations as the user switches between applications.

At aminimum, the option described in this memo allows both sides to be clear as to which character set is being
used. A minimal implementation would have the server send DO CHARSET , and the client send WILL
CHARSET and CHARSET REQUEST . The server could then communicate the client’ s character set to
applications using whatever means are appropriate. Such a server might refuse subsequent CHARSET
REQUEST messages from the client (e.g., if it lacked the ability to communicate changed character set
information to applications). Another system might have a method in which various applications could
communicate to the TELNET server their character set needs and abilities, which the server would handle by
initiating new CHARSET REQUEST negotiations as appropriate.

In some cases, servers may have alarge set of clients which tend to connect often (such as daily) and over a
long period of time (e.g., years). The server administrators may strongly prefer that the servers not do character-
set tranglation (to save CPU cycles when serving very large numbers of users). To avoid manually configuring
each copy of the user TELNET software, the administrators might prefer that the software supports translate
tables. (If the client software received a trand ate table from the server and stored it, the table would need to be
sent only once.)

Description of the Option

When the client TELNET program is able to determine the user’ s character set, it should offer to specify the
character set by sending IAC WILL CHARSET.

If the server system is able to make use of thisinformation, it replieswith IAC DO CHARSET. Theclient
TELNET isthen free to request a character set in a subnegotiation at any time.

Likewise, when the server is able to determine the expected character set(s) of the user’s application(s), it
should send 1AC DO CHARSET to request that the client system specify the character set it isusing. Or the
server could send IAC WILL CHARSET to offer to specify the character sets.

Once a character set has been determined, the server can either perform the transl ation between the user and
application character setsitself, or request by additional CHARSET subnegotiations that the client system do so.

Once it has been established that both sides are capable of character-set negotiation (i.e., each side has received
either aWILL CHARSET or aDO CHARSET message, and has also sent either aDO CHARSET or aWILL
CHARSET message), subnegotiations can be requested at any time by whichever sidehassentaWlLL
CHARSET message and also received aDO CHARSET message (this may be either or both sides). Once a
CHARSET subnegotiation has started, it must be completed before additional CHARSET subnegotiations can be
started (there must never be more than one CHARSET subnegotiation active at any given time). When a
subnegotiation has completed, additional subnegotiations can be started at any time.

If either side violates this rule and attempts to start a CHARSET subnegotiation while one is already active, the
other side must reject the new subnegotiation by sending a CHARSET REJECTED message. Receipt of a
CHARSET REJECTED or TTABLE-REJECTED message terminates the subnegotiation, leaving the character
set unchanged. Receipt of a CHARSET ACCEPTED or TTABLE-ACK message terminates the subnegotiation,
with the new character set in force.

In some cases, both the server and the client systems are able to perform transations and to send and receivein
the character set(s) expected by the other side. In such cases, either side can request that the other use the
character set it prefers. When both sides simultaneously make such arequest (send CHARSET REQUEST
messages), the server must regject the client’ s request by sending a CHARSET REJECTED message. The client
system must respond to the server’s request. (Seethe CHARSET REQUEST described above.)

When the client system makes the request first, and the server is able to handle the requested character set(s) but
prefers that the client system instead use the server’s (user application) character set, it may reject the request,
and issue aCHARSET REQUEST of its own. If the client system is unable to comply with the server’s
preference and issuesa CHARSET REJECTED message, the server can issue anew CHARSET REQUEST
message for one of the previous character sets (one of those which the client system originally requested). The
client system would obviously accept this character set.

While aCHARSET subnegotiation isin progress, data should be queued. Once the CHARSET subnegotiation
has terminated, the data can be sent (in the correct character set).

Note that regardless of CHARSET negotiation, translation applies only to text (not commands), and occurs only
when in BINARY mode. If not in BINARY mode, all data are assumed to bein NVT ASCII.

Also note that the CHARSET option should be used with the END OF RECORD option for block-mode
terminalsin order to be clear on what character represents the end of each record.

As an example of character-set negotiation, consider a user on aworkstation using TELNET to communicate
with a server. In this example, the workstation normally uses the Cyrillic (ASCI1) character set but is capable of
using EBCDIC-Cyrillic, andthe server normally usesEBCDIC-Cyrillic. Theserver could handle the
(ASCII) Cyrillic character set, but prefers that instead the client system use the EBCDIC-Cyri 1l 1c character
set. (This and the following examples do not show the full syntax of the subnegotiation messages.)

Client Server
WILL CHARSET WILL CHARSET
DO CHARSET DO CHARSET
CHARSET REQUEST Cyrillic CHARSET ACCEPTED EBCDIC-Cyrillic
EBCDIC-Cyrillic

Now consider a case in which the workstation can’t handle EBCDIC-Cyrillic, but can accept atrandate
table:

Client Server
WILL CHARSET WILL CHARSET
DO CHARSET DO CHARSET
CHARSET REQUEST CHARSET TTABLE-IS
[TTABLE] 1 Cyrillic
1 Cyrillic
CHARSET TTABLE-ACK EBCDIC-Cyrillic

For another example, consider a case similar to the previous case, but now the user switches server applications
in the middle of the ses sion (denoted by €llipses), and the new application requires a different character set:

Client Server
WILL CHARSET WILL CHARSET
DO CHARSET DO CHARSET
CHARSET REQUEST CHARSET TTABLE-IS

[TTABLE] 1 1 Cyrillic
Cyrillic EBCDIC-INT
CHARSET TTABLE-IS

1 Cyrillic

EBCDIC-Cyrillic
CHARSET TTABLE-ACK

CHARSET REQUEST

EBCDIC-INT
CHARSET ACCEPTED

EBCDIC-INT

13.7.5 TELNET Authentication Option

Command Names and Codes

AUTHENTICATION 37
IS 0

SEND 1

REPLY 2

NAME 3

Authentication Types

NULL 0
KERBEROS_V4 1
KERBEROS_V5 2
SPX 3
RSA 6
LOK1 10

Modifiers

AUTH_WHO_MASK 1
AUTH_CLIENT_TO_SERVER
AUTH_SERVER_TO_CLIENT
AUTH_HOW_MASK 2
AUTH_HOW_ONE_WAY 0
AUTH_HOW_MUTUAL 2

Command Meanings

Reference to client and server isused with TELNET. The server isthe side of the connection that did the
passive TCP open (TCP LISTEN state), and the client is the side of the connection that did the active open.

IAC WILL AUTHENTICATION

IAC DO AUTHENTICATION

IAC WONT AUTHENTICATION

The client side of the connection sends this
command to indicate that it iswilling to
send and receive authentication
information.

The server side of the connection sends this
command to indicate that it iswilling to
send and receive authentication
information.

The client side of the connection sends this
command to indicate that it refuses to send
or receive authentication information; the
server side sends this command if it
receivesa DO AUTHENTICATION
command.

IAC DONT AUTHENTICATION

IAC SB AUTHENTICATION
SEND authentication-
type-pair-list IAC SE

IAC SB AUTHENTICATION IS
authentication-type-pair
<auth data> IAC SE

IAC SB AUTHENTICATION
REPLY authentication-
type-pair <auth data>
IAC SE

IAC SB AUTHENTICATION
NAME remote-user I1AC SE

The server side of the connection sends this
command to indicate that it refuses to send
or receive authentication information; the
client side sends this command if it
receivesaWILL AUTHENTICATION
command.

The sender of this command (the server)
requests that the remote side send
authentication information for one of the
authentication types listed in
authentication-type-pair-list, which is an
ordered list of authentication-type pairs.
Only the server side (DO
AUTHENTICATION) is allowed to send
this.

The sender of this command (the client) is
sending the authentication information for
authentication type authentication-type-
pair. Only the client side (WILL
AUTHENTICATION) is allowed to send
this.

The sender of this command (the server) is
sending areply to the authentication
information received in aprevious 1S
command. Only the server side (DO
AUTHENTICATION) is allowed to send
this.

This optional command is sent to specify
the account name on the remote host that
the user wishes to be authorized to use. In
order for authentication to succeed the
authorization to use a particular account
may still fail. Some authentication
mechanisms may ignore this command.

Theauthentication-type-pair is2 octets: an authentication type and a modifier to the type. There are
currently two 1-bit fields defined in the modifier: the AUTH_WHO_MASK bit and the AUTH_HOW_MASK bit, so

there are four possible combinations:

AUTH_CLIENT _TO_SERVER The client will send authentication

AUTH_HOW_ONE_WAY information about the local user to the
server. If the negotiation is successful,
the server will have authenticated the
user on the client side of the

connection.
AUTH_SERVER _TO CLIENT The server will authenticate itself to the
AUTH_HOW_ONE_WAY client. If the negotiation is successful,

the client will know that it is connected
to theright (desired) server.

AUTH_CLIENT_TO_SERVER The client will send authentication

AUTH_HOW_MUTUAL information about the local user to the
server, and then the server will
authenticate itself to the client. If the
negotiation is successful, the server will
have authenticated the user on the
client side of the connection, and the
client will know that it is connected to
the right server.

AUTH_SERVER_TO_CLIENT The server will authenticate itself to the

AUTH_HOW_MUTUAL client, and then the client will
authenticate itself to the server. If the
negotiation is successful, the client will
know that it is connected to the right
server that it wants to be connected to,
and the server will know that the client
iswho it claimsto be.

Default Specification
The default specification for this option is

WONT AUTHENTICATION
DONT AUTHENTICATION

This means that there will be no exchange of authentication information.
Motivation for the Option

One deficiency of the TELNET protocol isthat in order to log into remote systems, users have to type their
passwords, which are passed in clear text through the network. If the connections do not go through trusted
networks, passwords may be compromised by someone watching the packets as they go by.

The purpose of the AUTHENT ICAT ION option isto provide aframework for passing authentication
information through the TELNET session. This means that (1) the user’ s password will not be sent in clear text
across the network; and (2) if the front-end TELNET process has the appropriate authentication information, it
can auto matically send the information, and the user will not have to type any password.

The AUTHENT ICAT 10N option isintended to be sufficiently general to be used to pass information for any
authentication system.

Security Implications

The ability to negotiate a common authentication mechanism between client and server is afeature of the
authentication option that should be used with caution. When the negotiation is performed, no authentication
has yet occurred. Therefore, each system has no way of knowing whether it is talking to the right (intended)
system. An intruder could attempt to negotiate the use of an authentication system which is either weak or
aready compromised by the intruder.

I mplementation Rules

WILL and DO are used only at the beginning of the connection to obtain and grant permission for future
negotiations.

The authentication is negotiated in only one direction; the server must send the DO, and the client must send
theWILL . Thisrestriction is due to the nature of authentication; there are three possible cases. server
authenticates client, client authenticates server, and server and client authenticate each other. By only
negotiating the option in one direction, and then determining which of the three cases is being used viathe
suboption, potential ambiguity isremoved. If the server receivesa DO, it must respond with aWONT . If the
client receivesaWILL, it must respond with aDONT .

Once the two hosts have exchanged aDO and aWILL , the server isfree to request authentication information.
In the request, alist of supported authentication typesis sent. Only the server may send requests (1AC SB
AUTHENTICATION SEND authentication-type-pair-list 1AC SE). Only the client may
transmit authentication information viathe IAC SB AUTHENTICATION IS authentication-type.

- 1AC SE command. Only the server may send replies (IAC SB AUTHENTICATION REPLY
authentication-type. . _I1AC SE). Asmany IS and REPLY suboptions may be exchanged as are
needed for the particular authentication scheme chosen.

If the client does not support any of the authentication typeslisted in the authentication-type-pair-
list, atypeof NULL should be used to indicate thisin the 1S reply. Note that in this case, the server may
choose to close the connection.

The order of the authentication types must be ordered to indicate a preference for different authentication types:
the first type the most preferred, and the last type the |least preferred.

The following is an example of use of the option:

CLIENT: TAC DO AUTHENTICATION
SERVER: IAC WILL AUTHENTICATION

(The server is now free to request authentication information.)

SERVER: IAC SB AUTHENTICATION SEND

KERBEROS_V4 CLIENT |MUTUAL
KERBEROS_V4 CLIENT|ONE_WAY IAC SE

(The server has requested mutual Kerberos authentication, but iswilling to do just one-way Kerberos
authentication. The client will now respond with the name of the user that it wantsto log in as, and the Kerberos

ticket.)

CLIENT: IAC SB AUTHENTICATION NAME *"joe"
IAC SE
IAC SB AUTHENTICATION 1S
KERBEROS_V4 CLIENT|MUTUAL AUTH 4
7 167 82 65 89 46 67 79 77 0
48 24 49 244 109 240 50 208 43
35 25 116 104 44 167 21 201 224
229 145 20 2 244 213 220 33 134
148 4 251 249 233 229 152 77 2
109 130 231 33 146 190 248 1 9
31 95 94 15 120 224 0 225 76 205
70 136 245 190 199 147 155 13
AC SE

(The server responds with an ACCEPT command to state that the authentication was successful.)

SERVER: IAC SB AUTHENTICATION REPLY
KERBEROS_V4 CLIENT|MUTUAL ACCEPT
IAC SE

(Next, the client sends across a CHALLENGE to verify that it isreally talking to the right server.)

CLIENT: TAC SB AUTHENTICATION IS
KERBEROS V4 CLIENT|MUTUAL
CHALLENGE XX XX XX XX XX XX XX xx IAC SE

(Finally, the server sends across a RESPONSE to provethat it realy isthe right server.)

SERVER: IAC SB AUTHENTICATION REPLY
KERBEROS_V4 CLIENT |MUTUAL

RESPONSE yy yy vy YY YY VY Yy VY
IAC SE

It is expected that any implementation that supportsthe TELNET AUTHENT ICAT ION option will support all of
this specification.

13.7.6 TELNET Remote-Flow-Control Option

Command Names and Codes

TOGGLE-FLOW-CONTROL 33
OFF O

ON 1

RESTART-ANY 2
RESTART-XON 3

Command Meanings

IAC WILL TOGGLE-FLOW- Sender iswilling to enable and disable flow

CONTROL control on command.
IAC WONT TOGGLE-FLOW- Sender refuses to enable and disable flow control.
CONTROL Nothing isimplied about whether sender uses flow

control. It issimply unwilling to enable and
disable it using this protocol.

IAC DO TOGGLE-FLOW- Sender is willing to send commands to enable and
CONTROL disable flow control.

IAC DONT TOGGLE-FLOW- Sender refuses to send command to enable and
CONTROL disable flow control.

IAC SB TOGGLE-FLOW- Sender requests receiver to disable flow control.
CONTROL OFF 1AC SE

IAC SB TOGGLE-FLOW- Sender requests receiver to enable flow control.
CONTROL ON IAC SE

IAC SB TOGGLE-FLOW- Sender requests that when flow control is enabled,
CONTROL RESTART-ANY IAC thereceiver alow any character (except another
SE XOFF) to restart output.

IAC SB TOGGLE-FLOW- Sender requests that when flow control is enabled,
CONTROL RESTART-XON 1AC the receiver allows only the XON character to

SE restart output.

TELNET Default Specification

The default specification for this option iSWONT TOGGLE-FLOW-CONTROL DONT TOGGLE-FLOW-
CONTROL , meaning flow-control information will not be exchanged in either direction.

Motivation for this Option

This section describes a method of remotely toggling flow control between auser TELNET process and the
attached terminal. Only flow control of data being transmitted from the TELNET process to the terminal is
considered. Many systems will also allow flow control of data from the terminal to the TELNET process;
however, there is seldom any need to change this behavior repeatedly during the session. There are two
common ways of doing flow control: hardware and software. Hardware flow control uses signals on wires
dedicated for this purpose. Software flow control uses one or two specific characters sent along the same path as
normal input data. Most commonly, XOFF (control-S) and XON (control-Q) are used to stop and start
output, respectively. The option described herein is useful primarily where software flow control is being used.
(Since hardware flow control does not preempt any characters, thereis normally no need to disableit.) It should
also be noted that flow control can be generated either automatically by the terminal when its buffers are close
to overflowing, or manually by a user who cannot read the information asfast asit is being displayed, and
unread information will start scrolling off the screen.

The primary difficulty with software flow control is that it preempts one or two characters. Host software often
requires the user to be able to input every possible ASCII character. (Certain editors are notorious for having
XOFF and XON as commonly used commands.) For this reason, operating systems often allow programsto
disable flow control. While it is disabled, the characters that normally signal flow control may be read as
normal input. In a TELNET environment, flow control is normally done by the user TELNET process, not by
the host computer. In addition, in many operating systems, when flow control is enabled, the user may specify
whether the XOFF character isthe only character that is allowed to reenable the output of data, or whether any
typed character should reenable the flow of data. Thus this RFC defines a way to propagate flow control status
from the host computer to the user TELNET process.

Description of the Option

Use of the option requires two phases. In the first phase, the TELNET processes agree that one of them will
TOGGLE-FLOW-CONTROL . WILL and DO are used only in thisfirst phase. In general there will be only one
exchange of WILL and DO for a session. Subnegotiations must not be issued until DO and WILL have been
exchanged. It is permissible for either side to turn off the option by sending a WONT or DONT . Should this

happen, no more subnegotiations may be sent, unless the option is reenabled by another exchange of DO and
WILL.

Once the hosts have exchanged aWlLL and aDO, the sender of the DO TOGGLE-FLOW-CONTROL isfreeto
send subnegotiations to enable and disable flow control in the other process, and to send subnegotiations for
recommendations on when to restart output. Normally, the sender of the DO will be a host, and the other end
will be auser TEL NET process, which is connected to aterminal. Thus the protocol is normally asymmetrical;
however, it may be used in both directions without confusion should need for this arise.

As soon asthe DO and WILL have been exchanged, the sender of the WI LL must enable flow control, allowing
flow control to begin in aknown state. The decision of whether to restart output only when the XON character is
received, or when any character received, startsin a system-dependent state. (Thisisto make it consistent with
older implementations of the TOGGLE-FLOW-CONTROL option that do not understand the RESTART-ANY
and RESTART-XON suboptions.) The sender of the DO should send either aRESTART-ANY or RESTART-
XON suboption to put the restart characteristics to a known state. Some clients might not be able to support both
of the RESTART-ANY and RESTART-XON modes because of system limitations, and would then choose to
ignore these commands. There is no way for the server to be notified of this condition, but a client should make
every attempt to honor the state requested by the RESTART-ANY and RESTART-XON modes. Should the
option be disabled by exchange of DONT and WONT , flow control may revert to an implementation-defined
default state. It is not safe to assume that flow control will remain in the state requested by the most recent
subnegotiation.

In most implementations of software flow control, when enabled, the XOFF and XON characters are never
propagated to the server; they are typically eaten by the terminal driver between the TELNET client and the
attached terminal. In most implementations that support the RESTART-ANY functionality, the typed character
that reenables the output is not eaten by the terminal driver, unlessit isthe XON character.

Currently, only four command codes are defined for the subnegotiations. flow control off (code 0), flow control
on (code 1), restart output on any character (code 2), and restart output only on XON (code 3). None of these
codes requires any additional data; however, it is possible that additional commands may be added. Thus
subnegotiations having command codes other than those defined in this document should be silently ignored.

This option does not deal with the issue of allowing the DO side of the connection to inform the WILL side
which characters should be used for XON and XOFF . That functionality is aready supplied by the LINEMODE
option.

Example Following is an example of the use of this option:

SERVER: IAC DO TOGGLE-FLOW-CONTROL
CLIENT: IAC WILL TOGGLE-FLOW-CONTROL

(The server is now free to send commands to change flow control. The client must now have enabled flow
control, but that whether it isrestart on XON only or on any character is client-specific.)

SERVER: IAC SB TOGGLE-FLOW CONTROL
RESTART-ANY IAC SE

(The client should now switch to allowing output to restart when the user types any character, if theclient is
able to support that functionality.)

SERVER: IAC SB TOGGLE-FLOW-CONTROL OFF
IAC SE
IAC SB TOGGLE-FLOW-CONTROL ON
IAC SE

13.7.7 TELNET Authentication: SPX
Command Names and Codes. Authentication Types:
SPX 3

Suboption comma nds:

AUTH O
REJECT 1
ACCEPT 2

Command Meanings

IAC SB AUTHENTICATION 1S Thisisused to passthe SPX authentication token to

<authentication-type- the remote side of the connection. (A document which

pair> AUTH <SPX describes the authentication token syntax is

?xghggtlcatlon token> forthcoming.) The first octet of the
<authentication-type-pair>vaueis SPX.
The second octet is a modifier to the SPX
authentication type.

IAC SB AUTHENTICATION This command indicates that the authentication was

REPLY <authentication- gjccessful. After an SPX authentication exchange,

type-pair> ACCEPT both sides have securely established a random 8-byte

;Egtual response> IAC key to be used as the default key for the
ENCRYPTION option. If the AUTH_HOW_MUTUAL
bit is set in the second octet of the authentication-type-
pair, the sender includes the mutual response bytes.
The receiver of the ACCEPT command compares the
“mutual response” with its expected mutual response.
If the AUTH_HOW_ ONE_WAY bit is set in the second
octet of theauthentication-type-pair, the
sender includes zero bytes of mutual response.

IAC SB AUTHENTICATION This command indicates that the authentication was
REPLY <authentication- notsuccessful, and if there are any more datain the

type?pai r< REJECT suboption, it isan ASCII text message of the reason
<optional reason for for the rejection

rejection> IAC SE

I mplementation Rules

Every command after the first AUTHENT ICATION IS must carry the same set of modifiers (e.g.,
CLIENT |MUTUAL) for subsequent AUTHENTICATION 1S and AUTHENTICATION REPLY commands.

If the second octet of the authentication-type-pair hasthe AUTH_WHO bit set to
AUTH_WHO_CLIENT, then the client sendstheinitial auth command, and the server responds with either
ACCEPT or REJECT.

If the second octet of the authentication-type-pair hasthe AUTH_WHO bit set to
AUTH_WHO_SERVER, then the server sendsthe initial AUTH command, and the client responds with either
ACCEPT or REJECT.

Examples

User Joe may wish to log in as user pete on machine foo. If pete has set things up on foo to alow joe
access to his account, then the client would send IAC SB AUTHENTICATION NAME “pete” 1AC SE
IAC SB AUTHENTICATION 1S SPX AUTH <jo€e s spx authentication token> IAC SE. The server would
then authenticate the user as joe from the token information, and the server would send back either ACCEPT
or reject. If mutual authentication is being used, the server would include in the ACCEPT message, a mutual
response. The authorization check to seeif pete isallowing joe to use his account is made after the
authentication exchange is complete. Therefore, it is possible for the client to receive an ACCEPT response
(based on the authentication token), but for joe to be denied accessto login to pete’s account.

SERVER: IAC DO AUTHENTICATION
CLIENT: 1AC WILL AUTHENTICATION

(The server is now free to request authentication information.)

SERVER IAC SB AUTHENTICATION SEND SPX
CLIENT|MUTUAL SPX CLIENT |ONE_WAY
IAC SE

(The server has requested mutual SPX authentication. If mutual authentication is not supported, then the server
iswilling to do one-way SPX authentication.)

The client will now respond with the name of the user that it wantsto log in as, and the SPX authentication
token:

CLIENT 1AC SB AUTHENTICATION NAME
"pete" IAC SE
IAC SB AUTHENTICATION 1S SPX
CLIENT|MUTUAL AUTH <spx
authentication token
information> 1AC SE

(The server responds with an ACCEPT command to state that the authentication was successful.)

If AUTH_HOW_MUTUAL, the server responds with the mutual response so the client can verify that it isreally
talking to theright server. If AUTH_HOW_ONE_WAY, the server responds with a NULL mutual response, since
the client iswilling to trust the server aready:

SERVER: IAC SB AUTHENTICATION REPLY SPX
CLIENT|MUTUAL ACCEPT <mutual
response> IAC SE

13.7.8 TELNET Binary Transmission
Command Name and Code
TRANSMIT-BINARY, O.

Command Meanings

IAC WILL TRANSMIT- The sender of this command requests permission to

BINARY begin transmitting, or confirms that it will now begin
transmitting characters which are to be interpreted as 8
bits of binary data by the receiver of the data

IAC WONT TRANSMIT- If the connection is already being operated in binary

BINARY transmission mode, the sender of this command
demands to begin transmitting data characters which
areto be interpreted as standard NVT ASCII
characters by the receiver of the data. If the connection
is not already being operated in binary transmission
mode, the sender of this command refuses to begin
transmitting characters which are to be interpreted as
binary characters by the receiver of the data (i.e., the
sender of the data demands to continue transmitting
charactersin its present mode). A connection isbeing
operated in binary transmission mode only when one
party has requested it and the other has acknowledged
it.

IAC DO TRANSMIT- The sender of this command requests that the sender

BINARY of the data start transmitting, or confirms that the
sender of datais expected to transmit, characters
which areto be interpreted as 8 bits of binary data
(i.e., by the party sending this command).

IAC DONT TRANSMIT- If the connection is already being operated in binary

BINARY transmission mode, the sender of this command
demands that the sender of the data start transmitting
characters which are to be interpreted as standard
NVT ASCII characters by the receiver of the data (i.e.,
the party sending this command). If the connection is
not already being operated in binary transmission
mode, the sender of this command demands that the
sender of data continue transmitting characters which
are to be interpreted in the present mode.

A connection is being operated in binary transmission mode only when one party has requested it and the other
has acknowledged it.

Default

WONT TRANSMIT-BINARY
DONT TRANSMIT-BINARY

The connection is not operated in binary mode.

Motivation for the Option

It is sometimes useful to have available a binary transmission path within TELNET without having to utilize
one of the more efficient, higher-level protocols providing binary transmission (such as the File Transfer
Protocol). The use of the 1AC prefix within the basic TELNET protocol provides the option of binary
transmission in anatural way, requiring only the addition of a mechanism by which the partiesinvolved can
agreeto INTERPRET the characters transmitted over a TELNET connection as binary data.

Description of the Option

With the binary transmission option in effect, the receiver should interpret characters received from the
transmitter which are not preceded by 1AC as 8-bit binary data, with the exception of 1AC followed by 1AC
which stands for the 8-bit binary data with the decimal value 255. 1AC followed by an effective TELNET
command (plus any additional characters required to complete the command) is still the command even with the
binary transmission option in effect. 1AC followed by a character which is not adefined TELNET command
has the same meaning as 1AC followed by NOP , athough an 1AC followed by an undefined command should
not normally be sent in this mode.

| mplementation Suggestions

Implementations of the binary transmission option will choose to refuse some other options (such as the
EBCDIC transmission option) while the binary transmission option isin effect. However, if apair of hosts can
understand being in binary transmission mode simultaneous with being in, for example, echo mode, thenitisall
right if they negotiate that combination.

It should be mentioned that the meanings of WONT and DONT are dependent on whether the connection is
presently being operated in binary mode. Consider a connection operating in, say, EBCDIC mode which
involves a system that has decided not to implement any knowledge of the binary command. If this system were
toreceiveaDO TRANSMIT-BINARY, it would not recognize the TRANSMIT-BINARY option and therefore
would return aWONT TRANSMIT-BINARY . If the default for the WONT TRANSMIT-BINARY were always
NVT ASCII, the sender of theDO TRANSMIT-BINARY would expect the recipient to have switched to NVT
ASCII, whereas the receiver of the DO TRANSMIT-BINARY would not make this interpretation.

Thus, we have the rule that when a connection is not presently operating in binary mode, the default (i.e., the
interpretation of WONT and DONT) is to continue operating in the current mode, whether that isNVT ASCII,
EBCDIC, or some other mode. Thisrule, however, isnot applied once a connection is operating in a binary
mode (as agreed to by both ends); this would require each end of the connection to maintain a stack, containing
all the encoding-method transitions which had previously occurred on the connection, in order to properly
interpret aWONT or DONT . Thus, aWONT or DONT received after the connection is operating in binary mode
causes the encoding method to revert to NVT ASCII.

It should be remembered that a TELNET connection is a two-way communication channel. The binary
transmission mode must be negotiated separately for each direction of data flow, if that is desired.

Implementation of the binary transmission option, asis the case with implementations of all other TELNET
options, must follow the loop-preventing rules given in the General Considerations section of the TELNET
Protocol Specification.

Consider some issues of binary transmission both to and from both a process and a terminal:

1. Binary transmission fromaterminal. Theimplementer of the binary transmission option should consider
how (or whether) aterminal transmitting over a TELNET connection with binary transmission in effect is
allowed to generate all 8-bit characters, ignoring parity and other considerations on input from the terminal.

2. Binary transmission to a process. The implementer of the binary transmission option should consider how
(or whether) all characters are passed to a process receiving over a connection with binary transmission in
effect. As an example of the possible problem, TOPS-20 intercepts certain characters (e.g., ETX, the terminal
control-C) at monitor level and does not pass them to the process.

3. Binary transmission from a process. The implementer of the binary transmission option should consider how
(or whether) a process transmitting over a connection with binary transmission in effect is allowed to send all 8-
bit characters with no characters intercepted by the monitor and changed to other characters. An example of
such a conversion may be found in the TOPS-20 system, where certain nonprinting characters are normally
converted to a circumflex (up arrow) followed by a printing character.

4. Binary transmission to a terminal. The implementer of the binary transmission option should consider how
(or whether) all characters received over a connection with binary transmission in effect are sent to alocal
terminal. At issue may be the addition of timing characters normally inserted locally, parity calculations, and
any normal code conversion.

14
TN3270 Protocol and Use

The number TN 3270 refers to an implementation of the TCP/IP application TELNET that displays the
characteristics of the 3270 data stream typically found in traditional SNA networks and reflects the hybrid
nature of the application. TELNET, by definition, is both an application and a protocol. Consequently, it is
versatile and can be implemented in numerous ways. Initsorigina form, TELNET used an ASCI| character set
and was categorically couched in asynchronous environments.

Integration of TCP/IP and SNA in the 1980s began to radically transform the appearance of TCP/IP and SNA
on integration. TN3270 is a prime example of this. TN3270 presents a formatted data stream to the display in
the same way as the 3270 data stream does in native form in the SNA environment.

Information is provided to aid in the implementation of TN3270 servers aswell as client terminal emulators.
The following areas pertaining to TN3270 implementations are explained in this chapter: (1) the TELNET
options negotiated to transition from an NVT ASCII state to a TN3270 state ready to process incoming 3270
data-stream commands, (2) a method for sending and receiving 3270 data, (3) a method of handling some
special keys known as SY SREQ and ATTN using current available TELNET commands, and (4) the events that
will transition a TN3270 session back to an NV T session.

14.1 A Perspectiveon 3270 Dataand TELNET

3270 display terminal data differ from those found in non-3270 display terminals. Data represented viaa 3270
terminal (display) are repre sented in block mode and use EBCDIC rather than the non-3270 system (which is
typically ASCII-oriented). Non-3270 terminals (ASCII) display information in ASCII format and utilize what is
referred to as character mode. The differences between character-set and block modes constitute the primary
reason for the differentiation between TN3270 and standard TELNET in this chapter. Standard TELNET uses
an ASCII character set and character mode for display; in contrast, most IBM terminas are 3270; that is, they
use EBCDIC and are formatted in block mode.

Existing complex IBM 3270 display termina networks are not easily integrated with the increasing number of
multiplatform networking environments, specifically TCP/IP. These complex networks include terminals
attached to a 3270 host using SNA (Systems Network Architecture) and non-SNA connections. To address the
issue of easily connecting display terminals to 3270 hosts using IP networks, severa vendors have introduced
TELNET serversthat provide TCP/IP users a connection to existing IBM mainframes by supporting display
terminal emulation using a subset of the existing TELNET protocol. TELNET servers may be directly
connected to the host, or indirectly connected using SNA or non-SNA methods. IBM terminals are generically
referred to as 3270s, a classification which includes a broad range of terminals and devices, not all of which
actually begin with the numbers 327X.

All 3270 terminalsin the IBM SNA network environment have two sessions with the host computer
application. Oneis used for communicating with the host application; the other, with the SSCP (system services
control point) that links the terminal with the appropriate host computer. For the purposes of TN3270, this
distinction is not apparent or relevant since there is actually only asingle TELNET session with the host
computer or server. On an IBM SNA network, the 3270 terminal has a special key that toggles between the two
sessions (SY SREQ). A brief discussion on how some TELNET servers deal with thisisincluded. In an SNA
environment, aclient session isidentified by alogical unit (LU) name. In anon-SNA environment, no LU name
is associated with a client session. The closest thing to an LU name in the TN3270 environment is the client’s

| P address. Although some TELNET servers are connected to the host using SNA, TN3270 clients using these
servers have no defined way to determine the LU name associated with the session.

TELNET serversthat exist in non-SNA environments do not have to be concerned about providing TN3270
clients with support for the SNA functions described in this document. TN3270 does not support typical SNA
responses and is classified as anon-SNA protocol. A TN3270 emulator is not aware of or concerned about how
the TELNET server is connected to a 3270 host application.

Some typical SNA functions such as the SY SREQ and ATTN (attention) keys have been mapped to existing
TELNET commands and are supported by some TELNET server implementations. Support for 3270 terminal
emulation over TELNET is accomplished by the de facto standard of negotiating three separate TELNET
options: TERMINAL-TYPE, BINARY TRANSMISSION, and END OF RECORD (EDR). This negotiation
and the resulting data flow are explained in this chapter.

The Internet RFC 1041 attempted to standardize the method of negotiating 3270 terminal support by defining
the TELNET 3270 Regime option. Historically, very few devel opers and vendors have implemented RFC 1041.

14.2 TELNET Optionsand Commands Used

TN3270 makes use of existing TELNET options and does not define any additional options or commands.

TELNET option Value (decimal)
BINARY 0
TERMINAL-TYPE 24
EOR 25

Four additional options may be used during a TN3270 session and are interpreted according to their respective
RFCs: 3270-REGIME, SUPPRESS-GO-AHEAD, ECHO, and TIMING-MARK (TM). Other options should
be rejected unless they are specifically handled by the client for NVT mode. Commands that may be
encountered during a TN3270 session and are described in RFC 854 include NOP, BREAK, and INTERRUPT
PROCESS (IP).

14.3 Connection Negotiation

The following example describes a TN3270-capable server and a TN3270 client establishing a connection. The
TCP/IP port used for the connection is 23 (TELNET). At any place before and during the TN3270 connection
negotiation process, other TELNET commands and data may be transferred and will be interpreted under the
existing TELNET state. Some existing TN3270 serversinitiate a client connection usingan NVT TELNET
dialog to establish parameters needed to complete the TN 3270 connection to the desired host. The order of
negotiating TERMINAL-TY PE, EOR, and BINARY, is not significant; this example shows atypical TN3270
connection.

SERVER: IAC DO TERMINAL-TYPE

CLIENT: IAC WILL TERMINAL-TYPE

SERVER: IAC SB TERMINAL-TYPE SEND 1AC SE
CLIENT: IAC SB TERMINAL-TYPE IS <terminal type>IAC SE

The <terminal type>. listed here is a string consisting of terminal model, type, and support of enhanced attribute
bytes, an example is IBM-3278-2. Some of the acceptable values are listed in RFC 1340, Assigned Numbers.

The -2 following 3278 designates the aternate screen size. 3270 terminals have the ability to switch between
the standard (24 x 80) screen size and an alternate screen size. Model -2 is 24 x 80, which is the standard size;
model -3 is 32 x 80, model -4 is43 x 80, and model -5is27 x 132.

Appending the two-character string “-E” to the end of the terminal type signifies that the terminal is capable of
handling 3270 extended data stream. Thisis interpreted to mean that the terminal is able to handle structured
fields, which are described below. Some TELNET server implementations also interpret thisto mean that the
terminal is capable of handling extended attributes (highlighting, field validation, character set, outlining, etc.).
The 3279 series of terminalsis capable of extended attributes; while the 3278 seriesis not.

SERVER: IAC DO EOR IAC WILL EOR
CLIENT: IAC WILL EOR IAC DO EOR
SERVER: IAC DO BINARY IAC WILL BINARY
CLIENT: IAC WILL BINARY IAC DO BINARY
SERVER: <3270 data stream> IAC EOR

CLIENT: <3270 data stream> IAC EOR

And this client/server interchange continues. To terminate the connection, the socket is closed by one of the
session partners. Typically, when the user logs off of the host, the TELNET server closes the connection.

If the TELNET server wishes to go back to NVT mode, it may issue the following TELNET options:

SERVER: IAC WONT BINARY
CLIENT: IAC DONT BINARY

or

SERVER: IAC WONT EOR
CLIENT: IAC DONT EOR

Either one of these two scenarios causes the connection to fail to satisfy the requirements for avalid TN3270
session. The TELNET client would then process data from the server as though they were NVT ASCII data.

14.4 TN3270 Options

The following examples show how a TN3270 client handlesthe 3270-REGIME, SUPPRESS-GO-AHEAD,
ECHO, and TM options.

14.4.1 3270 Regime Option

Very few servers support the TELNET 3270 Regime option. If the client does not support this option and
responds negatively as shown in the following example, the server will proceed to the more typical example
shown below.

SERVER: 1AC DO 3270-REGIME
CLIENT: IAC WONT 3270-REGIME

Normal negotiation:

SERVER: 1AC DO TERMINAL-TYPE
CLIENT: (See above)

14.4.2 Suppress-Go-Ahead Option

The Suppress-Go-Ahead option is requested by some servers. The RFC for this option lists the default as go-
aheads being transmitted to signal the receiver to begin transmitting. Since TN3270 negotiates binary and end-
of-record and is a block-mode protocol, the TELNET go-ahead character is not sent. Most servers do not
negotiate this option even though they do not use the TELNET go-ahead character.

SERVER: 1AC DO SUPPRESS-GO-AHEAD
CLIENT: IAC WILL SUPPRESS-GO-AHEAD

14.4.3 Echo Option

The echo option is negotiated by those servers that make use of the TELNET NVT mode to allow the user to
enter information prior to negotiating the options necessary for TN3270. This information includes but is not
limited to user identification, password, and destination 3270 host. Some servers accept the default for this
option in which the client does not do alocal echo of the characters the user enters at the keyboard. This allows
the server to decide if it should echo characters back to the client (or should not, in the case of password).
Echoing characters back to the client causes slow response time since every character is typically echoed
individually. Therefore, some servers negotiate for the client to do its own local echoing (except for passwords).
The following example illustrates this case:

SERVER: 1AC DO ECHO
CLIENT: IAC WILL ECHO

(Client does local display of all characters.)

SERVER: IAC WONT ECHO
CLIENT: IAC DONT ECHO

(Client enters password—not locally displayed or remotely echoed.)

SERVER: IAC DO ECHO
CLIENT: IAC WILL ECHO

(Client resumes local display of all characters.)
14.4.4 Timing-Mark Option

The timing-mark option is used by some serversto test for the continued presence of a TN3270 client. The
following example will assure the server that the client is still alive.

SERVER: IAC DO TIMING-MARK
CLIENT: IAC WONT TIMING-MARK

14.5 Testing for Session Presence and Handling 3270 Data
Testing for Session Presence

Some servers use the NOP command (hexadecimal F1) to test for the continued presence of a TN3270 client. If
aclient has terminated abnormally, TCP/IP SEND errorswill occur. The timing-mark option, described above,
isalso used to test for presence.

SERVER: 1AC NOP
CLIENT: <ignore/ no response>

Handling 3270 Data

The 3270 data stream consists of acommand and its associated data. Commands include but are not limited to
ERASE SCREEN, ERASE AND WRITE TO SCREEN, and READ CURRENT SCREEN.

The reason for negotiating the EOR TELNET option is to provide a method for separating these commands
since no length information is specified. 3270 commands are interpreted by the TELNET client in their entirety.
Each 3270 command and possible data is terminated with the IAC EOR sequence.

The binary option is also required since 3270 data may contain the FF (hexadecimal) or IAC character. When
this character is encountered during a TN3270 connection, it is handled as per the binary RFC.

3270 Structured Fields

The 3270 structured fields provide a much wider range of features than “ old-style” 3270 data, such as support
for graphics, partitions, and IPDS printer data streams. A structured field is a 3270 data type that allows non-
3270 data to be embedded within 3270 data. Briefly, a structured field consists of the structured field command
followed by one or more data blocks. Each data block has alength and a structured field identifier, followed
optionally by additional data.

Not every TN3270 client can be expected to support all structured field functions. There must be a mechanism
by which those clients that are capable of supporting some or al structured field functions can indicate their
wishes. Thisistypicaly done by adding “-E” to the end of the terminal type string. Thus, when the terminal
identifies itself as being able to handle extended attributes, it also is capable of sending and receiving structured
fields.

The design of 3270 structured fields provides a convenient means to convey the level of support (including no
support) for the various structured field functions. This mechanism isthe READ PARTITION QUERY (RPQ)
command, which is sent from the host application to the client. The client responds with a QUERY REPLY,,
listing which, if any, structured field functions it supports.

A TN3270 client that supports structured fields will respond to an RPQ command with the appropriate reply.
The sequence of events when a client receives an RPQ and does not support structured fieldsisleft up to the
client implementation. Typically clients can identify at least this structured field and reply with a null set.

14.6 TN3270 Keys
14.6.1 The3270 ATTN Key

The 3270 ATTN (attention) key isinterpreted by many host applicationsin an SNA environment as an
indication that the user wishes to interrupt the execution of the current process. A majority of the TELNET
servers currently accept the TELNET IAC BREAK (code 243) sequence to signal this event. Originally the
TELNET INTERRUPT PROCESS (IP) command was defined expressly for this purpose and was used to
implement support for the ATTN key. Use of this key requires two things:

1. TN3270 clients provide as part of their keyboard mapping a single key or a combination of keys that map to
the 3270 ATTN key. When the user presses this key(s), the client transmitsa TELNET IP or BREAK command
to the server.

2. TN3270 servers trandate the BREAK command received from a TN3270 client into the appropriate form and
pass it along to the host application asan ATTN key. In other words, the server representing a secondary logical
unit (SLU) in an SNA session would send a SIGNAL RU (request or response unit) to the host application.

The ATTN key is not supported in anon-SNA environment; therefore, a TN3270 server representing non-SNA
3270 devices should ignore any TELNET 1P (BREAK) commands it receives from aclient.

14.6.2 The 3270 SYSREQ Key

The 3270 SY SREQ key is useful in an environment where the TELNET server is attached to the host using
SNA. The SY SREQ key is useful in this environment when the host application becomes locked or the user
wishes to terminate the session without closing the TELNET connection.

The TELNET INTERRUPT PROCESS (IP) command is interpreted by some TELNET servers asa SY SREQ
key. Other servers recognize the 3270 TEST REQUEST key as a SY SREQ key. In an SNA environment,
pressing this key toggles the terminal between the host application session and the SSCP session. Usually the
user will enter LOGOFF once this key has been pressed to terminate the application session and then select a
new host to connect to. Sometimes, if SY SREQ is pressed again, the host application will become unlocked and
normal activities may then proceed.

Itisentirely up to the TELNET server to interpret this command and send the appropriate commands to the host
aswell asformat the resulting host data for display on the TELNET client. The data format during the SSCP
session isin aformat dightly different from that of normal 3270 data. Since the TELNET server has no way to
pass this data directly to the TELNET client, it must either handle it entirely and ignore SY SREQ events or
convert it to 3270 data to present to the client.

To implement SY SREQ key support, TN3270 clients provide akey (or combination of keys) that isidentified
as mapping to the 3270 SY SREQ key. When the user presses this key(s), the client would either transmit a
TELNET IP command or TEST REQUEST key to the server, depending on the server implementation.

TN3270 servers representing non-SNA 3270 terminals may ignore any TELNET IP commands or TEST
REQUEST keys they receive from aclient.

14.7 1temsNot Addressed by TN3270
Several items are not supported by current TN3270 implementations; for instance
» TN3270 provides no capability for clients to emulate the 328x class of printers.

* Thereis no mechanism enabling a TELNET client to request that a connection be associated with a given
3270 device name. This can be important when aterminal session is being established, since many host
applications behave differently depending on the network name of the terminal. In the case of printer emulation,
this capability is an absolute necessity because alarge number of host applications have some method of
predefining printer destinations.

* The 3270 ATTN and SY SREQ keys are not universally supported.

* Thereis no support for the SNA positive/negative response process. All data sent are assumed to be either
handled or ignored. The lack of SNA response processing in TN3270 is part of what makes TN3270 efficient. A
negative response indicates a client-side error while processing the previously received data; this could be
caused by the host application building a 3270 data stream that contains an invalid command, or by a
mechanical error at the client side. Positive responses indicate that processing of the previously received data
has compl eted.

* There is no mechanism enabling the client to access the SNA BIND information. The BIND image in an SNA
environment contains a detailed description of the session between the TELNET server and the host application.

* The connection negotiation does not make it clear whether clients should support 3270 structured fields.

14.8 A Perspective on TN3270 Enhancements

Currently, support for 3270 terminal emulation over TELNET is accomplished by the de facto standard of
negotiating three separate TELNET options. terminal-type, binary transmission,andend of
record. Note that there is no RFC that specifies this negotiation as a standard. RFC 1041 attempted to
standardize the method of negotiating 3270 terminal support by defining the TELNET 3270 Regime option.
Very few developers and vendors have implemented RFC 1041.

This document will refer to the existing practice of negotiating these three TELNET options before exchanging
the 3270 data stream as “traditional TN3270.”

Note: For the purposes of the remaining portion of this chapter there is no differentiation between TELNET
servers that represent SNA devices and those that represent non-SNA 3270 devices.

The shortcomings of traditional TN3270 include all those listed in Sec. 14.7.

In order to address the concerns presented earlier, the TELNET option TN3270E (TN3270 enhanced) is
presented here for consideration. In native mode, TELNET clients and servers would be free to decide whether
to negotiate support of the TN3270E option. If either side does not support TN3270E, traditional TN3270 can
be used; otherwise, a subnegotiation will occur to determine what subset of TN3270E will be used on the
session. This presupposes that a TELNET client or server is capable of both types of 3270 emulation and one of
them would attempt to negotiate TN3270E first, and negotiate traditional TN3270 only if the other side refuses
TN3270E.

Oncea TELNET client and server have agreed to use TN3270E, negotiation of the TN3270E suboptions can
begin. The two major elements of TN3270E subnegotiation are:

* A device-type negotiation that is similar to, but more complicated than, the existing TELNET terminal-type
option.

» The negotiation of a set of supported 3270 functions, such as printer data-stream type [3270 data stream or
SNA Character Stream SCS)], positive/negative response exchanges, device-status information, and the passing
of BIND information from server to client.

Successful negotiation of these two suboptions signals the beginning of 3270 data-stream transmission. In order
to support several of the new functionsin TN3270E, each data message must be prefixed by a header. This
header will contain flags and indicators that convey such things as positive and negative responses and what
type of datafollow the header (e.g., 3270 data stream, SCS, or device-status information).

14.9 TN3270E Commands; Functions, and Default, Negotiation, and Device Specifications

Names
TN3270E
ASSOCIATE
CONNECT
DEVICE-TYPE
FUNCTIONS
IS
REASON
REJECT
REQUEST
SEND

Reason
CONN-PARTNER

DEVICE-IN-USE
INV-ASSOCIATE
INV-DEVICE-NAME
INV-DEVICE-TYPE
TYPE-NAME-ERROR
UNKNOWN-ERROR
UNSUPPORTED-REQ

Function Names
BIND-IMAGE
DATA-STREAM-CTL
RESPONSES
SCS-CTL-CODES
SYSREQ

TN3270E Command Meanings

Codes
40
00
01
02
03

05
06
07
08

Codes
00
01
02
03

05
06
07

Codes
00
01
02
03

IAC WILL TN3270E The sender of this command iswilling to send TN3270E
information in subsequent subnegotiations.

IAC WONT TN3270E The sender of this command refuses to send TN3270E
information.

IAC DO TN3270E The sender of this command iswilling to receive
TN3270E information in subsequent subnegotiations.

IAC DONT TN3270E The sender of this command refuses to receive TN3270E
information.

While they are not explicitly negotiated, the equivalent of the TELNET binary transmission option and the
TELNET end-of-record option are implied in the negotiation of the TN3270E option. The part of the
negotiation that agrees to support TN3270E is automatically required to support bidirectional binary and EOR
transmissions.

IAC SB DEVICE-TYPE IAC SE Only the server may send this command.

TN3270E SEND This command is used to request that the
client transmit device-type and, optionally,
device-name information.

IAC SB TN3270E DEVICE-TYPE Only the client may send this command. It

REQUEST <device-type> is used in response to the server's SEND

[CONNECT ASSOCIATE <device- DEVICE-TYPE Command, aswdl asto

name>] IAC SE suggest another device-type command after
the server has sent aDEVICE-TYPE
REJECT command (see below). This
command requests emulation of a specific
3270 device type and model. The
REQUEST command may optionally
include either the CONNECT or the
ASSOCIATE command (but not both). If
present, CONNECT and ASSOCIATE
must both be followed by <device-
name>. (See the section entitled “ Devic