
TCP/IP
Clearly

Explained
FOURTH EDITION

TCP/IP
Clearly

Explained
FOURTH EDITION

This Page Intentionally Left Blank

TCP P
Clearly

xplained
FOURTH EDITION

Pete Loshin
Internet-Standard. com

|

M ~4
M O R G A N K A U F M A N N P U B L I S H E R S

A N I M P R I N T O F E L S E V I E R S C I E N C E

AMSTERDAM BOSTON LONDON NEW YORK OXFORD
PARIS SAN DIEGO SAN FRANCISCO SINGAPORE

SYDNEY TOKYO

Senior Editor
Publishing Services Manager
Developmental Editor
Project Manager
Cover Design Management
Cover Designer
Cover Image
Composition
Text Design
Copyeditor
Proofreader
Indexer
Printer

Rick Adams
Diane Grossman
Karyn Johnson
Nancy Zachor
Elisabeth Beller
Laurie Anderson
Digital Vision/Getty Images
Cepha Imaging PVT LTD
Graphic World
Laura Healy
Graphic World
Edwin Durbin
The Maple-Vail Manufacturing Group

Designations used by companies to distinguish their products are often claimed as trademarks or
registered trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim, the
product name appears in initial capital or all capital letters. Readers, however, should contact the
appropriate companies for more complete information regarding trademarks and registration.

The RFCs compiled in this volume are copyright (C) The Internet Society. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright
notice and this paragraph are included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing the copyright notice or
references to the Internet Society or other Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for copyrights defined in the Internet
Standards process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or
its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE
INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Morgan Kaufmann Publishers
an imprint of Elsevier Science
340 Pine Street, Sixth Floor
San Francisco, California 94104-3205
www.mkp.com

Copyright 2003, Elsevier Science (USA)
All rights reserved.
Printed in the United States of America

07 06 05 04 03 5 4 3 2 1

Library of Congress Control Number: 2002113772
ISBN: 1-55860-782-X

This book is printed on acid-free paper.

Contents

0.1

0.2

0.3

P r e f a c e . xix

A u d i e n c e . xxii i

A c k n o w l e d g m e n t s . xxv

I Concepts and Fundamentals of Networking 1

Introduction: What is T h i s B o o k A b o u t ? . 5

1.1 G r a p h i c a l C o n v e n t i o n s U s e d in th i s B o o k 6

1.2 N o t e s o n S ty le . 8

1.3 O v e r v i e w . 9

1.3.1 A p p e n d i c e s . 10

A L a n g u a g e of N e t w o r k i n g . 11

2.1 N e t w o r k T e r m s . 13

2.1.1 M o r e A b o u t En t i t i e s . 16

2.2 N e t w o r k M e d i a a n d I n t e r f a c e s . 17

2.2.1 M e d i a . 18

2.2.2 In t e r f ace s . 18

2.3 N o d e s a n d H o s t s . 19

2.4 C l i e n t s a n d S e r v e r s . 20

2.5 L A N , M A N , W A N , S A N . 21

vi Contents

2.6

2.7

2.8

2.9

N e t w o r k Systems . 22
2.6.1 A u t o n o m o u s Systems and Backbones 23
2.6.2 Routers and Ga teways . 24
N e t w o r k Protocols . 25
2.7.1 A Protocol Example . 26
2.7.2 Protocol Data Unit . 28
In t e rne twork Terms . 28
2.8.1 Catenet , In te rne twork , and The Internet 29
2.8.2 Int ranet and Extranet . 29
2.8.3 Web and Internet . 30
Chap te r S u m m a r y . 31

Network Addresses , Network Names . 33
3.1 Scalability and N e t w o r k N a m i n g / N u m b e r i n g 34
3.2 N e t w o r k Identif ication Terms, Def ined . 38
3.3 Binary and Hexadec ima l N u m b e r i n g . 40
3.4 N e t w o r k Addre s s in g Spaces . 42

3.4.1 N e t w o r k and Internet Addres ses . 45
3.4.2 IEEE M A C Addres ses . 47
3.4.3 IPv4 Addres ses . 49
3.4.4 IPv6 Addres ses . 50

3.5 N e t w o r k N a m e s . 51
3.5.1 Delegat ion of N a m i n g Author i ty . 52

3.6 Chap te r S u m m a r y . 52

Apply ing Networking Concepts . 55
4.1 Virtual Circuits . 56
4.2 B a n d w i d t h and T h r o u g h p u t . 58

4.2.1 Measu r ing B a n d w i d t h and T h r o u g h p u t 58
4.2.2 O v e r h e a d . 59
4.2.3 T h r o u g h p u t Strategies . 60
4.2.4 Protocols and T h r o u g h p u t . 61

4.3 Latency . 64
4.4 Packet Switching and Rout ing . 65
4.5 Best Effort Del ivery . 68
4.6 Unicast, Broadcast , Multicast , and Anycas t 69
4.7 Switching, Rout ing, and Bridging . 71
4.8 Edge, Non-Edge , and Backbone Devices 71
4.9 Chap te r S u m m a r y . 74

Network Models and Internetworking Concepts 75
5.1 OSI vs IP . 76

Contents vii

5.2

5.3

5.4

5.5

5.6
5.7

The OSI Reference Model . 76

The DoD (IP) Reference Model . 78

Encapsula t ion . 81

In t e rne twork Interface Devices . 84

5.5.1 Bridges . 86
5.5.2 Switches . 87
5.5.3 Routers . 88
Defining the Internet . 90
Chap te r S u m m a r y . 92

Internet Protocol O v e r v i e w . 95
6.1 N e t w o r k Interface Layer . 96
6.2 In ternet Layer . 99

6.3 Transpor t Layer . 101

6.4 Appl ica t ion Layer . 103
6.5 In ternet Security and IPsec . 104
6.6 In tegra ted Services, Different iated Services 106
6.7 N e t w o r k M a n a g e m e n t . 107

6.8 Chap te r S u m m a r y . 108

II I n t e r n e t A p p l i c a t i o n s . 1 1 1

7 M e e t Joe's Packets . 115
7.1 Meet Joe . 115
7.2 The Appl ica t ion Layer: DNS and HTTP . 117

7.2.1 D o m a i n N a m e System . 118
7.2.2 Hyper tex t Transfer Protocol . 121

7.3 The Transpor t Layer . 124
7.3.1 DNS and UDP . 125
7.3.2 Hyper tex t Transfer Protocol and Transmiss ion

Control Protocol . 127
7.4 In ternet Layer . 133
7.5 N e t w o r k Link Layer . 135

7.5.1 Ethernet and ARP . 135
7.5.2 Asynchronous Transfer Mode and Non-Broadcas t

Mult i-Access Networks". . 137
7.6 The Big Picture . 138
7.7 Rout ing Joe's Packets . 140
7.8 Chap te r S u m m a r y . 143

The D o m a i n N a m e S y s t e m . 145
8.1 Prob lem Sta tement . 146

viii Contents

8.2
8.3

8.4

8.5

8.6

8.7

The Domain N a m e System Solution . 150
The Database . 151
8.3.1 Top Level Domains . 153
8.3.2 Domain N a m e System Database Services 155
8.3.3 Resource Records . 158
8.3.4 Resource Record Types . 160
The Protocol . 160
8.4.1 Authori tat ive Domain Data . 161
8.4.2 Domain N a m e System Zones . 162
8.4.3 Domain N a m e System Requests, Recursive and

Non-Recursive . 164
8.4.4 Domain N a m e System Messages . 166
8.4.5 Domain N a m e System and the Transport Layer 168
Domain N a m e System in Action . 169
8.5.1 Address Request . 170
8.5.2 Mail Exchange Request . 175
Addit ional Domain Name System Issues 181
8.6.1 Inverse and Reverse Address Lookups 181
8.6.2 Domain N a m e System Caching . 183
8.6.3 Domain N a m e System Security Extensions 184
Chapter Summary . 185

I n t e r n e t M a i l . 1 8 7

9.1 Internet Messaging Architecture . 188
9.1.1 Messaging Agents . 189
9.1.2 Mail Transfer Architecture . 190
9.1.3 Message Hops and Message Submission 194

9.2 Simple Mail Transfer Protocol Details . 195
9.2.1 Simple Mail Transfer Protocol C o m m a n d s and Replies 196
9.2.2 Internet Message Format . 199
9.2.3 Message Header Fields . 201
9.2.4 Envelopes and Headers . 205
9.2.5 Mailbox Addresses . 205
9.2.6 Protocol State . 208

9.3 More Simple Mail Transfer Protocol Issues 210
9.3.1 Simple Mail Transfer Protocol Extensions 211
9.3.2 Post Office Protocol Version 3 . 212
9.3.3 Internet Message Access Protocol 213
9.3.4 SMTP Security . 214
9.3.5 Mult ipurpose Internet Message Extensions 215

9.4 Internet Mail Lessons . 217
9.5 Chapter Summary . 219

Contents ix

10 T e l n e t . 221

10.1 Problem Statement . 222
10.2 Terminal Functions . 222
10.3 Telnet Protocol Basics . 225

10.3.1 Telnet Protocol Exchanges . 226
10.3.2 Telnet Protocol C o m m a n d s and Options 231
10.3.3 Insecure Telnet Alternatives . 232

10.4 Secure Shell Protocol . 233
10.5 Chapter Summary . 234

11 I n t e r n e t F i l e T r a n s f e r . 237

11.1 Problem Statement . 238
11.2 File Transfer Protocol Basics . 240
11.3 What ' s Special About File Transfer Protocol 249
11.4 Trivial File Transfer Protocol . 250
11.5 File Sharing . 252
11.6 Anonymous File Transfer Protocol . 252
11.7 FTP Updates . 253
11.8 Chapter Summary . 254

12 T h e W e b . 255

12.1 Specifying Web Resources . 257
12.2 The Hypertext Transfer Protocol (HTTP) 260
12.3 Hypertext Transfer Protocol and Mult ipurpose Internet

Message Extensions . 264
12.4 Hypertext Transfer Protocol in Action . 267
12.5 Web Caching and Intermediaries . 270
12.6 State and Statelessness . 274
12.7 Hypertext Transfer Protocol as Substrate 276
12.8 Chapter Summary . 279

13 T h i r d - G e n e r a t i o n A p p l i c a t i o n P r o t o c o l s . 281

13.1 Markup Languages . 284
13.1.1 eXtensible Markup Language . 285
13.1.2 Simple Object Access Protocol and eXtensible

Markup Language . 286
13.1.3 eXtensible Markup Language and Other Protocols .. 287

13.2 Blocks Architecture and BEEP . 288
13.2.1 Defining Protocol Components . 289
13.2.2 The Blocks Extensible Exchange Protocol Core 291
13.2.3 What ' s Left? . 293
13.2.4 H o w Does Blocks Extensible Exchange Protocol Work? 294

x Contents

13.3 BEEP-Based Protocols . 296
13.3.1 Transport Layer Security (TLS) Protocol in BEEP 297
13.3.2 Simple Authenticat ion and Security Layer (SASL)

in BEEP . 297
13.3.3 The TUNNEL Profile . 298
13.3.4 The Password Derived Moduli Profile 300
13.3.5 Reliable Delivery for BSD Syslog . 300
13.3.6 The eXtensible Markup Language-RPC in Blocks

Extensible Exchange Protocol Profile 301
13.3.7 Simple Object Access Protocol in Blocks Extensible

Exchange Protocol . 301
13.3.8 The Intrusion Detection eXchange Protocol Profi le . . . 302

13.4 Application Exchange (APEX) . 304
13.5 Chapter S u m m a r y . 306

14 Think ing about Internet Appl icat ion Protocols 309
14.1 File Transfer Protocol, Telnet, and Mail . 310
14.2 Gopher, the Web, Internet Access Message Protocol, and

Instant Messaging . 312
14.3 Beyond Interactivity . 314
14.4 Chapter Summary . 317

III T r a n s p o r t P r o t o c o l s . 3 1 9

15 The Transport Layer . 321
15.1 Problem Statement . 322
15.2 Transport Layer Components . 325

15.2.1 Processes and Ports . 326
15.2.2 Circuits and Connections . 328
15.2.3 Daemons . 329

15.3 Reliability, Congestion, and Flow Control 330
15.3.1 Data Packing . 331
15.3.2 Delivery Guarantees . 332
15.3.3 Congestion and Flow Control . 332

15.4 Security at the Transport Layer . 333
15.4.1 Transport Layer Security (TLS) . 335
15.4.2 Secure Shell Protocol . 337

15.5 N e w Approaches to the Transport Layer 338
15.6 Chapter Summary . 339

16 User Datagram Protocol . 341
16.1 RFC 768: User Datagram Protocol . 341

Contents xi

16.1.1 In t roduct ion . 341

16.1.2 Format . 342

16.1.3 Fields . 342
16.1.4 User Interface . 343

16.1.5 IP Interface . 344
16.1.6 Protocol Appl ica t ion . 344
16.1.7 Protocol N u m b e r . 344
16.1.8 References . 344

16.2 A Bit More About User D a t a g r a m Protocol 345
16.3 User D a t a g r a m Protocol D a t a g r a m Format 346
16.4 Where User D a t a g r a m Protocol Data Fits In 347
16.5 User D a t a g r a m Protocol Examples . 348
16.6 Chap te r S u m m a r y 349

17 T r a n s m i s s i o n Control Protocol . 351
17.1 Prob lem Sta tement . 352

17.2 Transmiss ion Control Protocol At t r ibutes and Features 353
17.3 Transmiss ion Control Protocol Basics . 356

17.3.1 Transmiss ion Control Protocol Heade r s 357
17.3.2 Segment Size . 364
17.3.3 Three-Way H a n d s h a k e . 365
17.3.4 The Transmiss ion Control Pro tocol -Synchronize

Flood Attack . 366
17.3.5 Transmiss ion Control Protocol Connec t ion

Termina t ion . 368

17.3.6 A c k n o w l e d g m e n t , Retransmiss ion, and Flow Control 369
17.4 Transmiss ion Control Protocol Pe r fo rmance 372

17.4.1 Slow Start . 372
17.4.2 Conges t ion Avoidance . 373
17.4.3 Fast Ret ransmi t . 374
17.4.4 Fast Recovery . 375

17.5 I m p r o v i n g Transmiss ion Control Protocol 375
17.5.1 Transmiss ion Control Protocol Opt ions 376
17.5.2 Selective A c k n o w l e d g m e n t . 378
17.5.3 Transmiss ion Control Protocol Extensions and

Revisions . 379
17.6 Chap te r S u m m a r y . 381

18 Transport Layer Protocols of the Future . 383
18.1 S t ream Control Transmiss ion Protocol . 384

18.1.1 S t ream Control Transmiss ion Protocol Arch i t ec tu re . 385
18.1.2 S t ream Control Transmiss ion Protocol Elements 386

xii Contents

18.1.3 St ream Control Transmiss ion Protocol Functions 389
18.1.4 Using St ream Control Transmiss ion Protocol 390

18.2 D a t a g r a m Control Protocol . 391
18.3 The Future . 393
18.4 Chap te r S u m m a r y . 394

IV Internet Layer and B e l o w . 395

19 T h e Internet Protoco l . 397

19.1 Internet Protocol Addres s ing . 399
19.1.1 Address Nota t ion . 401
19.1.2 Internet Addres s Types . 402
19.1.3 N e t w o r k Address Archi tecture . 407
19.1.4 In ternet Protocol Subnets . 410

19.2 Internet Protocol Da tag rams . 414
19.2.1 H e a d e r Fields . 416
19.2.2 IPv4 Type of Service and Diffserv 419
19.2.3 Path M a x i m u m Transmiss ion Unit 421
19.2.4 F ragmenta t ion . 422
19.2.5 Time to Live . 425
19.2.6 Opt ions . 427

19.3 IPv4 Rout ing . 429
19.3.1 Moving Packets . 430
19.3.2 Hosts and Routers . 431
19.3.3 Internet Protocol Packet Processing 432
19.3.4 Source Rout ing . 435

19.4 N e t w o r k Address Translat ion . 435
19.4.1 Reasons for N e t w o r k Address Translat ion 435
19.4.2 N e t w o r k Address Translat ion Basics 436
19.4.3 Elaborat ing on N e t w o r k Address Translat ion 437
19.4.4 NAT Issues and Misconcept ions . 437
19.4.5 Realm-Specific Internet Protocol . 439
19.4.6 N e t w o r k Address Translators and Related RFCs 440

19.5 Chap te r S u m m a r y . 441

20 Internet Contro l M e s s a g e Protoco l . 443

20.1 Internet Control Message Protocol Heade r s and
Messages . 444

20.2 Unreachabi l i ty and Rout ing Messages . 445
20.3 Ping and Internet Control Message Protocol Echo

Messages . 447
20.4 Traceroute . 449

Contents xiii

20.5 Using Ping . 450
20.6 Using Traceroute . 452
20.7 Chap te r S u m m a r y . 453

21 T h e D a t a L i n k Layer . 455
21.1 In ternet Protocol and the Link Layer . 457
21.2 Ethernet . 459

21.2.1 Ethernet Frames . 460

21.2.2 Ethernet and IEEE 802.3 Frames . 462
21.3 Addres s Resolut ion . 466

21.3.1 Address Resolut ion Protocol Message Format 468
21.3.2 Address Resolut ion Protocol Cache 469
21.3.3 Proxy Address Resolut ion Protocol 470
21.3.4 Reverse Address Resolut ion Protocol 470
21.3.5 Inverse Address Resolut ion Protocol 471

21.4 Asynchronous Transfer M o d e . 472
21.4.1 Virtual Circuits and Routes . 472
21.4.2 Internet Protocol and Asynchronous Transfer

M o d e Issues . 473
21.4.3 Broadcasts . 476
21.4.4 ATM Cells . 476

21.4.5 Non-Broadcas t Mult i-Access Addres s Resolut ion 478
21.4.6 Non-Broadcas t Mult i-Access Broadcast 478

21.5 Point to Point Protocol . 480
21.6 In ternet Protocol on Every th ing . 481
21.7 Chap te r S u m m a r y . 483

22 In terne t Pro toco l R o u t i n g . 485
22.1 Rout ing Protocol Objectives . 486
22.2 Rout ing Fundamen ta l s . 489

22.2.1 G a t e w a y Rout ing . 489
22.2.2 Routed N e t w o r k s . 490
22.2.3 Inter ior and Exterior Rout ing Protocols 492
22.2.4 Rout ing Algor i thms . 493

22.3 Distance-Vector Rout ing . 493

22.3.1 The Distance-Vector Algor i thm . 494
22.3.2 Basic Rout ing Informat ion Protocol 496

22.3.3 Rout ing With Rout ing Informat ion Protocols 497
22.3.4 Rout ing Informat ion Protocol: v l vs. v2 499
22.3.5 Rout ing Informat ion Protocol A d v a n t a g e s and

Disadvan tages . 500
22.3.6 Slow Convergence 500

xiv Contents

22.3.7 Rout ing Loops . 502
22.3.8 RIP Fixes . 503

22.4 Link State Rout ing wi th O p e n Shortest Path First 504
22.5 Chap te r S u m m a r y . 506

23 Exterior R o u t i n g . 509

23.1 Interior vs Exterior Rout ing . 510
23.2 Exterior Rout ing Problems . 513

23.2.1 Classless In te r -Domain Rout ing . 515
23.2.2 Internet Protocol Ad d r e s s Prefix Nota t ion 516
23.2.3 Relative A d d r e s s i n g . 517

23.3 Exterior G a t e w a y Protocols . 521
23.4 Border G a t e w a y Protocol . 523
23.5 Chap te r S u m m a r y . 527

24 Internet Protoco l M u l t i c a s t . 529
24.1 N e t w o r k Mult icas t ing . 530
24.2 A p p l y i n g Mult icast . 531
24.3 Internet Protocol Mult icast . 534
24.4 Internet G r o u p M a n a g e m e n t Protocol . 536
24.5 Mult icast Rout ing . 537

24.5.1 Dense -Mode Mult icast Rout ing . 537
24.5.2 Sparse -Mode Mult icast Rout ing . 538
24.5.3 Sparse versus Dense M o d e Mult icast 538

24.6 Internet Protocol Mult icast Appl ica t ions 539
24.7 Chap te r S u m m a r y . 540

V I n t e r n e t I n f r a s t r u c t u r e . 541

25 Q u a l i t y of Serv ice . 543
25.1 The Qual i ty Prob lem . 544
25.2 Approaches to Qual i ty . 546
25.3 Reserv ing Resources . 547
25.4 Intserv in a Nutshe l l . 547
25.5 Diffserv in a Nutshe l l . 548
25.6 Diffserv versus Intserv? . 549
25.7 Chap te r S u m m a r y . 550

26 T h e Internet Secur i ty Protoco l . 551

26.1 Internet Protocol Securi ty Issues . 552
26.2 Securi ty Goals . 555
26.3 Encrypt ion and Authen t ica t ion Algor i thms 559

Contents xv

26.3.1 Symmetr ic Encrypt ion . 560

26.3.2 Public Key Encrypt ion . 561
26.3.3 Key M a n a g e m e n t . 562
26.3.4 Secure Hashes . 564
26.3.5 Digital S ignature . 565

26.4 IPsec: The Protocols . 566
26.5 Internet Protocol and IPsec . 568

26.5.1 Securi ty Associat ions . 569
26.5.2 Using Securi ty Associat ions . 569
26.5.3 Tunne l and Transpor t M o d e . 570
26.5.4 Encapsula t ing Securi ty Pay load (ESP) 573
26.5.5 Authen t ica t ion H e a d e r . 575
26.5.6 Calcula t ing The Integri ty Check Value 578
26.5.7 IPsec He ad e r s in Act ion . 579

26.6 I m p l e m e n t i n g and Dep loy ing IPsec . 580
26.7 Chap te r S u m m a r y . 582

27 Next Generat ion IP: IPv6 . 583
27.1 W h y IPv6? . 583

27.1.1 Whats N e w in IPv6 . 585
27.1.2 IPv6 Add r e s s in g . 586
27.1.3 H e a d e r Simplification . 586
27.1.4 H e a d e r Extension and IPv6 Opt ions 587
27.1.5 Flows . 588
27.1.6 Authen t ica t ion and Pr ivacy . 588

27.2 IPv6 D a t a g r a m Head e r s . 589
27.3 IPv6 Opt ions . 591
27.4 IPv6 A d d r e s s i n g . 592

27.4.1 IPv6 Add r e s s Represen ta t ion . 593
27.4.2 IPv6 A d d r e s s Archi tec ture . 594
27.4.3 IPv6 Add r e s s Space Structure . 597
27.4.4 IPv6 A d d r e s s Types . 598

27.5 Migra t ing to IPv6 . 599
27.5.1 Protocol Tunne l ing . 599
27.5.2 IPv4 / IPv6 Dual Stack . 600

27.6 Chap te r S u m m a r y and References . 600

V I P r a c t i c a l I n t e r n e t w o r k i n g . 6 0 3

28 The Evo lu t ion of File Transfer Protocol . 605
28.1 Protocol and Appl ica t ions C o m m a n d s . 606
28.2 Ease a n d / o r Simplici ty . 608

xvi Contents

28.3 Mapping Protocols to Applications . 609
28.4 C o m m a n d Line to Graphical User Interface 610
28.5 Chapter Summary . 612

29 P l a n n i n g Internet Protocol N e t w o r k s . 613
29.1 Problem Statement . 614
29.2 Ne twork Architecture 615
29.3 Ne twork Components . 622

29.3.1 Ne twork Media . 622
29.3.2 Routing, Addressing, and Middleboxes 624
29.3.3 Security Devices . 625

29.4 Ne twork Maintenance and Adminis t ra t ion 625
29.5 Offering Services . 628
29.6 What About Security? . 630
29.7 Chapter Summary . 634

30 Internet Security . 635
30.1 Security Concepts . 636
30.2 The H u m a n Factor . 637
30.3 Laws of Comput ing . 639
30.4 Laws of Nature . 641
30.5 Chapter S u m m a r y . 642

31 S i m p l e N e t w o r k M a n a g e m e n t Protocol . 643
31.1 Managing Networks with SNMP . 644
31.2 Simple Ne twork Management Protocol . 645
31.3 SNMP C o m m a n d s . 647
31.4 Structure of Management Information . 647
31.5 Management Information Base . 651
31.6 Remote Ne twork Monitoring . 653
31.7 Simple Ne twork Management Protocol v2 653

31.7.1 Simple Ne twork Management Protocol vl Problems. 654
31.7.2 Simple Ne twork Management Protocol v2 Solutions. 654

31.8 Chapter Summary . 655

VII A p p e n d i c e s . 657

A Internet and N e t w o r k Protocol Organ iza t ions 661
A.1 Internet Protocol Development Groups . 662
A.2 N a m e and Address Adminis t ra t ion Groups 663
A.3 Related Protocol Development Groups . 665

Contents xvii

B S e l e c t e d P r o t o c o l S u m m a r i e s . 6 6 7

B.1 D o m a i n N a m e Sys tem . 667
B.1.1 D o m a i n N a m e System Message H e a d e r and F ie lds . . 671

B.2 Simple Mail Transfer Protocol Details . 673
B.3 Post Office Protocol v3 . 676
B.4 Telnet Protocol . 677
B.5 File Transfer Protocol . 679
B.6 Valid Schemes for Un i fo rm Resource Identif iers 681
13.7 Internet Message Access Protocol . 684
B.8 N e t w o r k N e w s Transpor t Protocol . 684

I n d e x . 6 8 7

This Page Intentionally Left Blank

Preface

When I began writing the first edition in 1994, there were only a handful of
books about TCP/IP networking. Most of those were largely inaccessible
to readers with no formal computer science background. The objective
then was to provide such a book to anyone who needed or wanted to
understand TCP/IP, but needed it in plain language.

The objective for this edition is roughly the same, but as of early 2002,
there were hundreds of books written about TCP/IP networking, with
many hundreds (if not thousands) more that include one or more chapters
about TCP/IP.

Most of those books follow roughly the same blueprint for explaining how
TCP/IP works. Virtually every one of these books and chapters start out by
pointing to research funded in the 1960s by the US Department of Defense
as the birthplace of the internet and its TCP/IP protocol suite. (A protocol
is a set of rules that define how data is communicated. We'll define the
term in much greater detail in Part One.) Those books introduce the OSI
7-layer protocol stack model and the Internet 4-layer protocol stack model
with more or less detailed definitions of what the different layers represent.

xix

XX Preface

Then, the authors introduce the various TCP/IP protocols in order: some,
from lower layers to higher; others, from higher to lower.

Virtually every book and chapter about TCP/IP networking covers IP
addressing, basics of IP headers, the UDP and TCP transport layer pro-
tocols, internet application protocols such as HTTP and FTP, IP routing,
and the Domain Name System (DNS). Other topics typically covered
include multicast, SNMP, IPv6, SSL, IPsec, and various application
protocols.

Longer books cover more protocols, and may cover topics that are not
strictly speaking part of IP networking: they may be obsolete (IP network
classes and Privacy Enhanced Mail), or peripherally related (digital com-
merce, system administration, HTML). Additional length can be garnered
by including lists of RFC numbers and titles, lists of well-known ports,
glossaries, exhaustive lists of URLs and other Internet resources, and much
more filler.

This edition of TCP/IP Clearly Explained has been substantially updated
to better introduce the topic of TCP/IP networking to a broad audience.
Rather than attempt to be exhaustive in describing (in detail) as many
protocols as possible, this edition first introduces the fundamental concepts
of TCP/IP internetworking and then shows how the TCP/IP protocols
build on these concepts to provide a global internet.

The changes are significant: many topics that may have been useful five
years ago have been dropped, while new topics have been added. These
changes include:

�9 A top-down approach to the TCP/IP protocol stack, starting
with application protocols and working our way down the pro-
tocol stack. This approach provides a more accessible path to
understanding, starting as it does from applications most read-
ers will be familiar with and then moving to the underlying
protocols that make those applications possible.

�9 Addition of key new protocols, including the Stream Con-
trol Transmission Protocol (SCTP), the Blocks architecture for
application protocols, and the Transport Layer Security (TLS)
protocol.

�9 An overview to the "life" of an internet packet. In Chapter 7,
"Meet Joe's Packets", before covering the details of any

Preface xxi

protocols we follow the path of TCP/IP packets as they move
through systems and networks.

This book explains in clear language the core protocols of TCP/IP and how
they make the global internet possible. And if many of the terms used in
the preceding paragraphs are unfamiliar, rest assured they will be defined
and explained throughout this book.

This Page Intentionally Left Blank

Audience

The first edition of this book was intended as a guidebook to anyone
who needed to understand how TCP/IP works. And this edition is also
intended as a guidebook to anyone who needs to understand how TCP/IP
works. That is not to say that we are targeting the same audience now
that was being targeted in 1994. Back then, almost any taskmeven the
most trivial, such as doing file transfers or configuring a PC to connect to
an IP network--could be done more easily with an understanding of the
underlying protocols. Likewise, marketing and sales personnel in many
high-tech firms needed to understand IP to understand how their own
products worked. Network managers, technical support staff, power users
who provided their own support, programmers and software developers
and analysts, all had to get themselves up and running on IP quickly.

Certainly today there are many people in the same positions who still
need to learn more about TCP/IP; however, most have already learned it
or have learned to fake it. By far, the greatest number of people who need
to understand IP networking today are students--whether or not they are
studying full-time in high school or college, or they are studying part-time

o e e

I~|11

xxiv Audience

at night, studying in an elementary or middle school, or even studying on
their own.

Our goal with this edition is to help the reader understand TCP/IP net-
working on a fundamental level. Simply knowing what the protocols do,
or how to use an internet application, is not enough. When you understand
why the protocols do what they do, and how applications can be extended,
and how changes in the environment necessitate changes in the protocols,
then you will understand TCP/IP networking.

Acknowledgments

Many people were involved in this and all the previous editions of this
book. These include Karyn Johnson, Rick Adams, Ken Morton, Gabrielle
Billeter, and many others over the years. Many readers have been kind
enough to point out areas for improvement in previous editions.

If you have any questions or comments about this edition, please let me
know at pete@loshin.com; your input is always invaluable.

Many thanks must go to the expert reviewers who were kind enough
to look over the last edition and suggest improvements, including
Bill Higgins, Unisoft; Bob Natale, ACE*COMM; Brent Baccala; Aaron
Silverman, KBC Financial Products; Peter Samuelson, CAD/CAM Lab,
Wichita State University; Tony Metke, Motorola; David Valiquette,
Network Manager, Karl Storz Endovision; Marc Whinery, USA Sports;
Thomas Nadeau, Cisco.

xxvJ Acknowledgments

Many more thanks to Richard Nieporent, Ph.D., Senior Principal Engineer
for the MITRE Corporation and senior adjunct faculty member in the Johns
Hopkins University part-time graduate program in computer science,
and Barry Margolin, Genuity, Inc., who generously reviewed the entire
manuscript of this edition, as well as Chris Crane, Memorial University of
Newfoundland; Timothy Walker and Bob Natale, ACE*COMM; who also
offered their expertise during the technical review process.

Finally, thanks to the love of my life and soulmate, Lisa, and our children,
Jacy and Zoom, for their support and indulgence during the writing of this
book.

Concepts and Fundamentals
of Networking

This Page Intentionally Left Blank

Part Goals

�9 Understand basic networking and internetworking concepts
�9 Learn difference between packet-switched and circuit-based

networks
�9 Understand what network protocols are and how they work
�9 Introduce the basic components of the internet and its protocols

This Page Intentionally Left Blank

Introduction: What is This
Book About?

If you want to talk the TCP/IP talk, you need to know which words to say
and what they mean. TCP/IP internetworking is neither rocket science nor
brain surgery, but networking professionals have their own extensive and
sometimes confusing language. Most of this book is devoted to teaching the
reader how to speak the TCP/IP dialect of network-speak. It's not enough
to know that TCP/IP is a compound acronym for "Transmission Control
Protocol/Internet Protocol"; you've got to understand what makes TCP
different from other transport layer protocol and how IP addresses are
parsed for packet delivery.

Building on a general foundation, this book provides a primer for under-
standing the language of networking by understanding the specifics of
TCP/IP.

Part One �9 Concepts and Fundamentals of Networking

Most discussions of internetworking sooner or later get around to compa-
ring it to a postal delivery system. We'll do it right now:

When you send a letter, your envelope goes into a mail slot or box, is
picked up by a postal worker, dumped into the system, and ultimately
delivered by a letter carrier (after considerable sorting, moving, packaging,
and handling). The postal worker who collects the mail from mailboxes
needs to know nothing about where the mail came from or where the mail
is destined, ultimately. He or she just collects mail from certain boxes at
certain times, puts it in a vehicle, and delivers it to a local postal facility.
Then, someone else takes over.

TCP/IP internetworks move data in much the same way the post is moved:
network data moves from one point to another, is processed in some way
by intermediate systems (if necessary) and moves around the network one
step at a time.

The comparison between networking--the delivery of digital messages
and packages--and postal service--the delivery of physical messages and
packages-- is appropriate for many reasons. The one that I'd like to point
out first is that just as no part of the process of getting a letter from your
hand to the hand of the addressee is terribly difficult or complex, so too,
none of the fundamental principles of TCP/IP networking are beyond the
grasp of the intelligent and interested reader.

The brilliance of the twomTCP/IP internetworking and mail delivery
organizations--derives from each system's ability to deliver packages
(digital or physical) from any point on the network to any other point
on the network, with excellent reliability, efficiency, and speed.

! . ! Graphical Conventions Used in this Book

Diagrams always help understanding whenever networks and internet-
works are being discussed. Network diagrams, particularly in this book,
have their own language and conventions. Detailed definitions of most
terms used in this section are provided in Part I, and Figure 1-1 illus-
trates what they look like. Here are the important terms to keep in mind
throughout this text:

Cloud: The cloud represents some kind of system with its insides hidden
from view. There may be systems to which we connect (or want

Chapter 1 �9 Introduction: What is This Book About?

Another / • , ~ :,. :: ~:, .i'..; ; ; .
network / , / / i ~ . ~ ~ !

/ . / "Tunnel" "~
N e t w o r k . I ~

Entity

, Ent~,

Figure 1-1: Graphical conventions used to illustrate networks.

to connect) inside the system, or those systems may actually be on
the other side of the cloud. It doesn't matter, because we can know
only what's going on outside the cloud. What is a blank cloud in
one diagram may be represented in detail in another diagram; a
large network cloud may contain within it other, smaller, networks
represented as smaller clouds.

Connections: Connections between network entities are usually linked
by simple black lines. The black line indicates there is some direct
connection, even if there is no physical link (e.g., in wireless net-
works). In some cases, an entity may be connected indirectly but
transparently through one or more intermediate systems to another
entity. To observers at either of the endpoint entities, the con-
nection appears to be direct, even though intermediate systems
help enable the connection. In those cases, the direct links are
shown as solid black lines while the indirect link (the one that
endpoint observers view as correct) is represented with a dotted
black line.

Part One �9 Concepts and Fundamentals of Networking

Entities: A network entity is usually represented as a labeled box. An entity
("a thing that does some function") can be a piece of single-purpose
hardware or it can be a program running on a network node, in
parallel with other programs, that does something. In this book, I've
attempted to include in all diagrams descriptive labels on network
entity boxes.

Interfaces: A node's network interface is usually implicit in a diagram
unless the interface itself has some relevance. For example, a node
may have more than one interface to the same network, or interfaces
to more than one network (such nodes are known as "multi-homed
hosts"). In cases where network interfaces are relevant, they are
labeled with appropriate network addresses.

!.2 Notes on Style

As terms enter a language, they change, particularly words that begin
life as proper names or as compound words. Consider scuba: originally
an acronym (Self-Contained Underwater Breathing Apparatus), it is now
properly spelled in lowercase characters.

In this book, I will be using styles for certain terms that may not yet (as
of early 2002) be universally accepted but are likely to gain currency quite
soon. The terms and justifications for the newer usages are as follows:

�9 internet rather than Internet: The addition of the terms intranet
and extranet make the use of internet as a synonym for internet-
work redundant. That means the word internet can unambigu-
ously refer to the global network of networks formerly known
as The Internet.

�9 mail rather than electronic mail, e-mail, or emaih Specifications for
internet mail use the term mail rather than any form of electronic
mail; differentiating digitally delivered mail from physically
delivered mail will be done using the back-formations postal
mail or snail mail.

�9 web rather than Web or World Wide Web: The word web has long
been used as an adjective (web server, web browser, web site,
web page) as well as a noun. Again, in most contexts there is
little or no ambiguity about which web is intended, so there is

Chapter 1 �9 Introduction. What is This Book About?

no need to use a proper noun (Web) when a common one (web)
will do.

These usages tend to clarify rather than confuse networking discusssions.
Furthermore, they better reflect common usage, which tends to drive for-
mal style sooner or later. Better to get used to it now than have to change
everything later.

1.3 Overview

The first part of this book, Concepts and Fundamentals of Networking,
provides the reader with a basic vocabulary of networking and introduces
the fundamental concepts of networking and internetworking upon which
the rest of the book is built.

Part II, Internet Applications, examines how people and other entities inte-
ract with each other across a network transport (in this case, the internet).
By beginning at the top of the stack, looking at how applications interact
with each other over the internet, we can see clearly how systems use net-
works to exchange information. Applications offer concrete examples of
the types of data exchanged over networks, and chapters in this section
provide an overview to the world of internet applications (Chapter 6), and
an overview to the way application data flows through networks as well
as up and down protocol stacks (Chapter 7). Specific protocols are exam-
ined in-depth, including the Domain Name System (Chapter 8), internet
mail (Chapter 9), Telnet (Chapter 10), File Transfer Protocol (Chapter 11),
and the world wide web protocols (Chapter 12). A third wave of new
and still-developing internet applications is previewed (Chapter 13), and
a brief discussion of how internet applications are evolving is presented
(Chapter 14).

Part III, The Transport Layer, examines the protocols that mediate com-
munication between processes. This is where internetworking can be said
to begin, as each of these protocols treats the data it transports as a
commodity--mere bits to be packaged and transmitted. Opening with a
look at how and why processes would communicate (Chapter 15), other
chapters examine the two original transport protocols, User Datagram
Protocol (Chapter 16) and Transmission Control Protocol (Chapter 17).
This section closes with a look at the newest internet transport protocol, the

10 Part One �9 Concepts and Fundamentals of Networking

Stream Control Transmission Protocol (SCTP) and other future transport
protocols (Chapter 18).

Part IV, The Internet Layer and Below, digs into the processes by which
different computers, with different operating systems, hardware archi-
tectures, different local area network mechanisms, all around the world,
interoperate seamlessly. Starting with a description of the Internet Proto-
col (Chapter 19), other topics covered in this section include the Internet
Control Message Protocol (ICMP) covered in Chapter 20, the interface
between LAN and internet (Chapter 21), internet routing (Chapters 22
and 23), and IP multicast (Chapter 24).

Part V, Internet Infrastructure and Special Applications, addresses some
of the pressing issues that continue to challenge the growth of the internet,
including Quality of Service (Chapter 25), IP security (Chapter 26), and the
next generation of IP (Chapter 27).

As demonstrated in Part VI, Practical Internetworking, there are practical
applications of all the material in this bookmas well as issues that arise from
the implementation and administration of networks based on IP protocols.
The first chapter in this section discusses how implementations of one
application, FTP, evolved over the years (Chapter 28). Other topics covered
include planning an IP network (Chapter 29), and a general discusssion
of security (Chapter 30). The last chapter examines the Simple Network
Management Protocol (SNMP), how it works, and why it is still relevant
two decades after it was created.

1.3.1 APPENDICES

Appendices include information that is particularly relevant, but doesn't
always fit into the rest of the book. Appendices included with this volume
include:

Appendix A: Internet and Standards Organizations. A sum-
mary of key organizations and groups that are involved in the
process of defining and maintaining networking protocols
Appendix B: Protocol Summaries. This appendix includes
quick introductions to various internet protocols that have not
been discussed at length in this text, including the basic header
structures and protocol command summaries.

A Language of Networking

What is TCP/IP? What does "internet" really mean? What about
"network" or "node" or "host" or "client" or "server"? You may know
exactly what they mean, or perhaps you have a general understanding or
even just a vague feeling about what those terms mean.

Everyone knows, viscerally, what a network is: a vague something that
connects other, possibly many other, somethings by allowing those some-
things to somehow exchange information with each other. A computer
network can be defined more precisely as consisting of some number of
systems that can transmit and receive data to and from each other.

Precision is important, as is accuracy when discussing networking terms.
Precision is a matter of granularity. The value of 45 microns is a precise
measurement. Accuracy is a measure of closeness to "truth." While precise,
45 microns is an inaccurate measure of the distance from London to Lima.

The previous paragraph uses several terms that could be better defined:
network, computer network, computer, systems, transmit, receive, data.
A computer network is easily handled: a network that links computers.

1!

12 Part One �9 Concepts and Fundamentals of Networking

Not all networks link computers: there are telecommunications networks
linking phones, social networks linking people, and just plain networks
that link entities.

This may be obvious, but some of the basic assumptions we make about
terms such as "network" do not always hold. The rest of this chapter is
devoted to building definitions of networking and internetworking terms
and concepts.

When defining network terms, a balance between accuracy and accessibil-
ity must be struck. Although it may be easier to think of a network node
as being the same as thing as a network client, that characterization may
be any of several things:

�9 Perfectly apt and appropriate
�9 Completely and dangerously wrong
�9 Slightly misleading
�9 Completely misleading but completely irrelevant

Knowing the terminology and understanding the nuances of the terminol-
ogy offers one important avenue to understanding a topic. The language
of networking can be difficult for the unitiated to understand, and for good
reason. Internetworking terms have been created and used by many differ-
ent individuals, from computer scientists, software engineers, hardware
engineers, cyberneticists, physicians, historians, physicists, astronomers,
mathematicians, marketing executives, business managers, personnel
managers, linguists, programmers, and many others. As a result, words
that seem logical to a mathematician may make less sense to a business
manager; new terms often carry either too much or too little excess baggage
of existing meaning.

Making matters more confusing, todays' internet derives from over 30
years of academic research as well as decades of corporate research,
development, implementation and deployment of proprietary as well
as standards-compliant systems, software, and networks. (Standards-
compliant means conforming to a set of standards that allow the product to
interoperate with products produced by other vendors. Until the mid-
1980s, most vendors sold network applications products that would
interoperate only with other products supporting the same proprietary
systems.)

As a result, the same terms or phrases often meant different things
depending upon who uttered them and what his or her affiliation was.

Chapter 2 ~ A Language of Networking 13

Throw in a brand of humor, heavily leavened with puns and other
wordplay, shared by many of the people involved in creating (and nam-
ing) network technology, and network terms range from crystal-clear to
confusing to whimsical, and just about everything in between.

This chapter introduces key terms, defining them generally as they apply to
networking, as well as (where appropriate) defining them as they are used
within the context of the internet. It would be nice to have a well-defined
vocabulary of networking terms, with only one definition for each term,
and with all terms and definitions universally accepted. Unfortunately,
the languages of computing and networking can be precise and vague--at
the same time. It helps to maintain a flexible state of mind and to use the
context of the discussion of any new term to help understand its meaning.

One important set of standards applies to operating systems. POSIX is
a standard that is usually associated with operating systems (OSes) like
those based on some flavor of UNIX, Berkeley Software Distribution (BSD),
or Linux. However, not all Linux distributions are necessarily POSIX-
compliant, while Windows (or other OSes) not usually thought of as
UNIX-like may be POSIX-compliant. UNIX is a registered trademark, and
thus it is inappropriate to use the term to refer to the family of OSes that
includes NetBSD, FreeBSD, BSDI, Linux, and others that are modeled on
or work similarly to UNIX in some way. Instead, we'll use the term *nix
to indicate the family of operating systems that includes all commercial
varieties of UNIX, commercial and open-source versions of BSD, Linux,
and any other OS that is able to compile and run programs intended for
UNIX and so on.

2.1 Network Terms

The internet is a network; so is a desktop Personal Computer (PC) con-
nected directly to a laptop. Clearly, there are significant differences among
different types of network. An internet is a network of networks. This
section presents a vocabulary for talking about all types of network.

Networked systems are often considered to be connected with the implica-
tion of a physical connection, such as is provided by a cable linking systems
together. The recent surge of deployed technologies for wireless voice and
data networking shows that sharing a network requires only that systems
share a mechanism by which they can communicate.

14 Part One �9 Concepts and Fundamentals of Networking

For the moment, we can assume that those systems use the same commu-
nication channel (whatever that is) and the same sets of rules (whatever
those are) to govern their transmissions and receptions. However, in any
particular network, we can also assume that there is only one channel and
one set of rules governing that channel. There will also be limits to how
much data can be transmitted on the channel and how many systems can
communicate through the same channel.

Before going further, some definitions are in order:

Entity: Some "thing" that does some "thing." Depending on context, an
entity can be a computer, or a person, or a program, or a device, or a
process. Or, perhaps something else. "Entity" may refer to something
that is about to be introduced.

System: Any entity with observable and reproduceable behaviors. Also
sometimes called a black box, a system may be a piece of hardware or a
process running on a piece of hardware. A system accepts inputs and
produces outputs; whatever happens inside (in particular, how those
inputs are processed to produce the outputs) is largely irrelevant as
long as the system behaves consistently. Inside a system may be one
or more other systems; discussing the outer system does not require
any knowledge of the internal systems.

Network: Some set of systems that share a common communication
medium (see below). Simply sharing the medium is not enough,
however, as the networked systems must share some set of rules
that govern communication across that medium, called protocols.
A network is also a system.

Protocol: A set of rules that define how systems interact.

Internet: A network of networks. Which makes it a network as well. An
internet may use a single physical medium, or may span different
physical media by using a virtual medium.

Media/medium: The physical thing(s) over or through which network sig-
nals are carried. In some cases, a network can be confidently seen
as bounded by its medium, as, for example, insulated metal wires
used for coaxial or twisted pair connections. These cables, plus any
required network devices, and attached systems define the full extent

Chapter 2 ~ A Language of Networking 15

of the network itself. Networks always require some kind of infra-
structure to operate: a wireless network may depend on a network of
signal repeaters; cabled networks on their connecting cables as well
as (often) on systems called hubs or switches through which the cables
can be connected.

A specific instance of a thing that carries signals is usually called
the medium. For example, a cable carrying signals can be said to be
the medium over which the signal is carried; likewise, a specific net-
work can be said to use Ethernet as its medium. As may be gleaned
from the context, Ethernet refers to a type of network. We will return
to Ethernet throughout this book; it is the dominant form of LAN
medium in business as well as many home settings.

When referring to more than one thing that carries signals, the term
media is usually preferred. Thus, coaxial cable, unshielded twisted
pair cable, and wireless are all network media. But at the same
time, all the things that carry Ethernet signals in a network can
also be referred to as the network media, including cabling, network
interfaces, hubs, switches, and any other physical things that carry
signals.

Interface: The point at which two entities make contact.

Node: Any entity connected to a network and capable of both creating and
using network data.

Host: Any node that supports users and runs application software. Host
and node are often used interchangeably (usually with no ill effect),
but the two are distinct types of entity.

Client: A network entity that requests some network service from a server.

Server: A network entity that fulfills requests from clients.

LAN: Local Area Network; usually a network that connects nodes across
a small distance using direct physical mechanisms with minimal use
of infrastructure devices such as routers or switches to relay data.
Most often the network a person uses to communicate with a sys-
tem in the same room, floor, or building. Routers and switches
are network devices that accept network traffic for proper delivery

16 Part One �9 Concepts and Fundamentals of Networking

or forwarding. We will discuss these devices, especially routers,
throughout the book.

W A N : Wide Area Network; usually a network that connects nodes across
great distances. And a MAN, or Metropolitan Area Network, is a net-
work linking nodes spread across a single metropolitan area. These
terms are vague: a MAN might span only a few blocks or link nodes
across distances measured in kilometers or tens of kilometers. There
is undoubtedly some overlap between the largest MANs and the
smallest WANs.

WANs may use dedicated telecommunications circuits to link remote
nodes, or they may use networks offered by telecommunications
vendors to make their connections.

Many things may be connected to a network, and each can be referred
to by at least one name. For instance, the same personal computer might
function simultaneously as a client and as a server. People speaking of hosts
and nodes, clients and servers and routers and gateways frequently confuse the
sometimes subtle differences. (A gateway is usually a device that forwards
network data at the same time it translates that data from one protocol to
another; routers typically don' t translate network data.) The rest of this
chapter explores the nuances of these, and other, network terms.

2.1.1 MORE ABOUT ENTITIES

If we define entity as a [thing] that does some [function], the term becomes
useful in many contexts, including discussions of networks as well as dis-
cussions of network protocols. The network protocols we will discuss
in this book cover communication between application-level entities m
human and other usersmas well as between processes, between internet
nodes, and between nodes connected to the same physical network.

�9 Application-level entities are those "things" that do "things"
related to applications. For example, a person can use a web
browser to get information from a web server. The browser and
server are applications, and they interact in a specific manner.
The browser interprets, formats, and submits requests from the
user to the server; the server interprets, formats, and responds
to those requests.

�9 A process is an instantiation (or, specific instance) of a program
actually executing on a computer. The program itself must be

Chapter 2 ~ A Language of Networking 17

executed on a computer before it can do anything; by running
the program on a computer, it becomes instantiated. The pro-
gram may be executed more than once on the same system, in
which case there will be more than one process based on the
same program.

Thus, Netscape Navigator is the name of a widely used pro-
gram; each time a user runs Navigator on a PC, it is instantiated.
There may be more than one instantiation of the same program,
which means that protocols must have some way to uniquely
identify processes. That allows two instances of a browser to
maintain two separate browsing sessions with different web
sites.
Any entity on a physical network (e.g., it can communicate
with other nodes using the same network medium) is a net-
work node. If that network is connected to one or more other
networks in an internet, then network nodes may also func-
tion as internet nodes. If a node is an internet node, it will also
be a network nodembut not all network nodes are necessarily
internet nodes.
Internet nodes interoperate with protocols that can pass across
network boundaries. Within a local network, all nodes can be
expected to be able to communicate directly, through their
shared medium (see next bullet as well as next section). But
when nodes are communicating across network boundaries,
they've got to use a different set of protocols that don' t care
what protocols the local networks use.
Network nodes communicate with each other using protocols
that format and package data for transmission on a shared net-
work medium. When nodes on the same network medium
communicate, they already "know" how the data should be
packaged, and they are able to assume more about the nature
of the communicating nodes.

When nodes on an internet communicate, they apply simultaneously
(or nearly so) protocols at different layers, as we'll see throughout this
chapter.

2.2 Network Media and Interfaces

Marshall Macluhan notwithstanding, the network medium is not neces-
sarily the message, although network messages do travel across a network

18 Part One �9 Concepts and Fundamentals of Networking

medium. Three things must be present for any network to exist: some-
thing to carry messages, some things between which the messages are to
be carried, and some points at which these things can connect. In other
words, it requires a networking medium, entities to be connected across
the networking medium, and interfaces through which different entities
can pass messages.

2.2.1 MEDIA

A network medium is the physical thing or mechanism over or through
which network signals are carried. In some cases, a network can be con-
fidently seen as bounded by its medium, as, for example, insulated metal
wires used for coaxial or twisted pair connections. The combination of
these cables, plus any required network devices, plus attached systems,
define the full extent of the network itself.

Although many if not most data networks still use cables to carry electronic
signals over wire, this is not the only option. Fiberoptic strands carry data
encoded as light, while wireless networks encode data as radio waves.
These are not the only options, either. However, all systems connected to
the same network require a set of rules (protocol) that govern how signals
transmitted across the shared medium must be interpreted. Any system
connected to an Ethernet must be able to differentiate line noise from actual
data, as well as data to which it must respond from data it can safely
ignore. Any system using a wireless medium must be able to transmit and
receive data over the shared radio spectrum, and any system using an
optical medium must be able to send and receive light signals over that
medium.

The term link is often used to refer to the shared medium and the set of
rules governing transmissions on that medium.

2.2.2 INTERFACES

An interface is the point at which two entities make contact. A network
interface is the point at which an entity makes contact with any other entity.
For example, consider the point of contact between a network node and a
LAN. In this case, a network interface card (NIC) provides a point of contact
between a PC and, for example, an Ethernet LAN. The NIC includes a plug
into which an Ethernet cable can be attached.

Chapter 2 ~ A Language of Networking 19

In network terms, the node (PC) passes data intended for the network to
the NIC. The NIC takes that data and, after putting it into an appropriate
form for the network (usually an electronic signal), sends it out onto the
cable. Network interfaces convert a node's data into electronic signals for
transmission over a metal wire, or into signals appropriate for optical cable,
for wireless radio transmission, or for any other mode of communication.

There are also interfaces between entities within a network entity. For now,
it's enough to think about how letters being typed into a keyboard by a
human using a PC to access a web site are converted into a form that the
browser software running on that PC can understand, how that data is
formatted for transmission over the Internet, and how that data is in its
turn packaged so that the network interface can convert it for transmission
on a local network.

To illustrate, the interface between system and medium is where the raw
signalsmwhether radio waves, photons, or electronsmare translated into
a digital form that a computer (or other attached system) can readily pro-
cess. Although subtle, a distinction must be drawn between the data that
computers send and receive over networks and the signals that carry that
data over the network media. When the data is "in flight" across a wire
(or wireless) link, it comprises pure signal; when the signal is received at a
network interface, it is interpreted according to a set of common rules and
it becomes data again.

People often assume that this intercommunication invariably occurs
between nodes separated by some amount of network. However, that is not
necessarily the case: there is no reason that an entire "network" commu-
nication can occur within the same system. For example, a web developer
may use a server on her workstation to host content she is working on, and
use her browser to access the data.

2.3 Nodes and Hosts

Any device connected to a network and capable of both creating network
data and using network data is called a node.

A printer with a network interface is considered a node if it accepts and
processes requests transmitted over the network and produces its own net-
work data to return completion codes to whatever system requested printer

20 Part One ~ Concepts and Fundamentals of Networking

services. A PC with a network interface, properly connected to a network
and running networking software, is a node because it can transmit and
receive data over the network. A LAN hub, however, is probably not a
node: it does not create its own data but merely passes other nodes' data
without responding to or making any changes in that data.

The term host is often used as a synonym for node, but this is not strictly
correct. A node is any device that emits and absorbs data to and from a
network, but a host is any node that supports one or more users and runs
network application software.

A networked PC can be called a host if it is set up to allow one or more users
to use network application software over the network. Most PCs these days
qualify by virtue of having network applications such as a browser or mail
client setup to permit access in from other nodes, but a PC configured to
reject all inbound network sessions would likely be considered a node and
not a host. A networked printer could be considered a host if it allowed
users to log in and use some kind of application running on the printer.
Printers that implement a web server to allow users to check print queue
status are hosts.

Confusion over the two terms often arises because most nodes are given
hostnames by which they can be more easily identified by humans (naming
and addressing will be addressed in Chapter 3).

2.4 Clients and Servers

The terms client and server are throwbacks to the time when networking
meant connecting clients (e.g., PCs or dumb terminals) to servers (e.g.,
mainframe or other multiuser computer systems). The client system acts
as a client, using only specific mechanisms to access the server. Saying that
a network consists of clients and servers is misleading when speaking of
an IP-based network.

A client is any system requesting a network service; a server is a system
that fulfills requests from clients. If this definition seems circular, it is. At
times, a client may request that a server transmit data from the server to
the client; at other times, the client may request that the server accept data
from the client. The nature of the service often defines which node can be
considered a client and which a server.

Chapter 2 �9 A Language of Networking 21

Cost, size, or location are not always good indicators of whether a system is
a client or server. For example, a s tandard commercial, off-the-shelf (COTS)
PC costing under $1,000 can be used as a file server, while a custom-built,
multi-processor monster worth hundreds of thousands of dollars could
just as easily use a network strictly to access, as a client, files stored on that
PC server.

An IP node may behave as both a client and a server s imultaneously for
the same service, requesting a service from one node at the same time it is
responding to a request for the same service from another node. This is, in
fact, quite common. The Domain Name System (DNS) is a good example
of such a service. And the same node may be acting in client and server
roles for different services as well.

To reduce confusion, it is best not to think of a particular piece of hardware
as a client or a server, but rather to attribute those roles to systems on the
basis of what they are doing at any given moment.

2.5 LAN, MAN, WAN, SAN

Several terms have become common to differentiate networks that span
larger areas than local area networks (LANs). A metropolitan area network,
or MAN, may cover an area roughly equivalent to a town or city; a wide
area network, or WAN, refers to a network linking nodes separated by as
much as hundreds or even thousands of miles.

Al though these terms carry little precision, LAN almost always refers
to a network contained within a single location. Connections are almost
always directly cabled or wired by the LAN use r /ope ra to r and limited
in the numbers of users linked. Al though an organization may contract
out all or part of the installation, support , and maintenance of a LAN, the
organization in general owns or controls all of the LAN infrastructure.

In contrast, a W A N is far more likely to be created out of networks con-
trolled by others. For example, an international organization might control
LANs at its individual site while purchasing W A N connectivity among
those sites through a global telecommunicat ion company. W A N links
may use fiberoptic cable, satellite, and other h igh-speed/high-capaci ty
networking media that are shared among the network owners ' customers.
Furthermore, WANs are generally possible only with such facilities; it is

22 Part One ~ Concepts and Fundamentals of Networking

not practical for most organizations to connect sites by stringing a coaxial
cable across a continent or over an international border.

The MAN, then, is something in between the WAN and the LAN: it covers
a smaller area than a WAN but larger than a LAN. It uses technologies
that may be leased/shared, but they are not always out of the reach of
all organizations. For example, line-of-site microwave or radio links may
connect a company's branches within a metropolitan area; depending on
the situation, the cost of such a link may be low enough to allow individuals
to use such an approach.

(See Robert X. Cringely's JUNE 28, 2001 PBS article, "Reach Out and
Touch Someone: How Bob and His Binoculars Found More Bandwidth
and Learned to Stop Worrying and Love the Bond" for an account of
creating a line-of-sight link, at h t t p : / /www.pbs .o rg / c r inge ly /pu lp i t /
pulpit20010628.html.)

A MAN may use the same networks as a WAN, or it may use leased
lines from a local telecommunication provider; it may even use LAN
technologies for some or all of its connectivity.

A recent addition to this acronym family, SAN, or storage area network,
refers to a network of dedicated storage devices. When using a computer to
mediate requests for data stored on a simple hard disk, the computer itself
can become a bottleneck for applications in which a lot of data is accessed
a n d / o r modified frequently by many different users. The reduction in
performance can be remedied by upgrading the computer 's processor or
other hardware, but a more scalable approach is to use smarter storage
devices that respond to requests for data through a fast network connection
rather than through a computer system bus. Work continues on applying
IP networking tools to SANs.

2.6 Network Systems
As we continue to build our vocabulary, consider this syllogism:

�9 A system is an entity with observable and reproduceable
behaviors

�9 A network links systems through a shared medium

Chapter 2 �9 A Language of Networking 23

�9 A network is a system
�9 A system is an entity with observable and reproduceable

behaviors

Circular though this sequence may be, it also demonstrates that a network
can behave like a black box with inputs and outputs. To understand net-
working, it helps to understand how networks can be networked, and
how individual networks can be treated like sys temsmand how systems
can behave like networks.

2.6.1 AUTONOMOUS SYSTEMS AND BACKBONES

A system is an entity with observable behaviors. A PC is a system: certain
inputs will elicit certain responses. A program can be a system, accepting
inputs from entities with access to the software and producing outputs.
A network can also be a system.

As a black box, a system has one or more ways to accept input, one or more
ways to produce outputs, and inside the box something happens to the
things that go in before they are sent back out.

An autonomous system (AS) is a network that can be seen to behave as
if it is completely self-contained. Traffic going into an AS can be con-
sidered as entering a black box. What goes on inside the AS is not only
irrelevant to anything or anyone outside of it, but the AS will very likely
be opaque to anyone outside it. Figure 2-1 shows several ways to map
a network into ASes. From any system in the right two thirds of the
figure, Network A is an AS. And from Network A, the rest of the network
behaves as an AS. And from within Network B, Networks A and C are
clearly ASes.

While all three networks are ASes, from Network C, there appear to be
only two ASes: Network C and Network B (which includes network A).
Only from Network B is it clear that there really are three distinct ASes;
thus, Network B acts as a backbone network because it can unambiguously
link distinct ASes.

While system may refer to a device, a network, a software program, or
some combination of those, the term AS is almost always reserved for
a network or internet that may or may not be connected to the global
internet.

24 Part One �9 Concepts and Fundamentals of Networking

A I B I c

I I ., .,~-~-- �9 ..,.

I I
\ / ~ ~) .. I I '

; ~ J ' (

�9 I I

I I

Figure 2-1: A u t o n o m o u s system (AS) mapping .

2.6.2 ROUTERS AND GATEWAYS

Router and gateway are terms that describe systems that act as interfaces
to other systems. Frequently confused or even used interchangeably, a
gateway is not always a router, and vice versa.

A router is a system that applies intelligence to the movement of network
data. Intelligence denotes both knowledge of the "current state of the inter-
net" and the application of rules while processing network data. The router
"knows" what connections are available, and it is also able to process data
contained in packets to determine which connections should be used.

The function fulfilled by a router is similar to the function fulfilled by a
shipyard freight terminal: as freight containers are unloaded from a ship,
some entity (the "router") examines each container's manifest and assigns
it to a freight train based on its destination.

Gateway is a more general term. A router usually operates only on net-
work data, particularly the data's destination, without looking any further.
A gateway looks beyond destination information and translates network
data into a form that will be usable at its destination. One common type of
gateway is the application gateway: a system that translates data from one
application into a form that will make it accessible to another application.

Before commercial internet service providers (ISPs) offering internet mail
service became common, commercial mail used proprietary formats.
Mail from CompuServe, MCI Mail, and other commercial providers

Chapter 2 �9 A Language of Networking 25

sometimes used different formats for message addressing and content.
A gateway was necessary to translate addresses and content between
different mail systems.

Back then a router might also function as a gateway in the sense that it
had to translate data carried on a local network into a form that would
be accessible to external networks. However, the two terms are not inter-
changeable, and gateway is generally preferred only when referring to a
device that translates data.

2.7 Network Protocols

When systems communicate, they require rules. Network protocols define
how systems communicate across networks.

The rules for handling internet communication must take into account the
need for interoperability across various different network media (as well as
different network link protocols, such as Ethernet, ATM, Fibre Channel,
and others). Interoperability--the ability for systems to communicate and
work together with no information about each other beyond compliance
with certain standardsmis a key component of any internetwork protocol
because there are so many different network protocols used by different
computing platforms and networking products.

One of the key goals of TCP/IP networking has always been to enable
seamless interoperability across media as well as across computing hard-
ware platforms. Ideally, the internet should make it possible for users to
share data or resources without concern about what operating system,
hardware, network medium, or software is being used at the other end.

A protocol is the complete set of rules governing the interaction between two
systems. A medical protocol prescribes how a healthcare provider treats
a patient. A diplomatic protocol prescribes how a person interacts and
behaves with different people and groups. Likewise, a network protocol
prescribes rules for how networked entities interact and behave with each
other.

Protocols must specify:

�9 How entities initiate a protocol interaction
�9 What kinds of interactions are permitted

26 Part One �9 Concepts and Fundamentals of Networking

�9 Valid requests and responses from the entities interacting
within the bounds of the protocol

�9 What to do when any invalid protocol message is received (in
no possible case should the protocol be silent about what are
correct behaviors)

�9 Proper formats for packaging data and protocol messages
(requests / replies)

�9 Rules about what behaviors and data are acceptable (MAY),
unacceptable (MUST NOT), or preferred (SHOULD)

In some cases, a network protocol may seem to avoid specifying some of
these rules. This may mean the protocol is not completely specified, or it
may mean that the protocol leaves some of the specification to processes
controlled by some other protocol.

In any case, all communications require a set of rules to ensure that data
can be transmitted and received, and that's what a network protocol is.
Unlike medical or diplomatic protocols, network protocols are applied to
computer communications that require explicit and comprehensive rules
governing requests and responses.

2.7.1 A PROTOCOL EXAMPLE

Formal protocol specifications can make dry reading, but any act of com-
munication will be governed by at least one protocol. To illustrate, consider
this (incompletely specified) protocol for a telephone conversation (these
rules will be more or less applicable to conversations taking place with
most North Americans, and probably with English-speaking people from
other parts of the world):

1. When the telephone is ringing, one SHOULD pick up the
receiver, place the ear-piece to one's ear, the mouthpiece
next to one's mouth, and clearly enunciate a call-receiver
greeting.

2. Valid call-receiver greetings MUST include the following:
"Hello", "<the answerer's name> speaking", and "<the
answerer's organization>"

3. Valid call-receiver greetings SHOULD include the following:
"Yo, What's up?," and "Good [morning I afternoon I
evening] ."

Chapter 2 �9 A Language of Networking 27

4. Valid call-receiver greetings MAY include other words or
phrases that indicate the answerer's readiness to begin speaking.

5. Upon completion of the greeting, the answerer stops speaking
and waits for a reply from the caller.

6. The caller waits for the phone to stop ringing and listens to the
greeting. Once the greeting is complete, the caller may begin
speaking. The caller MUST respond to the greeting.

7. Valid greeting responses SHOULD include the following: a
return greeting (e.g., "Hello"), an identification (e.g., "My name
is Bob."), or a request (e.g., "May I speak with Alice?")

8. Caller and answerer continue the conversation, speaking in turn
and waiting for the others' speech to end before speaking.

9. Repetition of greetings during the course of the conversation
MUST be supported to allow interruptions, replacement of
either the caller or answerer by other individuals, and call
transfers.

10. The conversation SHOULD BE terminated by one party issuing
a closing statement (e.g., "Well, I've got to go now") followed
by a summary statement (e.g., "It was good talking with you")
followed by a termination sequence (e.g., "Goodbye").

Network protocols often use formal specification languages to explicitly
and precisely define data formats, requests, and responses. For example,
telephone conversations between humans are typically carried out in
human speech, preferably in the same language. Protocols typically define
a set of functions and behaviors that all participants can be assumed to
support as part of the protocol. For example, a complete telephone conver-
sation protocol might state that the caller and the callee SHOULD speak
the same language; it might specify that the caller and callee should each
take turns finding a common language but that in the event the two have
no language in common, the caller MAY terminate the call at any time. It
might even further specify that the callee SHOULD not only try her own
languages but also enlist help from any other person in the area before
terminating the call.

Protocols also define the order in which communications take place. Some
protocols impose a very strict order on when an entity may send data,
while others allow data to be sent back and forth at will. A human
caller must wait until a human answerer initiates speech; if she attempts
to say something before the answerer has completed the greeting, the
answerer may be confused and terminate the call prematurely (try i t - -
it works!).

28 Part One �9 Concepts and Fundamentals of Networking

2.7.2 PROTOCOL DATA UNIT

Protocols define rules for packaging and transmitting data. The result-
ing packages of data are assigned a name, just like in the real world.
For example, dishwashing liquid may be packaged in different forms
depending on where it is in the chain of supply and demand: the fac-
tory may store the processed liquid in large tanks; the liquid may be
transferred at some point to a railroad or truck tank car. Eventually,
the liquid will be packaged in individual bottles, which will, in turn, be
packed into corrugated cardboard cases, which may be loaded into multi-
mode containers for shipment by sea, rail, or truck. Once purchased, the
end-user may choose to transfer the liquid into a different container for
dispensing.

Network data can be packed and unpacked in the same way as it travels
from its source to its destination. The containers for protocol data will
often enclose containers created by other protocols, just as a plastic bottle
of dishwashing liquid may be packed into a case that is in turn packed into
a shipping container. Giving names to the different data containers helps
clarity when discussing protocols, and the specific term used by a protocol
is referred to as the protocol data unit (PDU).

Specific PDUs will be defined as their protocols are introduced through the
book. PDU names discussed in this book include packet, frame, segment, and
datagram. Datagram is the more generic term, meaning a unit of data that
contains just enough information to deliver it to its proper destination,
along with whatever network data (if any) is being sent. Packet often is
used for data passing through internets; segment for data passed between
processes; frame for data passed on within a LAN.

Packet or datagram are often used to refer to a package of data for an
unpsecified protocol, or for data packages in general. A PDU name may
be used by only one protocol, or it may be used by more than one; whether
or not the same PDU is intended depends entirely on the protocols being
discussed.

2.8 Internetwork Terms

The thing we usually see called the Internet is increasingly being referred to,
simply, as internet. There are several words that have been introduced over

Chapter 2 �9 A Language of Networking 29

the years to describe networks that use TCP/IP as well as the global inter-
network ordinarily called the internet. This section defines and clarifies
these terms and their use.

2.8.1 CATENET, INTERNETWORK~ AND THE INTERNET

At first, researchers who developed the protocols that allowed nodes on
one LAN to interoperate with nodes connected to another LAN called such
networks of networks catenets. 1 At the time, the term catenet was used to
describe something that functioned as a "confederation of co-operating
networks. ''2 The term is likely derived from the term cat (originally from
concatenate, a computer science term for what happens when you com-
bine two or more things together into a single unit). Using those terms
to describe an internetwork emphasized the fact that internetworking
protocols allowed disparate networks to be concatenated into a single
entity.

The word catenet was coined to describe a type of internetwork, although
the specialized term did not catch on outside the research community.
Ultimately, networks of networks continued to be called internetworks, a
term that was shortened in its turn to internet. As a national and ultimately
international network of networks developed, users began differentiating
between an internet (perhaps a university network of networks) and the
Internet, the national or global IP network. These terms were widely
accepted and used within the TCP/IP community through the early to
mid-1990s.

2.8.2 INTRANET AND EXTRANET

By the mid-1990s, two additional terms, intranet and extranet, entered the
language. Arguably, these terms mean little: they are, perhaps, most often
used in marketing materials rather than in technical discussions. However,
they serve the purpose of differentiating private, shared, or smaller-scale
internets from the global, capital-I, Internet.

1See Cerf, V., "The Catenet Model for Internetworking," Information Processing Tech-
niques Office, Defense Advanced Research Projects Agency, IEN 48, July 1978, which refers
to Pouzin, L., "A Proposal for Interconnecting Packet Switching Networks," Proceedings of
EUROCOMP, Bronel University, May 1974, pp. 1023-36.

2See IEN 48.

30 Part One �9 Concepts and Fundamentals of Networking

As TCP/IP networking moved from the government-funded world of
academic research into the corporate-funded world of end-users and
commercial services, the terms Internet and intranet tended to confuse
newcomers to TCP/IP.

The term intranet was coined to describe an organization's private TCP/IP
internetwork, intra indicating that the net was "inside" the organization.
The term often implied the use of an internally accessible web server to
serve only the corporate community. Using intranet instead of internet, it
was hoped, would eliminate the need to specify whether or not the spoken
word internet had an upper- or lowercase "I." (Some people pronounce
"intranet" and "internet" indistinguishably close, so rather than saying
"lowercase internet, not THE Internet" they now say "INTRA-net, not
INTERnet.")

The term extranet is a much harder term to nail down; despite hav-
ing written a book about extranets, I am still hard pressed to define
them. 3 Suffice it to say that an extranet is a sort of intranet turned inside out
and strung across the Internet. Extranets generally allow employees, cus-
tomers, and /or investors access to internal corporate network resources
from anywhere within the organizational network or from outside the
network. Extranets may be used to provide customer self-services (such
as express delivery service package tracking web pages). Extranets also
usually include facilities for identifying authorized users of the services
provided, as well as other facilities for keeping data private.

All of these--intranet, internet, Internet, internetwork, extranet--are
forms of IP-based network.

2.8.3 WEB AND INTERNET

To further add to the complexity and subtlety of internet terminology,
non-technical users often equate the Internet with the World Wide Web.
Although both are global networks, and the web may appear to comprise
the entire Internet, they are distinct systems that overlap considerably but
not completely.

The Internet is the global TCP/IP internetwork, linking network resources
and users. The web, on the other hand, is an application distributed across

3Extranet Design and Implementation, SYBEX 1998.

Chapter 2 �9 A Language of Networking 31

the Internet. Web users access the application through web servers (see
Chapter 12) that are linked through the Internet.

The Internet carries many different applications, including mail, news, the
web, and others as we'll see in Chapter 7. The web, too, can carry many
different applications, including mail, news, and others as we'll see in
Chapter 12--but only between web-enabled nodes.

2.9 Chapter Summary
This chapter introduced important network vocabulary terms and con-
cepts, independent (for the most part) of the specific instances. You may
not know exactly what a router does or where one might use the Inter-
net Protocol, but you will be able to knowledgeably discuss networks in
general terms.

Key concepts covered here include:

Networks/Media: What are the different parts of a network, and what do
the different (often familiar) terms really mean.

Interfaces: How network entities connect with each other.

Nodes/Hosts: What kind of systems are connected to a network.

Clients/Servers: What function do networked systems fill.

Networks: What kind of networks are in common use.

Network Systems: How a network can be a single system, and how
different systems can become a network.

Protocols: The rules by which networked entities interact.

Internetworks: The different kinds of "networks of networks" that are the
subject of this book.

This Page Intentionally Left Blank

Network Addresses,
Network Names

Every network requires some mechanism by which individual nodes can
be differentiated. In practice, this means every node is assigned a unique
identifier or address, and in every network there is some mechanism by
which this address can be associated with the correct node.

Network addresses provide the precision necessary for computers and
other digital devices to interoperate across a network; network names offer
people an easier way to interact with devices across a network. People do
better with names than with numbers, particularly when the numbers are
long and apparently random.

This chapter describes approaches to network addressing and network
naming for commonly used network protocols.

33

34 Part One ~ Concepts and Fundamentals of Networking

3.1 Scalability and Network Naming/Numbering
Small and simple networks have small and simple naming and numbering
problems: assign each node an address and a name, write all names and
addresses into a file (known in internet terms as a hosts file), and put a copy
of that file on all nodes. When a node's user needs to access another node
by name, the node looks up the name in the hosts file and directs data to
the address associated with the name.

The network administrator adds entries to the hosts file when nodes are
added to the network, removes entries when nodes are removed, and
changes entries when the node's name or address changes. For a small
network of a few nodes, this network configuration file may take a few
minutes to set up and distribute to networked nodes initially and may
never need to be updated. Figure 3-1 shows the kind of simple network
where this approach works best.

Centralized network naming and numbering becomes more difficult as the
network increases in size. In fact, the task grows considerably as the size
of the network increases. Adding one node to a five-node network means
editing a hosts file on each of the five existing nodes and putting a copy
of the file on the new node: six actions. Adding one node to a 100-node
network means editing the hosts files on each of 100 existing nodes as
well as putting a copy on the new node. The same event (adding a node)
generates 20 times as much work in the larger network.

AL

I

CHUCK

N

BOB DINA

Hosts file
ELLEN ZORCH

N Nit
I I

F R E D BLARG ZORCH

n

n
�9 .

N + I

Figure 3-1: A simple naming and numbering scheme.

Chapter 3 �9 Network Addresses, Network Names 35

. / /
/

.... ' ' ' 2

" [~ . . . : . , . , . . , . . . , , " �9

! , !

M
/

Figure 3-2: A network with a naming and numbering server.

Network naming and numbering in a network with hundreds, or even
thousands, of nodes can be automated, with a centralized server managing
the updates- -or even providing the service of translating network names
into network addresses. However, doing so requires having up-to-the-
minute information about network nodes, and having a mechanism for
propagating changes to all nodes without drowning the network in traffic.

Figure 3-2 shows the kind of network where a hosts file approach wouldn ' t
work: while not messy, the network is big and complicated. Every time
a new node is added to any of the networks, it must request name and
address assignment from the name and address server. The difficulty of
building such a server increases as the number of nodes increases because
the server must be able to handle simultaneous requests. Complexity
also increases as more networks are hooked together because the name
and address server must find a way to uniquely identify where on

36 Part One �9 Concepts and Fundamentals of Networking

the internet each node is located. If we're using the same sequential
address assignment approach illustrated in Figure 3-1, the volume of
information needed to locate each node explodes as the number of nodes
increases.

As the internet continues to grow, any centralized approach to names and
addresses fails. Networks with tens of thousands, hundreds of thousands,
or millions of nodes, all located on thousands or hundreds of thousands
of different interconnected networks, would overwhelm any centralized
system.

Managing network naming and addressing centrally in such large internets
would be a nightmare: any and all changes to any and all ne tworksnnew
nodes, moved nodes, removed nodes--must be reported to the central
authority, which must enter them into its system immediately and make
sure that all changes are propagated out to all other networks and nodes as
needed, and all without taking up too much of the internet's bandwidth.

Centralized systems capable of dynamically serving any significant per-
centage of the global internet are rare (if they exist at all). Depending on
how they are implemented, they tend to work well with small populations
but performance and effectiveness degrade as the size of the population
being served grows; the point at which they fail will vary, but not the
ultimate result.

The alternative is to distribute the system function across the network.
Naming and addressing tasks are distributed throughout today's global
internet, with different organizations dividing responsibility for allocation
on a global scale. At the top level, a handful of groups manage infor-
mation about the most broad categories of names and addresses; these
groups delegate responsibility for naming and addressing within those
categories to whichever organizations are best placed to do so. The top
level organizations don't care about individual node names or addresses;
the organization maintaining a network is assigned the task of keeping
track of that kind of information.

This type of system, where parts of the system are managed by many dif-
ferent systems distributed throughout the internet, is called a distributed
system. Most commonly seen as a distributed database, where data about
the internet is stored on the internet (rather than collected and stored
centrally), this approach has become a mainstay for several important
internet applications and functions. (We'll see distributed systems used for

Chapter 3 �9 Network Addresses, Network Names 37

addressing of LAN interfaces, internet addresses, internet domain names,
internet network management data, and elsewhere.)

Here are some of the reasons centralized systems fail to scale well, and
why distributed systems tend to do better:

�9 Centralized systems are susceptible to dramatic failures. When
a single node provides an indispensable service to a network,
pulling the plug on that node effectively pulls the plug on the
entire network. When the indispensable service is provided by
thousands of widely distributed nodes, the network is unlikely
to be brought down by bringing down all of those nodes
simultaneously. Also, whatever network connection feeds the
centralized system also becomes a target for a dramatic failure.

�9 Centralized systems tend to generate a lot of network traffic.
Every time a network or node changes in any way, information
about that change must be communicated to the centralized
name and address servers. The volume of traffic needed to keep
everyone up to date increases much faster in a large internet
than in a smaller one.

�9 Not only would that flow of data flood into the centralized
system, it would also use a significant portion of available band-
width throughout the network to carry updates as well as to
carry requests for up-to-date information from nodes through-
out the internetmeven when a node seeks information about a
local node, the request would have to travel all the way to the
centralized system and back.

�9 Centralized systems tend to perform less well than distributed
systems because any single system (whether or not that means
a single computer or a parallel supercomputer) may have to
handle millions of concurrent requests. That means ever-faster
processors, more RAM, and bigger and faster data storage
systems to support a growing network.

�9 Centralized systems tend to perform less well than distributed
systems because all the extra network traffic they generate
tends to slow down all network performance.

�9 Centralized systems perform less well than distributed systems
because requests and responses to and from remote nodes must
travel greater distances to get to the centralized server and back
across the internet.

�9 Centralized systems must contend with the serious logistical
problem of tracking addresses and names for every attached

38 Part One ~ Concepts and Fundamentals of Networking

node-all updates must somehow be sent in to the centralized
system, processed and stored, and retrieved on demand. That
means as the number of nodes increases the proportion of time
that the centralized system is out of sync with the actual internet
also increases.

It is ironic that demand for internetworking grew largely from the need to
provide remote access to centralized systems, but rather than facilitating
those centralized systems, the internet fosters decentralization of those
systems.

These themes will repeat throughout this chapter as well as through-
out this book. As will become clear with discussion of the Domain
Name System (DNS), the Simple Network Management Protocol (SNMP),
and IP addressing, this approach uses the networks connected to the
internet to serve as the internet's name/address translation infrastruc-
ture and creates the ultimate in distributed relational database systems
by storing network management information within the internet's own
infrastructure.

3.2 Network Identification Terms, Defined

We've already discussed the differences and similarities among network
designations such as intranet, internet, extranet, and so on. Individual
networks and internets often have their own names, just as geo-political
entit ies--whether cities, provinces, or nat ionsmhave names, but each is
also an instance of a certain type of entity.

Hostname" Any node, whether or not is an actual host, may be assigned
one or more hostnames. 1 While computers work best with numerical
addresses, humans prefer names; a hostname is, therefore, a conve-
nience to make networks more usable for people. Although a host-
name and a network address may be strictly linked on a one-to-one
basis, that is not a requirement. A single hostname may be shared by
more than one node in order to improve responsiveness: all requests

1However, a node is not required to have a hostname under IP version 4 (the current
version); IPv6-enabled applications rely on hostnames to determine whether a node supports
IPv6. See Chapter 27 for more details.

Chapter 3 �9 Network Addresses, Network Names 39

to a particular hostname can be shared among several systems. A
single node may respond to more than one name to improve effi-
ciency: a single node may host many services, with many different
names.

Domain name: Identifies the system within which hostnames are admin-
istered. In today 's internet, hostnames consist of two or more parts
separated by a "dot" or period (.). Top-level domains include .com,
.org, .biz, and .net; the specifics of the system are discussed in
Chapter 8. Below the top level domains, sub-domains can be assigned
to organizations or individuals. The domain name is used to manage
access to the domain name holder 's internet systems, and is expressed
in the form of example.net or example.com. 2

Fully qualified domain name (FQDN): Completely identifies the host-
name across the entire naming domain by concatenating a hostname
with a domain name. Every network in an internet might have
defined the hostname "dilbert", but each instance of "dilbert" can
be differentiated by expressing its FQDN, like this: dilbert.example.net
or dilbert.example.com.

Mail address: Often incorporates host and domain names, but each mail
address must point to some entity. The entity may be a person
(e.g., pete@loshin.com points to the author), a group (e.g., mail
addressed to support@example.com may be delivered to any mem-
ber of an organization's support group), or a function (e.g., mail
addressed to subscribe-mailing-list@example.com may trigger an auto-
mated response from a mailing group system).

Domain name system (DNS): Is a system used in the internet for linking
names with addresses. Submit a request to resolve (or determine an
address that is associated with the name) a fully-qualified domain
name to the DNS and it will respond with a numerical address to
which to send any data intended for that name (or an error code if
the FQDN is not valid).

2The domains example.corn, example.net, and example.org have been reserved for use as
examples in documentation. See RFC 2606, "Reserved Top Level DNS Names." By setting
aside the example.* domains, the IETF insures that real domains are not flooded with well-
intentioned attempts to "try things out." Domains such as acme.com, xyz.net, and abc.org
are among those that are burdened in this way.

40 Part One �9 Concepts and Fundamentals of NetworkJng

3.3 Binary and Hexadecimal Numbering
Understanding binary and hexadecimal numerical representation is a vital
part of understanding computer networking. Computer networks, like
computers themselves, use binary rather than decimal numbers. A binary
digit, or bit, represents a single crumb of information: it is either on (1) or off
(0). See the table below for more about binary and hexadecimal numerical
representation.

The characters "1010," interpreted as a decimal number, represents the
value one thousand and ten. The zero in the least significant (rightmost)
digit means there are no ones (10~ the one in the second least significant
digit means there is one ten (101), the third least significant digit means no
hundreds (102), and the most significant digit means one thousand (103).

However, these same numerals can be interpreted as a binary number.
Each binary digit (bit) of a binary number represents a power of 2 in the
same way that digits of a decimal number represent a power of 10. Just as a
4-digit decimal number can be given a value of anywhere from 0 (or 0000)
through 9,999, the 4-bit binary number can be given a value of anywhere
from 0000 through 1111. While the 4-digit decimal number can have any
of 10,000 unique values, the 4-bit binary number can have any of only 16
values:

Decimal Binary [Hexadecimal

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

Chapter 3 �9 Network Addresses, Network Names 41

Decimal Binary II Hexadecimal

11 1011

12 1100

13 1101

14 1110

15 1111

B

C

D

E

F

Computers have long used 8-bit binary numbers, which can represent the
equivalent of decimal numbers 0 through 255, as a standard byte. A single
byte consolidates the data contained in eight separate bits and provides
humans with a more convenient and less confusing form of expressing
data. Instead of using 256 different permutations of eight bits, we use 16
different symbols to represent each of 16 different permutations of four
bits, and then we're able to represent our 8-bit bytes as the 256 different
permutations of two of those 16 symbols.

So, an 8-bit value (e.g., the equivalent of 200) can be represented as an
8-bit binary number:

Ii00 i000

We've got 1 in the most significant bit (128) plus 1 in the second most
significant bit (64) plus I in the most significant bit of the second 4 bits (8).

Another way to represent the same value uses a set of 16 characters to
represent hexadecimal or base-16 numbers in the same way the characters
0-9 represent the decimal or base-10 numbers. Hexadecimal, or hex for
short, numbers use 0-9 for the first ten values, and A-F for the values that
correspond to decimal 10-15. Thus, expressing the decimal number 200 as
hexadecimal gives us:

OxCA

Things to note here:

Hex numbers are signified by the prefix "0x" to differentiate
them from decimal values. When a hex number uses values
A through F, it is easily differentiated from decimal numbers,
but the hex value for the number "89" is not the same as the
decimal value.

42 Part One �9 Concepts and Fundamentals of Networking

Hex values may be represented with the upper or lower case
values A-F, a-f; however, upper and lower case symbols are
not normally mixed in the same number.

All hex values in this text will conform to this convention, using the "0x"
prefix and upper-case A through F.

3.4 Network Addressing Spaces
Network nodes must be distinguished in some way for them to be reach-
able. In other words, a network node's address must be unique within its
network.

The public switched telephone network (PSTN) provides the most obvious
example of unique addressing within a network.

Within an entity such as a corporation, you can reach individuals using
their internal extension numbers. These are often as short as two digits or
as long as five or more. Each extension uniquely identifies a particular net-
work interface (the telephone jack). There may be hundreds or thousands
of individual businesses or branches that have assigned some or all of the
same extensions to different people.

Knowing the extension alone is only enough if you are calling from within
the domain in which that extension is unique.

Likewise, you may be able to use seven digits to reach a number that shares
your three-digit area code within North America. That same number may
be duplicated elsewhere in North America, with different area codes. In
that case you would have to dial the entire 10-digit number, but only if you
are calling from a number that does not share the same area code with the
number being called. (This type of differential address length in the PSTN
in North America is increasingly being eliminated as subscribers are being
required to dial the country code (1) plus the entire 10-digit number.)

Three things can happen when you attempt to make a connection to a node
whose address is not unique:

The connection is completed correctly. In this case, there is no
way to tell that there is a duplicate address.

Chapter 3 �9 Network Addresses, Network Names 43

�9 The connection is completed, but to the wrong destination. In
this case, one or both endpoints may--or may not--become
aware something is wrong.

�9 Anerror condition is produced. This may be an explicit error
message of some sort, or the connection may be refused silently,
or some other error that is apparently unrelated to the duplicate
address may be reported.

Depending on the network, the nodes, and the protocols being used it may
be difficult to predict which of these things will happen--or whether the
same result will occur each time an attempt is made.

Thus, all nodes in a network are assigned unique addresses. As networks
become larger, longer network addresses must be used to ensure all nodes
can be identified uniquely. An "address space" refers to the general shape
of a network's addressing domain.

For example, the North American PSTN address space consists of ten dec-
imal digits. The absolute maximum number of nodes that can be uniquely
addressed within this space is 10 TM, or 10,000,000,000 (anything in the range
of 000 000 0000 through 999 999 9999 would be considered part of the
address space, for a total of 10 billion unique addresses).

Network address space lengths are usually discussed in bits, not digits.
An 8-bit address space can have 28 unique addresses; everything from:

0000 0000

through

Iiii iiii

(in decimal, O)

(in decimal, 255)

for a total of 256 unique addresses.

This book concerns itself with only a few network address spaces. These
include:

Ethernet and other IEEE standards-based networks use a 48-bit
media access control (MAC) address scheme.
IPv4, the version of the Internet Protocol (IP) in general use
since the early 1980s, uses a 32-bit address space. (IP is the
protocol that defines how all internet traffic is packaged and

44 Part One �9 Concepts and Fundamentals of Networking

delivered. IP version 4, or IPv4, is the current standard for vir-
tually all internet traffic. Earlier versions [1,2,3] were used to
designate earlier versions developed during research of what
eventually became IP. Version 5 was assigned to an experi-
mental protocol. IPv6 updates IPv4 to support much larger
internets, and is discussed in Chapter 27.)
IPv6, the version of IP developed to succeed IPv4, uses a 128-bit
address space.

It is simple to determine the theoretical maximum number of nodes pos-
sible in a given address space: take the number of bits in the address
space (call it N), and calculate 2 N. An 8-bit address space can sup-
port no more than 28, or 256, unique addresses; a 24-bit address space
would ~ support a theoretical maximum of 224, or 16,777,216, unique
addresses.

In practice, network address spaces invariably support far fewer than
their theoretical maximums. For more about address space utiliza-
tion rates, see RFC 3194, "The H-Density Ratio for Address Assign-
ment Efficiency: An Update on the H ratio." Each of these address
spaces will be discussed in more detail (IPv4 in Chapter 19, IPv6 in
Chapter 26, and Ethernet in Chapter 21), but looking at each briefly
here will introduce some issues we will return to throughout this
book.

There is also a network of sorts within all IP nodes, consisting of software
entities that handle incoming and outgoing data on behalf of different
applications within the system. This gives nodes a way to differentiate
between data being sent to a mail application from data being sent to a
web server application.

This internal "network" assigns unique "ports" to network traffic handled
by each node program. Port numbering is not usually discussed in the
context of network addressing, but it is an important component of the
TCP/IP protocol stack and it helps to consider it as a form of address.
Ports are discussed in more detail in Chapter 15.

At the same time, ports aren't really network addresses because early on
in the TCP/IP protocol suite development process it became clear that
assigning static addresses to processes--which by their nature are dynamic
and mutable---would be a bad idea.

Chapter 3 �9 Network Addresses, Network Names 45

3.4.1 NETWORK AND INTERNET ADDRESSES

Nodes connected to any internet will be associated with at least two
addresses, at two different levels: the local network interface and the
internet interface. Note the wording: a node has network interfaces; the
network interfaces are given addresses.

The address used to reach a node's interface on a LAN (or whatever
medium the node's interface is connected to) usually has no nothing to do
with the address used to reach its interface on an internet. Communication
between nodes on a shared medium is brokered through the use of the
interfaces' (local or network medium) network addresses; these may be dic-
tated through hardware (see next section) or they may be assigned through
some local network facility.

The network address may be a physical address, literally encoded phys-
ically into the interface; the internet interface is given a logical address
that can be linked to the physical address. Why two addresses? Because
the physical address may be subject to all the ills that can befall anything
physical: the network interface device can break, be replaced by a better
interface device, be turned off, and so on. If the logical address is linked
irrevocably to the physical address, then a new logical address would have
to be issued any time the interface device is replaced; by linking the two
addresses more loosely, the logical address can be maintained when the
network interface is changed or replaced, when the system with the net-
work interface is moved to a different type of network, even when the
entire system is replaced by a different system, on a different physical
network, all moved to a different location.

The thing to keep in mind is that local or shared medium communications
are not interoperable except (perhaps) when used between interfaces that
use the same type of shared medium and protocols for communicating
on that medium. Figure 3-3 illustrates how these two addresses work.
Nodes A and B are on the same local network and can reach each other
directly (from network interface to network interface) using their network
addresses, 0001 and 0010.

They can also communicate using internet-level protocols by encapsulating
(the process of wrapping data into a payload or package-packet defined
by the protocol) their messages in the internet protocol and communicating
over the local network medium. The data are addressed at the internet

46 Part One �9 Concepts and Fundamentals of Networking

Internet address 0 x 2

iiii!~i!ilil NIC address #1

I
NIC address #2

181
Internet address 0 x 1

Internet address "
O•

N~ IC address
~ * * ~ "W5"

~,... ~

41 ~'. �9 % d.. ~ '"~!~
~ .~
~,' . ~

~...,; .~c~
..%~

Figure 3-3: Network and internet addresses.

level, but no data can be transmitted until (somehowmwe'll cover the
details of how it works in increasing detail throughout the book) the sender
figures out what network address corresponds to the internet level address.

Node A can communicate with Node C, only that node's network level
address ("W5") is meaningless to Node A. Node A's address space doesn't
support characters, only the numerals 0 through 9, so it has no way to use
that information--but it doesn't have to. When a node must send data out-
side the local network, it will address it to the destination node's internet
level address, pack it up with the appropriate local network protocol and
send it to whatever local system has been designated to deal with moving
data outside the local network.

How to assign internet level addresses? Here are some options:

�9 Sequentially. Not a good idea because it requires a central-
ized system to keep track of which systems are using which
addresses.

�9 Distribute sections of the address space and delegate address-
ing authority to network administrators. A much better idea,

Chapter 3 �9 Network Addresses, Network Names 47

because nodes all get globally unique addresses, but remote
networks need only know about who is responsible for the sec-
tions of address space without worrying about how to locate
individual nodes.

Delegation works best. Local network addressing is a matter for the local
network. Internet addressing is done separately, so each network interface
will be associated with a local address having local significance, and with
an internet address, having internet-wide significance. The two addresses
are linked only within the local network.

Although one might think otherwise, there is no strict one-to-one cor-
respondence between local network addresses and internet addresses.
A single node may have a single internet address but several local network
interfaces (a high-availability system that requires redundant network
connections, for example). Another node may have a single local net-
work interface, but may have several different internet level addresses
(a system providing hosting or other connectivity services on behalf
of several different organizations, for example). Finally, a node using
a single internet address may, at different times, have different local
network addresses (a system undergoing service or upgrade may use dif-
ferent network interface cards, with different network addresses, over a
short time).

The internet address gives enough information to get data across the inter-
net; the network address contains enough information to get the data across
the local network once it arrives from its source.

3.4.2 IEEE MAC ADDRESSES

The Institute of Electrical and Electronics Engineers (IEEE), a non-profit
technical professional organization, provides various services to the com-
munity of engineers as well as engineering-related industries through its
technical publishing, conferences, and consensus-based standards activi-
ties. IEEE network protocol standards form a vital core for many types
of network, particularly for local networks and how data are transmitted
across network media.

The IEEE maintains a local network interface address space for the world's
network hardware manufacturers. To assign local network interface

48 Part One �9 Concepts and Fundamentals of Networking

addresses to hardware interfaces, manufacturers must obtain an IEEE
Organizationally Unique Identifier (OUI) company ID, defined on the IEEE
web site this way:

An OUI... is a 24 bit globally unique assigned number referenced by
various standards. O UI is used in the family of 802 LAN stan&rds,
e.g., Ethernet, Token Ring, etc.

Manufacturers use their OUI (the privilege costs $1,650.00) as the left-
most (most significant) 24 bits of their own portion of the interface address
space. 3 This prefix identifies the manufacturer in the same way that the
first 3 digits of a North American telephone number indicate an area
code.

For example, Sega Enterprises, Ltd., is assigned the hexadecimal prefix
00-D0-F1 (in binary, that' s 0000 0000-1010 0000-1111 0001). The hardware
or MAC address of any network adapter built by Sega would use this
prefix; Sega is permitted to assign the least significant 24 bits in any way
it chooses.

IEEE-compliant network interface addresses are therefore 48 bits long;
as many as 2 to the 24th (almost 17 million) OUIs can be supported,
each supporting the same number of individual network interfaces. This
addressing scheme can support an absolute maximum of no more than
281,474,976,710,656 (over 280 trillion) unique addresses.

These addresses demonstrate how a single address space, particularly
a large one, can most easily be managed in a decentralized manner.
Hardware manufacturers should be able to manage assigning unique iden-
tifiers to all their products, just as they can assign serial numbers to their
products. They can also subdivide the part of the space they own by
splitting off bits to associate with different factories. For example, a manu-
facturer can split their 24-bit address space into four 22-bit address spaces,
or 16 20-bit address spaces.

The IEEE can likewise segment the other half of the 48-bit address space to
simplify administrat ion--or they can just build a database that they know
will never exceed roughly 17 million OUIs.

3See the IEEE web page. Available at: http://standards.ieee.org/regauth/oui/oui.txt, for
a complete listing of all assigned OUIs.

Chapter 3 �9 Network Addresses, Network Names 49

Delegating responsibility downward through an address space is an excel-
lent way to turn a potentially unmanageable task (assigning trillions of
unique addresses) into one that is very manageable. We will encounter
decentralization through delegation when we discuss the DNS in Chapter 8
as well as in the discussions of routing in Chapters 22 and 23.

3.4.3 IPv4 ADDRESSES

The most important aspect of the IPv4 address space is its size. At 32 bits,
the absolute maximum number of unique addresses possible is over four
billion. In practice, some experts claim that we have already exceeded the
capacity of IPv4 to uniquely address nodes, with hundreds of millions
of users already on the public Internet as well as perhaps billions more
to be added with the implementation of IP on mobile telecommunicaions
devices.

When the specifications for IPv4 were being written, computers were
almost all large, expensive, multi-user systems; IPv4's creators anticipated
neither the success of their protocol or of the PC itself. Had they imagined
that their protocol would still be in wide use 20 to 25 years later, they
would likely have built in more scalability. The largest early IP networks
sported fewer than 100 nodes and grew relatively slowly for years before
they reached tens of thousands of nodes, so the lapse is understandable.

Protocols that have been developed in an organic way, as those in the
TCP/IP are, change in response to their environment. IPv4, however,
is locked in to a 32-bit address space (as we shall see in Chapter 19).
For reasons of performance, backward compatibility, and interoperability,
IPv4 can not readily be patched to support more unique addresses. With
prophets of gloom and doom proclaiming the imminence of the depletion
of the IPv4 address space since the early 1990s, many network professionals
believe that IPv6 is a solution in search of a problem.

However, researchers pursuing at least three general approaches have
managed to prevent IPv4 from melting down. Some of those approaches
have been so successful that opponents of IPv6 believe there is no reason
to move to another version of IP for the foreseesable future. The details
are discussed in Chapter 27; the use of these approaches, as well as others
that are inappropriate, help illustrate how network protocols can evolve
to address changing circumstances.

50 Part One �9 Concepts and Fundamentals of Networking

3.4.4 IPv6 ADDRESSES

At 128 bits, IPv6 addresses are quite long and support an unimagineably
huge number of network nodes. IPv6 addresses are intended to be split in
hal l with the most significant 64-bits used to identify the network and the
least significant 64-bits to identify nodes.

IPv6 service providers will fall into several categories, from the huge to
the small. The very largest providers will be given more bits in the most
significant half of the address, while smaller providers get fewer bits to
control.

The striking difference between IPv4 and IPv6 is that all IP service users,
no matter how small--including individualswget a network address.
Individuals would be unlikely to have control over any network address
space (the most significant 64-bits), but they do have control over the
64-bits of user address space. Thus, each individual subscriber would,
potentially, be able to uniquely address as many as 264 (roughly 18 billion
billionm18,000,000,000,000,000,000) nodes.

The significance here is that the people developing IPv6 are building in
plenty of room for future growth. As an experimental and experiential
network, the internet requires scalability to be successful. What works for
hundreds or even hundreds of thousands of users may not necessarily
work for millions or hundreds of millions of users.

Though it's impossible to determine how many IPv4 nodes currently exist
on the internet with any degree of certainty, it would be hard to argue that
in early 2002 there are no fewer than several hundred million (108) and
likely no more than a billion (109) or so. Considering that IPv4 was designed
for an experimental network in which there may have been some tens (102)
to tens of thousands (105) of nodes, the protocol scaled remarkably well
and enabled internet growth over two decades of as many as 7 orders of
magnitude with minimal change. (Orders of magnitude are used to roughly
indicate scale, rather than for precise measurement. A group of 50 and a
group of 200 are both considered to be on the same order of magnitude: 102.
Growing by a factor of seven orders of magnitude is roughly equivalent to
increasing by a factor of 10 million times the original size.)

IPv6 also teaches the lesson of building up relatively complex protocols
based on relatively simple protocols. Lessons learned from IPv4 and IEEE

Chapter 3 �9 Network Addresses, Network Names 51

MAC/OUI addressing are applied to IPv6: delegation of responsibility for
more or less local node addresses is extended to IPv6. Likewise, one key
method for assigning IPv6 network addresses relies on network interfaces
using IEEE MAC addresses. And experiences with IPv4 convinced the
people working on IPv6 that splitting the address space in hal l one half for
uniquely specifying a network and the other half for uniquely specifying
a node within a network, would help improve network performance over
IPv4's more flexible approach to network and node addressing.

3.5 Network Names

Network names are most useful for humans, who have trouble deal-
ing with apparently random strings of characters but are much better at
remembering names to which they can attach some meaning. Networked
computers can function happily without names but naming can be useful
even in a small internet, especially when an important system must be
moved from one network to another and its addresses must change: the
name remains constant.

The dominant naming mechanism within IP networks, the DNS, will be
discussed in Chapter 8.

For now, suffice it to say that any properly named network node will nor-
mally be associated with at least one network address. Properly addressed
nodes may be associated with one or more (or no) network names. Though
some networks may be composed of nodes that are all uniquely addressed
as well as uniquely named, this is not a requirement. Nor is it necessary
that the same node always have the same address.

Nodes in a network may share a pool of addresses, to be used for a set
period and then returned to the pool. Thus, a node's address may change
over time, while it retains the same name. Conversely, nodes may have
their own unique network addresses but may all be associated with a
particular network name; connecting to the network name does not
necessarily guarantee that the connection will be with the same node every
time a new session begins.

While it is possible to impose a simple one-to-one relationship between
network names and addresses, doing so tends to limit the network.

52 Part One �9 Concepts and Fundamentals of Networking

Allowing more flexibility, as we will see in Chapter 8 and Chapter 27,
makes possible a more scalable and extensible network.

3.5.1 DELEGATION OF NAMING AUTHORITY

Just as network addressing tasks are best delegated, so too are network
naming tasks. Local names are handled locally; global names are handled
globally. Thus, within a local naming domain (say, the author's family), a
single name ("Pete") is enough. Outside the local name domain, the first
name is irrelevant as long as it is possible to deliver a package to the right
name domain. Thus, it is sufficient for someone in Europe to get enough
information to address a package to "Loshin in Massachusetts in the USA";
they don't need to target their data any more accurately because I'll be able,
locally, to sort through packages intended for me and those intended for
other family members.

To oversimplify how DNS works, the top level domains can be queried to
find out about names at the next layer. Consider a FQDN for a hostname
within the example.com, naming domain:

el mo.boston .example.com

The DNS system that serves the .com domain will respond to a request for
more information about reaching the domain example.com, and the DNS
system serving example.com will respond to a request for information
about reaching the boston.example.com domain. A DNS system serving
the boston.example.com domain will respond to requests about the host
elmo. At the .com level, DNS can answer only the question of where
example.com can be reached. More details are available only by tracing
through the hierarchy and getting increasingly localized information.

We'll return to naming authorities and distribution in Chapter 8, where
DNS is discussed in greater detail.

3.6 Chapter Summary
In addition to expanding on the development of a networking language,
begun in Chapter 2, in this chapter we look at the challenges of identifying

Chapter 3 �9 Network Addresses, Network Names 53

networked systems uniquely, particularly when the network may consist
of many millions of systems.

You should now be able to differentiate a hostname from a domain name,
as well as understand how to express numerical addresses in decimal,
binary, and hexadecimal numbering systems.

Although several different addressing schemes are introduced in this
chapter, the primary objective was to illustrate the different challenges
facing any protocol designer wishing to uniquely identify nodes on a
network. Likewise, the primary goal of the section on network naming
was to introduce the TCP/IP approach to network names.

In the next chapter, we will put some of these new vocabulary words to
use as we discover how networks actually work.

This Page Intentionally Left Blank

Applying Networking
Concepts

In the last chapter we encountered network naming and addressing
concepts; this chapter introduces fundamental networking concepts:
how nodes manage to initiate, maintain, and manage connections.
Rather than attempt to explain real technologies while demonstrating
these concepts, we'll use imaginary network media and protocols that
provide simple models for grasping the relevant components of each
concept.

Although these imagined networks and protocols may mirror actual net-
work protocols in a simple-minded way, they were created to demonstrate
aspects of networking in a theoretical and general way rather than to
accurately describe any actual protocols.

$$

56 Part One �9 Concepts and Fundamentals of NetworkJng

4.1 Virtual Circuits

The simplest type of network connects two nodes through a single medium.
For example, two tin cans connected by a length of string. Data emanating
from one node (words spoken into one tin can) has only one route available:
through the medium (the string) to the other node (other tin can). This is a
non-virtual circuit. The connection is direct.

Now, imagine a more complex network, consisting of several tin cans,
each connected by a string to corresponding cans located centrally, with a
human operating the central cans at all times (Fig. 4-1). All callers can con-
nect directly only to a single location, yet all callers can connect indirectly
through that central location.

A conversation proceeds like this:

1. The originating caller connects to the central office, saying
"Hello, are you there operator?" into the can.

Figure 4-1: Tin can network.

Chapter 4 �9 Applying Networking Concepts 57

2. The central office operator responds, saying, "Hello. I hear you.
Can you hear me?"

3. The caller responds, saying, "Yes I hear you. Can you connect
me with <subscriber name>?"

At that point, the operator has two options. First, the operator must ask
the caller to hold on while he attempts to make a connection with the
party being called. If that party is available, the operator initiates a connec-
tion; if not, the operator tells the original caller that the connection is not
possible.

The protocol the operator uses to initate the connection with the intended
callee will look very much like that used by the originating caller,
except that the operator takes on the role of the originating caller.
The operator opens the conversation by saying "Hello, are you there
<subscriber name>?" And the subscriber responds by saying that she
hears the operator, followed by the operator getting back to the original
caller.

The caller and callee (A and B in Fig. 4-1) communicate through the oper-
ator. A says something to the operator, the operator repeats it to B; B
responds to the operator, and the operator repeats it to A.

All data sent between A and B is delivered by the operator, but each end
node on the network gets their data just as if the call had been direct.
This is a virtual circuit. To ensure that all data is delivered accurately and
completely, you can add rules to the protocol:

�9 If a speaker is talking too fast (sending too much data,
too quickly), the listener can request her to repeat the last
n words.

�9 If a speaker is talking too slow, the listener can let her know
that she can speak faster, up to n words per minute.

�9 Data can be verified in different ways to increase confidence in
the accuracy of the connection.

�9 Confirmation of receipt of data can be required to provide
guaranteed delivery.

By including rules about confirming that the conversation is being received
correctly, this protocol results in a connection that behaves in the same way
as a real circuit.

58 Part One �9 Concepts and Fundamentals of Networking

4.2 Bandwidth and Throughput
As we talk about a network like this, one might suggest that a simple
conversation could take considerably longer than conversations con-
ducted either in person or over the PSTN. Two aspects of network
performance regulate whether or not such a network can perform an ade-
quate job of carrying human conversation. Bandwidth is the measure of a
channel 's data carrying capacity, expressed as an amount of data that can
be delivered in a time period, while throughput is the measure of how much
actual data is observed to be delivered in a time period.

Al though bandwid th and th roughput are often used as if they mean the
same thing, bandwid th is usually used to mean the m a x i m u m theoretical
capacity of a link, while th roughput usually is used to mean how much
data is actually being passed on that link.

4.2.1 MEASURING BANDWIDTH AND THROUGHPUT

Bandwidth and th roughput are usually espressed as some number of bits
per second (bps); most modern networks provide capacity for thousands
(kbps), millions (mbps), or even billions (gbps) of bits per second. 1

Strictly speaking, bandwid th is the m a x i m u m possible amount of data that
can be transmitted over a medium, according to the laws of physics. Our
tin can string is capable of carrying much faster speech, and there may be
other protocols for encoding data into a string signal that can carry even
more data.

We'll use a simple and accessible example to illustrate. For this example,
we'll make some assumptions2:

�9 The average human speaks at an average rate of two
words / second , or 120 words /minu te .

�9 The average word consists of five characters, plus one character
of punctuat ion (space, comma, period, and so on), for a total of

1pronounced "kilobits per second," "megabits per second," and "gigabits per second,"
respectively.

2perhaps most important is the assumption that we can reasonably pretend human lan-
guage defines a protocol for encoding data (words) into signals (speech)hand that we can
meaningfully measure words, letters, and sounds in terms of the bits and bytes they encode.

Chapter 4 �9 Applying Networking Concepts 59

six 8-bit bytes of information in each word. Each word requires,
therefore, 48 bits to encode.

�9 The average human can therefore transmit data, on average, at
a rate of 12 bytes per second, or 96 bps.

�9 The absolute fastest comprehensible speech possible on string-
connected cans is eight words/second, or 384 bps. This is the
bandwidth of the string.

�9 Our tin can network allows only one speaker per line, so each
line has a maximum throughput capacity of 96 bps for average
human speech.

In practice, throughput rarely reaches the theoretical maximum. 3 A noisy
machine, a crying baby, imperfections in cabling, errors in network
infrastructure, and many more causes can reduce throughput.

For example, let's say that a tin can network link becomes so noisy that
the speaker must say each word, spell it, and then repeat it. The aver-
age word, which can normally be encoded in 6 bytes, now requires
far more information. Assuming an average of 4 letters per spoken
character plus one for the space in between each additional word, the
average word (5 letters plus one punctuation character) now requires
25 characters to spell (5 letters to be spelled out, at 5 characters/letter),
plus 6 more bytes for the repetition of the word. That's 37 bytes, or
296 bits.

Throughput has plummeted: from 96 bps (2 words/second) to about 0.33
words/second.

4.2.2 OVERHEAD

The noisy environment described in 4.2.1 calls for saying, spelling, and
saying every word transmitted. This is an example of a simple encoding
protocol. It helps avoid errors, but it also raises overhead. This is extra
data carried along with actual application data to enable network deliv-
ery. Protocol overhead reduces the amount of bandwidth available for
application data, but some is always necessary. Simpler protocols may
introduce less overhead; more complex protocols may increase overhead
significantly.

3,,The difference between theory and practice, in practice, always exceeds the difference
between theory and practice, in theory."

60 Part One �9 Concepts and Fundamentals of Networking

To send a single word (48 bits) you burn up 296 bits. A tin can string can
carry an absolute maximum of 384 bps, so the average speaker will be able
to use at best only about one quarter of that bandwidthmwhile at the same
time preventing anyone else from using it.

This say/spel l /say protocol, especially when used with rules that allow
the listener to tell the speaker to repeat a word or letter, is a form of error
correcting protocol. It makes sense if you really need to know exactly what
someone is saying. It is also costly: it slows throughput by a factor of six.
However, another type of protocol could be used to compress the trans-
mission and allow it to use more of the physical network's bandwidth. For
example, ~ e speaker could pre-record her transmission and then play it
back through the transmitter at almost four times the normal speaking rate.

Now, instead of six seconds per word, the sender gets a more reliable
encoding mechanism (say/spell/say) plus a throughput rate of about
1.33 words/second. At about 80 words/minute, this is noticeably slower
than normal speech, but still usable as long as the sender can pre-record
transmissions, and the listener can interpret them at high speed.

This example demonstrates some of the tradeoffs that are made in almost
every network protocol. Sometimes, the most important factor to consider
is speed; other times, accuracy, ease of use, or ability to detect, avoid, or
correct errors are more important.

This example is also limited to the lower network layers: encoding data
into speech and sending it out onto the tin can string medium. Let's go
back to the higher level problems of pushing speech through a network
with intermediaries such as operators involved.

4.2.3 THROUG~Z St'~ffGJES

Our tin can network suffers from limited overall bandwidth capacity
because all inter-node traffic requires the mediation of the operator. With
a single operator, no more than one transmission on the network can
take place at any given time. Adding more operators increases overall
network throughput and enables multiple simultaneous transmissions u
until the number of operators equals the number of tin cans at the central
office. The network illustrated in Figure 4-1 could increase overall capac-
ity from by adding as many as four additional operators (for a total
of five).

Chapter 4 �9 Applying Networking Concepts 61

Another way to increase capacity woutd be to double the "cabling": install
a second line between the central office and each node. All network t~ers
then have an inbound connection (to listen to) and an outbound connection
(to speak into). In this way, a caller can listen to someone else speaking
at the same time the caller is speaking. This doubling of capacity is catted
duplexing: it is a mechanism that allows a network node to be sending and
receiving data at the same time.

Remember, tin can string has a bandwidth of 384 bps, while peopte typ-
ically transmit at a little more than one fourth that rate. Another form of
duplexing lets more than one node share the same medium. In this exam-
ple, that might mean having two or more speakers using the same line
and synchronizing their speech so that whenever one paused, another one
said something. Perhaps not too practical in this case, but in real world
networks protocols often allow multiple nodes to share a single medium
by breaking all their data into small chunks and then taking turns sending
them out.

The full capacity for the network in Figure 4-1, when enhanced by duplex-
ing the links and using a single operator for every in-bound or out-bound
link, totals 3,840 bps or almost 4 kbps, because there are ten tin can string
links, each with 384 bps of bandwidth. Without any additional duplexing,
however, this network can support no more than 960 bps overall.

4.2.4 PROTOCOLS AND THROUGHPUT

However, let's stick with the original single-operator, non-duplexed
network shown in Figure 4-1. In addition to being hobbled by our slow-
speaking human operator, any attempt to build usable protocols for this
network will cut down significantly the information-carrying capacity of
the network. Ifwe were to add any features from the list of possible protocol
additions from Section 4.1, we immediately reduce our throughput.

Reduced throughput may not be so bad, if it can eliminate errors and
increase the reliability of transmissions. Here are some options and how
they affect throughput (in general the more confidence you have in a link ~
or the data you send and receive over that "li~k, the more of that hnk's
bandwidth goes into protocol overhead):

The operator could repeat the caller's words as the caller is
speaking, reducing overhead almost completely. The operator

62 Part One �9 Concepts and Fundamentals of Networking

may not hear every word accurately, but throughput could
approach (though never exceed) 120 words per minute. There is
no protocol overhead related to error checking (a mechanism that
reports whether data was changed in transit) or error correction
(a mechanism that provides enough information to reconstruct
data that was changed in transit).

�9 For better accuracy at a moderate cost of bandwidth, the caller
can request a protocol that requires the operator to listen before
sending to the other party. The protocol may permit the oper-
ator to transcribe or record transmissions; the protocol might
include a mechanism to let a listener ask a speaker to speed
up, slow down, or repeat or clarify some word or phrase. This
approach reduces throughput by half (or more).

Assuming that all transmissions are received with no
detected errors (both by the operator and the speakers), the
maximum potential throughput approaches 64 words per
minute. Each word is transmitted at least twice, once each
by speaker and operator. Any flow control mechanisms, as
well as error messages, add to the overhead and further reduce
maximum throughput.

�9 For more accuracy, more bandwidth must be sacrificed. A guar-
anteed accuracy protocol could use verification of all trans-
missions. For example, the operator could be required to
repeat each message back to the calling party before pass-
ing it along to the called party. This halves throughput
once again: sending 120 words requires 1 minute (at least)
from caller to operator, another minute from operator to
caller (to confirm content); another minute from operator to
callee, and another minute for the callee to confirm content as
well.

Maximum throughput for this protocol is reduced to no
more than 30 words per minute. In this case, the caller sends
her words to the operator ("See ya later, Myrtle"); the oper-
ator confirms with the caller ("You want me to tell the other
party, 'See ya later, Myrtle'?"); the caller confirms ("Yes");
the operator connects with Myrtle and passes on the message
("The other party says, "See ya later, Myrtle"); Myrtle con-
firms with the operator ("she said 'See ya later, Myrtle'?); the
operator confirms and Myrtle can send a response. The same
four words ("See ya later, Myrtle") are sent, at 120 words
per minute, four times. Overhead in this case is even higher

Chapter 4 �9 Applying Networking Concepts 63

as well, including all the control and confirmation messages
to be passed.
Finally, the ultimate in accuracy can be attained by an even
more rigid protocol, under which the operator confirms content
at both ends of the conversation. In addition to the exchanges
cited in the last example, once the operator confirms the content
with the called party, the operator would also confirm with the
calling party ("your party says she received the message 'See
ya later, Myrtle'; is this correct?").

With this protocol the same words are repeated five times,
limiting maximum throughput to 25 words per minute. This
protocol apparently provides error checking, but it isn't clear
whether there is a mechanism for error correction. What hap-
pens when a transmission is garbled ("See ya later, Myrtle"
becomes "Seagull ate her turtle", for example)? Error detection
protocols include data that can be used to check that no errors
occured during transmission; error correcting protocols resend
data that has been garbled.

Throughput is, therefore, a measure of how much actual application infor-
mation is being transmitted, not the speed of the link. Even more important,
different applications will require more throughput while others can man-
age with lower throughput. Given the same bandwidth, application goals
can be achieved with different approaches to the protocols used.

Real-time applications are those that rely on getting data from one point to
another more or less as the data is created. Applications that depend on
the transmission of existing files are affected by low throughput, but are
not rendered unusable by lower throughput: it may be inconvenient and
annoying to have to wait while a large file is downloaded, but eventually
it will be downloaded. Voice or video transmission are real-time appli-
cations: the sound or images will not be comprehensible if they are not
delivered more or less in order and more or less at the same speed they are
transmitted.

Developers must be willing to settle for fewer guarantees about accuracy
and delivery of their multimedia applications than they would be for appli-
cations, such as file transfer, that would fail if data is not transferred
accurately. By the same token, a variety of protocols and mechanisms
are available to the developer for choosing just the right combination of
throughput and accuracy.

64 Part One �9 Concepts and Fundamentals of Networking

4.3 Latency
With current technologies, time will always elapse between the moment
a packet is sent out the source's network interface and the moment it is
received at the destination's network interface. 4 The average elapsed time
is called the latency of a network link. Latency and bandwidth together
describe the potential performance of any given link.

A link with high bandwidth and low latency offers the best of both worlds:
lo~s of network data can be transmitted in a given time, and it will arrive at
the other end quickly. A link with low bandwidth and high latency offers
the worst: not much data can be sent in a given time, and it may take a
while to arrive at the other end.

For many years, long distance telephone calls, particularly international
calls, were routed through satellites maintaining a geosynchronous earth
orbit (GEO). At roughly 22,000 miles above the earth, these satellites
are able to "see" a large portion of the globe all at once. Any calls
routed through these satellites suffered from relatively high latency.
Transmitted at the speed of light (186,000 miles/second or 300,000
km/second), the signal must travel over 44,000 miles--adding roughly
one fourth of a second to the link latency. The result was a notice-
able and annoying delay of as much as a half second from the time
you stop talking and the time you start to hear the other party's
response.

Link latency may be related to the actual physical traversal of a link, as with
satellite transmissions, or it may be related to the route data takes across
different networks as it traverses the internet. The more routers a packet
traverses, the more likely the link is yielding high latency. Intermediate
routers and switches will always take some measurable amount of time to
process and forward a packet.

Users prefer low latency for interactive applications, including telephony.
Even if the bandwidth is relatively low, a comprehensible conversation
can be carried over a link with low latency. Other types of application,
particularly those that involve transmission of large amounts of data such
as file transfer, will prefer a link with high bandwidth even if the latency

4Networks based on quantum physics may someday reduce the elapsed time signifi-
cantly. There is some speculation that instantaneous interaction across vast distances might
be possible, but much work remains before such networks become practical.

Chapter 4 �9 Applying Networking Concepts 65

is moderately high. Consider an example:

A company uses a file transfer application to
distribute copies of the corporate database to a
backup facility every night. The database totals
i0 Mb. The company can choose between three
transfer mechanisms, one with low bandwidth
(i0 Kb/second) and low latency (i0 ms)5; one with
high bandwidth (i Mb/second) and high latency
(I0 seconds); and a third with very high
bandwidth (I00 petabytes/second) 6 but also very
high latency (12 hours). 7

Clearly, the best choice is the second one: total transmission time will be
20 seconds. It only takes 10 seconds to "fill up the pipe" with 10 Mb of
data, but every bit of data spends 10 seconds in that pipe.

The low-latency, low bandwidth option will be more appropriate to an
interactive application such as terminal emulation. In that case, one node
is sending characters typed in by a person (roughly 5 bytes/second, or
40 bits/second); the other node is sending back terminal screens full of
characters (roughly 80 x 25, or 2,000 bytes, or 16 kilobits per screen). The
bandwidth will be more than sufficient, while the low latency ensures
that the network won' t be the bottleneck in the event of performance
problems.

Finally, that last opt ion--very very high bandwidth, very very high
latency--makes sense for certain applications. For example, backing up
or moving corporate archives might best be achieved by throwing all the
tapes into a truck rather than dumping them down a data pipe.

4.4 Packet Switching and Routing
The term packet switching describes networks in which individual packets
en route from their source to their destination traverse intermediate nodes

5milliseconds.
6petabyte = 250 bytes, or 1,024 terabytes. Terabyte = 240 bytes. A terabyte is roughly 10

trillion bytes, or about 10,000 gigabytes. A petabyte is, therefore, equivalent to roughly
10,000,000 Gb.

7This last option does not, strictly speaking, describe a network solution but rather applies
networking performance measures (latency and bandwidth) to a large truck screaming down
the highway with a trailer full of high-capacity tapes.

66 Part One �9 Concepts and Fundamentals of Networking

independent of each other. Routing describes the process when interme-
diate nodes perform some level of analysis on packets, while switching
occurs when the intermediate nodes use some much simpler algorithm
for deciding how to pass the packet from node to node. Therefore, one
packet traveling from a node in Berkeley to a node in Cambridge may pass
through Evanston, while another packet traveling between the two nodes
might pass through Austin.

To illustrate switching and routing issues, we'll use a new example: a
high school math class, in which half of the students belong to a clique.
The group (known as "the group") devises a system for passing messages
from any member to any other member.

Students in this class are seated in a strict 6 x 6 array, so (assuming perfect
attendance) students have between three and eight potential message for-
warders. The student sitting in the front left corner can pass the message
to her back, to her right, and on a diagonal to her right-back; any student
seated on an "edge" (front-, rear-, left-, or right-most files) can pass the
message to five potential message forwarders. Students seated in the inte-
rior have as many as eight potential message forwarders to pass messages
(Fig. 4-2).

As with any form of communication, there are rules for transmitting mes-
sages. As with any form of communication among teenagers, those rules
may not always be obvious to adults. Rules include:

1. All messages are passed from hand to hand to an immediate
neighbor.

2. If more than one of the immediate neighbors are members of
the group, the forwarder must pick the member who is closest
to the destination.

3. If two or more of the immediate neighbors who are members
of the group are equidistant to the destination, the forwarder
can choose which to pass it to based on some "fair" metric. For
example, the forwarder can determine who will forward based
on whose turn it is, based on who is less likely to be caught by the
teacher, based on who the forwarder likes better, or randomly.

4. If there is only one immediate neighbor who is also a group
member, the forwarder must pass all messages to that member.

5. If there are no immediate neighbors who belong to the group,
the forwarder must choose a non-member to forward the mes-
sage. The forwarder may be chosen based on whose turn it is,

Chapter 4 �9 Applying Networking Concepts 67

Row 1

2 ------~

3-- -~

u') co

i !

Figure 4-2: "Classroom network."

based on who is reliable and who is not, or based on who is
least likely to get caught.

One difference between routing and switching occurs in the way forward-
ing decisions are formulated and implemented. In routed networks, the
nodes handling the task of routing (in this case, the student members of
the group) take an active part in determining optimal routes for messages.
For example, consider what happens when the students seated at the far
left in the last two rows are both members, but they are both otherwise
surrounded by non-members. If the forwarding rules cited above were in
use, any message passed between the two would (by rule #4) spend the

68 Part One �9 Concepts and Fundamentals of Networking

rest of the class passing the same message back and forth between each
other.

In a case like that, having more information about the network would
help considerably. For instance, if the student in seat 1,5 8 is sending to a
student in seat 3,3, then it would make far more sense to pass it along to
seat 2,4, only one seat away from the destination. Network information
can be distributed in different ways, as we'll see in later chapters.

In a switched network, members of the group would more likely set their
forwarding policies at the start of each class based on who was sitting
where. One simple policy might dictate that a member student (in seat
X,Y) passes messages based on the coordinates of the destination (m,n). If
the objective is to get the message closest to the destination, then the stu-
dent would calculate (X-m) and (Y-n) for himself as well as for his neighbors
and pass along the message to whichever neighbor is closer to the desti-
nation than he is. This set of calculcations can be made ahead of time, and
can incorporate adjustments to keep messages in the hands of network
members. The calculations then become a simple table listing destinations
and linking them with neighbors.

4.5 Best Effort Delivery

In discussing throughput, and the way in which it can be affected by appli-
cations that require more or less assurance about whether or not their data
has been received as sent, we talked about guaranteed delivery. The oppo-
site of guaranteed delivery is best effort delivery. Best effort means that no
guarantees are offered beyond the assurance that participating systems
will make every reasonable effort to deliver packets, but if they don't, you
shouldn't be surprised.

Packets sent by best-effort protocols either make it to their destinations, or
they don't. The only mechanism provided by a best-effort protocol to allow
a sender to confirm if a packet was received is to have the recipient reply.
Packets may be dropped by intermediate systems for different reasons,
many of which have nothing to do with either the sender or the recipient.
For example, a system overwhelmed by demand for some service will often
silently drop packets.

8Seats are identified by X,Y, where X is the column and Y is the row.

Chapter 4 �9 Applying Networking Concepts 69

This is not to say that there is no way for a sender to ever determine if a
packet has been dropped. Mechanisms for providing some sort of continu-
ity are often provided at different protocol layers (see Chapter 5 for more
about protocol layering). In other words, the protocol handling delivery of
a packet may be best-effort, but protocols handling the data carried within
the packet may provide mechanisms for checking in on remote systems to
determine if they are still up and responding to network requests.

4.6 Unicast, Broadcast, Multicast, and Anycast
So far in this book we've been assuming that network communication
occurs between a single source and single destination node. Although
intermediate systems may participate in forwarding (see next section)
packets along their paths, only the source and destination are concerned
with the contents of a packet. Yet networks often provide mechanisms for
transmitting the same packet to (or even from) more than one node.

Unicast describes the network traffic we've already met: unicast traffic goes
from a single source node to single destination node. The source is identi-
fied by its network address, and the destination is identified by its network
address. This is the "normal" mechanism for network transmission: one
sender, one recipient.

There are situations in which it would be helpful to be able to send data
once and have it be received by more than one node. We will cover three
different instances of send once/receive many network transmissions in
this book:

Broadcast refers to a mechanism that allows a node to send a sin-
gle message and have it be received by all nodes on the same
network. Broadcasts may be used with a network interface
layer protocol, or at the internet layer. Broadcasts can be used
when there is reason to transmit the same message to all nodes
on a network. There are advantages, in particular the need to
transmit the broadcast data only once rather than having to
unicast the message to every node, thus reducing overall traf-
fic. Also, all nodes can be reached whether the sender is aware
of their existence or not. Broadcast was thought to be a good
idea when it was first implemented, but experience with it in
large networks and the internet has shown that if not properly

70 Part One �9 Concepts and Fundamentals of Networking

and carefully used, broadcasts can quickly overwhelm a
network.

�9 Mul t icas t refers to a mechanism by which members of a group
of network or internet nodes receive messages directed to
a group's address. Nodes may subscribe to multicast group.
A member node sends multicast data only once to the multicast
group address and members of that group receive copies. As
with broadcast, multicast reduces traffic when one node must
communicate with a group. The sending node send group data
out only once. By limiting delivery to group member nodes
only, multicast can be much more efficient than broadcast. As
with broadcast, the sender need not be aware of all group mem-
bers, although unlike broadcast, group membership can be
limited.

�9 Anycas t refers to a mechanism by which data is transmitted to
one of a group of nodes, usually the one "nearest" the sender.

Brief examples of these transmission mechanisms will help clarify the
differences as well as the reasons for each:

�9 Broadcasts are useful when a node is booting to the network
and wants to announce its presence. As we'll see in Chapter 21,
a node entering a network must identify itself to the other nodes
on the network, to confirm that it is using a unique network
address and to notify other nodes of how to reach it; broadcast
is the best way to do so. A node may broadcast a request for a
particular service if it is not configured with information about
reaching that service directly. Broadcasts are most manageable
when confined to local links. Allowing them out into the inter-
net or an intranet may result in excessive traffic. Broadcast will
be discussed at greater length in Chapters 19 and 21.

�9 Multicasts allow groups of nodes to communicate throughout
the internet. For example, users on different local networks
can subscribe to the same multicast group to listen to an inter-
net broadcast or participate in a real-time discussion. Multicast
packets are transmitted only on those networks where nodes
belong to the multicast group; if no nodes on a network are sub-
scribed, the packets are not passed to the network. And if there
are one or more group members on a network, the packets are
passed only once to the network itself (within the network, the
packets may be reproduced for delivery to members). Multicast
will be discussed at greater length in Chapter 24.

Chapter 4 �9 Applying Networking Concepts 71

Anycasts are intended to replace broadcasts for reaching spe-
cific services on a network. Rather than sending every node
on a network a copy of a request, a request can be sent to an
anycast address. All nodes that provide a particular service are
configured to receive and respond to packets sent to an anycast
address. Anycast is a relatively new internet mechanism, and
will be discussed at greater length in Chapter 27.

4.7 Switching, Routing, and Bridging
Packets sent between nodes on the same local link are delivered through
the network's local facilities. A L A N may use a hub to pass packets from
one node to another; a wireless network may use its own network of trans-
mitters and receivers to distribute data. When one network is connected
to another network, however, something is needed to determine how to
deliver packets sent from a node on one network to a node on the other
network.

The devices that link networks and decide what to do with packets are
called switches and routers. There are also things called bridges which don' t
get talked about as much as they used to. These things all look at network
datagrams en route from their sources to their destinations, and they decide
what to do with them.

We'll get into a more detailed discussion of the differences between
bridges, routers, and switches in the next chapter; for now, it is suffi-
cient to say that these devices share the function of forwarding packets on
a network. How the forwarding is done, and to which networks, deter-
mines whether a device is a bridge or whether it is a router or switch.
Differentiating routers and switches from each other has taken on greater
subtlety over the past few years, and the differences will be detailed in
Chapter 5.

4.8 Edge, Non-Edge, and Backbone Devices
Prior to its commercialization (in the early 1990s), the internet's structure
was often portrayed as being an almost ad hoc collection of interconnected
networks linking all nodes to each other, often with redundant links.

72 Part One �9 Concepts and Fundamentals of Networking

\

/

\

Figure 4-3: Primitive internet architecture.

Routers within an organization often provided internal routing services
to nodes inside the organization as well as routing packets to nodes out-
side the organization's autonomous system (AS). Figure 4-3 shows how
this worked in the days when many organizations had only one or a hand-
ful of mult-user mainframes; distinguishing between internal and external
nodes makes little sense when there is only one internal node at a site.

This type of network may provide many different ways to reach any given
node, depending on how many hops packets are permitted to take. It
is well-suited to networks of individual nodes that may need to interact
directly but unpredictably with nodes on any other part of the network.
Distance between nodes did not always predict how often they need to
interact: nodes within a single work group may interact frequently (or
not) depending on what the users are working on. When a distant node
begins offering some interesting service, those local nodes may need to
interact more frequently with the distant node than the local ones. As a
research network linking researchers, organizational boundaries might be
blurred or at least less well protected as members of the networkused it
to interact.

In the early days, the ratio between the number of users and the number of
nodes on the internet was fairly high because most nodes were multiuser
systems and there were few if any TCP/IP implementations for PCs. The
internet linked powerful computers that might or might not be local to

Chapter 4 �9 Applying Networking Concepts 73

each other, and the map of the internet had fewer nodes per network as well
as a more ad hoc internet linkage process than we are now accustomed to.

As the internet became increasingly commercialized with widespread use
of PCs and dialup internet access through internet service providers (ISPs),
that ratio began approaching parity. It also changed fundamental assump-
tions about the way the internet worked. ISPs offering consumer internet
access no longer needed to provide much in the way of internal routing
and the focus became routing outside the ISP (though not exclusively, of
course).

Figure 4-4 shows how today's internet resembles a circulatory system,
with most of the connectivity provided by ISPs being offered in the form
of access to a larger system that feeds into a central core. For the most part,
people who connect to the same ISP have no interest in interacting with
other nodes on the same ISP's network (e.g., their neighbors), but rather
with nodes somewhere else.

By the late 1990s, a new distinction was clearly drawn between devices that
exist and manage traffic on the edges of an AS and those devices internal

,.~..

Figure 4-4: Circulating packets across the internet.

74 Part One �9 Concepts and Fundamentals of Networking

to the AS that also manage traffic. Edge devices include routers, but also
switches and security devices (firewalls) that together act on behalf of the
AS to the rest of the internet and that concentrate traffic entering and
exiting the AS.

The distinction between edge and non-edge devices is important when
considering what they do. An edge device acts as a gateway into and out
of the AS, and it can be a single point of failure for connectivity for the AS.
If the edge device (or devices) fail, the AS will seem to disappear from the
global internet. Internally, nodes on the AS would lose access to external
nodes on the global internet but all internal networking could continue
without any problem.

On the other hand, if all nodes internal to the AS were to fail (e.g., a power
failure) but the edge device continued working, the rest of the internet
would view that AS as being reachable---but would not be able to reach
any service running internal to the AS. An edge device moves packets
between the inside and the outside of an AS; a non-edge device moves
packets around inside an AS. A device could behave as an edge device for
a small AS contained within a larger AS at the same time it behaves also as
a non-edge device for that same AS. Edge devices and ASes are discussed
at greater length in Chapters 22 and 23.

4.9 Chapter Summary
If the network components defined in Chapters 2 and 3 are the building
blocks, in this chapter we begin to see how those building blocks can be
assembled into functional structures, for example by building virtual cir-
cuits. And those structures can be defined and measured, for example by
describing performance attributes (latency and throughput).

We also explored some of the ways those components can interact, through
both switched and routed networks, by exchanging data packaged for
delivery across network clouds. And we introduced some of the challenges
facing protocol designers seeking to move packets across those networks,
particularly as the networks grow larger and larger.

Network Models and
Internetworking Concepts

The chapter about the OSI and IP internetworking models, complete
with seven- and four-layer stack diagrams, has long been a mainstay for
any book about TCP/IP networking. Unfortunately, the focus on net-
work layer numbering often overshadows the fundamental concept of
how those layers make it possible for IP (or OSI) to enable seamless and
platform-independent interoperability between nodes.

In this chapter, we'll take an updated look at the OSI and IP internet mod-
els, but we'll concentrate on how encapsulation makes internetworking
possible, and the different kinds of systems that move data across network
boundaries.

75

76 Part One �9 Concepts and Fundamentals of Networking

5.1 OSI vs IP

When the International Organization for Standardization (ISO) created the
Open System Interconnection (OSI) protocol architecture, they hoped to
build, from scratch, a set of protocols from which a complete internet-
working infrastructure could be built. The OSI design was based on the
OSI reference model in which communication across the internetwork takes
place in seven different layers, between seven different entities on each
communicating system.

OSI and TCP/IP were developed virtually concurrently, with OSI for-
mally starting in the late 1970s and matured by the early 1990s. The
many significant differences between the two approaches might best be
summed up in this way: The OSI effort aimed to completely specify pro-
tocols and then implement them, while the IP approach was to implement
(and re-implement based on experimental results) and then specify the
protocols.

As a result, the vast majority of networked systems now support
TCP/IP, while OSI-compliant networks are an endangered species,
surviving in far-flung corners of the world, usually in government
agencies.

It is important to realize that OSI was not a failure, nor a misbegotten
effort doomed to join 5.25" floppy diskettes, beta video tape, and DIVX in
obscurity. The OSI effort produced many techniques that were incorpo-
rated into the internet protocol suite. Even so, there is little reason for most
networking professionals to have more than a passing acquaintance with
OSI protocols.

5.2 The OSI Reference Model

OSI is most famous for its layered network model. Seven groups of entities
interoperate across an OSI internet. At the top, the application layer is
where interactions happen between application entities: a user's browser
and a company's web server interact with each other, exchanging requests
and responses, oblivious to anything going on in between. At the bottom,
the physical layer is where network interfaces communicate by exchang-
ing signals through some physical medium. In between, there are five

Chapter 5 �9 Network Models and Internetworking Concepts 77

Layer Number Description

Application 7

Presentation 6

Session 5

Transport 4

Network 3

Data Link 2

Physical 1

The entities with which people and other
users interact to exchange network data
operate here.

Entities (applications) do something here
to negotiate the form in which data is to
be exchanged.

Entities (applications) do something here
to (possibly) manage how different pro-
tocols might be applied to a single
application.

Processes on internet nodes interact by
passing messages to each other.

Nodes on an internet interact by transmit-
ting and receiving data packets that may
be forwarded across physical network
boundaries.

Nodes sharing a network medium inter-
act by transmitting and receiving data
frames over that shared medium.

Communication between the interfaces
to the physical link, including raw sig-
nals over a wire, radio transmission over
wireless.

Table 5--1: OSI model layers.

more layers of interactions between network nodes, internet nodes, and
system processes.

Table 5-1 lists the OSI model's layers and describes, briefly, what each is
supposed to do.

The OSI model was designed to cover all possible interactions between
all possible entities. By creating seven different layers at which entities
could interact, the OSI model complicated even the most simple inter-
actions. On the other hand, such layering is quite useful in the world of

78 Part One �9 Concepts and Fundamentals of Networking

telecommunications, where it is often necessary to exert a great deal of con-
trol over how data flows, and how it is ordered, and even how meta-data
(information about information) related to managing connections can be
transmitted and managed.

5.3 The DoD (IP) Reference Model

Original lynamed for the US Department of Defense, which funded the
research, the DoD reference model (also known as the IP reference model)
developed in tandem with experimental implementations of the proto-
cols. By ignoring issues best handled individually by end nodes, such as
application data formatting and flow, the IP model largely eliminated the
presentation and session layers. Further simplifying matters, the physical
expression of bits on a local network is a matter best left between the node
and its network. In the course of traversing different networks, packets
might be expressed in photons, electrons, or radio wavesmbut as long as
the protocols used at the physical and network interface layers can com-
municate with the network layer protocols, the network layer protocols
will be able to handle the data.

The OSI session and presentation layers often seem vague in the con-
text of TCP/IP networking. Issues such as how data is to be formatted,
or what a system does with network data before it presents it to the
application, have (for most internet applications, at least) best been dealt
with locally. As long as the mail or web page or other data gets where
it's been sent, the local systems handle formatting and presenting it.
Internet applications generally delegate responsibility for session layer
issues like flow control to the transport layer, and either handle presen-
tation layer issues within the protocol or allow the local system to deal
with them.

The "IP model," to the extent that there is a formal model, is far less
strict than the OSI model. Although many TCP/IP books use roughly
the same pair of diagrams (Fig. 5-1) showing the seven layers of OSI on
one hand and the four layers of IP on the other, in practice the IP model
assumes far more flexibility and imposes far less structure on its related
protocols.

Under the IP model, the functions of the session and presentation layers
are largely subsumed into the application layer, and the physical layer

Chapter 5 �9 Network Models and Internetworking Concepts 79

Application

Presentation

Session

Transport ~ ~ r / /

~ J

O S I

J
f

J J j
J j

J j
J

Application

Transport

lntemet .
�9 .

�9 , . ; . , , : . . -

. . .

f J f / I n te rne t

Figure 5--1: Traditional "OSI versus IP" illustration.

is ignored because it is accessed only indirectly, through the network
interface layer. 1 Only the application, transport, network, and network
interface layers are considered part of the IP model. As a result, IP net-
working focuses on application, transport, internet, and network interface
layer protocols.

Figure 5-2 shows an approximation of the actual relationship among layers
in the IP model. However, that figure doesn't express the flexibility avai-
lable. Under IP, you could implement an application directly on top of IP
with no transport layer protocol; you could layer one application on top of
another, and one transport protocol on top of another, if you so desire (this
sometimes makes sense, as we'll discover when we discuss encapsulation,
as well as throughout the book).

Internet protocol specifications generally don't mandate which protocols
are to be used above or below (although there are often strong practi-
cal, logical, and technical arguments for using certain protocols together).
In general, application layer protocols are used over transport layer

1The primary importance of the link layer lies in its function of providing an interface
between the internet and the physical layer.

80 Part One �9 Concepts and Fundamentals of Networking

Applications

Figure 5-2: The IP "model".

protocols such as TCP (Transmission Control Protocol) and UDP (User
Datagram Protocol), which in turn are used on top of an internet layer pro-
tocol (IP), but exceptions are possible and sometimes even useful. There
is no technical reason one could not run a traditional internet application
over a non-TCP/IP protocol suite (such as running HTTP between nodes
on a Novell Netware network). Likewise protocol tunneling, running a net-
work session that is enclosed within another network session, is not only
possible but often required.

An extreme example is presented in RFC 3093, "Firewall Enhancement
Protocol (FEP)," published on April Fool's Day, 2001 and describing a pro-
tocol that would allow any network protocol to be encapsulated within
Hypertext Transfer Protocol (HTTP) packets. Because the only internet
application protocol typically allowed through firewalls is HTTP, the result
would allow any application protocol to pass through those firewalls.
Nodes using FEP in effect treat HTTP as their transport layer protocol.

We will return to protocol tunneling when discussing IP security as well
as multi-protocol networking.

Chapter 5 �9 Network Models and Internetworking Concepts 81

5.4 Encapsulation
Whether a network uses 5 of 7, 4 of 4, or some other combination of avail-
able layers, effective use of those layers is enabled through encapsulation.
The term may be unfamiliar, but the concept is not. If you've ever mailed
a letter or package, you've used a form of encapsulation.

Consider the protocol for mailing a birthday present. First, acquire a
present. Then, wrap it up in a box or appropriate container. In some cases,
this means using tissue paper, packing peanuts, or other padding to make
the present fit safely into the container. If purchased new at a store, chances
are good that this packaging was already done by the manufacturer. Take
the container, and enclose it in wrapping paper; the name of the recipient
should be unambiguously and legibly written somewhere on the package.
Then, the wrapped gift is placed in a shipping box, again with appropriate
padding to make it fit. The recipient's name and address, as well as the
sender's, are written on the package. At this point, the package can be
taken to a post office and mailed.

The present itself can be thought of as the data; when the manufacturer
creates the present, they package it appropriately by putting it in a box
and padding it. The box carries information on it: the product's name and
model number, instructions, and so forth. That box may be placed into a
case, to be shipped to dealers. At that point the dealers unpack the cases
and put the boxed products up for sale; you buy one as a gift, and then
package it yourself to be shipped as a present.

Here's what happens: Each time the gift moves, the gift must be packaged;
each time it arrives, the gift is unwrapped. To apply the concept to an inter-
net, exchange "packet" for "gift" and "encapsulated (or de-encapsulated)
with the appropriate protocol" for "packaged (or unwrapped)."

The process of mailing it from the purchaser to the recipient is particularly
telling:

1. Buy the gift (don't forget to strip off all price tags or markings).
2. Wrap it, and mark it with the sender's and recipient's name

("From Alice, to Bob").
3. Put it into another box for shipping, padding it inside and

marking sender/recipient names/addresses on outside.

82 Part One �9 Concepts and-Fundamentals of NetworkJng

4. The package is delivered through the postal system (using the
recipient's address on the outside).

5. The package is opened by someone, who sees the recipient's
name on the gift wrap; the package is then given to that person.

6. The gift wrap is taken off, and the present has been received
(from sender to recipient).

7. The manufacturer's packaging is removed, and the item inside
has been received (from manufacturer to end user).

In network terms, encapsulation is what happens when you start wrap-
ping up data for delivery across a network. 2 The process of encapsulation
begins at the very top layer of the network stack, where the application
accepts data from the entity using the application. This data is broken down
into some type of unit for transmission, and each unit is given a header
containing all necessary application protocol information.

At each step, there are two parts to the protocol data unit: the payload,
which is the data to be carried, and the protocol wrappings, usually headers
containing data placed before the payload and sometimes trailers, addi-
tional data appended after the payload to indicate the end of the payload. 3
Protocols at each layer consider the data passed from a higher layer to
be payload; the contents of the payload don't matter, just the appropriate
headers.

So, the application begins with the actual application data, perhaps part of a
file to be transferred or perhaps a login request, and adds its own protocol
headers to that data before passing it along to the process that handles
communication for the application. That process then wraps those bits
up with its own set of headers to make sure the payload gets to where the
application wants it to gomthe appropriate process serving the appropriate
application on the other end of the transmission. If the destination process
resides on the same system, the package can be passed to it right there,
and no further network processing has to take place. If the process is not
local, however, further work needs to be done.

Once the process has encapsulated the payload it receives from the appli-
cation, it adds its own headers and passes the whole thing to the entity
handling internet layer activity. That entity may be a separate program or

2The term de-encapsulation has been used at times to mean the process of unwrapping data
as it is being delivered, but this usage is neither wide or nor widely accepted.

3Sometimes also referred to, incorrectly, as footers.

Chapter 5 �9 Network Models and Internetworking Concepts 83

part of the local computer's operating system, but in either case it pack-
ages the process's data into yet another payload and adds its own headers.
Finally, at the network interface the system wraps the payload up one more
time for transmission onto the network.

The reverse process of unpacking the data occurs at the destination, 4 where
the network interface is responsible for accepting frames sent to it, strip-
ping off the frame headers and passing the payload up to the entity that
handles the network layer. As they progress up the stack, the headers of
the nested protocol data units are stripped away until the only payload
left is the actual data being communicated.

Note items 6 and 7 in the list of steps detailing the delivery of a birthday
present: if you purchased a manufactured gift in its original packaging,
the delivery of that unit (item plus packaging) completes the transaction
between you and the recipient. At the same time, the item itself has actually
been delivered from its original source (the manufacturing facility) to the
end user only when the recipient opens the packaging. Even though you
paid for and shipped the present, the underlying communication was one
between the manufacturer and the end-user; you were merely the conduit
through which that transaction took place.

This separation of different layers of interaction is fundamental to under-
standing how many different entities, often completely unknown to
the endpoints of a communication, must interact to complete a data
transmission.

The alternative to encapsulation of network data is to require every
application to handle every aspect of the transmission and reception of
data across the network. The prospect is daunting: each application would
require access to information about the destination node(s) including data
such as the destination's local network address as well as its internet
address, what operating system or hardware is being used at the destina-
tion, what systems the data must pass through to arrive at the destination,
and much more.

Encapsulation allows this single complex task--moving data from one
application to another through a network--into several (perhaps even
many) much simpler tasks. The application needs only to know enough to

4The process may also occur, at least in part, at one or more stops on the way to the
destination, as we'll see later on.

84 Part One �9 Concepts and Fundamentals of Networking

format its data and commands in a standard format and pass it along to
the appropriate interface at the next layer, and so on.

The huge success of the layered protocol model of the internet is undoubt-
edly due to this creation of simplicity out of complexity. However, the
downside of encapsulation is that it, when strictly implemented, can intro-
duce inefficiencies. The more protocols that need to be layered, the more
opportunity for those inefficiencies to enter the process. The IP model
with its four layers provides enough complexity for most applications to
be broken down and delivered, while at the same time the model's flex-
ibility about layer separation makes it easier for protocols to acquire and
use information about network connections that can be used to optimize
performance.

5.5 Internetwork Interface Devices

The OSI model was crucial in introducing and elaborating on the concepts
of layers as well as encapsulation. Things that happen on a LAN or in
some other homogenous network environment are often said to occur at
the network interface layer, the data link layer, or layer 2. Internet layer activity
occurs at layer 3, and transport layer activity at layer 4. Applications happen
at layer 7. This segmentation is shown in Figure 5-3.

At layer 7, the application layer, two applicationsma web browser and
a web server--interact by sending requests and replies back and forth
(the protocol for this application, HTTP, is discussed at greater length in
Chapter 12). The browser and the server don't know, and don't care, about
what protocols are being used to get the requests and replies back and
forth; they are just concerned with application-type interaction, mostly
requests to send over a data file or a reply containing requested files.

When discussing bridges, switches, and routers, it is more useful to con-
centrate on the lower layers. At the internet layer, or layer 3, network nodes
use a globally unique identifier (IP address) to allow them to interoperate
across many different networks, and many different types of networks.
Network nodes on the same physical network interact at the data link
layer, or layer 2. At the data link layer, communication is possible only over
the local physical network; at the internet layer, communication is possi-
ble between any two network interfaces on any two physical networks
connected to the same internet.

Chapter 5 �9 Network Models and Internetworking Concepts 85

Web browser

I c~:~ I

Internet . ~

Web server

Figure 5-3: Using OSI layers to differentiate distinguish network interfaces.

Another difference is format: at the data link layer, data is formatted into
protocol data units that are interpreted by the data link layer network inter-
faces. That means, for example, Ethernet frames comprise bits in a form
that Ethernet network interfaces are able to decode. A Token Ring network
interface would not be able to process an Ethernet frame. At the internet
layer, data is formatted into protocol data units that can be interpreted by
any internet network interface supporting the same internet-level protocol.

When an internet node emits an internet packet addressed to some non-
local node, the internet layer interface produces a packet with an internet
address. The internet connection is a logical construct, rather than a direct
connection: the node is physically connected to a physical network on

86 Part One �9 Concepts and Fundamentals of Networking

which it can actually send data through its data link layer interface. Thus
the internet packet must be encapsulated within a data link layer protocol
data unit to be sent anywhere. Understanding how bridges, switches, and
routers work will help illustrate the distinction.

5.5.1 BRIDGES

A bridge is a device used to physically connect two (or more) networks
of the same type. Bridges are layer 2 devices, because they operate at
the data link layer to connect those networks. The bridge examines each
network frame (the generic PDU for layer 2) to see which network the frame
originated from and which network the destination is on (Fig. 5-4). If the
frame originates on one network but is destined for the other network, the
bridge repeats the frame on its interface to the second network.

Bridges vary in sophistication. A simple bridge called a repeater listens to
all traffic on one physical network and repeats that traffic on the other
network. Learning bridges examine all frames on both networks, recording
the network on which frames from each source address appear. It repeats
all frames at first, but as it gets more information about the nodes on the
networks it connects, it become more discriminating. For example, assume
the bridge in Figure 5-4 is a learning bridge and has just been turned on.

Network I

�9 " ' �9 �9 I

i

]

Network 2

Figure 5-4: Connecting physical networks.

Chapter 5 �9 Network Models and Internetworking Concepts 87

When Node 2 transmits a frame to Node 102, the bridge records that Node 2
is located on Network 1, and then repeats the frame on Network 2. When
Node 102 replies to Node 2's frame, the bridge checks the destination
address (Node 2) and, noting that it is on Network 1, repeats the frame.
When Node 101 sends a frame to Node 102, the bridge records Node 101's
address as being on Network 2, but does not repeat the frame, because the
bridge checks the destination (Node 102) and notes that address as being
on the same network as the source.

There are other types of bridges, for example those which answer on behalf
of nodes on different networks by changing the layer 2 frame headers,
but these depend on the type of network is being used. The concept of
a network bridge is most useful when discussing internetworking only
to illustrate why layer 2 internets tend not to scale well (for more infor-
mation about network bridging, the reader can check the literature for
the layer 2 network protocols to be bridged, or more general networking
texts).

Although bridges work well with networks of dozens or even hundreds
of nodes, they generate too much traffic (by repeating frames where the
destination is not already known), and as the number of nodes in the
networks increases, the memory and processing requirements increase
beyond the capability of the devices. Furthermore, layer 2 internets require
all connected nodes and netwroks to use the same protocol for transmitting
frames locally. This presents a hardship for any nodes or networks that
wish to be linked but that already use a different protocol.

5.5.2 SWITCHES

A switch also operates at layer 2, but rather than linking just two networks,
a switch can link two or more networks. One definition of a switch is
"a multiport bridge." The switch maintains a table associating layer 2 net-
work addresses with the physical networks the switch connects. Switches
tend to be more complex than bridges, especially when they are used for
internetworks that do not depend on IP, for example, within automated
teller machine (ATM) networks (see Chapter 21).

The complexity of switching protocols for ATM networks can approach
the complexity of routing within IP internets. ATM switches don't just link
individual networks, but often provide a fabric for moving frames (actu-
ally, ATM protocol data units are called cells) along many different paths

88 Part One �9 Concepts and Fundamentals of Networking

in an internet depending on what kind of data they contain. The different
paths may provide different levels of service, including higher reliability,
lower cost, guaranteed delivery, higher bandwidth, or faster throughput.
ATM switches are often highly configurable, and often support protocols
that permit them to integrate ATM switching functions with IP routing
protocols.

Though we will not revisit bridges in this book, we will discuss how ATM
and IP protocols interoperate at greater length. As the internet continues
to grow, ATM and other switching protocols become more important for
providing high-speed internet backbone service.

5.5.3 ROUTERS

A router operates one logical layer above the network interface layer and
is necessary whenever two different types of networks are to be connected.
Consider what happens when we replace Network 2 in Figure 5-4 with a
different type of network, that uses a different address space to number
nodes. Let's say the original network interface layer addressing scheme
assigns a unique number from 1 to 16 to identify the network, and a
unique number from 1 to 1,024 to identify the node within the entire
network. Now, if Network 2 is replaced by Network B, whose address
space uses letters rather than numbers, a bridge will be incapable of
dealing with the new network. Even if the two networks use otherwise
identical protocols, any addresses on the new network will be seen as
invalid and the bridge will most likely treat them as corrupted frames and
discard them.

Two things are necessary: a global addressing scheme and a device capa-
ble of mapping local network interface layer addresses to the globally
unique addresses.

Under a global addressing scheme, administrators working with each net-
work assign unique addresses to each node in addition to the network
interface layer addresses. When those nodes communicate using layer 3
protocols, they wrap their data up with headers that identify the internet--
layer 3--addresses of the source and destination. When a packet (the name
we'll most often use for layer 3 protocol data units) is destined for a local
node---a node the sender can determine is on the same physical network--
the sender will likely be able to handle layer 2 network processing on its
own, through its own network interface.

Chapter 5 �9 Network Models and Internetworking Concepts 89

However, when the sender determines that the packet's internet destina-
tion is not local, the packet is sent to the closest router for disposition and
forwarding.

Routers may differ from switches in several ways, although the most
important is that routers are able to map addresses between layers 2
and 3 (Fig. 5-5). Traditionally, switches were solid state, single pur-
pose devices that used a fixed and static set of rules to very quickly
determine where a frame should go and then send it there. Routing
devices are available that use solid state electronics rather than tra-
ditional disk-bound computers to improve speed and efficiency, and
manufacturers often call these devices layer 3 switches, to convey the
differences.

ADDR ADDR ADDR
#1 #2 #5

N e t w o r k ' N e t w o r k
A C ADDR

ADDR
#3 Router

. ~ ' : , ~ ~ ~ x . " '

N e t w o r k N e t w o r k
B = D

~ , ADDR
#4

~ #6

1
ADDR

#7 [.0 t
AX-14

~ ADDR
#8 [! Host ~

BX-I

Figure 5-5: A routed network.

90 Part One �9 Concepts and Fundamentals of Networking

A router is any device that can behave as a gateway between two or more
different layer 2 protocols, or between two or more physical networks
using the same layer 2 protocol. When the packet is destined for a non-
local address, a node sends it to a router on the same physical network.
The router is connected to at least two physical networks, and is capable
of sending and receiving layer 2 frames to and from all of them. When the
router receives a packet to be forwarded out on an internet, it processes
the layer 2 frame as well as the layer 3 packet headers to determine what to
do with the packet. A router may use different protocols (to be discussed
in Chapter 22) on which to base its decisions, but once it determines where
the packet should go the router modifies the layer 3 header and creates new
layer 2 frames to deliver the packet to its next destination. That destination
may or may not be the packet's ultimate destination: it may be another
router closer to that destination, at which point the packet is processed
again. The process of handing a packet from router to router concludes
only when the packet arrives at a router connected to the same physical
network as the packet's destination. At that point, the router just delivers
the packet to the destination node.

Figure 5-5 shows a routed network, in which there are four different
networks connected through the router. Each of the networks uses a dif-
ferent physical host address scheme, but the router is able to communicate
using all those schemes. Each node on every network has a logical address
(the ADDR #X scheme), and the router keeps track of how best to move
messages based on both their logical and physical addresses.

Of course, this brief discussion overlooks many of the subtle and not-
so-subtle aspects of routing and packet delivery. Internet routing is a
fundamental part of IP internetworking, and will be discussed at greater
length throughout this book.

5.6 Defining the Internet
Attempting to put boundaries on the internet is as daunting a task as
putting boundaries on the oceans of the world. One might say, all bodies
of salt water, but then what to do with the Dead Sea in Israel or Utah's
Great Salt Lake? One might say, all bodies of water that can be navi-
gated with an ocean-going vessel, but then what do you do about the
St. Lawrence Seaway and the Great Lakes of North America? Are tidal
pools part of the ocean? What about estuaries like the rivers surrounding

Chapter 5 �9 Network Models and Internetworking Concepts 91

New York City, alternately filled with salt and fresh water depending on
the tides?

Unless you are an oceanographer, the answer is pretty much unimportant.
As with other important transportation and communication networks such
as the telephone system, national highway and local road systems, power
grids, and more, the internet is increasingly something that most users
simply plug into and get connected.

However, if you are reading this book you will surely want to understand
what factors could be used to circumscribe the global internet, and why
they may or may not be good indicators. A good place to start is with how
a system makes its connections. The connections available to a system usu-
ally define what that system is connected to. This circular logic doesn't get
you far: if you are connected to the internet, then you are connected to the
internet, it seems to be saying. However, almost no one is ever connected
directly to "the internet" (whatever that might mean). Systems (including
networks) are connected to other systems (again, may be networks).

The problem lies in defining what it means to be connected. Here are some
of the possibilities for ambiguity about connections:

�9 Is the connection permanent or intermittent?
�9 What systems can be considered connected?
�9 Must the connected system use internet protocols?
�9 Must the connected system support all internet or application

protocols?

None of these possibilities is far-fetched; in fact, they call into doubt
the "connectivity" of many systems that would normally be considered
connected.

Home users of dialup PCs routinely connect and disconnect
their systems. Can those PCs still be considered to be con-
nected to the internet when the phone line is not in use? The
user may still feel "connected," reading and answering internet
mail, perusing newsgroups, and browsing web content that has
been downloaded during a previous session. And what about
personal digital assistants, periodically downloading similar
data from the PC? In the early days of the internet, many orga-
nizations provided only limited connectivity, perhaps internet
mail and newsgroups only, to their users through a gateway

92 Part One �9 Concepts and Fundamentals of Networking

system that connected directly to the internet only long enough
to download and upload messages. Were the systems on those
networks connected to the internet, or not?

�9 As broadband continues to expand, more individuals use
these "always on" services. A cable or DSL modem is always
accessible over the network, but can the home user's PC (or net-
work) be considered connected if the system is not on? What
about networks that are isolated from the rest of the global inter-
net through a security system called a firewall that mediates all
data transmissions between the inside and the outside?

�9 Although less common now that virtually all network operat-
ing systems are based on internet protocols, until the end of the
1990s it was still common for LANs based on proprietary proto-
cols to provide transport and internet layer services for internet
applications. A user might have a Netscape browser running
over Novell NetWare protocols on the LAN, with those pack-
ets translated by a gateway system connected to the internet.
The end user can connect to internet resources, but doesn't run
TCP/IP; is that user's system connected to the internet?

�9 Subscribers to the America Online (AOL) ISP service use a
proprietary protocol to connect to AOL's systems, which medi-
ate access to internet resources. Are those users' systems
connected to the internet, even though they might not support
either TCP/IP or any internet application protocols?

Clearly, internet connectivity is not an either/or proposition but rather a
question of degree. Rather than asking whether or not a system or network
is connected to the internet, the more useful question to ask (and answer)
is to what degree can that system or network be considered connected.
Understand how the system is connectedmby what network medium,
through which network protocols, and using applications that interop-
erate with the internet in what waysmand you can begin to understand
what that system can do and what might go wrong.

5.7 Chapter Summary
Building on the functional structures from Chapter 4, in this chapter
we introduced the fundamental OSI and DoD/Internet internetwork-
ing models. Perhaps the single most important concept for internet-
working is that of encapsulation: the process by which a message can

Chapter 5 �9 Network Models and InternetworkJng Concepts 93

be wrapped up for delivery by entities other than those doing the
communicating.

We also revisited some of our fundamental network components, look-
ing at them again as they behave within structure provided by the
internetworking models: bridges, switches, and routers.

In the next chapter, we will take a high-level look at the protocols
commonly considered part of the TCP/IP suite.

This Page Intentionally Left Blank

Internet Protocol Overview

This chapter briefly introduces the various protocols that are associated
with TCP/IP networks. This includes required protocols such as IP or TCP,
as well as recommended and other commonly used protocols. Most inter-
net protocols either resemble or are based directly on some other protocol.
For example, the Dynamic Host Configuration Protocol (DHCP), used to
automatically configure nodes on demand across a network, builds on the
earlier and less comprehensive Boot Protocol (BOOTP). Likewise, proto-
cols for applications that depend on the transfer of fi lesnsuch as the File
Transfer Protocol (FTP) and the Hypertext Transfer Protocol (HTTP)n
generally share one or more fundamental mechanisms for transferring
those files. And applications that carry data s t reams~such as Telnet (ter-
minal emulation) and the Secure Shell protocol (SSH)~are likely to share
fundamental mechanisms for controlling those streams.

Although this chapter is intended to be a comprehensive list of internet
protocols that are (or have been) in general use, only some of these pro-
tocols will be analyzed in greater detail later in the book. We'll delve into
only a few application protocols, although once the reader has mastered

95

96 Part One �9 Concepts and Fundamentals of Networking

those few she should be able to understand others based on their speci-
fications; this book will be more (but not completely) comprehensive at
the lower layers, and the same principles will apply. Technical protocol
details for selected applications (based on relevance and size) are provided
in Appendix B, including protocol headers and key protocol codes.

Internet protocols are presented in seven categories, beginning with the
network interface and moving up through the IP internetworking model to
the application layers; special attention is given three other categories: pro-
tocols related to Integrated Services (intserv) and Differentiated Services
(diffserv), different mechanisms for delivering network services; internet
security protocols; and internet management protocols. Each section intro-
duces one of these categories, describes what protocols within the category
do, and includes lists of all relevant protocols with brief descriptions.

6.1 Network Interface Layer
When two IP network nodes interact directly, they do so at the network
interface layer. They may Share the same physical network medium as well
as local network protocols, or they may be connected to a complex internet
and merely share the same set of protocols for passing data from a node to
a network.

Local area networks use protocols such as the IEEE 802.3 and Ethernet
specifications for packaging data and sending it on a physical medium.
In IP networks, there is a group of protocols that are used by local nodes
to interact by allowing them to exchange information about themselves,
and to pass that information up to higher layer protocols when necessary.
"Local" includes all nodes local to the same link layer, whether they connect
to the same Ethernet hub or link through the same wireless hub.

The most ' important of these protocols is the Address Resolution
Protocol (ARP) and related protocols which define mechanisms for map-
ping internet layer addresses onto network interface layer addresses.
The most common illustration provided for ARP is in its use with
Ethernet:

Scenario: A system connected to an Ethernet local area network (LAN)
has an IP packet to be delivered to another system connected to
the same LAN. The system sending the packet must discover the

Chapter 6 �9 Internet Protocol Overview 97

destination system's Ethernet address by usin~ the destination's
IP address.

Solution: The source system sends out a broadcast Ethernet frame contai-
ning an ARP request. All systems on the LAN listen for broadcasts,
but the ARP message contains a request for one of the connected
systems to identify itself. The request includes the source system's
Ethernet and IP addresses, as well as the destination system's IP
address. Although all the systems are listening for broadcasts, the
only system that should answer will be the one using the requested
IP address.

Bonus: ARP requests are broadcast, so all systems on the LAN make note of
the IP and Ethernet addresses of hosts requesting ARP services. They
store these address mappings (along with any other address map-
pings they've received through replies to their own ARP requests)
in an ARP cache. The cache is maintained according to a few set
rules including a length of time that the cache value can be used
before assuming it must be retrieved and verified; otherwise, a sys-
tem sending data on the LAN will check the ARP cache first before
broadcasting a new request. The result is that ARP broadcasts don't
immediately overwhelm networks as they grow larger.

Ethernet was designed as a multi-access broadcast medium, meaning that
LAN nodes connect to a single shared medium over which all nodes can
listen to all network traffic and only one node can transmit on the network
at any given time. Network collisions may occur in such networks when
two systems, checking the medium and not sensing any transmissions,
both attempt to transmit at the same time; various mechanisms have been
defined to recover from such collisions in Ethernet networks. However,
while ARP and its related protocols are quite simple, there are still some
subtle twists even under Ethernet.

ARP is a much more complicated matter when the network does not sup-
port broadcasts natively. By its nature, Ethernet allows broadcasts because
all nodes are always connected to a shared physical medium. High perfor-
mance network protocols such as ATM and Frame Relay use virtual circuits
over switched networks to link systems on the same network. Broadcasts
cannot be supported natively because there is no way for all network nodes
to be connected simultaneously and whether or not the sender knows of
their existence. ATM, Frame Relay, and other non-broadcast multi-access
(NBMA) networks must use a more complex system to simulate broadcasts

98 Part One �9 Concepts and Fundamentals of Networking

for tasks such as ARP; instead of sending a message to a generic network
broadcast address the sender transmits the broadcast frame to a server that
keeps track of all nodes connected to the network and relays all broadcasts
to them individually.

The Point to Point Protocol (PPP) is another important network interface
layer protocol, designed to allow two systems at either end of a connection
to set up a network link. Unlike network protocols such as Ethernet or
Token Ring, PPP links support only two nodes on each "network". Because
there are only two nodes on a PPP network, network addresses are not
always strictly required: whether the node is sending or receiving, the
data is always either going to or coming from the "other" node.

The Layer Two Tunneling Protocol (L2TP) is another network interface
layer protocol, designed to encapsulate network interface layer data.
When data is moved from one switched network to another, across a
packet network such as the internet, the data must be de-encapsulated
as it passes out of the source switched network, re-encapsulated for the
internet, and the transformed again for its final leg inside the destina-
tion switched network. All that processing slows the data and mitigates
considerably the advantages of using switched networks. L2TP allows
the end-nodes to set up virtual circuits across the routed packet network
by tunneling the switched protocol through IP (or other network layer
protocols).

Table 6-1 lists key network interface layer protocols; these will be discussed
at length in Chapter 21.

Acronym Protocol

ARP Address Resolution Protocol

RARP Reverse ARP

inARP Inverse ARP

NBMA ARP

PPP

ARP over Non Broadcast
Multiple Access networks

Point-to- Point Protocol

L2TP Layer 2 Tunneling ,Protocol

Table 6-1: Important network interface layer protocols.

Chapter 6 �9 Internet Protocol Overview 99

6.2 Internet Layer

The internet layer provides an abstraction: a network that enables seamless
interoperation between nodes on any local network, using any opera-
ting system, any hardware platform, and with no prior knowledge about
communicating nodes beyond their internet addresses. 1 At the network
interface layer there is often a degree of concreteness about network-
ing: actual computers and other devices are plugged into outlets or other
devices, with the flow of data readily verified by the flashing of green,
yellow, and red lights; network transmissions must be directed to their
specific destination nodes.

At the internet layer, we rise beyond physical realities and move into the
realm of the mind. Packets destined for the same internet address may
always arrive at the same physical systemwor they may reach any one of
dozens or even hundreds of different systems. Internet layer packets may
always pass through the same intermediate systems as they are routed
through the internet to the same destinationmor each could (in theory, at
least) take a different route. The internet layer makes it possible to create
huge networks, but also dynamic networks in which the availability, cost,
and speed of intermediate networks and systems may vary at any given
moment.

The Internet Protocol (IP) itself describes how internet nodes communi-
cate across this abstract network called the internet. It defines the internet
address space as well as how to address outbound packets and interpret
inbound packets. And it defines how IP nodes should handle IP packets
that they receive and send. Related specifications of the form "IP over [X],"
describe how IP packets are to be encapsulated within network interface
layer protocols (see Chapter 21 for more details).

IP by itself is important, but it is not enough for rapidly growing and
dynamic internets. Network managers require routers capable not only
of processing packets quickly, but also of actively collecting and upda-
ting information about the networks to which the routers are connected.
For the task of collecting routing information to be manageable without

1This statement is not entirely correct, inasmuch as nodes can actually communicate
with other nodes over the internet even if they don't have access to the destination nodes'
addresses--if all communicating nodes are members of the same multicast group. Although
it has yet to be deployed widely for end user applications over the internet, IP multicast is an
important part of IP networking and is covered at greater length in Chapter 24.

100 Part One ~ Concepts and Fundamentals of Networking

overwhelming intermediary networks, it is necessary to design protocols
for propagating routing data across networks in the most efficient way.
Internet routing protocols make this possible.

Most routing protocols are used either for interior routing (routing among
nodes in an intranet or other localizable IP network) or for exterior routing
(routing between and among autonomous systems such as is done on inter-
net backbones). Key interior routing protocols include the Open Shortest
Path First (OSPF) protocol and the Routing Information Protocol (RIP); the
most important exterior routing protocol currently is the Border Gateway
Protocol (BGP).

No IP network could function without the Internet Control Message
Protocol (ICMP). Encapsulated within IP packets, ICMP messages afford
IP nodes a mechanism for communicating to each other about the status of
an IP destination, route, or router. When a node attempts to deliver a packet
to a system that is not accepting packets (it may be powered down, flooded
with other requests, or simply not accepting packets from that particular
source), an ICMP message may be generated and sent back to the source.
That interaction may happen entirely outside the view of either system
because it is a communication within the IP infrastructure. In one sense,
ICMP is an application carried directly on top of IP; in another sense, ICMP
is a parallel channel by which nodes can notify each other about problems
making deliveries.

The Internet Group Management Protocol (IGMP) is almost an adminis-
trative protocol for IP multicast, providing a mechanism for nodes to join
in multicast groups, as we'll see in Chapter 25.

Although not widely used in North America as of early 2002, IPv6 is
increasingly gaining acceptance in parts of the world where IPv4 addresses
are hard to come by, such as Asia--as well as for applications where
the IPv4 address is inadequate, such as for mobile telephony. As a revi-
sion to IPv4, IPv6 uses many of the same mechanisms in IPv4 as well
as correcting many of its flaws. Chapter 21 provides an overview to
IPv6. 2

Table 6-2 lists protocols considered to be operating at the internet
layer.

2For more in-depth and practical information about IPv6, see IPv6 Clearly Explained,
2nd ed.

Chapter 6 �9 Internet Protocol Overview 101

Acronym Protocol

IP

IPsec

IPv4

IPv6

ICMP

OSPF

RIP

BGP

Internet Protocol

Internet Security Protocol

Internet Protocol, version 4

Internet Protocol, version 6

Internet Control Message Protocol

Open Shortest Path First
(a routing protocol)

Routing Internet Protocol
(another routing protocol)

Border Gateway Protocol
(an exterior routing protocol)

Table 6-2: Internet layer protocols.

6.3 Transport Layer
If the internet layer provides an abstraction that allows internet nodes to
communicate independently of their respective network interfaces, then
the transport layer allows processes running on those nodes to commu-
nicate independently of their internet layers. Without a transport layer
between the application and the internet layers, all packets from one host
to another would arrive in a big pile of data. There would be no good way
for the destination host to differentiate data in the event that there were
more than one process on the source host communicating with one or more
processes on the destination host.

The transport layer gives processes an interface over which to commu-
nicate about how data is delivered to or accepted from the applications
above. Until 2000, virtually all transport layer activity used one of two
protocols:

UDP The User Datagram Protocol is an exceptionally simple protocol
that provides nothing more than a mechanism for one process to
pack and send a request or a reply to another process. A message

102 Part One �9 Concepts and Fundamentals of Networking

is sent out, and that's that. If the message gets there, good. If not,
then the process may send it again. There are no mechanisms for
correcting a message that was corrupted in transit, no verifying
that the message was received. With virtually no features, UDP
is also incredibly lightweight, and perfect for applications that
don't need guarantees of delivery, or acknowledgments, or virtual
circuits.

TCP The Transmission Control Protocol is very nearly the opposite
of UDP. It offers delivery guarantees and acknowledgments, vir-
tual circuit connections, and considerable flexibility in managing
dynamic network conditions. Because TCP in its present form was
documented in RFC 793 back in 1981, it has been tweaked in var-
ious ways to improve its ability to optimize performance for the
applications that use it.

In 2000, a new transport layer protocol, the Stream Control Transmission
Protocol (SCTP) was published in RFC 2960. Originally designed as a way
to carry the signalling information required by publicly switched telephone
network (PSTN) connections over IP, SCTP expands on many of the func-
tions possible with TCP while at the same time adding new features to
improve performance (see Chapter 18).

There are a handful of other protocols that can be considered to operate at
the transport layer, including:

TLS The Transport Layer Security protocol, the descendant of Netscape
Communication's original Secure Sockets Layer (SSL) protocol for
encrypting web data, operates between the transport protocol and
the application protocol. Typically, TLS accepts data from an appli-
cation (usually but not exclusively HTTP) and encrypts it before
passing it along to the transport layer for processing.

SSH The Secure Shell protocol was originally designed as a secure alter-
native to telnet for terminal emulation over the internet. As a
remote terminal program, SSH encrypts and decrypts data sent and
received at the application layer before passing it along to the trans-
port layer. However, SSH can also be used as a secure transport for
other applications. A web session, for example, could be tunneled
through SSH. The result would be a completely encrypted session
occuring between two nodes using SSHmno eavesdropper would

Chapter 6 ~ Internet Protocol Overview 103

be able to intercept the web session, let alone even discover what
kind of data was being passed.

These protocols are all discussed in Chapter 15.

6.4 Application Layer
Any application that enables entities to exchange information across a net-
work is a network application. There are different ways to characterize
those applications:

The kind of entities that use the application. Some applica-
tions enable direct communication between human people,
some enable communication between people and systems, and
some enable communication between systems and systems.
The function or functions the application fulfills; network
management or file sharing or real-time videoconferencing.
Infrastructural or extrastructural applications. The infrastruc-
tural applications operate invisibly, within the network, to
allow various edge and intermediate nodes to operate as part
of the network infrastructure. The extrastructural applications
are those that are carried over the infrastructure, and don't
really care what protocols or applications are used within the
network to carry data.

This last characterization is another way to differentiate between functions
that are part of the internet, such as routing or managing service delivery,
and functions that everyone can agree upon as being internet applications,
such as internet mail or web browsing.

Although routing and other infrastructural protocols enable the exchange
of data between nodes on a network, those protocols are designed to enable
the transmission of end-to-end data between and among users of applica-
tions. A routing protocol operating inside of the internet cloud operates
invisibly to the nodes using that cloud to communicate. As such, we'll cover
these infrastructural protocols separately from end user applications.

Application layer protocols address the formatting of application as well
the commands and responses that systems supporting those applica-
tions must support. Although some applications specify their own special

104 Part One . Concepts and Fundamentals of Networking

Acronym Protocol/Description

FTP

Telnet

HTTP

Gopher

SMTP

SNMP

DNS

SSH

POP

IMAP

File Transfer Protocol

Terminal emulation

Hypertext Transfer Protocol

An early hypertext-like
application protocol

Simple Mail Transfer Protocol

Simple Network Management
Protocol

Domain Name System

Secure Shell Protocol (secure
terminal emulation and more)

Post Office Protocol

Internet Mail Access Protocol

Table 6-3: Application layer protocols.

formats for packaging data, many popular applications use standards
for data formatting that may have been defined for other purposes. For
example, the Network News Transfer Protocol (NNTP) formats data
and application headers similarly to the way specified for internet mail.
Likewise, internet mail messages often contain data formatted to the
HTML specification defined originally for the web. These formatting stan-
dards are important, although they are not a focus in this book beyond
the way they are used with internet mail (web formatting standards are
managed by the World Wide Web Consortium [W3C] and hardly need be
repeated here). Table 6-3 lists common internet applications.

6.5 Internet Security and IPsec

Security may be applied at any layer of the protocol stack, and many pro-
tocols for doing so have been developed to secure internet communication.
The field of security is vast, and simply describing all the issues raised by

Chapter 6 �9 Internet Protocol Overview 105

Acronym Protocol/Description

ESP

AH

ISAKMP

IKE

IP Encapsulating Security
Payload
IP Authentication Header

Internet Security Association
Key Management Protocol

Internet Key Exchange

Table 64: IPsec protocols.

Acronym Protocol/Description

SSL

PEM

S/MIME

OpenPGP

RADIUS

Kerberos

Secure Socket Layer

Privacy-Enhanced Mail

Secure Multimedia Internet
Mail Enclosure

Open version of Pretty Good
Privacy encryption

Remote Authentication Dial In
User Service

secure authentication and
authorization protocol

(after mythical three-headed
Greek underworld guard dog)

Table 6-5: Security protocols.

internet security could take an entire book. This book simply introduces
the components of the Internet Security Architecture (IPsec) and describes
how they work together. Table 6-4 lists IPsec protocols, while Table 6-5
lists some of the many security protocols that have been defined within
the internet standards process.

IPsec defines a framework under which IP nodes can encrypt and /o r digi-
tally sign packets. By doing so, users of those nodes can be assured that

106 Part One ~ Concepts and Fundamentals of Networking

the data they transmit will arrive at its destination unchanged (if digital
signature is used) and unseen (if encryption is used). IPsec can be summa-
rized quite simply, in that it defines the process by which nodes initiate
a secure connection, exchange encryption keying information, and send
and receive encrypted (or signed) data. At the same time this simplicity
belies the difficulty of designing protocols that make it possible to provably
protect data in ways that are not vulnerable.

Security for internet applications can be provided at the transport layer,
using TLS (see section 6.3); security may also be implemented directly in the
application protocol itself. Privacy-Enhanced Mail (PEM), Secure MIME
(S/MIME; MIME stands for Multipurpose Internet Message Extensions;
see Chapter 9 for more about MIME), and OpenPGP are all protocols
defining ways to protect application data that operate at the level of the
application.

Although encryption and digital signature technologies are important
aspects of network security, they are far from the only aspects. The so-called
AAA area (access, authentication, and accounting) encompasses a num-
ber of network security protocols including those related to logging in to
systems and networks. Likewise, internet firewalls have long been impor-
tant elements in most organizations' security strategies; intrusion detection
systems, network scanners, virtual private networks, and other types of
system have also gained prominence in recent years.

Although these topics are mentioned here, they are largely out of scope for
this book. Firewalls (along with Network Address Translators or NATs) are
special forms of routers, and are, like the rest, best left to more specialized
texts or to the source RFCs themselves.

6.6 Integrated Services, Differentiated Services
Some applications require specific levels of service from the network to
work correctly. Telephony applications, for example, call for guaran-
teed bandwidth pegged at some minimum along with latency pegged
at some maximum. One approach to providing guaranteed Quality
of Service (QoS) within the internet, the Integrated Services (intserv)
architecture provides mechanisms, including the Resource Reservation
Protocol (RSVP), for applications to request QoS on an end-to-end
basis.

Chapter 6 ~ Internet Protocol Overview 107

The problem with intserv is that it adds a significant burden to the infra-
structure of the internet. To guarantee QoS between endpoints, mecha-
nisms must be put in place inside the internet to keep track of individual
streams, to make sure no one gets too many resources or too few, and to
make sure that resources aren't over (or under) allcoated. This is a lot of
trouble, and the burden of enforcing intserv increases rapidly as networks
grow.

The Differentiated Services (diffserv) architecture provides a simpler
alternative. Rather than fine-tuning each and every application's service
requirements, diffserv provides a framework in which there are only
a few service options, and individual connections need not be tracked
individually inside the internet. Packets requiring different handling are
simply marked appropriately, and within the internet those packets are
fast-tracked or otherwise treated specially as appropriate for their level of
service.

The big problem for diffserv is figuring out what differentiated service
levels are "appropriate" and how to use them. In the original specification
for IP, a Type of Service (ToS) field was defined for the protocol header.
Though there were different choices available, ranging from "best" to
"worst" treatment for the packet, the tendency was for developers to seek
the best treatment for packets generated by their own protocols and appli-
cations; no one really wanted to label their packets as being unworthy of
rapid transmission. That much of the internet lacked any mechanism for
differentiating between how packets are treated (other than perhaps artifi-
cially holding back non-priority packets) may also have contributed to the
futility of the ToS field.

Since then the ToS field has morphed into the Differentiated Services field,
though there is still much debate over how best to differentiate services.
QoS issues are covered in Chapter 25.

6.7 Network Management

The internet manager's toolkit includes a wide range of technologies, from
devices for testing cables to complex applications for gathering data from
systems on networks around the world. The Simple Network Management
Protocol (see Chapter 31), defines a method for managing, configuring, and
administering any devices over any IP network.

108 Part One �9 Concepts and Fundamentals of Networking

Over the years, network vendors have used a multitude of hardware and
software tools to configure and monitor their products. These devices have
stored configurations and may have cached recent performance data on
local hard drives, RAM or ROM, or even on other network devices; ven-
dors provided many different tools, from software programs to knobs
and dials, for changing configurations. The result was a sort of chaos:
as the number of different vendors represented in a typical intranet
rose, the number of different systems for managing those devices also
increased.

SNMP offers network managers the option of using a single and stan-
dard interface for accessing current performance data as well as updating
device configurations. The structure of management information (SMI),
along with various management information bases (MIBs) form the frame-
work for the world's most distributed distributed database. Rather than
having all devices transmit their status and configurations to a central
server, the devices store all their information in a standard database
schema. 3 For example, all routers store their recent performance data in
the same "place"; any SNMP management console will be able to gather
that information from all routers in a given network without having to
know beforehand anything about the routers.

The SNMP approach to configuration is equally simple. Device configu-
ration data is also stored according to the standard schema, and SNMP
consoles can be used to read as well as change or update that data. For
example, a console operator can check the status of a network interface on
a router by querying the router and asking it to respond with the value
in the part of the database reserved for that information. The interface is
either up or down; if it is up, the operator can turn it off by sending an
SNMP request that changes the value to down.

6.8 Chapter Summary
The most important set of concepts to take away from this chapter have
to do with the way in which TCP/IP and related protocols are intercon-
nected at different network layers. At the network interface or network link
layer, network protocols define how nodes actually exchange data across

3As traditionally defined for databases, a schema is a meta-format, a specification that
defines how data is to be specified.

Chapter 6 �9 Internet Protocol OvervJew 109

network media, but the protocols also provide for mechanisms by which
data can cross network boundaries.

The internet layer provides a mechanism through which disparate net-
works can be linked through a logical, rather than a physical, internet struc-
ture. By imposing this virtual network architecture over the many different
and interconnected literal network architectures, processes anywhere
within the virtual network can communicate with each other. By enabling
processes to communicate, applications can exchange information, thus
enabling users to get value from using the global internet.

We also touched on some of the important issues facing the internet, includ-
ing network security, network performance, and network management. In
the chapters of Part II, we introduce the specific applications that are used
over the internet.

This Page Intentionally Left Blank

We)

Internet Applications

This Page Intentionally Left Blank

113

Part Goals

�9 Provide a complete view of packets traversing the internet,
from a high-level overview to the specifics of each relevant
protocol.

�9 Understand how application, transport, internet and net-
work interface layer protocols enable seamless and platform-
independent interoperability.

�9 Enable reader to analyze network protocol data at all layers.

This Page Intentionally Left Blank

Meet Joe's Packets

A 30,000-foot overview of how packets move around the internet, starting
with "Joe Surfer," the typical internet user. This chapter traces Joe's data
as he initiates a connection to a web server from his browser. By examin-
ing it in depth, this simple process illustrates how the hypertext transfer
protocol (HTTP) and domain name system (DNS) applications work, how
transport layer user datagram protocol (UDP) and transmission control
protocol (TCP) work, how IP works at the network layer, and how data
moves around at the network link layer. We'll also take a look at what
may be happening within the internet as packets leave Joe's system to be
delivered to their destinations, as well as take a peek at how Joe's packets
are routed from their source to their destination.

7.1 Meet Joe

For years, "Joe" was the single personality readers of Readers Digest mag-
azine knew in the greatest depth: inside and out. Joe's various organs and
parts were the subject of ongoing articles titled "I am Joe's [organ]," chatty

115

116 Part Two �9 Internet Applications

and informative articles written from the organ's perspective. Invariably,
Joe is either entirely unaware that he has this organ, or else he is woefully
uninformed about the wonders it performs as well as the proper care that
should be taken of it.

Our own "Joe" is a regular person who uses the internet for work and
amusement, but who has no idea whatsoever how it works. Nor does he
really need to know much about it, as long as it's working for him.

Joe starts each work day with a quick look at the news on his favorite
news web site, TODAY.Example.net. He works in an average office,
where internet access is screened by a firewall as well as a network
address translator (NAT), both of which process all his packets as they
go in and out. He uses a company personal computer (PC), connected
to the local area network (LAN) with an Ethernet network interface
card (NIC). All his software is generic, straight-out-of-the-box, inter-
net standards-compliant software (no matter what operating system he
uses).

Joe is just an entity sitting behind the keyboard on one end of the inter-
net and using his systems to access resources elsewhere on the internet.
Now that we've met him, we can bid him goodbye. We just want to
see what happens to his packets; as far as we're concerned Joe is simply
"J. Random User," just someone who makes systems generate packets. In
this chapter, we'll begin by looking at what the end user (Joe) does, but
only in terms of how it starts processes in motion. These processes may
occur anywhere, but the interactions happen at several different levels,
as described in Part I. Starting with Joe's keystrokes (his interaction with
the network-connected system), we'll look at how systems interact at the
application, transport, internet, and network link layers. We'll expose a
fairly wide range of protocols in this chapter, including:

�9 Hypertext Transfer Protocol (HTTP)
�9 Domain Name System (DNS)
�9 Transmission Control Protocol (TCP)
�9 User Datagram Protocol (UDP)
�9 Internet Protocol (IP)
�9 Internet Control Message Protocol (ICMP)
�9 Network Address Translation (NAT)
�9 various routing protocols
�9 Ethernet
�9 Address Resolution Protocol

Chapter 7 �9 Meet Joe's Packets 117

This chapter won't define any of these protocols in depth, but rather give
the reader an idea of how data moves around on the internet and how sys-
tems interoperate across the internet. We will return to all these protocols
later in the book to understand how they work in greater detail.

A protocol "sniffer" is an excellent tool for learning about how packets
move around a network. Most network sniffing tools monitor LAN inter-
faces for transmissions, grab them, and can save or display them, often
providing translation services for evaluating the contents of the pack-
ets. Sniffer software is available for almost any computing platform and
both as open source and proprietary programs. You can use your own
sniffing tool to confirm how the protocols described in this book actually
work.

NOTE: The sample protocol messages used in this chapter were captured
from actual sessions using a network sniffer program. Ethereal is a graph-
ical front-end program (for the tcpdump network packet capture program
running on Linux) which takes the raw packet data and makes it more
accessible for analysis. Real packets consist of data (the stuff the protocol
is designed to transport) and control information (protocol information);
Ethereal interprets the protocol data and formats it to make the data more
readable. This includes providing translation of status bits, translation of IP
addresses (where available) into domain names, and evaluation of various
protocol codes.

7.2 The Application Layer: DNS and HTTP

The first thing Joe does when he gets into his office is power on his
PC and start up his web browser, which is configured to load the main
TODAY.Example.net web page as his home page. Assuming that Joe's
PC is properly connected to the LAN and properly configured, the inter-
net connection is up and running, and the TODAY.Example.net server is
functioning (along with all the systems in between), Joe will see the latest
news being reported on that page.

What is really happening, though? The web browser, as it starts, is con-
figured to make a request to download the contents of the web page at
TODAY.Example.net. That's what's happening at the application layer: the
browser gets set to initiate a request--or send an HTTP GET commandmto
the web server out on the internet. Or so one might think.

118 Part Two �9 Internet Applications

7.2.1 D o . i N NInE SYSTEM

Actually, the first task is to map an IP address onto the server named
TODAY.Example.net, so packets can be properly targeted. Why not start
by putting the HTTP packet together? Because that packet must be encap-
sulated with transport and network layer information--including the
server's IP address. Not only that, but if the server can't be properly
identified, then it may not even be possible to make the connection.

The first step is to generate a DNS query. Joe's PC puts together a simple
packet, consisting of a DNS query, specifying the name of the host and
what kind of information is requested (the IP address). Somehow (we'll
get to that later, as we discuss the transport and internet layers), that
message is sent to Joe's PC's local DNS nameserver. That system main-
tains a cache of information about domain names, so if the information
is available locally, the nameserver will just pass it back along in a reply
to the DNS query. If not, the local nameserver will generate its own DNS
requests and direct them to some other nameserver.

If the server name can be successfully linked with an IP address, the
local nameserver will send off a response that includes all the informa-
tion requested (which may be more than an IP address, depending on how
the request was made).

The DNS request actually looks something like this, expressed in hexadec-
imal values corresponding to pairs of 8-bit values:

00 a0 c5 el 47 8e 00 a0 cc 3b 38 al 08 00 45 00

00 47 a5 28 40 00 40 ii II bd cO a8 01 6f cO a8

01 01 80 02 00 35 00 33 cb 01 cc 42 01 00 00 01

00 00 00 00 00 00 03 77 77 77 ii 69 6e 74 65 72

6e 65 74 2d 73 74 61 6e 64 61 72 64 03 63 6f 6d

00 00 01 00 01

In fact, if you were to read these values, they would look something like
this:

..$~G.. I;8T ..E.

�9 o Y .

Chapter 7 �9 Meet Joe's Packets 119

..... 5.3 ~,.IB

....... w ww. inter

n e t - s t a n dard. com

However, when we look at any kind of protocol headers, we'll .use the
framework provided by our sniffer to put it all into context, so the initial
DNS request appears like this:

Domain Name System (query)

Transaction ID- 0xcc42

Flags- 0x0100

o o o o �9 o ,

�9 0 0 0 O...

�9 �9 o �9 o o 0 � 9

truncated

(Standard query)

......... Query

......... Standard query

......... Message is not

.... ...I

....0

= Do query recursively

= Non-authenticated

data is unacceptable

Questions- 1

Answer RRs: 0

Authority RRs- 0

Additional RRs- 0

Queries

TODAY.example.net: type A,

Name: TODAY.example.net

Type: Host address

Class- inet

class inet

We'll get to the details of DNS later on, in Chapter 8, but for now
it's enough to see that Joe's PC is sending out a request (directed to
its local DNS server) for information about the .server using the host

120 Part Two �9 Internet Applications

name of TODAY. example.net, specifically that server's host address.
The response comes back from the DNS server looking something
like this:

Domain Name System (response)

Transaction ID- 0xcc42

Flags: 0x8180 (Standard query response,

No error)

Questions- 1

Answer RRs: 2

Authority RRs- 2

Additional RRs- 0

Queries

TODAY. example, net- type A, class inet

Name : TODAY. example, net

Type: Host address

Class-inet

Answers

TODAY. example .net- type CNAME, class inet,

cname internet-standard, com

internet-standard.com- type A, class inet,

addr 216.92.98.204

Authoritative nameservers

internet-standard.com- type NS, class inet,

ns ns00.ns0.com

internet-standard.com- type NS, class inet,

ns nsl30.pair.com

This is quite a complicated response, but it is what Joe's PC asked for
in the original request: authoritative responses from all the web server's

Chapter 7 �9 Meet Joe's Packets 121

nameservers (the actual DNS response continues, reporting not just the
responses from the nameservers but also identifying the IP addresses of
those nameservers). This is enough for the PC to comfortably start sending
data, and now the web application protocol can start to kick in.

7.2.2 HYPERT~ TRANSFER PROTOCOL

All HTTP messages are either requests or responses. Clients make requests,
servers make responses. HTTP defines headers to be used with messages;
these headers tell first of all what the message is (a request or a response)
and what version of HTTP is being used (as of 2002, HTTP version 1.1
is current). From there, more detail about the request or response can be
coded in additional headers, as discussed in Chapter 12.

Joe's PC's first HTTP message will be a request to retrieve the contents of
a particular Uniform Resource Identifier (URI). That message is sent off
(again, we'll see how later) to the server, which responds in one of several
possible ways:

�9 The server can decline to respond at all and ignore the request.
�9 The server can respond to the request by denying it.
�9 The server can fulfill the request and begin sending the

requested resource.

In the first instance, the server might not be offering HTTP services and
so would ignore any HTTP requests. Or, the server might be set up
to ignore requests from clients outside the local network for security
reasons.

In the second case, the server could deny a request for quite a few dif-
ferent reasons. The resource requested may not exist, or the request may
not be an authorized one for that particular resource (but authorized for
other resources), or the server may have encountered an internal error.
The specification for version 1.1 of HTTP (in RFC 2616) defines almost two
dozen different response codes that can be used to indicate different reasons
a request is denied.

Server responses begin with the version of HTTP being used and a response
code. Most application protocols define a set of response codes, usually
three-digit values that correspond to different types of response; the first
digit of the response code specifies a general status of the response, while

1,22 Part Two �9 Internet Applications

the other digits refine the meaning of the code. The five levels of response
for HTTP responses are:

1XX Informational; the request is not being denied, but it has not yet been
fulfilled. Different codes indicate what happens next or what must
happen to fulfill the request.

2XX Successful; the request was received, understood, and accepted by
the server. Different codes indicate what actions have resulted.

3XX Redirection; the request was received but further action is required
by the client to fulfill the request. Different codes indicate what
the client must do to complete the request, or what occured that
prevented the request from being completed.

4XX Ctient error; the request was received by the server but the server
was unable to complete it due to perceived error in the request.
Different codes indicate various reasons the request appeared to be
incorrect, including the famous "404-File not found" error.

5XX Internal server error; the request could not be fulfilled because the
server encountered an internal error or unexpected condition that
prevented it from fulfilling the request. Different codes indicate
those reasons.

This response code system is either similar or identical to response codes
defined for other file-transfer oriented protocols, such as File Transfer
Protocol (FTP), Simple Mail Transfer Protocol (SMTP), and others.

A typicaI exchange between client and server is reproduced here. The
initia/request, from the client host, appears something like this:

GET / HTTP/I.I

Host: today.example.net

User-Agent- Mozilla/5.0 Galeon/l.0.3

(XII; Linux i686; U;) Gecko/20020205

Accept: text/xml,application/xml,application/

xhtml+xml,text/html;q=0.9,text/plain;q=0.8,

video/x-mng, image/png, image/jpeg, image/gif;

Chapter 7 �9 Meet Joe's Packets 123

q=0.2, text/css,*/* ; q=0.1

Accept-Language : en

Accept-Encoding- gzip, deflate, compress;

q=0.9

Accept-Charset: IS0-8859-I, utf-8;q=0.66, ~

q=0.66

Keep-Alive- 300

Connection-keep-alive

Referer: http://www.osdn.com/index.pl

Each line contains a separate header (the "Accept:" header displays as
several lines but is only one header), with header names appearing first
followed by a colon. The first line of the HTTP message indicates the ver-
sion and the type of message; the rest of the headers pertain either to the
request (in this case, the name of the host from which the client wants to get
data, "today.example.net"); or to the client (in this case, the client software
as well as preferences for the way in which the client would like data to be
sent).

The response to this HTTP message appears next. The server exists and is
able to fulfill the request, so it sends:

HTTP/I.I 200 OK

Date: Wed, 27 Feb 2002 17:56:17 GMT

Server: Apache/l.3.22 (Unix) mod_gzip/

1.3.19.1a PHP/4.0.6

X-Powered-By: PHP/4.0.6

Connection- close

Content-Type: text/html

Content-Encoding- gzip

Content-Length: 21204

The response from the server is "200," indicating that the request was
successful, and (in this case) the requested data is included with the
response; the last header indicates that the response contains 21,204
bytes.

124 Part Two �9 Internet Applications

And that's how the HTTP client (browser) and the HTTP server commu-
nicate with each other.

7.3 The Transport Layer
We've seen how two application protocols, HTTP and DNS, send requests
and responses between clients and servers. It just so happens that each
of these application protocols is usually associated with one of the two
dominant transport layer protocols, TCP and UDP.

The application layer provides a mechanism for an entity on one side
of the communication (in this case, a person trying to surf the web) to
interact with an entity on the other side (in this case, a web server).
The application protocol doesn't concern itself with identifying the client
to the server, although the resource on the server may require some
authentication or other identification; if identification is required, that
data can be exchanged through the application's protocol (i.e., using
messages).

However, the application protocol messages need more help to get from
the client to the server. The application client and server communicate
through the application layer protocol, sending messages to each other,
but before the message can be sent, it must be wrapped up for shipping
across the network. The first step actually is to wrap them up in a trans-
port layer protocol so that the client process and the server process can
communicate directly with each other.

Networks require unique identifiers to differentiate the network nodes.
Within a host, processes can be considered something like nodes, capable
of interacting with each other or with processes on other hosts. Each process
gets its own unique identifier, called a port. This is the way that data can
be directed not just to a particular host, but to a particular entity within
the destination host.

Ports are defined as 16-bit integers, so valid values range from 0 through
65535. There are three types of port defined for use with internet transport
layer protocols:

1. Well known ports (0 through 1023) comprise a set of ports that
all TCP/IP hosts should be able to recognize as "belonging" to

Chapter 7 �9 Meet Joe's Packets 125

a particular service, and are registered and managed by the
Internet Assigned Numbers Authority (IANA). Well-known
ports make it possible for Joe's PC to initiate a connection with
any web server by addressing transport layer segments to port
80 (the well-known port associated with HTTP).

2. Registered ports (1024 through 49151) are ports that various orga-
nizations or individuals have registered with IANA and which
should be used for the services registered. IANA registers these
ports, and hosts should respect them.

3. Dynamic and~or private ports (49152 through 65535) are some-
times also called transient ports or ephemeral ports, and hosts
use them once transport layer sessions have been set up using
registered or well-known ports. As we'll see in more detail in
Chapters 12 and 15, a web server operates by having a daemon
process listening for requests on port 80; the client almost
always uses its own, non-well-known, port from the start of any
session. (A daemon is a processman active, running instance of
a program on a sys tem~that does nothing more than wait to
be summoned by a request for a service. The daemon responds
to such requests by creating a new process to handle the
request.)

TCP and UDP use the same values for well-known ports, where appropri-
ate. HTTP messages can be carried in TCP or UDP, but in either case the
initial session request is sent to port 80. The well-known port addresses
that have already been assigned for TCP and UDP have been reserved for
use with the Stream Control Transmission Protocol (SCTP), as appropriate.
Additional registrations will occur as necessary. 1

7.3.1 DNS AND UDP

Most hosts are configured with the addresses of at least two DNS name-
servers; without a nameserver, people will only be able to access internet
resources if they already know the 32-bit IP address for those resources.
Having one is good enough for most purposes, but having two provides
the benefit of redundancy in case one failsmand having two or more, each
on a different network managed by a different provider, reduces the risk
of losing service to a major outage.

1See RFC 814 for background on the use of ports, and RFC 2960 for details about SCTP.

126 Part Two �9 Internet Applications

By its nature, DNS does not require the kind of virtual circuit connection
that TCP can offer; all it needs is a mechanism for sending out a request
and for receiving a reply. There are lots of nameservers around, and if one
is busy or unable for some other reason to respond, a host can try some
other nameserver until it gets a response.

UDP is perfect for this kind of application: it provides a simple mechanism
for sending messages, requests, or responses, and there is almost no over-
head associated with building the packets (TCP, on the other hand, has
considerable overhead for setting up, maintaining, and even terminating
sessions).

When the DNS request (see above) is created, the data is passed down the
protocol stack to be prepared for transmission. A source port number is
selected for the process that requested the DNS information, and port 53
is selected as the destination port (that is, the well-known port number for
domain name service). The rest of the UDP datagram consists of the DNS
query-- the stuff we saw in section 7.2.1. The UDP header for that query
looks something like this:

User Datagram Protocol

Source port: 32778 (32778)

Destination port- domain (53)

Length: 39

Checksum: 0x98f0 (correct)

The length of the UDP datagram, 39, indicates that the entire datagram
(including the headers) is 39 bytes long; the headers take 8 bytes, the
data or payload of the datagram (actually, the DNS request) is 31 bytes
long. 2

Now, we have a better idea of how the original DNS request gets to
a nameserver, or at least to the correct process once it arrives at the
nameserver. The destination port, 53, identify the datagram as being
intended for the domain name service, and the source port, 32778, indicates
where the nameserver should direct its response, which looks something

2The checksum field provides a weak mechanism for detecting corrupt datagrams; more
will be said about checksums and how they are created in Chapter 13.

Chapter 7 �9 Meet Joe's Packets 127

like this:

User Datagram Protocol

Source port- domain (53)

Destination port- 32778 (32778)

Length: 165

Checksum: 0x5f33 (correct)

In this case, the nameserver sends a UDP datagram from port 53 to
port 32778; the datagram is 165 bytes long. Eight bytes account for the
UDP headers and the rest, another 157 bytes account for the payload-
the response to the query. It's important to remember that the payload of
the UDP datagram is actually an entire application layer protocol (DNS)
message.

If for some reason the nameserver took too long to respond, the client
would likely send out another request until it either got a response or until
a t imer (a process that keeps track of how much time has elapsed since
some event) expired and the decision is made to consider the nameserver
(or nameservers) unavailable. UDP does not use any timers, so applications
that use UDP for their transport protocol must implement their own timers
(or other mechanisms for keeping track of the application).

7.3.2 HYPERTEXT TRANSFER PROTOCOL AND TRANSMISSION CONTROL PROTOCOL

Where DNS is message-oriented (a client sends a request and a server
sends a response, and that's the end of the interaction), HTTP mediates
the exchange of files rather than simple messages. Files are often much
larger than the largest allowable packet size, so they've got to be broken
up into smaller chunks for transport. Shifting even a single bit in the course
of a file transfer can ruin the transferred file and cause the file to be resent,
so a best-effort protocol like UDP may not be enough. The many pieces
into which large files must be broken for transmission call for many dif-
ferent datagrams to carry them; dropping any one of those datagrams--a
common enough occurencemmeans there must be a mechanism for keep-
ing track of them all and making sure all have been received. Finally, one
host may be able to send big datagrams very quickly while the other may
need more time to receive and process the datagrams, and as a result drop
some data on the floor. A mechanism for controlling how fast the data is

128 Part Two �9 Internet Applications

sent would also help, as would a mechanism for detecting when network
conditions are slowing transmission rates down.

TCP offers all these features, and has long been the transport protocol of
choice for applications that require any degree of accuracy, acknowledg-
ment, control over transmission for performance, or guaranteed delivery.
Where UDP is an utterly simple protocol (RFC 768, "User Datagram Proto-
col", describes it in about 600 words), TCP is considerably more complex.
It allows hosts to set up a virtual circuit, starting with the three-way hand-
shake protocol for setting up the initial connection. It allows hosts to keep
track of what bits of data have been sent and what bits have been received
(actually, which have been explicitly acknowledged by the recipient, and
which have probably been received), and additions to the basic protocol
allow hosts to deal with transient network problems as well as resend the
minimum amount of data when some goes missing.

However, we'll get to the details of transport protocols in part IV; here,
we'll just take a quick look at how HTTP messages are encapsulated into
TCP. In section 7.2.2, we saw an HTTP request from the client and a
response from the server. Although this exchange required only two mes-
sages, one in each direction, at the transport layer many more messages
are exchanged (in this particular case, about three dozen altogether). The
first transport layer message for our HTTP exchange is a request from the
client to open a TCP virtual circuit with the process listening to port 80 on
the server, and looks something like this:

Transmission Control Protocol,

Src Port- 33463 (33463), Dst Port- http

Seq- 579940142, Ack- 0

Source port- 33463 (33463)

Destination port- http (80)

Sequence number- 579940142

Header length- 40 bytes

Flags- 0x0002 (SYN)

0 Congestion Window

Reduced (CWR) �9 Not set

.0 ECN-Echo- Not set

(8o),

Chapter 7 �9 Meet Joe's Packets 129

. .0 Urgent- Not set

�9 . . 0 Acknowledgment- Not set

.... 0 Push- Not set

..... 0.. = Reset- Not set

...... i. = Syn- Set

....... 0 = Fin- Not set

Window size- 5840

Checksum- 0x3a2a (correct)

Options- (20 bytes)

Maximum segment size- 1460 bytes

SACK permitted

Time stamp- tsval 1826004, tsecr 0

NOP

Window scale- 0 bytes

Without delving too deeply into the actual meaning of all the different
headers, note that the client selected its own source port, 33463, and set the
SYN flag on. This indicates that the TCP segment is an initial request to
synchronize or start up a virtual circuit between the client process requesting
a web page and the server process listening for web requests. There is no
payload for this segment other than the data carried in the headers and
protocol options. The server process responds with a TCP segment looking
something like this:

Transmission Control Protocol,

Src Port- http (80) , Dst Port- 33463 (33463) ,

Seq- 372068242, Ack- 579940143

Source port- http (80)

Destination port- 33463 (33463)

Sequence number- 372068242

Acknowledgement number- 579940143

Header length- 40 bytes

130 Part Two �9 Internet Applications

Flags- 0x0012 (SYN, ACK)

0 Congestion Window

Reduced (CWR)- Not set

.0 ECN-Echo- Not set

..0 Urgent- Not set

...i Acknowledgment- Set

.... 0 Push- Not set

..... 0.. = Reset- Not set

...... I. = Syn- Set

....... 0 = Fin- Not set

Window size- 32120

Checksum- 0xb029 (correct)

Options- (20 bytes)

Maximum segment size- 1460 bytes

SACK permitted

Time stamp, tsval 1397385789, tsecr 1826004

NOP

Window scale- 0 bytes

This response from the server process is an acknowledgment (ACK) of the
request to synchronize; the Acknowledgment and Synchronize flags are
both set. This is the second part of the three-way handshake defined for
setting up TCP connections. This is the fastest protocol for setting up a
connection between two entities providing assurance that each party has
agreed to the circuit. The first party sends a request to open; the second
party sends an ACK to indicate that it, too, will open a circuit; the first
party must respond, acknowledging the first ACK. Once the third message
is received, the hosts can begin using the circuit to exchange application
protocol data. The ACK from the client looks like this:

Transmission Control Protocol,

Src Port- 33463 (33463), Dst Port- http

Seq- 579940143, Ack. 372068243

(8o),

Chapter 7 �9 Meet Joe's Packets 131

Source port- 33463 (33463)

Destination port- http (80)

Sequence number- 579940143

Acknowledgement number- 3 72068243

Header length- 32 bytes

Flags-0x0010 (ACK)

0 Congestion Window

Reduced (CWR) �9 Not set

.0 ECN-Echo- Not set

�9 .0 Urgent- Not set

�9 . . 1 Acknowledgment �9 Set

.... 0 Push- Not set

..... 0.. = Reset- Not set

...... 0. = Syn- Not set

....... 0 = Fin- Not set

Window size- 5840

Checksum- 0x4595 (correct)

Options- (12 bytes)

NOP

NOP

Time stamp- tsval 1826006, tsecr 1397385789

As with the first two messages of the handshaking protocol, the final mes-
sage contains no payload beyond the TCP headers; only with the circuit
created can the hosts start sending application data. In this case, the first
TCP segment with an application layer protocol payload is sent by the
client-the actual HTTP message requesting the server to send some data.
The TCP headers for that datagram look like this:

Transmission Control Protocol,

Src Port- 33463 (33463) , Dst Port- http (80),

Seq- 579940143, Ack- 372068243

132 Part Two �9 Internet Applications

Source port- 33463 (33463)

Destination port- http (80)

Sequence number- 579940143

Next sequence number- 579940615

Acknowledgement number- 372068243

Header length- 32 bytes

Flags- 0x0018 (PSH, ACK)

0 Congestion Window

Reduced (CWR)- Not set

.0 ECN-Echo- Not set

..0 Urgent- Not set

...I = Acknowledgment- Set

.... 1 Push- Set

..... 0.. = Reset- Not set

...... 0. = Syn- Not set

....... 0 = Fin- Not set

Window size- 5840

Checksum- 0x3aSl (correct)

Options- (12 bytes)

NOP

NOP

Time stamp- tsval 1826006, tsecr 1397385789

All TCP data must be acknowledged, so this TCP segment includes an
ACK of the server's previous TCP segment; in the payload of this par-
ticular segment is the HTTP GET message we first saw in section 7.2.2.
TCP needed three messages to pass between client and server before the
client could actually make an HTTP request. Once the server starts sending,
there may be any number of additional datagrams sent to the client, but
each IP packet (see next section) may contain only part of the encapsulated
TCP segment. For example, if the TCP segment size were to be defined
as 2,920 bytes, but the most that IP could carry in any given payload is

Chapter 7 �9 Meet Joe's Packets 133

only 1,460 bytes, then it would take at least two IP packets to transmit that
segment.

Compare these TCP headers with the UDP headers shown in section 7.3.1.
UDP headers consist of just four pieces of information, while the TCP head-
ers carry quite a bit, including a sequence number, an acknowledgment
number, a set of eight single-bit flags, a window size, a checksum, and
even more data is possible in the TCP options headers. We'll look at how
this data is used to maintain the virtual circuit and control the rate at which
data is transmitted to maximize efficiency.

Keep in mind that at the transport layer, we've got two processes commu-
nicating: the web server process denoted by port 80, and the client process
using the transient port 33463. Only after the TCP circuit is set up do the
TCP segments start carrying payloads of encapsulated data (in this case,
HTTP messages). The TCP segments are encapsulated in their turn inside
IP packets so that they can be exchanged between IP hosts.

7.4 Internet Layer

So far, we've dealt with end-entities interacting at the application level and
processes interacting at the transport level. If all computing were done on a
single gigantic computer capable of supporting all computer users around
the world, this would be enough (more or lessmyou'd probably need a
much, much bigger address space for system processes). However, internet
communications presupposes the existence of an internet. If these TCP seg-
ments and UDP datagrams are to carry their encapsulated payloads (appli-
cation messages) to their destinations, they (the segments and datagrams)
must be properly encapsulated into an internet layer protocol packet and
labeled with the appropriate source and destination IP addresses.

The IP is necessary for all inter-host communication between IP hosts.
Nodes on a local area network can communicate at the network link layer,
addressing link layer frames to each other using whatever addressing
scheme the link layer protocols use. As we've seen, the entities using the
applications use local processes to interact; the processes serving those
entities interact through the transport layer. The internet layer serves
as a mechanism for linking processes that may be on the same physical
computer system, or on computers separated by thousands of miles, and
allow them to interoperate across network link layer boundaries as well.

134 Part Two �9 Internet Applications

Processes use port numbers to identify themselves to other processes; the
messa_8~s they send go out into the internet cloud through network inter-
faces. A network interface is usually associated with a specific hardware
network interface into a local network. At the internet layer, IP lets us create
an abstracted global network independent of any node's local hardware
network interface. The task of linking IP addresses with network link layer
addresses is a local one, not something that endpoints necessarily need be
involved in.

Consider the IP headers used to send the server's response to the client's
initial TCP 5YN command in section 7.3.2:

Internet Protocol

Version- 4

Header length: 20 bytes

Differentiated Services Field- 0x00

(DSCP 0x00: Default; ECN: 0x00)

0000 00.. = Differentiated Services

Codepoint- Default (0x00)

...... 0. = ECN-Capable

Transport (ECT) :

0 0 = ECN-CE: 0

Total Length: 60

Identification- 0x023f

Flags: 0x04

.i Don't fragment: Set

..0. = More fragments: Not set

Fragment offset: 0

Time to live- 46

Protocol: TCP (0x06)

Header checksum: 0x0527

Source: today.example.net

Destination- 192.168.1.111

(correct)

(10.28.67.35)

(192.168.1.111)

Chapter 7 �9 Meet Joe's Packets 135

There is a lot going on in here, but for now the most important fields
are the last two. The source and destination IP addresses, displayed
here in the dotted-quad format, are abstractions imposed on the source
(today.example.net) and the client (192.168.1.111). The host names map
onto the IP addresses, which in turn map onto link layer network
addressesmbut neither the source nor the destination need ever be con-
cerned with the other's link layer address. The link layer addresses
don't matter until the IP packet arrives at the destination's link layer
network.

Leave aside for the moment the problem of how an IP packet is carried
from one link layer network to another; we'll get to that in section 7.7, on
routing. Although we haven't mentioned any of the other data contained in
the IP headers (in this case, 20 bytes' worth of data), all of that information
is used to deliver the packet, either en route to or at its destination.

IP packets carry payloads, usually of upper layer protocol datagrams; there
is even an IP header field that identifies the protocol carried in the payload.
In this case, the packet payload contains a TCP segment (the response from
the web server to the client's request to open a TCP session). This particular
IP packet was encapsulated, in its turn, in an Ethernet frame at the network
link layer for delivery on the local network.

7.5 Network Link Layer
It never hurts to be familiar with the leading network link layer proto-
cols, including Ethernet and Asynchronous Transfer Mode (ATM), and to
understand how they carry IP traffic. Ethernet is the more common pro-
tocol for most networked nodes, particuarly end-user hosts. Ethernet's
interaction with IP is also the simpler to understand; Ethernet is primarily
a local link protocol and IP is an internet protocol. As we'll see in later chap-
ters, ATM is more complicated, enabling internetworking at what appears
to be the link layer.

7.5.1 ET, ERNET AND ARP

Let's take a look first at a typical Ethernet frame and how IP addresses are
linked to local network addresses.

136 Part Two �9 Internet ApplJcations

Ethernet is a framing protocol, 3 meaning it provides a mechanism for for-
mat t ing data so it can be sent on a local network. This means including
a source and destination address as well as some way for nodes on the
network to determine where the frame begins and where the frame ends.
Ethernet frames are preceded by the preamble, a sequence of 8 octets or
bytes, each containing the pat tern "10101010" to indicate data is to follow,
and are followed by a 32-bit cyclic redundancy check (CRC). The Ethernet
protocol field indicates what upper layer protocol is being encapsulated in
the frame.

Our typical frame appears here:

Ethernet II

Destination- ff-ff-ff-ff-ff-ff

Source: 00:ad:cb:3a:32:c5 (Acme 3a:32:c5)

Type: ARP (0x0806)

Address Resolution Protocol (request)

Hardware type: Ethernet (0x0001)

Protocol type: IP (0x0800)

Hardware size- 6

Protocol size- 4

Opcode: request (0x0001)

Sender hardware address:

Sender protocol address:

Target hardware address:

Target protocol address:

00 :ad: cb: 3a: 32 : c5

192.168.1.111

00 : 00 : 00 : 00 : 00 : 00

192.168.1.1

Here, we see two protocols in action: address resolution protocol (ARP)
and Ethernet. The ARP is a simple and general protocol for resolving (map-
ping) an upper layer address onto a lower layer address. All ARP fields
can be seen in this example, in which the sender is requesting the local

3There are actually two different relevant protocols that are often confused and used
interchangeably. Ethernet, also known as Ethernet II or DIX (for Digital, Intel, and Xerox)
Ethernet, is very slightly different from the IEEE 802.3 specification. We'll touch on some of
those in Chapter 15, but for more details, see the author's Internet Standards for Ethernet from
Wiley (or whatever it's called).

Chapter 7 �9 Meet Joe's Packets 137

holder of IP address 192.168.1.1 respond with its hardware (Ethernet, in
this case) address. The request includes the IP address of the requesting
node as well as its Ethernet address: this makes it possible for the host at
192.168.1.1 to repond directly to the host at 192.168.1.111.

The Ethernet destination address is the broadcast addressmall ones (f f is
hexadecimal for 255, or 1111 1111 in binary: all ones). All nodes on the
local network should see this message; all nodes on the network will take
note of the requesting node's IP and Ethernet addresses while only the
node using that IP address is supposed to reply to the request. The target
hardware address is set to all zeroes because it is unknown; the responder
will provide the information to fill in the blanks.

We'll look at ARP again in Chapter 21 (even though it is encapsulated
within the link layer frame, ARP is usually associated with the link layer
rather than the internet layer).

The Ethernet headers are even simpler: destination, source, and protocol
type are all that are needed. The destination address is the Ethernet all-
zeroes broadcast address, the source address is the Ethernet MAC address
of the node requesting the mapping.

7.5.2 ASYNCHRONOUS TRANSFER MODE AND NON-BROADCAST MULTI-ACCESS NETWORKS

Ethernet encapsulates the ARP request, just as it would any other proto-
col such as IP or ICMP (see Chapter 20). ARP is easy with most Ethernet
networks because the IEEE 802.3 protocol is specific for CSMA/CD base-
band networks. CSMA/CD stands for Carrier Sense Multiple Access~Collision
Detection. In other words, Ethernet nodes are all connected to the same
medium at the same time and all frames are visible to all nodes, and there
is a mechanism that allows nodes to sense when collisionsmtwo or more
nodes transmitting on the shared medium at the same time--occur.

(Although at one time Ethernet nodes could all sense all frames on the wire,
this is not strictly true, particularly where Ethernet bridges or switches
limit which frames are reproduced on which wires. Also, most Ethernet
network interface cards must be explicitly put into promiscuous mode to
process frames not addressed to them.)

ATM is known as a Non-Broadcast Multiple Access (NBMA) network proto-
col. In NBMA networks, there is no provision for broadcasting packets to

138 Part Two �9 Internet ApplJcations

all connected nodes: just individual point-to-point circuits (or virtual cir-
cuits) are possible. To attempt to broadcast in the same way as is possible
with Ethernet, nodes would require complete lists of all other nodes on
the network as well as sufficient information about those nodes to permit
creation of virtual circuits with each node. Obviously, if nodes already
have that information, they probably don't need to broadcast requests
for address resolutionmbut even if they did, the overhead involved
with setting up all those connections would be dwarfed by any mecha-
nism for distributed current address information about all connected
nodes.

In NBMA networks, proxy ARP is a mechanism in which a single node
(a proxy ARP server) maintains contact information for all nodes on the
network. Any time a broadcast would be necessary on a non-NBMA net-
work, the NBMA node sends the message to the ARP server, which either
responds on behalf of the system being queried or else contacts that system
on behalf of the requesting node. You'll see this approach used for a variety
of purposes in different internet protocols, from providing services in tra-
ditional NBMA networks to providing configuration services for mobile
hosts.

7.6 The Big Picture

Figure 7-1 shows how these datagrams all fit inside each other, more or
less like the Russian dolls. On the very inside, the HTTP command (and
associated data inside that!), the HTTP message fits inside a TCP segment,
which fits inside an IP packet, which is wrapped in a network link layer
frame before being transmitted out onto the LAN.

We'll see more complicated nestings of protocols when we look at IP secu-
rity tunneling (Chapter 26), but the ARP/Ethernet encapsulation is quite
simple, as shown in Figure 7-2.

So far, we've been looking at how the protocols of the TCP/IP suite inter-
act with each other, as well as allow interoperation between nodes, while
we've mostly avoided the question of how packets move from source
to destination across unknown and often unknowable intermediate net-
works. IP routing, covered in depth in Chapters 22 and 23, provides the
answer. Routers sit at the edge of every network, (hopefully) always pre~
pared to process outbound and inbound packets, checking destination IP

Chapter 7 �9 Meet Joe's Packets 139

�9 " E mu

..... ~!n'~nnnnnr

..., _ . , i:. - : :i: ~ m ~ .

i ~_ ~ ! t/~: }~ ~;.i !~ ~
�9 . . , ' . . ~ :

. . . .

.

.. . " " ::~ . " : : . " ; ~ immmmmmmr : o . , : . ,

. �9 ~ ~ o ~ " ~ . 7 ~ ? " . ~ . .: ~ ~..;. , ~,,~ ~ ,~ ~.~,~.',~:~..'~~:~.'~o~I I

'I.". ~'~ ~ :. .,: ' " ,":"~:"::"":~"~"~:,::~"~~'~~~' -- ' " ~ ~ ~ "
I

~: ~ :i: :~:i/~ ~i! ~i::!~.~}:~i~] I
i ~ ~ ~' ...: ~ :: :: .,p.,~,,~,,, ~, :~: ~.....:~;.~:~..~;..~:.i~i I ~.t~;~ I
,...:..: ~ .. :....... :.... :: . :.....: ...: ..: :: :: i . ~: :~.:,..:~ ~ ?.~-~::~:~"~.-~:.~:i~'~I

: , '. . . . �9 . �9 " �9 : :~ . :. ~ ~ % ~..~,~".~.:.~,~,.~,,~:'~,.'~. '~,I
�9 , ~ ., .~'~ '~ ~, ' >."~,~ '.,e~.~.,s >~'~'?,~.~

Ethemet frame

Figure 7-1: TCP/IP encapsulation of HTTP request.

i ii~i~iiiiiiiiiiiiiiiii~i~iiiiiii~i~iiiiiiii!~iiiiii!~iiiiiiiiii~!ii~iii~i~iiii~iiiiiiiii~i~iiiii!iiiii!iiii~iiiiiiii!iii!ii!iiiii!i!~ii~ii!iii!iiii~iiii~i!iiiiii!iii~ii~ii~iiiiiiiiiiiiiiiiii~iiiiii!iiiiiiiiiiiiiii~ii!i~ ~i~ii~!iiiii~iiii~iiiii|174

~~i~ii~i~i1iii~i~i~iitiii~iiiii~!i1iiiii~i~iiii|

Ethernet frame

Figure 7-2: TCP/IP encapsulation of ARP request.

140 Part Two �9 Internet Applications

addresses and passing them along to the appropriate node or "dropping
them on the floor ''4 and ignoring them.

7.7 Routing Joe's Packets

Without going into too many details, let's look at internet routing. Joe's
PC sends its IP packets out on the local network, but where does it send
them? If the destination IP address is local, the PC will send out an ARP
request to discover the local link address, and send the packet directly to
its destination at the link layer. But if the destination is not a local one, Joe's
PC sends the packet to a router for forwarding.

Internet hosts are almost always configured with a default gateway; the
router to which all packets go that the host can't deliver on its own. IP
packets that can be delivered locally are like inter-office mail: just put it in
an inter-office mail envelope and drop it in the proper receptacle, and it
will be delivered directly to the recipient. Non-local packets are like mail
destined for outside the organization, mail that must be sent to the mail
room (no matter where the ultimate destination is) and then processed for
further delivery.

Figure 7-3 shows a simplified approximation of what the internet looks
like. The source host sends out a packet for the destination host; not being
local, the source sends that packet to its local router. The local router accepts
a link layer frame containing the packet, strips the link layer protocol head-
ers off and examines the IP headers. Upon determining that the packet
is destined for somewhere outside the local organization the router re-
encapsulates the packet in the appropriate format for the ISP's router link
layer and forwards the packet to the ISP's router. For clarity, only the
source's router is shown in the figure; all links shown between network
clouds imply the existence of routers on either end.

4This phrase may have been inspired by the infamous "I Love Lucy" episode in which Lucy
and Ethel get jobs in a candy factory. Their task: wrapping and packing candies delivered
by an ever-accelerating conveyor belt. As more candies are backed up, waiting to be packed,
the two attempt to cope by eating or pocketing them. Eventually, they are overwhelmed by
the onslaught and soon the floor is covered with candy. The metaphor is apt for routers,
when overwhelmed with packets, may very well just ignore the packets they are unable
to process.

It should also be noted that routers may silently drop packets for other reasons, as we'll
see later on when we discuss firewalls and the IP time-to-live field.

Chapter 7 �9 Meet Joe's Packets 141

Other ISPs

~.~ Internet ~ ISP

~ Other ISP ;
........ customers 4

Big
ISP

..... ,,~,: ..iill ~

Other
big ISP
clients

Internet
backbone

Other ISPs

Figure 7-3: Overly simplistic approximation of the internet's architecture.

The ISP's router accepts the link layer frame from the source host's default
router, strips the link layer headers off and examines the encapsulated
packet's IP headers. If the destination is local to the ISP's router, then the
packet will be re-encapsulated again and forwarded to its final destination.
If not, the router forwards it to an appropriate router (within the ISP, or
to one of the ISP's customers, or to the ISP's own ISP, or to an internet
backbone router).

The process continues, moving from one router to another (or in some
cases, switch to switch within switched networks that interoperate with IP
networks) until the packet is finally delivered, or the packet is lost, or the
packet is considered undeliverable for some reason.

142 Part Two �9 Internet ApplJcatJons

G

Y
~j

Figure 7--4: An extremely simple internet with extremely robust routing.

Routers implement a variety of different routing protocols to assist them
in doing the right thing with the packets they process. There are rou-
ting protocols for smaller organizations, for larger organizations, and
for backbone routing. Routing in small static internets like that shown
in Figure 7-4 can be quite simple: this is a full-mesh internet, with links
between every pair of networks in the internet. With only six links, no
single link failure can isolate any network; loss of any two links can
also be sustained with no loss of connectivity. If the internet loses three
of six links, at worst a single network will be isolated while the other
three will still be reachable to each othermin fact, to reduce connectivity
by 50%, you would have to eliminate 83% of the links and leave only
one active.

Of course, using a full-mesh architecture for an internet consisting of only
four networks requires only six connections; a full-mesh connecting 20
networks requires 190 links. There's no way a full-mesh routing struc-
ture could be deployed in today's global internet, with its hundreds of
thousands of networks. Building a reliable, efficient, and scalable internet
routing architecture continues to be one of the greatest challenges facing
the IETF.

Chapter 7 ~ Meet Joe's Packets 143

7.8 Chapter Summary
The protocols described here are far from the only ones Joe's packets use,
or cause to be used by other nodesmnor are they the only important ones.
The objective of this chapter has not been to exhaustively demonstrate all
internet protocols, but to give a sense of how those protocols work.

In this chapter, we've taken a lightning tour of the TCP/IP protocol suite,
looking briefly at the ways in which data moves from one application to
another. Many of the issues relating to the protocols have been omitted to
avoid complicating matters; some of the subtleties of the protocols have
been glossed over to avoid getting mired in specifics. However, for most
people, this chapter should be more than sufficient to explain how the
internet works and how internet mail, web browsing, and other applica-
tions work.

This Page Intentionally Left Blank

The Domain Name System

Because it is largely invisible to users (except when it is disrupted), domain
name system (DNS) is not always spoken of as an applicationmbut it
is. The function it performs, providing a mechanism for translating the
human-accessible hostnames to computer and network-friendly nume-
rical addresses, makes the internet as we know it possible. DNS is a
great place to begin looking at TCP/IP networking for a number of
reasons:

�9 The protocol itself is relatively straightforward.
�9 DNS is implemented on all TCP/IP nodes.
�9 DNS illustrates basic protocol concepts.
�9 DNS also illustrates distribution of applications in IP networks.
�9 DNS also illustrates hierarchical organization in IP networks.
�9 DNS also illustrates networking issues such as security, scala-

bility, and availability.

If you can grasp the DNS, the rest of TCP/IP networking should be
simple.

145

146 Part Two �9 Internet Applications

8.1 Problem Statement

Although humans prefer to name the things with which they work, com-
puters do better with numerical datamespecially when the numerical data
carries information that can be useful. At the same time people also need
some patterns for naming in large namespaces. IP mandates globally
unique 32-bit addresses for every node, within a format that simplifies
packet routing and delivery.

IP itself provides no mechanism for simplifying those numerical addresses
for use by people. Originally, internet hosts were named in a fiat names-
pace, and hosts all relied the regular distribution of a hosts file, containing
all those names along with their associated addresses, to link names and
addresses. In a flat namespace, every host has a single name.

The hosts file approach failed to scale well as the internet grew in the 1980s
for several reasons:

�9 "Host name to address mappings were maintained by the net-
work information center in a single file (HOSTS.TXT) which
was FTPed by all hosts (RFC-952, RFC-953). The total network
bandwidth consumed in distributing a new version by this
scheme is proportional to the square of the number of hosts in
the network, and even when multiple levels of FTP are used, the
outgoing FTP load on the NIC host is considerable. Explosive
growth in the number of hosts didn't bode well for the future.

�9 The network population was also changing in character. The
timeshared hosts that made up the original ARPANET were
being replaced with local networks of workstations. Local orga-
nizations were administering their own names and addresses,
but had to wait for the NIC to change HOSTS.TXT to make
changes visible to the Internet at large. Organizations also
wanted some local structure on the name space.

�9 The applications on the Internet were getting more sophisti-
cated and creating a need for general purpose name service. ''1

The challenge was threefold:

1. Design a namespace that scales well and incorporates all the
information necessary to locate named nodes.

1Mockapetris P. RFC 1034, pp 1,2.

Chapter 8 �9 The Domain Name System 147

2. Build a robust, scalable, and distributed system for distributing
information that links resources with addresses.

3. Provide a mechanism for accessing that system.

The domain name system still operates substantially as described in
two RFCs published in 1987: RFC 1034, "Domain names--concepts and
facilities," and RFC 1035, "Domain names-- implementat ion and specifi-
cation. ''2 As Paul Mockapetris describes in RFC 1034, the design goals for
DNS included:

�9 " . . . a consistent name space which will be used for referring
to resources. In order to avoid the problems caused by ad hoc
encodings, names should not be required to contain network
identifiers, addresses, routes, or similar information as part of
the name.

�9 The sheer size of the database and frequency of updates suggest
that it must be maintained in a distributed manner, with local
caching to improve performance. Approaches that attempt to
collect a consistent copy of the entire database will become more
and more expensive and difficult, and hence should be avoided.
The same principle holds for the structure of the name space,
and in particular mechanisms for creating and deleting names;
these should also be distributed.

�9 Where there [are] tradeoffs between the cost of acquiring data,
the speed of updates, and the accuracy of caches, the source
of the data should control the tradeoff.

�9 The costs of implementing such a facility dictate that it be gener-
ally useful, and not restricted to a single application. We should
be able to use names to retrieve host addresses, mailbox data,
and other as yet undetermined information. All data associated
with a name is tagged with a type, and queries can be limited
to a single type.

�9 Because we want the name space to be useful in dissimilar net-
works and applications, we provide the ability to use the same
name space with different protocol families or management.
For example, host address formats differ between protocols,
though all protocols have the notion of address. The DNS tags

2Note that the Domain Name System has been significantly updated since 1987 by over
a dozen more recent specifications; there are also dozens of other specifications that extend,
describe best practices, or otherwise define how DNS and related protocols work in today's
internet.

148 Part Two �9 Internet Applications

all data with a class as well as the type, so that we can allow
parallel use of different formats for data of type address.

�9 We want name server transactions to be independent of the
communications system that carries them. Some systems may
wish to use datagrams for queries and responses, and only
establish virtual circuits for transactions that need the reliability
(e.g., database updates, long transactions); other systems will
use virtual circuits exclusively.

�9 The system should be useful across a wide spectrum of host
capabilities. Both personal computers and large timeshared
hosts should be able to use the system, though perhaps in

113 different ways.

Basically, the DNS design team hoped to build a generalized direc-
tory service for the internet, rather than just a name resolution service
for IP. That extensibility has permitted internet mail systems to use
DNS as well as made it easier to extend DNS to add IPv6 and security
support.

The team also brought several assumptions about the way DNS would be
used:

. "The size of the total database will initially be proportional
to the number of hosts using the system, but will eventually
grow to be proportional to the number of users on those hosts
as mailboxes and other information are added to the domain
system.

�9 Most of the data in the system will change very slowly (e.g.,
mailbox bindings, host addresses), b u t . . , the system should
be able to deal with subsets that change more rapidly (on the
order of seconds or minutes).

�9 The administrative boundaries used to distribute responsi-
bility for the database will usually correspond to organiza-
tions that have one or more hosts. Each organization that
has responsibility for a particular set of domains will pro-
vide redundant name servers, either on the organization's
own hosts or other hosts that the organization arranges
to use.

3RFC 1034, pp 2,3.

Chapter 8 �9 The Domain Name System 149

�9 Clients of the domain system should be able to identify trusted
name servers they prefer to use before accepting referrals to
name servers outside of this "trusted" set.

�9 Access to information is more critical than instantaneous
updates or guarantees of consistency. Hence the update process
allows updates to percolate out through the users of the domain
system rather than guaranteeing that all copies are simultane-
ously updated. When updates are unavailable due to network
or host failure, the usual course is to believe old information
while continuing efforts to update it. The general model is that
copies are distributed with timeouts for refreshing. The distrib-
utor sets the timeout value and the recipient of the distribution
is responsible for performing the refresh. In special situations,
very short intervals can be specified, or the owner can prohibit
copies.

�9 In any system that has a distributed database, a particular name
server may be presented with a query that can only be answered
by some other server. The two general approaches to dealing
with this problem are "recursive," in which the first server pur-
sues the query for the client at another server, and "iterative," in
which the server refers the client to another server and lets the
client pursue the query. Both approaches have advantages and
disadvantages, but the iterative approach is preferred for the
datagram style of access. The domain system requires imple-
mentation of the iterative approach, but allows the recursive
approach as an option. ''4

The key to DNS lies in its use of a distributed network service in which
there are many nameservers spread throughout the internet, with each
nameserver responsible for, and providing information about, only a small
part of the entire namespace. Without DNS or something like it, the internet
may not have continued its rapid growth.

DNS continues to be a critical mechanism for the internet's growth and
security. IPv6 with its 128-bit addresses will provide more than enough
address space for future growth, but it relies even more heavily on
DNS than IPv4. Secure DNS (DNSSEC) is expected to improve secu-
rity against attackers who attempt to subvert the system for their own
reasons.

4 RFC 1034, p 3.

150 Part Two �9 Internet Applications

8.2 The Domain Name System Solution

Three components comprise the DNS, each corresponding to one of the
three challenges cited above:

�9 "The DOMAIN NAME SPACE and RESOURCE RECORDS,
which are specifications for a tree structured name space and
data associated with the names. Conceptually, each node and
leaf of the domain name space tree names a set of information,
and query operations are at tempts to extract specific types of
information from a particular set. A query names the domain
name of interest and describes the type of resource informa-
tion that is desired. For example, the Internet uses some of its
domain names to identify hosts; queries for address resources
return Internet host addresses.

�9 NAME SERVERS are server programs which hold information
about the domain tree's structure and set information. A name
server may cache structure or set information about any part
of the domain tree, but in general a particular name server
has complete information about a subset of the domain space,
and pointers to other name servers that can be used to lead to
information from any part of the domain tree. N a m e servers
know the parts of the domain tree for which they have com-
plete information; a name server is said to be an AUTHORITY
for these parts of the name space. Authori tat ive information
is organized into units called ZONEs, and these zones can be
automatical ly distributed to the name servers which provide
redundan t service for the data in a zone.

�9 RESOLVERS are programs that extract information from name
servers in response to client requests. Resolvers mus t be able to
access at least one name server and use that name server 's infor-
mation to answer a query directly, or pursue the query using
referrals to other name servers. A resolver will typically be
a system routine that is directly accessible to user programs;
hence no protocol is necessary between the resolver and the
user program. ''5

Mockapetris linked these three components with the perspectives of the
three different classes of users:

"From the user 's point of view, the domain system is accessed
through a simple procedure or OS call to a local resolver.

5RFC 1034, p 5.

Chapter 8 �9 The Domain Name System 151

The domain space consists of a single tree and the user can
request information from any section of the tree.
From the resolver's point of view, the domain system is com-
posed of an unknown number of name servers. Each name
server has one or more pieces of the whole domain tree's data,
but the resolver views each of these databases as essentially
static.
From a name server's point of view, the domain system con-
sists of separate sets of local information called zones. The
name server has local copies of some of the zones. The name
server must periodically refresh its zones from master copies
in local files or foreign name servers. The name server must
concurrently process queries that arrive from resolvers. ''6

For our purposes, we can discuss DNS in terms of these three components:

�9 Database: the domain name space and its component resource
records (RRs).

�9 Service: the rules by which nameservers (programs implement-
ing DNS services) store and make available their particular
portions of the domain name space.

�9 Users: the rules by which resolvers (programs capable of retriev-
ing information from DNS servers) access DNS information.

We'll look at each of these components in the next three sections, followed
by illustration of the DNS protocol in action in section 8.5 and discussion
of changes and additions made to DNS since RFC 1035 with emphasis on
DNS security extensions.

8.3 The Database

The DNS is a huge, and hugely distributed, database, and the domain
name space is the hierarchical database that DNS stores. Its hierarchical
structure can be represented as a tree with the unnamed root represented
at the top (more like a family tree than an apple tree). All nodes are descen-
dants of the unnamed root. Nodes are points from which leaves sprout (or
could sprout) off the domain name tree, and both are usually referred to
as nodes because they are treated identically and can both be linked with a
set of resources (information about the node/leaf). Nodes are identified by

6 RFC 1034, p 6.

152 Part Two �9 Internet Applications

domain names, which consist of the sequence of node labels tracing a node's
ancestry.

The root domain node is denoted by the null (0-byte) label, represented as
".", and usually left out of written domain names. Every domain name is
represented as a sequence of node labels (labels may be up to 63 bytes long)
separated by ".". Thus, the typical domain name "www.example.com',
with the symbol "." pronounced "dot" and setting off the domain name's
constituent labels.

Domain names start out with the most specific node label at the leftmost,
with subsequent labels referring to increasingly general nodes. The top-level
domain (TLD) refers to the highest-level node below the root in a domain
name; the TLD appears directly to the left of the root (in most cases, the
root being assumed, the TLD is the rightmost element of the node). In the
"www.example.com" domain, ".corn" is the TLD (see sidebar for more
about TLDs). The label ".com" is most general, the label ".example." at
the second level represents an entity that maintains its own subdomain,
and the "www" label indicates the leaf node to be linked with a particular
system ("www" within the "example" organization, which is registered
under the ".com" TLD).

Sibling nodes have unique names at their own levels within their parent
domains. In other words, under the root domain ".", there can be only one
".com" domain. Under the ".com" domain, there can be only one ".exam-
ple." sub-domain7-but the ".example." sub-domain can be repeated once
each under all other TLDs. Thus, "example.com" can co-exist with "exam-
ple.net", "example.org", "example.gov" and so on. Node labels can be
used only once under each parent node, but can be re-used at other lay-
ers. Thus, "example.com" can co-exist with "example.examplel.com" as
well as "example.example.com" (which is a child of the "example.com"
domain).

Figure 8-1 shows a simplified example taken from RFC 1034. Although
most readers will be familiar with two- or three-level domains (such as
"example.org" or "www.example.com"), additional layers are also possi-
ble (such as the domain "XX.LCS.MIT.EDU" represented in Fig. 8-1). The
parent of all domains is at the top: this node is unnamed, and (when it is
referred to at all) is denoted by a single period ("."). Every top-level domain,

7Except for the root (or parent of all domains) ".', all domains are also sub-domains. The
term sub-domain is relative (as are any further recursions such as "sub-sub-domain").

Chapter 8 �9 The Domain Name System 153

-JI-

I
BRL

F
I

UCI

I
MIL

I
I

- { -

I
NOSC

+

I
DARPA

I
EDU

I
I
I
I
I
I
F

J l -

I
IN-ADDR

I
ARPA

I
I

+ _ _ _ +

I
SRI-NIC

I
q

-+

I
ACC

I
MIT

I
I
I

+ - - - + - - - +

I I
LCS ACHILLES

I
XX

I
I
I
I
I

ISI
I
I
I

+ - - + - - +

I I I
A C VAXA

I I
UDEL YALE

l- +

I I
VENERA Mockapetris

Figure 8-1: A s a m p l i n g of the domain name space, from RFC 1034 (p 10).

or TLD, is a child of this unnamed parent. Figure 8-1 shows only three
TLDs: .mil, .edu, and .arpa. As of 2002, there are several more TLDs
(see next section) as well as .arpa, which is designated as an infrastruc-
ture domain (see section 8.6.1 for more about the in-addr.arpa and other
miscellaneous domains).

8 .3 .1 ToP-LEVEL DOMAINS

Starting in the mid-1980s, the IETF defined a limited number of TLDs.
In RFC 1591, "Domain Name System Structure and Delegation" defined
the seven three-letter TLDs, adding that "It is extremely unlikely that any
other TLDs will be created." The original TLDs included:

. c o m Intended for "commercial entities" i.e., companies; as early as 1994,
the huge growth in registrations of .corn domains was seen as a rea-
son for caution (see RFC 1591, 'Domain Name System Structure and
Delegation').

154 Part Two �9 Internet Applications

.edu Initially for all educational institutions, this domain was later
reserved for 4-year colleges and universities.

.net Intended for naming systems associated with network service
providers.

.org Was originally intended as a sort of catch-all category for organiza-
tions such as non-governmental organizations that didn't fit other
categories.

.int Added in 1988, .int was reserved for international databases or
for organizations formed as a result of international treaties, but
by 2000 ICANN was recommending that use of this domain be
reconsidered, and no new .int registrations have been permitted
since then.

.gov Is used only for US government agencies or offices; initially, registra-
tion was open to state and municipal government organizations, but
now only federal organizations may use the .gov TLD.

.rail Is used only by organizations within the US military community.

In addition to these TLDs are the two-letter country code TLDs, mostly
taken from the ISO standard 3166. Networks can use these TLDs within
their own countries; some countries with interesting two-letter codes offer
registration services under those domains to anyone as an alternative to
the crowded .com TLD. These include Tuvalu (TV), a small Pacific Ocean
island nation; Cocos (Keeling) Islands (CC), a territory of Australia located
in the Indian Ocean with fewer than 700 residents; and Ascension Island
(AC), another tiny island in the South Atlantic Ocean 750 miles northwest
of St. Helena.

Individual nations and territories are free to administer their TLDs as
they see fit. In the US, a variety of sub-domains have been apportioned
through the years, including two-letter state and territory sub-domains,
K12 (for schools serving kindergarten through the 12th grade and asso-
ciated educational organizations), and others. The registry has begun
offering registration of individual and corporate names directly under the
.us TLD in addition to registration under state and municipality subdo-
mains (e.g., instead of registering the domain example.springfield.ma.us,
you would be allowed to register example.us).

Chapter 8 �9 The Domain Name System 155

Starting in 2000, as the Internet Assigned Numbers Authority (IANA)
was transferred to the Internet Corporation for Assigned Names and
Numbers (ICANN), the process of adding seven new TLDs began; by
early 2002 most were operational and accepting requests for registrations.
They include:

.biz Is intended as an online business-oriented alternative to the .com
TLD.

.info Is intended to be an unrestricted TLD (meaning anyone can register
any domain name, within reason), and another alternative to the
crowded three-letter TLDs.

. n a m e Is intended as a non-commercial service for individuals. Regis-
trants can opt for a domain in the format lastname.name or first-
name.lastname.name.

. m u s e u m Is intended for use only by museums, museum organizations,
and individuals working for museums.

.coop Is intended for use only by cooperatives and affiliated organi-
zations.

.aero Is intended for use only by the aviation community (according to
the .aero registry website, this includes "companies, organizations,
associations, government agencies and individuals who partici-
pate in the efficient, safe and secure transport of people and cargo
by air").

.pro Is intended for use by certified professionals including doctors,
lawyers, and accountants. As of early 2002, .pro registrations had
not yet begun.

Other TLDs may yet be proposed and approved, depending on the success
of the existing alternate domains.

8.3.2 DOMAIN NAME SYSTEM DATABASE SERVICES

Segmenting the internet domain name space into this hierarchy signifi-
cantly reduces the scope of the problem of doing domain name lookups.

156 Part Two �9 Internet Applications

u, gm

: I:=ou :n !.:

.l~.mit I.wmbr.mit.I
.eau i ~au" I

Figure 8-2: The DNS distributed database.

Although a central reposi tory of global doma in names and addresses could
still be imp lemen ted (in theory, at least), DNS is m u c h easier if responsi-
bility for name lookups is de legated to each parent node. In other words ,
a node needs to main ta in informat ion only about its own children.

This means that the root namese rve r needs to have doma in name and
address informat ion only about the TLDs (the dozen or so global TLDs such
as .com and .info, plus over 200 two-character country code TLDs); each
TLD namese rve r need only have informat ion about its own child second-
level doma in nodes, and each of those second-level domains needs only
main ta in informat ion about the third-level doma in nodes.

Figure 8-2 shows h o w it works. At the t ippy- top is the name service for
the u n n a m e d root DNS domain. 8 That service keeps track of all its child

8For many years, this function was performed by the TLD nameservers in addition to their
own duties. In other words, the same systems that maintained DNS information about .com,
.edu, .org, .net, and so on also maintained information about each other. Currently, the .com,
.org, and .net domains were moved to new servers (*.GTLD-SERVERS.NET), separate from
the root servers (*.ROOT-SERVERS.NET).

Chapter 8 �9 The Domain Name System 157

domain n o d e s ~ t h e TLDs. Any time a TLD needs to locate information
about a sibling TLD, for example, when the .com nameserver needed
more information about reaching the .uk domain, it would query this root
name service. This root domain service maintains information on just the
TLDs.

Each TLD has a domain name service for its own children. Thus, the ser-
vice associated with the .info domain keeps track of only its own child
domain nodes. If you needed to locate information about such a domain
(e.g., example.info), you would query the name service associated with
the .info TLD. By delegating domain name database duty to subordi-
nate domains, no single domain is burdened with more than a portion
of the entire domain name space. The .com domain, with roughly 10 mil-
lion sub-domains registered as of early 2002, undoubtedly contains the
most sub-domains to track; within each of those sub-domains, however,
individual organizations will almost always administer considerably
smaller domains.

The domain name system mandates that each node's children be admin-
istered through a single organizational entity, a registry. Registrars
are entities that have been authorized to accept TLD registrations
from customers; they are permitted to register domains with one or
more domain registrars. Once a domain has been registered, such
as example.com, child nodes are the responsibility of the owner of
example.com. The TLD name service only knows about its own children;
the example.com name service maintains information about child nodes
of the example.com domain, such as www.example.com, hr.example.com,
dallas.example.com, ftp.example.com, and any others. Assuming that the
domain hr.example.com is a node with its own children, a name ser-
vice for hr. example, com must also be set up to record information about
any of that sub-sub-domain's children (such as www.hr.example.com,
ftp.hr.example.com, payroll.hr.example.com, vacation.hr.example.com,
and so on).

What 's the difference between a host domain name and a domain name?
A host name is assumed to refer to a single system (a leaf on the
domain name tree hierarchy), while a domain name may contain child
nodes of its own, which could be leaves or other sub-domains with
their own leaves. As far as DNS is concerned, the difference may not
matter. For example, the following domain names can be used with
the web to connect to resources: mit.edu, www.mit .edu, lcs.mit.edu,
www.lcs.mit.edu.

158 Part Two �9 Internet Applications

How many layers down can DNS go? Here is a functioning URL that uses
a domain name with 25 nodes:

http-//twas .brillig. and. the. slithy, toves.

did. gyre. and. gimble, in. the. wabe.

al i. mimsy, were. the. borogoves.

and. the. mome. raths, outgrabe.

jabberwocky, com/

As of early 2002, this URL was functioning, although mostly as a stunt
and to test the ability of users' software to cope with the deep domain
name. RFC 1034 mandates an upper limit of 255 bytes for the representation
of domain names to simplify processing and keep domain naming from
getting out of hand.

8.3.3 RESOURCE RECORDS

No database can exist without records, and DNS was defined to store
name and address information as well as provide the capacity to store other
information as well. DNS data is stored in resource records (RRs). As defined
in the internet standard for DNS, 9 "A domain name identifies a node. Each
node has a set of resource information, which may be empty. The set of
resource information associated with a particular name is composed of
separate resource records."

Figure 8-3 is a graphical representation of the fields comprising an RR;
those fields include:

NAME: The domain name where the RR is found; the owner may be
implied by the contents of the RR.

TYPE: An encoded 16-bit value specifying what kind of abstract resource
is referred to in the RR. RFC 1034 mentions several types, including
A to indicate a host address, C N A M E for the canonical name of an
alias used to simplify access to the resource, HINFO for the CPU and
OS used by the host, M X to identify the resource as a mail exchange

9STD 13, which includes RFCs 1034 and 1035.

Chapter 8 �9 The Domain Name System 159

1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

+ - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - +

I I
/ NAME /

I
+ - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - +

I TYPE I
+ - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - +

I CLASS I
+ - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - +

I r rL I
I I + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - +

I RDLENGTH I
+ - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - +
/ /
/ RDATA /
+ - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - +

F igure 8-3: Layou t of f ields w i t h i n a n R R (f rom RFC 1034).

for the domain, 1~ NS to indicate the authoritative nameserver for
a domain, PTR to indicate a pointer to another part of the domain
name space, and SOA to indicate the start of a zone of authority. These
types will be discussed at greater length later in this chapter. (See
Appendix B for the complete list of valid RR types.)

CLASS: Another encoded 16-bit value, the class specifies "a protocol fam-
ily or instance of a protocol"; for example, the IN class, specifying
the internet system. This value is rarely used.

TTL" The time to live of the RR. A 32-bit integer, TTL specifies the number
of seconds before the RR should expire. This is used mostly after a
resolver has retrieved an RR to indicate how long the cached value
should be saved and used before discarding it as out of date.

R D L E N G T H " Is a 16-bit value indicating the length of the resource data,
in bytes, limiting the amount of data stored in any RR to no more
than 65,535 bytes.

1~ Chapter 10 for more about how internet mail uses DNS.

160 Part Two �9 Internet Applications

RDATA: The data associated with the RR. The composition and length of
this field may vary, depending on the RR type.

8.3.4 RESOURCE RECORD TYPES

Different types of RR have been defined for different purposes, although
we'll consider only the types defined in RFC 1034. Domain nameservers
store all their information in these RRs, making the definition of each RR
roughly equivalent to a database's design or schema.

Although DNS is most often associated with the process of matching
hostnames with IP addresses, DNS makes other data available, for other
purposes. One of the most important of these other purposes is making
mail exchange (MX) information available. MX records allow internet
mail addressed to one address be redirected for delivery to some other
address, for a variety of reasons: to keep private details of an organi-
zation's intranet and internal mail systems, or to avoid going through a
security firewall, or to provide a standard corporate address format (e.g.,
"firstname.lastname@example.com') while allowing users to receive mail
on other addresses.

A number of RRs have been defined for use with DNS security exten-
sions; these include the SIG (security signature), KEY (security key),
and NXT (next domain) RRs defined in RFC 2535. Other special pur-
pose RRs include the NAPTR (naming authority pointer) type defined
in RFCs 2168 and 2915 and the AAAA and A6 types defined for IPv6
address resolution, and there is even an RR defined simply for storing
text strings (TXT). A more complete list is available in Appendix B; the
most up-to-date information about valid RRs is maintained by IANA at
ht tp: / /www.iana.org / assignments / dns-parameters.

The actual format and information stored in a particular RR are largely
self-explanatory, or will be as we investigate how the DNS protocol works.

8.4 The Protocol

Under the DNS protocol, hosts making or responding to requests for DNS
data do so by sending out messages with a minimum of fuss. DNS messages
are usually encapsulated within UDP because of the low overhead; the

Chapter 8 �9 The Domain Name System 161

assumption being that if a requesting host doesn't get a response fast
enough, sending out another request, whether to the primary nameserver
or to a secondary nameserver, poses no great hardship.

DNS protocols define formats for requests and responses, as well as a
general architecture for interaction between the hosts making requests of
DNS and the hosts fulfilling those requests. We'll look first at the general
architecture and then at the specifics of the messages.

8.4.1 AUTHORITATIVE DOMAIN DATA

Some protocols are quite simple, involving only two entities exchang-
ing information. Even though each component of the DNS protocol is
straightforward, there are more components than many other protocols
encountered on the internet.

At the risk of oversimplifying the DNS, the basic idea is that when a resolver
requests domain information it generates a query, which is a DNS mes-
sage sent to a nameserver (e.g., "What is the IP address of the host at
www.example.com?"). The nameserver responds to the request by send-
ing the requesting resolver a DNS message with the answer; that answer
may be the data requested by the resolver (e.g., "www.example.com can be
reached at 192.168.1.200"), where to reach another nameserver more likely
to have the correct answer (e.g., "Try querying nameserver.example.com,
which can be reached at 10.0.0.1"), or an error message.

This would be enough if there were only one nameserver in the network,
maintaining all DNS information. Every resolver would query that name-
server, and that nameserver would respond to every request. However, as
we have already seen, that solution does not scale well, so DNS differen-
tiates between two different grades of domain data. There is authoritative
data, which originates from the nameservers responsible for maintaining
that data, and cached data, which is data received by a host in response
to some prior request or interaction and stored for later use. In general,
authoritative data is assumed to be "better" in the sense that it is more likely
to be current and correct; however, most internet systems are sufficiently
stable 11 that even cached data is very likely to be usable.

11The size of the internet guarantees that there will be many changes in DNS data every
day, but the chances of any particular host's data changing from one moment to another are
relatively low.

162 Part Two �9 Internet Applications

8.4.2 DOMAIN NAME SYSTEM ZONES

Authoritative data is maintained by nameservers that are serving their own
zones; a zone is the portion of the name space for which a nameserver is
responsible. A zone is defined by a set of authoritative data, contained in
RRs, which includes:

�9 All the RRs for all the nodes within the zone (records concerning
every named resource within the zone).

�9 The top node included within the zone (e.g., if a zone is
defined as containing everything under the .example.com
zone, then "example.com" is the top node of that zone). This
indicates a boundary at the upper limit of the zone.

�9 Delegated subzones refer to zones that might be assumed to
belong to the zone, but for which authority has been dele-
gated. These represent boundaries at the lower limit of the
zone. Within the .example.com zone, authority for a sub-
zone under .hr.example.com might be delegated to the human
resources department of Example, Inc. As part of the definition
of the .example.com zone, a description of the .hr.example.com
subzone would be included.

�9 Glue data regarding the delegated subzones, providing access
to nameservers within those subzones.

A nameserver can be authoritative about some part of the namespace,
even if that part is no more than its own node; nameservers also main-
tain cached data that has been received from other systems. Zones are
important because they define how contact data is stored for all domains.

One important implication of this structure is that any organization seeking
to manage its own zone must negotiate the process with whoever is respon-
sible for the parent zone. Thus, Example, Inc., must get Network Solutions,
Inc., to agree to delegate responsibility for the example.com domain. Once
the agreement is reached, Network Solutions would "cut out" the dele-
gated subzone (. examp 1 e . corn) and configure its nameservers to indicate
that Example, Inc.'s nameservers are maintaining authoritative DNS data
for that subzone.

Figure 8-4 should make things a bit clearer.

When a resolver needs to know how to reach the domain name
p a y r o l 1. h r . exampl e . corn, it would initially get contact information

Chapter 8 �9 The Domain Name System 163

Root zone
~ ~ i --'-" "- -'- --" --- -- boot -~ ~ ~ ~ ~ d I-I

>'<-,"~ ~-com -" ~ ,,, .edu .Z'N

\ <aaaaaCm ~ ~ p ~ . c~o m%~zN~zzz, com/,)

.zw /

//.hr.qx'~am" >le.com N,%• .dallas.example.corn . hq. exam~le~~.co"~m%%

(I x)

Delegated example.com zone
subzone of
example.com

Figure 8-4: D N S zones and subzones.

for the examp 1 e . corn domain; the nameserver 's response would indicate
that some other nameserver was responsible for the h r . e x a m p l e , corn
domain. As long as the resolver can find an IP address for that name-
server, all is well. However, if the subzone nameserver is situated within
the subzone domain, the resolver has a problem: d n s . examp 1 e . corn (the
nameserver for e x a m p 1 e . corn) tells it to ask d n s . h r . e x a m p 1 e . corn (the
nameserver for the subzone) for the address - -bu t now the resolver needs
to find out the address of d n s . h r . examp 1 e . com.

The solution is to include glue data with subzone delegations. The name-
server for the parent zone maintains full domain name and address
data for the nameservers of its delegated subzones. That way, when
a resolver goes to the parent zone for DNS data, the parent name-
server can give complete contact information for the appropriate subzone
nameserver.

164 Part Two �9 Internet Applications

8.4.3 DOMAIN NAME SYSTEM REQUESTS, RECURSIVE AND NoN-RECURSIVE

The domain name space can be viewed as a huge quilt composed of these
different zones; every part of the namespace belongs in one zone (Fig. 8-4
shows overlap between zones at their boundaries, that is, where a dele-
gated subzone links with its parent zone, but this overlap merely shows
where the interfaces are between the zones; the top nodes are authoritative
for themselves and belong within their own zones).

Thus, while no single nameserver can respond to every DNS query with
a complete and correct answer, it will always be able to respond reli-
ably and accurately to requests. Either the nameserver stores authoritative
information about the domain being requested (e.g., when a host on the
local domain is requesting information about another host on the same
domain), or else the nameserver will be able to direct the requesting host
to a nameserver "closer" to the requested information.

In effect, a host sends a message to its local nameserver, making a
request that is functionally equivalent to "How do I reach Bob at Example,
Inc.?" The local nameserver, if it happens to serve the example.com
domain, will respond with "Bob is at <address>". More likely, the name-
server has no information about e x a m p l e , corn, and will respond instead,
"I don't know, but you can try contacting <nameserver>, which is closer to
examp 1 e . corn than I am."

With this type of response, a nameserver can respond reliably and accu-
rately even when it does not have any information about the requested
domain. The "closer" nameserver will likely be at the upper boundary
of the queried nameserver 's zone; when that nameserver is queried, it
will either have authoritative information about the requested domain,
in which case it will send that data to the resolver, or it won' t have
any information, in which case it will also send a response indicating
a closer nameserver to query. The process continues until the resolver
either succeeds or fails at reaching a nameserver with authoritative
information.

This can be a tedious process, and not even necessary in most cases.
There are two sets of options regarding the way requests are made and
fulfilled:

1. DNS requests can specify whether or not authoritative data is
necessary. In this way, cached data stored at a local nameserver

Chapter 8 �9 The Domain Name System 165

can be used, and that will be perfectly adequate to reach the
desired domain.

2. Resolvers may specify that their requests be processed recur-
sively, meaning the initial nameserver contacted must follow
through on the request itself and respond to the original query
with authoritative data. Nameservers can respond to non-
recursive requests far more simply, either with authoritative
data (if they have it) or a pointer to some other server.

However, even if a resolver requests recursion, the server
may respond with cached, non-authoritative data. The Recur-
sion Desired flag is only relevant if the answer is not already
cached.

When responding to a recursive request the nameserver takes on the role
of resolver, making the same type of request as the original resolver
made of the first nameserver. Figure 8-5 should make the process
clearer.

a .,d

O
Where's

example.com?

Auth.
NS

@ / /192.168.1.222
 heresexa 0,eco O

(recursive) ~,

192.168.1.222
(authoritative)

192.168.1.222
(from cache)

O

O Where's example.com?
,, (non-recursive)

@

Figure 8-5: Recursive and non-recursive requests.

166 Part Two �9 Internet Applications

8.4.4 DOMAIN NAME SYSTEM MESSAGES

DNS is one of many internet protocols in which the same node can act as
both a client and server at any particular time. Hosts that originate requests
all have implementations of a resolver program that performs the domain
name resolution function; nameservers also use resolvers when they seek
information from other nameservers. A DNS request is not immediately
triggered when some other process within a host initiates a request for
domain information, but rather the resolver checks locally for that infor-
mation (either in a cache or as part of a nameserver's authoritative domain
data store). This improves performance and reduces the amount of traffic
generated by DNS. A host may make a single DNS request and use the data
received to address many packets before the locally cached data expires.

When a DNS request is required, it is encapsulated within a DNS message;
Figure 8-6 shows the template for these messages, taken from RFC 1035.

Only the header section is always present in a DNS message; part of the
information in the header indicates what other parts of the message are
present (the header structure, along with descriptions of the header fields,
is shown in Appendix B) shows the structure of the data within that section
of the message. The rest of the DNS message consists of either a question
or an answer and RRs associated with the query.

Let's look at the general form DNS messages take rather than attempt to
reproduce and explain all the details of every DNS message type, field,
and option. First, the initial query starts out with DNS header information

+
Header I

F
Question I The question for the name server

F
Answer I RRs answering the question

+

Authority I RRs pointing toward an authority

Additional I RRs holding additional information
q

Figure 8-6: DNS message format.

Chapter 8 �9 The Domain Name System 167

1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

+ - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - +

ID
+ - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - +

IQRI Opcode IAAITClRDIRAI Z RCODE
+ - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - +

QDCOUNT
+ - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - +

ANCOUNT
+ - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - +

NSCOUNT
+ - + - + - + - + - + - + - + - + - + - + - + _ + _ + _ + _ + _ +

ARCOUNT
+ - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - +

Figure 8-7: DNS message header format (from RFC 1035).

(Fig. 8-7), including an ID number generated by the requesting process,
whether or not the message contains a query, what kind of query it is,
whether or not an authoritative answer is requested, how many queries
are included in the message, and other relevant data.

This application header encapsulates the actual query, which includes the
domain name (listed as a sequence of labels, each label including the length
of the label plus the label string) in the QNAME field and the query type
(QTYPE), which can match any RR type or may be some other query type.

In other words, the resolver opens the message with information about the
request in the header, followed by the question: "Here's a domain name,
and I want <type> information about that domain," where <type> could be
type A (for a host IP address), or type NS (for an authoritative nameserver),
or type CNAME (for a canonical, or "real", name associated with an alias,
which is an alternate name commonly used by a host). Any of the RR types
listed in Appendix B can be queried.

Replies from nameservers use the same header, including much of the data
provided by the resolver in the original request (e.g., ID number and query
type), but the successful response will include one or more RRs that either
answer the resolver's question in some way (in the answer section of the
message), relate to the answer (such as the RR for relevant authoritative
servers), or additional relevant information (such as address RRs when

168 Part Two �9 Internet Applications

the response to a request consists of a domain name, as happens with mail
exchange queries).

In section 8.5, we'll look at two examples of DNS message exchanges,
the first showing how a host is able to resolve a domain name into an IP
address, the second showing how mail systems are able to determine where
to send internet mail messages based on the destination mail address. There
are other types of interaction, but in general, if a resource record has been
defined for a particular type of data, then the basic DNS reques t / response
messages can be used to access that data.

8.4.5 DOMAIN NAME SYSTEM AND THE TRANSPORT LAYER

Resolvers and nameservers exchange DNS messages over the UDP trans-
port layer protocol (see Chapter 16 for more details). As previously
mentioned, UDP provides a very simple mechanism for processes (in this
case, processes running resolver and nameserver programs) to interact.
The domain name system has been assigned the wel l -known port 53; this
port is used whether the DNS message is sent over UDP or over TCP.

There are two issues relating to the transport layer that are wor th raising
when discussing DNS. The first is the limitations imposed by the use of
UDP in terms of message size, and the second is the use of TCP for large
transfers.

User Datagram Protocol Limitations

RFC 1035 specifies that DNS messages contained within UDP payloads
must not be longer than 512 bytes. As we'll see later, in Part IV, this size is
related to the max imum packet size that reasonably ensures there will be
no fragmentation 12 of the packet. UDP offers no support for data streams
spanning multiple messagesmjust single messages that must either stand
alone or not. If an answer requires 1,000 bytes, it will be cut short (truncated)
to stay within the 512 byte limit.

12Fragmentation occurs when a packet is too large for the local link protocol to handle.
For example, Ethernet frames may be no more than 1518 bytes long; if a 2,000 byte packet
must pass through an Ethernet network, the router handling it will break the packet up into
frames smaller than 1518 bytes and those packets will be reassembled at the destination to
re-create the original, larger, packet. Usually, it is preferable to avoid fragmentation; the topic
is discussed in more detail in Chapter 14.

Chapter 8 �9 The Domain Name System 169

Truncation poses a problem, because if the answer to the resolver's ques-
tion doesn't appear in those first 512 bytes, the resolver must retry the
request using TCP, which provides a more reliable transport protocol than
UDP. At the same time TCP uses greater bandwidth and resources so it
should be used only when absolutely necessary.

Domain Name System Zone Transfers

Ordinary DNS messages between resolvers and nameservers are custo-
marily encapsulated with UDP, which is a datagram service providing
nothing more than a best-effort at delivery. Because these messages are
usually brief (domain names are limited to 255 bytes, for example), and
because they are typically limited to a single request matched with a single
response, the use of a more complex protocol adds overhead, but no
improvement in the service.

However, there is one DNS function that does need more than UDP can
offer: the zone transfer process. DNS requires that every zone be served
by at least two nameservers; the main nameserver is called the primary
nameserver and the backup is called a secondary nameserver. 13 Backup name-
servers periodically check their primary nameservers to get updates or
even to reload an entire zone. The DNS protocol provides a mechanism for
making this type of query, but the specification recommends using TCP
for these exchanges. The virtual circuit and other controls on the connec-
tion that TCP provide make for a more reliable exchange of what may be
a large volume of data.

8.5 Domain Name System in Action

The most common uses to which DNS is put are fulfilling requests for:

�9 IP addresses associated with a domain (requests for A RRs)
�9 Mail exchange binding (requests for MX RRs)

An example of the first of these was included in the previous chapter
in section 7.2.1; another example will be provided here, including the
complete request /response as well as more detail about the contents.

13Terminology for additional nameservers varies; some call the second backup the tertiary
nameserver, while others refer to any non-primary nameserver as a secondary.

170 Part Two �9 Internet Applications

8.5.1 ADDRESS REQUEST

An initial request for an address to associate with the host name
www. internet- standard, corn appears below:

Domain Name System (query)

Transaction ID- 0xcc42

Flags- 0x0100 (Standard query)

0 Query

.000 0 Standard query

...... 0 Authoritative Answer

(not set in requests)

...i Message is not ~ ~ ~ ~

truncated

o o o o ~ 1 7 6 I o ~ 1 7 6

o o ~ 1 7 6 o ~ 1 7 6 ~ 1 7 6

(not set in requests)

Questions- 1

Answer RRs: 0

Authority RRs- 0

Additional RRs- 0

Queries

www.internet-standard.com- type A,

Name- www.internet-standard.com

Type: Host address

Class- inet

..... Recursion desired

..... Recursion available

class inet

Taking the headers one at a time, with the values represented in hexa-
decimal (for brevity)"

0xcc42 : The first 2 bytes of data are the transaction ID. This is purely
administrative data for tracking the request and any responses to the
request.

Chapter 8 . The Domain Name System 171

0x0100 : The next 2 bytes comprise protocol flags, 3 reserved bits, and a
4-bit response code field. The listing indicates this is a query (if that flag
was set on, it would indicate a response). The next four bits indicate
the type of query (whether the message is a response or a query; this
indicates the type of query in either case). The next flags indicate
whether the message contains an authoritative answer (data received
from authoritative nameserver--not a relevant flag for a request);
whether or not the message was truncated (not in this case); whether
recursion is requested (yes); and whether recursion is available (not
relevant for requests). The three reserved bits are not assigned and
must be set to 0; the response code is all zeroes because there is no
associated response (this is the initial query).

0x0 0 01 : The next 2 bytes indicate the number of questions in the request.
That is, the number of separate entries in the questions section of
the request, which indicate the number of different records being
requested. As a 16-bit value, up to 65,535 or so questions could be
included in a single request, though the actual number is usually
considerably lower.

0x0000: A 16-bit value indicating how many answer RRs are being sent;
though up to 65,535 are possible, much lower values are more usual.
For a request, this should be set to 0.

0x0 0 0 0 : A 16-bit value indicating how many authority nameserver RRs are
included in the response; set to 0 for requests.

0x0000: A 16-bit value indicating how many additional nameserver RRs
are included in the response; set to 0 for requests.

[r e m a i n d e r] : The rest of this DNS message consists of the query, itself
consisting of three components, as follows.

Q N A M E : The name being queried. In this case, that is www. i n t e r n e t -
s t a n d a r d , com. Domain names in DNS messages terminate with
the hex value 0x0 0, to indicate that the next data are not part of the
name.

QTYPE : The query type is a 2-byte value indicating what kind of resource
record is being requested. Any value that refers to a valid resource

172 Part Two �9 Internet Applications

record type (see section 8.3.4 and Appendix B for details) is valid here
as well.

QCLASS : The class type of the query specified by a two-byte value; i n e t
is used for internet and IP queries.

The request is for the nameserver being queried to do a recur-
sive query on behalf of the requesting host for an address resource
record (A RR) from an authoritative nameserver for the domain name
www. i n t e r n e t - s t a n d a r d , com.

After a short time (to allow the nameserver to make the recursive request)
the response comes back from the DNS server. The transaction ID is the
same as the original request value, so the requesting host can identify the
message as a response to that particular query. The op code value and
flags indicate a response, with no errors, to a standard query; the server
not being an authority for the domain, the message (which is reproduced
in full) contains a recursive response (recursion was requested originally,
and the nameserver is able to do it).

The rest of the message header indicates that there is a single question, two
answers, two RRs pointing to authoritative nameservers for the queried
domain, and no additional related RRs.

The next part of the message contains the query or queries (in this case,
just one), repeating the original request from the query message: an A
RR for www. internet-standard, com. The answers section lists the

answers received, followed by the authority section containing RRs for
the nameservers that provided those answers.

Domain Name System (response)

Transaction ID- 0xcc42

Flags- 0x8180 (Standard query response,

No error)

0 0 0 0 0 0 0 0 0 0 0

�9 000 0

.... .0..

..... Response

..... Standard query

.... = Server is not an

authority for domain

Chapter 8 �9 The Domain Name System 173

. . 0

. . . 1

0 0 0 0 1 0 0 0

o o o ~ ~ 1 7 6 o ~

Questions- 1

Answer RRs- 2

Authority RRs- 2

Additignal RRs- 0

Queries

www.internet-standard.com- type A,

Name- www.internet-standard.com

Type- Host address

Class- inet

Answers

www.internet-standard.com- type CNAME,

class inet, cname internet-standard.com

Name- www.internet-standard.com

Type- Canonical name for an alias

Class- inet

Time to live- 1 hour

Data length- 2

Primary name- internet-standard.com

internet-standard.com- type A,

class inet, addr 216.92.98.204

Name- internet-standard.com

Type- Host address

.... = Message is not
truncated

.... = Do query
recursively

.... = Server can do
recursive queries

0000 = No error

class inet

174 Part Two �9 Internet Applications

Class- inet

Time to live- 1 hour

Data length: 4

Addr: 216.92.98.204

Authoritative nameservers

internet-standard.com- type NS,

class inet, ns ns00.ns0.com

Name- internet-standard.com

Type- Authoritative name server

Class- inet

Time to live- 1 hour

Data length: ii

Name server: ns00.ns0.com

internet-standard.com- type NS,

class inet, ns nsl30.pair.com

Name- internet-standard.com

Type- Authoritative name server

Class- inet

Time to live- 1 hour

Data length: 13

Name server- nsl30.pair.com

Moving to the answers section, there are two RRs, but only one A
RR; the first is a CNAME RR. We discover the name www. i n t e r n e t -
s t a n d a r d , corn is actually an alias for a different, canonical name (meaning
the "real" name rather than nickname or alias). So part of the recursive
response includes the RR for that. Also included are nameserver resource
records (NS RRs) for each of two nameservers that are authoritat ive for the
requested domain.

All these RRs share some fields in common:

Name: The name associated with the resource.

Type: The type of resource record.

Chapter 8 �9 The Domain Name System 175

Class: Refers to the naming/address domain in which the record occurs
(again, this will be inet; other domains aren't often used).

Time-to-live: A 32-bit integer specifying (in seconds) how long the the
information in the record is permitted to be cached before it must be
updated.

Data-length: The number of bytes used by the record data. For example,
an address record uses 4 bytes (32 bits), the same length as a stan-
dard IP address. The data length field indicates how many bytes are
used, not necessarily how long the actual data is: a sort of compres-
sion is permitted in RRs that uses pointers (offsets) to indicate that
part of one name is actually already used elsewhere in the message.
For example, the actual data associated with the NS RRs above use
pointers to the ".com" section at the beginning of the message; in this
case, 1 or 2 bytes is saved; where longer domains repeat through a
message, many more bytes can be saved.

[DATA]" The data fields vary depending on the RR type. NS RRs contain
the domain name of an authoritative nameserver; the CNAME RR
contains the primary name of the resource; and the A RR contains
the 4-byte IP address.

This process demonstrates only the originating host (the one making the
request) and the nameserver local to that host. As a recursive request, the
nameserver had to submit its own query to its own nameserver, which
either had the answer or had to refer the first nameserver to another
nameserver even closer to the requested domain.

A response to a DNS query might arrive almost instantaneously, in frac-
tions of a second, or there might be no response for several seconds. A DNS
resolver will resubmit the same query after a certain time, during which it
can be assumed that the first transmission either never made it to the name-
server or the nameserver was unable to handle the request immediately in
which case the query would have been discarded silently.

8.5.2 MAIL EXCHANGE REQUEST

We'll cover mail in detail in the next chapter, but DNS serves as the reposi-
tory of an important set of data about mail addresses. Rather than attempt

176 Part Two �9 Internet Applications

to create a separate system for associating mail domains with mail servers
that accept mail for those domains, DNS was designed to map the mail
domain name space on top of the internet domain name space. With mail
addresses taking the form use r@domain , name, the section of the address
following the @ symbol is based on the DNS domain of the organization
hosting the user's mailbox. However, it is not enough for a mail resolver
to get the IP address associated with a message's address domain: it must
be directed to a mail server that accepts mail for that domain.

Thus, the mail exchange resource record, or MX RR, which contains two pieces
of information:

Preference is a 16-bit integer that indicates a rank given to the RR by
its owner. If a mail domain is served by more than one server, the
owner of the domain may have one server as the primary, in which
case that server's RR would have a lower value (higher preference)
in this field. Secondary and other backup servers would have higher
values, so that someone sending mail would try the primary first;
if that server was unavailable, they would try the secondary server
(with the second lowest value, or second most preferred RR) next.

Exchange is the domain name of a host that will accept mail on behalf of
the holder of the mail address.

When a nameserver replies to a request for an MX RR, it automatically
adds the A resource record for the mail exchange domain. An example of
a recursive request for an MX RR is shown below. Quite like the query for
an A RR, the primary difference is the query type--mail exchange---instead
of host address.

Domain Name System (query)

Transaction ID. 0xl00e

Flags- 0x0100 (Standard query)

0 Query

.000 0 Standard query

...... 0 Message is not
truncated

....... 1 Do query
recursively

Chapter 8 �9 The Domain Name System 177

�9 . . 0 Non-authenticated

data is unacceptable

Questions- 1

Answer RRs- 0

Authority RRs- 0

Additional RRs- 0

Queries

internet-standard.com- type MX,

class inet

Name �9 internet-standard, com

Type- Mail exchange

Class- inet

As with the previous examples, we dispense with the intermediate steps
involved in having the first nameserver query other nameservers on behalf
of the original host that sent the query; the response (once that first
nameserver gets all the data from upstream) appears below:

Domain Name System (response)

Transaction ID- 0xl00e

Flags- 0x8180 (Standard query response, No error)

0 0 0 0 0 0 0

�9 000 0...

.... .0..

.... ..0.

.... ...I

..... Response

..... Standard query

..... Server is not an

authority for domain

..... Message is not

truncated

..... Do query

recursively

178 Part Two �9 Internet Applications

O 0 � 9 0 0 0 0 I � 9

....0.

�9 �9 �9 �9 �9 �9 �9 ~ , �9 �9 �9

Questions- 1

Answer RRs- 1

Authority RRs- 2

Additional RRs-

= Server can do
recursive queries

= Answer/authority
portion was not
authenticated
by the server

0000 = No error

Queries

internet-standard.com- type MX,

class inet

Name- internet-standard.com

Type- Mail exchange

Class- inet

Answers

internet-standard.ccm- type MX,

class inet, preference 50, mx enek.pair.com

Name- internet-standard.com

Type- Mail exchange

Class �9 inet

Time to live- 56 minutes, i0 seconds

Data length: 14

Preference: 50

Mail exchange- enek.pair.com

Authoritative nameservers

internet-standard.com- type NS,

class inet, ns nsl30.pair.com

Chapter 8 �9 The Domain Name System 179

Name- internet-standard.com

Type- Authoritative name server

Class- inet

Time to live- 40 minutes, 46 seconds

Data length: 8

Name server- nsl30.pair.com

internet-standard.com- type NS,

class inet, ns ns00.ns0.com

Name- internet-standard.com

Type- Authoritative name server

Class- inet

Time to live- 40 minutes, 46 seconds

Data length: ii

Name server: ns00.ns0.com

Additional records

enek.pair.com- type A, class inet,
209.68.1.148

Name- enek.pair.com

Type: Host address

Class- inet

Time to live- 1 hour, 59 minutes,

Data length: 4

Addr: 209.68.1.148

nsl30.pair.com- type A, class inet,
209.68.1.148

Name- nsl30.pair.com

Type: Host address

Class- inet

addr

23 seconds

addr

180 Part Two �9 Internet Applications

Time to live- 1 hour, 59 minutes, 23 seconds

Data length: 4

Addr: 209.68.1.148

ns00.ns0.com- type A, class inet, addr
216.92.60.60

Name: ns00.ns0.com

Type: Host address

Class- inet

Time to live- 1 hour, 20 minutes, 8 seconds

Data length: 4

Addr: 216.92.60.60

As can be seen here, there is a lot more information to gather, not to
ment ion some records in every section of the message including queries,
answers, authori tat ive nameservers , and addit ional records.

The query section includes a single query, the original one for a mail
exchange for the internet-standard, corn domain. 14

The answers section includes the information stored in the authori ta t ive
servers MX resource record for the i n t e r n e t - s t a n d a r d , corn domain;
it happens to be a host k n o w n as e n e k . p a i r . com. Also stored in the MX
RR is a value called the preference, which is used when more than one mail
exchange server is available: the server wi th the lowest preference value
gets priori ty over other servers (e.g., if one server has a preference value of
50 and a second server has a preference value of 100, a host wou ld a t tempt
to deliver mail to the first server first).

The rest of the MX RR contains many of the same fields as other RRs,
including t ime to live, data length, class, and type.

Next comes the authori tat ive nameserver section, containing the NS RRs
from which the answers were received. As wi th the MX record, the

14A mail exchange is a server willing to accept mail for the domain in question. See
Chapter 10 for more details about how this data is used.

Chapter 8 �9 The Domain Name System 181

NS records are associated with the domain in question (i n t e r n e t -
s t a n d a r d , corn) and contain data concerning the nameservers that are
authoritative for that domain. Everything is indexed to the domain name:
nameservers, mail exchanges, addresses, and so on.

Finally, the additional records provide extra information--the IP address
for the mail exchange server (enek . p a i r . corn) as well as the IP addresses
for the authoritative nameservers. Even though the query specified only an
MX RR for the domain, the A RR associated with the mail exchange server
clearly comes in handy if the host making the request wants to connect to
that server.

8.6 Additional Domain Name System Issues

Over the years, DNS has held up remarkably well. Its hierarchical struc-
ture is well-suited to supporting very large networks such as the internet.
Using distributed caches rather than overloading higher-level or very busy
domains with a constant barrage of requests helps improve scalability, and
resource records have been defined for a variety of different types of data
(see Appendix B for a list of valid RRs, along with pointers to the RFCs in
which they are defined). Such a robust system must have some modifica-
tions, extensions, and tweaks over the years to make it so, and this section
highlights some of them.

8.6.1 INVERSE AND REVERSE ADDRESS LOOKUPS

One function that DNS, as described so far, does not provide but that the
original hosts file approach did offer is the ability to as easily link an IP
address to a domain name. The hierarchy of the DNS database is based on
the domain name not on the IP address. The hosts file is a simple list; each
host is listed on a single line and each line includes the IP address, host
name, and any aliases associated with that address. Lookups on domain
names, aliases, or IP addresses are all roughly equal in complexity.

The ability to lookup the domain name associated with an IP address- -
a reverse lookup--is useful in some cases:

To determine whether a domain is being spoofed (an attacker is
pretending to be originating packets from a different address).

182 Part Two �9 Internet Applications

�9 Some applications have used the domain name as a form of
authentication (e.g., some *nix network applications).

�9 For trouble-shooting purposes.

Under DNS, however, one would have to query the domain name server
for each domain to seek out information about the IP address in ques-
tion. W. Richard Stevens writ ing in TCP/IP Illustrated Volume 1 suggested
such a query might take weeks to accomplish given the current size of the
in terne t - - in 1994! Clearly, such searches are impractical at best.

The solution, as defined in RFC 1035, was to create a special domain,
i n - a d d r , a r p a , under which the entire IP network address space could
be cross referenced. The a r p a domain was originally intended for use
by the US Depar tment of Defense Advanced Research Projects Agency
(ARPA); more recently, ICANN redefined this domain designation to
stand for "Address and Routing Parameter Area." Doing so permit ted
the administrat ive task of further separating the internet 's infrastructure
from its DoD-funded roots while at the same time imposing no need for
any systems to be changed.

Under this domain, a PTR (pointer) resource record could be defined so as
to duplicate the IP network address space's hierarchy (see Chapter 19 for
more details about IP addressing). The PTR RR consists of a domain name,
and is associated with the i n - a d d r , a r p a domain name based on an
IP address.

In this way, looking up a dotted-decimal IP address and finding the domain
name with which it is associated can be as easy as using the domain name
to find the address. Figure 8-8 shows how a portion of this part of hierarchy
works. Just as DNS allows users to work their way up the hierarchy from
the most specific to the most general part of the domain name, so too does
the i n - a d d r , a r p a domain allow users to work their way up from the
most specific portion of the IP address to the most general.

Assume the need to link an IP address 1 v 8 . 1 6 . 1 0 1 . 8 to a domain name.
The most specific part of the IP address occurs at the r ightmost part of
the address, while the most specific part of a domain name occurs at the
leftmost part of the name. 15 As a result, the IP addresses map in a reverse

15The most significant, or high-end, bits of an IP address comprise the network portion of
the address, so 10.0.0.1 identifies a host (in this case, the 0.0.1 portion of the address)
and a network (in this case, the 10. portion of the address. Domain names start with the
most specific information, so that specific, example .net identifies a sub-entity of the
examp 1 e. ne t domain.

Chapter 8 �9 The Domain Name System 183

.in-addr.arpa

.O0.in-addr.arpa .01.in-addr.arpa .02.in-addr.arpa 178.in-addr.arpa 253.in-addr.arpa

�9 16.178.in-add r.arpa

�9 1 0 1 . 1 6 . 1 7 8 . i n - a d d r . a r p a

. 8 . 1 0 1 . 1 6 . 1 7 8 . i n - a d d r . a r p a

Figure 8-8: The in-addr, arpa domain.

format onto the DNS hierarchy and IP address 1 7 8 . 1 6 . 1 0 1 . 8 would
map to this domain:

8. I01.16. 178. in-addr, arpa

Similar to the reverse DNS lookup is the inverse query. Nameservers may
implement this as an option, allowing clients to request a PTR RR about a
particular IP address. Unlike the reverse lookup, however, inverse queries
do not go beyond the initial nameserver. If the nameserver does not have
any information about the IP address stored locally, an error message is
returned. Because the local nameserver is unlikely to have authoritative
information about every IP address, and because it may not even have the
function implemented, inverse queries are not particularly useful and are
rarely used.

8.6.2 DOMAUN NAME SYSTEM CACHING

If the DNS server had to query all the way to one of the root domain name
servers and then work its way down the domain names every time a system
requested a connection to some other system off the local internetwork,

184 Part Two �9 Internet Applications

things would get very slow very quickly. To avoid this, DNS servers cache
responses they get from other servers whenever they do a name lookup
with another server.

These caches depend on the time to live values reported by authoritative
nameservers with each resource record. The time to live values may vary
considerably because some DNS data is reasonably stable and other data
isn't. For example, the IP address of a primary nameserver for a major
domain is not likely to change very frequentlymif it did, the owner of
the domain would have to pay to support a very busy nameserver. By
including a long time to live value in DNS answers, the domain could to
some extent reduce traffic to its nameserver.

Likewise, addressing information concerning PCs that connect to the
internet through the Dynamic Host Configuration Protocol (DHCP; see
Appendix E for details) is quite likely to change from day to day if not
from hour to hour.

Therefore, nameservers send out this time to live value as appropriate
to the particular resource being queried; non-authoritative nameservers
can offer their clients cached information as long as the data has not yet
expired.

8.6.3 DOMAIN NAME SYSTEM SECURITY EXTENSIONS

The security of the internet requires that there be some assurance that
resource names be linked with the correct IP addresses. If an attacker were
able to hijack authoritative servers for a major online retailer or the US
Internal Revenue Service, the resulting disruption could be quite costly
indeed. Adding security extensions to DNS has long been a concern, and
several standards that track RFCs have been published describing the DNS
Security Extensions (DNSSEC).

As described in June 2001 in RFC 3130, "Notes from the State-Of-The-
Technology: DNSSEC," securing DNS is, among other things, important
but also difficult, and DNSSEC itself is still not a mature specification.
This document also summarizes the components of DNSSEC. Not really
a protocol, DNSSEC is more of a collection of mechanisms and solutions
to securing DNS data. Edward Lewis of NAI Labs, the author of RFC
3130 identified several categories into which DNSSEC components could

Chapter 8 ~ The Domain Name System 185

be sorted while at the same time noting that there was a good deal of
arbitrariness about his categories, which included:

�9 RFC 2535, "Domain Name System Security Extensions," and
RFC 3008, " Domain Name System Security (DNSSEC) Sign-
ing Authority," define mechanisms for adding digital signa-
tures to DNS messages, which increase the degree to which
clients can trust responses from name servers. These speci-
fications describe protocols that are scalable to internet-wide
deployment.

�9 RFC 2845, "Secret Key Transaction Authentication for DNS
(TSIG)," defines a less-scalable but more efficient mechanism
for authenticating DNS clients and servers to each other.
According to Lewis, TSIG may not scale well but it has
applicability for zone transfers.

�9 RFC 3007, "Secure Domain Name System (DNS) Dynamic
Update," defines a mechanism for using TSIG to do dynamic
updates of authoritative servers (as opposed to maintaining
nameserver databases by hand, through static updating).

�9 RFC 2538, "Storing Certificates in the Domain Name System
(DNS)," defines an RR for storing public key encryption cer-
tificates in the DNS. By doing so, hosts can retrieve these
certificates (used to certify the identity of an entity using a
particular public key) using an existing system (DNS) instead
of requiring an additional protocol for the exchange of this
information.

Whether or not these tools can eventually be made practical and useful
remains to be seen. In any case, two aspects of unsecured DNS---the use
of timers to expire cached data, and the degree to which the system is
redundant and distributedmhelp reduce the potential for damage as a
result of any single attack.

8.7 Chapter Summary
The DNS is more than a single protocol, but rather a system for main-
taining and accessing a hugely distributed database. As a database
system, DNS has a well-defined structure, with different types of data
records and different types of systems capable of participating in the
system.

186 Part Two �9 Internet Applications

Within the framework of this database system, DNS also defines a set of
protocols that dictate how systems can request data stored in the DNS data
repository, how DNS servers respond to those requests, and how to admin-
ister and update those DNS servers. Although the process of requesting
a DNS record (and responding to that request) is straightforward, issues
such as how to ensure that responses are correct, how to store new types
of information in the DNS, and how to optimize DNS performance with-
out affecting accuracy, tend to add interest as well as complexity to the
protocol.

One of the most important functions of DNS, storing mail forwarding infor-
mation, will be covered in the next chapter, along with other internet mail
protocols and functions.

Internet Mail

The most popular and most widely used communication medium on the
internet has always been mail. Internet mail, also referred to as electronic
mail, e-mail, email, or just mail (as opposed to old-fashioned postal mail,
postal service, or snail mail) permits individuals sharing nothing more
than access to the internet to interact across virtually any boundary. Until
the mid-1990s, internet messaging protocols mostly defined how to send,
receive, store, and manage mail and news (an application through which
individuals can post messages to a distributed message list accessible
to anyone on the internet). Since then, additional message-oriented ser-
vices have been added, including groupware, calendaring, and scheduling
protocols; instant messaging protocols; and internet presence protocols. !

Nevertheless, internet mail is still processed by the Simple Mail Transfer
Protocol (SMTP) in much same way as when the SMTP specification was
published in RFC 821, back in 1982. An updated version of the SMTP

1Appendix B includes a section listing messaging protocols and relevant source
documents. Readers who master the protocols that are discussed in this book should be
able to master new protocols on their own, working from the original specifications.

187

188 Part Two �9 Internet Applications

specification was published in 2001 as RFC 2821; this specification made
no substantive changes to the protocol itself but rather documented how
it is being used and aggregated material from several separate RFCs to
provide a complete picture of SMTP and how it works.

An integral part of any messaging protocol is the formatting of the mes-
sages. RFC 821 was published in tandem with a specification for message
formats, RFC 822. An updated version, RFC 2822, was also published in
2001. "Internet Message Format" makes no substantive changes but rather
provides a more complete and correct specification than the original.

All internet mail may be processed using SMTP, but SMTP by itself is
not sufficient to handle all internet mail requirements. Some of these are
discussed in section 9.3. Also discussed there is the use of extensions to
the protocol (modern SMTP implementations that support extensions, as
described in Section 9.3.1, are often said to support Extended SMTP or
ESMTP).

9.1 Internet Messaging Architecture

The first electronic mail systems were developed for multi-user main-
frame systems. Interactive users worked with terminals and were able
to exchange mail with other users connected to the same computer.
As vendors added networking functions to their systems, their pro-
prietary messaging formats and mail exchange protocols meant users
could easily communicate with other users of the same systems while
at the same making communication with users of other systems more
difficult.

Internet mail was developed to allow users to exchange mail messages
with other users, no matter what either party uses for its computing plat-
form, operating system, mail software, or network hardware. Several
things are necessary to this type of interoperable mail:

A standard format for mailbox addresses, with each mailbox
unique across a single name space. Any system that uses a non-
compliant format or proprietary name space can exchange mail
with standards-compliant mail users only through the use of
gateways to translate addresses between their own proprietary
format and the standard format.

Chapter 9 �9 Internet Mail 189

�9 A standard format for mail messages to make possible
exchange of mail between the widest range of systems. With
no way to tell what kind of systems will handle the trans-
port of mail across the internet, messages should be formatted
using the simplest possible set of characters to avoid having
unusual character sets modified inadvertently by intermediate
systems (or be incomprehensible to a recipient not prepared for
non-ASCII text).

�9 A protocol for transporting mail messages from their source to
their destination.

�9 A protocol for delivering messages to end users.

9.1.1 MESSAGING AGENTS

One of the original assumptions about internet mail was that it would work
best if the functions of working with mail messages were kept separate
from the functions of sending and receiving messages across the network.
A Mail Transfer Agent (MTA) handled the transmission of messages across
the internet, while a User Agent (UA) provided an application front-end
for users reading, writing, and managing their mail.

The boundaries between the MTA and UA (now referred to as a Mail User
Agent or MUA) have always been a bit blurred, even if most implementa-
tions of mail on *nix operating systems kept the two functions separate.
However, while the two functions may rely on different sets of protocols,
there is no inherent technical reason that they may not be implemented
in a single application program. In fact, additional discrete functions
have entered the mix in recent years. Three categories are addressed by
IETF RFCs:

�9 The MUA provides a mechanism for users to interface with the
messaging system, meaning a tool for writing, reading, send-
ing, editing, and storing messages. In theory, at least, the MUA
is intended to be separate from the process of actually send-
ing or receiving message over any network. Once a message is
ready to be sent, the MUA passes it along to the appropriate
mechanism; inbound messages are likewise passed along to the
MUA only after they have arrived at the local system.

�9 The MTA provides a mechanism for message delivery across
the mail network from the point at which messages are injected
into the network (pass from an MUA to an MTA). MTAs interact

190 Part Two �9 Internet Applications

with other MTAs, but they don't really interact with MUAs
beyond accepting messages for delivery from the originating
MUA or delivering messages to the destination MUA. Even
these interactions are largely limited to reading or writing data
from a message store rather than having explicit interactions.

�9 The process of injecting messages into the MTA network was
not well defined under the original SMTP specifications, and
over the years SMTP itself became the dominant mechanism for
submitting messages to SMTP servers. The Message Submission
Agent or MSA is defined in RFC 2476, "Message Submission,"
defines a more appropriate protocol for submitting messages
from MUA hosts to MTA hosts.

Whether or not these functions are performed by the same application
or by three different programs is not as important as being sure that
the functions are performed. A fourth function is sometimes defined for
performance by the Mail Delivery Agent (MDA) or Local Delivery Agent
(LDA); this is the delivery of mail to the MUA after it has arrived at the
destination MTA.

Unlike mail delivery, however, message submission through SMTP has
proven to be a problem over the years for a number of reasons; section 9.1.3
discusses these problems and how RFC 2476 helps solve them.

9.1.2 MAIL TRANSFER ARCHITECTURE

Protocols usually make some assumption about an overall architecture
defining how hosts implementing the protocol interact; protocols are
also defined by the data formats they require and the type of messages
protocol-enabled hosts use to communicate. As we saw in Chapter 8,
domain name system uses its own data formats, its own messages, and
its own architecture.

SMTP has these elements as well. We'll cover the architecture first, fol-
lowed by a discussion of the data formats used by SMTP and other
messaging protocols (a general message format as well as format for
mail addresses and message headers), an overview of SMTP's protocol
messages, followed by some examples of SMTP in action.

Figure 9-1, taken from RFC 2821, shows SMTP's basic architecture: an
SMTP client communicates with an SMTP server, exchanging commands
and replies as well as mail messages. As the RFC states, "The responsibility

Chapter 9 �9 Internet Mail 191

+

+ +

I User I< -- >
+ +

+ +

I File I

I S y s t e m I < - - >
q + +

Client-

SMTP

+

SMTP

Commands/Replies
< >

and Mail

SMTP client

+ +

Server-

SMTP q +

<->l File l

l systeml
+ + + +

SMTP server

Figure 9-1: Basic SMTP architecture.

of an SMTP client is to transfer mail messages to one or more SMTP servers,
or report its failure to do so." Part of the client's responsibility includes
locating an appropriate server (see section 8.5.2 for more about using DNS
to locate a mail exchange), opening a session with the server, and trans-
ferring the message(s) or else notifying the sender that the messages could
not be sent.

SMTP is a protocol for interfacing with file systems, because messages are
stored there. Sometimes called the message store, the local file system inter-
faces with the MTAmalthough there is no technical reason that a person
could not use SMTP interactively to send mail. Doing so would require
some mechanism for delivering commands and message contents to the
SMTP server: that mechanism might be a user interface for an SMTP client
application, or it might be nothing more than an application capable of
sending commands from one host to another (such as telnet). However,
there are few legitimate reasons for a person to interact directly with an
SMTP server. Most applications would relate either to administration or
trouble-shooting, or else to system attacks.

What is not shown in Figure 9-1 is that SMTP mail may require more than
one hop to arrive at its destination. The originating client may not be able to
send a message directly to the destination mailbox SMTP server. Figure 9-2
shows what path the message might take through the internet, as it passes
from a personal computer (Pc) within Organization X to the recipient's Pc
at Organization Y.

Why multiple hops? Consider the alternative: having the sender's host
attempt to deliver the mail directly to the recipient's host. Any mail
recipient would be required to keep their host up and running and accept-
ing messages all the t imemnot always practical. It would also mean

192 Part Two �9 Internet Applications

ORG X

DNS
system

.

i~ "
In ternet

essage I/i~.i~. ' :i !!::iii:~:i~::~: !
l : : :HO~t.::?1

....... '!A" :: I

DNS I.~

SMTP
Seyr~er

I

o' O

Figure 9-2: Following an SMTP-delivered message.

implementing SMTP on every host used by a potential mail recipient--
not often practical because of security issues. It would also complicate (or
even make impossible) receiving mail through a host that is not connected
to the internet.

Mail is useful because it is based on message stores. A message is written
and then passed from one system to another; if one system can't deliver it
right away, the message doesn't get lost but rather is stored and the system
tries to resend it again later.

Security is easier when an organization has all mail go in and out through
a single system. A single mail server is much easier to configure, maintain,
and monitor than if every host in an organization had to be able to respond
to requests for mail services. Likewise most individuals would prefer to

Chapter 9 �9 Internet Mail 193

have their internet service providers take responsibility for managing their
mail services by managing the mail servers they use.

Figure 9-2 labels the SMTP systems "servers," but any SMTP server that
forwards mail to another SMTP server must by definition also act as a
client. The entities involved here include:

�9 "A" and "B," two people who communicate via mail
�9 HostA and HostB, the computers used by A and B
�9 "X" and "Y," organizations whose networks A and B use
�9 SMTPx, SMTPy1, and SMTPy2, the SMTP systems serving

Xand Y

The steps in sending mail from A to B include:

1. A composes a message for B, places the message in SMTPx's
message store and notifies the server that the message is ready
to be sent. A may be using mail client software on HostA
that sends messages to the server for delivery, or A may be
using HostA as a terminal to use a mail application running
on SMTPx.

2. SMTPx must determine where to send the message, based on
the message's destination(s). At this step, the server queries
DNS for a Mail eXchanger (MX) resource record (RR) associated
with the destination(s) mailbox address(es). This process was
described in section 8.5.2. In this case, the MX RR indicates that
there are two Mail eXchanger systems, SMTPy1 and SMTPy2,
willing to accept messages for B's mailbox. The preference value
for SMTPy2 would have been lower than that for SMTPy1. 2

3. Having determined that SMTPy2 is the appropriate server to
which mail for B should be forwarded, SMTPx opens an SMTP
session (using TCP) to SMTPy2 and sends the message. At this
point, SMTPx is acting as an SMTP client and SMTPy2 is acting
as a server. As the message is received, SMTPy2 writes it to the
local message store.

4. SMTPy2, having determined that it does not serve the message
addressee (B) directly, must now determine where it should
send the message. It does not provide mail service directly
to B, even though it is willing to receive mail on behalf of B

2Alternately, the two servers might have been listed with the same preference, or SMTPy2
might have had a higher value (meaning it would not be the preferred server), but SMTPy2
would be preferred if SMTPy1 was not responding at all.

194 Part Two �9 Internet Applications

(and anyone else within Organization Y); if SMTPy2 served mail
to B, it would write the message to the appropriate place in its
message store for delivery to B.

Another DNS query is made, and the same MX RR will be
returned listing SMTPy1 and SMTPy2 as Mail eXchangers for
B's mailbox. Even if SMTPy2 has a lower preference value
(higher priority), the server will not attempt to send mail to
itself; instead, it will send the message to SMTPy1.

5. SMTPy2, acting as a client now, initiates an SMTP session with
SMTPy1 (which is acting as a server) and sends the message,
which SMTPy1 writes to its message store.

6. B uses whatever software is appropriate to retrieve and read
the message from SMTPy1.

In this example, the originating SMTP host (SMTPx) passed the message to
an intermediate SMTP host (SMTPy2), which in turn passed the message
along to thedestination SMTP host (SMTPy1).

This example refers to SMTP hosts rather than clients and servers (except
when indicating the role a particular host is playing) because most SMTP
servers also act as clients when they transfer mail.

9.1.3 MESSAGE HOPS AND MESSAGE SUBMISSION

Two issues arise from this structure. First, messages often don't go directly
to their destination's SMTP server but are routed through other SMTP
systems before final delivery. Adding these extra hops in the mail delivery
process may be done for several reasons, including security (to isolate
inbound mail before it enters the organizational intranet), scalability (to
distribute the task of processing inbound mail across a pool of servers),
and availability (to provide backup systems in the even that the primary
system is not reachable).

The other issue involves the ways messages are injected into the SMTP
delivery network. This process requires passing the message to an SMTP
server from a host being used by the sender. Although this does not
sound like an alarming development, in fact it has significant security
and administrative impact:

Open relays are SMTP servers willing to accept mail from any
host for delivery, which lets users send mail when they are

Chapter 9 �9 Internet Mail 195

away from their office or workstationmbut it also allows any-
one else to send mail from anywhere. This is a serious problem
because spammers (senders of unsolicited commercial mail)
use open relays to send mail without incurring fees or losing
their own internet services (most ISP service agreements forbid
sending unsolicited commercial mail because it is a huge drain
on resources).
Some organizations require inbound and outbound mail to be
scanned for malicious software as well as for content. Having
intermediate systems that can screen for security violations in
either direction helps simplify the process.
SMTP implementations can be difficult to configure properly,
and when installed on end-user systems are easily misconfig-
ured.
Message submission often includes functions such as check-
ing messages for all required header fields, something not
provided for in SMTP.
SMTP is an inherently insecure protocol, and servers must
be configured with a balance of convenience and security,
resulting in less or more restriction on who can use the server
to transfer or submit mail. Strong authentication of users
isn't widely implemented, although it would be quite help-
ful in reducing spammer exploitation of open relays while still
permitting authorized users access to servers.

RFC 2476 addresses these issues by defining a protocol based on SMTP
but using port 587 (instead of port 25) and tailored for use as a submission
protocol rather than a full-blown mail transport protocol.

9.2 Simple Mail Transfer Protocol Details

Internet mail uses several specifications to operate, from the set of rules for
creating a well-formed and usable mailbox address to the proper message
format, including various message header fields, to the set of commands
and responses defined for interaction between SMTP hosts. This section
introduces the different specifications, starting from the basic commands
and responses defined for SMTP interactions, and the message format and
its header fields, to the formulation of internet mailbox addresses and
response codes. The next section shows SMTP in action, with example
protocol interactions.

196 Part Two �9 Internet Applications

9.2.1 SIMPLE MAIL TRANSFER PROTOCOL COMMANDS AND REPLIES

SMTP packages internet messages into mail objects: the mail object consist-
ing of an envelope (in effect, the SMTP protocol commands) and content
(the internet message, itself comprised of headers and message body).
SMTP commands and replies both consist of a sequence of characters and
end with the carriage return-line feed (CRLF) characters.

Successful SMTP exchanges begin with the client attempting to open a
TCP connection on port 25 with the server. A standard-compliant SMTP
server will respond to this request by sending the protocol reply code
220, which includes the server's domain and indicates that the SMTP
server is ready to accept commands from the client. This is step 1 in
the SMTP session; the rest of a mail transaction takes this standard
form:

1. The client (the system sending a message) initiates the TCP con-
nection with the server (system receiving the message), and
the server responds with a reply code (220) indicating that it is
prepared to provide SMTP services.

2. The client starts the session by sending the EHLO ("Extended
HELLO") command in which it identifies itself to the server
and requests mail service. The server responds with a reply
codem250--that indicates the requested action (in this case,
requesting a mail service session for that particular host) has
been successfully completed.

3. The client begins a message transfer by sending the MAIL
command to indicate a mailbox to which error reports for the
message should be sent; if the server is willing to accept the
message, it responds with the 250 reply. The MAIL command
is a part of the SMTP message envelope.

4. The client sends additional envelope information with the RCPT
(recipient) command. There is a separate RCPT command for
each destination mailbox being sent to the SMTP server. If the
server will accept the message for the recipient in the RCPT
command, the server responds positively; if the server will
not accept messages for a particular mailbox, the response is
negative-but the client can continue sending RCPT commands
for other destination mailboxes.

5. The client sends the DATA command to signal it is ready
to send the message; the server's response indicates it will
interpret subsequent SMTP messages as the message itself.

Chapter 9 �9 Internet Mail 197

This command is sent only after all recipients in RCPT com-
mands have been submitted.

6. The client sends the message. The end of the message is indi-
cated when the client sends a line containing only the period
(".") character (in other words, the sequence <CRLF>.<CRLF>
terminates the message).

7. When the client sends the "end message" sequence, the server
responds with reply code 250.

8. The client may send more information or terminate the SMTP
session at this point.

SMTP puts the client in charge of the entire process of transferring mail: the
client indicates it wants to start a session, it has a message for a particular
recipient (or recipients), that it is about to send data, and that the message
is complete or the session is complete.

When the server acts as a relay, it must turn around and take on the client
role with the appropriate SMTP server.

One other step the server must take whether it is acting as a relay or is
delivering the message to its intended destination is to insert the trace
record at the top of the message data (before the message header fields).
These lines are also sometimes referred to as time stamps or "Received"
lines, and contain the hostname of the system that sent the message, the
IP address and hostname of the server that accepted the message, and the
date and time the message was received.

SMTP is a simple protocol with relatively few commands: RFC 2821 defines
only 11 commands, and a minimum implementation can still be standard
compliant with 9 of those commands. The 11 commands described in RFC
2821 are:

EHLO: The extended HELLO command is the preferred command to start
an SMTP session. It is a way for the client to introduce itself to the
server; it does so by including its domain name. The command takes
the form: EI-ILO examp 1 e . o r g

There are three possible types of response from the server:
indication that the command has succeeded (meaning the client
can begin the session), indication that the command has failed
(meaning the client is not permitted to begin a session), or an
error response indicating that the server does not understand the
command.

198 Part Two �9 Internet Applications

The last response means that the server does not support SMTP
extensions (see section 9.3.1 below); this would indicate a very old
or merely non-compliant SMTP server implementation. Although it
should accept the EHLO command, when a server does not the client
must use the older HELO command to initiate the session.

If the server responds positively, it also sends a return greeting,
as well as a list of which SMTP extensions it supports.

HELO: The original HELLO command format is the same as for EHLO, but
HELO should be used only when a server does not support SMTP
extensions.

MAIL: The MAIL command indicates the reverse path for the message,
meaning the mailbox from which the message originated. The com-
mand takes the form MAIL FROM: < s p i d e r m a n @ e x a m p l e . n e t >

RCPT: The RECIPIENT command is used to indicate the mailbox to which
the message is being sent. The command takes the form RCPT TO:
< e l v i s @ e x a m p l e . tom>

DATA: The DATA command (DATA <CRLF>) signals the server that the
client is about to begin sending a message.

RSET: The RESET command is used by the client to abort the current
mail transaction, reset all buffers and state tables, and discard any
recipient or message data that may have been received as part of the
current transaction. RSET does not terminate the session, and it does
not have any effect if it is issued after a message has been transmit-
ted and receipt by the server acknowledged. RSET may be used to
indicate that another message is on its way instead of resending the
EHLO command. The command is issued in the form RSET <CRLF>

VRFY: The VERIFY command, specified for use as a debugging tool,
allows the client to request that the existence of a particular mail-
box name or address be verified. The command takes the form VRFY
s p i d e r m a n @ e x a m p l e , o r g (to verify that an address is correct) or
VRFY s p i d e r m a n (to see if there is a mailbox corresponding to
the name).

The server may respond with the complete mailbox associated with
the name or address specified by the VERIFY command, although
allowing outsiders to use this command can compromise security or

Chapter 9 �9 Internet Mail 199

at the least allow spammers to collect valid mail addresses from the
organization.

If the VERIFY command specifies an ambiguous name or mailbox,
the server may respond with a simple message ("ambiguous result"
for example), or with a list of names and mailboxes that might be
correct.

Support for the VERIFY command, like EXPAND, is not required
for a standard-compliant implementation of SMTP.

EXPN: Like the VERIFY command, EXPAND is defined as a debugging
tool. Used to retrieve a list of all mailboxes that are included in a
mailing list alias, servers may respond to EXPAND requests either
with a list or with a message indicating that access to that data is
prohibited. The command takes the form EXPN E x a m p l e - L i s t .

Support for the EXPAND command, like VERIFY, is not required
for a standard-compliant implementation of SMTP.

HELP: HELP is provided for people using SMTP interactively rather
than for normal host-to-host SMTP interactions. HELP is not strictly
required in SMTP hosts, but when implemented it may return infor-
mation about using the system or information about using some
particular command.

NOOP: The NOOP command does nothing other than elicit a response
from the server.

QUIT: When the client is finished with a session, it may send the QUIT
command to terminate the session.

SMTP responses are based on a standard framework for application pro-
tocols (see section 8.2.2 above) with three-digit codes starting with the
numbers 1 through 5 to indicate different levels of response. The second
and third digits indicate the specific response at each level. The meanings
of each digit for SMTP are provided in Appendix B, as are the complete
set of replies defined in RFC 2821.

9.2.2 INTERNET MESSAGE FORMAT

RFC 822, "STANDARD FOR THE FORMAT OF ARPA INTERNET TEXT
MESSAGES" defined a format for internet messages that remained stable

200 PartTwo �9 Internet Applications

(if modified in practice) for almost two decades. In 2001, RFC 2822, "Inter-
net Message Format," replaced RFC 822. The new Proposed Standard
specification was intended to revise the original spec, reflect incremental
changes made in that specification by other RFCs, and bring it in line with
actual practice rather than to introduce new features or make significant
changes in message formats. The RFC number of the new specification,
2822, was reserved for the updated version of RFC 822 to reflect the
continuity of the original protocol.

The RFC 2822-compliant message reflects a number of attributes:

�9 The message is composed of ASCII characters 3 (US-ASCII
characters with values of 0 through 127)

�9 The message is composed of lines separated by the carriage
return (CR, also known as ASCII 13) and line feed (LF, also
known as ASCII 10)

�9 Message lines MUST BE no more than 998 characters long
�9 Message lines SHOULD BE no more than 78 characters long

(excluding the CR-LF characters)
�9 Messages contain header fields, consisting of a header field name

followed by a colon (":") and the contents of the header body
�9 Messages may include a message body following the header
�9 If the message body is present, it MUST be separated from the

headers by a single blank line
�9 The CR and LF characters may not appear anywhere in the

message except in the CR-LF pairing

Much of the work done by the group revising this specification centered
around how to define header fields, particularly header fields that might
have gone on longer than the default line length of a particular messaging
implementation. The details of how to properly include "white space"
and multi-line headers are interesting, and can be found in RFC 2822,
in~ection 2.2.

Also beyond the scope of this chapter are the details of the message format
syntax (RFC 2822, Section 3). This section is reproduced in Appendix D,
however, because it provides an excellent introduction to the use of
the Augmented Backus-Naur Form (BNF), also called Augmented BNF
(ABNF) or just ABNF. This is a format for building formal specification
of protocol structures, and is documented in RFC 2234, "Augmented BNF

3Messages can contain non-ASCII content by encoding it with the multipurpose internet
message extensions specifications; see section 9.3.5 for more about MIME.

Chapter 9 �9 Internet Mail 201

for Syntax Specifications: ABNF." Many internet protocols use this for-
mat, so it helps to understand how to read it, and since mail messages
are so familiar to most readers (and can be viewed in full through most
mail readers), the mail message format is a good place to start with ABNF
(section 9.2.3 uses the ABNF notation to show how internet mail addresses
are formed).

To summarize what we know so far about internet messages, they consist
of US-ASCII characters, grouped into lines of no more than 998 char-
acters (with 78 as the recommended maximum), and separated by the
CR-LF characters. Messages always have headers fields; a message body
is optional. If included, the body is separated from the header fields by a
blank line.

9.2.3 MESSAGE HEADER FIELDS

The message headers carry information about the message, most impor-
tantly to whom the message is addressed. However, much more infor-
mation may be included in typical internet messages. RFC 2822 defines
the basic message header fields (section 3.6) as well as a format for
new header fields, permitting anyone to create new (optional) header
fields (section 3.6.8). According to the specification, "The only required
header fields are the origination date field and the originator address
field(s)."

Other than the origination date header field, header fields fall into several
categories:

Originator: The originator fields indicate who sent the message and /o r
how to reply to the message. They consist of appropriate type of data
to indicate the source (either a mailbox list, a mailbox, or an address
list; see section 9.2.5 for more details).

Destination: Destination address fields give the sender options as to how
the addressee(s) receives the message.

Identification: Identification fields provide a mechanism to pass informa-
tion about the message, including a message ID number, whether
or not the message is a reply to a previous message and, if so, the
message ID number of the original message, and so on.

202 Part Two �9 Internet Applications

Informational: Informational fields provide information about the mes-
sage, including the subject as well as keywords or comments.

Resent: The specification provides an option for "reintroducing" (resend-
ing) a message into the internet mail system. Though not clear from
the RFC, the resent- fields are used to allow the user to re-send a mes-
sage that has already been sent to someone else. In other words, if
you send a message to Bob in the morning, and then decide to send
the same message to Carol later in the day, you can (if your mail client
permits it) use the resent- fields to make the message appear to Carol
with the same original headers as were sent to Bob as well as an extra
set to get the message to Carol. You may also resend a message that
you 've received from Bob to Carol, and the resent-fields will show
Carol that the message came from Bob originally but was resent to
her by you (and it allows her to reply to Bob directly). 4

Trace: Trace fields are used by intermediate systems as they move mes-
sages to their destination, and include name and IP address of the
host from which the message was received, a t imestamp indicat-
ing the time the message was received, and the name of the host
that received the message. This information must not be modified by
intermediate hosts, but should not be used in any way to determine
how the message is processed.

The field names, as appear ing at the start of a header field, are almost
always the same as the name of the header field; the notable exception is
the o r i g - d a t e header field, which uses the string D a t e (followed by a
colon) as its field name. The list of field names (including colons) shows
the header field names as they appear in a message header; included in
each definition is the name of the header field if it is different from the field
name as it appears in messages.

D a t e : The o r i g - d a t e header field indicates the date and time that the
message "entered the mail s y s t e m ' - - i n other words, when the sender
"pushed the button" to send the message.

From: The mailbox(es) of the person(s) responsible for writ ing the
message.

4Re-sending a message is different from forwarding, in either sense of the word:
(1) Forwarding a message you've received from one person to another--MIME defines a
format for doing that; or (2) having a mail client automatically forward a message that it
receives for a particular mailbox to a different mailbox.

Chapter 9 �9 Internet Mail 203

S e n d e r : The mailbox of the agent (person or system) that sent the mes-
sage on behalf of the writer (the entity identified in the From: header).
If there is a single mailbox that can be used to unambiguously identify
the entity that wrote and sent the message, the s e n d e r : header is
not necessary. This field may be used when an assistant sends a mes-
sage that his or her supervisor wrote; it may also be used when there
are more than one entities involved in writing the message (multiple
mailboxes in the From: header)--only one of those can actually be
the sender.

R e p l y - t o : The address(es) to which replies to the message should be
sent. This is an optional field, and is used in cases when the message
originator wants to send the message from one address but have
replies returned to a different address or additional addresses.

To : The address(es) of the primary recipient(s) of the message.

cc : The address(es) of recipient(s) who may be receiving the message as a
courtesy or as interested parties. The usage comes from the common
office practice of using "cc:" (for "carbon copy") and a recipient's
name to indicate they were to receive a carbon copy of the original
message.

Bcc: The address(es) of recipient(s) who may be receiving the message
as a courtesy or for some other reason, without their identity being
known to the primary sender. The usage comes from the practice of
using "bcc:" (for "blind carbon copy") to indicate a recipient who was
to receive a copy of the original message without the knowledge of
the primary recipient. There are three options for implementing this
header: (1) Recipients (including the Bcc: addressees) receive a copy
of the message without the Bcc: header; no one, including blind-copy
recipients, know blind copies were sent. (2) Recipients listed in the To:
and Cc: headers receive a copy of the message without Bcc: headers,
the Bcc: addressees get a copy of the message that includes the Bcc:
header with their address(es). (3) Everyone gets the message with
a Bcc: header, only Bcc: recipients get a copy with their address(es)
listed--everyone else gets an empty Bcc: header.

M e s s a g e - I D : Data that uniquely identifies the message among all mes-
sages sent by the originating host. This data is intended for use by
computers and may not be human-readable.

204 Part Two �9 Internet Applications

I n - R e p l y - T o : Used in replies only, this header indicates the message ID
of the original message.

R e f e r e n c e s : Similar to the I n - R e p l y - T o header, this header includes
the message IDs of other messages related to the current one. This
header helps identify threads, or series of messages on the same
topic.

S u b j e c t : A short description of the contents of the message body.

comments : Additional comments about the message.

Keywords: Words that may be useful to the recipient or sender for
referencing the message.

The trace or timestamp header fields may also be included, but they are
purely optional and the protocols don't allow them to be used to make
any decisions about handling mail, just for adding information to a
message as it is processed through the internet messaging system to its
destination.

There are no particular rules about the order in which headers must
appear in a message, as long as all the headers appear before the mes-
sage body. Though intermediate systems could move the headers around,
the specifications urge strongly against doing so.

RFC 2822 includes a section describing obsolete syntax, most of which are
included as allowable options in the current specification. This is a demon-
stration of a crucial tenet of IP networking: "Be liberal in what you accept,
and conservative in what you send." Most internet specifications use this
philosophy, which basically calls upon implementers to assume that other
implementations may be outdated, or perhaps not even properly coded,
while at the same time admonishing them to be scrupulous in adhering to
the specifications themselves.

In practice, being liberal means programming in exceptions for software
that is known to generate improper but still comprehensible data. That
allows the organizations or individuals using the software a wider window
for upgrades; the alternative would impose catastrophic failures on those
users. As for being conservative in what you send, that practice helps
reduce the volume of non-compliant network traffic, again helping reduce
catastrophic failures.

Chapter 9 �9 Internet Mail 205

9.2.4

9.2.5

ENVELOPES AND HEADERS

One frequent point of confusion is the differentiation of the terms envelope
and headers when applied to SMTP messages. A traditional postal envelope
contains the sender and recipient of the postal mail; this information is
also available in an internet message. Internet messages use header fields
to store data about the message: where it is being sent, who is sending it,
and when it was sent. Is this not the envelope?

No.

The message is composed of two parts: the headers and the message itself.
They represent actual application data, and could be considered a part
of the highest layer of the internet mail application.

SMTP is an application protocol in the sense that it provides a mecha-
nism for moving data from one end user to another, but it could be more
accurately characterized as an application transport protocol. This means
it provides a mechanism for some data (entire messages) to move around
the transport network (the parts of the internet that move mail). The mes-
sage header fields provide a mechanism to communicate at the user layer
(above the application layer, where people interact); the SMTP commands
serve as the envelope.

Internet messages are encapsulated within an SMTP envelope as they pass
from one SMTP host to another, allowing the systems to interact at the
application layer as they exchange messages.

MAILBOX ADDRESSES

Here's the ABNF definition of an internet mail address compiled from
RFC 2822:

address = mailbox / group

mailbox = name-addr / addr-spec

name-addr = [display-name] angle-addr

angle-addr = [CFWS] "<" addr-spec ">" [CFWS]

obs-angle-addr

group = display-name "-" [mailbox-list /

CFWS] ";" [CFWS]

206 Part Two �9 Internet Applications

addr- spec

local -part

domain

display-name

mailbox-list

address-list

local-part

domain

= local-part "@" domain

= dot-atom / quoted-string /
obs-local-part

= dot-atom / domain-literal /
obs-domain

= phrase

= (mailbox *("," mailbox)) /
obs-mbox-list

= (address *("," address)) /
obs-addr-list

= dot-atom / quoted-string /
obs-local-part

= dot-atom / domain-literal /
obs-domain

domain-literal = [CFWS] "[" ~([FWS]
dcontent) [FWS] "]"

dcontent = dtext / quoted-pair

dtext = NO-WS-CTL /

[CFWS]

; Non white space controls

%d33-90 /

; The rest of the US-ASCII

%d94-126

; characters not including

; " [" , ; "] " , o r " \ "

This definition is relatively easy to puzzle out once you realize that the
term CFWS means "a comment, or folding white space (FWS)," and that
FWS refers to "folding white space." In these specifications, FWS refers
to the use of non-printing characters (spaces, tabs, carriage return/l ine
feeds) with extra long headers that need to "fold" or wrap from one line
to another.

ABNF starts from the very basic elements of a protocol component,
specifying from which characters any particular element can be composed.
Earlier in the RFC, R0-WS-CTL is defined as the set of all characters in
the US-ASCII set, not including the white-space characters. Another basic
component defined by the specification is the atom, a string of one or more
characters set off by a comment or white space (CFWS). A d o t - a t o m is
the same as the atom, except that it begins with the one or more characters

Chapter 9 �9 Internet Mail 207

followed by zero or more instances of a "." dot symbol followed by one or
more characters. Valid d o t - a t oms include:

elmo

elmo. example, net

elmo. e.x.a.m.p.i.e.net

Neither the string . e l m o . a n y t h i n g nor e lmo . is a valid d o t - a t o m
because the first starts with a bare dot and the second ends with one.

To read the ABNF specification, start at the top and read each line, like
this, based on the spec listed above:

1. An address is composed of either a mailbox or a group.
2. A mailbox as either a name-addr or an addr-spec.
3. A name-addr must be composed of an angle-addr, option-

ally preceded by a display-name (anything inside square
brackets is an option).

4. An angle-addr may optionally open with a comment or fold-
ing white space, be followed by an addr-spec set off by
angle brackets ("<" on the left and ">" on the right), option-
ally ending with a comment or folding white space. Or, the
obs- angle-addr, which is the obsolete version of the angled
address object. (We'll skip the obsolete forms from here on,
since they are included only for backward compatibility.)

We're making progress now: one kind of an a d d r e s s looks
like this "DISPLAY_NAME <addr-spec>' . We still don' t know
what an a d d r - s p e e or a d i s p l a y - n a m e looks like, or other
key components, but we're making progress.

5. A g r o u p is a d i sp 1 a y - n a m e followed by a colon, followed by
an optional m a i l b o x - l i s t , CFWS, and if desired, additional
CFWS set off by a semicolon.

6. An a d d r - s p e c is a l o c a l - p a r t followed by the "@" symbol
followed by a domain. This is the "@" that appears in internet
mail addresses, so we're getting close.

7. A l o c a l - p a r t is either a d o t - a t o m (at least one word, fol-
lowed by one or more ".words") or a q u o t e d - s t r i n g which
is a string that includes characters not normally permitted in an
atom, in particular non-printing white-space characters.

8. A domain is either a d o t - a t o m or a d o m a i n - l i t e r a l . The
d o t - a t o m looks like a domain name ("something.example.net"
for example); the d o m a i n - l i t e r a l turns out to be the literal
IP address of the host (instead of the domain name).

208 Part Two �9 Internet Applications

9. A d i s p l a y - n a m e is a p h r a s e (or a quoted string, basically
the same thing only with quotes around it); elsewhere in the
RFC, a p h r a s e is defined as one or more instances of the word
object; a word is composed of least one a tom, so a p h r a s e is
more or less the same as a regular phrase, made up of words
and letters. We know a d o t - a t o m looks like a domain name
(using the form "word.example.net") , so at this point we realize
that an a d d r e s s can look like this:

Peter Parker <spidey@example.net>

or any of the following:

Pete Parker <web. slinger@example, tom>
"Peter Q. Parker" <pqp@example. org>
Mary <mj @example. net >
maryj ane100 l@example, com

This is all a very roundabout but extremely precise way of describing what
an internet message address looks like. The ABNF notation can serve as a
specification for a p rogrammer to write a program for recognizing valid
and invalid internet addresses as well as for creating addresses based on
data provided by a user (or some process) and extracting information from
addresses for processing them.

9.2.6 P OTOCOL STATE

One of the reasons SMTP is really a simple protocol is that it has relatively
few states or conditions in which the server and client can be in at any given
time. In other words, if the client has sent a MAIL command, the server
can either be ready to accept that mail or not. If the server has indicated
its willingness to accept mail, then it expects the next message from the
client to be a RCPT command (or, a NOOP or RSET command). Possible
sequences for the protocol are listed below (from RFC 2821):

CONNECTION ESTABLISHMENT

S: 220

E: 554

EHLO or HELO

S : 250

E: 504, 550

Chapter 9 �9 Internet Mail 209

MAIL

S: 250

E: 552, 451, 452, 550, 553, 503

RCPT

S : 250, 251

E: 550, 551, 552, 553, 450,

DATA

I: 354 ->data-> S: 250

E: 552, 554, 451, 452

E: 451, 554, 503

RSET

S : 250

VRFY

S: 250, 251, 252

E: 550, 551, 553, 502,

EXPN

S: 250, 252

E: 550, 500, 502, 504

HELP

S: 211, 214

E: 502, 504

NOOP

S : 250

QUIT

S: 221

504

451, 452, 503, 550

This chart shows each command with the possible replies that the server
can make to the command. For example, the first command is session
initiation, which the server can either respond to by allowing the session

210 Part Two �9 Internet Applications

(reply code 220) or indicating that the service is not available (reply
code 554).

The only complicated command is DATA: it generates either an interme-
diate reply code (354) or one of several error codes (451, 554, 503); if the
intermediate code is received, the client sends message data. If the server
receives the message successfully, it indicates that by sending reply code
250; if not, the server may send any of the reply codes listed (552, 554,
451,452).

There are only a limited number of states the SMTP server can be in: waiting
for a session to begin, waiting for a command, waiting for recipients or data,
accepting recipients or data, writing data to the local file store, etc. This
means that very simple SMTP hosts can be built based on these states rather
than using more complex software to examine and process all the data.

9.3 More Simple Mail Transfer Protocol Issues

Some successful protocols are perfect the way they were originally written
and require little if any elaboration over the years despite their ubiquity
and importance. For example, UDP (see Chapter 16) is utterly simple and
almost entirely unchanged and uncommented despite its age.

Although SMTP has also been shown to be extremely useful over the same
time period as UDP, it has generated considerably more de jure as well
as de facto modification (formally, by the IETF and as required or desired
by software developers). This section looks at topics related to SMTP and
internet mail that have required further attention over the years:

Extensions Adding functions to an existing protocol can be difficult:
At what point must you stop adding functions? How
do you decide whether a function should be required,
recommended, or just permitted? Modern protocol spec-
ifications often include provisions for adding extensions or
additional functions, but older protocols must be revised
to enable extensions. SMTP extensions provide a good
example of such extensions.

Delivery SMTP is not ideal for getting messages to an end-user's
desktop PC. The Post Office Protocol (POP) and the Internet

Chapter 9 �9 Internet Mail 211

Security

Attachments

Message Access Protocol (IMAP) were developed to fill this
void. SMTP "pushes" messages out onto the network and
(it is hoped) to their destinations, but this approach works
well only when it can be assumed that the destination hosts
will be up and running. To receive mail on a personal com-
puter, "pull" message delivery protocols (such as POP and
IMAP) work better, as they are used from the PC only when
the PC is in the proper state to receive mail.

Internet mail was not originally designed with security in
mind, and there are several security issues related to using
SMTP and internet mail.

Internet mail messages can carry only US-ASCII data,
which means sending binaries (software programs, graphic
images, video, audio, or anything else but textual ASCII
data) can be difficult. Proprietary formats have been used
over the years, but they invariably posed problems for users
as mail moved across gateways.

9.3.1 StMPt.E MAIL TRANSFER PROTOCOL EXTENSIONS

Although some protocols remain fairly constant over time, most evolve as
implementers discover problems with the way the protocol was originally
specified or discover that some new feature could help improve or extend
the usefulness of the protocol. Early application protocols frequently incor-
porated no mechanism for adding functions or commands, which means
adding a new command almost requires revising the entire protocolmwith
the result that implementers must also revise all the systems that support
that protocol.

Part of the problem has been that the original designers often tried to design
their protocols as simply as possible so as to make it easy for anyone to
deploy a standard-compliant implementation. As new uses for the protocol
cropped up later, or as existing commands proved incomplete, protocols
would have to be revised to incorporate the new features. It wasn't until the
1990s that protocol designers began consistently building in mechanisms
for adding new features through extensions to their protocols.

Protocol extension is usually done by having the client and server exchange
with each other information about some or all functions each supports or

212 Part Two �9 Internet Applications

desires the other to support. For example, SMTP with extensions requires
that, in a successful response to the EHLO command from a client, the
server must list the functions that it supports.

The SMTP protocol extension mechanism is specified in RFC 2821, and a
list of registered SMTP extensions is available at:

http : / /www. iana. org/assignments/mail-parameters

9.3.2 POST OFFICE PROTOCOL VERSION 3

When RFC 821 was published (1982), most mail was composed and sent
from the same systems. The mail client software used by a human was
running on the same host as the SMTP client sofware, or else people were
using proprietary mail over their local area networks that were gatewayed
into the SMTP transport system. Just as basic SMTP is not always ideal for
injecting mail into the delivery transport network from user systems, it is
also not always appropriate for delivering mail to the end user desktop.
Mail delivery protocols have come into use to allow users easier access to
their mail.

Two trends created a need for supplemental mail protocols. First, more
and more people used PCs rather than multi-user systems for mail, which
meant that their PCs either had to implement SMTP or else use some other
mechanism to inject their mail into the SMTP delivery system. The other
trend was that PC mail client software was increasingly written to interface
directly with the internet mail infrastructure, reducing the need for the
gateways that had formerly performed the task of sending messages onto
the internet.

Defined as a full internet standard in RFC 1939, "Post Office Protocol- Ver-
sion 3," POPv3, or simply POP, provides a mechanism for getting messages
from the maildrop (where messages are stored on the destination SMTP
server) to the node on which the user wants to manage those messages.
The form of a POP session has some similarities to SMTP interactions, but
is also different in significant ways:

Like SMTP, POP servers wait for clients to open a TCP con-
nection (POP uses port 110, SMTP port 25). On successfully
opening the connection, the POP server sends a greeting

Chapter 9 �9 Internet Mail 213

response to the client. Client and server exchange commands
and replies (respectively) until the session is terminated.

�9 Unlike SMTP, POP provides only two reply codes, +OK and
-ERR, indicating respectively the successful or unsuccessful
completion of the command.

�9 Like SMTP, POP servers exist in different states during any
particular session; different sets of replies to client commands
are allowed in these different states.

�9 Unlike SMTP, POP sessions open with an authorization of the
client. The client sends a user ID and passphrase to the server
before the server sends any messages.

�9 Unlike SMTP, POP provides mechanisms for managing mail in
the server's maildrop. A POP client may delete mail that has
already been downloaded or leave it on the server. Likewise,
a POP client may download all mail in the maildrop or just
those messages that have not been marked as having already
been seen.

The protocol summary, taken from Section 9 of RFC 1939, is included
in Appendix B. RFC 2449, "POP3 Extension Mechanism," defines the
mechanism for extending POPv3 as well as several extensions.

POPv3 is a quite simple protocol, with only seven mandatory and five
optional commands defined in RFC 1939; RFC 2449 only adds another
eight functions and two new reply codes.

9.3.3 INTERNET MESSAGE ACCESS PROTOCOL

Basic internet mail provides basic functions, but users brought up with pro-
prietary mail products often desire more. For example, products designed
to be implemented on a LAN and served from a single organizational
server offer the ability to store messages on a central server, making backup
more convenient as well as permitting access from any host, not just the
user's own PC.

Internet Message Access Protocol (IMAP), defined in RFC 2060, "Inter-
net Message Access Protocol- Version 4revl," was designed to provide a
more complete set of mail function to users than previously implemented
in SMTP and POP. Rather than allowing commercial vendors such as
Microsoft and Lotus to attempt to lock users into proprietary mail pro-
ducts that might have reduced the ability of other mail implementations to

214 Part Two �9 Internet Applications

interoperate, the IMAP specification provides a framework within which
an open standard can be applied to the more complex needs of commercial
mail vendors and consumers.

Users of systems that support IMAP can access and manipulate messages
stored on a remote server. IMAP allows users to read messages, move
them into folders, and otherwise manipulate messages and folders on their
IMAP server as if they were stored on their local host.

Unlike SMTP and POP, IMAP can be quite complex: more than two dozen
commands are defined for IMAP, and over a dozen different replies. Also
unlike SMTP, IMAP replies are not based on the usual three-digit codes.

In some ways, IMAP is more of a design specification for a generalized
mail management system than a typical internet application protocol. This
complexity is largely due to the broad problem that IMAP was designed
to solve: managing mail. Unlike POP and SMTP, which must only move
mail between a source and a destination, IMAP provides a framework
within which a local host (the client) manipulates data that is stored on
the remote host (the server). Issues such as allowing access, copying,
moving, deleting, and adding to the server's message store are far more
complex than merely requesting that data be transmitted from one node to
another.

9.3.4 SMTP SECUmTY

Security is increasingly an important aspect of every internet protocol, and
mail has several areas in which it may be vulnerable to attack. Some mail
vulnerabilities are related to technical issues such as open relays, but often
mail poses security problems that have more to do with management and
policies than to changes in technology.

The SMTP architecture as originally designed was largely insecure.
Messages are exchanged in plain text, there is no control over what
servers the messages traverse before they arrive at their destinations, no
authentication mechanisms for clients and servers. Exposures include:

Local link sniffing of packets. Attackers with access to a proto-
col sniffing tool on the local network will be able to view any
messages sent on the local link. All data is sent as US-ASCII, so
the attacker would have no problem interpreting it.

Chapter 9 �9 Internet MaJl 215

�9 Attackers could use open relays (see above) to forward unso-
licited bulk mail or to hide their identities.

�9 Modification of DNS MX records could cause all mail from a site
to pass through an attacker's server; the attacker could collect
information from those messages or modify those messages
undetected.

Approaches to mitigating these vulnerabilities include:

�9 Using public key cryptography to encrypt and /o r digitally sign
all messages. This protects the messages from unauthorized
viewing and /or modification en route to their destinations.

�9 Closing of open relays and using alternative mechanisms to
allow users to send mail when they are away from their
offices.

�9 Implementation of the DNSSEC protocols (see section 8.6.3).

Other approaches are available at the lower layers, including the trans-
port layer security protocol discussed in section 15.4.1 and the IP security
protocol discussed in Chapter 26.

9.3.5 MULTIPURPOSE INTERNET MESSAGE EXTENSIONS

Standard internet mail assumes that all data in the mail message, from the
header to the body, consists of ASCII text characters. Binary data as found
in graphic image files, video, audio, and executable software, therefore,
poses the problem of how to attach files with binary data to ASCII-based
messages.

The Multipurpose Internet Message Extensions (MIME) structure and
encode other types of data into a form that can be attached to mail
messages, using two sets of headers to do most of its work:

c o n t e n t - t y p e headers identify what kind of material is being
enclosed
c o n t e n t - t r a n s f e r - e n c o d i n g headers identify how the
content is encoded

MIME content types consist of a type, which provides a general description
of what kind of data is enclosed; and a subtype, which provides a more
specific description of what kind of data is enclosed. Parameters may be

216 Part Two �9 Internet Applications

present to provide additional customization for the content description.
Valid types include application, text, image, audio, video, message, and
multipart. Each different type has its own set of valid subtypes. For
example, a Microsoft Word document MIME enclosure would be iden-
tified with the content-type header value of application/MSWord. The
type is application, the subtype is MSWord. A text file would be identified
with the value of text/plain, where the type is text and the subtype is plain.

There are many different MIME content types, and the IANA maintains a
�9 registry at ht tp: / /www.iana.org/assignments/media-types/ index.html.

MIME multipart enclosures are worth mentioning as they enclose more
than one item in a single enclosure. Multipart enclosures are used to include
security data related to the message; for example, a multipart enclosure
might include an encrypted file and a digital signature for that file.

MIME offers a set of three encoding mechanisms for the representation
of the data included in the enclosure. Although all systems process mail
messages as if they are ASCII text, other types of data can become man-
gled if treated as seven-bit ASCII characters. Binary data or non-ASCII
text (for example, character sets for non-English languages) tends to be
difficult to transmit in e-mail bodies, unless MIME is used to enclose
the data.

One of MIME's three primary encoding mechanisms is *7bit,* which is
used to indicate that the content can be treated as standard ASCII text.
Another encoding mechanism is called *quoted-printable,* which is used
to indicate that the content is mostly ASCII, but may have some non-ASCII
characters included. Quoted-printable enclosures retain the non-ASCII
characters so that the recipient can use the data as originally sent.

The *base64* encoding mechanism is used for binary data. The danger
with sending binary data through e-mail is that e-mail processing systems
treat all messages as if they were ASCII text; the characters are treated as
if they are seven-bit characters even though the binary data uses all eight
bits of each available byte. The binary data would often have the last bit
truncated and would appear at the receiving end as nonsense streams of
ASCII characters. The base64 encoding mechanism avoids this problem by
mapping 24 bits (three bytes) of binary data onto four ASCII characters.
When a MIME enclosure is received, the recipient determines whether it
was encoded with base64, in which case the ASCII characters are converted
back into binary data.

Chapter 9 ~ Internet Mail 217

MIME, MIME types, and related topics are the subject of many RFCs.
The specification is defined in a series of five RFCs (2045-2049), starting
with RFC 2045, "Multipurpose Internet Mail Extensions (MIME) Part One:
Format of Internet Message Bodies."

9.4 Internet Mail Lessons

Internet mail provides an excellent introduction to a range of internet
application protocol concepts. Understanding the mail specifications
provides an excellent foundation for understanding how other internet
protocols operate. Although SMTP is the Simple mail transfer protocol, it
is simple in a fairly sophisticated way. Some of the lessons that can be
derived from understanding how SMTP and internet mail work include:

Commands: The basic SMTP commands provide only the most basic func-
tions, but those are enough to move the mail. All the commands
are issued by the client, and all responses are made by the server.
In most applications the client issues commands and the server
replies to those commands; when a command cannot be success-
fully completed for some reason, the server still responds but with
an indication that the command failed and (possibly) with a message
indicating why the command failed.

Replies: SMTP uses the three-digit server response code format that is
common to so many other internet protocols. The codes may be
accompanied by text strings for people to read, but the codes them-
selves may also be interpreted by local software for end users.
Protocols that define the transfer of data files are particularly likely
to use reply codes; these include the file transfer protocol as well as
hypertext transfer protocol and others.

States: Because the hosts supporting SMTP may be in only a handful
of different states, the protocol can be implemented with minimal
resources by setting up state tables indicating what actions should be
taken in each different state.

Translations: Interoperability requires either that systems be capable
of translating any format into any other format--or that systems

218 Part Two �9 Internet Applications

be capable of translating local formats into a "lowest-common
denominator" format and back. Internet mail mandates the use of
US-ASCII characters as the lowest common denominator fomat for
messages; MIME-encapsulated binary files are still represented in
7-bit format to fulfill this requirement. The use of a lowest com-
mon denominator format to create a universal translator function
for gateway systems is apparent in other application protocols. For
example, Telnet uses the concept of a network virtual terminal, a basic
set of terminal functions that all client hosts can be assumed to pro-
vide to users (e.g., keyboard mappings, video display attributes) and
that all server hosts are expected accept input from and produce
output to.

Interactions: SMTP clients and hosts interact with each other, but they also
interact with the domain name system to determine where to send
mail, and they interact with the hosts associated with a message's
source or destination. SMTP systems also interact with other mail
protocols such as IMAP and POP, as used by the people sending and
receiving mail.

Extensions: SMTP basic commands are enough for most purposes, but
not for every purpose. One problem that arises with many programs
is that the designers don't always know what commands will be
necessary when the protocols are first specified. Attempting to add
commands to a protocol after it has been deployed is troublesome:
that type of change is essentially a revision to the protocol, and it
requires widespread system updates.

Formats: Internet mail offers several different format specifications, from
formatting proper addresses to formatting messages, message header
fields, SMTP protocol commands and trace fields added by inter-
mediate SMTP hosts, and MIME attachments. Much of the mail
exchanged over the early internet was based on proprietary rather
than open standards, and thus often had to traverse one or more
mail gateways where proprietary formats, headers, and addresses
may have undergone translations. As a result, the IETF has produced
a large body of RFCs documenting protocols and techniques for mak-
ing all these different systems interoperate. These approaches may
be faintly echoed in other application layer protocols, but they are
more strongly evoked in protocols at the network link layer (where
there is no single open standard) and at the internet layer.

Chapter 9 �9 Internet MaJl 219

ABNF: Formal specifications require formal methods. Early protocol spec-
ifications sometimes used ABNF notation, but since the mid-1990s
it has become the preferred tool for specifying internet protocol
formats. Although in this chapter we have referred to ABNF spec-
ifications mostly for mail message and address formats, it is used
throughout mail specifications to specify everything from what char-
acters are allowed in any protocol data to how protocol commands
are properly formatted.

Distribution of architectures: The mail address namespace is largely but
not completely mapped onto the internet DNS. DNS uses a highly
distributed architecture to provide access to information about mail
delivery. SMTP relies on DNS not only for these pointers but also to
hold SMTP transport information in the form of MX preferences.

9.5 Chapter Summary
Although the architecture devised for internet mail, with its user, message
transfer, and message injection agents, may seem unwieldy to us today,
it still serves us remarkably reliably and at low cost. The SMTP protocols
and formats have survived substantially unchanged since 1981, and could
conceivably continue to function far into the future with the use of SMTP
extensions.

The POP makes SMTP more accessible to users of laptop or desktop
PCs, while the IMAP increasingly enables users to access their mail from
any location, any PC. Message privacy is still a problem that most users
are either unaware of or unconcerned about, but S/MIME provides one
approach to the problem.

Like other application protocols, SMTP uses a simple protocol for exchang-
ing textual command and response information: Telnet. As discussed in the
next chapter, Telnet provides a basic tool with which systems can interact.

This Page Intentionally Left Blank

Telnet

The two first application protocols were terminal emulation (Telnet) and
the file transfer protocol (FTP). Telnet allows people to work interactively
with a remote host, FTP allows people to move files from one host to
another. Neither of these applications is nearly as important today as it was
in 1982, but both are probably more widely used now than they were then.

This chapter provides an introduction to the telnet protocol, the next high-
lights FTP, and the ones after that cover hypertext transfer protocol (HTTP)
and other important internet applications. However, these chapters won' t
go into as much detail about the protocols as earlier chapters, in part
because some of that detail is redundant (many applications share sim-
ilar if not identical mechanisms) and in part because concentrating on the
details can make it more difficult to grasp the fundamental concepts.

221

222 Part Two �9 Internet Applications

10.1 Problem Statement

Unlike the other application protocols discussed so far, Telnet's purpose is
to enable the transfer of data between a user and a computer. Simple mail
transfer protocol (SMTP) and domain name system (DNS) (for that matter,
HTTP and FTP as well) include mechanisms that mediate interaction
between hosts: the client requests some data, and the server sends it.

Telnet differs in that it is a mechanism for a person to send commands
to programs running on the server, as if she were sitting in front of a
directly connected terminal (or the server itself). Speed of data transfer is
not as important as latency: in many cases, the user will need to transfer
only a byte or two or data (for example, when pressing the Enter key in
response to an application prompt). The server will usually send no more
than about 2,000 bytes at most because that is all that is needed to fill the
typical terminal display of 25 x 80 characters.

Telnet is the oldest of the internet terminal emulation protocols, but it is
not the only one--nor necessarily the best one. But it provides a good
example of an application protocol that does something other than send
files back and forth. Measuring the performance of an interactive proto-
col such as telnet means looking at very different attributes than those
important to bulk transfer protocols such as SMTP and FTP. Unlike rela-
tively straightforward applications based on simple queries and responses,
terminal sessions also require more attention to the client-host connection.

10.2 Terminal Functions

Many internet users have never used either a hardware terminal or a ter-
minal emulation program, so it is worth reviewing the terminal emulation
function. Early computers used a variety of mechanisms for accepting
input from users and for producing output for those users, including toggle
switches, paper tape, punch cards, and teletype consoles for input and
including flashing lights, paper tape, punch cards, printers and teletype
consoles for output. The introduction of the personal terminal, a combi-
nation of keyboard and cathode tube display monitor, provided a more
practical means of interactive computer control for end users (printer/
terminals provided the same functionality as the cathode ray tube
monitor, but were noisy, slow, and consumed endless volumes of paper).

ChapterlO �9 Telnet 223

Initially, computer manufacturers sold terminals that matched their
computers, but not anyone else's, as a means of increasing revenues by
locking customers (large corporations, usually) into buying all their com-
puting hardware from one vendor. Although vendors might optimize their
terminal offerings for their mainframes, eventually most vendors adhered
to some basic standards for interoperability. The notable exception was
IBM, whose terminals and mainframes long relied on an entirely different
character encoding system.

For many years, terminal emulation was done locally, but remote network
terminal emulation function was one of the earliest TCP/IP applications
because the researchers working under ARPA/DARPA funding needed a
way to control systems remotely, over the network.

Terminals allow users to connect to a remote host, log in with their user
ID and passphrase, and use applications that are running on the server.
Many corporations use mainframes for key applications such as accoun-
ting, payroll, inventory, and others; those employees using those systems
for their daily work would have a terminal on their desks wired directly to
the mainframe. Companies with mainframes from more than one ven-
dor might have employees with two or even three different terminals
on their desks to allow them to access the systems they needed to do
their work.

The telnet application was designed to allow a user running the telnet client
software on any computer to communicate with the telnet server on any
other computer, no matter the vendor, hardware, or operating system of
either system.

This means a user with a DEC terminal would use a telnet client run-
ning on her local DEC mainframe to connect to a server program running
on a remote mainframe. That server accepts telnet transmissions, con-
verts them into the appropriate local format, and passes them to the
user's session on the mainframe. Once that session returns some result
(usually in the form of data to be displayed on a terminal), the server pro-
gram accepts it from the local mainframe session and sends it off to the
client software, which sends the properly formatted results to the user's
terminal.

Figure 10-1 shows how this works. Although this may not be terribly
complicated, it may be a bit subtle for users accustomed to PCs and
workstations.

224 Part Two �9 Internet Applications

i i

I �84
PC running
Telnet client

The Telnet client
accepts data from

~ the user l and writes the data .itto. re_motet~ NVT and hostSends

.,
. .

I n t e r n e t w o r k

, . , ~" . :?..
. ,. , .

Server receives I
NVT data over the

Mainframe running Telnet server

Figure 10-1: Terminal emulation between incompatible mainframe and
terminal.

The steps in the telnet interaction depicted here pass demonstrate how
telnet works:

1. The user sends a signal of some sort (e.g., types a command to
be processed in her remote mainframe terminal session running
on B) by pressing one or more keys on the local terminal key-
board. The terminal sends the signal through the local network
to the telnet client running locally on mainframe A.

The local telnet client translates the signal into network vir-
tual terminal (NVT) format. The NVT is a lowest common

ChapterlO �9 Telnet 225

denominator for terminal signals, providing a basic set of sig-
nals to which telnet clients translate inputs from the terminal
keyboard and from which telnet clients translate outputs from
the remote session for local display. Telnet servers also use the
NVT to translate client inputs into a format that the server host
can understand and to translate the output into a format that
the client will be able to display.

For example, some terminals may lack a Return key; in those
cases, some other key is used locally to represent the charac-
ters generated by the Return key. The telnet client translates
whatever character(s) is (are) generated by that key into the
appropriate sequence for the NVT emulation and send them to
the server.

2. The telnet client on mainframe A sends the NVT inputs to the
telnet server on mainframe B.

3. The telnet server on mainframe B translates the NVT inputs
into the appropriate format for local processing by the server
host. For example, if the server host is an IBM mainframe that
uses the EBCDIC character set rather than the ASCII character
set, the telnet server will convert the inbound ASCII data into
EBCDIC data.

Once converted into the appropriate local format, the telnet
server passes the data along to the end-user's mainframe session
on host B.

4. The mainframe session accepts the data and does whatever it
would do with any other terminal session. The results, generally
some screen output, are sent back to the telnet server.

5. The telnet server converts the data from local format to the NVT
format and sends it back to the telnet client program running
on host A.

6. The client converts the data (in NVT format) into an appropriate
format for display on the user's terminal, and sends it to that
terminal for display.

10.3 Telnet Protocol Basics

Telnet is specified as an internet standard in RFC 854, "Telnet Protocol
Specification," and RFC 855, "Telnet Option Specifications." There are over
100 different RFCs about telnet published; the first, RFC 97, "First Cut

226 Part Two �9 Internet Applications

at a Proposed Telnet Protocol," came out in 1971; 14 new RFCs were
published about telnet during the year 2000.

This multitude of specifications indicates two things: telnet is important,
and it's needed a lot of fixing over the years. Special versions of telnet
have been created specifically to handle IBM mainframe terminal ses-
sions (emulating the IBM families of terminals designated 3270 and 5250).
Telnet is marginally more secure than the remote shell commands (r s h
and others) but is still susceptible to many different attacks, including
interception of terminal session data, hijacking of terminal sessions, and
even sniffing of system passphrases.

Nevertheless, telnet is still useful, even if it is increasingly being replaced
by the secure shell protocol (SSH) to be discussed later in this chapter.

Telnet sessions begin with a client opening a transmission control protocol
(TCP) connection to the appropriate well-known port. As defined in RFC
854, the Telnet protocol may be used for communication between a client
and a server; remote terminal emulation servers listen for Telnet service
requests on port 23. The Telnet protocol is used to exchange data in other
application protocols, in particular with FTP (see Chapter 11) or SMTP
(see Chapter 9). This means that a telnet client can be used to communi-
cate directly with an FTP server (it is standard operating procedure for
implementers to reuse telnet code in their ftp implementations), or with
an SMTP server (it is standard operating procedure for attackers to use
telnet to interactively communicate directly with target mail servers).

TCP is the preferred transport protocol for telnet because it provides a
reliable virtual circuit between the interacting hosts. TCP guarantees that
if the connection fails for some reason, both client and server will be able to
recover gracefully. With TCP's transmission control functions, both client
and server can determine whether a lull is the result of a failed connection
or whether it just means nothing has been happening.

Servers must be able to both receive commands from the clients reliably
and send system responses to the client reliably.

10.3.1 TELNET PROTOCOL EXCHANGES

Telnet sessions have two sets of interactions: the user interacts with
his client software running locally and his terminal session running on

ChapterlO �9 Telnet 227

the remote host, and the client and server interact by sending data
back and forth over the internet. First, the user-session interaction looks
like this:

1. The user commands the local host to open a telnet session with
a remote host (specified by hostname or by IP address).

2. If the client software is successful in opening the session, the
user sees whatever other message the remote host would nor-
mally display when a terminal session is opened. In most cases,
this will be a short "welcome" message, 1 followed by a login
prompt.

3. The user enters her user ID and passphrase (or goes through
whatever login process is normally required), and the terminal
session is conducted.

4. When the user is finished, she logs off.
5. The user may log on to another terminal session (with the same

or a different host) or else close the client software.

The user sees a terminal session just like any other terminal session. The
session may happen inside a window sitting on top of a GUI desktop, but
it is still nothing more than a terminal session.

The client and server programs, however, go through a bit more work to
support the session:

1. Once the user command for opening a session is received, the
client software starts (if it is not already running) and requests
that the server hostname be resolved to an IP address (as
described in Chapter 8).

2. The client attempts to open a TCP circuit (see Chapter 17) with
the server IP address and the telnet port (23).

3. If it is to be successful, the host responding for the specified
IP address must be responding to requests for TCP circuits on
port 23 and running a telnet daemon. It must also be avail-
able to serve clients, in particular the client making the request.
If those conditions are all met, the server responds with an
acknowledgment of the request and then starts sending data
(the welcome/login screen, for example).

1 "Welcome" is in quotes because the message may include warnings against unauthorized
intruders as well as summaries of penalties that may be applied to those who break applicable
laws.

228 Part Two �9 Internet Applications

4. At this point, the session may proceed, with the client software
sending the user's login information or any other keyboard
(or mouse) input to the server and the server responding with
the results of entering that input into the session with the server.
Client implementations are expected to buffer keystrokes until
an end-of-line naturally occurs or some other event (such
as pressing the Enter key) triggers the equivalent of the
end-of-line.

Mostly, telnet sessions consist of these exchanges of data
plus session negotiation messages (see no. 5, below) and telnet
protocol commands (see no. 6 and Table 10-1, below).

5. As the session opens, the client and server software may also
negotiate which telnet options (added features that may be sup-
ported by either client or server but are not required) are to be
used for the session. Option negotiation begins with one party
(either client or server) sending a DO, DORT, WILL, or WONT
message.

The sequence is shown in Table 10-2; the effect is of a conver-
sation between asker and askee. The asker starts out: "Please,
do (or don't) use <some special option>, if you can" with the
response like this: "Sure, I'll do (or not do) <special option> in
this session."

The hosts need not wait for answers as they exchange requests
and responses; for example, a server might send a list of requests
to the server to be responded to sequentially.

The official list of telnet options is available at h t tp : / /
www.iana.org/assignments/telnet-options from the IANA
web site, and in Appendix B.

The user opens a telnet session by opening the telnet client with a hostname
(to be resolved to an IP address as described in Chapter 8). The client
software opens the session with the remote host by opening a TCP circuit
on the server's port number 23, for telnet, at the requested server. The
client assigns itself a local, arbitrary, port to differentiate each terminal
session.

Both client and server can maintain more than one telnet connection
at any given time, as long as there are enough resources to maintain
additional TCP connections. A client may open more than one telnet ses-
sion with the same remote host: although it uses the same IP address
and TCP port (port 23) as destinations for the telnet traffic, the client

ChapterlO. Telnet 229

Cmd Stands for Explanation

AO Abort Output

AYT Are You There

BRK Break

DM Data Mark

DO Do <option>

Finishes process but doesnt
output results

Requests response from other
side, to indicate link is
still functioning

Used as an attention key
on NVT

Places mark in data stream
to allow urgent data to be
transmitted

Announces host willingness
for other host to enable
<option>

DONT Dont do <option> Announces host unwillingness
to permit another host to
enable <option>

EC Erase char Erases the last character
sent EL 0xf8 Erase Line

Erases the last line sent
EOR End of Record Indicates end of data sent;

part of a negotiated option

IP Interrupt Process Interrupts the current
process being executed on
the server

NOP No Operation Acts as a place holder

SB Suboption Used when options have
Negotiation suboptions

WILL Will Do <option> Announces host willingness

to enable <option>

WONT Wont do <option> Announces host unwillingness

to enable <option>

Table 10-1: Telnet protocol basic commands (from RFC 854).

230 Part Two �9 Internet Applications

Host Wants to Host Response Result :

client WILL XXX server DO

client WILL XXX server DONT

client DO XXX server WILL

client DO XXX server WONT

server WILL XXX client DO

server WILL XXX client DONT

server DO XXX client WILL

client begins XXX

nothing

server begins XXX

nothing

server begins XXX

nothing

client begins XXX

server DO XXX client WONT nothing

Table 10-2: Option negotiation.

assigns non-well-known port numbers for its side of the TCP connec-
tion. As a result, two or more different telnet links to the same server
could be active on a host: the only difference between segments intended
for the different sessions would be the TCP port numbers on the client
host (the rest of the addressing information, IP addresses of both hosts,
and the TCP port number for the server, would remain the same for all
segments).

If the server offers telnet, it opens negotiations with the client to determine
what options are supported (see below). A telnet server may be configured
to accept requests for a session on ports other than 23, and telnet clients may
open sessions with any application protocol server that sends and accepts
ASCII data. For example, you may connect to an SMTP server with a telnet
client and send SMTP commands interactively.

The use of the NVT convention that the client and server send each other
will be mutually comprehensible; thus there is little need for further
application layer protocol formatting. It also allows the telnet client to inter-
operate with other servers. The most obvious application level protocol
needed for telnet is a mechanism to allow transmission of character
sequences in the terminal session that might be interpreted as part of
the protocol such as commands and to permit transmission of protocol
commands that might otherwise be interpreted as part of the terminal
session. The usual approach to this problem is to use "escape" characters

ChapterlO. Telnet 231

or codes, sequences of characters that indicate how the next character(s)
is to be interpreted.

Minimal protocol formatting simplifies the exchange information between
client and server. The client program sends whatever it has, whenever the
user indicates she is ready to send that data; the server sends whatever it
has, whenever the host system (interacting through the terminal session)
indicates the transmission is complete. The sending continues until all
the data has been delivered. If the host system would send a cascading
stream of output to a terminal (as when displaying hundreds of filenames
in a directory listing), the same stream is sent to the telnet client. When the
volume of data to be sent exceeds the amount that can be incorporated into
a TCP segment or an IP packet, the lower layer protocols break the data
up--telnet implementations aren't required to provide any mechanisms
for managing such transmissions.

10.3.2 TELNET PROTOCOL COMMANDS AND OPTIONS

The telnet protocol itself has relatively few commands. These include
options negotiation commands (see the next section), as well as a few com-
mands regarding the flow of data. Commands are set off from the rest of the
flow of data by a special one-byte character, 255 (or 0xff, in hexadecimal)
that is called the Interpret As Command (IAC) character. The commands
are also single bytes and follow the IAC character.

One of the important features of telnet is the ability to negotiate options
between the server and the client. By allowing options, telnet implemen-
tations permit either client or server programs to extend functionality
between two hosts if they both agree. Option negotiation between the
telnet client and server is symmetric, meaning that either side can initiate
a request to honor any option. Either side also has the authority to veto
any option requested by the other side.

Negotiation begins when one participant sends a request that it wants to
turn on (or off) a certain option for itself, or a request that it wants the other
participant to turn on (or off) an option.

As mentioned in section 10.2.3, telnet hosts negotiate options by
exchanging DO/WILL requests. The DO < o p t i o n > command is a request
for the other host to turn on an option; the WILL < o p t i o n > command
is a request for the other host to allow the requesting host to turn on the

232 Part Two �9 Internet Applications

option. A host may respond WILL or WONT to a DO request, signifying
that the host either will or will not turn on the option (the requesting host
must accept that response). A host may respond DO or DORT to a WILL
request, signifying that the host is willing or not to allow the other host
to turn on the requested option. Table 10-2 shows all eight possibilities for
option negotiation for option XXX.

Either host can initiate a request to enable (or leave disabled) any particular
option, and all hosts must support the four option commands. However,
telnet hosts don't necessarily have to support any options--although they
must be able to recognize that a remote host is requesting an option, and
be able to respond to that request negatively.

Options are an important aspect of telnet implementations, because they
allow the most primitive telnet server (or client) to support sessions with
the most modern and fully featured telnet client (or server).

Because an option request (DO and WILL) can look like a request acknowl-
edgment, a telnet host need not acknowledge requests for services already
on: the request is ignored to avoid looping requests between hosts.

Telnet options vary from implementation to implementation, but some
of them relate to terminal characteristics, like negotiating the size of the
window represented on the terminal: how many characters wide and how
many high can be represented on screen. This type of option must first be
negotiated, and then the two hosts can exchange information about termi-
nal type. Line mode or character mode is another option, which determines
whether characters are sent individually or grouped together to be sent one
line at a time. Other options include choices about whether or not to allow
a host to echo data it receives or whether or not to use a special end of
record code to indicate the end of a data transmission.

10.3.3 INSECURE TELNET ALTERNATIVES

Telnet may be the most grizzled and time-tested of internet terminal
emulation protocol, but it is not the only one. Two other terminal emu-
lation families should be mentioned here: the r-utilities and the SSH.
The r-utilities are considerably less secure than telnet, while the SSH is
considerably more secure.

Telnet is widely implemented and deployed in large part because it has
always been widely implemented and deployed. Despite its weaknesses,

Chapter 10 �9 Telnet 233

telnet has been used for years for robust, reliable, and remote logins
across the internet. At the same time, system administrators in smaller
TCP/IP networks, where *nix operating systems dominated, were taking
a different approach to remote sessions. Generally simpler (supporting
fewer options) than telnet, the r-utilities were designed to operate mostly
between *nix systems.

Foremost among these utilities is the rsh ("remote shell") program, which
allows a user on a local system to connect to a remote system and open
a shell on that system. There are a number of other "remote" programs,
including rcp ("remote copy") and rlogin ("remote login"). As with the
Network File System (NFS), a protocol produced by Sun Microsystems
and submitted to the IETF for publication in a non-standards track RFC,
the r-utilities rely on hostnames and local user IDs for authentication.

The r-utilities restrict remote access based on the hostname of the source
host from which the request for access is made. *nix systems use the .rhosts
file, listing authorized hosts and use IDs. If the user ID and hostname are
in the file, the request is allowed.

This approach to security is easily defeated simply by sending a false user
ID and hostname with a request to open a session. Although this risk would
likely have been acceptable in a research organization or small workgroup
network, that is no longer the case. In addition to being insecure, r-utilities
are less useful in environments with a broader range of operating sys-
tems in use (although r-utilities have been ported to many if not most
n o n-* n ix OSes).

Like telnet, r-login uses the TCP transport protocol to initiate a connec-
tion between the client and the server. However, once the connection is
initiated, the client sends user information to the server. This includes
the user's ID on the client system and the user's ID on the server system;
the server may also prompt for a password. The password prompt and
response are not handled any differently from other data passed between
the two hosts. If the server gets a valid password, it continues the session;
otherwise it will terminate the connection.

10.4 Secure Shell Protocol

SSH was first created as an open source project by Tatu Ylonen in the
1990s (who later founded SSH Security Communications, Inc., with a set of

234 Part Two �9 Internet Applications

SSH implementations as its flagship product). Since then, SSH (for "secure
shell" and in contrast to rsh, or "remote shell") has been adopted by the
Secure Shell (SECSH) IETF working group. Although no RFCs have been
published, SSH is widely used as a secure alternative to telnet as well as a
tool for securing other applications.

SSH consists of three pieces, as described in an internet draft published
in 2002:

�9 The transport layer protocol provides server authentication,
confidentiality, and integrity. It may optionally also provide
compression. The transport layer will typically be run over a
TCP/IP connection, but might also be used on top of any other
reliable data stream.

�9 The user authentication protocol authenticates the client-side
user to the server. It runs over the transport layer protocol.

�9 The connection protocol multiplexes the encrypted tunnel into
several logical channels. It runs over the user authentication
protocol.

As far as terminal emulation, SSH is similar to te lnet~but before estab-
lishing the terminal session, SSH allows the client and server to negotiate
the'exchange of security data, creation of a secure connection, and user
authentication.

However, SSH is far more than a terminal emulation protocol. It defines a
framework within which two hosts can negotiate a secure circuit. Although
the most basic use of that circuit is the exchange of terminal session data,
SSH-secured circuits can be used to encapsulate almost any other type
of application session. The connection protocol allows multiplexingmthe
aggregation of different data streamsmover a single SSH session, making
it an ideal mechanism for securing other applications. This use of SSH is
discussed in Chapter 16.

10.5 Chapter Summary
Telnet provides a simple protocol for the exchange of textual data, whether
those exchanges be of protocol commands and responses for other proto-
cols (including FTP and SMTP) or the exchange of terminal commands and

ChapterlO �9 Telnet 235

system responses that make up a remote terminal session between a user
and a remote system.

One of the most notable aspects of Telnet is the use of the network virtual
terminal: the imaginary device to which and from which all inputs and
outputs can be mapped. By building this idealized entity, Telnet can accept
input from any kind of input device, as long as the inputs can be mapped
onto the NVT. Likewise, as long as an output device can interpret NVT
outputs, those can be displayed on the local output device. Rather than
requiring a separate translation between each and every input and output
device (which would result in a huge number of different translations),
each device must be translated only once--to and from the NVTmto ensure
interoperability with all other devices.

This Page Intentionally Left Blank

Internet File Transfer

The two fundamental and most basic problems that a network solves are
these:

1. How do users connect to, and control sessions with, remote
hosts?

2. How do users move data files from one host to another?

Telnet and other terminal emulation protocols help solve the first problem;
the File Transfer Protocol (FTP) solves the second problem.

Although we've already introduced the concept of transport layer ports
(in Chapters 5 and 7), transmission control protocol (TCP) ports are more
important to FTP than the other protocols discussed so far. Readers may
wish to review the relevant sections of those chapters, or to read this chap-
ter in parallel with Chapters 15 and 17, in which transport layer issues are
discussed at greater length.

237

238 Part Two ~ Internet Applications

I1.1 Problem Statement

Telnet offers a basic mechanism for passing data from the client to the
server, and back. The client sends data the user inputs through her key-
board, while the server responds by sending terminal output from the
terminal session to the remote client, for display on the client's output
device. Terminal sessions tend to be bursty, meaning data is sent in short
bursts or flurries of activity with lots of waiting around time in between.
While the client initiates a connection, the user sits and waits for a response
from the server; the user enters user ID and passphrase, and waits while
the remote host determines whether the login should be accepted. Data
sent from the terminal session to the telnet client is displayed, and the
server sits around and waits while the user reads that data.

If a telnet message is dropped somewhere along the line, resending the
message is likely to impact performance virtually imperceptibly. If the
connection is flaky, and one in a hundred or even one in ten packets are
corrupted or lost, the session can still be usable.

File transfer is different:

�9 Files may be very short, but more often are large. File sizes
of hundreds of megabytes are routinely downloaded over
the internet. File transfer applications must permit hosts to
maximize transmission speeds.

�9 A single error in a transferred file can render the entire file
useless. File transfer applications must permit hosts to check
for errors as data is received, without waiting for the entire file
to be downloaded.

�9 File transfer may or may not be an interactive activity. Terminal
sessions almost always involve a person sitting in front of a
computer and entering commands via keyboard at one end of
the connection and a host at the other accepting those com-
mands. File transfer may be an interactive task, but it may just
as likely be an automated task set up to run at night when
bandwidth is cheaper.

File transfer must also be differentiated from network file sharing, where
networked hosts share access to a network file system. Local area network
(LAN) operating systems such as Novell's NetWare and Microsoft's net-
work services allow individual hosts to access files, disk storage space,

Chapter 11 �9 Internet File Transfer 239

and other network resources such as printers as if those resources were
directly connected to the host. Figure 11-1 shows how two client hosts
appear (at least to their users) to be directly connected to the server 's disk
and printer. A user of either of those systems might not realize that her
files are not being stored locally but on a portion of the ne twork disk.

However , a host with an FTP client across the internet or across the LAN
could access the same fi les--but only by treating the server as a distinct file
system from which files would first have to be copied across the network.
The FTP user must copy a file before it can be used locally, but the local
copy is distinct (and can be changed) from the original file stored on the
FTP server.

In Figure 11-1, the FTP clients are shown with arrows between the
server 's shared disk and their own local disk because files are copied
across the network in their entirety before they can be manipula ted locally.

I n t e r n e t

LAN

I i--

r

il
I I
I I
I I
I I
I I
I I
I I lJ

Figure 11-1: Network file sharing.

240 Part Two �9 Internet Applications

Users can treat network file systems as if they were directly connected to
the users' hosts, but files on FTP servers must be transferred prior to being
manipulated (or even viewed) in any way.

i l .2 File Transfer Protocol Basics

Like telnet, FTP is an ancient protocol, tracing its roots back to 1971 and RFC
114, "A File Transfer Protocol." Published in 1985, RFC 959, "File Transfer
Protocol," is still curent. As defined in RFC 959 and updated in subsequent
RFCs, FTP displays greater complexity than telnetmand even uses the tel-
net protocol for exchanging transfer commands and control information.

The complexity of the FTP protocol arises from segregation of the file
transfer process from the exchange of command and control information.
Hosts exchange information about the transfers (e.g., requests for files)
through one channel, while the actual file transfers are conducted through
a separate, dedicated, channel. Even more unusual is that data transfer con-
nections are initiated by the server, rather than the client, after a request
for a file is made.

Figure 11-2, adapted from RFC 959, shows how the FTP architecture
works; the entities involved are:

Server-Filesystem: This is where the server physically stores files that
can be accessed through FTP. Files transferred to a client are read
from this filesystem; files transferred from a client are written to this
filesystem.

Protocol Interface (PI): FTP defines two separate PIs, one each for client
and server. The PI is the process that manages the exchange of pro-
tocol data; the PIs set up the control connection (see below), send
and receive protocol commands and responses, and control the data
connection.

Server-PI: The server's protocol interface listens for requests to open a TCP
connection on the standard inbound FTP control port (port 21), and
interprets FTP commands sent by the client.

Data Transfer Process (DTP): The DTP manages the actual transfer of file
data over a separate data connection (see below).

Chapter 11 �9 Internet File Transfer 241

:?:~! ~ :~ ii :~i ~

, . ; ,
�9 ",.,,;

~i:=:~ ~
�9 ...~ ~. ~ .."

Control
.,,,,,. 0 ~ ~ ~ i ~ i 1 . ~ ~: ...~i .~:: ~: ~ ,.,, connection

t (FTP commands and replies) ' ~ =

.._.____.__I Data-Connection ~ ~ T

Figure 11-2: FTP architecture (from RFC 959).

Server-DTP: The server-DTP is the part of the server's FTP process that
initiates a data connection when in its active state. The server DTP
listens for a client initiation on port 20 when in its passive state.

Server-FTP: The server-FTP is the process that does FTP; this may be one
or more processes that incorporate the data transfer and protocol
interface functions for the server.

Control-connection: The circuit over which the user and server protocol
interpreters exchange commands and responses.

Data-connection: The circuit over which the user and server protocol
interpreters exchange data and acknowledgments.

User Interface (UI): The UI allows the user to enter commands and see the
results of those commands. Most FTP user interfaces in use through
the early 1990s (and beyond, in some cases) relied on a command

242 Part Two �9 Internet Applications

line UI. By the mid-1990s, most software publishers had begun ship-
ping fully graphical UIs for FTP. The user interface issue will be
revisited in Chapter 28.

User-FTP: The user-FTP does FTP; this may be one or more processes that
incorporate the data transfer and protocol interface functions for the
client, as well as the client user interface.

User-H: The user-PI orchestrates files transfers by linking the user
(through the UI), the local data transfer process and the server's
protocol interface.

User-DTP: The user-DTP sends and/or receives file data, and reads/
writes it from/to the local filesystem. The user DTP also listens for
requests to open data circuits on port 20 from an FTP server.

User-Filesystem: Where the user's FTP process stores data transferred
from the server or to be transferred to the server.

Unlike any of the protocols we've discussed so far, FTP uses two circuits,
one for commands and the other for data. Also unique is the use of the
active and passive modes for transfer: by default, the protocol requires
that client commands be sent over the command circuit, but when data
is to be transferred, the server must be allowed to initiate the data cir-
cuit. This is most unusual, because it assumes that inbound and outbound
connectivity are roughly equivalent. In practice, however, servers are far
more frequently configured to allow just anyone to connect than clients.
There are security implications of allowing external hosts to open a data
transfer circuit with a user's system inside a corporation or other organi-
zation, foremost among them the need to differentiate between legitimate
file transfers and those made by attackers.

Using the passive mode, however, the client may request that a server
allow the data transfer circuit to be set up in the same direction as the
command circuit. Rather than having the client initiate the command
circuit but require the client to allow an outside host to initiate the
data transfer circuit, the passive mode permits the client to initiate both
circuits.

Figure 11-3 shows the steps in an FTP session. Figure 11-2 shows sev-
eral different entities, with the client and server host each having its

Chapter 11 �9 Internet File Transfer 243

I n t e r n e t

"FTP server"

"OK"

"get filename.ext"

Client (send file)
. ,d

- , ,ou , , , ,

I D; _~1

@,

Server

Figure 11-3: An FTP file transfer session.

own separate PI, DTP, and FTP; but in practice all of these functions are
combined into an implementat ion of FTP.

A file transfer, such as a user downloading a file from a remote server using
FTP, might proceed as follows:

1. The user starts the client FTP process, identifying the server
from which a file is to be downloaded.

2. The FTP client process initiates a control connection with the
FTP server. The control connection uses the telnet protocol for
the exchange of command / r e sponse data. Commands include
requests for file transfers as well as requests to set various
options, list directories, change directories on the server, or
manage the connection itself.

3. The FTP client requests that a file be transferred from the FTP
server by sending a command over the control connection.

244 Part Two �9 Internet ApplJcations

4. The FTP client then waits for the server to open a connection,
assuming that the active mode is in use. If the passive mode
has been specified, the server waits for the client to open the
connection.

5. The client and server exchange file data. FTP provides no
reliability or guaranteed delivery services, relying on TCP to
provide those. FTP data may be transferred in block mode, or
in stream mode. Block mode means the format of each chunk
of data transmitted by an FTP host includes a protocol header
which may specify the size of the chunk or provide informa-
tion about where the block begins and ends. Stream mode is
when the sending host reads data directly from the file into the
transmission queue. Because the receiving host can clearly iden-
tify to the sender how much of the file was actually received,
block mode makes possible the resumption of transfers inter-
rupted by system or network. In stream mode, the recipient
of the file has no way to determine the end of a chunk of
data until the sender completes the transmission; if there is
a failure in the circuit, the sender won't know for sure how
much of the file got through, and the recipient has no way to
notify the sender where to begin resending (other than from
the start).

6. The control connection remains active during transfer to allow
either host to transmit information about the data transfer
(this is not to be confused with acknowledgment data passed
between the hosts at the transport layer via TCP). For example,
if a user decides to terminate a file transfer before it is complete,
the appropriate command to abort the transfer is passed over
the control connection.

7. When the file transfer is complete, the server closes the data
connection. The server terminates the control connection when
a file sent in stream mode is complete (because there is no other
way to indicate the end of the file).

To further muddy the waters, the FTP specification defines a set of com-
mands and responses to be exchanged between the client and the server.
At the same time, early command-line FTP implementers used the proto-
col to build a basic set of user commands. Table 11-1 includes a typical list
of FTP client software commands. However, FTP user commands are not
the same as the FTP protocol commands. Part of the FTP implementation
is a mechanism for accepting input from the user and turning that input
into the appropriate protocol commands.

Chapter 11 �9 Internet File Transfer 245

Command Purpose

ascii

binary

cd

close

delete

dir

get

hash

icd

is

mdelete

mdir

mget

mkdir

mput

open

put

pwd

quit

quote

recv

rmdir

send

type

verbose

Open operating system shell

Get help

Set file type to ASCII transfer

Set file type to binary transfer

Change default directory on remote host

Terminate connection with remote host

Remove file on remote host

Get directory listing on current directory on remote host

Retrieve file from remote host

Display # (hash character) for each block of data
transferred

Change directory on local host

Get directory listing on current directory on remote host

Multiple delete of files using wildcard

Make directory

Retrieve multiple files from remote host

Make directory on remote host

Send multiple files to remote host (from local host)

Open connection with remote host

Send file to remote host (from local host)

Return current working directory on remote host

End FTP session

Execute command on server

Same as get

Remove directory

Same as put

Return current file transfer type (ASCII or binary)

Toggle verbose mode--start or stop plain-language
prompts

Table 11-1: Some commonly encountered FTP commands.

246 Part Two �9 Internet Applications

Looking at Figures 11-3 and 11-4, you can appreciate how the session
differs depending on whether you are looking at a transcript of an FTP
client program session or at a protocol trace of the same session.

Some of the protocol commands defined in RFC 959 include:

USER: Sends the user's account ID, to identify the end user to the server.

PASS" Carries the user's account passphrase, to allow authentication to the
server.

Client Server

Request TCP circuit on port 21

~ 220-"service ready" reply @

>User User Id

~ 331 ~user name OK, need password" @

PASS Pass phrase

~ 230 "user logged in" @

RETR filename
y

150 "file status OK, about to open data connection" @

~ Request to open data circuit on client port 20 @

OK
h.
y

And so on . . .

Figure 11-4: FTP protocol exchange.

Chapter 11 �9 Internet File Transfer 247

CWD: Changes the current working directory on the server.

CDUP: Changes the current working directory to the parent of the current
directory.

SMNT: For "structure mount;" allows the user to retain the current session
and session settings but to mount a different file system.

REIN: For "reinitialize"; resets the session (while allowing transfers in
progress to finish). After this command, a user would have to log
back in again (the next command is assumed to be USER).

QUIT: Allow transfers in progress to finish, but otherwise terminate the
session by closing the control circuit.

PASV: Requests the server to go into passive mode so the client can initiate
the file transfer circuit.

TYPE: Sets the format used for data represenation; options originally
defined included ASCII and EBCDIC (the format used by IBM main-
frames), as well as IMAGE, for binary data. The protocol allows
selection of a local byte size if necessary.

STRU: Specifies the type of structure to be used in a transfer; options
include F (for "file," meaning no structure), R (for "record"), and
P (for "page").

MODE: Specifies the transfer mode; options include S (for "stream"), B (for
"block") and C (for "compressed").

RETR: Requests that a file be copied from the server to the requesting host
("retrieved").

STOR: Requests that a file be copied from the requesting host and be
"stored" at the server.

STOU: Requests that a file be copied from the requesting host and be stored
under a unique filename at the server.

248 Part Two �9 Internet ApplJcations

APPE: Appends the file being copied to the named file on the server (unless
the file does not yet exist, in which case the file is created with that
name).

ALLO: For servers that require it, this command allocates space for a file to
be sent by an append or store command. Servers that don't require
it should treat it as a NOOP command by ignoring it.

REST: Indicates a file marker from which the server should restart sending
the file. This command is followed by a command that initiates the
actual file transfer.

RNFR: Paired with the RNTO command, the RNFR command specifies the
old filename and path to be renamed (rename from). RNFR is always
sent first. Together, the two commands cause a file to be renamed.

RNTO: Paired with the RNFR command, the RNTO command specifies the
new filename and path to which the file should be renamed. RNTO
is always sent second.

ABOR: Aborts a current file transfer.

D E L E : Delete a named file.

RMD: Remove a directory.

MKD: Create a new directory.

PWD: Print (display) the current working directory.

LIST: Lists directory or file information about a specified file or directory.

NLST: Sends a directory listing (names of files/directories) of the specified
directory.

SITE: Lists site parameters that affect file transfers but are not sufficiently
universal to require being addressed in FTP.

SYST: Requests information about the server's operating system.

Appendix B includes a list of FTP response codes (from RFC 959).

Chapter 11 �9 Internet File Transfer 249

!!.3 What's Special About File Transfer Protocol
Several things are worth noting about FTP:

1. FTP incorporates a different application protocol, telnet, to be
used for the transmission of commands.

2. FTP requires two separate channels be open for file transfer, one
for commands and replies to commands, the other for actual
data transfer.

3. FTP originally required that a client be able to permit the server
to open up a circuit for data transfer.

4. FTP originally required that all file transfers be conducted over
the same TCP circuit.

Now, it is worth noting that the active mode for file transfers is a more or
less unnecessary complication. Item no. 4, the requirement for all transfers
to be made over the same circuit, is the reason Item no. 3 was mandated
in the first place.

The TCP connection from server to client is done from the server's port 20
(the well-known port for FTP-data) to the same port the client used as the
originating point of the control connection. In this way, all file transfers
during the same session would be conducted over the same circuit. The
TCP circuit originating from port 20 on the server and arriving at port X on
the client (where X is the port chosen by the client for the control circuit).

But, it turned out that no one really implemented FTP this way: doing so
tended to cause problems with a TCP timer. Instead, in most implemen-
tations the client notifies the server of a new inbound port for every new
file. This approach solves the problem of dealing with a TCP timer on a
circuit whose activity varies considerably: quite active during the actual
file transfers, but dormant in between file transfers. And it also solves the
problem of requiring the client to allow remote hosts to open on non-well-
known ports, by rendering the normal active mode unnecessary. RFC 1579,
"Firewall-Friendly FTP," describes why PASV should be used to eliminate
or at least reduce the impact of these problems.

Not yet mentioned, but also quite special, is the FTP feature allowing
transfers between two hosts, initiated by a third host. The protocol defines
a mechanism by which a user connects to two FTP servers, setting up
two separate control connections (one to each server). The client host then

250 Part Two �9 Internet Applications

directs one of the servers to send a file (or files) to the other server. The con-
trol connections between the client and each server must remain active
during the entire session, but the data transfer connection is set up between
the two servers. The client sends commands to and accepts responses from
both servers, mediating the transfer process. This proxy FTP function is
particularly useful when the client uses a slow network connection (for
example, with a modem over a telephone line) but needs to have files
moved between hosts with faster links.

Although sometimes useful, proxy FTP opens a vulnerability through the
bounce attack, in which the attacker (using an FTP client host) has one FTP
server send a file to the target server being attacked. The attacker does not
open a true proxy session, but only pretends to be doing proxy FTP--there
is only one control connection, to the "dupe" FTP server. The file uploaded
to the dupe contains a sequence of protocol commands for the target server.
For example, an attacker could use SMTP commands to forge mail from
the target system, while having the attack appear to originate from the
dupe FTP server.

The attacker sends a command to the dupe server, directing it to open
a connection on the target server's service port (e.g., on port 25 for an
SMTP attack). Because FTP clients send data file contents over the data
transmission connection without any protocol information to encapsulate
the data, the target server treats the file as if it were a sequence of protocol
commandsmand may be tricked into executing them. Figure 11-5 shows
how the attack progresses.

!! .4 Trivial File Transfer Protocol

The Trivial File Transfer Protocol (TFTP) was published as an internet
standard in 1992, in RFC 1350, "THE TFTP PROTOCOL (REVISION 2)."
The use of TFTP for remote booting was described in 1984 in RFC 906,
"Bootstrap Loading using TFTP." In light of today's wealth of RAM, disk
space, and processor speed, FTP was often too big a protocol to imple-
ment for systems used in the 1980s and early 1990s, particularly network
terminals with minimal resources that loaded their boot image from their
networks.

FTP required a full TCP/IP protocol stack as well as the ability to set up at
least two concurrent TCP circuits; additional functions such as the ability

Chapter 11 �9 Internet File Transfer 251

@ @
with SMTP I I "dupe"to
comments I I send file
to "dupe" I I to target on

server ~ ~, SMTP port

~ili!ii~iiiii~iii;~iii!ii!~i~iiiiii!i!N
~/N ~::i::i)~i:.i:,i~ii~i~iiiiiii~::i~;~ii::i:)iiiii::ii~}i~ii!!!;i i::i:::.i; ~:;:i::i~i!i:.i::

Port 25/SMTP]

L Execution of
attacker's

SMTP
commands

~ Server
:(dupe.)

�9 .. Server sends file (with SMTP commands to forge mail)
to the target SMTP server.

Figure 11-5: FTP "bounce attack."

to change directories or list directories were certainly not necessary for
remote booting.

TFTP was created to provide a minimal protocol to be used by a system
with minimal resources. RFC 1350 specified only two applications for
TFTP-remote booting and transfer of mail=-though remote booting has
always been its dominant use.

TFTP was originally defined with only two commands: read a file or write a
file (extensions have since been added to provide greater security, among
others), and to use UDP, a much simpler transport protocol, instead of
TCP. Data is transferred in 512 byte chunks; each chunk must be acknow-
ledged before another may be sent. The end of the file is indicated by
sending a chunk of data that is less than 512 bytes long (if the file contains
an exact multiple of 512 bytes, a data message containing zero bytes is
sent).

Relatively recent updates to the TFTP specification include:

RFC2349 TFTP Timeout Interval and Transfer Size Options
(May 1998)

RFC2348 TFTP Blocksize Option (May 1998)

252 Part Two �9 Internet Applications

RFC2347 TFTP Option Extension (May 1998)
RFC2090 TFTP Multicast Option (February 1997)

More recently, however, IETF participants have been urging that use of
TFTP be discontinued because its simplicity can be used by attackers.

il.5 File Sharing
File sharing is the application that provides users access to networked
files, filesystems, and other computing devices such as printers, as if they
were directly connected to the user's host. Typically offered locally, on
LANs, file sharing applications include Novell's NetWare, Microsoft's
peer-to-peer and client/server networking solutions, and the Network File
System (NFS).

Originally developed by Sun Microsystems, NFS was submitted to the
IETF for publication as an Informational RFC in 1989; since then NFS has
been put on the IETF standards track and the latest specification published
as RFC 3010, "NFS version 4 Protocol." NFS is used in much the same way
as other file sharing protocols, and most of its complexity arises from the
need to reproduce file system functions, such as the ability to sense when
a file is being used by another user or process, to handle file input and
output as well as caching of data as it is being written or read.

NFS clients and servers exchange data using the eXternal Data Repre-
sentation (XDR) format, defined in RFC 1832, "XDR: External Data
Representation Standard," as their "least common denominator" so that
systems with different operating systems may exchange data transpar-
ently. The other key standard for NFS is the Remote Procedure Call (RPC)
defined in RFC 1831, "Remote Procedure Call Protocol Version 2." RPCs
provide a mechanism for NFS hosts to exchange requests for various
actions such as reading and writing data from and to files.

!i.6 Anonymous File Transfer Protocol
FTP provides a popular mechanism by which file sharing has tradi-
tionally been accomplished over the internet. File sharing with FTP is

Chapter 11 �9 Internet FJle Transfer 253

straightforward when the people who need access are a well-defined
group: the FTP server administrator adds user IDs and passphrases for
authorized users, who use their login information to access files.

Often, FTP servers contain files that are intended for unlimited public con-
sumption. Distribution of those files would be hindered if every person
who wanted to download them had to contact a system administrator to
be assigned login credentials; likewise, system administrators would be
swamped with such requests. Anonymous FTP is a method by which
administrators can open up portions of the server filesystem for unre-
stricted access. Usually, anonymous FTP service requires users to login as
"anonymous" and use their mail address when prompted for a passphrase.
Anonymous FTP service may also include an upload area, where anyone
can contribute their own files for public use.

Anonymous FTP may be used for many purposes, including distribut-
ing commercial and non-commercial program files, patches, and support
material; distributing data files; and maintaining file stores for collabo-
rative work. However, allowing virtually unrestricted access to a server
filesystem opens up some security vulnerabilities so anonymous FTP
deployments should be closely monitored. Many organizations, prefer-
ring greater control over access to such data, are moving to HTTP and
custom applications for file transfer.

il.7 FTP Updates

Although almost as venerable as telnet, FTP has survived with fewer mod-
ifications since its publication as a standard in 1985. RFC 959 is updated
by only two later proposed standards:

RFC2228: "FTP Security Extensions" adds several protocol com-
mands and a new set of protocol responses intended to provide
strong authentication, encryption, and integrity protection to
FTP data and commands (e.g., they protect not only the files
being transferred but also the commands used to control the file
transfer session).

RFC2640: "Internationalization of the File Transfer Protocol" sug-
gests and describes approaches to make FTP more accessible to
users throughout the world, without undue dependence on the
ASCII 7-bit character set.

254 Part Two �9 Internet Applications

FTP is far from perfect, yet it has retained relevance and usefulness over
many years. However, FTP is increasingly under pressure from web
applications, which have the benefit of the years of experience with FTP.

!!.8 Chapter Summary
As with many other protocols that originated in the early days of the inter-
net, the FTP serves not only as a protocol but also as an example of what
doesn't work well and an experiment pointing to future solutions that will
work more smoothly.

The original specification for FTP called for the client to initiate a connection
with the server, but then to have the server initiate a second connection to
the client in order to transfer a file. This approach has become increasingly
unpopular, as attackers have used it to cause system breaches and as fire-
walls usually do not allow such connections to be initiated from external
hosts.

As with many other application protocols, FTP implementations include
their own set of commands that are built upon FTP protocol commands m
but not always identical to them. FTP also has a lightweight version (Trivial
FTP) and a flavor for public access file uploads and downloads (Anony-
mous FTP). Although web surfing may seem to have little in common with
file transfers, the truth is that file transfer is fundamental to the web, as
we'll see in the next chapter.

The Web

The most popular application on the internet is undoubtedly the web,
which relies on the hypertext transfer protocol (HTTP) to move data
between client and server (or, the web browser client implementation and
web server). HTTP shares some attributes with both file transfer protocol
(FTP) and simple mail transfer protocol (SMTP), but it goes much further
to make the end-user experience pleasant and easy. Originally designed
to allow users to browse hypertext documents (non-linear documents that
allow readers to jump around to interesting or relevant areas of the docu-
ment through links), HTTP has been extended and supplemented over the
years by a number of additional protocols.

The web is based on the HTTP, which very likely generates more internet
traffic than any other application protocol. For many, the internet and
the web are virtually synonymous. HTTP does not stand alone, however.
It relies on several important protocols, and is in turn relied upon by other
protocols.

If FTP, Telnet, and internet mail (SMTP/post office protocol) represent the
first generation of internet applications, the web is surely an important part

255

256 Part Two �9 Internet Applications

of a second wave of internet applications. The original internet applications
helped end-users because they turned the complexity of internetwork com-
munication into a black-box. Users no longer had to do anything special
to access remote file systems (through FTP) or remote operating systems
(through Telnet)mthese early applications made using the internet as sim-
ple as (or, rather, no more complicated than) using any connected host as
a directly connected user.

The second generation of applications, like the web and internet message
access protocol (IMAP), make further abstraction possible. They make the
local operating system effectively irrelevant to the end user; no longer
must the end user understand how the operating system works, or how
to use the system from the command line. With the web (as well as with
IMAP mail, and other applications), the user needs only to interface with a
basic program that acts on behalf of the user in getting and using network
as well as local resources.

This chapter introduces HTTP, explaining the fundamental structures of
the protocol while not getting bogged down in the detailed description of
every command, response code, or header. For reference, some of these
are included in Appendix B, and the interested reader who needs a full and
detailed description of the HTTP protocol workings can read the relevant
RFCs. More interesting is the way HTTP has developed into a multifarious
and ubiquitous application protocol, as well as a "substrate" protocol used
by other applications.

Specifications and protocols commonly associated with HTTP and the web
include:

URI: The uniform resource identifier (URI) specification defines how web
resources are located and named, and is discussed below.

HTML: Hypertext markup language, the mechanism by which web con-
tent is prepared for display. Though an HTML specification was
published in RFC "1866 Hypertext Markup Language- 2.0," HTML
is no longer considered relevant to the activities of the IETF. Good
HTML references abound, and the interested reader will find numer-
ous books and web sites offering guidance on learning and using
HTML; it is outside the scope of this text.

WebDAV: For web distributed authoring and versioning, this is the pro-
tocol specified for remote updates of web content. WebDAV is

Chapter 12 �9 The Web 257

defined in RFC 2518, "HTTP Extensions for Distributed Authoring--
WEBDAV," and updated in RFC 3253, "Versioning Extensions to
WebDAV (Web Distributed Authoring and Versioning)." Discussion
of the WebDAV protocol is beyond the scope of this text, but the inter-
ested reader will find these RFCs a good starting point (books about
web publishing will also provide some helpful coverage).

MIME" Multipurpose internet message extensions. HTTP uses a slightly
different protocol for its "MIME-like" data objects, as will be
explained below.

SOAP: Simple object access protocol is a protocol that uses HTTP as a
transport and enables many interesting new applications. SOAP will
be discussed in Chapter 13.

We will mention only in passing protocols and specifications used to create
web content--hundreds of other books, devoted solely to teaching about
creating web content and managing websites, will provide better and more
complete discussions of those.

12.1 Specifying Web Resources
The web is more than an application: it is a network of content that rides on
top of the internet. As a network, the web requires mechanisms by which
r e s o u r c e s (the things people use on the web, such as documents, images,
multimedia content, applications, and more) can be identified.

The URI specification is a Draft Standard, documented in RFC 2396,
"Uniform Resource Identifiers (URI): Generic Syntax." Two types of URI
are the Uniform Resource Locator (URL) and the Uniform Resource Name
(URN). Tim Berners-Lee and his co-authors explain in RFC 2396 that:

URI are characterized by the following definitions-

Uniform Uniformity provides several benefits- it

allows different types of resource identifiers to
be used in the same context, even when the
mechanisms used to access those resources may
differ; it allows uniform semantic interpretation
of common syntactic conventions across different

258 Part Two �9 Internet Applications

types of resource identifiers; it allows
introduction of new types of resource identifiers
without interfering with the way that existing
identifiers are used; and it allows the
identifiers to be reused in many different
contexts, thus permitting new applications or
protocols to leverage a pre-existing, large, and
widely used set of resource identifiers.

Resource A resource can be anything that has identity.
Familiar examples include an electronic document,
an image, a service (e.g., ''today's weather
report for Los Angeles''), and a collection of

other resources. Not all resources are network
''retrievable''; e.g., human beings, corporations,
and bound books in a library can also be
considered resources.

The resource is the conceptual mapping to an
entity or set of entities, not necessarily the
entity which corresponds to that mapping at any
particular instance in time. Thus, a resource
can remain constant even when its content--
the entities to which it currently
corresponds--changes over time, provided that
the conceptual mapping is not changed in the
process.

Identifier An identifier is an object that can act as
a reference to something that has identity. In the
case of URI, the object is a sequence of
characters with a restricted syntax.

A URI might identify the resource by providing enough information
to locate that resource, in which case the URI is a URL; a URI might
also name the resource, being a persistent label that can be applied to
the resource over time.

A URI can be both a URL and a URN, but most URIs in common use are
URLs. To understand the difference between URN and URL, imagine a
global web in which every individual is identifiable by their unique name
and by their location (in this future, we've all received global positioning
implants).

Chapter 12 �9 The Web 259

You could use the name itself as the destination address of a message; for
example, "Craig_Shergold.name" might be assigned to a person named
"Craig Shergold" as his official resource name. Any message sent to that
address would be forwarded to the person, wherever the person happens
to be (there must be some mechanism to translate the name into a location,
a non-trivial requirement).

Or, the URI could specify a location. Instead of the person himself, perhaps
the phone number that "Craig Shergold" usually answers, or the street
address where he lives, or his office address.

Although it is much easier to use the location type of URI, a URL works
only as long as the resource stays put. "Craig Shergold" may not be the
one answering a telephone he shares with family members; he may not be
at his office if he goes out of town on business. With a URN, you should be
able to send something to "Craig_Shergold.name" and have it delivered
to him whether he is sick at home, at work, taking a long lunch in the pub
down the street, or preparing for a business meeting in room 204 of the
Manchester Hotel.

A URI may be either or both a URN and a URL.

We'll focus on URL syntax here. The objective of the URL is to use a
single format to locate any internet resource be it web document, FTP
file, telnet server, internet mail address, or any other type of service
available through TCP/IP. URLs were originally defined to use only
ASCII characters, although provision for other character sets is avai-
lable. Web clients use URLs to locate network resources; URLs may
incorporate non-well-known port numbers (or may, optionally, include
the well-known port numbers) to direct a TCP connection to a specific
port.

URLs are formed of the following components:

Scheme: This is the service identifier, and schemes include h t t p , f tp ,
m a i l to , and other application services. Although the scheme may
specify a particular protocol associated with an application service,
it does not have to (e.g., m a i l t o specifies a mail address rather than
a protocol).

Scheme-specific-part: This is the rest of the URL, containing the informa-
tion necessary to locate the resource.

260 Part Two �9 Internet Applications

RFC 2396 provides an informal (as well as a formal) specification for the
URI format:

<first>-<second> ; <third>?<fourth>

The first "part" is the scheme, separated by a colon (":") from the second
part; the only required part of the URI is the scheme (first part), which
indicates what type of resource is being accessed. Most common URIs
include two parts, the scheme (http) and a resource (www.example.com).
Details on the third and fourth parts of the URI can be found in
RFC 2396.

The form of the scheme-specific part of the scheme depends on the scheme
itself; valid schemes recognized by the IETF and listed on the IANA web
site as of April 2002, are listed in Appendix B.

URLs can become quite complex, carrying different variables and param-
eters to be used to locate a particular resource, such as search parameters
to retrieve resources from a database.

12.2 The Hypertext Transfer Protocol (HTTP)
Originally envisioned as a fairly simple application protocol, by 1996
HTTP 1.0 was documented in 60 pages in RFC 1945, "Hypertext Transfer
Protocol - HTTP / 1.0." From RFC 1945' s abstract:

The Hypertext Transfer Protocol (HTTP) is an application-level
protocol with the lightness and speed necessary for distributed,
collaborative, hypermedia information systems.

Things changed with HTTP 1.1, as this excerpt from the abstract for RFC
2068, "Hypertext Transfer Protocol- HTTP/1.1," published less than a
year later, shows:

The Hypertext Transfer Protocol (HTTP) is an application-level pro-
tocol for distributed, collaborative, hypermedia information systems.
It is a generic, stateless, object-oriented protocol which can be used for
many tasks, such as name servers and distributed object management
systems, through extension of its request methods. A feature of HTTP

Chapter 12 �9 The Web 261

is the typing and negotiation of data representation, allowing systems
to be built independently of the data being transferred.

RFC 1945 was only 60 pages, but RFC 2068 expanded to 162 pages; the
revised specification for HTTP/1.1, RFC 2616, bulged to 176 pages. Clearly,
the degree to which HTTP had been embraced by internet users was
unprecedented and the uses to which it was applied were unanticipated.
RFC 2324, "Hyper Text Coffee Pot Control Protocol (HTCPCP/1.0)," was
published as a joke on I April 1998, but it demonstrates how well-adapted
HTTP has become to implementation on virtually any platform, including
a broad range of server configuration tools, user interfaces for printers,
and many more.

Yet HTTP 1.1 is still considered a simple request / reply protocol. As
summarized in RFC 2616, HTTP works like this:

1. An HTTP client sends a request to the server. The request
includes a request method (essentially equivalent to and used
instead of referring to an HTTP "protocol command"), a URI
(usually a URL, as described previously), and the HTTP version
in use (usually 1.1). For the purposes of the HTTP server (and
as defined in RFC 2616), URIs are "formatted strings which
identifymvia name, location, or any other characteristic m
a resource." The request also includes a MIME-like mes-
sage that contains assorted information related to the client
and the request (e.g., client information such as the browser
name and version or parameters to be included with the
request).

2. The HTTP server responds to the request with a status line that
includes the HTTP version being used and the protocol response
code to the request (e.g., 404: File Not Found). The server also
sends a MIME-like message with its own information as well as
(if appropriate) the entity information or the actual content being
requested.

That's pretty much it for HTTP, although not entirely. Although HTTP
can be used to transfer any type of data, a markup language, the hypertext
markup language (HTML), has long been the specification of choice for
web content. Although at one time HTML was placed on the internet stan-
dard track, responsibility for web content specifications has been passed
to the World Wide Web Consortium (W3C).

2,62 Part Two �9 Internet Applications

A markup language provides a mechanism for identifying certain parts
of a document as having particular functions. Originally intended to be
used for computer document creation, markup languages assign tags to
specify the start and end of each functional entity within a document.
With traditional word processing programs, users define different func-
tional entities by changing fonts, font size, line spacing, and other physical
attributes of the displayed document. Doing so, however, means that the
document cannot easily be ported to another format, where font size or
line spacing are irrelevant. For example, the same content might be des-
tined for publication both as a printed book and as online, text-only, help
files. In this case, the author or editor would have to go through the con-
tent to verify that every heading, subheading, and other functional entity
was properly formatted for printing as a b o o k n a n d then repeat the pro-
cess, verifying that the document was properly formatted for online help
display.

With a markup language, the document writer need only "tag" functional
entities within the document; the tags are interpreted appropriately for the
output form chosen to display the document. Perhaps the most important
types of HTML tag are those that link to other files or documents. Users use
the links to move to other parts of the same document, to other documents
on the same server, or to other resources elsewhere on the internet.

HTTP permits the client to specify a scheme in a URL that identi-
fies the resource being requested; the scheme refers to the type of
resource or service and comprises the first part of the URL. So, to
access a web resource (from an HTTP server), the URL reads h t t p - / /
w e b s e r v e r , example , o r g / ; HTTP client users could also just as easily
access an FTP server by specifying the URL f t p : / / f t p . example , o rg
or a telnet server via t e l n e t : / / t e r m i n a l . example , org.

The HTTP specification does not mandate any particular transport pro-
tocol, other than stating it should be reliable. Internet HTTP clients and
servers usually communicate over TCP, through the HTTP well-known
port 80. In the early days of the web, many if not most people used
Novell or Microsoft networking protocols to connect to a LAN. Vendors
published browsers that could operate over proprietary LAN protocols
through application gateways.

HTTP methods (what might be called HTTP application protocol com-
mands) allow servers to send data to clients, as well as allow clients

Chapter 12 �9 The Web 263

to submit data to the server. Clients usually request data from servers
using the GET method, while clients may submit data using the POST
method. Clients frequently submit data, in particular when the end user is
submitting data in a web page fill-in form.

RFC 2616 defines methods and server responses, as well as specifying the
proper use of MIME-like headers for data transmissions, formats for dates
and times, how to determine whether data may be cached, and if so, how
and when that data expires.

Originally, HTTP interactions were one-time events: each time the client
requested a resource, a new TCP connection had to be set up, only to be
closed when that resource was received. This is not a problem when web
pages are small and simple, but became a problem as web pages became
increasingly complex. A single page might incorporate dozens of images
as well as textual data files; TCP connections are resource-intensive and
add latency to a session. The addition of persistent connections to HTTP
improved performance significantly because it allows the client to set up
a single TCP connection that remains in effect for the download of all
resources from a website.

An HTTP protocol summary is included in Appendix B; RFC 2616 is rea-
sonably readable and accessible for those who need all the details for
implementations or troubleshooting. Rather than focus on protocol details
here (for details of the interaction between TCP and HTTP, see Chapter 12),
we'll examine some of the following issues:

HTTP clients and servers don't always communicate directly,
but rather the client accepts data that has been cached on
a host "closer" to the client. Cached data should be data
that is not likely to change during a specified lifetime but
that is likely to be requested more than once during that
lifetime. Large organizations use caching to serve clients to
reduce the amount of bandwidth necessary to download data
from a popular server (if hundreds of users all download
the same pages, the caching server downloads the data once
and distributes it locally to all those users). Popular web
sites use caching services to distribute their content around
the world, reduce their reliance on their own network links,
and improve download performance for users around the
world.

264 Part Two �9 Internet Applications

The specification acknowledges that such indirect connections
are made, and provides mechanisms to accommodate the use
of caching.
Data is transferred using a "MIME-like" format to allow
virtually any type of data to be transmitted. There are sev-
eral other protocols upon which HTTP depends for contin-
ued operation as well as development and support of new
functions, including URI/URN, WebDAV, SOAP, HTML,
and XML.
HTTP's popularity combined with growing concerns about
security have led to a situation in which very few well-known
ports are available for users connecting to internet servers
from within an intranet--in many cases the only well-known
port permitted is port 80. As a result, many protocols have
been made to piggyback over HTTP (use HTTP as their sub-
strate protocol). There are various security issues as well
as usability issues related to this practice, some of which
are addressed by the development of the Blocks architec-
ture for developing new protocols, to be covered in the next
chapter.

12.3 Hypertext Transfer Protocol and Multipurpose Internet
Message Extensions

HTTP messages carry data in the form of "MIME-like" structures. Briefly
introduced in Chapter 9, HTTP messages contain MIME-like objects; this
means all messages from a browser look very much like MIME objects,
and all data coming from a server will be packaged as a MIME object (or
objects).

What is the difference between HTTP's "MIME-like" objects and RFC 2045-
compliant MIME objects? They are quite similar, one of the most obvious
differences being that HTTP MIME-like objects include a header field,
Con ten t -Leng th , that indicates the number of bytes needed to transfer
the object. The other major difference is in the way HTTP MIME-like objects
use the Content-Encoding and Transfer-Encoding header fields
instead of the MIME-standard Content-Transfer-Encoding header
field.

Chapter 12 �9 The Web 265

In regular MIME, the Content-Transfer-Encoding header field car-
ries two pieces of information about the content of the MIME object.
First, is the transformation used on the content. Because some proto-
cols can't carry binary data, or data with a line length of greater than
1,000 lines (specifically, SMTP, which has both those restrictions), MIME
objects containing binary data need to be transformed so that the data
will be transportable by protocols that can't normally handle binary data
correctly.

There are three transformations for data defined in the original MIME
specification:

identity: This is equivalent to saying that no transformation has been
applied to the data.

quoted-printable: Encoding means the data is converted into 7-bit values.
This encoding is used when converting data from a 7-bit character
set that includes unprintable ASCII characters; these are repre-
sented either with replacement characters or with their hexadecimal
value.

base64: Encoding means binary data is being converted into a form that
uses only printable ASCII characters, and in which lines are no longer
than 76 characters long.

The transformations indicate what has been done to the data in the object;
the other piece of information provided in the C o n t e n t - T r a n s f e r -
Encod ing header field is the domain, or the appropriate context in
which to interpret data in the object. Three domains were defined in
RFC 2045:

binary" Data is to be treated as a stream of raw bits rather than text-
based.

8 bit: Data uses an 8-bit character encoding, such as a Cyrillic, Latin, or
other language-specific encoding.

7 bit: Data uses the basic set of 127 ASCII characters and symbols.

HTTP supports 8-bit transfers without any limitation; thus, there's no
point to converting binary or 8-bit data to an ASCII-only, printable format.

266 Part Two �9 Internet Applications

Instead, the C o n t e n t - E n c o d i n g header field is used to specify how the
content of the MIME-like object is encoded. RFC 2616 defines the following
values for this field:

chunked: Indicates that the message body has been split into two or more
"chunks" to allow easier download of large objects.

identity: Indicates that no transformation encoding has been applied to
the data.

gzip: Indicates the use of an encoding format produced by the file
compression program "gzip" (GNU zip). This format is described
in RFC 1952, "GZIP File Format Specification, version 4.3."

compress: Indicates the use of an encoding format produced by the *nix
file compression program "compress."

deflate: Indicates the use of an encoding format produced by the "zlib" for-
mat used in combination with the "deflate" compression mechanism.
These are described in RFC 1950, "ZLIB Compressed Data Format
Specification Version 3.3" and RFC 1951, "DEFLATE Compressed
Data Format Specification, Version 1.3."

The Transfer-Encoding header field is also defined in RFC 2616, with
the same initial values as are defined for the c o n t e n t - E n c o d i n g header
field; the difference between the two HTTP MIME-like header fields is
explained in RFC 2616:

Transfer-coding values are used to indicate an encoding transforma-
tion that has been, can be, or may need to be applied to an entity-body
in order to ensure "safe transport" through the network. This differs
from a content coding in that the transfer-coding is a property of the
message, not of the original entity.

In other words, the transfer encoding refers to the HTTP message; the
content-encoding refers to the original data entity.

Figures 12-1 and 12-2 show an example of an HTTP exchange, with MIME-
like objects; the different parts of these messages will be discussed in the
next section.

Chapter 12 �9 The Web 267

GET / HTTP/I.I

Host- www.loshin.com

User-Agent: Mozilla/5.0 Galeon/l.2.0 (Xll; Linux

i686; U;) Gecko/20020326

Accept- text/xml, application/xml,

application/xhtml+xml, text/html ;

q=0.9, text/plain; q=0.8, video/x-mng,

image/png, image/j peg, image/gi f ;

q=0.2, text/css,*/* ;q=0.1

Accept-Language : en

Accept-Encoding- gzip, deflate, compress;q=0.9

Accept-Charset: IS0-8859-I, utf-8;q-0.66, *;q=0.66

Keep-Alive- 300

Connection- keep-alive

Figure 12-1: An HTTP GET message, with MIME-like object.

12.4 Hypertext Transfer Protocol in Action

To get an idea of how HTTP operates, refer back to Figure 12-1. This figure
shows a message passed from a client to a server, requesting the contents
of the URL www. 1 o s h i n , corn (Fig. 12-2 shows the server's response). The
IP and TCP headers have been omitted here for clarity's sake.

Look at the first line of the first message:

GET / HTTP/I.I

GET indicates that the client wants to retrieve some resource (in this case,
the " / " or root resource) from the host indicated in the message body (the
string HTTP/1 .1 indicates that the client supports version 1.1 of HTTP).

268 Part Two �9 Internet Applications

HTTP/I.I 200 OK

Date: Wed, i0 Apr 2002 20:11:55 GMT

Server: Apache/l.3.23

Last-Modified. Sun, 07 May 2000 19-21-36 GMT

ETag: ''5d091-8f7-3915c240''

Accept-Ranges: bytes

Content-Length: 2295

Keep-Alive- timeout=5, max=100

Connection- Keep-Alive

Content-Type: text/html

<html>

<head>

<title>Pete Loshin's home</title>

<meta name=''description'' content=''World-famous

author ...

Figure 12-2: An HTTP response message, with MIME-like object.

The rest of the message consists of the message body that uses the MIME-
like HTTP object format.

The first header field (on the second line of the message) indicates the
host being queried (www.loshin.com); however, even though the client
and server have already opened communication through a transmission
control protocol and internet protocol session, the hostname is still required
so as to distinguish among virtual servers (representing different websites
at different domain names, but hosted on a single host).

The third line (second header field) is the U s e r - A g e n t : header, and it
carries information about the web browser software running on the client.
In this case, it indicates that Mozilla, Galeon, and Gecko (all part of the
local browser) are running in X Windows on a Linux host. The next three
lines, the A c c e p t : header, provides information to the server about the
types of data the client is willing to accept (this header appeared on a single
line with no breaks).

Chapter12 �9 TheWeb 269

The A c c e p t - L a n g u a g e : header indicates that English ("en") is the
language of choice for the browser; A c c e p t - C h a r s e t : and A c c e p t -
E n c o d i n g : headers indicate the browser's preferred character set(s)
and character encodings. In this case, the ISO set of US characters and
extended ASCII (UTF-8) characters, and the gzip, deflate, and com-
press encodings. These two headers include some additional characters.
The figures that follow a semicolon (";") indicate the degree of prefer-
ence given to that character set or encoding. In these two header fields,
gzip, deflate (in the A c c e p t - C h a r s e t : header), and ISO-8859-1 (in the
A c c e p t - E n c o d i n g : header) get the default preference of I (the highest
value). The u t f - 8 ; q = 0 . 6 6 indicates the utf-8 character set has a lower
preference (0.66; the lowest value is 0); the * ; q = 0 . 6 6 indicates that all
other, unspecified, character sets receive the same 0.66 preference value.
Likewise, the preferred encodings are gzip and deflate, while compress is
slightly less preferred with its 0.9 preference value.

The Keep-Alive: and Connection: headers are two of several "hop-
by-hop" header fields, meaning they do not persist from the originating
client through to the destination server, but are used only as needed
between a client and a directly connected server (such as a cache server
or other intermediary system, as discussed in the next section). The
hop-by-hop headers indicate how to manage those direct connections.

The first HTTP message, then, is little more than a request for the web
server to deliver the content it holds in its root directory. The response,
shown in Figure 12-2, opens with the line HTTP/1 .1 20O OK, the
standard HTTP response format consisting of the protocol and version
numbers, along with the three-digit response code number (200, meaning
a positive response) and the string associated with that response ("OK").
The rest of the HTTP message is a MIME-like object. The header fields
are largely self-explanatory: the D a t e : header contains the date of the
response, the S e r v e r : header indicates the name and version of the web
server program, the L a s t -Modi f i ed : header indicates the date on which
the content being delivered was last modified.

The next four headers are less obvious. The ETag: header indicates an
entity tag, a value associated uniquely with each content object; the entity
tag is used to help identify whether an object is a cached copy or the original
content.

The A c c e p t - Ranges : header indicates if the server allows acceptable byte
rangesman option that allows a client to specify that only certain ranges

270 Part Two �9 Internet Applications

of bytes of the content object be sent, rather than the entire object. If the
server does allow them, the value of this field indicates the units by which
those ranges are specified; in most cases, the ranges are specified in byte
values, offset from the start of the object. This option is useful for situations
in which the connection between client and server may be unstable, and
the client either needs a certain chunk of data or the client wishes the data
to be sent in chunks to reduce overhead associated with corrupted data
transfers.

The C o n t e n t - L e n g t h : header indicates the length, in bytes, of the con-
tent being transferred in the message content body. This header differs
from the MIME header of the same name which is an optional header
for the message/external-body content type (a MIME type that includes
a pointer to an external resource instead of the resource itself). The HTTP
version is not required, but RFC 2616 states that the C o n t e n t - L e n g t h :
header SHOULD be included in any message for which the body length
can be determined before sending.

As with the GET message, the K e e p - A l i v e : and C o n n e c t i o n : headers
are hop-by-hops options.

The last header is the MIME C o n t e n t - T y p e - header, indicating in
this case that the content is text/html. This means the object body
contains text only, and the text is formatted with HTML. Other valid
MIME types are available; see ht tp: / /www.iana.org/ass ignments /media-
types/index.html for details.

The rest of the server's response message contains the HTML-tagged
text of the server's root directory (the server typically delivers the con-
tent of a file named i n d e x , h tml in response to requests for the root
document).

12.5 Web Caching and Intermediaries
Early on it was clear that web servers and clients would not always be in
direct communication. Even in RFC 1945, the protocol designers acknowl-
edged that some but not all web interactions would be "accomplished
via a single connection" between the client and server; three categories of
intermediary system have been identified: proxies, gateways, and tunnels.
Figure 12-3 shows how a single web intermediary operates.

Chapter12 �9 TheWeb 271

192.168.3.201

10z 68s200\
192.168.4.200 \

\
Client ~ : v :~'

we~~~
in term~~

(Proxy
Client gateway tunnel)

192.168.1.30

192.168.1.200

Internet

s0~er]
i LLIZI

Figure 12-3: Web intermediary system.

As defined in RFC 2616, the proxy acts as a forwarding agent for the client,
accepting requests from the client and passing them on (possibly after
rewriting some or all of the request) to the destination server. A proxy
server operates on behalf of all the clients it serves, so the servers respond-
ing to many requests from many different clients would be able to identify
only one destination for the responses to those requests: the proxy server.
In Figure 11-8, all four client hosts communicate with internet servers
through a proxy server (note that IP addresses in this figure are not valid
for the public internet; see Chapter 19 for more details on IP addressing).

Every time one of the clients submits a request, the proxy server rewrites
the request to make it appear as if it originated from the proxy server.
Responses from the internet servers are sent to the proxy server (not the
client hosts making the original requests), and the proxy server rewrites
the responses to make them appear as if they were sent directly from the
servers to the clients.

A gateway acts as a "receiving agent" for the clients, "acting as a layer
above some other server(s) and, if necessary, translating the requests to
the underlying server's protocol." In other words, the gateway accepts

272 Part Two �9 Internet Applications

HTTP requests and responses and translates them to and from TCP/IP
and whatever other protocol(s) are being used locally or remotely. The
gateway might even translate locally used non-HTTP protocol messages
into HTTP protocol messages and back, if the gateway was linking a local
or proprietary application with HTTP. In this case, the web intermediary
system shown in Figure 12-3 is a protocol gateway, but the architecture is
similar to that used with proxy servers. The difference is that in this case,
the gateway must do some protocol translation on behalf of the clients.

A tunnel acts as a "relay point" between client and server, making
no changes at all to the messages, but rather encapsulating the HTTP
exchanges in some other protocol to go through some network obsta-
cle such as a non-IP network or a firewall (see below for more about
this approach). For example, an intranet might be linked to the internet
through a non-IP network, in which case all IP traffic would be encapsu-
lated within the non-IP network protocol and then forwarded as appro-
priate as it exits the non-IP network. With a tunnel web intermediary
between HTTP client and server, the basic architecture is similar to that
shown in Figure 12-3, but packets remain unchanged, being encapsulated
as they enter the tunnel and unwrapped as they exit.

All three (or any combination of these) intermediaries may exist between
an HTTP client and server, and more may exist to provide cached versions
of web content on behalf of the server. Gateways and proxies may maintain
cached HTTP data (tunnels cannot do so), and the distinctions among the
three are drawn so as to differentiate them for the purpose of certain types
of HTTP communications (that are beyond the scope of this discussion).

No internet protocol can achieve any degree of success unless it can scale
up to allow hundreds, thousands, or even more users to access it simul-
taneously. As the web has become more popular, the most popular web
sites have attracted so many users that concentrating content on any sin-
gle network would overwhelm it. As a result, companies such as Akamai,
Digital Island, Speedera, Cisco, and Inktomi provide either content deli-
very network (CDN) services for popular web sites or the tools with which
to build private CDNs.

The basic HTTP specification offers some facilities for dealing with content
cachingmbut not quite enough to support global CDNs capable of serving
data to the millions of users who visit the busiest web sites. The problem is
that a cache may contain data that is accurate but not the latest version, for
example, when a news web site updates an article. The remedy in this case

Chapter 12 ~ The Web 273

is to shorten the data's lifetime within a cache. While that works, it also
defeats the purpose of having a CDN, in that all of the web intermediaries
serving the data must update more data, more frequently--even if no one
wants it. The result is increased bandwidth use.

Content delivery and web content caching have presented a substantial
barrier to web scalability over the years. In 1997, RFC 2186, "Internet
Cache Protocol (ICP), version 2," was published as an informational
document. ICP is a lightweight protocol intended to provide a mecha-
nism for web intermediaries that maintain caches of content to query each
other for pointers to the most appropriate source for a particular URL.

ICP relies on UDP as its transport because UDP can be very fast when
network conditions are good--and if network conditions are not good for
communicating with a particular web cache system, then there is nothing
to gain from connecting to it (however, TCP is not ruled out as a transport).
The protocol was originally developed for use in the Internet Research Task
Force resource discovery project, Harvest, and is also used by the popular
open source Squid web proxy cache program.

ICP is simple: a host sends out a request for a particular URL; if a host
receiving the request has the latest version, it sends back a HIT message
(indicating the presence of the URL); if not, it sends a MISS message.
There's a bit more, and an introduction to the way ICP is used by web
cache hosts is available in RFC 2187, "Application of Internet Cache
Protocol (ICP), version 2."

However, ICP was not enough, because it was designed for HTTP 0.9,
which did not provide for anything other than the exchange of a URI for
a piece of content. HTTP 0.9 makes no provision for the possibility that a
single URI might be available from multiple hostsmsuch as the origination
server and any number of possible caches. To fill the void, next came
RFC 2756 "Hyper Text Caching Protocol (HTCP/0.0)," defining a more
complete but still experimental protocol for "discovering HTTP caches
and cached data, managing sets of HTTP caches, and monitoring cache
activity. "1

Another effort to provide a framework for the task was embodied in the
Web Replication and Caching Working Group of the IETF. By the end of
2000, the group had made a good start at identifying some of the technical

1RFC 2756, p 1.

274 Part Two �9 Internet Applications

issues related to web caching and built a vocabulary to use while discussing
the problemsmand the group had also been replaced by the Web Interme-

diaries (WEBI) Working Group. WEBI takes a more systematic approach
to the problem, starting from the very beginning. Its first task is to develop
a resource update protocol so that web intermediaries (whether they be
caches or other components of a CDN) can easily and quickly determine
whether or not their content is synchronized with its source, and whether
it should be updated. The next task for WEBI is developing a mecha-
nism by which intermediaries can "discover" other web intermediaries
and describe themselves to each other.

Our ability to meet the challenge of managing web replication and web
caches in a growing global web will determine how much impact the
web will have on our cultural as well as economic lives going forward.
Development in this area will continue as well.

12.6 State and Statelessness

As originally specified, HTTP is a stateless protocol. Unlike the mail pro-
tocols discussed in Chapter 9, HTTP servers are always in essentially the
same state: requests come in, and the server responds to the requests. The
server does not maintain "sessions" with clients (beyond keeping the TCP
circuit open to avoid the overhead associated with reinitializing that cir-
cuit for every object downloaded). Clients are not required to go through
any session initiation (again, beyond the TCP circuit setup), or progress
through any particular series of commands and responses. If a user clicks
on a button on a web page, the server responds by delivering the asso-
ciated content object. If the user wants to retrieve that same object again,
and clicks the same button, the server will deliver the object, again. It is not
required to keep track of what the user is doing; in fact, HTTP originally
offered no way to do so.

The use of state within a session makes possible many useful functions.
For example, if you are going through a registration process, submitting
various data to a server (perhaps making a purchase), the server needs
to be able to keep track of what you've done, what data are missing, and
what data you've submitted. If you are shopping online, it helps to have a
shopping cart function that allows you to select items and have the server
keep track of what you've chosen--even if you leave the site and return
another day.

Chapter 12 �9 The Web 275

Netscape Communications was the first to add a mechanism to maintain
state: the cookie was a part of early browsers and allowed servers to store
small amounts of data on the client system, and then have the client return
that data on subsequent queries. RFC 2965, "HTTP State Management
Mechanism," defines a slightly different mechanism from the original one
used by Netscape, but the broad outlines are similar:

1. A client requests a resource from a server. Unlike ordinary
resources, however, some resources will trigger the server to
request the start of a session with the client. Designers of a
retail web site, for example, might want to set up sessions with
all clients, to keep track of what users are looking at and how
they go about making buying decisions. Web sites that provide
user interfaces to other systems that require a login procedure
also generally require a session be initiated.

2. The server will request that the session be started by asking
permission to set a cookie on the client host. The cookie is often
an identifier used by the server to link activity to the session
user.

3. The client may respond by allowing the cookie to be set, or not.
If the cookie is refused, the server will not be able to store state
about the session; that doesn't mean the server can't respond to
client requests, just that the server won't be able to track those
requests and link them together.

If the cookie is set, then cookie information will be incor-
porated into the HTTP messages exchanged during the session.
The server can then keep track of the activity by storing the data
it needs and associating that data with the cookie data stored
on the client.

Although many important web functions, especially online transactions,
would be difficult or even impossible without some mechanism for main-
taining state, cookies offer web publishers a powerful tool for tracking
users' activities online. Web ads are placed by a handful of large agencies
serving large web publishers; they are able to keep track of what web sites a
user visits because each time the user's browser downloads an ad, a cookie
is set. This allows the ad agency to make a list of all the web sites a user
visits, and what the user does on each site.

Modern web browsers often provide users the option of turning off
cookies altogether, or of choosing which cookies to set and which to
reject.

276 Part Two �9 Internet Applications

12.7 Hypertext Transfer Protocol as Substrate

As recently as 1990, the lowest c o m m o n denomina to r of ne twork con-
nectivity was a character-only terminal capable of d isplaying no more
than 80 characters on 25 lines; text-only applicat ions such as internet mail,
command- l ine file transfers, and terminal emula t ion were dominan t on
the internet. Most of the earliest internet service providers 2 offered shell
accounts on *nix servers connected to the internet. That mean t that even if
the home personal compute r (PC) were runn ing a full T C P / I P ne twork
stack wi th graphical applicat ions (such as NCSA Mosaic, the original
graphical web browser) the user wou ld only be able to use that PC as
a terminal to connect to the ISP's *nix s e r v e r m a n d only use wha teve r
applicat ions were installed on that *nix server.

As processor and m e m o r y costs cont inue to decrease, developers can n o w
reasonably a s sume that most users will have access to a sys tem capable
of runn ing a graphical user interface and an HTTP client. While HTTP
was originally in tended to serve as a s imple interface for end users wish-
ing to b rowse th rough somet imes complex hyper text documents , it has
become the protocol of choice for m a n y different applications. A l though
FTP continues to be a popu la r protocol for file transfers, mos t of those
transfers are initiated th rough HTTP sessions. Telnet, former ly used as
a w a y for users to access legacy ma in f rame applications, has been sup-
p lanted by midd l eware that maps those legacy sys tems to a web interface.
Internet mail is f requent ly available th rough popula r web sites such as
Hotmai l . com and Yahoo! as well as offered to employees th rough cor-
porate intranets, ra ther than directly th rough a mail client. Mainta in ing
mail services th rough a web interface allows users to access all their mail
f rom anywhere an HTTP client is available; wi th s t andard mail clients,
mail and mai l - reading preferences are usual ly stored on a single system. 3

2Software Tool and Die's World service, was the first ISP to offer publicly accessible dialup
internet access, starting in 1989. World subscribers received a shell account on a UNIX server,
through which they could send and receive mail, use network newsgroups, run telnet and ftp
sessions with other servers, and other basic command line applicationsuincluding web access
through ASCII-only web browsers such as lynx. Even after most ISPs had begun offering full
connectivity services between home users' PCs and the internet, World subscribers still got
nothing more (and nothing less) than a shell account.

3Although the Internet Mail Access Protocol (IMAP) allows clients to access the user's
mailbox from any system, most providers still prefer to offer Post Office Protocol (POP)
services instead. IMAP calls for the provider to maintain storage for all messages to all users
using the system; POP users generally download their mail so server storage requirements
are lower. IMAP also requires the server provide greater functionality than POP, so servers
must not only have more disk storage but must also have more processing power.

Chapter12 ~ TheWeb 277

Web mail also allows the service provider to maintain reliable backups of
all mail.

By the late 1990s, the trend of using HTTP as a substrate protocol for many
different applications was already apparent. RFC 3205, "On the Use of
HTTP as a Substrate," also published as Best Current Practices (BCP) 56,
spelled out some of the issues involved in encapsulating application data
inside HTTP message exchanges (this is what is meant by using HTTP as
a substrate for other applications). Several reasons for this choice are cited
in the RFC:

Familiarity: Everyone can be assumed to know how to use an HTTP client
(e.g., a web browser), so training costs of rolling out a new application
can be minimized.

Compatibility: HTTP-compliant web browsers are available on virtually
any platform, from web-enabled telephones to supercomputers.

Reuse: Encapsulating an application within HTTP allows existing servers
to be reused for the new application more easily than requiring a new
application server to be written.

Ease: Prototyping new application servers is simple, using CGI scripts and
other extension mechanisms.

Security: HTTP already has a significant security infrastructure, includ-
ing widespread client and server support for transport layer security
and secure sockets layer protocols for encryption and authentica-
tion, as well as the HTTP digest authentication specification spelled
out in RFC 2617 "HTTP Authentication: Basic and Digest Access
Authentication."

Transparency: Firewalls are usually configured to filter out traffic from
applications other than HTTP, which is almost universally allowed
in and out of corporate intranets (inasmuch as access to the web
provides important benefits to the corporation). A completely new
application would normally be assigned its own well-known port,
and that port would be blocked by most firewalls. That application
would only be accessible to corporate users when (and if) the firewall
is reconfigured to permit it. Application developers seeking a broad
audience find it much easier to encapsulate their application within

278 Part Two �9 Internet Applications

HTTP sessions than to require potential users to petition for changes
in corporate security policies.

Convenience: In many cases, the new application server would also be
required to support HTTP as well as the new application anyway, for
example when a single server provides web and all other application
services.

HTTP's transparency to most internet firewalls makes it an ideal vehicle
not only for carrying traffic associated with legitimate applications but also
for more harmful traffic. This problem was highlighted in the 2001 "April
Fool's" RFC 3093, " Firewall Enhancement Protocol (FEP)," which speci-
fies a protocol mechanism for encapsulating any IP packets within HTTP
messages, thus bypassing firewall security. Although FEP is presented as
a joke, it is a serious joke that makes an important statement about how
using HTTP as a transport can easily create security headaches.

Although HTTP is useful for some applications, the protocol has certain
characteristics that make it better-suited for some applications than others.
For example, applications that communicate with very short messages will
likely be hampered by the generally high overhead associated with the
use of TCP as a transport layer protocol. Likewise, security requirements
may constrain the degree to which HTTP is applicable to an application.
Although security issues associated with HTTP and other web protocols
have been the focus of considerable effort since the commercialization of
the internet in the early 1990s, some applications will be best served with
new protocols, while others can be secured satisfactorily using the standard
tools associated with the web.

Issues related to choosing HTTP as a substrate include:

�9 What kind of data interchange does the new application call
for? If the exchanges are brief, HTTP may be too "expensive";
however, if there is a sequence of exchanges that can be accom-
plished using a persistent connection between client and server,
then HTTP (with TCP) may be appropriate.

�9 Does the new application require modification to existing
servers and/or clients? If so, the incentive for using HTTP is
reduced: if new software is required, it may be easier to design
a new protocol than to adapt HTTP.

�9 What kind of security is required? HTTP security is ori-
ented toward authenticating the server rather than the client.

Chapter12 ~ TheWeb 279

Most commercial servers (or any server using TLS or other
encryption/digital signature oriented protocol) have up-to-
date digital certificates that allow client systems to authenticate
data from the server. Clients with digital certification are far
rarer. If the application calls for client authentication, HTTP
may be inappropriate.
Does HTTP make sense for the application? Audio- or video-
conferencing might not fit well into the HTTP model of requests
and delivery of data. Mail and other file transfer protocols, on
the other hand, make more sense to adapt to HTTP.

Of great concern is the continued use of port 80 for applications that run
over HTTP. As noted in RFC 3205, the telnet protocol for transmitting
commands and responses was adopted for use as a substrate protocol with
both SMTP and FTP, but each of those protocols was given its own well-
known ports to differentiate them from telnet. Most applications designed
to piggyback over HTTP do so to avoid getting a new well-known port
assignment. The author of RFC 3205 recommends the use of new well-
known ports for any applications that differ significantly from the familiar
web applicationmnot a popular position.

Whether by remapping a text-only terminal application to a GUI browser-
based web application, or by creating entirely new protocols that are encap-
sulated within HTTP messages, the reuse of HTTP for new applications
will continue.

12.8 Chapter Summary
Creating web content is only a small part of the web: it is necessary first
to be able to identify and differentiate web resources, through URLs. The
HTTP provides the mechanism by which content is requested by clients
and provided by servers. The content itself must not only conform to the
HTML but must be encapsulated within MIME objects for transmission
by HTTP.

Although the exchange of web data between client and server seems
straightforward, the process may be quite complicated. For example, web
caching can improve performance while potentially running the risk of
delivering outdated data. While the inherent statelessness of HTTP is often
an advantage, it is also an impediment to using the web in the ways that

280 PartTwo �9 Internet Applications

people wish to use it: incorporating cookies, to add statefulness to the
protocol, can be an effective (though controversial) solution.

And the ubiquity of the web, with browsers available to almost anyone,
makes it a tempting platform on which to piggyback other applications.
As we'll see in the next chapter, a new generation of applications that
need more than the web can offer are coming down the road; either they
will succeed (and perhaps supersede) the web, or they will fail to gather a
critical mass of implementations and deployments.

Third-Generation
Application Protocols

This chapter introduces third-generation internet applications. Telnet and
file transfer protocol (FTP) allowed users to access resources on remote
systems as easily as they could on local systems; the web and internet
message access protocol (IMAP) allowed users to access data on remote
systems as easily as they could on local systems. The latest wave of new
applications allows users to access applications as easily on remote systems
as on local systems using a combination of protocols.

The eXtensible Markup Language (XML) provides a format for delive-
ring self-describing data, carrying its own context with it. In other words,
XML allows content creators as well as developers to produce data objects
that can be easily used by any application. If an application receives an
XML-formatted message containing data the application can use, that
data will be used; if the data is irrelevant, the application can ignore
it safely.

281

282 Part Two �9 Internet Applications

The Simple Object Access Protocol (SOAP) is a lightweight protocol
designed to allow the exchange of XML-formatted messages between net-
work nodes. Early work on SOAP was conducted within the IETF, but
the working group eventually landed at the World Wide Web Consortium
(W3C), where it is being developed as a mechanism for delivery of network
content and data services. The original SOAP specification did not man-
date any particular protocol in which SOAP messages should be carried,
but hypertext transfer protocol (HTTP) and RPC seem to be the protocols
of choice at this point.

More relevant to TCP/IP is the Blocks Extensible Exchange Protocol
(BEEP), which provides a meta-protocol for application protocols. Before
BEEP, network designers building a new application had to choose
between creating a new application protocol, from scratch, to accom-
modate the new application, or else somehow try to shoehorn the new
application into an existing application protocol.

As discussed in Chapter 12, many new applications have been adapted for
use within HTTP. As discussed in Chapter 9, mail submission and delivery
are two applications separate from (but similar to) mail transport. All three
of those functions have long been handled by a single protocol (simple
mail transfer protocol [SMTP])--an appropriate situation when virtually
all mail users had accounts on multiuser systems, but less appropriate in
modern networks dominated by single user systems.

A third alternative, one that allowed reuse of protocol components to
streamline application protocol development, would enable much more
flexibility for the developers as well as for users. Looking to the future of
internet applications, Marshall Rose, creator of simple network manage-
ment protocol (SNMP) and other protocols, began work in the late 1990s on
a new architecture for specifying new application protocols. Rather than
starting from scratch each time a new application protocol is to be cre-
ated, Rose thought that protocol elements could be designed as building
blocks--as long as the application domain is appropriately limited. 1

1 "An interesting tidbit is the fact that Marshall Rose was an early proponent of open system
interconnection (OSI). The OSI application layer architecture describes the application layer as
consisting of a set application service elements.., that are used as building blocks to construct
an application. Thus only the specific application elements need to be specified. The rest of
the application interactions can be constructed using the standardized ASEs. After his initial
enthusiasm for OSI, he proceeded to denounce it as a failure. BEEP appears to be a resurrection
of the OSI application layer architecture concept (with a different implementation) within
TCP/IP." (from Reviewer #1, Instructor.)

Chapter 13 �9 ThJrd-GeneratJon ApplJcatJon Protocols 283

The Blocks Architecture, along with the BEEP was quickly brought into
the IETF development process; the first RFCs describing the protocol were
published in 2001, as were specifications for applications using BEEP. This
chapter examines the new architecture, first to see why it is necessary and
then to see how it works (and how it differs from traditional application
protocol development) in the context of BEEP-based application protocols.

Another approach to managing multimedia applications is provided by
the Session Initiation Protocol (SIP), an application layer control protocol
that

"...can establish, modify and terminate multimedia sessions or calls.
These multimedia sessions include multimedia conferences, distance
learning, Internet telephony and similar applications. SIP can invite
both persons and "robots", such as a media storage service. SIP can
invite parties to both unicast and multicast sessions; the initiator does
not necessarily have to be a member of the session to which it is inviting.
Media and participants can be added to an existing session. "2

These new application layer protocols define interactions between hosts as
they carry application data, while at the same time they extract all of the
system or software-specific features of the applications. The implications
of this approach to applications are serious.

Prior to FTP, file transfers between hosts required direct connections of
some sort between systems as well as a knowledge not only of the differ-
ences between filesystems of the source and destination hosts but also
knowledge of the attributes of the circuit over which the file transfer
takes place. With TCP/IP networking, the details of the circuit between
hosts become irrelevant; with FTP, the details of the remote host become
irrelevant as well.

Before HTTP, users could only access a file stored on a remote system by
downloading it to the local system and then opening it with an appropriate
application. 3 HTTP freed users from having to deal with local and remote
filesystems or even with local applications: click on a web link, and the
resource opens.

2RFC 2543, "SIP: Session Initiation Protocol," p 7.
3Or, use a resource-sharing protocol, but that option was far more common on local

area networks (LANs) than on the internet, and not usually considered practical over
internetworks.

284 Part Two �9 Internet Applications

The third-generation application protocols will further simplify matters for
end users as well as applications developers. "Universal client" software
can be deployed on any type of connected system, and permit any kind of
internet interaction.

13.1 Markup Languages
HTML and XML were mentioned briefly in Chapter 12; although both
standards are being developed within the W3C, XML is becoming a vital
part of many fields of computing and networking. A brief introduction to
XML is therefore in order.

First, the concept of markup language should be reviewed. Most docu-
ments are marked up, meaning that parts of the document are bracketed
by tags (codes associated with certain attributes) that indicate something
about those parts. For example, most word processing documents contain
some sort of marking to indicate that the characters that follow the tag
should be printed in boldface, and another tag that indicates when to stop
using the boldface font.

Most word processing software uses tags to prescribe specific attributes:
boldface, underline, font size, spacing between lines, paragraph indenta-
tions, and so on. These tell us nothing about the text being tagged: a writer
might decide to set the title of one chapter of a book in a 24 point Helvetica
boldface font, while the next chapter might be a 28 point italic font. In nei-
ther case do the tags tell us anything about the text, beyond how to display
or print it.

The Standard Generalized Markup Language (SGML) defined a specifi-
cation for creating descriptive tags that describe the function of a part
of a document rather than how that part should be displayed. This
approach frees the writer from having to keep track of what charac-
teristics a chapter title should be givenmall the writer needs to know
is that a chapter title should be set off by start-chapter-heading and
end-chapter-heading tags. Descriptive markup tags can also be used for
document "grammar" verification. Certain types of document (such as
books) consist of different elements (table of contents, preface, chapters,
index, etc.). If the writer, by mistake, puts the preface at the end of the
document and the index at the front, structure verification will report
errors.

Chapter13 �9 Third-GeneratJonApplJcatJonProtocols 285

13.1.1

Most important, however, is the separation of content and presentation
format by markup languages. A book must be laid out in a certain way
when it is printed out on paper, but that format won't be appropriate
when the book content is presented in an online format. The same content
might be developed for use in several formats: a technical manual might
be printed out in its entirety, abstracted for a quick reference guide, made
available online through a help system, made available through a fax-back
service, or even made available over a telephone interface.

The different output formats are designed to accept standard, marked-up
documents and output them as appropriate.

EXTENSIBLE MARKUP LANGUAGE

SGML is a meta-markup language in that it defines rules for creating
markup tags and applying them to documents. HTML is a markup
language created using the SGML specifications; XML is another meta-
markup language (like SGML). 4

XML is important because it allows application developers (among others)
to create their own sets of markup tags, register them publicly, and deliver
self-describing messages. The application developers may also use com-
mon XML tags defined by others. XML data can be delivered through web
servers, but it can also be delivered through any other protocol capable of
exchanging messages. SOAP uses XML to format application data, as do
many other protocols.

A good example is provided by applications that allow browser users to
store personal data on their local host. One way to store this data is to put
it into a simple ASCII file using standard field delimiters such as tabs or
commas. Applications that are aware of the format need only read the file
and parse it according to the standard rules (the user's name, last name
first, followed by first name and initial, followed by street address, and so
on). However, many different applications are more likely to create their
own "standard" format for this file rather than using a single, shared, file.

With XML, a true standard for personal information can be created, with
each data field tagged (e.g., <first_name>Pete</first_name>) so that any

4So XML and SGML are both meta-markup languages, but at the same time, XML is based
on SGML--i t is defined as an SGML application. XML is a subset of SGML, at the same time
being easier to use and deploy.

286 Part Two �9 Internet Applications

application can access a single file and determine the user's name, address,
and phone number (if the user agrees to permit it).

13.1.2 SIMPLE OBJECT ACCESS PROTOCOL AND EXTENSIBLE MARKUP LANGUAGE

SOAP was literally created for XML. With XML, self-describing messages
are possible. Different applications can use the same tags to indicate the
same type of data. For example, a stock symbol is a stock symbol, no matter
what application needs to use it. A stock quote might normally include, at
the least, a stock symbol and a currency value for the stock; other elements
might include optional elements that contain the stock trading volume, the
date and time of the quote, the size of the most recent trade, and so on.

Full information about XML data element definitions is stored in repos-
itories, where they can be accessed by applications. For example, a
SOAP-based stock quote program might accept requests for stock quotes,
as long as they include a valid stock trading symbol (required) and any
optional parameters (such as a date to get historical data, or a flag to indicate
the level of detail desired on current quotes).

A client application might request a series of stock quotes from an internet
quote service by specifying the type of request and other parameters to be
included with the request. The underlying application might be anything
from a desktop stock ticker display for current stock prices, to part of a web
page, to a newspaper publishing program for typesetting stock quotes.
The application server doesn't need to know what the application is, as
long as both server and client can recognize and process the data.

A request for the current price of the XYZ Corporation might look
something like this:

<SOAP-ENV:Envelope

xmlns:SOAP-ENV=

''http://schemas.xmlsoap.org/soap/envelope/''

SOAP-ENV-encodingStyle=

''http://schemas.xmlsoap.org/soap/encoding/''>

<SOAP-ENV:Body>

<m-GetLastTradePrice xmlns-m=''Some-URI''>

Chapter 13 �9 ThirdGeneration ApplJcation Protocols 287

<symbol >XYZ< / symbol >

</m- GetLastTradePri ce>

< / SOAP- ENV : Body>

< / SOAP- ENV: Enve lope >

The meat of this message is in the three most deeply-indented lines: get
the last trading price for the stock symbol XYZ. The rest of the message
provides information about how to get enough information to compre-
hend the request and where to direct the request.

SOAP is a simple message protocol, so the response to this request would
undoubtedly be an XML message indicating a value (the last trading price
for XYZ) and some other other information about the requested data (per-
haps the stock symbol, or perhaps more detailed information about the
last trade) as well as about the XML message itself.

Although SOAP is usually carried over HTTP, there is no reason it could not
be encapsulated in any message-oriented protocol. A specification detail-
ing the use of SOAP over BEEP was approved for publication (but not
released) as a proposed standard RFC in February 2002. Microsoft's .NET
initiative, as well as other Microsoft projects, is based on XML, as are an
increasing portion of the web.

13.1.3 EXTENSIBLE MARKUP LANGUAGE AND OTHER PROTOCOLS

Publishing XML-tagged data takes web content one step beyond the cus-
tom displays possible with HTML. While properly marked HTML content
can be displayed on any HTML-compliant web browser (whether graphi-
cal or text-only), properly marked XML content can be used by applications
other than web browsers for display or for further processing. Online news
providers can use XML tags to identify their headlines and to create links
to those storiesmto make those headlines accessible to new applications.
For example, a news aggregation program can automatically check an
XML-based news site for headlines and search them for user-specified key-
words, downloading only those headlines and links likely to be of interest
to the user.

At the same time that increasing volumes of web content are published
as XML content (or derived from XML content), so too are applications

288 Part Two ~ Internet Applications

developers using XML as a universal encoding standard. Commands,
protocol responses, and virtually any kind of data can be expressed within
XML bodies--and decoded by XML-compliant systems. Although not
required, XML is strongly recommended for use with applications that
use the Blocks architecture.

13.2 Blocks Architecture and BEEP

As Rose explains in RFC 3117, "On the Design of Application Protocols,"
there is a lot of wasted effort in the creation of new application protocols.
There are only a limited number of problems that an application protocol
must solve, and each of those problems has only a limited number of valid
solutions. To further simplify the issues, Rose (in RFC 3117) limits the
domain of applications to those meeting three criteria:

1. The application must be connection-oriented, meaning that
there is a concept of a session, in which hosts may exchange
a series of requests and replies, and/or exchange sequences of
data (as with file transfers). At first, this criterion included only
those applications using TCP, but support for the Stream Con-
trol Transmission Protocol (SCTP) described in Chapter 18 was
in development as of mid-2002.

2. The application must use requests and responses to exchange
messages. Rose defines message-oriented applications as those
exchanging structured data between loosely coupled systems,
and contrasts those applications with tightly coupled applica-
tions such as network file system (NFS), in which the exchange
of data between client and server is not highly structured but
resembles more closely the activity occuring within a system
that accesses a local filesystem.

3. The application must permit asynchronous message exchange.
The first and second generation of internet applications allow
clients to send requests and servers to send responses, but they
often don't allow the server to send requests (as would be neces-
sary in a peer-to-peer application). This type of request would
be asynchronous by virtue of having requests and responses
going in both directions, at the same time. Another type of
asynchrony is found in applications that allow a client to sub-
mit multiple requests and have the server respond to those
requests independently of each other. While clients can submit

Chapter 13 �9 Third-Generation Application Protocols 289

multiple requests (through pipelining, or sending a sequence
of requests without waiting for responses), the servers almost
always respond to those requests serially. The ability to respond
to multiple requests in parallel is rare in modern applications,
and certainly is desirable in some cases.

These criteria exclude many important applications. Domain name system
(DNS), for example, is not connection oriented, depending on transmission
of a single request and a single response between hosts in most cases. NFS,
as noted, is excluded because it requires a tight-coupling between client
and server. However, Rose notes that many of the most popular internet
applications (the web, FTP, internet mail, telnet) do meet the criteria--and
that if this family of protocols has been important in the past, it's a safe bet
that these kinds of protocols will continue to be important in the future.

13.2.1 DEFINING PROTOCOL COMPONENTS

Whether or not one agrees with that assessment, the Blocks architecture
is intriguing because it isolates the pieces of an application protocol that
are unique to each application from the pieces of protocol that are more or
less constant across applications. As Rose writes in RFC 3117, as much as
90% of an application protocol can be attributed to solving the following
problems, with only about 10% attributable to the specific application.

�9 framing, which tells how the beginning and
ending of each message is delimited;

�9 encoding, which tells how a message is
represented when exchanged;

�9 reporting, which tells how errors are
described;

�9 asynchrony, which tells how independent
exchanges are handled;

�9 authentication, which tells how the peers at

each end of the connection are identified and
verified; and

�9 privacy, which tells how the exchanges are

protected against third-party interception or

modification.

To put it in context, consider how HTTP solves each of these prob-
lems. Framing is done by adding a field containing a byte count of the

290 Part Two �9 Internet Applications

HTTP message. Encoding is done by putting HTTP messages into MIME-
like structures. Error reporting is done with the familiar 3-digit response
codes. Asynchrony is achieved in HTTP from the client to server by
pipelining requests, and from the server to the client by chunking (see
Chapter 12). Users are authenticated with a user ID/passphrase login, and
privacy is provided through the Transport Layer Security (TLS) protocol
(see Chapter 15)

In contrast, SMTP's approach to framing, based on transmission of mes-
sages on a line-by-line basis (see section 9.2), is known as octet-stuffing.
SMTP encodes data using the RFC 2822/822 specification, reports errors
with the 3-digit response codes, allows pipelining for client to server asyn-
chrony, and implements authentication with the Simple Authentication
and Security Layer (SASL) mechanism described in RFC 2222. Privacy is
available through either SASL or TLS.

Rose cites the following relatively limited options available for the prob-
lems listed above:

Framing: Three options are discussed, including octet-stuffing,
which allows data to be sent line by line (as in SMTP) before
the size of the data is ascertained; octet-counting, which calls for
the application to specify message lengths before sending (as in
HTTP); and connection-blasting, in which the application simply
passes raw data through to the network and continues sending
until the connection is terminated (as in FTP).

Encoding: The method by which data is to be represented within
the application protocol. Although there are many options, Rose
cites multipurpose internet message extensions (MIME) and
RFC 2822/822 as the dominant mechanisms. There are no other
alternatives for encoding that are as universally acceptable, and
MIME tends to be the preferred encoding protocol because it
allows inclusion of virtually any type of data as well as virtually
any combination of data files.

Reporting: The mechanism for the application to report success or
failure, errors, or other system responses. Most internet proto-
cols rely on some form of three-digit response code, usually in
combination with a short "human-readable" component. 5

5Interestingly, this is another instance of an artificially constrained address space.
Although up to 1,000 unique values are available (000 through 999), typical internet
application response codes use only four or five, or more rarely, six values for the first

Chapter 13 �9 ThJrd-GeneratJon ApplJcation Protocols 291

Asynchrony: The method by which an application host can send
more than one command at a time, or that both communicat ing
hosts can send commands to each other over a single connec-
tion. Three options include pipelining, in which a host can send
a series of commands without waiting for responses to the first
command (as with SMTP); persistent connections, in which a sin-
gle connection is used for multiple transactions (as with HTTP),
and chunking, in which messages are broken up into two or more
pieces and sent separately (as with HTTP).

Authentication" The method by which an application user logs in;
generally, SASL is becoming a preferred method, while many
applications still rely on the basic transaction of login prompt
and userID/passphrase .

Privacy: The method by which application data is kept private
from anyone not participating in the application exchange (e.g.,
eavesdroppers). The TLS protocol provides one mechanism,
though it applies only to data while it is "in flight" between
hosts, and SASL, which is a simple f ramework for adding secu-
rity to applications (see RFC 2222, "Simple Authentication and
Security Layer [SASL]").

13.2.2 THE BLOCKS EXTENSIBLE EXCHANGE PROTOCOL CORE

BEEP itself, defined in RFC 3080, "The BEEP Core," specifies a frame-
work within which BEEP-based protocols can operate. A BEEP session
begins at the transport layer (we'll return to BEEP in Part Three when we
discuss TCP and SCTP), but once the session has been opened, the hosts
open a single channel (defined as a "binding to a well-defined aspect of
the application, such as transport security, user authentication, or data
exchange") using BEEP. Through this first channel, other channels will
be opened, depending on what the application protocol requires. During
the start of every session, the hosts exchange information across this first
channel to tune the session, or to open additional channels, for example
to set up transport security. Once the session is underway, the tuning

digit of the code: 1 (or 2) through 5 (or 6) in the first digit of the code. The middle digit often
provides an encoding for some aspect of the response, while the last digit is reserved for a
specific response value associated with a (possibly) unique human-readable reply message.
As a result, some applications are limited to only 10 distinct error codes for certain families of
errors. Response categories (middle-digit values) are not cleverly defined, and applications
may run out of valid codes. This occured with SMTP, with a remedy defined in RFC 1893,
"Enhanced Mail System Status Codes."

292 Part Two �9 Internet Applications

channels become dormant, and channels will be used for the real busi-
ness of the application, including one or more to transfer commands or
data.

BEEP enables asynchrony through channels: either host can open a cha-
nnel to transmit a request, for example, so that a host may send a request
to a client at the same time that it is responding to a request made by the
client. Likewise, a client may make multiple requests of the server to be
fulfilled in parallel rather than in sequence; the server would respond to
all those requests more or less simultaneously.

Taking the rest of the criteria cited in RFC 3117, we can see how BEEP
solves each one:

Framing: Like HTTP, BEEP adds a byte-count to its header, but
also indicates message completion by adding a trailer at the end
of each message. This gives implementations an added method
of checking messages to determine whether they've arrived
whole or have been corrupted en route.

Encoding: Again, like HTTP, BEEP uses a MIME encoding. Any
type of data that can be represented in MIME is permitted,
although text/xml (XML tagged data) is preferred.

Reporting: In addition to the standard three-digit response code
scheme, BEEP specifies whether a response is positive or neg-
ative so that very simple decisions about "what next" can be
made without interpreting the response.

Asynchrony: BEEP uses channels, which enable asynchronous
interaction. BEEP encapsulates all channels within a single TCP
circuit, which allows the application protocol to define what
kind of data is to flow over each channel, and how it should be
parsed, using profiles. A profile may specify that a channel is to
be used for authentication, or negotiating an encrypted connec-
tion, or the channel may be used to transfer commands from
client to server or data from server to client.

The use of channels can complicate matters at the same time.
Because only a single TCP circuit is shared by all channels,
many of the same issues related to flow control and conges-
tion (to be discussed in detail in Part III) become apparent
at the application layer. BEEP needs some mechanisms for
preventing any single channel from adversely affecting per-
formance of other channels. These issues will be revisited in
Chapter 18.

Chapter13 �9 ThJrd-Generation Application Protocols 293

Authentication" BEEP uses SASL, with only one user identity
allowed per session. In other words, once the user is authen-
ticated, channels may be opened and closed without further
authentication. This property makes BEEP appropriate only for
applications that require no more than one user identity to be
authenticated per session.

Privacy: BEEP uses both SASL and TLS to ensure privacy. Profiles
are defined to use either of those specifications within a channel
when setting up the session; TLS for transport layer encryption
and SASL for adding encryption at the application layer.

Not only does the channel mechanism allow asynchronous protocols,
but it provides a mechanism for extensability: adding new features
is as simple as adding a new channel and defining an appropriate
profile.

13.2.3 WHAT'S LEFT?

Applications developers using the BEEP framework have relatively little
left to do:

�9 Specify a format for application messages. The default encod-
ing type is XML, so the process should be one of defining the
data to be used by the application and writing the appropriate
XML definitions to support that data.

�9 Define a naming domain. While authentication and encryption
(privacy) are provided by BEEP, authorization (the process of
determining what degree of access a user entity has to sys-
tem resources) requires that the application be associated with
some population of entities with names. There is no single such
namespace, so BEEP leaves the task of choosing (or creating)
that namespace to the application developer.

�9 Define an authorization mechanism. This task is linked to the
namespace, and is also left to the developer.

�9 Register XML-related structures with the appropriate
repository.

�9 Register a well-known port with the internet assigned numbers
authority (IANA), to be used with the application.

That last step may be easier said than done; there is a limited number
of well-known ports available. However, in the event that this address

294 Part Two �9 Internet Applications

space is exhausted, there is additional space available below the transient
ports. The next section introduces some of the first applications of the BEEP
framework.

13.2.4 How Do~:s BLOCKS EXI'ENSIBLE EXCHANGE PROTOCOL WORK?

Technically, BEEP is a complete application protocol, in the sense that
BEEP hosts exchange data using the BEEP protocol. The process begins
once some underlying transport protocol session has already been initiated
(e.g., TCP or SCTP) between the two hosts. At that point, the two hosts send
each other "greeting" messages; these may be sent simultaneously--the
greetings do not follow a request/response form.

There are two forms to referring to BEEP hosts during interactions. First, as
listener and initiator; second, as client and server. The listener is the host that
listens to requests from the initiator; the client is the host that starts a BEEP
exchange and the server is the host that responds. Usually, the listener
will be the same as the server and the client the same as the initiator, but
that is not a requirement of the protocol. Because BEEP is designed to be
an asynchronous, peer-to-peer protocol a host may act as a client at one
moment and a listener at the next.

Thus, the greeting messages are sent by both hosts (presumably their paths
cross en route) at the same time; assuming that both hosts' greetings indi-
cate their readiness to proceed, the first BEEP channel (channel zero) is
opened. The server's (listener's) greeting includes a list of its supported
BEEP profiles.

The BEEP session is now in operation, but with only one channel (zero),
which must be used to manage any application channels. The next step
is to open one or more application channels. Either peer can send a start
to open a channel with the other. The start message consists of a chan-
nel number and a profile uniform resource identifier (URI). The initiating
host always uses odd channel numbers and the listener always uses even
numbers to avoid channel number collisions: it wouldn't do to have both
hosts attempting to open a channel with the same number but different
profiles.

Some profiles may allow hosts to include channel initialization informa-
tion with the start request, such as data needed to initialize an encrypted
session (as with TLS). In any case, these BEEP messages are encoded

Chapter 13 �9 Third-Generation ApplJcatJon Protocols 295

with XML and sent as MIME elements using the application/beep+xml
content-type. Channels, once initialized, are then used (when needed)
to exchange application data associated with the channel's profile.
When TLS is being used, for example, the requesting host initiates a
TLS channel, over which the two peers exchange all the same data
that would normally be exchanged by two hosts setting up a TLS
session--except that all the TLS data is encoded in XML-tagged MIME
elements.

To illustrate, consider an application that required an encrypted session
be setup between hosts for the exchange of medical information between
physicians and insurance companies. The protocol might be defined to
include the following steps:

1. Initiate a BEEP session over TCP.
2. Client requests a channel (channel 1) for setting up encryption

using TLS.
3. Client and server initialize an encrypted session with TLS over

channel 1.
4. Channel 1 is closed and channel zero re-initialized (standard

whenever transport security is reset).
5. Server requests a channel for an application-specific authoriza-

tion profile (channel 2).
6. Client and server exchange authorization information over

channel 2 (allowing the physician to login and the insurer to
determine what access the physician is entitled to), and close
the channel.

7. Client initiates channel I to carry file transfer commands.
8. Server initiates channel 2 to carry the file transfers.
9. And so on...

The application protocol is specified separately from the specification for
the protocol over BEEP. This allows application developers to specify
sophisticated techniques for things such as authentication, encryption,
encoding, and other basic protocol functions by choosing existing profiles
instead of having to reinvent those functions.

BEEP also makes it possible to develop simple, inexpensive BEEP boxes-
network appliances with support for BEEP. Any network device that
supports BEEP will be usable (in theory) for any BEEP application, making
the local OS far less important than the BEEP-based applications to be used
on those devices.

296 Part Two �9 Internet Applications

13.3 BEEP-Based Protocols

Before the BEEP specifications were approved for publication as RFCs on
the standards track within the IETF, implementers were using BEEP as
the basis for new protocol applications. These applications are defined as
BEEP profiles. Like HTTP, BEEP is a protocol that is used to carry other
application protocolsmbut BEEP was designed for the task. Not only are
new protocols being developed using BEEP, but existing protocols are also
being defined as new BEEP profiles.

Several BEEP profiles have already been developed, and some have even
been registered with the IANA, having been approved for publication
on the IETF standards track. The rest of this section covers BEEP pro-
file development underway in the IETF, starting with the most mature
(based on publication dates). As author of the BEEP framework, Rose
has been active in seeking and describing applications that make sense
for use in BEEP, and is also an author or co-author of several BEEP-
based protocols. Although several of these protocols have already been
approved for publication as IETF standards track specifications, others
are defined in Internet-Drafts that have already passed their expiration
dates.

The rest of this section discusses each of the BEEP profiles listed in
Table 13-1. Some of these, including TLS, SASL, and TUNNEL, are defined
to be used as part of the BEEP tuning process. In BEEP, application tun-
ing occurs before the exchange of any actual application data. Tuning is
the process of setting up the application channel(s), and a key aspect of
BEEP is the way it allows application developers to include existing pro-
tocol components to provide authentication, privacy, or other application
requirements, as part of the tuning process.

Other profiles, including IDXP and reliable delivery for syslog, define
applications that use other profiles (such as TLS and SASL) during their
tuning processes. At the same time, profiles are defined for the applications
to specify the messages to be exchanged between hosts over their BEEP
channels.

The Application Exchange (APEX) specification adds an additional layer of
abstraction to internet applications that use it, making possible an entirely
new type of application, as we'll see in section 13.4.

Chapter 13 �9 ThJrd-Generation ApplJcatJon Protocols 297

Profile Specification STD?

TLS RFC 3080, ''The Blocks Extensible Y

Exchange Protocol Core''

RFC 3080 Y

RFC 3195, ''Reliable Delivery N

for syslog''

RFC XXXX, ''The Application Y*

Exchange Core''

RFC XXXX, ''Using SOAP in BEEP'' Y*

''The Intrusion Detection N t

Exchange Protocol''

''Using XML-RPC in BEEP'' N t

''The WCIP Profile'' N $

''Profile for PDM protocol'' N $

''The TUNNEL Profile'' N ~

SASL

syslog

APEX

SOAP

IDXP

xmlrpc-beep

WCIP

PDM

TUNNEL

* Draft has been accepted for publication but not yet published.
t Draft-only; work in progress.
$ Draft-only; work in progress (I-D expired).

Table 13-1: BEEP profiles.

13.3.1 TRANSPORT LAYER SECURITY (TLS) PROTOCOL IN BEEP
RFC 3080, defining BEEP, also defines the use of the Transport Layer
Protocol (TLS) within a BEEP channel. The specification requires that nego-
tiations be done during the tuning of the BEEP session, and once complete
the session is reinitiated with a new exchange of greeting messages between
peers.

13.3.2 SIMPLE AUTHENTICATION AND SECURITY LAYER (SASL)In BEEP
Also defined in RFC 3080 as a basic element of BEEP, the SASL channel per-
mits use of the Simple Authentication and Security Layer protocol within
a BEEP channel for authentication or setting up encrypted sessions.

298 Part Two �9 Internet Applications

SASL is defined in RFC 2222, "Simple Authentication and Security Layer
(SASL)," as a protocol for defining mechanisms that provide authentication
support to connection-based application protocols. It provides a general-
ized interface through which a client can submit login information (or
a server can solicit login information from the client), as well as, subse-
quently, set up digital signature or encryption for the data passing over
the connection.

Whereas the TLS in BEEP profile defines a mechanism for using encryption
and digital signatures on data at the transport layer, SASL in BEEP defines a
mechanism for providing security services at the application layer. Security
services at the transport layer can be subverted by an attacker successfully
breaking into the system, because inbound messages are decrypted as they
pass through the transport layer of the stack. By adding security to the
application layer, successful attacks require breaking into the application
as well as breaking into the system.

13.3.3 THE TUNNEL PROFILE

Protocol tunneling is the practice of taking data being passed between two
entities and encapsulating it within some other protocol for transmission
across intermediate systems. One example of tunneling was described in
Chapter 12, in which new applications are packaged into HTTP messages.
In HTTP tunnels, the application tunneling over HTTP typically uses the
same hosts that are acting as web server and client, but other types of
tunnels allow hosts to transmit untunneled data to tunnel entry points,
and receive data from tunnel exit points.

Security tunnels are often used to provide secure links across the internet,
accepting traffic from within an intranet, encrypting it (to keep it private)
and sending it through to the tunnel endpoint, at the entry to another
intranet, where the data is decrypted (to permit its use locally). This profile
is an important part of BEEP because it makes available to applications an
important service.

A BEEP TUNNEL allows source and destination hosts to connect through
proxy systems. According to a work-in-progress document of the BEEP
TUNNEL profile, one use of such a profile would be to provides BEEP
applications a path across security firewalls. In that case, the tun-
nel proxy would sit on the firewall system and accept requests from
hosts inside the intranet for tunnels out as well as accept requests from

Chapter 13 �9 Third-Generation Application Protocols 299

I A I

Intranet
A

L Start
tunnel
to B?

,,,..._

O

L

Internet

Start tunnel to B?

@

oK@

, ,Tunne, 0

?
y @

OK
- , q @

J

Intranet
B

I i I

Figure 13-1: BEEP TUNNEL architecture.

hosts outside the intranet for tunnels in. Figure 13-1 shows a typical
setup.

Shown here are two hosts, A and B, both supporting the same BEEP appli-
cation, and both sitting behind firewalls on their respective intranets. In
this case, A is requesting that a BEEP TUNNEL be set up between A and
B. Because both hosts are behind firewalls they can't simply connectmthe
firewalls would not allow i t u s o a tunnel is necessary.

The gist of the conversations among systems in this instance is this:

1. Host A connects to the BEEP TUNNEL proxy running on the
local firewall, and then requests that the proxy set up a tunnel
between A and B.

2. Proxy A does not answer A, but immediately connects to Proxy
B and submits the request to open the tunnel.

300 Part Two �9 Internet Applications

3. Proxy B does not answer Proxy A, but immediately connects to
B and submits the request for the tunnel.

4. Host B responds to Proxy B, indicating that the tunnel should
be set up (if appropriate and authorized).

5. Proxy B now responds not to Host B, but to Proxy A, also
indicating that the tunnel should be set up.

6. Proxy A now responds to Host A, indicating the tunnel can be
set up.

Now, Hosts A and B can communicate directly; the tunnel proxies serve
only to relay data between the two hosts.

The BEEP TUNNEL profile is intended for use during the tuning process,
to set up a tunneled connection on behalf of some other application.

13.3.4 THE PASSWORD DERIVED MODULI PROFILE

Another work-in-progress, the Password Derived Moduli (PDM) profile
defines the mechanism by which application hosts may authenticate them-
selves or for securely exchanging encryption keying material. PDM itself
is a new mechanism, described by Radia Perlman and Charlie Kaufman
in a paper presented at the 10th USENIX Security Symposium, held in
Washington DC during August 2001; the PDM profile provides a format
by which PDM can be applied to BEEP applications during the tuning pro-
cess in much the same way that SASL or TLS profiles allow the exchange
of messages on behalf of those protocols.

13.3.5 RELIABLE DELIVERY FOR BSD SYSLOG

The BSD syslog protocol has long been used within networks for the
reporting and recording of system events that occur on different network-
attached devices. Syslog messages use a standard format to describe system
events (disk failures, failed logins, etc.). Devices are anything on the net-
work to which something might happen of interest to a sysadmin. Collectors
are the systems to which the devices send their events, and relays are sys-
tems that may act on behalf of the collectors to accept events from devices
and on behalf of the devices to deliver those messages.

As a fairly simple, message-oriented application, syslog has long been
implemented with UDP as a transport layer protocol. The sheer volume of
events and the overhead associated with TCP sessions that would have to

Chapter 13 �9 Third-Generation Application Protocols 301

be set up and torn down for each message exchange ruled out using TCP
to achieve reliability or even secure syslog exchanges.

Whether or not reliable or secure syslog is desirable, RFC 3195, "Reliable
Delivery for syslog," specifies two profiles for using it over BEEP to deliver
both security and reliability. RFC 3195 authors Darren New and Marshall
Rose clearly acknowledge the possibility that no one really wants secure or
reliable syslog; as they write in the abstract, "It is beyond the scope of this
memo to argue for, or against, the use of reliable delivery for the syslog
protocol."

Two profiles are defined, RAW and COOKED. The RAW profile is eas-
ier to implement, mostly being a specification for encapsulating in BEEP
messages the same syslog data that would otherwise be sent in UDP data-
grams. Using a separate BEEP channel to set up SASL authentication and
TLS encryption makes even the RAW profile secure, but the COOKED
profile makes possible extensions to the syslog protocol itself. In any case,
since it is being encapsulated in BEEP messages-which are transmitted
over TCP (or SCTP)--syslog over BEEP provides reliability (see Chapter
17 for more about TCP and reliability).

13.3.6 THE EXTENSIBLE MARKUP LANGUAGE-RPC IN BLOCKS EXI'ENSIBLE
EXCHANGE PROTOCOL PROFILE

Interoperability has always been a key goal for IP networking. One way to
attain interoperability is to develop versions of the same applications for
all platforms, resulting in versions of telnet for Windows, *nix, Mac OSX,
and so on. Another approach is to design an application programming
interface (API) that permits programs running on one host to submit a
remote procedure call (RPC) to some other host.

The XML-RPC specification defines an XML encoding for remote pro-
cedure calls (RPCs), making such interoperability possible. First imple-
mented in 1998, the original intent for XML-RPC was to use XML to
encode the RPCs, and to transport the resulting elements over HTTP. The
XML-RPC BEEP profile extends the use of XML-RPC to BEEP.

13.3.7 SIMPLE OBJECT ACCESS PROTOCOL IN BLOCKS EXTENSIBLE EXCHANGE PROTOCOL

Most often carried over HTTP, SOAP-based applications require noth-
ing more than some network transport mechanism to move messages

302 Part Two �9 Internet Applications

between the host requesting a service to the host offering the service.
BEEP is likely a better transport mechanism than HTTP, if only because
it allows different SOAP applications to specify different BEEP session
requirements. A lightweight SOAP service requiring rapid responses
rather than reliability or privacy could specify a minimalist BEEP ses-
sion (no encryption, no authentication), while transaction-oriented SOAP
services (credit card approvals, for example) could specify encryp-
tion, authentication, and other, application-specific, profiles for BEEP
sessions.

SOAP in BEEP makes it possible for existing SOAP in HTTP application
to be ported fairly easily to BEEP, at the same time providing a more
appropriate protocol for carrying SOAP applications.

13.3.8 THE INTRUSION DETECTION EXCHANGE PROTOCOL PROFILE

As large organizations began connecting to the internet in the 1990s, the
firewall (a system that filters unwanted internet traffic based on certain
characteristics) became an integral part of any corporate security strategy.
Entering the 2000s, the intrusion detection system (IDS) joined the firewall
as a fundamental corporate internet security tool.

An IDS analyzer monitors network and system activity, looking for sus-
picious patterns of behavior that can be correlated to attacks; when such
behavior is detected, a message is sent from the analyzer to an IDS manager,
which provides an interface to the system for human users.

Intrusion detection messages, therefore, represent an important part of an
organization's security strategy. An attacker who can successfully forge
IDS messages indicating "all is well" will be able to attack with impunity;
an attacker who can successfully forge messages that falsely report an
attack will be able to probe an organization's security infrastructure to see
how the organization responds to different attacks. The attacker may even
use forgeries to stage a denial of service (DOS) attack, in which the attacker's
goal is to prevent authorized use of a system by bringing it down (rather
than penetrating it).

Clearly, there is a need for a secured protocol for exchanging intrusion
detection-related messages. The Intrusion Detection eXchange Protocol
(IDXP) is a work-in-progress defining such a protocol that uses BEEP to
tune secure connections between managers and analyzers. IDXP enables

Chapter 13 �9 Third-Generation Application Protocols 303

the exchange of Intrusion Detection Message Exchange Format (IDMEF)
messages, another work-in-progress specification.

In addition to the IDXP profile, the protocol also specifies the use of TLS,
SASL, and TUNNEL profiles during the initial tuning process, to provide
security as well as permeability to firewalls.

As noted earlier in this chapter, the TUNNEL profile enables hosts to
communicate across firewalls. As used with IDXP, TUNNEL makes it
possible for managers and analyzers to exchange information through
intermediary application proxies. Figure 13-2 illustrates how this works.

IDXP

j IDSI/ t[t

;~IDS J / /

...;:i:

r-"

l IDXPI
? ' , ~ . ~ , .., �9 ~ ' :

IDXP pr.oxyo.~

. . . . ::ili

....)

d;

Figure 13-2: BEEP TUNNEL as used with IDXP.

304 Part Two �9 Internet ApplicatJons

Real-world networks can be big and messy. Distributing any type of net-
work monitor (which is what the analyzers are) across a large network can
have a great impact on network performance, particularly if there are any
bottlenecks in the internal network. In Figure 13-2, a portion of a typi-
cal network is portrayed; tunneling the IDXP application through proxies
reduces the need for each IDS to maintain a separate session directly with
the MGR system. Individual monitors set up tunnels through the proxies,
which are able to concentrate all the separate, tunneled, sessions into a sin-
gle BEEP session. Overhead related to setting up circuits between every
analyzer and the manager system across a large network can be costly,
but bundling many sessions into a single BEEP session drastically reduces
that cost.

13.4 Application Exchange (APEX)
The APEX protocol is on the IETF standards track, but had not yet been
published with an RFC number as of mid-2002. APEX is an "extensible,
asynchronous message relaying service for application layer programs"
that provides a best-effort datagram service at the application layer. As a
result, the application sits all the way at the top of the APEX stack sending
out application messages; the messages are wrapped up in BEEP messages,
which are in turn wrapped up in TCP frames and sent out over the
network.

Why would all that extra encapsulation be useful? APEX makes it possible
to create "one-to-many" applications. These are applications in which one
entity communicates simultaneously with one or more other entities.

Most internet applications are one-to-one, meaning that there is one client
and one server (or to be more accurate, one requesting host and one reply-
ing host). File transfers are always between two hosts, one sending the file
and the other receiving it; telnet sessions always have one host sending
commands and the other sending responses. Although we usually perceive
these applications as inherently one-to-one, in large part that format has
been forced on users by the choice of transport protocols available: TCP
offers reliability and guaranteed delivery, while UDP offers a best-effort
datagram delivery service.

While the applications may not be inherently one-to-one, TCP requires no
more and no less than two hosts.

Chapter13 �9 Third GenerationApplJcationProtocols 305

The APEX stack:

q

I ApEX process I an APEX process is either:
I

I
q ~ -an application attached as an APEX endpoint; or,

i I
I APEX i
i I - an APEX relay
+ +

I I APEX services are realized as applications
I BEEP I having a special relationship with the APEX
i I relays in their administrative domain

+

i T o p i
F +

I . . - i
F +

Figure 13-3: The APEX p r o t o c o l s tack.

Why not permit a server to transmit a file once, to many different clients?
Why not allow a single telnet session on a remote host be shared by an
entire class of individual telnet clients? Mostly because TCP could not
support the multiple clients, and UDP could not support the connections
required to transport data reliably.

Until APEX, such applications could run only over UDP because TCP
allows communication between no more and no fewer than two processes.
With TCP, the two communicating processes negotiate a connection; UDP
has no connection process, providing only a datagram message service: the
messages go out, and it is hoped that the recipient(s) receive them. Because
multicast requires that transmissions be one-to-many (or even many-to-
many), UDP must be used (see Chapter 24 for more details on multicast)
and reliability and guaranteed delivery, if needed, must be built into the
application itself rather than handled at the transport layer.

APEX provides basically the same type of service that UDP provides (see
Chapter 16). Figure 13-3 shows the APEX "stack" as it appears in the
APEX core specification. 6 The APEX core itself provides an asynchronous,
message-oriented, best-effort delivery service--on top of TCP.

6published as draft-ietf-apex-core-06, and approved as of February 2002 to be published
as an RFC, pending edits.

306 Part Two �9 Internet ApplJcatJons

In effect, APEX makes possible best-effort application layer networks that
operate on top of networked hosts linked through reliable TCP connec-
tions. APEX may not be best utilized to create a protocol for multi-client
telnet, but it could certainly be used to enable efficient delivery of the same
data to many different recipients. Anyone sending data over such an appli-
cation network could be confident that anyone who receives the data will
receive all of itmyet that sender does not necessarily need to specify who
those recipients might be ahead of time.

APEX allows the creation of publish~subscribe applications, for example,
when used with the security and TUNNEL profiles. Publish/subscribe is a
form of middleware application in which systems can subscribe to informa-
tion that other systems publish, without having to be explicitly connected.
Before APEX, publish/subscribe middleware was available only in the
form of costly cross-platform development tools and programming inter-
faces. Those products were well worth the costs for the financial institutions
who bought them, because publish/subscribe tools enable financial trans-
actions; APEX enables secure and reliable multicast publish/subscribe,
enabling publication of financial (or any other) information among three
or more hosts.

13.5 Chapter Summary
Early network applications, such as file transfer and remote terminal emu-
lation, provided the means to eliminate the network as an impediment to
using remote systems, but users still had to know their way around a *nix
(or other multi-user OS) command line. The second generation of applica-
tions, represented by the web and IMAP, required less of their users: no
longer was direct OS experience required, but the users still had to learn
new software applications (browsers or mail readers) that could access the
remote data.

The coming generation of applications take the progression a step further,
by further and seamlessly integrating the network application into existing
non-networked system functions. Part of this trend is the move toward the
use of standards for data and meta-data representation, provided by XML.

Another part of the trend is the use of protocols that transport requests
for information between whatever entities want or have information.
Although a web server may publish some information, when data

Chapter13 �9 Third-GeneratJonApplJcationProtocols 307

representation is controlled through XML any type of client can retrieve
the data and format it (or use it) in the most appropriate manner.

SOAP offers one approach to seamless interoperability between data con-
sumer and data provider, by packaging requests for data or services within
a basic message unit: the HTTP message. BEEP and APEX offer a different
approach, in which each network application is developed wholly from a
set of basic application protocol components.

The trend in network application protocols over the past decades has been
to put more and more of the network into a "black box," a system that
accepts requests and magically responds to those requests. With FTP and
Telnet, users still must be aware of their own local host and their remote
host: how they work, what they do, what files to access. With IMAP and the
web, users can access the same content from different hardware platforms
and independent of operating system issues. The next chapter examines
these trends, along with what the future holds for network applications.

This Page Intentionally Left Blank

Thinking about Internet
Application Protocols

So far we've looked at several different protocols in this book. Starting with
a simple one, domain name system (DNS), used mostly under cover by
systems connected to the internet, we moved on to simple end-user appli-
cations such as Telnet, file transfer protocol (FTP), and simple mail transfer
protocol (SMTP); then, the web and hypertext transfer protocol (HTTP);
and finally the third generation of applications such as those enabled by
simple object access protocol (SOAP) and blocks extensible exchange pro-
tocol (BEEP). This chapter examines the evolution of internet application
protocols over the years, and into the future.

The first applicationsmtelnet, FTP, and the first incarnation of internet mail
using SMTP and post office protocol (POP)mvary in complexity and func-
tion, but are alike in that they extend what would otherwise be basic system
functions across systems and networks. In 1977, most computing was done
through terminal sessions; the obvious network application would be to
enable users to conduct terminal sessions with all the hosts connected to

309

310 Part Two �9 Internet Applications

the network. Likewise, once logged in to a host, the user would normally
be able to move, copy, or remove files from some portion of the system's
filesystem (depending on the user's authorization). The need for a file
transfer network application then becomes obvious: if you can log onto a
remote host, you should also be able to manipulate files on that host. Mail,
as well, was a common mainframe application, allowing users of the same
system to communicate with each other (and, where gateways existed,
to communicate with others linked through similar gateways). Internet
mail makes it possible for users to communicate with each other from any
networked host.

The common thread here is that these first-generation internet applica-
tions made accessing data and applications on any host on the internet as
easy (or at least, no more difficult) as using the same data and applica-
tions when logged into each of those hosts locally. If you could manage
a *nix, VAX, or MVS terminal session on a dumb terminal with a direct
connection to the mainframe, Telnet made it possible to reproduce that
terminal experience across a network. If you could use the local mail on
a mainframe or *nix workstation, you could use internet mail on that
same system. And if you could copy a file from one local filesystem to
another, you could certainly copy a file from a remote filesystem to a
local one.

The next generation, with HTTP and hypertext markup language (HTML),
made it possible for those lacking command-line interface skills (the abil-
ity to issue commands at a bare operating system (OS) prompt, and do
what needs to be done) to become productive on the internet. And the
latest wave of new applications, based on BEEP, SOAP, and XML, allow
developers to take yet another step away from the inner workings of the
network protocols and concentrate on building applications that work
better.

14.1 File Transfer Protocol, Telnet, and Mail
In the early days of the internet, telnet was a sort of universal connector
allowing end users to interact with any computer, anywhere on the inter-
net. However, the nature of telnet ensured that only skillful users could
benefit from it: telnet acts as little more than a pipeline for sending com-
mands and receiving the results of those commands to and from remote

Chapter 14 �9 Thinking about Internet Application Protocols 311

hosts. If you don' t know how to use a computer from its command line
interface, telnet offers relatively little benefit.

FTP, like telnet, helps knowledgeable usersmthe ones comfortable work-
ing with filesystems and filesmmost. Whether used at a command line
interface, or with a graphical interface, FTP extends the host operating
system to be able to treat remote internet resources (servers, directories,
and files) as if they are local resources.

Although telnet and FTP both can be used non-interactively, such as when
a process is set up to do unattended batch file transfers, or to automati-
cally log on to a remote server to perform some function, they are usually
considered interactive end-user applications. The user sits in front of a key-
board and monitor and enters commands, the client and server exchange
data, and the session has a beginning (when the user logs on a n d / o r
authenticates herself to the server), a middle (during which the user issues
commands or interacts with the server), and an end (when the user logs
off or otherwise terminates the session). And both telnet and FTP serve
to extend the user's client system OS: the user can run processes on the
remote system with telnet, as if issuing commands to a local system, just
as FTP allows the user to copy, move, and delete files and other system
resources on the server.

Internet mail is different from telnet and FTP in several ways. Mail
allows interaction between individuals, rather than systems (although
some systems can notify people of specific events by mail); mail allows
asynchronous interaction, meaning neither the sender or the recipient of a
mail message needs to be online at the same time to communicate. Mail is a
store-and-forward application, meaning that intermediate hosts can store
messages, to be passed along to their destinations at some later time or date;
if a telnet or FTP server is down, there can be no telnet or FTP session.

What these three applications share is this direct link to the client host
platform. Internet mail protocols define how mail is packaged, sent, and
delivered from one host to another. The tasks of creating messages and
receiving them are left to the end-user application developer; ultimately,
the internet mail protocols prescribe mechanisms for moving raw data
from one system to another--just like telnet and FTP. All three of these
applications are fairly simple, or at least straightforward in concept, and
all three leave most of the complexity of dealing with the data being
transferred to the people using them.

312 Part Two �9 Internet ApplJcations

14.2 Gopher, the Web, Internet Access Message Protocol,
and Instant Messaging

By the late 1980s, internet use was growing beyond the borders of the
research/academic communities as students and faculty outside the engi-
neering and computer science departments began using it. Network staffs
were overwhelmed by the task of teaching all those new users about oper-
ating system functions and *nix shell accounts; a new protocol that could
be used easily and intuitively, without significant computer skills, was
needed. The Gopher protocol (see RFC 1436, "The Internet Gopher Pro-
tocol (a distributed document search and retrieval protocol)") defined an
application that was more user-friendly than telnet or FTP, but that still
fell short of HTTP's adaptability and extensibility.

Briefly, Gopher servers provided access either to one or more menus or
to documents. The menus provided a hierarchical and reasonably acces-
sible tool that end users used to search for and retrieve those documents
(which might actually be programs, or multimedia files, or even telnet
sessions with mainframe systems). To a great extent, Gopher interfaced
to public FTP file archives and offered a front-end for retrieving files from
those archives. Although helpful, Gopher merely stitched together existing
protocols.

Although Gopher was better than nothing, users found it lacking. The
menu-driven structure ensured that novices could navigate Gopher-space,
but it also hobbled more expert users who knew exactly what they wanted
but were still bound to the menus. Offering no basic format for display
of data beyond plain text, users still had to download (often quite large)
data files before they could tell whether or not the file contained what they
wanted.

However, Gopher was doomed to fail for the same reasons users prefer
graphical client/server applications running on PCs to menu-driven appli-
cations running over a terminal session to a mainframe: slow and clunky, it
lacked a truly intuitive interface. Graphical interfaces are preferred because
they allow users to quickly make decisions based on a glance, while text-
based interfaces mean the user must read throughmand comprehend---a//
the options before a choice can be made.

The web made Gopher obsolete almost immediately. Unlike Gopher,
HTTP uses a standard format, based on multipurpose internet message

Chapter 14 �9 ThJnkJng about Internet ApplJcatJon Protocols 313

extensions (MIME), for transmission of any type of data. HTTP's use of
HTML meant that publishers could easily create graphical content that
was truly platform-independent. 1 Before the web, developers wishing to
offer internet access to resources with a graphical interface had to program
a separate client/server application for every OS platform: DOS, Windows,
Macintosh, *nix, and any other OS deemed worthy. After the web, a few
simple HTML tags made it possible for anyone with an HTTP client to click
a button and access the same resource.

Web protocols allow developers to make not only the internet but also the
operating system transparent to the end user; Gopher merely put a menu-
driven interface on top of the existing applications that offered an interface
to the OS. Even though the original applications (FTP, telnet, mail) made
the internet transparent to the end user, they still required considerable
skill in using the local host operating system. The web makes the local OS
irrelevant, at least to the end-user.

The other key element in the web's success is its immediacy. The web
allows transfer of any type of data, and if the client host can output the
data, it can output it automatically. With Gopher, you could download
audio files from an archive, but you still needed to start up an audio file
player, outside the Gopher session, to listen. With the web, audio plays
automatically and instantaneously (more or less, anyway)mbypassing the
complexity of executing a command to start an audio player, load a file
(from some filesystem), and start playing it.

Although we lumped the internet mail application in with other first-
generation internet applications such as FTP and telnet, but in truth, IMAP
should be differentiated from SMTP- and POP-based internet mail. SMTP
and POP make the internet itself transparent, but still require the user to
interact with his local OS to make sense of the mail. IMAP makes the local
OS irrelevant by allowing access to mail and mail directories that are stored
on a central repository, within a server. An IMAP mail user might access
her mail from a laptop running Eudora over Windows, from a Palm Pilot,
from a web kiosk in an airport, or from a Linux system using pine.

Interactive text-based communication between people has also become
a key second-generation application, augmenting the function fulfilled by

1At least in theory. In practice, content producers quickly learned ways of mak-
ing their content unintelligable to text-only users and to users of particular browsers
or particular OSs. The eXtensible Markup Language (XML) promises to enable true
platform-independence, eventually.

314 Part Two �9 Internet ApplicatJons

internet mail. Multi-user systems often provided a talk function, permitting
terminal-based users to send short messages to another user's terminal.
Perhaps not too useful if all users work in the same room, but these pro-
grams allowed individuals to communicate across hallways, down stairs,
or even across buildings. 2

Internet mail is still one of the most important internet applications, but by
the late 1990s proprietary instant messaging applications offered by America
Online and Microsoft were quickly gaining ground. In many ways identical
to the early talk programs, these applications allow users to interact with
other users in real-time over the internet, rather than asynchronously as
with mail. With one user's (let's call her Alice) unique identifier (within
a particular application domain), another user (in the same domain; we'll
call him Bob) can check to see if Alice is online and accepting messages. If
so, the two can exchange messages directly; if not, Bob might send Alice a
mail message asking her to contact him.

Published early in 2000, RFC 2778, "A Model for Presence and Instant Mes-
saging," and RFC 2779, "Instant Messaging/Presence Protocol Require-
ments," laid the groundwork for the IETF to begin work on developing
open standards for instant messaging. Although owners of dominant pro-
prietary systems have been resisting the opening up of internet presence
protocols, work continues with more or less wholehearted cooperation
from all players.

14.3 Beyond Interactivity
If the second wave of applications offered users more opportunity to inter-
act with each other as well as with internet resources, users were still fairly
passive participants in the process. Users are able to access a database only
if some programmer implements a web interface to it. Even dynamic web
data, which changes as the underlying systems incorporate new data, lim-
its the user to whatever the content designers and programmers choose
to offerwand to using some kind of device or system that will access
the web.

2Internet relay chat (IRC) provides a similar case of "nothing new under the sun." IRC
makes possible chat rooms online, with access wide open. Discussions among many individ-
uals, often anonymous individuals, are similar to those offered within the bulletin board
systems (BBSs) of the 1970s and 1980s.

Chapter 14 �9 ThJnkJng about Internet ApplJcation Protocols 315

The development of internet applications tracks the development of com-
puter applications. At first, programmers controlled systems directly,
through machine language, often entering programs directly to the hard-
ware by flicking switches. Among the first computer applications were
programs that allowed programmers to enter encoded instructions with
names rather than binary representations and other user-friendly features
such as named variables. As computers proliferated and more and more
people had to program them, more features were added: programming
languages performed more and more of the interaction between user and
system.

These developments parallel the introduction of early proprietary net-
work end-user applications, such as local area network (LAN) resource
sharing. Users could safely ignore what was going on at the hardware
level, and work productively. Once the hardware and software develop-
ment environments could be separated, programmers could concentrate
on software.

Eventually, with easier-to-use languages available on different hardware
platforms, programmers could use their programming skills on many
different platforms rather than just one: a development akin to the intro-
duction of open standards for networking. Improved interoperability
meant that companies could often continue to use the same programs even
when the hardware was upgraded, programmers could be more produc-
tive over time, and programs could be adapted for use on many different
platforms more easily.

Internet applications such as telnet and FTP provided a similar improve-
ment in interoperability, allowing those with certain skills to apply those
skills on a wide range of systems and across many systems and net-
works all at once. For both computing and networking, the next step
would be to simplify applications to the extent that end users without
programming or system administration skills could easily work pro-
ductively. In both cases, that step required use of the graphical user
interface (GUI).

Text-based systems allow only two modes of operation: menu-driven and
command-driven. End-user applications on mainframes almost always
rely on menus, listing all the options and allowing the user to pick one
by pressing a particular key. Users face an endless round of either re-
reading menus every time they use the program to choose the correct
options, or else learning sequences of menu options and waiting as every

316 Part Two �9 Internet Applications

menu and submenu is redisplayed. Command-driven systems usually
depend on a command-line interface (CLI) with a prompt to indicate that
the system is ready for commands. Expert users prefer these to menu-
driven systems because they are much faster--if you know what you are
doing.

GUIs provide a third, graphical, alternative. Users can see what happens
to their documents as soon as they make a change, rather than waiting for
a printed version to be output; users can choose options based on icons
that look (more or less) like the functions they perform, rather than search-
ing menus for an appropriate option. Most importantly, users need not
be concerned about mundane tasks like command grammar and syntax
when the system can more easily handle them. Operating systems such
as the Macintosh OS, Windows, and the X Window system, allowed crea-
tion of applications through which end users could more easily interact
with their data--just as the internet allowed creation of network applica-
tions through which end users can more easily interact with networked
systems.

There is still a tendency to rely on menus and commands, both online and
off: early GUI desktop applications often did nothing more than translate
ASCII menus into more visually pleasing menus; just as many (if not most)
web sites still rely on menu-like structures to some degree. However, in
both cases the user is screened more completely than ever before from the
dirty work of the hardware and network.

The next step, as evidenced by development of protocols such as XML,
SOAP, and BEEP, is to continue making the internet (and any other
network) invisible to the end user of whatever product uses that transport.
Electricity and telephone connectivity provide two models for the future
internet application. Anyone can use an electric appliance or telephone
without knowing anything about the underlying networks, how the voice
signals are transmitted, how the electrons are delivered to the electric out-
let, or anything else beyond how to work the buttons on the telephone or
washing machine or video cassette recorder. The less is required of the
end user, the closer we'll move to applications that use an internet dialtone.
There will be an assumption that any connectible device will be connected;
the user won't have to use a particular OS, browser, or type of connec-
tion. Using this dialtone, BEEP can be used to develop applications for
remote control of heating systems by pager, for example, or SOAP for
online trading through a pay telephone or even a television remote control
unit.

Chapter 14 �9 ThinkJng about Internet ApplicatJon Protocols 317

14.4 Chapter Summary
Internet and related protocols are always evolving; the successful ones are
developing useful features and growing in popularity, the unsuccessful
ones will eventually wither and die. The earlier applications operated
much closer to the bare metal of systems (metaphorically speaking, at
least) by providing a means only of making the network connection trans-
parent to the skilled user. As the protocols continue to develop, we will
increasingly see a disconnect between the applications themselves and the
protocols that operate at the lower layers.

This disconnect is already apparent in the way in which important internet
applications, from web site design to digital commerce applications, can
be created and maintained with little knowledge of the deeper proto-
cols concerning transport and network functions. The telecommunications
industry deploys vast networks, but the protocols that define those net-
works are of little or no concern to most of the people who work with
telephone equipment.

Part III brings us, finally, to these lower layers as it introduces the transport
layer.

This Page Intentionally Left Blank

Transport Protocols

This Page Intentionally Left Blank

The Transport Layer

The transport layer lies between the applications layer, where real data is
entered or viewed by a user, and the network layer, where IP routes the
traffic from its source to its destination. It is at the transport layer that infor-
mation from the application layer is packaged and routed from one process
to another. The application layer enables interaction between a flesh-
and-blood user and a mainframe computer. The transport layer enables
interaction between the user's terminal emulation client program and the
mainframe's terminal emulation server program, as well as interaction
between a Web browser and Web server.

This chapter elaborates on the need for a transport layer, as well as the
mechanisms common to transport layer protocols and how they are used.
Topics covered include:

�9 Processes and ports
�9 Port addressing
�9 Reliable delivery
�9 Ordered delivery
�9 Acknowledged delivery

321

322 Part Three �9 Transport Protocols

�9 Message size
�9 Synchronization (virtual circuit or message service)
�9 Flow control and congestion
�9 Multiple processes
�9 Transport layer protocols (UDP, TCP, SCTP)
�9 Other transport layer protocols (SSH, TLS)

The transport layer provides an interface not only between processes, but
also an interface between the application layer and the internet layer. It
is at the transport layer that recognizable data from the application layer
is packaged for transmission over the internet. Until quite recently, all
internet traffic used either user datagram protocol (UDP) or transmission
control protocol (TCP). UDP was easy but unreliable, TCP more com-
plicated but more reliable and more appropriate for most data transfer
applications. With publication of RFC 2960 documenting stream control
transmission protocol (SCTP), a third option was made available in 2000.
This chapter introduces the transport layer functions that these three
transport layer protocols provide (or don't provide) and concludes with a
special section on transport layer security protocols.

15.1 Problem Statement

Without a transport layer protocol, application protocols would interface
directly with the internet layer protocol being used. The implications of
such a setup are considerable. For instance, the task of determining what
should be done with the data in any given packet, once it arrives at its
destination, would have to be added either to the application layer or the
internet layer protocol being used. As has been mentioned, the Internet
Protocol (IP) delivers packets to a network interface; essentially, it drops
the packet off at the destination host's network connection.

Once the host receives a packet, it must do something with it. IP has no
facilities for doing anything but pass the packet's payload up the stack1;
internet application protocols have no facilities for accepting data from

1As will be discussed in Chapter 20, IP packets include a header for "next layer protocol."
This value currently indicates what transport layer protocol is being used, but could (at least
in theory) be used to indicate what application protocol is being used.

Chapter 15 �9 The Transport Layer 323

the internet layer. Lacking a transport layer protocol, the application pro-
tocols would have to include mechanisms for the application to accept
data from the internet layer. Likewise, the application protocols would
have to include mechanisms for packaging data to be sent to the internet
layer protocol. Even that might not be enough to allow more than one
application to accept inbound network data simultaneously.

At the internet layer, packets are delivered to destination hosts. If the
destination host is a single-user and single-processing system, in which
only one process can run at a time, then a transport layer protocol might
not be necessary: whatever process is running at any given time is the
only one running, so there is no question of what to do with inbound
data. However, most modern systems support both multiple users and
multiple processes concurrently, so there must be some mechanism by
which inbound data can be linked with a process on a host.

Services that a transport layer protocol can provide touch on a number
of issues:

Data Delivery" IP is a best-effort delivery protocol, meaning there
are no guarantees that packets will be delivered if they encoun-
ter problems along the way to their destinations. Packets might
be delivered out of order, or there might be a delay between
delivery of packets. An application that is very sensitive to deliv-
ery issues may fail if packets arrive out of order, and may time
out if data doesn't arrive quickly enough.

It is inappropriate to address delivery issues (such as order
of delivery) at the internet layer because doing so places too
much burden on routers, which must quickly process packets
and route them correctly; addressing the issue at the applica-
tion layer is possible, though it requires significant tinkering
with applications to add transport layer function. The trans-
port layer has long been considered appropriate for these
tasks.

Acknowledgment of Receipt: Does the sender need to be noti-
fied that data has been delivered? What happens if the same
data is delivered more than once? What happens when the data
takes longer to receive than was anticipated? Applications often
need to be notified that data has been received, but the pro-
cess by which data receipt is acknowledged is irrelevant; again,
the transport layer provides an appropriate home for this task,

324 Part Three �9 Transport Protocols

particularly in conjunction with the issues of delivery order and
delivery delays.

Connection Orientation: Does the application call for connec-
tions between hosts (such as are used to link telephone callers)?
Can the application perform adequately without any connec-
tions? Most application protocols do not mandate particular
transport layer protocols. There are cases of connection-oriented
applications using a datagram (best-effort and messge-oriented)
transport protocol (e.g., TFTP and NFS), as well as cases
of message-oriented applications using a connection-oriented
transport protocol (e.g., any instance of an application that
requires the use of encryption at the IP layer with IPsec, as
described in Chapter 26). However, just because something
is possible does not always make it worthwhile: in general,
message-oriented application protocols work better with con-
nectionless transport layer protocols and connection-oriented
applications work best with connection-oriented transport layer
protocols.

Reliability: Do communicating hosts need mechanisms by which
they can confirm that their transmissions are being received?
Do they need mechanisms by which they can determine that
their transmissions are not being received? The aggregation
of data delivery reliability, acknowledgment, and message
or connection-orientation determine the degree to which a
transport layer protocol can offer reliability to application
protocols.

Message Framing" Can the application send messages/data of
any size? Some applications require transmission of arbitrary
flows of data (e.g., very large file transfers, audio/video trans-
missions, terminal sessions). How does a host know when a
transmission is complete? The application protocol does not
usually concern itself with issues of formatting or framing
data for network transmission, but that task must be done.
The transport layer should offer mechanisms allowing the
host receiving data to properly identify the boundaries of that
data.

Control: How fast should a host send data? Some systems can
be overwhelmed by incoming data, while others may be idle
while awaiting transmissions. Is there a way for hosts to
request senders to either speed up or throttle back on data
transmission?

Chapter15 �9 The Transport Layer 325

Congestion: Packets en route from source to destination may
encounter congestion, meaning that some intermediate system
is delaying delivery. How can an application cope when it
encounters congestion?

Multiprocessing: When more than one process on a host is accept-
ing data from the same network interface, there must be some
mechanism by which the inbound packets can be passed along
to the appropriate processes.

Two transport layer protocols, one minimalist and the other full-featured,
have been sufficient to serve all IP networking needs through the end
of the 20th century: The UDP provides a bare minimum, best-effort,
message-oriented transport mechanism, while the TCP offers a connection-
oriented, reliable, guaranteed delivery service capable of adapting to
network congestion and end-point delays.

However, in October 2000 the SCTP joined UDP and TCP as a standards-
track transport protocol. Capable of offering a different combination of
features than either of the two older protocols, SCTP provides both greater
flexibility than either.

The Transport Layer Security (TLS) and Secure Shell (SSH) protocols are
not necessarily transport protocols in the same league as UDP, TCP, or
SCTP, but because they operate conceptually just below the application
layer they will be discussed briefly in this chapter.

15.2 Transport Layer Components
The transport layer links application layer entities with internet layer enti-
ties: the applications don't need much information about the structure of
the network over which they operate, and application data is just part of
the payload to be transported in packets over the internet. The transport
layer offers a mechanism to interface between the application and inter-
net layers, and as such it interacts more directly with applications and
the internet layer of the protocol stack than might be inferred from the
reference models discussed in Chapter 5.

Transport layer protocols use a system for addressing the instances of pro-
grams running within a system (already introduced in Chapters 3 and 7);

326 Part Three �9 Transport Protocols

some transport layer protocols use the concepts of circuit, connection, and
data channel, and servers use special programs to "listen" at the transport
layer for requests from clients for services.

15.2.1 PROCESSES AND PORTS

Already discussed at some length in Chapters 5 and 7, the network of
processes running in a computer uses an address space consisting of ports.
These constructs allow a host to send and receive data on behalf of many
processes, all through a single network interface.

A process is the instance of a program running on a system. The same
program may have two or more instances running on a system at the same
time. For example, a multiuser system might have three users all running
a Telnet client, to connect to several different remote hosts. A single user
might have two or more Telnet client instances running, to connect to
different hosts (or to have different sessions on one remote host). Each
of these instances of telnet is assigned a process number. In this way,
five telnet sessions initiated by users of a single host can be carried on
concurrently: all of the packets from server to client host will be sent to the
same IP address, but the telnet server will send session A packets to the port
assigned to session A, session B packets to the port assigned to session B,
and so on.

The combination of a port and an IP address is enough to specify the exact
source or destination of a piece of network information: a single host may
accept data from many different sources and for many different applica-
tions, all at the same time, through this mechanism. When you put together
a source port /IP address with a destination port /IP address, you've fully
specified the connection between communicating processes: a circuit.

Transport layer protocols identify source and destination processes in
much the same way that a suite or apartment number identifies where to
deliver a piece of mail within a building, even though all tenants of the same
building share the same street address. The systems on which those pro-
cesses are running are specified by the lower layer protocols, and once you
arrive at the transport layer it is no longer possible to identify in any way the
source or destination systems simply by looking at the protocol headers.

Hosts that offer services to other hosts "listen" to certain ports for service
requests. When an unexpected message is received on certain ports, the

Chapter15 �9 The Transport Layer 327

message will be relayed to a special process associated with that port. These
processes are known as daemons because when they receive a request they
spawn off a new process to handle the request and then go back to listening
for more requests.

TCP, UDP, and SCTP use port numbers in a 16-bit address space. Any
value, from 0 through 65535, is valid (however, port 0 is reserved, and
is used to indicate that a transient port is requested). Port numbers are
divided into three ranges: Well Known Ports, Registered Ports, and Dynamic
Ports (also known as Private Ports). As a reminder, internet assigned
numbers authority (IANA) specifies the following ranges for port types:

Well Known Ports :

Registered Ports-

Dynamic and/or
Private Ports-

0 through i023

1024 through 49151

49152 through 65535

Two other types of port are often referred to interchangeably: ephemeral
ports and transient ports. Even among experts there is some confusion over
the precise status and boundaries of these different types of port.

Well-known: Well-known ports, defined by the IANA, refer to ports that
are assigned by the IANA and that, "on most systems can only be used
by system (or root) processes or by programs executed by privileged
users. ''2 These ports are intended to be used as contact ports for well-
known services, and are a de facto mechanism by which inbound
messages are passed to applications.

Registered: The IANA lists registered ports but does not assign them; the
listing is provided as a convenience for the community. Registered
ports may (again, "on most systems" per the IANA) be used by ordi-
nary users or processes, and registered ports are registered for use
by particular services as contact ports for those services.

Dynamic/Private: There are no restrictions on the use of these ports. They
may be used for any purpose, including contact ports for services
that are not registered with or assigned by the IANA as well as for
other purposes.

2See IANA web site, at http://www.iana.org/assignments /port-numbers, as of mid 2002.

328 PartThree �9 Transport Protocols

Ephemeral/Transient: As their names imply, these ports are used as
needed but are not retained from session to session. When hosts con-
nect to well-known services, they assign themselves a transient port
on which to listen for responses from the server. Likewise, once a
well-known service session is requested, a server may transfer the
session to a non-well-known port.

The RFCs say relatively little (or nothing) about ephemeral, transient,
or even dynamic ports: many implementations relied on a passage in
Richard Stevens' seminal TCP/IP Illustrated, volume 1, in which the range
for ephemeral ports was given as being between 1024 and 5000; the 5000
turned out to be a typo. The actual value intended was 50000. As a result,
many implementations still use the range 1024 to 5000 for ephemeral ports.

The IETF, through the IANA, created the range for dynamic ports (49152
through 65535) some time prior to 1999; as of 1994, all ports were either
well-known (0- 1023) or registerable (1024- 65535).

Further confusing matters, some implementers have used any port value
(from 0 through 65535) for ephemeral port assignment. Their reasoning is
that a host requesting services from some host will likely not be offering
the same service back to that host. For example, a host could (in theory)
wind up accepting incoming data on port 23 during an FTP session (if
that was the number the system chose to assign as a transient port for the
transfer)--the same port that a telnet server listens for inbound requests.
Depending on the configuration of any intermediate firewalls, which may
restrict delivery of packets sent to well-known ports inside an intranet, the
application would likely fail when inbound packets are blocked. However,
most modern implementations no longer allow transient ports less than
1024 to avoid security vulnerabilities related to such practices.

In short, if you are building a TCP/IP stack, you should check current best
practices for port selection. However, application implementers need only
specify port 0 when they require a transient port.

15.2.2 CIRCUITS AND CONNECTIONS

A connectionless protocol such as UDP needs only a port number and an
IP destination address to operate, because UDP does little more than bind
an address for a process (the port) on a host to the host's IP address. The
combination of port and IP address is also known as a socket; a socket pair

Chapter 15 �9 The Transport Layer 329

consists of two sockets: one for a source host and one for a destination host.
A socket pair completely identifies a connection between two processes. If
the processes coexist on the same host then the source and destination host
addresses would be identical, but the port numbers would be different
(pointing to two different processes). If the two processes are on different
hosts with different IP addresses, they could conceivably use the same
port number. In either case, there would still be no way for transport layer
protocol PDUs (protocol data units) intended for that connection to be
confused.

When data flows in only one direction, there would be only one connection:
from host address A, port a; to host address B, port b. When data flows
both ways, however, there must be two connections: one from A to B,
and another from B to A. The socket pair implies both flows, making it a
duplexed connection, meaning data flows in both directions (at the same
t imemas we'll see in Chapter 17).

As a connectionless protocol, UDP can be used when it is necessary to
send data out even if the destination is not known. For example, protocols
specifying discovery mechanisms provide techniques for hosts to, in effect,
yell out "Are there any local hosts offering service foo 3 here?" with any foo
servers responding by indicating their presence. Lacking a known desti-
nation, UDP allows the request to be sent out to a broadcast or multicast
address. Circuit-oriented protocols require a destination address as well
as a destination por t - -which explains, in part, the need for well-known
ports (they permit hosts to make an initial contact with a server).

15.2.3 DAEMONS

A server daemon listens for traffic coming in on the well-known ports
assigned to that service. When a client initiates an interaction, the dae-
mon assigns an ephemeral port to that client. In this way, the daemon
can continue listening to the well-known port for new sessions, even new
sessions from the same host. Interaction between the client and server is
conducted using the ephemeral port rather than the well-known port. It is
the computer equivalent to meeting someone in front of the big statue in
the park and then going off to a coffee shop to continue a meeting.

3A metasyntactic variable, foo is used a word to stand in for some other, unspecified word.
Foo, along with bar, baz, foobar, and others serves a function similar to the terms Joe Sixpack,
Joe User, Company XYZ, and Plan B.

330 Part Three �9 Transport Protocols

For example, web servers are most frequently implemented in the form
of HTTP daemons, usually named httpd, the final "d" indicating that the
program is a daemon. The daemon itself "listens" to the well-known port
with which the service is associated, and when a request is made to open
a transport layer session using port 80 (the HTTP well-known port) the
daemon responds.

In the absence of a daemon process, the alternative is to design the web
server program to respond to each request on port 80 directly. In other
words, there is a single instance of the HTTP server running on the server
system and that instance of the program handles all HTTP sessions. This
approach does not scale well because it requires the server software to cope
with multiple simultaneous sessionsnthe more requests for service there
are, the more likely that the performance of the server in every session will
suffer.

The daemon approach avoids this problem by separating the function of
responding to initial requests from the function of exchanging data in
response to requests from an established session. The daemon immedi-
ately refers the client to a different port, while continuing to monitor new
requests on port 80. The web session is managed on a the server side by
a new process that was created (instantiated) specifically to deal with that
particular session.

Daemons are mostly used for connection-oriented applications that run
over TCP; UDP-based applications, which usually depend on the exchange
of messages with no need for an ongoing connection, can also do without
a daemon. In a fraction of the time it takes to spawn a new process and set
up a connection with a client, a UDP-based application server can respond
to a request with its reply.

15.3 Reliability, Congestion, and Flow Control
Best-effort datagram protocols such as IP and UDP make no promises to
upper-layer protocols. They send messages; if the message gets through,
fine, and if the message doesn't get through, that's also fine. Application
protocols could and sometimes do incorporate mechanisms for verifying
that data sent was received, that data was received in the proper order
and that data was received without any corruption introduced en route.
Likewise, mechanisms can be applied at the application layer to allow hosts

Chapter 15 �9 The Transport Layer 331

to modulate the rate at which data is sent, or even how the data is packaged
for transmission. However, applying these mechanisms at the application
layer can result in chaos when two or more applications compete for system
and network resources. Not only does it increase the difficulty with which
applications can coexist on one system, it increases the complexity of each
application protocol.

Conventional wisdom has long held that it is much simpler to apply these
functions at the transport layer, where the network stack can balance the
needs of all applications running on the host, and where each function need
be implemented only once. However, this is not always the case: there
are congestion-aware applications that require some form of congestion
management but which must use a low-overhead transport layer protocol
to avoid performance issues. Detecting congestion at the internet layer (or
even lower) might also be useful. Work on the Congestion Manager (CM)
and DCP will continue as the need to reduce congestion also continues.

To a great extent, any discussion of transport layer protocols in general
turns into a comparison of UDP and TCP. UDP offers nothing more than
a pass-through binding of ports to IP addresses, while TCP offers the full
range of transport layer services. The situation is a bit more complex than
that, but for our purposes here, the UDP vs TCP scenario will suffice.

15.3.1 DATA PACKING

UDP datagrams include a 16-bit message size field to carry the message
(plus header) length in bytes; the maximum UDP datagram size is, there-
fore, 65,535 bytes. The header itself takes up 8 bytes, so the maximum
payload size is 65,527 bytes. In practice, most UDP datagrams are consi-
derably smaller (see Chapter 19 for more about IP packet fragmentation),
so clearly, UDP is not a good choice for transporting very large messages.
However, if you can fit all of your message into a relatively small pack-
age, UDP makes sense because the receiving host only needs to read the
message length field and then calculate when that many bytes have been
received to determine where the UDP datagram ends.

TCP, on the other hand, sends bytes. Streams of bytes. This makes TCP
a good choice for sending streams of data, especially when the precise
data length could not be calculated ahead of time (e.g., interactive ses-
sions, or downloading files as streams of data). As a byte-stream protocol,
TCP imposes no limits on how the data is to be packaged for sending or

332 Part Three �9 Transport Protocols

receiving. In other words, the sending host's TCP might package data up
in chunks of 5,000 bytes, but the receiving hosts's TCP might read data in
from TCP segments 100 bytes at a time.

One advantage of byte-streaming is that there are no restrictions on the
amount of data that can be sent in one stream. Another is that the data can
be handled in the most efficient ways for both sender and recipient.

15.3.2 DELIVERY GUARANTEES

Best-effort protocols offer no guarantees, other than that they will attempt
to deliver datagrams. Neither IP nor UDP offers a guarantee that a data-
gram will be delivered. They offer no mechanism for a recipient to indicate
that a datagram has been received, either.

TCP, on the other hand, specifies that every byte sent over a connection be
acknowledged (ACK'ed) by the recipient. If some part of a data stream is
lost, the sender will resend it.

TCP provides other mechanisms for guaranteeing the connection between
two hosts, including a very conservative approach to setting up the con-
nection, a two-step process for terminating a connection, and mechanisms
for resending data and for receiving it in the correct order.

15.3.3 CONGESTION AND FLOW CONTROL

Data flows along networks, sometimes faster and sometimes slower.
Datagram protocols don't usually specify any mechanisms for controlling
the rate at which hosts exchange data, mostly because datagram protocols
tend to be used for best-effort, message-oriented connectionless deliveries.
Unfortunately, the internet layer is where a significant portion of internet
congestion (situations in which the amount of network traffic is sufficient
to cause slowdowns or failures in the delivery of packets) occurs. IP offers
little help in dealing with congestion for various reasons (see Chapters 17
and 25), and applications would not normally be expected to deal with
network congestion without additional information passed to them from
lower layers.

Flow control, as performed by TCP, uses a sliding window mechanism,
allowing sender and recipient to exchange information about how many

Chapter15 �9 The Transport Layer 333

bytes per segment they can process comfortably. Other mechanisms are
available to signal senders that they should change the rate at which they
transmit data. TCP specifies the use of four different timers to keep track
of when data is sent, received, and acknowledged, so that transmission
can be optimized for the most amount of data to be sent and received most
quickly and in the largest chunks (yet not so large that losing one would
affect performance).

Doing flow control at the transport layer, where one entity can control
it, makes more sense than allowing applications to do it because each
application will attempt to maximize the network and system resources
that it consumes. Some applications running on top of UDP have imple-
mented congestion response mechanisms, but in general they do not work
as well as those provided at the transport layer. A proposed standard,
RFC 3124 'q'he Congestion Manager," specifies an approach to congestion
management that allows any software module, whether at the transport
or application layer, to use a congestion management entity within a sys-
tem to coordinate. This approach allows UDP applications to respond
appropriately to congestion without the added overhead of running a
heavier-weight transport layer protocol such as TCP.

Congestion response should be distinguished from flow control, even
though they seem similar. Flow control comprises a set of mechanisms
that sender and recipient use to stabilize (and optimize, it is to be hoped)
the rates at which they exchange data. There is an implicit assumption that
flow control is concerned with conditions at the endpoints of the connec-
tion: a host with a slow connection, for example, might have to indicate
limits on the volume of data it can accept in a given period; a host with
high latency might have to indicate that a sender should expect a longer
delay between transmitting data and getting an ACK for that transmission.

Congestion, however, tends to occur unexpectedly, within the network.
Endpoint hosts have little or no control over congestion, although there
are strategies for dealing with it.

15.4 Security at the Transport Layer
Good arguments can be made for implementing security at the application,
transport, internet, or data link layers; there is no technical reason not to
apply security at all those layers even though there may be performance

334 Part Three �9 Transport Protocols

and budgetary reasons to avoid that approach. Security for network data
means maintaining data integrity, authentication, and privacy. The typical
approach to achieving all three of these goals typically relies on strong
public-key cryptography to encrypt data for privacy, digital signatures, or
secure hashes to ensure data integrity and authentication (see Chapter 26
for more about IP security).

The highest degree of network data privacy can be achieved if all data
input and output to and from networked systems is encrypted. In other
words, the only data ever entered has already been encrypted off-line; in
this way, the data is never in an accessible form while on any system. This
approach is also highly impractical for the vast majority of users.

Encrypting at the application layer is more practical, because data is
encrypted earlier in the process of transmission (by the application, before
it even arrives at the protocol stack) and decrypted later in the process (only
after it has been received by the application). Until someone actually runs
the application that uses the data, it can be stored in encrypted form on the
system. While more practical, application layer privacy presents compli-
cations: application protocol designers and implementers build or borrow
the appropriate security mechanisms and design the interface linking the
application with those mechanisms, and make sure it is all secure. Sensible
protocol designers want to avoid building security into an application for
at least two good reasons: first, secure protocols are not easy to design.
And second, why reinvent the wheel? Transport layer security has proved
to be good enough for most current applications.

Although security is available at the internet layer through the IP Security
Protocol (IPsec), applications can't ordinarily initiate or control IPsec
sessions, so while IPsec is an excellent tool for securing data in flight
between two points across a public network 4, it is less helpful for securing
application layer data on demand.

The transport layer offers a good compromise for implementing security
because it eliminates the need to re-invent the wheel every time an appli-
cation protocol needs security mechanisms and also because application
protocol can most easily interact with security protocols that operate at
the transport layer. An important point to keep in mind, however, is that
when security is implemented at some given layer, the assurance provided

4As it is used to implement virtual private networks (VPNs); see Chapter 34 for more
about VPNs.

Chapter 15 �9 The Transport Layer 335

by that security relates to entities at that layer. Thus, adding security at the
internet layer means encrypting packets as they their source IP node and
decrypting them as they enter their destination IP node--even with perfect
internet layer security, the data is still vulnerable before it is encrypted and
after it is decrypted.

This section examines the two most commonly used transport layer
security protocols: the TLS protocol and the SSH protocol.

15.4.1 TRANSPORT LAYER SECURITY (TLS)

Until the commercialization of the internetmand the webmduring
the early 1990s, there was little demand for secure applications. When
Netscape published the Navigator web browser, they included support for
their proprietary Secure Socket Layer (SSL) protocol. SSL offered security
at the transport layer, by facilitating the negotiation of a secure channel for
communication over a TCP circuit. Netscape was able to capture most of
the early internet's market for web browser as well as web server software 5
by making the SSL specification public and encouraging other software
publishers to incorporate it into other web server and browser programs.
Within a short time SSL had become the de facto standard for securing
web transactions, succeeding so well that at least two other web security
protocols were effectively throttled in their cribs.

Secure HTTP (S-HTTP) is currently designated an experimental specifica-
tion defined in 1999 in RFC 2660, "The Secure HyperText Transfer Proto-
col," despite its long history of IETF-sanctioned development. Although
some vendors incorporated S-HTTP support in web clients and servers,
the protocol offered no significant competitive advantage over SSL (and
later, TLS). Interoperability required all web software to support SSL,
while S-HTTP was less important to software buyers.

The Secure Electronic Transaction (SET) standard, another fairly specta-
cular failure, was backed by a substantial number of big companies
including major credit and charge card vendors, hardware and software
vendors, banks, and other financial institutions. Intended to provide a
comprehensive protocol for enabling every step of a web commerce trans-
action, SET also failed for a number of reasons, not least of which was the
inability of all its backers to cooperate on the project. Other problems were

5A lead that was to prove il lusory once Microsoft tu rned its at tention to the internet.

336 Part Three �9 Transport Protocols

the length of time it took for the designers to release usable specifications,
the ambitious scope of the project, and the lack of industry enthusiasm
for yet another digital commerce protocol that seemed to offer little or no
benefit over and above that offered by SSL and/or TLS.

TLS is specified in RFC 2246, "The TLS Protocol Version 1.0," published in
1999. By design, TLS provides a mechanism by which application clients
and servers can communicate securely. In this case, security refers to both
privacy and data integrity. Encrypting data keeps it private, and using a
cryptographic function such as a digital signature or a secure hash allows
recipients to determine whether or not an attacker (or some naturally
occuring event) has modified or corrupted the data in some way.

Two different types of TLS protocol are defined:

TLS Record Protocol provides an encapsulation layer for TLS data, and
provides functions similar to those performed by UDP and TCP.
The Record Protocol accepts messages from higher layer protocols
(such as the TLS Handshake Protocol, see below) and packages those
messages for secure transmission. The Record Protocol breaks up
messages into manageable chunks, and then may apply one or more
types of compression, data integrity, or encryption to the data before
passing it along to the transport layer protocol.

TLS Handshake Protocol offers what is in effect a security application,
applied between client and server before any actual application data
passes between them but after the client initiates a request for ser-
vice. The Handshake Protocol helps by (1) authenticating one or both
peers, (2) negotiating the secure exchange of a shared secret (to be used
for encrypting or digitally signing data), and (3) detecting when data
has been tampered with.

The Record Protocol frames data for security purposes: it contains a pay-
load of secured data as well as minimal plaintext header information. The
headers are kept terse to reduce the possibility of an eavesdropper from
doing traffic analysis: examining all intercepted data, secure or not, and
attempting to extract as much information out of the data as possible. For
example, suppose there were a "document title" header transmitted in
plaintext. Even if it is encrypted, knowing that there exists a document
titled "List of Terminated Employees" gives the eavesdropper some infor-
mation; more information can be extracted from looking at the length of
the encrypted document.

Chapter 15 �9 The Transport Layer 337

The Handshake Protocol is just one of the protocols that can be encap-
sulated within the Record Protocol, but it is necessary for starting a TLS
session. The "handshake" is the process by which the two TLS peers nego-
tiate the algorithms and protocols to be used for encrypting, authenticating,
and exchanging keying material with each other. Other encapsulated
protocols include:

TLS Alert Protocol is used to pass information about the session from peer
to peer. Alerts may be used to indicate that a session is over, that a
session has been compromised, or that a protocol error has occured.

TLS Change Cipher SpecProtocol consists of a single message type
(change cipher spec), consisting of a 1-byte value (1), sent to indicate
that the sender is about to change the way it is encrypting or digitally
signing data, starting with its next transmission. The protocol is used
during the Handshake Protocol.

Application Protocol is the application protocol being encapsulated
within the TLS session.

The existence of TLS, and even the use of TLS with an application protocol,
does not by itself ensure a secure session. As noted in RFC 2246, although
TLS can be used to secure applications, it "does not specify how protocols
add security with TLS; the decisions on how to initiate TLS handshaking
and how to interpret the authentication certificates exchanged are left up
to the judgment of the designers and implementors of protocols which run
on top of TLS."

15.4.2 SECURE SHELL PROTOCOL

The SSH can function as an application protocol (see section 10.4) but also
as a secure transport protocol.

As described in the work-in-progress internet draft, "SSH Protocol Archi-
tecture," the SSH architecture consists of three protocol components:

SSH Transport Layer Protocol performs many of the same functions as
the TLS Record Protocol. Once the SSH connection is established,
encryption, data authentication, and integrity checking are done at
the Transport Layer Protocol; compression is optional. Also like the

338 Part Three �9 Transport Protocols

Record Protocol, the Transport Layer Protocol typically runs on top
of TCP.

SSH Transport Layer sessions are opened with requests on the
well-known port 22, with session negotiation taking place after host
authentication is done. This protocol supports only host authenti-
cation; user authentication takes place only after the transport layer
session is set up.

SSH User Authentication Protocol provides a mechanism for user authen-
tication, running over an SSH Transport Layer Protocol session.

SSH Connection Protocol enables the creation of different channels to
carry different application sessions over a single SSH connection.
It also enables the use of port forwarding, by which an application
session can be redirected to flow through a secured channel. By spec-
ifying a port and IP address, the client can tunnel the application data
through an encrypted tunnel capable of bypassing firewall scrutiny.

Although SSH and TLS address a similar set of needs, TLS is most often
implemented in web client and server software and configured to operate
transparently to the user. Although most commonly encountered by end
users as a client application for securely connecting to other hosts, SSH
is more often viewed as a system administrator's tool requiring a higher
degree of expertise to use safely. Part of that reputation stems from the
different uses to which SSH can be put. Not only does SSH allow the
replacement of the notoriously insecure r-utilities, but it permits secure
tunneling of X window system sessions, creation of encrypted channels
for virtual private networking, and other secure applications.

15.5 New Approaches to the Transport Layer
UDP and TCP are no longer the only transport layer protocols available.
Although not yet widely deployed, the SCTP offers an alternative that
is more than UDP and different from TCP. Although still in the earliest
stage of development, support is gathering for another transport layer
protocol, the Datagram Control Protocol (DCP). Both these protocols will
be discussed in more depth in Chapter 18.

However, even these protocols do not exhaust the possibilities for trans-
port layer protocols. A UDP-like transport protocol could be imagined that

Chapter 15 �9 The Transport Layer 339

added guaranteed delivery, or a TCP-like transport that used a transmis-
sion rate rather than a transmission window (e.g., suggested rates at which
the recipient could accept data instead of indicating the sliding window
mechanism described in Chapter 17).

Just as application protocols use certain fundamental mechanisms that
could easily be reused (as with BEEP, described in Chapter 13), a modular
transport protocol could also be designed at some point in the future. In the
meantime, SCTP was designed to provide applications developers with a
wider range of capabilities than UDP or even TCP, and a greater degree to
which those capabilities could be turned on and off.

As we'll see in Chapter 18, SCTP uses many of the features offered in TCP,
particularly in terms of providing reliability and guaranteed delivery; data-
gram control protocol (DCP) takes UDP, with its barebones approach and
lack of guaranteed delivery, but drops UDP's connectionlessness in favor
of support for data streams and connections. By doing so, DCP explicitly
incorporates the ability to specify a range of options for handling conges-
tion control. Although still very much an early-stage work in progress,
DCP will be discussed in Chapter 18 as well.

15.6 Chapter Summary
Many networked systems offer only a single interface to the internet,
yet they can run many different tasks for many different users. The
transport layer provides a mechanism by which multi-tasking comput-
ers can maintain multiple network sessions: every application that needs
access to network resources (or that provides network resources) can
use its own transport layer process to get in and out of the lower layer
interface.

The transport layer is also a convenient "place" to resolve networking
issues such as packaging data for transmission, creating circuits (for reli-
able services), monitoring traffic performance for responding to network
congestion, and as the proper layer to provide session security.

Until 2000, all network transmissions were carried over two transport
layer protocols: TCP for virtual circuit guaranteed delivery and UDP
for best-effort datagram delivery. These two protocols shaped genera-
tions of network professionals, who often viewed them as almost polar

340 Part Three �9 Transport Protocols

oppositesmas well as the only possible solutions for the transport layer.
With the additon of SCTP to the internet standards track, the dualistic view
of the internet transport layer must fade as the new family of transport
protocols offers a new set of transport layer attributes.

The next chapter introduces the simplest of the transport layer protocols,
UDP.

I I I I
I

User Datagram Protocol

Jon Postel wrote and published RFC 768,"User Datagram Protocol" in
August 1980; unlike most internet protocols from that era it has not been
made obsolete or updated or modified. It is probably the simplest of inter-
net protocols. The entire specification is reproduced in the first part of this
chapter with commentary following. For those who have never read an
RFC, this should be an interesting introduction.

16.1 RFC 768 : User Datagram Protocol

16.1.1 INTRODUCTION

This User Datagram Protocol (UDP) is defined to make
available a datagram mode of packet-switched computer
communication in the environment of an interconnected
set of computer networks. This protocol assumes that
the Internet Protocol (IP) [I] is used as the
underlying protocol.

341

342 Part Three �9 Transport Protocols

This protocol provides a procedure for application
programs to send messages to other programs with a
minimum of protocol mechanism. The protocol is
transaction oriented, and delivery and duplicate
protection are not guaranteed. Applications requiring
ordered reliable delivery of streams of data should
use the Transmission Control Protocol (TCP) [2].

16.1.2 FORMAT

0 7 8

+ +

I Source

I Port

+ +

I
I Length

+ +

15 16

+

+

+

23 24 31

+ +

Destination I

Port I

+ +

I
Checksum I

+ +

data octets ...

~- o o o

User Datagram Header Format

16.1.3 FIELDS

Source Port is an optional field, when meaningful, it
indicates the port of the sending process, and may be
assumed to be the port to which a reply should be
addressed in the absence of any other information. If
not used, a value of zero is inserted.

Destination Port has a meaning within the context of a
particular internet destination address.

Chapter 16 �9 User Datagram Protocol :343

Length is the length in octets of this user datagram
including this header and the data. (This means the
minimum value of the length is eight.)

Checksum is the 16-bit one's complement of the one's

complement sum of a pseudo header of information from

the IP header, the UDP header, and the data, padded

with zero octets at the end (if necessary) to make a
multiple of two octets.

The pseudo header conceptually prefixed to the UDP
header contains the source address, the destination
address, the protocol, and the UDP length. This
information gives protection against misrouted
datagrams. This checksum procedure is the same as is
used in TCP.

0 7 8 15 16 23 24 31

+ + + + +

I source address I

+ + + + +

I destination address I
+ + + + +

I zero Iprotocoll UDP length 1

+ + + + +

If the computed checksum is zero, it is transmitted as
all ones (the equivalent in one's complement
arithmetic). An all zero transmitted checksum value
means that the transmitter generated no checksum (for

debugging or for higher level protocols that don't
care) .

16.1.4 Us,:R INTERFACE

A user interface should allow

�9 the creation of new receive ports,

344 Part Three �9 Transport Protocols

�9 receive operations on the receive ports that
return the data octets and an indication of
source port and source address,

�9 and an operation that allows a datagram to
be sent, specifying the data, source and
destination ports and addresses to be sent.

16.1.5 IP INTERFACE

The UDP module must be able to determine the source
and destination internet addresses and the protocol
field from the internet header. One possible UDP/IP
interface would return the whole internet datagram
including all of the internet header in response to a
receive operation. Such an interface would also allow
the UDP to pass a full internet datagram complete with
header to the IP to send. The IP would verify certain
fields for consistency and compute the internet header
checksum.

16.1.6 PROTOCOL APPLICATION

The major uses of this protocol is the Internet Name
Server [3], and the Trivial File Transfer [4].

16.1.7 PROTOCOL NUMBER

This is protocol 17 (21 octal) when used in the
Internet Protocol. Other protocol numbers are listed
in [5].

16.1.8 REFERENCES

[i] Postel, J., ''Internet Protocol,'' RFC 760, USC/
Information Sciences Institute, January 1980.

[2] Postel, J., ''Transmission Control Protocol,'' RFC
761, USC/Information Sciences Institute, January
1980.

Chapter 16 �9 User Datagram Protocol 345

[3] Postel, J., ''Internet Name Server,'' USC/
Information Sciences Institute, IEN 116, August
1979.

[4] Sollins, K., ''The TFTP Protocol,'' Massachusetts
Institute of Technology, IEN 133, January 1980.

[5] Postel, J., ''Assigned Numbers,'' USC/Information
Sciences Institute, RFC 762, January 1980.

16.2 A Bit More About User Datagram Protocol

As the original RFC makes clear, UDP is a lightweight protocol: there are
no protocol commands, there are only four fields in the protocol header.
The UDP header indicates the source and destination ports (addresses of
the communicating processes), a field indicating the length of the datagram
and a checksum on the entire datagram plus pseudo header, a logical con-
struct built on parts of the encapsulating IP header meant to provide a
very slight degree of protection against misrouted packets or malformed
headers.

UDP offers nothing more than a simple mechanism for associating appli-
cation data with a particular pair of processes at either end. There's little
more to say about it.

UDP provides no error correction, no connection-oriented links, no hand-
shaking, and no verification of delivery order. UDP offers basic datagram
delivery and nothing more. The UDP header checksum provides only the
most basic check on datagram integrity: if the checksum doesn't match on
arrival, the datagram is assumed to be corrupted and is discarded silently
by the receiving host.

Applications based on UDP are often simple ones that don't need to main-
tain connections. UDP application may consist entirely of requests and
replies to requests, as with DNS; UDP may also be used to provide the
simplest transport layer protocol possible while the application layer pro-
tocol provides flow control, authentication, acknowledgment, verification,
error detection, and so on.

A simple datagram delivery service like UDP, without any added fea-
tures, is easy to implement and requires minimal overhead. UDP is often

346 Part Three �9 Transport Protocols

built into the limited memory of diskless workstations, where it is used
for remote booting. UDP is also used for low-intensity tasks performed in
the background, such as resolving hostnames with DNS, or routine net-
work monitoring through Simple Network Management Protocol (SNMP,
Chapter 31). Some UDP applications operate mostly over local networks
that are usually reliable, and so don't need transport layer reliability.
Other applications can trade the uncertainty of delivery for lower over-
head, because retransmitting requests is easier and usually has minimal
impact on network traffic.

The Trivial File Transfer Protocol (TFTP) was designed to be used by the
Boot Protocol (BOOTP) to bootstrap terminal systems from the network.
TFTP was intended for implementation in systems with minimal resources:
no disk drives and just enough RAM to support UDP and IP; most TFTP
transfers were done over local area networks (LANs). UDP was a perfect
solution for TFTP.

16.3 User Datagram Protocol Datagram Format
Source and destination ports are 16 bits each; the source port is assigned
by the originating host, and the destination port is usually the well-known
port associated with the application using UDP. The UDP message length
field is also 16 bits, and it indicates the length of the entire UDP datagram
including header in bytes, giving an upper limit to UDP datagram size of
65,535 bytes.

The UDP checksum is an option (when not used, this field must con-
tain all-zeroes) that is not strictly necessary on LANs (such as Ethernet)
already using a cyclic redundancy check (CRC) on network frames. When
the datagram will be passing over unreliable links, use of the checksum is
advised.

The pseudo-header uses IP addressing information taken from the IP
header. The source and destination IP addresses, 8 bits of padding ("0"s),
and the UDP protocol code (17) compose the pseudo-header, which is
then appended to the UDP header and payload; the checksum is then
calculated on the entire datagram.

The UDP payload is raw data. Maximum datagram length can be con-
figured, but is usually set to 8,192 bytes. Although the 2-byte datagram

Chapter16 �9 User Datagram Protocol 347

length field sets the upper limit on the datagram size at 65,535 bytes, the
maximum datagram length (8,192 bytes) generally implemented is deter-
mined more by other issues like programming interface and the way that
TCP/IP is implemented. For example, application programs like NFS that
use UDP by default use chunks of data that are 8,192 bytes long, so creating
UDP datagrams any longer would add to the processing overhead without
adding any benefits.

16.4 Where User Datagram Protocol Data Fits In

UDP and IP are tightly integrated: IP identifies a packet's destination and
source nodes on the internet, while UDP identifies the destination and
source processes within those systems.

At first glance, UDP seems almost pointless: it adds no features on
top of IP and pushes reliability functions up a layer to make the
application responsible. IP is a connectionless and unreliable protocol; so is
UDP. However, UDP adds value by performing transport layer functions
for several different categories of application, including:

�9 Applications requiring minimal implementation. For example,
diskless workstations used TFTP over UDP rather than full-
blown FTP over TCP for remote booting because they lacked
resources (disk, memory, and processor power) to implement
the more complex FTP and TCP. The SNMP uses UDP in
part because some managed devices also lack the resources
to support TCP.

�9 Applications that don't need any transport layer services. For
example, DNS (see Chapter 8) uses UDP because most protocol
interactions between individual hosts consist of a single request
followed by a single reply. There is no benefit from setting up
a circuit, and the cost is high. Instead of two packets, total,
for DNS over UDP (one message sent in each direction), DNS
over TCP requires at least seven packets (three to set up the
connection, two to terminate it, and two for the UDP messages).

�9 Applications that can withstand data loss better than increased
latency. For example, a live audio transmission needs rea-
sonably stable bandwidth more than it needs bursts of high
bandwidth: a telephone-quality connection might be possible

348 Part Three �9 Transport Protocols

at lower bandwidths, while higher fidelity becomes possible at
higher bandwidths. However, there's no point in making sure
every bit of audio data is delivered if the data arrives seconds
after it's neededmthat bandwidth is put to better use moving
current data. Real-time applications may implement whatever
flow control services they need at the application layer or else
use some other mechanisms (such as RSVP or RTP) to create
predictable channels.
One-to-many applications (see Chapters 14, 18, and 24). Until
recently, any application that required TCP-like services had to
use TCP; because TCP uses virtual circuits, only two hosts can
communicate with TCP (one host at either end of the virtual
circuit). Collaborative applications such as video conferencing
and any others linking more than three hosts were required
to use multicast, and by implication, UDP, because (unlike
TCP) UDP permits the transmission of a packet from a single
host to any number of different hosts. (Unlike TCP, UDP does
not require a checksum or any other control linking the packet
body and the transport layer headers. If you attempted to send
a TCP segment to a multicast address, the packets would be
discarded at their destinations because the checksums calcu-
lated there would not match the original checksums calculated
by the sender.)

16.5 User Datagram Protocol Examples
There's not much to say about UDP headers, except that they're quite
simple. The examples shown below in Figure 16--1 are from an exchange
of DNS messages; the first was a request for domain name resolution, the
second the reply from the DNS server.

The checksums can be verifed using the IP packet headers; in this case, the
pseudo-header for the first UDP message is based on the source and des-
tination IP addresses, eight bits of 0, the protocol code (in this case, 0x 11,
or 17, representing UDP) and the UDP length value (39). After creating
the pseudo-header (as described in section 16.1), the checksum is calcu-
lated on the headers, pseudo-headers, and datagram contents.

Chapter 16 �9 User Datagram Protocol 349

UDP Header from DNS Request:

Source port: 32778

Destination port-

Length: 39

Checksum: 0x98f0

53

UDP Header from DNS Reply:

Source port: 53

Destination port-

Length: 165

Checksum: 0x5f33

32778

16.6

Figure 16-1: UDP headers from a DNS exchange.

Chapter Summary
By opening with the short, official, UDP specification (RFC 768), we see
how truly simple UDP can be. There is little more to say about it, and there
are few additional RFCs that extend, explain, or modify UDP in any way.

Yet UDP fills an important role in providing a lightweight transport proto-
col offering little more than a simple binding function, connecting process
to the internet interface.

This Page Intentionally Left Blank

Transmission Control
Protocol

If you can understand the Transmission Control Protocol (TCP), you can
understand just about any internet protocol as well as TCP/IP network-
ing in general. Unlike most of the other protocols discussed so far, TCP
engages many of the real problems related to running actual applications
across real-world networks. User datagram protocol (UDP) provides no
help when data fails to arrive at its destination; the application protocols
covered so far leave the task of managing transmissions (and making sure
that data arrives in the correct manner) to some other protocol. Over the
years, that other protocol has almost exclusively been TCP.

Covered in this chapter are:

Problem Description: What problems does TCP solve?
Protocol Description: What does the TCP protocol do, and how

does it work?
Protocol Examples: What do TCP protocol exchanges look like?

351

352 Part Three �9 Transport Protocols

Protocol Issues: Whereas UDP has remained unmodified since
1982, TCP has been updated and added to over the same period.
Modifications focus on mechanisms for improving performance.

Although both protocols are useful, neither TCP nor UDP provides the
perfect balance of transport layer functions for every application layer pro-
tocol; however, for most modern internet applications TCP is the transport
layer protocol of choice for its adaptability to changing network conditions
as well as for its reliable, guaranteed data delivery.

17.1 Problem Statement

Internet datagram service (as defined by the Internet Protocol, discussed in
Chapter 19), whether today or during the 1970s, when TCP was developed,
is a service without any guarantees. IP is a best-effort protocol, and when
intermediate systems are overwhelmed by traffic or fail for other reasons,
there is no promise of notification. Systems running over upper layer pro-
tocols are left to determine for themselves whether or not their requests
and responses have been delivered or not. As discussed in Chapter 15, the
transport layer has long been deemed the appropriate venue for handling
such tasks. Although UDP provides a pass-through protocol at the trans-
port layer, the TCP was designed to provide a more feature-rich set of
transport services.

Application layer protocols that depend on the reliable and accurate
transfer of data require that there be mechanisms to provide:

Connection-oriented transmissions. A connection implies that there is a
sender on one end of the link and a receiver on the other, and that
there is a way to determine what has been sent and in what order it
should be interpreted.

End-to-end transmissions. Users must trust that their application data has
been sent from their application client to server without any inter-
mediate changes having been made. Often, changes are mandatory,
such as when a segment sent over a local area network (LAN) must be
redirected to a destination outside the LAN. In that case the segment
will have to be changed to reflect a different link layer address, and
the entire segment translated into a format appropriate for a new

Chapter 17 �9 Transmission Control Protocol 353

link layer. However, applications typically require that their data be
delivered exactly as submitted by the sender.

Reliable transmissions. Users must also trust that their client application
receives all the data being sent to it, and that all data being sent by the
client is being received by the application server. Guaranteeing deliv-
ery is one way to build reliability into the protocol, and to provide the
guarantee it is necessary for all data transmitted between processes
be acknowledged upon receipt; if data is not acknowledged, it must
be retransmitted.

Interprocess communication. Just as UDP provides interprocess commu-
nication with a minimum of fuss, TCP allows processes to address
each other within the context of specific ntework hosts. For UDP,
this is the only service provided; for TCP, this is one service of
many.

These four functions are taken from the current internet standard for TCP,
RFC 793, "Transmission Control Protocol: DARPA Internet Program Pro-
tocol Specification." In order to fulfill these requirements, the authors of
RFC 793 concluded that certain facilities must be provided with TCP; those
facilities are described next.

17.2 Transmission Control Protocol Attributes and Features

As described in RFC 793, to provide connection-oriented, end-to-end,
reliable interprocess communication, TCP offers these protocol facilities:

Basic Data Transfer A TCP implementation can send and receive data
as a continuous stream of bytes. Each implementation determines
how to package the bytes into segments (the TCP protocol data unit),
how many bytes to include in each segment, and when to send
segments. The exception is when the application requires that all
data up to a certain point must be submitted, for example, when
a user enters data to a terminal session and wants to submit the
data to the remote host. Designed for those cases, the push function
causes the sending TCP implementation to send all data that is being
queued for transmission or that is in the process of being framed for
transmission.

354 Part Three �9 Transport Protocols

Unlike other protocols that impose a structure on their data, TCP
offers byte stream service meaning that segment data is delivered in
order but without any other constraintsmthe process may send data
to the local TCP implementation 100 bytes at a time, or in smaller or
larger chunks (e.g., a terminal session will consist of variably sized
streams of data). Once the data is transmitted, the receiving TCP
implementation can send the receiving process the data in 50-byte
chunks, or whatever is most appropriate. The goal is to permit the
recipient to duplicate exactly the byte stream being sent; for the same
reason, TCP sends data exactly with no reference to whether the data
is ASCII or binary or any other representation.

Reliability TCP was designed to be resilient even when data is received
out of order, is damaged during transmission, is not received at all,
or is received more than once. Sequence numbers are used to ensure
proper data delivery order as well as to prevent duplication. A check-
sum on the segment contents allows rejection of damaged segments.
TCP implementations are required to positively acknowledge (ACK)
receipt of all data. The sender times receipt of ACKs on segments
that have been sent, so that when an ACK is not received in a timely
fashion, the sender assumes the segment was not received and it
is re-sent. The timeout value has to be sufficiently long so that tran-
sient network problems don't affect performance, but also sufficiently
short so that more permanent network congestion conditions do not
cause retransmission of all segments.

Flow Control Datagram protocols offer no mechanisms by which commu-
nicating hosts can tune the rate at which they are sending because (by
definition) they don't offer any connection over which to exchange
such information. Flow control is possible with TCP by allowing
implementations to signal each other the amount of data they are
prepared to accept as they acknowledge segments already received.
The acknowledging host sends this transmission window value to the
sending host; the sending host then calculates how much data is "in
flight" and subtracts that amount from the window to calculate how
much more data it can send before another ACK is received.

Multiplexing The use of ports as described in Chapter 15 allows a host
to accept multiple connections over a single socket~in this way, the
host is able to multiplex on a single socket. In addition, multiplex-
ing occurs over any given TCP connection because hosts can send

Chapter 17 �9 TransmJssJon Control Protocol 355

TCP data and ACKs in the same segments~the sender acts also as a
recipient by ACKing previous data.

Connections Two hosts construct a TCP connection through a process
known as the three-way handshake. This is an important part of the
protocol, because it makes possible a reliable connection despite the
inherent lack of reliability of lower layer protocols. TCP connections
have specific attributes, including the socket pair addresses and ports,
sequence numbers used by the hosts, and their window sizes. As long
as the hosts can interoperate using these attributes, the connection
active.

TCP connections are characterized as virtual circuits, meaning that each
circuit behaves as if there is a direct, two-way connection between the
communicating hosts. TCP provides end-to-end reliability, requiring that
communicating hosts coordinate and agree to make connections and
acknowledge receipt of network traffic. Each TCP segment bears a relation-
ship with the segment that came before and the segment that comes after.
And that means the first and last segments in a sequence require special
treatment. TCP also supports out-of-order delivery of segments, reassem-
bling data streams from IP datagrams that may have been delivered out of
order.

A TCP virtual circuit resembles any other (non-virtual) circuit in that
there can only be two nodes on either end: one to send, the other to receive.
Being connection oriented means that TCP can only be used for host-to-host
communication. As a result, TCP can be used only for unicast transmissions
(see Chapter 19 for more about unicast) from one host to another.

TCP connections behave as if there were a hard-wired connection between
processes on the two connected hosts. When a process initiates a TCP
connection with another process, the two processes negotiate to open the
connection. Each process must agree to participate. The TCP virtual circuit
is similar to a telephone link: one person (process) initiates the telephone
call (TCP circuit), but the person (process) at the other end has to answer
the telephone (agree to open the TCP circuit). A conversation (TCP cir-
cuit) ensues if both individuals (processes) agree to start and continue the
conversation (TCP circuit).

Under certain circumstances, when a telephone call is made a telephone
conversation won't follow: a wrong number is dialed, the person being

356 Part Three �9 Transport Protocols

called is unavailable, there is a bad connection, or the person being called
can't talk. Similarly, there is no guarantee that a TCP circuit can be initiated
and maintained: the requesting system wants a service that the other end
does not provide, there is no connectivity between the two hosts, the server
is unable to handle the request for service.

Each connection is identified uniquely with a combination of each host's
IP address and port number for the connection. As with UDP, servers
using TCP for their transport protocol use well-known port numbers
for offering different network application services. The process specifies
a port number to establish the connection, and the IP layer of the net-
working software indicates the host address. A client process attempting
to connect to a Telnet server process specifies the Telnet port number
(port 23). The port number and IP address of the host on which the process
is running create a TCP socket. The client assigns some other TCP port
number (not a well-known port) as its own TCP port, resulting in its own
TCP socket: the client's IP address and TCP port number.

The combination of these two pairs of IP address and TCP port num-
bers, or two TCP sockets, uniquely identifies each TCP connection.
A single host can maintain more than one TCP connection through a single
TCP port because incoming TCP segments are differentiated by different
source sockets. For example, a telnet server at address 10.0.0.1, listening to
port 23, maintains any number of unique connections through the socket
{10.0.0.1 i 23} because the other sockets (identifying the host IP addresses
and port numbers of the client processes) are all unique.

In fact, a server can even maintain multiple connections made through
a single client host. Consider what happens when several users of a
mainframe system (10.0.0.1) all attempt to telnet to a remote mainframe
(192.168.1.1). The server side socket will be { 10.0.0.1 I 23} in all cases;
the client side sockets will be of the form { 192.168.1.1 i /nnnn/} where
/ n n n n / i s some randomly selected port number. The server distinguishes
incoming TCP segments not only by the IP addresses of the clients, but also
by the port numbers so that the server can send the appropriate session
data to the appropriate Telnet session.

17.3 Transmission Control Protocol Basics

One of the hallmarks of TCP is its use of a three-step protocol for establish-
ing a connection. The steps in the three-way handshake can be inferred,

Chapter 17 �9 TransmissJon Control Protocol 357

at least in broad outline, from the stated goals and features of TCP. Because
TCP is connection-oriented, it must have two participants; because TCP
provides a reliable transport, all data transmissions must be acknowledged
when received. Thus, the following steps are necessary:

1. A process sends a request to open a TCP circuit with a target
process. Unlike TCP messages sent in most other situations, this
segment contains no acknow~dgementmbecause the process
is asking to initiate a circuit (a request that may be declined),
there is nothing to ACK. TI~ substance of this initial message
will be along the lines of "Re~es t ing to open a TCP session
from my socket {host(A) I port(A)} to your socket {host(B) I
port(B)}."

2. If there is a process willing to open that socket, it responds to the
request with an ACK. At this point, the circuit is half complete:
host(A) has sent a TCP segment and received an ACK from
host(B).

3. The only thing remaining to establish the connection is for
host(A) to send an ACK to host(B). At this point, both ends
of the connection have sent data and sent acknowledgments of
having received data from the other.

The TCP headers are designed to support TCP protocol interactions such
as this three-way handshake as well as a formal disconnect procedure;
other aspects of the protocol such as flow control and segment check-
sums are also best introduced with the TCP headers. Other basic aspects
of TCP, such as how acknowledgements are sent, how data is re-sent,
compression, and congestion response strategies, are also covered in this
section.

17.3.1 TRANSMISSION CONTROL PROTOCOL HEADERS

Figure 17-1 shows the basic TCP header structure; header fields are
described below.

The standard TCP header is 20 bytes--five 32-bit wordsmlong, but may
be longer if options are present. Figure 17-1 represents the TCP header
fields in digital words of 32 bits (or four octets) in length. Thus, the first two
fields, source and destination port numbers, are 2 bytes (16 bits) each.

The smallest possible TCP segment header is 20 bytes; options are optional,
as is segment payload data. TCP segments may be as small as 20 bytes.

i-I

0 O
h

iX
)

kO

I_0/

m

m

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
.u

+
+

+
1,4

+
0

+
+

+

+
~

+
+

+
,~,

0

o o'1

o
0

p..

k
P

rq

r-i
o

+
+

+
~

+
I

r

+
+

~
+~

l~i
+

+
§

~
§

r
§

~+,
~

+

+
+

o,
o~+

+
+

+
~

+
I

~
~

~3
+

+
+

~
+

+
+

+
+

+
+

+
+

+
~

+
+

+

+
+

+
+

[....
r

+
~

+
+

+
~

m

+
0

+
+

+
~,

+
+

+
+

+
+

+
+

rq

m

m

m

-I-
-t-

-t-
-I-

-I-
-t-

-t-
-I-

-I-
-t-

-t-
-I-

-I-
+

-I-
-t-

-I-
-t-

-I-
-I-

1,4
§

§
§

§
~

§
§

-,-I
I

§
2

4
7

§

§
o

§
2

4
7

§

oj
~

I
~J
_

n~
I

§
~
+

+
+

~
~
§

§
+

m
-I-

+
+

-I-
~

-I-
+

+

+
n

+
+

+
+

+
+

+ I
+

+
+

+ I
+

+
+

+ I
+

+
+

+ I
+

+
Jr-

�
9 + I

-I- ~
-I-~

+
+

oJ
I

§
§

§
+

+
+

A
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
m

+

o
+

+
,-~

I
-,-I

0
+

u
+

+
+

I
+

+
+

+
I

I
+

+
+

+
I

I
+

+
+

+
.~

+
+

+
+

OJ
(13

I
I

4J
-I-

-I-
-I-

-I-
~

~
-I-

-I-
+

+
I~1

q~
I

I
+

+
+

+
0

+
+

+
+

I
I

I
+

~
+

~

+

~
+

+

~
+

~
+

~
+

oD

tli

[,,,,,

111

,II

oo
1-'4

ol,,i

Chapter 17 �9 TransmJssJon Control Protocol 359

Although TCP implementations know the length of the TCP segments
they receive, that information is not included in the TCP headers but rather
calculated from data carried in the IP headers. The TCP Data Offset field
(see below) indicates the size of the header; the IP header length field
indicates the size of the IP header, while the datagram length field indicates
the total size of the datagram (see Chapter 19). By subtracting the length of
the IP and TCP headers from the length of the entire datagram, a network
protocol stack implementation is able to infer the length of the TCP segment
contained in the IP datagram. Thus, TCP segments are complete within an
IP datagram.

For more about determining a maximum segment size, see section 17.3.2
below.

Source Port/Destination Port:. These are the addresses of the communi-
cating processes. The initiating host assigns itself an ephemeral
port number, usually a randomly assigned value greater than 1,023.
The destination port number will initially be the well-known port
associated with the service desired from the remote host.

Sequence Number" Each octet in a TCP data stream is numbered; the send-
ing process chooses an arbitrary number when it begins sending.
Each host has its own data stream and each selects its own arbi-
trary starting point for numbering bytes in that data stream. The
initial sequence number (ISN) typically is set to some arbitrary 32-
bit value, and wraps around to 0 when the highest allowed value
is exceeded. The sequence number field contains the 32-bit value
assigned by the sending host to the first byte in the current segmentm
except when the segment is the first in the sequence. For initial
segments in a sequence, this field contains the ISN (see section 17.3.3,
on protocol establishment).

Sequence numbers are chosen arbitrarily (instead of starting at 0) to
avoid confusion when a connection unexpectedly fails. In that case,
one or both processes may be waiting for an ACK from the other;
meanwhile if a new connection is attempted (with sequence number
starting from 0) the receiving process may interpret that as a duplicate
of a segment it already received. To avoid problems, implementations
would either be required to examine segments to differentiate dupli-
cates from new transmissions or else time out connections relatively
quickly. Performance suffers in either case, so arbitrary sequence
numbers are preferred.

360 Part Three �9 Transport Protocols

Acknowledgment Number: The sending process identifies its data with
a sequence number; the receiving process acknowledges receipt of
data in this field. This field contains the value of the next expected
sequence number from the sender, and serves as an ACK of all data
up to that sequence number, minus 1. If the sequence number value of
the last complete segment received was "4e09 881a 0000 1000" then
the acknowledgment number field will have a value of "4e09 881a
0000 1001".

When the segment contains no data (as during connection ini-
tialization and termination) the acknowledgment number is still
incremented by 1.

Data Offset: The number of 32-bit words in the TCP header, the data off-
set value, indicates where the TCP header ends and the segment
data begins. TCP allows options, so although the segment header
will never be less than 5 words (20 bytes) long, with options it
may be longer. Padding (inclusion of extra bits in a field, all with
value of "0") is used with options to ensure that all TCP headers
end on a 32-bit word boundary. At 4 bits, the maximum value
for the data offset field is 15, meaning that the maximum TCP
header length is 60 octets (15 4-octet words) or 480 bits (15 32-bit
words).

Reserved: RFC 793 left a 6-bit portion header undefined to allow modi-
fications to the protocol later; RFC 3168, "The Addition of Explicit
Congestion Notification (ECN) to IP," defines the use of these bits
(designed bits 8 and 9 of the fourth word of the TCP headers).

Flags: RFC 793 defined six flags, single-bit fields that are either "on" (set
to "1") or "off" (set to "0"); two more were defined in RFC 3168. The
six original TCP header flags are used during the three-way hand-
shake protocol, as well during other protocol interactions; the two
flags added in RFC 3168 are used to add support for explicit con-
gestion notification (ECN). The use and meaning of these flags is
discussed below.

Window: As defined in RFC 793, the window field value is the "number
of data octets beginning with the one indicated in the acknowledg-
ment field which the sender of this segment is willing to accept."

Chapter 17 �9 TransmJssion Control Protocol 361

The workings of the TCP sliding window are discussed in greater
detail below.

The w indow size reported by a receiving process will vary depend-
ing on how much data the process is willing to accept. A large
w indow means the efficiency of the connection is increas ingmthe
process is willing to accept more data, more quickly. A smaller win-
dow will cause the sender to reduce the rate at which data is being
sent.

Checksum: This is a "s tandard" transport layer checksum, used by UDP. 1
Unless one is implemented RFC 793, the most important aspect of
the TCP checksum is that it reliably (in most cases) can indicate
whether or not the segment has been modified or damaged. The TCP
checksum procedure is defined in RFC 793 as follows:

The checksum field is the 16 bit one's complement
of the one's complement sum of all 16 bit words

in the header and text. If a segment contains an
odd number of header and text octets to be
checksummed, the last octet is padded on the
right with zeros to form a 16 bit word for

checksum purposes. The pad is not transmitted
as part of the segment. While computing the
checksum, the checksum field itself is replaced
with zeros.

The checksum also covers a 96 bit pseudo header
conceptually prefixed to the TCP header. This
pseudo header contains the Source Address, the
Destination Address, the Protocol, and TCP
length. This gives the TCP protection against
misrouted segments. This information is carried
in the Internet Protocol and is transferred

across the TCP/Network interface in the arguments
or results of calls by the TCP on the IP.

1This checksum is also specified for the work-in-progress Datagram Control Protocol
(DCP). The Stream Control Transmission Protocol (SCTP) uses a 32-bit checksum; see RFC
2960 and Chapter 19 for more about both.

362 Part Three �9 Transport Protocols

zero

+ + + +

Source Address I
+ + + +

Destination Address I
+ + + +

I PTCL I TCP Length I
+ + + +

The TCP Length is the TCP header length plus
the data length in octets (this is not an
explicitly transmitted quantity, but is
computed), and it does not count the 12 octets
of the pseudo header.

Urgent Pointer: When the URG (urgent) flag is set (URG = "1"), this field's
value indicates the sequence number of the last byte considered to
be part of the urgent data. A common example of urgent data is the
interrupt key in a Telnet session: it is used to interrupt other processes
on the remote server, and it should be accepted even though the
server may be waiting for a process to end or waiting for some other
data.

Options: Protocols are typically extended or modified over time, without
loss of interoperability with earlier implementations, both by using
portions of the protocol header that were previously undefined or
reserved and by adding new options. TCP options may be added to
the header immediately following all the required fields and immedi-
ately preceding the segment data. TCP options are discussed in more
detail later in the chapter.

Padding: When options are used, padding (up to 2 bytes with value
of "0") is added to the header to ensure that the header ends on a
4-octet word boundary. A TCP option must be at least I octet, but no
more than 40 octets long.

Data: The segment payload, if present, follows the header. As mentioned
above, the end of the data portion of the TCP segment is inferred
from the TCP and IP header fields related to datagram and header
length.

Chapter 17 �9 Transmission Control Protocol 363

TCP flag bits are used in the course of protocol interactions, particularly
related to initiating sessions, acknowledging receipt of data, and termi-
nating the session. Before discussing those processes it helps to know
a bit about the defined flags. The six flags originally defined for TCP
include:

URG: The URGENT flag indicates that the segment being sent should be
considered urgent. The urgent pointer field described earlier is valid
only when this flag is set.

ACK: The ACKNOWLEDGMENT flag indicates that the acknowledgment
number in the segment header is valid. This flag is set for all segments
after the very first segment of an active connection; the first segment
can't include an ACK because there is no prior segment to refer to.
Put differently, only the first segment of an connection will have the
ACK flag off; all others should have it set. Also, when the ACK flag is
off, the value in the acknowledgment field is ignored. This bit should
always be on once a TCP connection has been established.

PSI-I: The PUSH flag indicates that the data in the TCP segment should
be pushed out to the application as soon as possible. This might be
used during a terminal session, for example when the data to be sent
would not normally be enough to fill up the TCP send buffer. The
sending TCP implementation might normally wait for 1,000 bytes of
data before sending to achieve better performance; however, if the
data consists of a carriage return sent by a user during a terminal
session, the application would cause the PSH flag to be set to avoid
waiting for more data.

RST: The RESET flag is used to signal the receiving process to reset the
connection. The RST flag may be set in response to segments sent to an
inappropriate (non-existent or non-well-known) port or to abruptly
terminate (abort) a connection. Such a termination is not orderly: data
in flight (but not received) and data received (but not ACK'ed) won't
be properly acknowledged. If the session is re-established, that data
will have to be retransmitted.

SYN: The SYNCHRONIZE flag is used to indicate that the TCP connec-
tion is being established. The "syncrhonization" is that of setting and
exchanging sequence and acknowledgment numbers.

364 Part Three �9 Transport Protocols

FIN: The FINISH flag is set when the sender has no more data to send;
this is the preferred method of terminating a connection, a process
by which all outstanding data is accounted for and acknowledged.

Finally, it is worth noting that TCP segments need not be carrying data.
In particular, when initiating or terminating a connection, the segments
have no data other than that contained in the header to pass between
hosts.

RFC 3168, as mentioned above, adds two new flags for using ECN with
TCP. Congestion is of great concern for TCP, as until recently the only
protocol mechanisms that TCP offered to detect congestion relied on the
timing of dropped segments. ECN uses fields in the IP header to indicate
that congestion is occuring at the internet layer. TCP implementations can
detect Congestion Events (CEs) and respond to them appropriately and
more quickly than previously. The two new TCP flags are:

ECE" The ECN Echo (ECE) flag is used to negotiate the use of ECN during
the session initialization, as well as to indicate that a CE notification
was received.

CWR. The Congestion Window Reduced (CWR) flag is used to indicate
that the congestion window has been reduced in response to an ECN
flagged segment.

17.3.2 SEGMENT SIZE

A TCP segment should be complete within a single IP datagram. It makes
little sense for a sending process to allow a segment to be broken into more
than one IP packetmto do so would mean that if one of those packets is
lost, all of the packets carrying the segment would have to be retransmitted.
Chapter 19 provides more insight into how IP packets might be broken into
pieces by intermediate systems, but communicating TCP implementations
need to determine a packet size, somehow.

One approach is to use the implementation default segment size. The
default maximum segment size (MSS) should be 536 bytes, according to RFC
879, "The TCP Maximum Segment Size and Related Topics." This figure is
derived from the requirement for all hosts to be able to handle IP packets
that are 576 bytes long. In other words, all IP hosts can be assumed capable
of accepting IP packets up to 576 bytesmit is acceptable for a host to refuse

Chapter 17 �9 Transmission Control Protocol 365

a 1,000-byte packet because it is too long, but not acceptable for a host to
refuse a 500-byte packet for that reason.

Working backward, a 576-byte IP datagram will consist of at least a 20-
octet IP header and a 20-octet TCP header; thus, 536 bytes for the minimum
MSS. Other implementations have been known to set the default MSS at
512 bytes, perhaps to allow an additional margin for TCP and IP header
options or perhaps to use the "even" number of bytes (512 is "0000 0010
0000 0000" in binary or 0x0200 in hexadecimal) or bits (4096 bits, or
"0001 0000 0000 0000" in binary and 0x 1000 hex) for improved process-
ing efficiency--the more likely reason, as physical disk sectors are also
512 bytes.

However, this is a minimum value for the maximum segment size. Larger
segment sizes (within limits) are preferred because they reduce the pro-
portionate cost of protocol overhead required to send each segment. All
TCP/IP packet/segments "cost" at least 40 bytes for their respective
headers. For 512-byte segments, the protocols take up roughly 8% of the
bandwidth used. Double the size of the segment to 1,024 bytes, and the
protocol headers take only about 4% of the bandwidth. With segments of
40 K bytes, the protocol headers would take only 0.1% of the bandwidth
used.

As segment size increases, the likelihood of its IP datagram being
corrupted, dropped, or fragmented (see Chapter 19) as it travels from
source to destination also increase. As a result, any gain in protocol effi-
ciency is likely to be outweighed by the loss in efficiency caused by the
need to retransmit. Ideally, the communicating TCP implementations
should negotiate an acceptable compromise: large enough to be more effi-
cient than the minimum default, yet small enough to avoid unnecessarily
frequent retransmissions.

This negotiation is done within TCP using the MSS option (see
section 17.5.1) during the connection initialization (discussed next).

17.3.3 THREE-WAY HANDSHAKE

All TCP connections are initiated through the process known as the
three-way handshake, also referred to as the syncrhonization protocol or
syncrhonization process, already mentioned earlier in this chapter. The
process is illustrated in Figure 17-2, and is described here:

366 Part Three �9 Transport Protocols

1. Process A (on Host A) sends a segment to process B (on Host
B), requesting process B to open a TCP circuit with process A
and telling process B its opening sequence number. The SYN
flag is set to indicate that the circuit is in the process of being
synchronized.

2. B responds to A's initial segment by sending an acknowledg-
ment of the initial segment. It sets the ACK flag and takes
A's initial sequence number, adds 1 to it (the next expected
byte in the sequence), and puts that into the acknowledgment
field. The SYN flag for this segment is also set, to indicate
that synchronization is still not yet complete. At this point,
when A receives this segment, it knows that B acknowledges
the request, the connection from A to B is valid, but the link
back from B to A won't be validated until B receives A's
acknowledgment.

3. A acknowledges B's acknowledgment by putting the correct
value in the acknowledgment field: B's sequence number plus 1.
The ACK flag is also set, since A now knows the correct sequence
number for the next segment from B. The SYN flag is no
longer set, however, because once A sends this segment the
synchronization process is complete.

Once the handshake is complete, the two processes continue to acknowl-
edge each other's transmissions, but now they can start sending data in the
segments as well, so the applications using TCP can communicate with
each other. To improve performance, implementations may start send-
ing data with the third segmentmthe connection can be considered active
once the initiator sends the second ACK, so there is nothing preventing the
initiator from including data in that segment as well.

17.3.4 THE TRANSMISSION CONTROL PROTOCOL-SYNCHRONIZE FLOOD ATTACK

An interesting attribute of the TCP synchronization protocol is that, as
originally defined, there is a simple exploit of the protocol that can result
in a denial of service (DOS) attack. Such attacks are intended to prevent
anyone from using a host by tying up its resources in some way: perhaps
by overloading the system, or perhaps by causing it to crash, or both.

When a single, legitimate request to open a TCP circuit is accepted by the
host and processed, a synchronization response is sent out (the SYN and
ACK flags are set) and the requesting host sends back the final segment

Chapter 17 �9 Transmission Control Protocol 367

Host A

Send a TCP open
request, with SYN bit
set, and a sequence
number of 167.

Receive the
acknowledgment
frame, send back an
acknowledgment
number of 499.

Ne twork Traf f ic

Host B

Receive the open
request, send back a
frame with a sequence
number of 498, and
an acknowledgment
number of 168.

Receive the
acknowledgment
frame. The
handshake is
complete.

Figure 17-2: The sequence number and acknowledgment number represent
byte counts in the streams of data being sent between two hosts connected
using TCP.

in the handshake. Depending on the type and configuration of the host
hardware, it may be able to handle many legitimate requests in a short
period.

In the SYNflooding attack that first appeared in 1996, attackers send a flood
of phony synchronization requests (segments with the SYN flag set) to open
TCP connections with the targeted host. Even relatively small numbers
of such requests, sent over relatively low-bandwidth dialup lines, were
capable of disabling systems across the internet since 1996.

Interestingly, this vulnerability is implicit in the TCP protocol; there is no
way to eliminate it entirely. However, there are strategies that can be used
to minimize the impact of such attacks and to deter many of them. These
include:

Improved firewall filtering can deflect some attacks. Because
many of these attacks use spoofed (forged) IP addresses, filtering
should be done to block IP packets that appear to be originating

368 PartThree �9 Transport Protocols

from the wrong places. For example, a router should never
accept an inbound packet (a packet it receives on its interface
with the external internet) that claims to be originating from a
host inside the router's network.

�9 Configure hosts to wait longer before responding to synchro-
nization requests; the requests can then be safely ignored if a
SYN flood attack is detected.

�9 Reduce the timeout value for synchronization ACKs. An
attacker can unleash many SYN requests in a short time; reduc-
ing the wait for the attacker to complete the handshake makes
it easier to cut such attacks short.

�9 Use appropriate tools (intrusion detection systems, for exam-
ple) to detect attacks in progress.

Hardware and software vendors have generally been quick to respond to
these attacks, so there are numerous fixes, patches, and upgrades available
to reduce the exposure to such attacks.

17.3.5 TRANSMISSION CONTROL PROTOCOL CONNECTION TERMINATION

Although there is only one way to initiate a TCP connection, termination
is a different story. Because the connection is duplexed with two flows
of data, one in each direction, an orderly close calls for a termination
announcement in each direction. And because all TCP data is acknowl-
edged, each termination announcement requires an ACK. Thus, orderly
termination requires the exchange of four segments.

An orderly termination begins when one process sends a segment with the
FIN flag set. This indicates that the process has no more data to transmit.
When the receiving process gets this segment, it sends an ACK and then
(usually) sends its own FIN segment, to which the first process also sends
an ACK.

It is possible for a TCP connection to be half closed and half open. This
would occur when one side (A) sends a FIN segment and the other side (B)
sends an ACK but does not send its own FIN segment. In this case, B can
continue to send data to A, and A will continue to ACK that datambut
A can't send any new data to B. For example, an application might send
a single command to a remote host and then terminate transmission; the
remote host could return the results of that command without needing any
additional data from the application.

Chapter 17 �9 Transmission Control Protocol 369

During an orderly circuit termination, the communicating processes must
continue to acknowledge data even if it arrives after a FIN segment. When
that happens, the receiving process will be aware that there is something
missing when it checks the sequence number; if some intervening seg-
ment has been lost, the receiving process will ignore the FIN segment
and wait for the missing segment. The sender, waiting for ACKs of both
the missing segment and the FIN segment, will likely have to resend
both.

As mentioned earlier, it is also possible for a process to abort a connection
unilaterally by sending a segment with the RST flag set. When this occurs,
no more data or ACKs are transmitted.

17.3.6 ACKNOWLEDGMENT, RETRANSMISSION~ AND FLOW CONTROL

Once the connection has been established, each side may transmit but usu-
ally one participant will do the bulk of the transmission. For example,
any application stream involving file transfers (whether SMTP deliver-
ies or FTP transfers) will invariably consist mostly of file data being
sent from the server to the client. However, the client must still ACK
data that has been received, and as a result will periodically transmit
a TCP segment to do so. Because TCP provides a byte stream service,
a single ACK can be used to acknowledge receipt of more than one
segment. The process sending the bulk of the data also sends acknowl-
edgments along with that data--to acknowledge receipt of the other host's
acknowledgments!

Assuming that conditions are optimal, both systems will transmit TCP
segments back and forth, receiving each other's acknowledgments and
continuing to transmit new segments. However, when conditions are
sub-optimal, such as often happens in large internets, network traffic
can be delayed, fragmented, or corrupted (or all three). Unlike underliv-
ered/underliverable UDP datagrams, a response is required when TCP
segments are lost or damaged. Because TCP is a reliable protocol and
because all TCP data must be acknowledged, when data is lost or when an
ACK for data is lost the data must be resent.

Instead of waiting for acknowledgment of receipt of every individual TCP
segment before sending another one, TCP implementations determine
some number of bytes they are willing to send before expecting to receive
acknowledgments.

370 Part Three �9 Transport Protocols

Calculating that number depends on the receiving TCP implementation's
transmission window--what the host at the other end indicates is the
maximum number of bytes it is willing to acceptmas well as the time it
takes to move a packet from host to host and back, or the round-trip time
(RTT). More than one mechanism may be used to estimate the RTT in a
circuit, but that value and the receiver's transmission window are used
to help calculate how long the sender should wait for an ACK. The most
obvious approach is to check the system clock when a segment is sent out
and then check it again when an ACK for data in that segment is received,
but there are others.

Getting the RTT value right is important: wait too short a time, and the
sender will start retransmitting data that hasn't yet reached its destination;
wait too long a time, and the receiver will wait too long a time to restart
when the connection is lost. When it sends a segment, the host starts a.
countdown; if an acknowledgment for the segment is not received when
that time is up, the segment is retransmitted.

For example, if the receiving TCP implementation signals at the start of
the connection that it can handle up to 10 K bytes of data (its transmission
window), and the sender determines that the RTT is 10 seconds. In that
case, the sender can send 10 TCP segments of 1-K bytes each, pausing for
1 second between each, and the first ACK should arrive at the sender just
as the last segment is sent out.

TCP lets communicating processes determine how much data they are will-
ing to process at any given time. Every time a segment is sent it includes
a value indicating a current window size, so the host at the other end can
modify the amount of data it is sending to accommodate the receiving host.
This helps avoid flooding a smaller, slower computer's buffers when com-
municating with a larger or faster computer. The window size indicates
the number of segments that can be considered to be "in transit" and the
size of the window affects how fast segments are sent.

The optimal size of a transmission window depends on how fast data
can be transmitted between hosts and how much latency there is in the
connection. The problem is to make sure that the pipeline between hosts
is always full of data, while never being too full of data. Imagine the TCP
connection as a conveyor belt carrying bits of data to be processed (for the
sake of the analogy, imagine that there is a second conveyor belt running
in the opposite direction to carry responses and acknowledgments back to
the sendermsee Figure 17-3).

Chapter 17 �9 Transmission Control Protocol 371

From process A

I Datal IDatal [Datal lDatai [Datal IDatal

"To pr~.e~ a

To process A

,I

i Dst i i i ! Data !

, ",":~,>,;.;.. "~"," ~ , i , ,~ ,~ , i~~ , :~ , l~mWmtWmt

~~om process B

Figure 17-3: Data moving between processes using TCP.

The distance between the sender and recipient can be short, meaning that
there is low latency, or it can be long, meaning there is high latency. Assume
that the conveyor belts move at 4 units per second, and that the two hosts
are separated by 10 units. Thus, it takes a little more than 5 seconds for
a round-trip: you send a chunk of data from one process to another, it
takes 2.5 seconds to arrive and some small amount of time is taken to
create an acknowledgment and put it on the belt going back to the sender,
2.5 seconds later.

Five seconds is a long time to wait for an ACK without sending anything.
If the receiving process can handle four chunks/second, the sender could
actually just start sending its packages at that rate. In this case, the trans-
mission window is about 5 units wide. If it doesn't start getting ACKs
after 5 seconds, though, the sender might have to resend some or all of the
packagesmas well as consider making the window smaller. If the ACKs
start coming sooner, the receiving process might indicate it can handle

372 Part Three ~ Transport Protocols

more segments in a given time---in other words, it wants a bigger trans-
mission window. Transmission windows allow the sender and receiver to
adapt to variations in network conditions: when a link is congested, seg-
ments are lost and the sending process can slow down the rate at which
data is transmitted.

17.4 Transmission Control Protocol Performance

Responding to congestion with a sliding transmission window is one
important mechanism specified for TCP; four other performance enhance-
ments have been added to the standards track specification for TCP. These
techniques, all developed by Van Jacobson, are documented in RFC 2581,
"TCP Congestion Control." Co-author of RFC 2581, the late W. Richard
Stevens, also wrote an earlier version of the specification in RFC 2001 as
well as the seminal reference, TCP/IP Illustrated. Without these enhance-
ments TCP would be a considerably less powerful transport protocol and
TCP/IP would be a less useful protocol suite. The rest of this section
provides brief descriptions of each algorithm as it is used for TCP.

17.4.1 SLOW START

Early TCP implementations did nothing special for the first few segments
sent after the connection was established. As soon as the connection was
made, as many segments as filled the window would be transmitted down
the line. Although this works when the hosts are on the same local network,
it presents a problem when the hosts are connected across a routed inter-
network. Intervening routers may have to queue the traffic carrying the
segments, so some part of that initial set of segments can be lost and cause
significant performance problems.

The slow start algorithm addresses this problem of regulating the speed of
transmission of segments by observing how fast the other side acknowl-
edges the segments that have already been sent. If the ACKs come in
quickly, the transmission window can be made larger; if the ACKs dribble
in slowly, the transmission window may need to be made smaller.

With slow start, the sending process maintains a congestion window, whose
value is initially set at one segment, and is increased every time an ACK
is received. To determine the number of segments a sender can have in

Chapter 17 �9 Transmission Control Protocol 373

transit at any given time, the sender compares the values of the congestion
window and the transmission window and is limited to the smaller of the
two values.

With slow start, TCP implementations are able to gradually work their
way up to a mutually acceptable value for the rate at which segments
are transmitted, while minimizing the impact of sending too fast. In the-
ory, the sender starts by transmitting a single segment (at which point the
congestion window is set to one). When it receives an ACK of this first
segment, the congestion window is increased to two--at which point it
sends out two segments. When the recipient sends out ACKs for those two
segments, the congestion window increases to four. Now, the sender can
transmit four segments; when those are ACK'ed, the congestion window
doubles again to eight. Eventually, if the congestion window exceeds the
transmission window, the smaller value will be used to limit the window
size. The other possibility is that the capacity of some intermediate system
will be exceeded, in wihch case the sender will have to reduce the size of
the congestion window.

Let's consider the vehicular analogy:

A vehicle traveling at 1,000 kilometers per hour along a reasonably clear
road encounters a huge boulder. Slamming on the brake, the driver waits
until it is clear to go around the boulder and then starts accelerating again,
starting at 1 kph, then 2 kph, doubling every second until achieving a
maximum sustainable rate.

17.4.2 CONGESTION AVOIDANCE

Almost always implemented in conjunction with slow start, the congestion
avoidance algorithm helps reduce packet loss by acting as a brake, to slow
down transmissions when the sender receives indications that packets are
being lost somewhere along the line. Congestion occurs in networks for
the same reasons it occurs in motor vehicle traffic: a high-volume roadway
is being routed into a lower-volume roadway, two or more roadways are
merging into a single roadway with lower overall capacity than the others
put together, or a roadway is operating at a lower than normal capacity
(a lane is blocked by a stalled vehicle, for example).

With slow start, all segments (or vehicles) would come to a halt at any
obstacle and then gradually speed up again until they hit another obstacle.

374 Part Three �9 Transport Protocols

This is as bad a strategy for network traffic as it is for vehicular traffic. The
congestion avoidance algorithm increments (increases by one segment for
each acknowledgment received) the congestion window when congestion
is detected.

Congestion is assumed to be occuring when a segment acknowledgment
timer expires (meaning that no ACK has been received for that segment)
or when duplicate ACKs are received (meaning that the original ACK
segment timer expired). In either case, a timeout occured usually due
to a complete stop to traffic somewhere along the route. In this case the
sender begins the slow start algorithm from scratch, setting the congestion
window back to 1. From there, slow start continues until the congestion
window is half as large as it was when the timeout occured.

This is where congestion avoidance begins: rather than doubling the win-
dow back to the same value it was when the congestion occured, the win-
dow increases only by one segment at a time. Let's consider the vehicular
analogy:

A vehicle traveling at 1,000 kilometers per hour along a reasonably clear
road encounters a huge boulder. Slamming on the brake, the driver waits
until it is clear to go around the boulder and then starts accelerating
again, starting at I kph, then 2 kph, doubling every second until reaching
512 kphmat which point, the acceleration is slowed down to I kph/second.
This approach is only prudent, given that there may be more boulders
around; if the vehicle accelerates up to 600 kph before it hits another
boulder, it will stop, accelerate rapidly to about 300 kph, and then more
cautiously.

Network traffic may not hit boulders, but if it is going "too fast," then
segments may be lost. Gradually reducing the rate at which a sending
process attains its top speed helps prevent overloading the congested
link.

17.4.3 FAST RETRANSlVUT

Duplicate ACKs may be caused either by lost segments or by segments that
have been delivered out of order. If the segment was actually lost, early TCP
implementations had to wait for a timer to expire before retransmitting the
missing segment. If the segment was delivered out of order, then it will
eventually be ACKed and the sender won't have to retransmit it.

Chapter 17 �9 Transmission Control Protocol 375

Fast retransmit is a simple algorithm: if three or more duplicate ACKs are
received in a row, the TCP implementation can assume that there is a miss-
ing segment and therefore resend it. If the segment was merely delivered
out of order, waiting for one or two duplicate ACKs should be enough to
clear up the matter. If it takes longer, just resending the missing segment
will be the right choice in almost all cases.

17.4.4 FAST RECOVERY

When a duplicate ACK is received, it means that there may be some con-
gestion to avoid. When the fast retransmit algorithm is put into play, the
fast recovery algorithm dictates that the TCP implementation invoke the
congestion avoidance algorithm.

17.5 Improving Transmission Control Protocol

By the time RFC 793 was published, TCP had been under development for
much of the preceding decade. By 1982, it was largely considered complete.
A TCP implementation published in 1982 could (in theory, anyway) be
interoperable with a TCP implementation published in 2002--despite all
the changes that have occured in the intervening 20 years: more available
bandwidth, more powerful computers, larger networks and internets, and
more.

Rather than attempt to upgrade TCP to meet new challenges, changes have
been made manageable in TCP by incorporating them as TCP options.
New implementations add support for more options but they continue to
interoperate with other implementations that don't support those options.
Upgrades, after which older versions of a protocol can no longer interop-
erate with newer versions, threaten to fragment the interoperable internet
by preventing hosts that don't support the new version from communi-
cating with hosts that do (and vice versa). As we'll see in Chapter 27,
attempting to upgrade a fundamental internet protocol can be a frustrating
process.

This section introduces the most common and important TCP options,
followed by discussion of an important performance-related modification:
Selective Acknowledgment (SACK). The last section lists many of the RFCs
that describe TCP and ways in which it can be improved.

376 Part Three �9 Transport Protocols

17.5.1 TRANSMISSION CONTROL PROTOCOL OPTIONS

The TCP header allots up to 40 bytes for options following the required
header fields and before the segment data. As already mentioned, when
the options do not terminate on a word boundary, up to 2 bytes of data are
added as padding.

TCP options always start with a single octet, containing a "kind" value (as
in, "what kind of option is this?"). Two types of option are defined, the
first consisting of a single byte; the other are longer than I byte. Multiple
byte options are at least 2 bytes long, consisting of the 8-bit kind value
and an 8-bit option length value. The length includes the first 2 bytes, and
up to 38 bytes of data are possible.

RFC 793 defines three basic options:

End of option list: This option indicates that there are no more options to
follow and consists of a single octet with a value of 0; it is different
from padding only in that it immediately follows the last option data.
It is not used when the option ends on the 4-octet word boundary;
when the option ends at the first octet of a word, the end of option
list option will be used, followed by 2 bytes of padding.

No-operation: This option consists of a single octet with a value of 1 and
causes the recipient to do nothing other than continue processing the
segment options. It may be used to separate options, particularly if
the first option does not fall on a word boundary. While the end of
option list option indicates that no more options are to be processed
and signals the recipient to begin processing the segment, the no-
operation option acts as a placeholder between options. If the no-
operation option is present, there will be at least one more option yet
to process.

Maximum Segment Size (MSS): This option consists of 4 octets, the first,
with a value of 4, identifying it as the MSS option; the second octet
indicates the option length is equal to 4 octets. The last 2 octets indi-
cate the maximum segment size to be sent. As a 16-bit value, the
maximum segment size possible under RFC 793 TCP is 65,535 octets
long.

This option must be used during the initialization sequence, other-
wise it will be ignored. If an MSS value is not specified during the

Chapter 17 �9 Transmission Control Protocol 377

initialization sequence, senders can use any segment size they wish.
As already mentioned, all TCP/IP-compliant hosts can be assumed
capable of handling a segment of 536 octets, so in the absence of a
specific MSS the sender is most likely to opt for the highest value
known to be acceptable to any hostmeven though the specification
permits the sender to use any size if no MSS is specified. Sending a
large segment will only be more efficient if the recipient can accept
it; as the segment size increases, so do the odds that it will be rejected
as being too large.

Since 1982, almost two dozen other options have been identified, although
only about half have been specified in published RFCs. Valid TCP options
are listed at the internet assigned numbers authority (IANA) web site
(http://www.iana.org/assignments/tcp-parameters). Of these, the most
important is undoubtedly the SACK option, to be discussed in the next
section.

Two other important options include:

WSOPT (Window Scale) option: RFC 793 limits the TCP window size to a
maximum of 65,535 octets. This may be enough for processes running
on hosts connected to 10-Mbps Ethernets, but it seems much smaller
on gigabit (1,000 Mbps) Ethernets. This option permits the negoti-
ation between the two hosts of window scaling. The option uses
3 bytes, 1 for option kind and 1 for length, with the third indicat-
ing a scaling factor (a factor of 2) to use on the sender's receiving
window. Window scaling may be performed on both transmission
and receiving windows, so a host might send this option (during the
initialization sequence only) with a scaling factor of 1, meaning it is
willing to do scaling on its own transmission window but not on its
receiving window.

Timestamps option: Given that TCP sequencing numbers are limited to
32-bit values, two communicating processes transmitting over (and
saturating) a 10-Mbps Ethernet would need about an hour to move
the roughly 4 billion or so octets necessary to cycle through all avail-
able sequence number values. Increase the bandwidth by a factor of
100 by moving to gigabit Ethernet, and the sequence number space
can be cycled in less than a minute. The timestamps option allows
both hosts to check each others' clocks, to make sure that neither
has cycled through the sequence numbers and to avoid ACKing old
segments.

378 Part Three �9 Transport Protocols

TCP options like windows scaling and time stamping make it possible to
support the new faster networks by allowing larger window sizes. Time
stamping segments helps to eliminate ambiguity caused by the wrapped
sequence numbers, as well as improving flow control by making roundtrip
time estimation more accurate.

17.5.2 SELECTIVE ACKNOWLEDGMENT

TCP's acknowledgment mechanism is quite elegant: the ACKer sends a
single value to indicate that all numbered octets in the sequence, up to the
ACK value, have been received. The receiver does not have to ACK every
segment, particularly if they are being delivered in a nice steady stream.
Depending on many factors, a single ACK might notify the sender that 536
octets have been received, or 5,000 or even 50,000.

This elegance can be expensive, especially when in a flow of many seg-
ments, one is lost. Under RFC 793, if a host receives every segment in a
stream except for the first segment, it must discard all those segments and
wait for the first segment to be retransmitted (after the sender times out
while waiting for an ACK for that initial segment).

This can be a waste of bandwidth, particularly as more bandwidth becomes
available and more data is shoved down the data pipeline before any
ACKs are received. The solution for TCP, called selective acknowledgment
(SACK), was first published in the experimental RFC 1072, "TCP Exten-
sions for Long-Delay Paths," in 1988. Selective acknowledgment had
already been tried in other experimental protocols in the 1980s, and the
experience to that point had been positive. By 1996, RFC 2018, "TCP
Selective Acknowledgment Options," was published as a standards track
specification.

Hosts negotiate the use of SACK during the circuit initialization pro-
cess; the SACK-permitted option is 2 octets long and simply indi-
cates that the sender will support SACK. Once negotiated, SACK
itself is straightforward: instead of using a single acknowledgment
value to indicate the last byte received, the recipient uses the SACK
option to indicate that it will be ACKing one or more ranges of bytes
received.

The SACK fields consist of pairs of acknowledgment numbers: the first
indicating the ACK number for the first byte received in a block of received

Chapter 17 �9 Transmission Control Protocol 379

data, and the second indicating the ACK number for the last byte in
the block. Each ACK number is 32 bits, and the SACK option itself uses
2 octets, so no more than four discrete blocks of data can be selectively
ACKed in a single TCP segment (TCP options may use no more than 40
octets; each block requires 8 octets, and the option itself requires 2 octets,
for a total of 34 octets plus padding).

17.5.3 TRANSMISSION CONTROL PROTOCOL EXTENSIONS AND REVtStONS

In addition to the modifications, options, and additions to TCP already
noted, the IETF has published dozens of RFCs that bear on TCP in some
way. These RFCs provide a good resource for the interested reader:

RFC 3168- The Addition of Explicit Congestion
Notification (ECN) to IP

RFC 3155- End-to-end Performance Implications of
Links with Errors

RFC 3042- Enhancing TCP's Loss Recovery Using
Limited Transmit

RFC 2988- Computing TCP's Retransmission Timer

RFC 2923- TCP Problems with Path MTU Discovery

RFC 2884- Performance Evaluation of Explicit
Congestion Notification (ECN) in
IP Networks

RFC 2883- An Extension to the Selective
Acknowledgement (SACK) Option for TCP

RFC 2861- TCP Congestion Window Validation

RFC 2760- Ongoing TCP Research Related to
Satellites

RFC 2757- Long Thin Networks

RFC 2582- The NewReno Modification to TCP's
Fast Recovery Algorithm

380 Part Three �9 Transport Protocols

RFC 2581- TCP Congestion Control

RFC 2525- Known TCP Implementation Problems

RFC 2488 : (BCP0028) Enhancing TCP Over Satellite
Channels Using Standard Mechanisms

RFC 2416 : When TCP Starts Up with Four Packets
into Only Three Buffers

RFC 2415- Simulation Studies of
TCP Window Size

Increased Initial

RFC 2414- Increasing TCP's Initial Window

RFC 2398- FYI0033 Some Testing Tools for TCP
Implementors

RFC 2267 : Network Ingress Filtering- Defeating
Denial of Service Attacks Which Employ
IP Source Address Spoofing

RFC 2018- TCP Selective Acknowledgement Options

RFC 1693- An Extension to TCP- Partial Order
Service

RFC 1323- TCP Extensions for High Performance

RFC 1263- TCP Extensions Considered Harmful

RFC 1146- TCP Alternate Checksum Options

RFC 1144" Compressing TCP/IP Headers for
Low- Speed Serial Links

Searching the RFC Editor's archive for TCP-related documents (at
www.rfc-editor.org) returns over 100 RFCs; those listed here are among the
more interesting and important. Simply browsing the titles will give some
idea of the extent of the issues related to TCP. Perhaps most important is
a quest for improving performance in the form of recovering quickly from
network congestion, reducing the impact of network congestion before

Chapter 17 �9 TransmJssJon Control Protocol 381

errors occur, and calculating the optimal values for TCP variables such as
transmission and reception windows, timeouts, and segment size.

Other issues relate to using TCP over networks with different attributes.
For example, the long thin networks (LTNs) and long fat networks (LFNs) pose
different problems for TCP. A "long" network is one in which the latency
is high and it takes a long time for a segment round trip: from source to
destination, and back (for the acknowledgment). A network is "thin" or
"fat" depending on how much bandwidth is available. High-bandwidth
networks can carry a lot of data, and can be compared to "big fat" pipes
carrying vast quantities of fluids; thin networks are those with skinny
little pipes (such as those based on low-speed modems or early wireless
networks). The higher the latency of the network, the longer hosts should
wait before resending unACKed segments, compared to networks with
lower latencies.

Sending TCP over satellite channels, as described in RFC 2488, "Enhancing
TCP over Satellite Channels Using Standard Mechanisms," has its own
unique problems: long round-trip delays to high-orbit satellites can result
in very high latency as well as high error rates due to radio transmission
noise, low earth orbit satellite networks can result in highly variable latency
over time due to variations in distance a transmission travels to reach
the nearest satellite, and often low bandwidth. RFC 2488 outlines how
standard TCP flow control responses behave in these circumstances and
discuss how other mechanisms such as forward error control (FEC) and path
MTU (the maximum transmission unit [MTU] is the largest packet size that
can be sent between two IP hosts, and the path MTU is the largest packet
size possible in a particular route between two hosts) can be applied at the
lower protocol layers. Path MTU will be discussed in Chapter 19.

17.6 Chapter Summary
UDP is the minimalist transport layer protocol, but TCP is the full-
featured version: TCP is documented in many RFCs, with many revisions,
additions, and adjustments, not to mention reports of research and
development to improve it.

TCP is complicated, from the demanding protocols for initiating a TCP con-
nection to the mechanisms for keeping track of which segments have been

382 Part Three �9 Transport Protocols

sent, which acknowledged, how many should be sent before an acknowl-
edgment is received, and sliding windows for sending and receiving data.
Where as UDP offers nothing more than the bare minimum, TCP offers
almost as many features as can be imagined at the transport layer.

Many years of practical experience on untold numbers of hosts and net-
works as well as on the global internet, coupled with the vast research and
development efforts over the years as documented in RFCs and elsewhere,
ensure that although TCP may not always be the only transport protocol
for most applications it will remain an important one. TCP will continue
to dominate the internet as an important transport layer protocol for years
to come.

However, in recent years we have seen the introduction of SCTP as a
standards-track protocol as well as an increasing willingness of network
engineers to consider alternatives to TCP (and UDP). As we see in the next
chapter, not only is TCP not the only possibility for full-featured trans-
port layer protocol, but neither is UDP the only possibility for barebones
transport layer protocol.

Transport Layer Protocols
of the Future

For many years, transmission control protocol (TCP) and user datagram
protocol (UDP) were sufficient to handle all transport layer needsnjust as
some ice cream sellers offer only chocolate and vanilla to their customers.
TCP offers reliable transport with flow control and many other features,
while UDP provides only the most basic transport function of providing
an interface linking application layer protocols with the internet layer pro-
tocols. Limiting the number of transport layers reduces the complexity
of implementing application protocols because there are three choices for
the designers at the transport layer: implement an interface with TCP,
with UDP, or with both. Likewise, internet layer implementers need only
design interfaces for two transport layers protocols, so the internet layer
protocol implementation does not require any special accommodation for
particular applications.

It has been unusual for a set of modern computing standards to remain
largely unchanged and unchallenged for decades, but new alternatives

383

384 Part Three �9 Transport Protocols

for application implementers are slowly gaining acceptance. This chap-
ter presents a new internet standards-track protocol, the Stream Control
Transmission Protocol (SCTP), and one work-in-progress protocol, the
Datagram Control Protocol (DCP). Each takes a different approach to
the transport layer, and each will succeed or fail on its ability to solve
a networking problem better than existing solutions. "Better" might
mean at a lower cost, with improved efficiency, with higher perfor-
mance, increased services, higher degree of interoperability, or some
combination.

18.1 Stream Control Transmission Protocol

As long as an application can use all of its features, TCP is an acceptable
solution. However, TCP imposes limitations as well in its lack of flexibility:
although with selective acknowledgment (SACK) TCP provides a limited
mechanism for out-of-order delivery, some applications don't really care
whether data is delivered in order or not. Likewise, some applications work
well with TCP's byte stream delivery, while others tend to be oriented to
well-defined formats for data that must be delivered when the data units
are complete rather than whenever a buffer fills with enough data for a
complete segment payload (TCP uses PSH or URG flags to designate data
that needs to be sent immediately).

During the 1990s, researchers working on the problem of transmitting
publicly switched telephone network (PSTN) signals I across the internet
found that UDP offered too little while TCP offered too much for their
new application. TCP works well for traditional data transfer tasks such
as moving files around the internet, but it performs less well for carrying
telephony signaling data. Although telephony in general includes the task
of carrying a voice (or data) signal from one telephone set to another,
there is a great deal more that must be accomplished to provide telephony
services such as:

Carrying the dual-tone multi-frequency (DTMF) signals, other-
wise known as the sounds generated by pressing a telephone
set's keypad.

1Signaling System 7 (SS7) is the dominant protocol for telecommunications signaling, and
the SIGTRAN (Signalling Transport) working group of the IETF proposed the move to a new
transport protocol capable of handling SS7.

Chapter 18 �9 Transport Layer Protocols of the Future 385

�9 Transmitting signals indicating call status, such as a busy sig-
nal, fast-busy (no available lines), call-waiting, and telephone
call ringing.

�9 Transmitting call information, including caller ID.
�9 Allowing the negotiation of special services such as conference

calling and delivering of calls to internal extensions.

Telephony signaling, it turns out, benefits from a transport protocol that
provides a more or less ordered delivery service (rather than TCP's strict
ordered delivery service) as well as a record-oriented data transfer (rather
than TCP's stream orientation). In addition, PSTN signaling can be much
more complicated than typical data transfer-based applications. Whereas
TCP provides applications a single socket (IP address and TCP port num-
ber) for each half of a connection, telephony signaling is more likely to
involve multi-homed hosts, which are hosts with more than one IP address,
usually on more than one network; routers, for example, are multi-homed
hosts. TCP offers no obvious mechanism to allow a single connection to
be carried through more than one network path. Finally, once it's been
decided to design a new transport layer protocol, why not directly address
the problem of SYN flooding attacks?

The rest of this section outlines the architecture, protocol elements, and
function of SCTP.

18.1.1 STREAM CONTROL TRANSMISSION PROTOCOL ARCHITECTURE

SCTP grew out of the needs of applications that must do PSTN signaling
over the internet. The decision to create a new protocol was not taken
lightly, as efforts to implement IP telephony and similar applications over
either TCP and UDP have been ongoing since the late 1980s. As described in
RFC 2960, "Stream Control Transmission Protocol," SCTP is similar to TCP
in that it provides "a reliable transport operating on top of a connectionless
packet network" (in other words, IP) and offers these services:

�9 Acknowledged error-free non-duplicated transfer of user data.
�9 Data fragmentation to conform to discovered path maximum

transmission unit (MTU) size.
�9 Sequenced delivery of user messages within multiple streams,

with an option for order-of-arrival delivery of individual user
messages.

386 Part Three �9 Transport Protocols

* Optional bundling of multiple user messages into a single SCTP
packet.

�9 Network-level fault tolerance through supporting of multi-
homing at either or both ends of an association.

�9 Appropriate congestion avoidance behavior and resistance to
flooding and masquerade attacks.

SCTP is similar in some ways to TCP, but it provides a more flexible trans-
port capable of handling multiple flows of data through a single logical
connection between two nodes. Although both transport protocols sup-
port flows, which imply two endpoints, SCTP allows application layer
processes to maintain flows even when data might pass in and out of the
node over different internet layer interfaces. In other words, two hosts can
communicate with SCTP.

Of the services SCTP provides, the newest one is the "sequenced deliv-
ery of user messages within multiple streams." SCTP nodes are able
to take advantage of multi-homing, meaning data from a sending node
might arrive on any active network interface, but the user applications
may also define multiple streams of data. Unlike with TCP, an SCTP-
based application can define one stream of data as an unstructured byte
stream for data transmission and another for managing the connection
(and others for other purposes, if needed). The same functionality can
be approached with TCP only by defining completely separate TCP con-
nections for each function, an approach that can be costly in terms of
application performance.

18.1.2 STREAM CONTROL TRANSMISSION PROTOCOL ELEMENTS

SCTP can be said to consist of some new protocol constructs, as well as its
basic set of protocol functions. These are introduced in this section.

Connections made between processes are permitted to communicate with
SCTP over broadly defined association, the complete set of ports and IP
addresses that each node advertises as being available as transport addresses
(port and IP address pairs). Therefore, SCTP can be used completely only
when implemented on multi-homed hosts.

TCP nodes exchange data over a circuit defined by a single port and
IP address for each node. If a node's IP address becomes unreachable
(perhaps the hardware fails or there is a network failure), the TCP circuit

Chapter 18 �9 Transport Layer Protocols of the Future 387

will, eventually, time out. SCTP nodes are able to specify more than one
port /address through which they can send and /o r receive data, and the
SCTP association is defined as the complete set of possible combinations
of the advertised transport addresses.

For example, the table below lists transport addresses for two nodes,
A a n d B.

Node A

192.168.1.1:343

192.168.100.10:343

192.168.232.50:343

Node B

10.1.1.1:3454

10.1.1.244:3494

10.200.50.100:4444

The SCTP association, therefore, consists of the set of combinations of all
of those transport addresses (corresponding to all the different circuits
that are possible between nodes A and B):

192.168.1.i:343::i0.I.i.I:3454

192.168.1.I:343::I0.I.I.244:3494

192.168.1.1:343::10.200.50.100:4444

192.168.100.i0:343::i0.I.I.I:3454

192.168.100.i0:343::i0.i.i.244:3494

192.168.100.10:343::10.200.50.100:4444

192.168.232.50:343::I0.i.I.I:3454

192.168.232.50:343::10.1.1.244:3494

192.168.232.50:343::10.200.50.100:4444

The same SCTP connection may be carried over any (or all) of these con-
nection specifications, while a TCP circuit would have to be set up and
maintained for each. Figure 18-1 shows how this association would look
graphically.

The two communicating processes can send data over nine different inter-
net routes in this case, using a single SCTP association. Of course, the
number would vary depending on how many internet interfaces each host
allows to be used in the assocation.

388 Part Three �9 Transport Protocols

A

i l I i P

Global
Internet

ISP
A 3 :

. . . .

" " :

.

. : : , . . .

�9 " . . : , :

ISP

t �9 B
, , . . .

Figure 18-1: Connecting two multi-homed hosts with a single SCTP
association.

The authors of RFC 2960 define the SCTP stream as "a sequence of user
[application] messages that are to be delivered to the upper-layer pro-
tocol with respect to other messages within the same stream." A stream
might consist of the sequence of words a person is speaking, while another
stream might consist of commands that same person issues with respect
to the voice connection (e.g., to put the caller on hold, add another caller
to a conference, and so on). As the RFC authors explain, this definition
contrasts with the way it's used in TCP, where it refers to a sequence of
bytes.

One more concept should be introduced here: the SCTP chunk. Per RFC
2960, a chunk is a "unit of information within an SCTP packet, consisting
of a chunk header and chunk-specific content." In other words, it might be
considered a PDU (protocol data unit) in the same way that a segment is
TCP's PDU, except that SCTP packets can contain more than one chunk,
as will be made clear in the next section.

Chapter 18 �9 Transport Layer Protocols of the Future 389

18.1.3 STREAM CONTROL TRANSMISSION PROTOCOL FUNCTIONS

The SCTP protocol itself consists of several protocol functions, which will
be described here briefly:

Association Startup and Takedown: The SCTP association is similar in
function to the TCP connection, and initializing the association
requires an exchange of protocol messages. To prevent attacks similar
to TCP SYN flooding, a four-step handshake protocol, using a cookie,
a small piece of data used to store a system's status at a given time,
and used in this case to maintain information about the association.
Each node exchanges initialization and acknowledgment messages,
including information about transport addresses.

Also like TCP, a formal and orderly termination process is speci-
fied; unlike TCP, when one node terminates the session, the other
node must also terminate the session. Likewise, a session can also
be aborted (terminated unilaterally and without formal exchange of
messages).

Sequenced Delivery Within Streams: Again, SCTP functions similarly
to TCP, assigning sequence numbers to data being transmitted.
However, unlike TCP, SCTP nodes negotiate during the association
initialization process how many separate streams will be supported.
Thus, there are separate sets of sequence numbers assigned to data
sent within each separate stream.

User Data Fragmentation: SCTP implementations are permitted to break
up user application messages to avoid having a lower layer proto-
col (such as IP, as discussed in Chapter 19) fragment the messages.
In contrast, TCP gets the maximum transmission unit size from
IP, and then builds segments that will not need to be fragmented.
The difference is that under SCTP the transport layer protocol has
more control over the process of fragmenting and reconstructing the
messages.

Acknowledgment and Congestion Avoidance: SCTP uses a transmission
sequence number (TSN) to keep the acknowledgment process separate
from the stream sequence numbers. Doing so allows nodes to ACK
every message it receives in the sequence, without any reference to
whether they are received in order, or whether there are missing
messages.

390 Part Three �9 Transport Protocols

Congestion avoidance and packet retransmission use mechanisms
similar to those used in TCP.

Chunk Bundling: An individual chunk is a data unit that occurs within
the context of an individual SCTP stream. For example, the data
in a stream dedicated to SCTP control messages would consist of
chunks containing the protocol messages, while the data in a stream
dedicated to carrying voice data would consist of chunks contain-
ing voice data. SCTP provides a mechanism by which chunks from
different streams can be bundled into a single SCTP packet. This
allows SCTP nodes to efficiently package data, although receiving
nodes may request that senders disable chunk bundling when they
experience congestion.

Packet Validation: In addition to the robust 32-bit Adler checksum (see
RFC 1950, "ZLIB Compressed Data Format Specification, version
3.3," for the details), SCTP mandates use of a verification tag to vali-
date transmissions. The verification tag value is set during association
initialization, and must be included with each message.

Path Management" SCTP nodes are responsible for monitoring all the
transport addresses in an association for "reachability" (determined
by how easy or difficult it is to communicate over that address), as
well as determining appropriate paths based on the application con-
figuration. When some transport addresses are not being actively
used, the SCTP nodes use "heartbeat" transmissionsmshort mes-
sages whose only function is to verify the address is reachable--to
monitor reachability.

18.1.4 USING STREAM CONTROL TRANSMISSION PROTOCOL

SCTP was borne out of the efforts to map SS7 over IP, mostly because it
requires guaranteed and reliable delivery of high volumes of unrelated
streams of data, a framing service at the transport layer level (as opposed
to the byte stream service TCP offers), and improved security (resistance to
DoS attacks as well as data integrity attacks), among other needs. By allow-
ing multi-homed hosts to specify multiple interfaces over which data can
be transmitted, SCTP makes it possible to improve drastically performance
in an unreliable network environment. With each additional interface, the
implementers add redundancy to the network; if one interface fails, there
is at least one other interface that is likely to still be active.

Chapter 18 �9 Transport Layer Protocols of the Future 391

Although at first blush, SCTP seems a very specialized protocol, many
of the same attributes that make it useful for PSTN signaling also make it
attractive for transporting web applications. Modern web sites often incor-
porate data from many sources, offering that data in different forms and
with different methods of access. More to the point, SCTP offers compa-
nies and other organizations that host their own web sites the potential to
better serve their clients.

SCTP could improve web performance in several ways:

Redundant internet access and path management means that customers
would be less likely to experience long delays during peak periods,
and that catastrophic connectivity losses at one ISP could be overcome
almost instantly.

Streams and chunk bundling allow web servers to transmit data as it
becomes available, rather than having to transmit all data sequen-
tially. Anything that improves web performance can be considered a
competitive advantage for businesses offering their services over the
web.

Packet validation provides a more robust mechanism for protecting data
integrity, reducing the exposure to malicious attacks.

The added security features in SCTP merely make it even more attrac-
tive for deployment over the web. As of mid-2002, there are still only
a few SCTP implementations, and a broad deployment to end-user per-
sonal computer is still way off on the horizon. SCTP may still need years
of research, testing, and additional development before it can become a
viable alternative to TCP for mainstream applications.

18.2 Datagram Control Protocol

While SCTP has already been annointed by the IETF as a standards track
protocol, as of 2002, the DCP is still very much a work in progress.
Specifications have been submitted to the IETF as internet drafts, and DCP
supporters have been lobbying the IESG for approval of a new working
group, but there is a long way to go before DCP can be considered on a
par with SCTP (let alone TCP or UDP).

392 Part Three �9 Transport Protocols

This section describes DCP briefly, not so much as an exemplar of protocol
design as to offer another alternative transport layer protocol. Interested
readers should monitor the IETF mailing lists to see how DCP fares in the
future.

One might suppose that between UDP, TCP, and SCTP, every application
could be matched with an appropriate transport layer protocol. However,
the deck is stacked in favor of applications that can use the reliable and
connection-oriented services offered by TCP and SCTP. Applications that
need no transport layer services can use UDP, but another set of applica-
tions can be imagined needing more than UDP can offer while not quite
everything that TCP and SCTP promise.

DCP advocates suggest that streaming media applications, such as those
in which voice or video transmissions are carried, can benefit from a more
relaxed approach than is possible with either TCP or SCTP. Although those
transports provide delivery guarantees for applications in which a single
error can corrupt an entire data file or change the meaning of a control sig-
nal, streaming media applications are less sensitive to lost or corrupt data.

When transmitting a video feed, for example, a significant portion of the
data can be lost or scrambled while the entire stream is still comprehensible.
The difference between 99.9% accuracy and 70% accuracy might be similar
to the difference between watching a television broadcast over a cable
system and watching the same broadcast on a set with rabbit ear antennae,
but in both cases the broadcast will convey information.

As described in the most recent available draft, 2 DCP is intended for
applications that can use a transport with the following features:

�9 Acknowledged, but unreliable, datagram flow transmission.
The receiving node ACKs all datagrams it gets, but missing
datagrams do not have to be retransmitted.

�9 A formal connection orientation, with communicating hosts
initializing DCP connections and using an orderly connection
teardown procedure.

�9 A reliable mechanism for negotiating connection options.
The specification explicitly mentions that this mechanism

2Internet drafts are published with explicit warnings against referencing them in more
permanent documents; for the most current documents regarding DCP, the interested reader
should check the RFC Editor web site at www.rfc-editor.org and search in both the RFC and
internet draft archives ("DCP" should be sufficient to retrieve all current documents).

Chapter 18 �9 Transport Layer Protocols of the Future 393

be available for negotiation of appropriate congestion control
strategies.

�9 Mechanisms allowing a server to avoid holding any state
for unacknowledged connection attempts or already finished
connections.

�9 An option to provide some mechanism to inform the sender
about which packets reached the receiver.

�9 Congestion control incorporating explicit congestion notifica-
tion.

�9 Path MTU discovery, as per [RFC 1191] (see Chapter 19).

In large part, the objective for DCP is to provide a subset of the features
offered by TCP and SCTP, while at the same time offering unique features
such as negotiation of congestion control while at the same time improving
efficiency and reducing overhead.

However, just because there is a void between UDP and TCP/SCTP, it
does not follow that there must be something to fill that void. The goal of
DCP is to provide a transport protocol appropriate for streaming media as
well as other applications for which reliability is not necessary. Network
gaming is the other commonly cited application for DCP: Quake or
Starcraft participants are better served with timely data than with com-
plete and reliable data. After all, it's better to have 80% information about
a game event immediately after it occurs than to have certainty about that
event when it is too late to respond to it.

18.3 The Future

Transport layer protocols will evolve as surely as application and internet
layer protocols have. As will become apparent in Chapter 27 with discus-
sion of IPv6, the upgrade to IP, the lower the layer the more difficult it is
to replace a successful protocol. Application layer protocols are relatively
easy to replace or at least to upgrade because the data involved can usu-
ally be fairly easily adapted to new uses. The same data can be used in
parallel by an existing application protocol and a new application proto-
col; eventually, the newer protocol will replace (or at least displace) the
old one.

Lower layer protocols are more difficult to upgrade because there is less
interoperability and there are more interfaces to deal with. End users are

394 Part Three �9 Transport Protocols

far less likely to clamor for a new transport layer protocol than they are to
demand a new application protocol. If a lower layer protocol can be demon-
strated to offer significant benefits (such as gigabit Ethernet compared to
10-Mbps Ethernet), then chances are good that the new protocol will even-
tually triumph. However, the process can only occur as infrastructures are
replaced. For the transport or internet layer, that means replacement of the
operating system.

TCP and UDP will continue to dominate the internet for the immedi-
ate future--and perhaps longer. Ultimately, however, SCTP and perhaps
other protocols will find their places as well.

18.4 Chapter Summary
Although TCP and UDP have long filled all transport layer needs for the
internet, SCTP provides a more adaptable and potentially better perform-
ing protocol for the transport layer. Whereas TCP was developed to meet
the needs of IP networking in the 1970s and 1980s, it is still widely used
even in applications for which it is not well-suited. SCTP provides many
of the same features and functions as TCP, but allows greater lattitude
in choosing and using those features as well as providing features and
functions not available anywhere else.

While it is too early to tell whether DCP will achieve any degree of success,
it is important because it demonstrates the need for a wider variety of
transport layer protocols--and because it further demonstrates that TCP
and UDP may not be best suited to all possible situations.

In Part IV, we examine the lowest layers of the network protocol stack,
beginning with the Internet Protocol itself.

clr

Internet Layer and Below

This Page Intentionally Left Blank

The Internet Protocol

The Internet Protocol (IP) defines the rules for packaging network traffic
into IP datagramsmalso known as packetsmand it defines the rules for
moving these datagrams across network boundaries. Internet traffic is
carried inside IP packets; transport layer protocols interface with local
IP implementation as segments (or datagrams, as appropriate) are put
together at the transport layer. As data arrives at its destination, the
local IP implementation accepts packets and presents the payloads to the
appropriate local transport layer implementation.

Operating across possibly widely separated internets, IP provides a best-
effort datagram service. Datagram means that these IP protocol data units
are individual and unrelated messages that can stand on their own;
best-effort means that intermediate systems transporting them treat all
datagrams equally. Those systems make as much (and as little) effort as
necessary to successfully route or transport all packets.

It is at the internet layer that the relatively tidy logical internet model, with
its globally unique IP addresses and extensive routing infrastructure, is
mapped onto the rather messy real-world of local networks. It is possible

397

398 Part Four �9 Internet Layer and Below

to create a working model of an internet all within a single computer sys-
tem, with no local physical network interface (the size depends only on
the memory, processing, and other aspects of the system). All "network"
traffic can be routed virtually through system software, with applications
interacting through processes that interact through the transport layer
implementation, which pass segments and datagrams down to the IP layer.
In this imaginary internet model, the IP implementation would do little
more than accept data from the upper layers, package it, pass it along to a
different logical interface, accept it and unwrap the packet, and pass it up
to the appropriate upper layer entity.

In real life, IP has considerably more to do: IP nodes must be able to
determine where to send packets on the local link (the local network),
as well as how to handle inbound packets. All IP nodes must have
some mechanism that handles routing issues whether or not they act as
routers, as well as ways to map IP addresses onto appropriate local link
addresses.

IP uses a variety of tools to deliver datagrams across any internet. For
example, there are mechanisms to prevent data loss due to sending pack-
ets that are too big to be carried across local networks with very small
maximum protocol data unit (PDU) sizes. The path maximum transmission
unit (MTU) mechanism lets nodes probe the path a packet will take and
determine just what the MTU is; failing that, fragmentation allows packets
to be broken up into small enough pieces to fit on intervening networks.
Other mechanisms prevent undeliverable packets from bouncing around
the internet forever, and even to mark packets to be handled differently as
they are routed to their destination.

This chapters covers a great deal of material, from the basics of IP address-
ing to issues such as network renumbering and IP mobility. Because IP
interfaces directly with the real link layer protocols as well as the trans-
port layer protocols, it can be the part of the transmission control protocol
(TCP)/IP suite that is most difficult to understand. However, IP concepts
are straightforward if not always simple. Topics covered in this chapter
include:

�9 IP address space and addressing, concepts, nomenclature, and
practice

�9 IP datagram headers and structure
�9 Introduction to the Internet Control Message Protocol (ICMP)
�9 Introduction to internet routing

Chapter 19 �9 The Internet Protocol 399

�9 Introduction to IP "helper" protocols and applications
�9 Network Address Translator (NAT)

AUTHOR'S NOTE: This chapter introduces the basic vocabulary for
working with IP, but it is only a start: consider it an introduction to all
the material in Parts IV and V. All of the chapters in this and the next parts
of the book are integral parts of the IP. At times, it may be necessary to
refer backward or forward to material in other chapters because of the high
degree of inter-relatedness among internet concepts. Some readers may
find it helpful to read Chapter 21 before this one, just as some readers may
prefer to read Part I first and then read backward from Chapter 21. There is
no wrong way to learn TCP/IP, just as there is no single right way to learn it.

I started learning TCP/IP networking in 1988 or so, from a coworker who
insisted on explaining things in the same order as in Douglas Comer's
excellent text, Internetworking with TCP/IP (volume 1): from the bottom up.
Every time he started talking about packets or segments or frames, my
head would spin and I'd start asking impertinent questions about where
the packets were going, and what was in the payload. Previous editions of
this book used the same approach, as does virtually every other text I've
ever seen.

This time around, I've started from the top. It always made much more
sense to me to understand what was inside each protocol data unit, and
where those payloads were going, before trying to understand what was
happening underneath. At the same time, it helps to have a general aware-
ness of what might be happening under the covers while discussing the
upper layers, so this book begins with a general overview to the problems
of networking in general and then becomes progressively more specific.
All the while, the direction is from the top of the protocol stack down, to
give you, the reader, something real and immediate to connect to all the
discussion of headers and protocols.

19.1 Internet Protocol Addressing

Internet addresses refer to network interfaces. All internet-connected hosts
must have a globally unique IIP address assigned to each network interface

1 When discussing IP networks, "globally unique" means unique for the routing domain in
which the host operates. All nodes on an isolated network, with no connections to any other

400 Part Four �9 Internet Layer and Below

over which they will accept IP traffic. A host with one network interface
device (an Ethernet LAN card, a serial modem, a wireless network adapter,
etc.) requires one IP address to communicate over an IP internet.

There is of tenmbut certainly not a lwaysma one-to-one relation between
IP addresses and domain names (see Chapter 8). An IP address can be
associated with one or more domain names through the Domain Name
System (DNS) just as a domain name can be associated with one or more
IP addresses. For example, internet service providers (ISPs) offering web
hosting services may host many different web sites on a single server. In
that case, the server's IP address will appear in DNS records for all hosted
domains. Likewise, popular web site domain names will resolve to DNS
records that list more than one IP addresses through which clients may
access the service.

Al though personal computers will generally have a single IP address and a
single network interface, multi-user systems, switches, routers, and other
infrastructure-related systems may have more than one network interface
on more than one network. Such redundancy provides greater reliability
in the event of network outages.

Because so much of IP revolves around the IP address - -de te rmining where
a packet comes from and where it should be sentmit makes sense to get
a basic unders tanding of IP addressing before looking at the protocol
specifications.

Already introduced in Chapter 3, the current s tandard for IP, version 4, 2
defines a fixed-length 32-bit address. As originally defined, every value
can uniquely identify a single network interface. Network devices process
these values as binary data, but humans do better with shorter strings, so
hexadecimal and decimal notation are more common.

Not every IPv4 address can be used to identify a unique network inter-
face. Different sections of the IPv4 address space have been allocated for
individual hosts, reserved for future use, or set aside for special uses.

networks, must have unique addressesmbut may use the same addresses as are used on some
other isolated network. Even if these networks are linked through protocol gateways, they
are still considered isolated routing domains--even when IP is the protocol being gatewayed.

2As IP version 6 continues to gain ground, slowly but surely, the term "IP address"
becomes increasingly ambiguous: does it mean IPv4 addresses only, or all IP (IPv4 and/or
IPv6) addresses, or IPv6 addresses only? Usually, the meaning can be inferred from the
context, though I try to be specific wherever there is the possibility of ambiguity.

Chapter 19 �9 The Internet Protocol 401

The use of IPv4 address classes further divided the address space as origi-
nally defined, although the notion of network address classes has since
been deprecated. Even so, understanding network classes is important
from an historical perspective and to ensure greater understanding of older
books and articles.

19.1.1 ADDRESS NOTATION

IPv4 addresses can be expressed in three number systems: binary, hexa-
decimal, and decimal. In all cases, the first part of the address identifies
the network and the last part identifies the unique node on that network
(Fig. 19-1).

IP addresses for these examples are drawn from the private IP address
ranges that were reserved for use on networks not connected to the global
internet; they are not supposed to be forwarded onto a public network. See
also the discussion of NAT later in this chapter. A binary address might
look like this:

II000000101010000000000100000001

This is hard to grasp, so let's break it up into octets:

Ii000000 I0101000 00000001 00000001

Still not so easy; eight groups of four are easier to manage than four of
eight:

II00 0000 i010 I000 0000 0001 0000 0001

ll~ 32 bits ~]

Host part

Figure 19-1: General form of IP address (valid for all versions of IP).

402 Part Four �9 Internet Layer and Below

But that's still binary, and still not easy for people to work with.
Hexadecimal is easier to handle (fewer characters), and network
engineers eventually learn to do hex-decimal/decimal-hex (as well
as hex-binary/binary-hex) conversions in their head. Here's the hex
version:

CO A8 01 01

The spaces added between each octet's worth of data help make the num-
bers easier to read, but hex is not always the easiest form to use. Decimal
numbers are better for many uses, especially for people who can't convert
hex to decimal in their heads. The address, in decimal, is:

192.168.1.1

Table 19-1 shows the decimal, binary, and hexadecimal representations of
values from 0 to 16.

Note the use of the periods to separate the octets. This format is called
dotted decimal or dotted quad notation, because it uses "dots" to separate the
four octets of the address. This address is pronounced "one-ninety-two
dot one-sixty-eight dot one dot one."

IP addresses are assigned through national registries that distribute
network addresses (Appendix A introduces various Internet organiza-
tions). Network addresses are distributed to organizations, which in
turn are responsible for making sure that all attached hosts are properly
numbered.

The network address is an IP address in which the least significant (right-
most) bits are set to zero. The most significant bits identify the network
itself, while the least significant bits are used within the network to identify
individual nodes.

19.1.2 INTERNET ADDRESS TYPES

IPv4 addresses are limited to the four billion or so values between 0.0.0.0
and 255.255.255.255, but there are other limitations. IP network address
classes are discussed in detail in the next section, but large chunks are
unavailable because of the way RFC 791 allocated network addresses

Chapter 19 �9 The Internet Protocol 403

Decimal Binary Hexadecimal

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

Table 19-1: Table for decimal, binary, and hexadecimal counting.

back in 1982. Here are six other types of internet address commonly
encountered, in order of specificity:

Loopback Networked nodes usually define a loopback interface over which
the node can send live network data to itself. This is similar to the tele-
phone number a telephone technician uses to send a ring signal to the
line she is calling from. Data sent to the loopback interface (usually
referred to as 1 o on *nix and similar systems) is processed down the
protocol (and back up, on receipt) just like any other network datamit
is just never transmitted over any local link. Loopback transmissions
are often used for testing purposes, as well as for processes on the
same system to communicate over TCP/IP.

The loopback address for any host is usually defined as any
address starting with the first bit off (0) and the next seven bits

404 Part Four �9 Internet Layer and Below

onmor 127 in decimal. On most systems the only valid loopback
address is 1 2 7 . 0 . 0 . 1 ; but in the range from 1 2 7 . 0 . 0 . 0 to
1 2 7 . 2 5 5 . 2 5 5 . 2 5 5 no addresses are unavailable for assignment,
a matter of roughly 16 million unique addresses.

Unicast All internet nodes have at least one interface through which they
can send and receive internet packets; each of these interfaces has
an IP address. Packets sent from this interface show this as their
source address, while packets from other nodes intended for this
interface show it as their destination address. This type of address is
called unicast: one address, one interface. Knowing that this type of
address has a name, one can infer that there are other addresses to
which one can send packets that will be delivered to more than one
interface.

Multicast Nodes can send the same packets to more than one destina-
tions by individually addressing separate copies of each packet to
each destination. This solution becomes increasingly impractical as
the number of destination nodes increases; it is impossible in cases
where the sender does not have addresses for all destination nodes
wishing to receive packets.

A multicast address can be used in these cases as the destination
address, with packets forwarded to all nodes that have subscribed
to a particular multicast group. Chapter 24 discusses IP multicast at
greater length; although multicast makes some difficult applications
possible, multicast itself is not always easy to get right.

A portion of the IPv4 address is reserved for multicast addresses:
the range from 9 9 4 . 0 . 0 . 0 to 2 3 9 . 2 5 5 . 2 55 .2 55, a total of over
250 million unique addresses unavailable for assignment to internet
nodes.

TCP (and other connection-oriented transports) cannot be used with
multicast addresses, because there is a one-to-many relationship
between the sender and the recipients so TCP circuits are impossible
(at least, not without having a separate circuit for each destination
node). User datagram protocol (UDP) (or another connectionless
datagram transport) is required when using IP multicast; this is the
case for all IP traffic with more than one possible destination, as we'll
see for the next two address types.

Chapter19 �9 The lnternet Protocol 405

Anycast Multicast groups are usually open to all internet nodes, subject
to certain limitations. All group members are supposed to receive
packets, and perhaps even participate in the data stream and act as
peers. Some multicast group addresses have been set aside for use
of specific applications or types of systems, for example, "all local
routers." Allowing nodes to multicast to all systems of a particular
type on the local network with a reserved address makes automatic
configuration when adding new systems to a network much easier.
However in these cases the node doesn' t need to contact all local con-
figuration servers (for example), just one server, presumably the one
"closest ''3 to it.

For these cases, RFC 1546, "Host Anycasting Service," introduced
the concept of anycast back in 1993. Though there hasn' t been huge
demand for anycast support in IPv4 networks (despite its usefulness),
anycast has been incorporated into the requirements for IPv6 (see
Chapter 27). More than one destination may receive anycast packets,
and more than one may respond to anycast requests, but the node
sending the original anycast will continue to communicate only with
the closest responder (e.g., the first one). Other nodes that respond
to an anycast do nothing else after their initial response.

No part of the IPv4 address space has been allocated for anycast
addresses, al though some multicast addresses are associated with
certain types of node (e.g., routers) on a network.

Broadcast When it is necessary to transmit data to all nodes on a network
the broadcast address is used. Sometimes called the all-ones address
because all bits of the address are set to 1, IP broadcasts are easy to
transmit over local links such as Ethernet, where all nodes can eas-
ily receive a single transmission simultaneously), but less easy over
non-broadcast multi-access (NBMA) networks in which all transmis-
sions are point-to-point, as will be seen in Chapter 21.

An IP broadcast can be a limited broadcast, addressed to
2 5 5 . 2 5 5 . 2 5 5 . 2 5 5 (all ones) and never forwarded beyond the local
IP network; or a network-directed broadcast, in which the first part of
the address identifies an IP network and the rest of the address is

3The "closest" being the one able to respond to the request most quickly. A server with a
very high capacity for responding quickly, over a fast link, to many requests may turn out
to be "closer" than a much smaller server that is operating at its capacity---even if it is in the
same room as the requesting node.

406 Part Four �9 Internet Layer and Below

"all ones". For example, 1 0 . 2 5 5 . 9 5 5 . 9 5 5 is a network-directed
broadcast intended to be received by all hosts in network 1 o. o. o. o;
19 9 . 1 6 8 . 1 . 2 5 5 is a network-directed broadcast intended for all
hosts in network 19 2 . 1 6 8 . 1 . 0 .

Every network address will be linked to one network-directed broad-
cast address, making the number of addresses made unavailable
for assignment to IP nodes roughly equal to the number of glob-
ally routable networks; that number is something over two million.

Broadcast transmissions are not specified for IPv6, because broadcast
turned out not to be as good an idea as it originally seemed for IPv4.
Indiscriminate broadcasting can generate huge volumes of traffic,
particularly when a broadcast is addressed to all nodes on a large
network. Applications for which broadcast was envisioned tend to
work more efficiently with multicast or even anycast.

Reserved and Special A significant portion of the IPv4 address space is
reserved or otherwise restricted from use. Some of these restrictions
are intended to save some space for future, undefined or unknown,
purposes, such as the Class E addresses (see next section). This alloca-
tion may have originally been set aside for use as anycast addresses,
but as of 2002 it has not be assigned for any use. Class E addresses are
those in the range 2 4 0 . 0 . 0 . 0 to 2 4 7 . 2 5 5 . 2 s 5 . 2 s 5, a total of over
130 million unique addresses unavailable for assignment to internet
nodes.

There are other addresses that are "special" such as the broadcast
addresses and the all-zeros address (e.g., o. o. o. o, 1 9 2 . 1 6 8 . 1 . o,
or 1 o. o. o. 0); these add another two million or so addresses that
are unavailable for assignment to nodes.

The all-zeros addresses are used as source addresses, to indicate "this
network" or "this node" as the source of packets sent by a node
at tempting to get configured over the network (i.e., the node does
not "know" it's own address yet).

Private Network Addresses: Three sets of network addresses, 10. o. o. o
through 10.255.255.255, 172.16.0.0 through 172.31.0.0,
and 192.168.0.0 through 192.168.255.255 (altogether about
25 million addresses taken out of circulation), that can be used
by anyone in private networks. As defined in RFC 1918, routers

Chapter 19 �9 The Internet Protocol 407

connecting such private networks with public networks cannot for-
ward packets from these private networks; their use is discussed in
more detail later in this chapter in the section on Network Address
Translators.

There are other quirks of IP addressing that will be addressed later in
this chapter, particularly IP network classes, subnetting, supernetting,
and issues of usable addresses within a network. The total number of
IPv4 addresses unavailable for addressing individual network interfaces
because they are assigned or reserved for other uses may be as high as half
a billion or so, reducing the theoretically available IPv4 space from over
four billion.

19.1.3 NETWORK ADDRESS ARCHITECTURE

During the 1970s, as the protocol that turned into what we know as IPv4
was being developed, two concepts steered the protocol in a direction that
has been found in retrospect to be less than optimal. One of these was that
network processing efficiency benefits from well-formatted data. This idea
resulted in the high degree to which protocol headers are strictly defined
into 32-bit words. Another result is the tendency to define header fields
in octet units, to simplify processing header data by allowing systems to
process chunks of 8 or 32 bits at a time.

The other important thought was about the nature of the IPv4 network.
Commercialization of the internet was still 15 to 20 years in the future
when the IPv4 address space was being formulated, computers were far
from ubiquitous even in academic environments, and what computers
existed in internets were far more likely to be multi-user systems than
PCs. It's not clear that IPv4 was intended to provide a fully featured pro-
duction network environment, nor is it clear that it was designed for use
over three or more decades.

These two factors resulted in the creation of the IPv4 network address
classifications. RFC 791 defined three network address classes: A, B, and C.
Two more, D (for multicast addresses) and E (reserved for later use and
as yet still unused), were defined later. Like the OSI seven-layer reference
model, IPv4 network classes have had enormous impact on the way people
learn about IP as well as the way it has been used; however, also like the OSI
model, network classes are currently relevant only in providing historical
background.

408 Part Four �9 Internet Layer and Below

Class A networks were intended for the hugest of global networks. The
most-significant bit of all Class A network addresses is "0," and the net-
work part of the address is the most-significant octet. Thus, Class A
network addresses can have values of from o. o. o. 0 to 127. o. o. 0.
Since 1 2 7 . 0 . 0 . 0 is reserved for the loopback address, there is a total
of 126 possible Class A addresses (the 0 . 0 . 0 . 0 network is theoretically
usable but has been reserved).

Node addresses in Class A networks consist of an 8-bit network part
and a 24-bit host part; 24 bits of address space means that each Class A
network can address no more than 224 nodes--16,777,216, minus the
all-ones broadcast and the all-zeros "this" addresses.

Class A networks were originally intended for the very largest of organi-
zations such as the very biggest countries and companies. In practice, early
recipients of Class A network addresses included US government and
military agencies, research organizations such as those at Xerox, AT&T,
MIT, Stanford, and IBM, and others.

Class B addresses, whose first two significant bits are 1 o, have their most
significant 16 bits as network address (10 plus 14 bits), and leave 16 bits of
network address space for addressing nodes. There can be no more than 214
(16,384) unique Class B networks, but each network can uniquely address
no more than 216 (65,536) unique nodes. It was thought there would be
enough Class B networks to accommodate the largest corporations and
other large organizations; Class C networks used the first three octets as
the network part of their addresses, started with the first three bits set to
110; with 21 bits left over to provide a theoretical maximum of 221, or
2,097,152 networks with no more than 254 node addresses (28 , minus the
all-ones and all-zeros addresses).

Table 19-2 shows the permissible IP address ranges for each network class.
The most significant bit of Class A network addresses is always 0, thus
the first octet of Class A addresses ranges from 1 to 126. The two most
significant bits of Class B addresses are always 10, thus the first octet of
Class B addresses range from 128 to 191. And the three most significant
bits of Class C addresses are always 110, thus the first octet of Class C
addresses range from 192 to 223.

Classes were supposed to make processing packets easier: packets destined
for destinations on one of the super-large Class A nets are processed faster
because routers must only examine the first octet of the destination address

Chapter19 �9 The lnternet Protocol 409

Network Address
class range

Maximum Maximum
networks in hosts in
class network

Class A 0.0.0.0 to 126 Over 16

127. 255. 255. 255 million

Class B 128.0.0.0 to 16,384 65,534

191.255.255.255

Class C 192.0.0.0 to 2,097,152 254

223.255.255.255

Class D 224.0.0.0 to Reserved for N/A

239.255.255.255 multicasting

Class E 240.0.0.0 to Reserved for N/A

247.255.255.255 future use

Table 19 -2 : IPv4 Address Classes.

to determine where the packet is headed; packets headed for Class C nets
called for routers to examine three octets before a routing decision could
be made.

In practice, however, network classes proved problematic: Class A net-
works with over two million possible node addresses are very difficult
to use efficiently, while each Class C network, with an absolute limit
of 254 node addresses, tends to be an acceptable size for a single local
area network (LAN) but not nearly enough for most larger organizations.
Class B networks are just about the right size for many organizations, but
are also quite scarce, with no more than about 16,000 available.

As a result, the available IPv4 address space is further reduced by up to
16 million addresses for every Class A network assigned to an organization
with far fewer unique network interfaces to address.

Another problem with network classes lays in the way routing tables are
used. Somewhere in the internet there must be at least one router that
can handle packets addressed to any network address in the internet.
Local routing of packets to their destinations isn't considered part of
this process, but there has to be some router that can route packets
intended for any network--which means that the IPv4 routing table could
(in theory) have over two million entries. Class A networks account for

410 Part Four �9 Internet Layer and Below

126 entries at most, Class B for no more than 16,384, and Class C for over
two million.

To some extent, address space shortages and the routing table explosion
are problems implicit in IPv4 and ultimately will be resolved by adoption
of IPv6 (see Chapter 27); however, recognizing that network classes are a
bad idea, the IETF has made them obsolete.

19.1.4 INTERNET PROTOCOL SUBNETS

One benefit of network classes was that they made subnets easier to under-
stand and work with. Subnetting an IP network means subdividing it into
subnets by borrowing bits in the host part of the address to be used for a
subnetwork address. Limitations on bandwidth and physical connections
to local network media limit the number of nodes on most networks to
fewer than a thousand or less. Although large IP networks can and usu-
ally do span more than one physical network, mapping IP subnets to those
physical networks can help improve network performance and efficiency.

For example, consider what happens when a single organization has the
equivalent of a Class A network address--this circumstance occurs often
as more organizations opt to use private network addresses (see section
19.4) such as the 1 0 . 0 . 0 . 0 address. Assigning numbers sequentially to
nodes will not work very well because there is no correlation between
the host number and where the host connects to the internet. Subnetting
the network address allows a hierarchical network architecture. A fairly
simple example is illustrated in Figure 19-2, where the 1 0 . 0 . 0 . 0 network
is shown with a link to the global internet, through Router I.

As a private network address, packets addressed to any destination in the
1 o. o. o. 0 network are never supposed to be forwarded from the internet,
but this is an example and so we use the private address rather than actual
addresses.

Router I treats the address as a Class A network address, meaning that the
router examines only as much of the address as is necessary to determine
the proper route. Router A reads the first octet, identifies the destina-
tion as a Class A network, and then compares the relevant portion of the
address (the first octet) to its routing table, or list of network addresses and
local addresses to which packets addressed to those networks should be
forwarded. Packets destined for network 1 0 . 0 . 0 . 0 are listed as being

Chapter 19 �9 The Internet Protocol 411

..

Ji?

~~~:!.~] ~~"E:;" i~!;: ...... 

: .,~,: 

:: 

. Y  

....... ~ v ~ : : ~ : : ~ . ~ :  ~ 

f ii~. 

.. 

...... ,......:,,,.:, 

Global 
internet 

Figure 19-2: Subnetting the equivalent of a Class A network. 

forwarded to Router A, with the last three octets of the address serving as 
the host part of the address. 

The 10 .  o.  o. 0 network is subdivided into three subnets: 1 0 . 1 . 0 ,  o, 
1 o.  2 . 0 .  o, and 1 0 . 3 .  o. o. In this simple example, the first octet of all 
node addresses in this network represents the network part of the address, 
network 1 o.  o.  o. o, and the second octet (rather than being a part of the 
node address) is used to indicate a subnet address. When it receives a 
packet addressed to any node within the 1 o.  2 . 0 . 0  network, Router A 
forwards it to that subnet where Router B must figure out what to do with it. 

Unlike Router I, Router A treats the first two octets as the network part of 
the address. In this case, the network is said to be subnetted on eight bits 
of the Class A host part of the address: the "real" network part (the first 



412 Part Four �9 Internet Layer and Below 

octet of the Class A) plus eight more bits of the host part. The subnet mask 
is a 32-bit value that is used to determine which part of the IPv4 address 
is to be treated as host part and which as network part. 

In this case, the subnet mask would be 2 5 5 .2  5 5. o. o, which is the equiv- 
alentofllll Iiii IIIi iiii 0000 0000 0000 0000; the l ' s ind i -  
cate the portion of the address to be treated as network part while the 0's 
indicate the portion of the address to be treated as host part. Sometimes, 
a subnet mask can be expressed as the number of bits that is not part of 
the official network part of the address but that is used locally as a subnet. 
Thus, for Router A the subnet mask might also be indicated as eight bits. 

One oddity of the original protocol specification is that subnet masks need 
not use contiguous bits for the subnet (atlhough most subnet masks do). For 
example, it would be possible to mask off every third bit of the host part of 
the address or some other odd arrangement. There are some circumstances 
under which such an arrangement might be useful, but in most cases non- 
contiguous subnet masks result in more confusion than they are worth. 

Router A will forward packets destined for 1 o. 2 . 2 . 0  to Router B, as well 
as packets destined to any address within the 1 o. 2. o. 0 prefix (network 
part + subnet part, as far as Router A is concerned). Router B has a longer 
subnet mask, spanning 16 bits beyond the Class A prefix and expressed 
2 5 5 .2  5 5 .2  5 5 .0 .  Router B thus looks at the first 24 bits of the address to 
identify an appropriate route match, and then forwards the packet to the 
appropriate destination--which may be yet another router on a further- 
subnetted link, or it may be the destination node. 

In this example, each different router processes the same destination 
address differently: Router I looks for a route match only on the first 
eight bits of the address, while Routers A and B match on the first 16 
bits and 24 bits (respectively) of the address. Router I treats only the first 
eight bits as the network part of that address (ignoring the least signifi- 
cant 24 bits), while Router A processes the packet based on the 16 bits of 
network + subnet part of the address, and Router B processes the packet 
based on 24 bits of network + subnet part of the address. 

Subnetting provides important benefits, not least of which is the ability 
to improve router performance. Consider what the alternative would be 
in the example illustrated in Figure 19-2. Router I would pass all packets 
destined for network 1 o. 0 . 0 . 0  to Router A. Note that Router A would 
require a separate routing table entry for each network but not for every 



Chapter 19 �9 The Internet Protocol 413 

node attached to the entire network. The router must  examine each des- 
tination address to determine its responsibility for delivering each packet 
bound for network 1 0 . 0 . 0 . 0 .  For packets destined for the local network, 
Router A would have to map the destination address to a link layer address 
(see Chapter 20). 

Using eight bits of the address part as a subnet part of the address means 
that Router A can completely route all inbound packets with no more than 
255 routes (corresponding to the eight bits' worth of subnet address space, 
less the all-ones broadcast address). Rather than a single router, as many as 
255 (more, if some subnets have more than one router) might be required 
to serve all of those subnets--but  system requirements for Router A would 
be far lower than if it had to deal with tens of thousands of routes. 

Likewise, Router B and its peers within the 1 0 . 0 . 0 . 0  network can man- 
age with no more than 255 unique routes for internal subnet datagram 
delivery, while sub-subnet routers within 10. x .  x .  0 networks can han- 
dle delivery to no more than 254 nodes each (256, less the all-ones and 
all-zeros addresses). 

This approach to routing hierarchies made possible with subnetting also 
allows network designers to reduce the amount  of traffic that has to be 
routed as well as improve reliability and disaster resistance. In a fiat net- 
work (no subnets), all packets must be routed- -but  only once. That puts 
tremendous loads on the router, as well as turning that system into a single 
point of failure. If the main router goes down, no traffic can be forwarded 
to any node. More routers means more routing redundancy is possible, as 
we'll see in later chapters. 

Reducing traffic volume can be done by grouping together nodes that inter- 
operate most often as well as by placing more accessibly any servers used 
by nodes throughout  the network. Departmental servers should be located 
on the same subnets as the hosts used by members of each department; 
corporate mail servers should be located centrally. 

Subnet masking can be done on any network class address, or even on 
any length subnet, as long as there is enough address space left to address 
individual nodes. That means at least two bits of host address space, allow- 
ing a total of two unique addresses (along with the all-ones and all-zeros 
addresses), corresponding to x .  x .  x .  1 and x.  x .  x .  2. Because at least one 
of those addresses must be allocated to a router, this smallest subnet would 
have only one node on it other than the router (in practice, it is possible for 



414 Part Four �9 Internet Layer and Below 

a host to function as a router as well as a server or client host). In this case, 
the s u b n e t m a s k w o u l d b e  1111 1111 1111 1111 1111 1111 1 1 1 1  
1100, or 255 .  255 .  255 .  252. 

Subnet masks established 1 or 2 bits on either side of an octet bound-  
ary act to increase or decrease by a factor of two or four the number  of 
subnets possible in a network or the number  of nodes possible on each 
subnet. An organization with relatively few logical network divisions but 
many  nodes within each one might  use a Class A address with a 6- or 7-bit 
subnet, limiting the number  of subnets to fewer than 64 or 128, respectively, 
(instead of fewer than 256), while support ing up to 260,000 or 130,000 
unique nodes on each subnet (instead of fewer than 65,536). An organiza- 
tion with hundreds  of locations, each of which support ing only a relatively 
few nodes, could use a 9- or 10-bit subnet mask on a Class B network to 
allow them an upper  limit of 512 or 1,024 on the number  of subnets while 
allowing no more than 62 or 126 nodes on each subnet. 

An 8-bit subnet mask on a Class B network address (such as 1 v 2 . 1 6 .  o. o, 
from the private network reserved address assignment) looks just like a 
16-bit subnet mask on a Class A network (such as 1 o. o. o. 0): in both 
cases, the mask can be represented as 2 5 5 . 2  5 5 . 2  5 5 .0 .  A 10-bit subnet 
mask for a Class A network would  be 2 5 5 . 1 9 9 .  o. o, while a 6-bit subnet 
mask on a Class B network would  be 2 5 5 . 2  5 5 . 2  5 2.  o. 

Al though network classifications are helpful in unders tanding how sub- 
netting works, as well as how subnet masks work, the classful internet 
no longer exists. Subnet masks are rarely specified as a number  of bits 
any more, al though subnet masks are still widely used for configuration 
purposes.  With the advent  of Classless Inter-Domain Routing (CIDR), dis- 
cussed later in this chapter, a different notation for describing network 
prefixes has become the preferred, and unambiguous,  way  to refer to 
unique network routes. 

19.2 Internet Protocol Datagrams 

IP datagrams consist of headers and a payload. Figure 19-3 shows how 
the IP header fields describe routing information for the datagram. IPv4 
headers are all at least 20 octets long. All IP headers are organized 
into four-octet words,  for ease of processing (nodes and routers pro- 
cess four octets at a time); IPv4 headers may include options, which 



Chapter 19 �9 The Internet Protocol 415 

Type of Service 
(8 bits) 

Datagram Identification 
(16 bits) 

Time to Live 
(8 bits) 

Protocol 
(8 bits) 

Total Length of Datagram 
( 16 bits) 

Fragment Offset 
(13 bits) 

Header Checksum 
(16 bits) 

Source IP Address 

Destination IP Address 

IP Options 
(will be padded to fit in the 32-bit boundary) 

Data Portion of Datagram 

Figure 19-3: IP header fields. 

may add as many as 40 octets to the header length (in four-octet word 
units). 

The fields in the first word identify the datagram as far as version of IP, 
header length, how the datagram is to be handled (Type of Service) and 
datagram length. The next word includes information about fragmenta- 
tion: a unique ID number for the datagram, flags for fragmentation control, 
and the fragment offset. The third word includes time to live, the originat- 
ing transport protocol of the content being carried, and a checksum for the 
header itself. The fourth and fifth words are the source and destination IP 
addresses, and an optional options field can be added when IP options are 
needed. 

Understanding what information about the packet the different IP header 
fields contain helps considerably when discussing how IP works. 



416 Part Four �9 Internet Layer and Below 

19.2.1 HEADER FIELDS �9 

Protocol header fields provide the mechanisms by which network entities 
can interact. IPv4 protocol header fields carry considerable information 
about the IP packet, the source and destination of the packet, and the 
contents of the packet--not to mention instructions about how to process 
the packet as it moves from source to destination. 

The current (2002) standard for IP packet header fields are as follows: 

Version: This 4-bit field indicates the version of IP being used. The current 
version of IP is v4, although the latest version, IPv6, has been speci- 
fied and has been deployed experimentally for some time. IPv6 will 
become increasingly important as more products are rolled out and 
more organizations upgrade. 

Possible values for this field are in the range from 0 through 15; 0 and 
15 have been reserved, while 1-3 and 10-14 are unassigned. Version 5 
is allocated in RFC 1190, "Experimental Internet Stream Protocol, 
Version 2 (ST-II)," while 7-9 were used by protocols submitted for 
consideration as the next generation of IP. 

For most implementations of IP, the node examines this field and if 
it contains anything other than 4, the packet is discarded. 

Header Length: This 4-bit field indicates the length of the header in four- 
octet words. The maximum length of an IPv4 header is 60 octets 
(15 four-octet words). The required IPv4 headers take up 20 octets, 
allowing up to 40 octets for IP options. The minimum valid value 
is 5; anything less would indicate missing fields or some other 
malformation. 

Differentiated Services and ECN Fields: These fields replace the Type of 
Service (ToS) field defined in RFC 791 and provide mechanisms by 
which scalable service discrimination can be deployed in the inter- 
net and active congestion responses can be incorporated into TCP/IP 
nodes. Some documents refer to the entire octet as the diffserv field, 
while others identify only the first 6 bits with that field and the last 2 
bits with the ECN field. 

What is clear is that the first 6 bits contain the Differentiated Ser- 
vices CodePoint (DSCP), while the last 2 bits contain the Explicit 



Chapter 19 �9 The Internet Protocol 417 

Congestion Notification codepoint field, also known as the ECN or 
ECN codepoint field. 

IP traffic engineering and ECN will be discussed in Chapter 25; we 
will return to this octet there. 

Datagram Length: This value represents the entire datagram length, 
including the header, in units of single octets. At 16 bits, this limits 
IP datagrams to a maximum length of 65,535 octets. With a standard 
header length of 20 octets, an IPv4 packet's maximum payload length 
is therefore 65,515 octets (65,475 octets when the header includes 
the full 40 octets allowed for options). Nodes use the header length 
and datagram length to determine where the header ends and the 
packet payload begins because IP has no end of datagram character 
or sequence. 

Datagram Identification: This is a unique 16-bit identifier assigned to a 
datagram by the originating host. At the source, there is a one-to-one 
relation between datagrams and datagram identifiers; however, as 
the datagrams pass through an internetwork, they may become frag- 
mented (fragmentation is discussed later in this chapter). When data- 
grams are split, the identification field contains the same identifier for 
all of the resulting datagrams, making it possible for the destination 
node to identify which fragments go with which original packet. 

Fragmentation Flags: The first of the three flag bits is unused; the other 
two are used to control the way the datagram is fragmented. The 
Don't Fragment (DF) bit, when set to 1, means that the datagram must 
not be fragmented. If the datagram has to be fragmented to be routed 
(it must be forwarded to a network that cannot handle the datagram 
without breaking it up into smaller pieces), the router will throw it 
away and send an error message back to the originating host. When 
the More Fragments (MF) bit is set to 1, it means the datagram is one 
of two or more fragments, but not the last of the fragments. If the 
MF bit is set to 0, it means there are no more fragments (or that the 
datagram was not fragmented). Receiving hosts use the MF flag and 
the fragment offset to reassemble fragmented datagrams. 

Fragment Offset: This number tells the receiving host how many units 
from the start of the original datagram the current datagram is. This 
value represents units of eight octets; with 13 bits, the maximum 



418 Part Four �9 Internet Layer and Below 

value is 213 to 1, or 8,191. Thus, the furthest from the start of the orig- 
inal datagram that a fragment can begin is 65,528 octets. 

To illustrate, a 64,000 octet-long datagram divided into eight frag- 
ments of 8,000 octets each will cause the fragment offset value for the 
first fragment datagram to be set to 0: the fragment begins at the start 
of the original datagram. The fragment offset for the second fragment 
will be 1,000 because the second fragment starts after the first 8,000 
octets of the original datagram. 

Time to Live (TTL): This 8-bit field indicates how long the datagram 
should be allowed to exist after entering the internetwork. The node 
sending the packet sets the value of this field appropriately (see 
below) and every time the packet is received by a node for processing 
this value is decremented by one. If the TTL field contains the value 
0, the packet should be discarded--but a node may not automatically 
discard packets whose TTL value is less than 2. The reason is that by 
doing so, the intended destination node could discard packets that 
arrived just before they expired. 

Protocol: This field identifies the protocol of the next higher layer data 
being carried in the datagram. This field might indicate that the 
payload data is a TCP segment or a UDP datagram, or some other pro- 
tocol. The IANA maintains a list of protocol codes at www.iana.org/  
assignments/protocol-numbers; however, the most common ones 
will be those representing TCP (6), UDP (17), and ICMP (1). 

Header Checksum: This field contains a checksum on the IP header only. 
The header is treated like a series of 16-bit binary numbers with the 
checksum field itself set to zero. These values are added together 
and then ones-complemented. This checksum is calculated only on 
the IPv4 header, and provides an adequate integrity check for the 
header only; no integrity check is done on the rest of the packet. 

Inasmuch as some IPv4 fields change as the packet if forwarded from 
one node to another, the header checksum will change as well (if only 
to accommodate the changes in the TTL field). This means each inter- 
mediate node must recompute this checksum before forwarding a 
packet. 

As RFC 791 defines this field, "The checksum field is the 16 bit one's 
complement of the one's complement sum of all 16 bit words in the 



Chapter19 �9 The lnternet Protocol 419 

header. For purposes of computing the checksum, the value of the 
checksum field is zero." 

Source/Destination: These are the actual 32-bit (four octet) IP addresses 
of the originating host and the destination host. 

Options" These are optional, and are discussed later in this chapter; suffice 
it to say that IPv4 options must be padded out to a four-octet border 
and the entire options field may not exceed 40 octets in length. 

Payload: Typically, the payload will consist of a transport layer data- 
gram (e.g., UDP), a transport layer segment (e.g., TCP), or a "helper 
application" message (e.g., ICMP). The protocol ID for the payload 
contents is specified in the IPv4 header so the destination IP imple- 
mentation can determine what to do with the payload once the packet 
is processed and received. 

More than most of the protocols discussed in this book, IPv4 relies on 
its headers to determine how packets are processed through the internet. 
Several issues are raised when introducing these header fields, including 
the incorporation of traffic engineering features in IPv4, maximum trans- 
mission units (MTUs) and datagram fragmentation, calculating the TTL 
value, and the use of IPv4 options. 

19.2.2 IPv4 TYPE OF SERVICE AND DIFFSERV 

Although IPv4 is fundamentally unchanged since RFC 791 was published 
in 1981, there have been some changes that might cause incompatibility 
between early and modern TCP/IP stacks under certain circumstances. 
The most obvious change over the years can be seen in the way the 
original ToS field has evolved over the years. This octet has under- 
gone various modifications and changes before arriving at its present 
configuration. 

With the internet's growth have come unexpected challenges in terms of 
how packets are routed and handled in a very large network. Some appli- 
cations are able to trade off one or more performance attributes (reliability, 
throughput, latency) to get the best of one of those attributes. For example, 
real-time multimedia applications require lower latency and /or  higher 
throughput while reliability is a less important factor. 



420 Part Four �9 Internet Layer and Below 

The ToS field was originally defined to allow applications to specify 
(through the programming interface to the IP implementation) how their 
packets should be treated while en route to their destinations. However, 
ToS proved to be the wrong solution, and the Differentiated Services and 
Integrated Services working groups were established to come up with 
solutions that would work for applications that required specific traffic 
guarantees (such as guaranteed throughput or an upper limit on latency). 
Traffic engineering, congestion response, and quality of service issues are 
all covered in greater depth in Chapter 25. 

Inasmuch as the ToS field has undergone the greatest degree of change 
since IPv4 was specified in 1981, in this section we summarize how the 
field has been used over the years: 

RFC 791" "Internet Protocol" specifies that the ToS field contain a set of 
parameters (in the form of a 3-bit precedence field [for use only by 
the Department of Defense] and three flags for delay, throughput, 
and reliability) governing how routers process packets. 4 Although 
well thought out, this scheme gained little support as it demanded 
that implementers flag some or all of their applications' packets as 
being less important than others. The last 2 bits of the ToS octet were 
reserved for future use. 

RFC 1122: "Requirements for Internet Hosts-Communication Layers," 
modified the original use only slightly by including the "reserved" 
bits in the ToS field. At the same time, the authors noted that while 
(as of 1989) the ToS field had been "used little in the past," it was 
expected to become more important in the future. 

RFC 1349" "Type of Service in the Internet Protocol Suite," added a fourth 
flag bit for minimizing the monetary cost of handling the packet when 
set. This specification also deprecated the use of these four bits as 
flags and mandated five permitted values for this ToS field, one each 
to indicate normal service or the minimization of delay and cost, or 
maximization of reliability and throughput. Published in 1992, this 
proposed standard was also doomed. 

RFC 1455: "Physical Link Security Type of Service," specified an experi- 
mental use of the four flag bits to set a level of security for the packet. 
This, too, failed to catch on in any meaningful way. 

4For details, see p 12 of RFC 791. 



Chapter 19 �9 The Internet Protocol . 421 

RFC 2474" "Definition of the Differentiated Services Field (DS Field) in 
the IPv4 and IPv6 Headers," replaced the ToS field in 1998 with 
the diffserv field consisting of a 6-bit Differentiated Services Code- 
point (DSCP) while leaving the last two bits designated as "currently 
unused." 

RFC 2481" "A Proposal to add Explicit Congestion Notification (ECN) 
to IP" defined the addition of the ECN field to IP as an experimental 
protocol. 

RFC 3168: "The Addition of Explicit Congestion Notification (ECN) to IP" 
added the revised specification published in RFC 2481 as a proposed 
standard, which established the ECN field as a preferred use of that 
part of the IPv4 header. 

Although the ToS/DS field has evolved, IPv4 implementations at any 
point are still likely to interoperate as long as they don't attempt to use 
the ToS/DS fields. In RFC 3168, the authors note that the many uses to 
which the same header octet has been put over the years means that when 
the different specifications have been implemented there will be a signif- 
icant lack of compatibility with the newest specification. Had the original 
specification been widely deployed, such a disregard for backward com- 
patibility would likely not occurmbut when some portion of a protocol 
header is not used, it becomes fair game for anyone who has a better 
idea. 

19.2.3 PATH MAXIMUM TRANSMISSION UNIT 

Traffic through tunnels is limited to vehicles that can fit, and vehicles over 
set weight limits may be restricted from using certain bridges. Likewise, 
some networks limit the size of the data they can handle in a single chunk. 

Minimum sizes are generally decreed by the need for certain specific infor- 
mation about the packet, frame, or datagram, but the MTU size of a 
network medium is generally determined by the bandwidth (amount of 
data that can be handled in a given time) of the medium and the reliability 
of the infrastructure. Network media that can move large volumes of data 
quickly can afford to pack the data up in big chunks, but media that move 
data more slowly may need to break it up into smaller chunks to keep it 
moving smoothly across the network. 



422 Part Four �9 Internet Layer and Below 

MTUs (exclusive of headers) for different network media range from as 
high as 65,535 octets for Hyperchannel, a high-speed medium, down to 
4,352 for FDDI (fiberoptic), 1,500 octets for Ethernet, 1,006 octets for SLIP, 
576 octets for X.25 networks (a WAN technology), to as low as 296 octets 
for point-to-point links with low delay. These figures come from RFC 
1191, "Path MTU Discovery," which discusses typical MTUs for different 
network media. 

Although Asynchronous Transfer Mode or ATM (see Chapter 27) transmits 
data in chunks called cells, each of which is 0nly 53 bytes, ATM cells are 
created only after the upper layer protocol data has been organized into 
considerably larger frames. These frames are then divided into cells, each 
of which is transported and switched within the ATM network. 

The path MTU specifies the maximum transmission unit that can be carried 
without fragmentation between two actual nodes. Doing so eliminates the 
need for fragmenting packets sent from source to destination. In some 
cases, the path MTU will be the same as the local MTU. For example, two 
widely separated nodes each connected locally to their own Ethernet LAN, 
will both have local MTUs of 1,500 octets. Assuming that all intervening 
networks are capable of carrying larger frames, the path MTU for the two 
nodes will be the same as their local MTUs. However, if the two nodes are 
separated by an X.25 network, their path MTUs will be 576 octets. 

The mechanism for determining the path MTU is defined in RFC 1191. 
The source host sends an IP packet, using its preferred MTU size, to the 
destination with the Don't Fragment flag set. If an intervening router 
sends back an error message (using ICMP, as discussed in Chapter 22) 
indicating that the packet could not be forwarded without fragmenting it, 
then the source host tries again with a smaller packet. The process repeats 
until the source host discovers the path MTU for the destination--or until 
the source host gives up and allows packets to be fragmented. 

19.2.4 FRAGMENTATION 

IPv4's datagram fragmentation option has long caused controversy. 5 
Fragmentation squanders IPv4 header real estate, accounting for 20% 
of the basic IP header (the datagram ID, fragmentation flags, and frag- 
ment offset field). Fragmentation adds a computational burden on routers 

5IPv6 omits fragmentation entirely. 



Chapter 19 �9 The Internet Protocol 423 

and destination nodes. Fragmentation makes IPv4 more complicated to 
implement, as well. 

Ultimately, fragmentation was permitted because the alternatives seemed 
even less appealing. Placing an upper limit on IP datagram size lower 
than the smallest allowed PDU on any network medium using IP would 
unreasonably limit the PDU size for media that can handle very large 
chunks of data efficiently. Limiting the IP datagram length to under 1,500 
octets (the maximum allowed size for Ethernet frames) or to 576 octets (the 
MTU for the X.25-wide area network protocol) would likewise limit more 
efficient network media. 

Alternatively, placing a lower limit on the size of PDU of any network 
medium using IP and thus requiring all network media to support some 
minimum PDU size determined by the IETF would unnecessarily restrict 
the types of media capable of carrying IP. Because one of the most basic 
tenets of IP networking is that it is a universally interoperable protocol, 
this option is also unacceptable. 

Datagrams can potentially be fragmented any time they cross different 
types of network media. For example, a 1,492 octet-long IP datagram is 
just long enough to fit inside an Ethernet frame--but it would have to 
be fragmented in order to cross an X.25 network, which can handle only 
datagrams as large as 576 octets. 

A node sets the length of its datagrams based on its local MTU. IPv4 has 
an upper limit on datagram size of 65,535 octets because the IP header 
field for datagram length is 16 bits long. However, most common network 
media have much smaller maximum network frame sizes, as discussed 
in the previous chapter. When there are several different networks across 
which network traffic passes, there will be a path MTU. This is the largest 
size unit that can pass unfragmented across all the intervening networks 
in a datagrams route; in other words, the smallest MTU of any of those 
networks. 

Figure 19-4 shows an internetwork consisting of an FDDI network (Net- 
work A), an Ethernet (Network B), and a 16-Mbps IBM token ring network 
(Network C). Traffic staying entirely on Network C could maintain an 
MTU of 17,756 octets because the high-speed token ring network allows 
frames to carry that much data. However, traffic going from Network C to 
Network B would be limited to the much smaller Ethernet MTU of 1,500 
octets. Each of the token ring frames (assuming they used that MTU) would 



424 Part Four �9 Internet Layer and Below 

Router 

Network B 
Ethernet (10 Mbps) 

Router 

Figure 194:  An internet with different MTUs for each local network will  
result in the lower MTU being used as the path MTU for all traffic between 

the two networks. 

be broken into a dozen or so smaller Ethernet frames as they are processed 
by the router between the two networks. 

Traffic moving from Network C to Network A would also have a Path 
MTU of 1,500 octets, even though the FDDI network can sustain an 
MTU of 4,352 octets since datagrams would have to traverse the Eth- 
ernet before arriving at the FDDI network, they would already be 
fragmented. 

Intermediate routers do not bother reassembling fragmented datagrams. 
Because each datagram is routed independently over the internetwork, 
not all intermediate routers could be certain of processing all fragments 
of any particular datagram. And because datagram fragments may be 
delivered out of order with considerable delays between fragments, 
reassembling datagrams at every intermediate router would hurt overall 
performance. 



Chapter 19 �9 The Internet Protocol 425 

A router fragments a datagram only if it is too large for the next- 
hop network. Most of the original datagrams header fields are simply 
copied, although the router modifies the fragmentation-related fields. The 
datagram length is recomputed for the datagram fragment, though the 
datagram identifier remains the same. The router sets the MF bit to I for 
all the fragments except the last one, and computes the fragment offset 
value for each fragment. The router decrements the TTL counter and recal- 
culates the header checksum for each fragment header, but other fields 
remain the same and each fragment is forwarded onto the next leg of its 
route. 

19.2.5 TIME TO LIVE 

In versions of IP predating IPv4, researchers were puzzled by a grad- 
ual but steady and unexplained degradation in network performance that 
would be eliminated only by rebooting the entire network. It turned out 
that packets that encountered routing loops (see Chapter 22) or pack- 
ets that were improperly addressed could bounce around the internet 
indefinitely. Adding the TTL field prevents these immortal packets from 
clogging networks. 

Assigning a maximum lifetime for an IP packet serves also to ensure that 
"stale" packets aren't accepted as valid. This is especially when packets 
are carrying TCP segments, which might have timed out. 

There are circumstances under which a packet can be caught in a loop (see 
Figure 19-5), where data can be passed along from one router to the next 
without ever arriving at its destination, which has lost its only link to the 
rest of the internetwork. The TTL field remedies this situation by setting a 
limit on the amount of time network traffic can remain in the internetwork 
before it is discarded. 

RFC 791 defines TTL as the maximum number of seconds that a packet can 
exist within an internet. However because the field allows only integers 
(with values from 0 through 255), and because every node accepting a 
packet must take some non-negative, non-zero amount of time to process it, 
the TTL behaves almost exactly like a hop counter. Presumably no system 
will take more than 1 second to process a packet, although processing is 
simplified considerably by programming the IP stack to simply decrement 
the value rather than computing the actual number of seconds a packet 
takes to traverse the node. 



426 Part Four �9 Internet Layer and Below 

Destination host 
9 

Originating host 

Figure 19-5: A failed router can isolate a network from the rest of the internet 

and cause route looping.  

As an 8-bit field, the maximum possible TTL is 255. RFC 1122, "Require- 
ments for Internet Hosts-Communication Layers," suggests that the 
default value for new packets should be set to "at least big enough for 
the Internet 'diameter,' i.e., the longest possible path. A reasonable value 
is about twice the diameter, to allow for continued Internet growth." The 
current (2002) figure for suggested TTL default is 64, unchanged since 1994. 
RFC 1122 requires that this value be configurable on all internet hosts so 
that the value may be changed as and when necessary. 

Some software vendors set the default for their implementations at higher 
values, although the actual diameter of the internet may be receding a 
bit since 1994 when there was considerably less coordination among com- 
mercial internet service vendors. Different TCP/IP implementations may 



Chapter 19 �9 The Internet Protocol 427 

also use different TTL defaults for different transport layer protocols, 
depending on whether there is a need for reliable or guaranteed delivery. 

19.2.6 OPTIONS 

IPv4 options, as the name implies, are strictly optional. Implementers and 
applications developers have in the past tended to avoid IPv4 options. 
Routers tend to be optimized for the general case of IP datagrams, 
which means non-optioned packets. Packets with options must get special 
treatment, which means that routers often shunt such packets off until 
enough processing resources are free to handle the IP options prop- 
erly, causing performance to suffer. IPv4 options are commonly used for 
application debugging and testing. 

Options were intended to be the way the protocol handled special functions 
related to routing. IPv4 options include: 

End of Options List: Indicates the end of the options list, this option was 
defined in RFC 791. 

No Operation: Used to indicate the presence of an option that causes no 
operation to occur. Used for padding. 

Source Routing: Defined in RFC 791, this type of option specifies a list of 
routers through which the packet must pass on its way to the packets 
destination. Loose source routing means that all the routers specified 
in the list must be traversed, but other routers may be traversed in 
addition. The strict source routing option lists all the routers, and the 
only routers, that the packet may pass through. 

Attackers can hijack transmissions by using source routing by direct- 
ing a packet that would otherwise be processed through a local or 
the global internet to a router controlled by the attacker. 

Time Stamp: Requests every router to record what time it handled the 
optioned packet. Time is represented as a 32-bit value representing 
the number of milliseconds since 12:00 midnight, UTC. Three options 
are available: time stamp only, showing nothing more than a series of 
32-bit values; time stamp plus address of each entity adding the time 
stamp; and a time-stamp for specified routers, where only routers 



428 Part Four �9 Internet Layer and Below 

specified by IPv4 address are required to add a time stamp. A field in 
the option header is also set aside to indicate the number of entities 
that wanted to set a time stamp but were unable to because the options 
part of the IP headers was full. Defined in RFC 791. 

Record Route: Requests every router handling the optioned packet to 
append its IP address. Defined in RFC 791. 

Traceroute: Defined in RFC 1393, "Traceroute Using an IP Option," an 
experimental protocol specified to improve on the traceroute function 
described later in this chapter. 

IP in IP: Defined in RFC 2003, "IP Encapsulation with IP," IP tunneling is 
useful for mobile IP nodes or hosts that connect to the internet through 
different networks (e.g., laptops taken on business trips or used at 
home and office, where the same LAN interface is plugged into and 
configured for more than one IP network depending on where it is 
being used). 

IP mobility is discussed in the last section of this chapter, but IP tun- 
neling allows a mobile node to register with a server on its "home" 
network when it will be connecting to the internet remotely. When 
nodes attempt to connect to the mobile node, their packets are inter- 
cepted by the mobility server and then forwarded to the mobile node 
at its current IP address. Rather than rewriting the destination header 
address in the original packet (which would be a violation of the 
protocol), the mobility server creates a new packet addressed to the 
mobile node's current network and with the entire original packet as 
the new packet's payload. 

IPv4 options are restricted to a total length of 40 octets; where data is carried 
in the option header, there will be limitations on the number of data points 
that can be handled. Where IPv4 addresses are recorded, there is an upper 
limit of nine addresses (36 octets for data and three or four octets for option 
header fields); where addresses and time stamps are recorded, the upper 
limit is four sets of data (32 octets for data and three or more octets for 
option header fields). 

Options can cause problems because they are special cases. Most IP data- 
grams have no options, and vendors optimize their routers to handle 
standard IP datagrams. The IP header without options is always 20 octets 



Chapter 19 �9 The Internet Protocol 429 

long and is easy to process when the router design is optimized to pro- 
cess 20-octet headers. Network managers prefer faster routers and because 
most traffic does not use IP options the routers tend to handle those pack- 
ets as exceptions, shunting them off to the side to be handled when it is 
convenient and when it wont affect the routers overall performance. 

When used, IP options are strung together with no delimiting characters, 
and if they do not end on a word boundary padding characters are added. 
As already noted, the options field is limited to 40 octets of options and 
options data. 

19.3 IPv4 Routing 

When a host receives a network link layer frame it must decapsulate 
(or unwrap headers from) the frame, as we'll discuss in Chapter 21. 
In doing so, the host determines whether or not to pass the contents of 
the frame up its protocol stack. If the contents of the frame are intended for 
the host that just received it, then the frame is unwrapped and the payload 
passed up the protocol stack. If the contents of the frame are intended for 
some other node, then the receiving node repackages and forwards the 
payload to its intended destination if the receiving node is a router. 

Routing allows individual hosts to address packets to any destination 
on the internet without knowing anything but the first step toward that 
destination. 

All IP nodes, be they hosts or routers, can receive IP packets, but only 
routers are permitted to forward them to other systems. If a host receives 
a network frame addressed to it, but containing an IP datagram addressed 
to some other host, the host must ignore that datagram. Routers, however, 
must determine the correct route for that datagram, re-encapsulate it for 
its next-hop destination network, and retransmit it. 

Hosts can ignore incorrectly addressed frames; if they were obliged to 
respond to all incorrectly formatted and addressed frames the result- 
ing traffic would adversely affect network performance. Routers, on the 
other hand, use a special protocol specifically for exchanging informa- 
tion about routing issues like delivery failures, timeouts, and unexpected 
circumstances like gateway failures: the ICMP allows routers to generate 
error and control messages. 



430 Part Four �9 Internet Layer and Below 

Data passing between nodes connected to the same link layer network 
(such as a LAN) does not require any IP layer processing: just package the 
data for local delivery and transmit. Chapter 21 covers some of the issues 
related to link layer networking, especially as they relate to IP. Every IP 
packet sent between network interfaces will be carried over at least one 
link layer network, and possibly more. The vast collection of physical 
networks that comprise the internet use many different link layer protocols 
and addressing schemes; as noted in Part I, the problem is to somehow map 
all these disparate local networks into a single IP network through which 
any two nodes can communicate. 

IP specifies how internet data is to be packaged and addressed; IP routing 
protocols define ways in which routers exchange the network topology 
information that must be used to specify how those packets are to be 
delivered. 

The process of exchanging this routing data may be quite simple or quite 
complex, and several routing protocols will be discussed in Chapters 22 
and 23. In this section, we'll look at what happens when a node receives a 
link layer frame containing an IP packet and how the node processes that 
packet. 

In this section, we'll discuss what happens to a packet as it is sent and 
received, the differences between direct and indirect routing, and the 
function of routers and routing tables. 

19.3.1 MOVING PACKETS 

One of the fundamental problems to be solved by IPv4 is how to move pack- 
ets from their sources to their destinations without requiring the senders 
to have any knowledge of the internet infrastructure. Further complicating 
matters is the requirement that routers be capable of routing packets even 
when some of their links are unavailable, and again, without requiring 
detailed infrastructure knowledge. 

A node will, barring error conditions, accept any frame transmitted over 
the local network addressed to the node's network interface. 6 There is no 
question that the frame contents are intended for that node. 

6As well as link layer broadcasts and multicasts, if they exist in that medium. 



Chapter 19 ~ The Internet Protocol 431 

However, when the frame contains an IP packet, the node must do fur- 
ther processing, primarily consulting the local routing table to determine 
whether there is a match for the packet's destination network. At that point 
the node may accept the packet for local delivery, forward the packet on 
to another IP node, or discard it. 

19.3.2 HOSTS AND ROUTERS 

An IP host may either be a source for an IP packet or a destination, but it is 
permitted to send or receive only those packets whose source or destination 
address fields contain the node's own address. 

An IP router, on the other hand, can forward or route packets for which it is 
neither source or destination. 7 An IP host may send packets destined for a 
remote node to a local router, but that transmission does not occur at the 
network layer in IP. The host encapsulates IP packets for transmission at 
the link layer on the local network link. 

Routers, because they have more than one IP address, are also known as 
multi-homed hosts because they have more than one "home" on the internet. 
A multi-homed host is not necessarily a router, however; a router must  be 
configured to forward packets, and it normally has physical links on two 
or more different networks. 

RFC 1122, "Requirements for Internet HostsmCommunicat ion Layers," 
specifies not just which protocols an IP host must  support  but how those 
protocols are to be supported. It provides an excellent overview to anyone 
interested in how IP and TCP operate. It also specifies, on page 28, that an 
IP implementation must take certain steps when it receives an IP packet. 
The node: 

1. verifies that the datagram is correctly formatted; 
2. verifies that it is destined to the local host; 
3. processes options; 
4. reassembles the datagram if necessary; and 
5. passes the encapsulated message to the appropriate transport- 

layer protocol module. 

7Routers can also be the source or destination for packets, just like any other host. 



432 Part Four �9 Internet Layer and Below 

Step 2 is of particular importance: if the packet is not destined to the local 
host, then something else must be done with it. A host, upon receiving 
a packet addressed to some other destination than itself, may silently (no 
error messages sent) discard the packet. A router's function is to accept 
such packets and forward them after determining the proper course of 
action. 8 Once the packet has been accepted and processed by a router for 
forwarding, it becomes an outbound packet and subject to the rules for 
outbound packet processing discussed next. 

19.3.3 INTERNET PROTOCOL PACKET PROCESSING 

When a node emits an IP packet, certain steps must be taken. RFC 1122 
notes, on page 28, what must be done at the IP layer when a packet is about 
to be sent. The IP implementation: 

1. sets any fields not set by the transport layer; 
2. selects the correct first hop on the connected network (a process 

called "routing"); 
3. fragments the datagram if necessary and if intentional fragmen- 

tation is implemented (see section 3.3.3); and 
4. passes the packet(s) to the appropriate link-layer driver. 

Routing is nothing more complex than "selecting the first hop on the 
connected network." Making the selection for any given host should 
be relatively easy; RFC 1122 (on pages 47 through 51) provides some 
answers: 

1. Remote/Local Decision: Determine whether the destination is 
local, meaning it is on the same network and subnet as the 
source host and therefore directly accessible; or remote, mean- 
ing it is accessible only through a router. The decision is made 
by comparing the network/subnet  for source and destination 
addresses. Multicast and local broadcast packets need not go 
through this process. 

2. Gateway Selection: Consult the route cache (all hosts are required 
to maintain a list of routes, see below) to choose. If a gateway is 
specified for the destination address, the host should send the 

8Routers may also silently discard packets, for example, when they are unable to respond 
due to network or hardware problems, but that is not their primary function. 



Chapter 19 �9 The Internet Protocol 433 

packet to that gateway. If there is no gateway specified for the 
destination, the host must: 
a. Send the packet to the default gateway (or default router) con- 
figured for the host and open a new entry in its route cache for 
the destination. 9 
b. If the default gateway isn't the best choice, it will send an 
ICMP redirect message to point the host in the right direction 
(to a different gateway). 
c. The host must update its route cache to reflect the proper 
gateway for the destination. 

The route cache must contain entries with the following information: 

�9 The local IP address from which packets originate [only if the 
host is multi-homed] 

�9 An IP address (either a complete destination address or a 
network/prefix designation) 

�9 Diffserv information (if present) 
�9 Next-hop gateway IP address to be used for the entry IP 

address 

When the destination is local, direct routing comes into play: the source 
node can send the packet directly to the destination, encapsulated in the 
appropriate PDU for the local network. The only problem remaining is that 
of correlating a local network address to the IP address. The Address Reso- 
lution Protocol (ARP), described in Chapter 21, offers the principle solution 
to linking network and IP addresses. 

Indirect routing occurs when there is no shared local link available to the 
sender, and an intermediary chosen from the route cache (or default gate- 
way) must be called upon to forward the packet. Packets are shunted 
from one router to another on the way to their destinations, typically 
first up a routing hierarchy, across a global internet backbone, and then 
back down another routing hierarchy. Figure 19-6 shows the typical 
route, where the packet moves from the router serving a small local 
network to a local ISP's router to a national ISP's backbone router. At 
that point, the packet is exchanged across the backbone to the back- 
bone router that serves the cascade of networks serving the destination 
node. 

9RFC 1122 also mandates that IP implementation be able to operate in minimal networks 
where they may not be any routers; in these cases, the IP implementation should generate an 
unreachable error message. 



434 Part Four �9 Internet Layer and Below 

10 .0 .0 .1 /8  

ISP G 
..................... : .  

. . . . . . . . . . . . . . . . . . .  , 

/ lo.4. oo.1/ 6 ! .... . ............... :~ .... . .  , . : . :  . . . . . . . . . .  

Local Internet ...... ~ :~ ......... 
= b a c k b o n e  :~ Loca l  ~i '~ 

ISP  ;~ !SP ................. ~.~ 
. . . .  :.=... ............. / 

10.4.4.100/24 172.16.158.49 

172 .16 .  

Figure 19-6: Modern internet routing path. 

Two families of routing protocol govern the exchange of routing infor- 
mation. Within smaller private networks, routing structures are usually 
straightforward: there will likely be a centralized authority for overall 
routing information and router management, internally routed traffic 
will be predictable. Interior routing protocols such as RIP and OSPF 
(see Chapter 23) are designed to allow routers to share route and link 
information among themselves within these internets. 

In contrast, the size and complexity of the global internet quickly demon- 
strated that these interior protocols would not scale, and exterior routing 
protocols such as Border Gateway Protocol (BGP, see Chapter 24) came 
into use to allow routers to exchange routing information across internet 
backbones. Backbone routers must be non-default routers- - there  is no 



Chapter 19 �9 The Internet Protocol 435 

backup router to which these routers can pass packets whose destinations 
are not listed in the routing table. 

19.3.4 SOURCE ROUTING 

Discussed earlier in this chapter as an IPv4 option, source routing permits 
sources to designate the routers through which datagrams are forwarded to 
their destinations. Source routing permits the originating host to specify the 
route its packets should take. Unlike other routing methods, source routing 
requires that the sender have knowledge of the internetwork architecture; 
otherwise, it wouldn't  be able to specify a correct route to the destination 
host. Source routing is useful for testing different routes between two hosts. 

Source routing is invoked by the originating host adding an option to the 
IP header. The option includes a code to indicate whether strict or loose 
source routing is to be used, a length field indicating how long the options 
field is, and a pointer field that points to the currently relevant address in 
the options field. The options header also includes a list of IP addresses of 
routers specified for the route. 

19.4 Network Address Translation 

Despite the fact that NATs were introduced earlier in this chapter, they 
deserve more scrutiny for a number of reasons. NATs are hailed by some 
as the remedy for some if not all of what ails the internet and IPv4, while 
others consider them the network equivalent of kudzu: a hardy and fast- 
growing plant that was imported to parts of the US southeast to alleviate 
soil erosion earlier in the 20th century. Despite the lofty goals, kudzu 
turned out to be a superweed and with no natural checks on its growth; 
kudzu has displaced almost everything in its path. It grows so quickly that 
visitors may be cautioned not to nap on the porch unless they want to wake 
up tangled in the vines that are known to grow as much as a foot or more 
in a day. 

19.4.1 REASONS FOR NETWORK ADDRESS TRANSLATION 

There are times when it is preferable for packets not to be forwarded 
directly from inside an internetwork. NAT is an approach used for those 



436 Part Four �9 Internet Layer and Below 

instances. The two most commonly cited reasons for using NAT are for 
security and to map a large network onto a small IP address space. 

Perhaps more common is the use of NATs to preserve IP address space. 
As the IP address space is depleted, more and more organizations have 
been denied Class B or even Class C networks. One solution is to use the 
private network space allocation to set up a private network with a Class A, 
B, or C network address. Routers within the private network can route 
packets within the network, and packets destined for the global Internet 
are passed through a network address translator that acts on behalf of the 
internal systems when interacting with Internet hosts. 

NATs were originally introduced to help alleviate network address allo- 
cation shortages, so that organizations could build their intranets as large 
as they wanted without going through a lengthy and largely pointless 
process of trying to get an appropriate allocation from a service provider 
or regional registry. In the meantime, they have propagated across the 
internet and have been incorporated into networks as simple and small as 
single-system home networks and as complicated as any that requires a 
full Class A-equivalent network address. 

Much of the controversy over the need for IPv6 (see Chapter 29) revolves 
around the question of whether or not NATs make things better or make 
them worse. In the meantime, people continue to deploy private networks 
and NAT boxes of various types while the IETF continues to publish RFCs 
that attempt to clarify matters or even to solve the entire problem with ever 
more end-to-end friendly versions of NAT. 

19.4.2 NETWORK ADDRESS TRANSLATION BASICS 

Whether you call it a network address translator or NAT box, a NAT acts as 
an old fashioned telephone operator, mediating all inbound and outbound 
traffic through a switchboard. Inside the NAT, private IP addresses are 
used for all internal communications; outside the NAT, standard global 
internet addresses are used. The NAT box has one interface on the internal 
network with a private IP address and another interface on the global 
internet with a globally unique IP address. 

When a node in the private network wants to send a packet to a node on 
the outside, it creates a packet with its own, private, IP address as the 
source and the remote node's IP address as the destination. Following the 



Chapter 19 �9 The Internet Protocol 437 

rules of IP routing, the privately-addressed node will determine that the 
destination is on a different network and therefore the packet must be sent 
to a router. 

NAT boxes often double as routers, both to reduce costs and to simplify 
their function. When the NAT box/router  receives the outbound packet, it 
takes that packet and rewrites it so that the original source address (which 
will not be usable outside the private network) is replaced with the NAT 
box's own global internet IP address. The packet is then sent along to its 
destination. The destination node perceives the packet as originating with 
the NAT box. 

Any response to the packet is addressed to the NAT box, which keeps track 
of the internal hosts for which it is serving as go-between. When a packet 
comes in, the NAT box accepts it, repackages the packet for delivery on 
the private network, and sends it along to the original source node. 

19.4.3 ELABORATING ON NETWORK ADDRESS TRANSLATION 

Basic NAT poses difficulties when it is necessary to host internet servers 
within the private network: there is only one well-known port for each 
service available on the NAT box, which makes it difficult if more than 
one web server are inside the network. Network Address Translation/Port 
Translation (NAT/PT) solves this problem by adding a port translator 
module onto the NAT box. 

Various other developments and proposals have been considered and 
implemented over the years to make NAT friendlier with more or less 
success; some indication of these developments can be inferred from the 
quantity and titles of the NAT-related RFCs listed later in this section. 

19.4.4 NAT ISSUES AND MISCONCEPTIONS 

Rather than attempting to cover NATs exhaustively here, we will list rele- 
vant and current RFCs after a short list of NAT-related problems and 
concerns: 

NATs break IPsec: IPsec (see Chapter 28) is not made any easier 
by NATs, but it is still often usable. When packets from inside 
the private network are tunneled securely with IPsec (i.e., IPsec 



438 Part Four �9 Internet Layer and Below 

secures packets which are then encapsulated in unsecured IP 
packets), NATs do not modify the tunneled packets and thus 
do not harm them. However, end-to-end, untunneled authenti- 
cated packets cannot be carried intact across a NAT. 

Another area where NATs affect IPsec is in the reuse of the 
private IP addresses. Non-unique addresses can result in confu- 
sion, at the least, especially when security information is linked 
with IP addresses. 

NATs complicate organization change: NATs provide a lim- 
ited number of options for network addressing to the network 
designer. The odds of having address space collisions are 
great. Most people naturally assign their small private net- 
work the network address 1 9 2 . 1 6 8 .  o. o, with hosts assigned 
IP addresses starting at 1 9 2 . 1 6 8 .  o. 1 and increasing by one. 
When two such networks are merged, pandemonium ensues as 
networked systems stop working and network engineers rush 
madly to renumber at least one of the original networks. 

NATs break applications: Most NAT-related problems with inter- 
net applications are manageable and have been or will be immi- 
nently resolved through one fix or another. More relevant to 
corporate network administrators, the most notable application 
broken by NAT so far has been the multi-player game, Quake. 

NATs improve security: IP routers are not supposed to for- 
ward datagrams addressed in the private address ranges. If a 
backbone router receives a datagram bound for one of these 
addresses, it is supposed to drop it. However, these addresses 
can be used within an organizational internetwork. 

Allowing outsiders access to information about a network's host- 
names and IP addresses can expose that network to security 
risks. Some network administrators prefer to put their entire 
network behind a network address translator, which accepts 
datagrams from outside the internetwork and translates them to 
the NAT addresses used by the hosts inside the private network. 

However, NATs can often open more holes than they close, 
especially when routers are not properly configured to drop 
packets addressed from or to private networks---or when 
routers can be reconfigured by an attacker. Likewise, network 



Chapter 19 �9 The Internet Protocol 439 

19.4.5 

administrators typically use a fairly predictable set of addresses 
for NATted networks, so attackers may have an easier time 
locating sensitive systems. 

N A T s  are easy: Solid-state NAT/router /hub/f i rewal l / in ternet  
appliances capable of linking small numbers of systems in home 
office/small office environments are widely available at rea- 
sonable prices. These devices often include a Dynamic Host 
Configuration Protocol (DHCP) server, making the NAT a 
plug-and-play as well as a install-and-forget proposition. 

N A T s  are compl icated:  Deploying NATs in complex internet 
environment can generate network administration nightmares, 
particularly if there are other NATs already in the network (such 
as in branch offices). Some engineers have reported that the 
actual cost of maintaining such a network far exceed the cost 
of paying for enough globally unique internet address space 
to serve the organization's needsmif that address space were 
available. 

All  N A T s  are pretty m u c h  the same: As previously noted, there 
are basic network addressmonly translators as well as network 
and port translators; a NAT box may be an inexpensive solid 
state appliance, a piece of software running on a PC, a dedi- 
cated router. There are many different types of NAT, and there 
are many of each type already in use throughout the world. 

REALM-SPECIFIC INTERNET PROTOCOL 

The greatest problem with NAT is that lacking a globally unique address to 
link to privately addressed node, "end-to-endness"~that quality of having 
data transmitted directly, without modification, and with assurance of 
data integrity from source node to destination node~becomes difficult to 
impossible. 

Having been proposed as a method to avoid depleting the IPv4 address 
space, NAT has been an easy and safe answer for some years now; the only 
alternatives for much of the late 1990s seemed to be either further rationing 
of IPv4 addresses or a rapid migration to IPv6 support. Neither of those 
options is particularly appealing, but there was no other mechanism by 
which the existing IPv4 internet infrastructure could be preserved while 
at the same time relieving the address squeeze by adding new globally 
unique addresses. 



440 Part Four �9 Internet Layer and Below 

That is, until the Realm-Specific IP (RSIP) arrived, published in late 2001 
in a series of four experimental RFCs (see RFC list in the next section for 
titles of RFCs 3102 through 3105). As explained in RFC 3102, "Realm Spe- 
cific IP: Framework," NAT "has become a popular mechanism of enabling 
the separation of addressing spaces. A NAT router must examine and 
change the network layer, and possibly the transport layer, header of each 
packet crossing the addressing domains that the NAT router is connect- 
ing. This causes the mechanism of NAT to violate the end-to-end nature 
of the Internet connectivity, and disrupts protocols requiring or enforcing 
end-to-end integrity of packets." 

Rather than depending on an artificial pool of non-unique IP addresses 
and the NAT to interoperate with the global internet from inside a private 
network, RSIP defines a mechanism by which a host in one addressing 
realm (i.e., a private network) can be allowed to use network resources 
from a second addressing realm (i.e., the global internet). 

RSIP gateways, which replace the NAT boxes, must have the ability to 
permit the use of those resourcesm"addresses and other routing parame- 
ters," according to RFC 3102mand the (private) RSIP node can interoperate 
directly with an internet node, without any lower layer protocol tinkering 
as is done by a NAT. 

This turns out to be a possible solution to some of the problems that NATs 
pose in terms of end-to-end interoperability. However, as the authors of 
the specification make quite clear, RSIP is intended neither to replace NAT 
or to solve the IPv4 address shortage. At best, they write, RSIP is a stopgap 
measure (as NAT was when it was first proposed). 

However, RSIP does offer an interesting solution to the problem of inter- 
operating between networks using different internet layer protocols, such 
as IPv4 and IPv6, or even IPv4 and some other as yet undetermined 
protocol. We'll return to RSIP in Chapter 29, when we discuss IPv4/v6 
interoperability issues. 

19.4.6 NETWORK ADDRESS TRANSLATORS AND RELATED RFCs 

As of 2002, these RFCs had been published about NAT and the issues 
related to its use. A good place to start is RFC 3022, "Traditional IP Net- 
work Address Translator (Traditional NAT)," defining traditional NAT 
functions. RFC 2663, "IP Network Address Translator (NAT) Terminology 



Chapter 19 �9 The Internet Protocol 441 

and Considerations," is another good basis for discussion of NAT issues, 
as are RFC 3027, "Protocol Complications with the IP Network Address 
Translator," and RFC 2993 "Architectural Implications of NAT." 

RFC 1631 The IP Network Address Translator (NAT) INFORMA- 
TIONAL (obsoleted by RFC 3022) 

RFC 2391 Load Sharing using IP Network Address Translation 
(LSNAT) INFORMATIONAL 

RFC 2663 IP Network Address Translator (NAT) Terminology and 
Considerations INFORMATIONAL 

RFC 2709 Security Model with Tunnel-mode IPsec for NAT Domains 
INFORMATIONAL 

RFC 2766 Network Address Translation-Protocol Translation (NAT-PT) 
PROPOSED STANDARD 

RFC 2962 An SNMP Application Level Gateway for Payload Address 
Translation INFORMATIONAL 

RFC 2993 Architectural Implications of NAT INFORMATIONAL 
RFC 3022 Traditional IP Network Address Translator (Traditional 

NAT) INFORMATIONAL 
RFC 3027 Protocol Complications with the IP Network Address Trans- 

lator INFORMATIONAL 
RFC 3102 Realm Specific IP: Framework EXPERIMENTAL 
RFC 3103 Realm Specific IP: Protocol Specification EXPERIMENTAL 
RFC 3104 RSIP Support for End-to-End IPsec EXPERIMENTAL 
RFC 3105 Finding an RSIP Server with SLP EXPERIMENTAL 
RFC 3235 Network Address Translator (NAT)-Friendly Application 

Design Guidelines INFORMATIONAL 
RFC 3257 Stream Control Transmission Protocol Applicability State- 

ment INFORMATIONAL 

This list does not necessarily include every RFC that mentions NAT, only 
those that are particularly relevant. Only one of these, RFC 2766, is pub- 
lished as a proposed standard; that the rest are all either experimental or 
informational RFCs shows the degree to which NAT is still very much a 
topic of research and discussion. 

19.5 Chapter Summary 
We covered a great deal of material in this chapter, starting with IP address- 
ing. We examined IP addressing notation, IP address types (including 



442 Part Four ~ Internet Layer and Below 

"special" addresses), the network addressing architecture used for IP, and 
the use of subnetting within IP networks. 

Just as important as addressing to the IP protoocol, the IP datagram m 
its header fields and options--was also examined here. Beyond simply 
describing the datagram components, we also looked at some of the 
mechanisms that the IP datagram structure incorporates: 

Type ofService/Diffserv: providing a mechanism for differentiating 
datagram handling en route to their destinations. 

Fragmentation: allowing larger packets to be broken up for delivery across 
intermediate networks with smaller maximum transmission unit 
sizes. 

Path MTU" defining the MTU size for a particular IP route. 

Time to Live: for timing packets out, keeping them from endlessly cycling 
around routing loops. 

IP options: providing a method for extending the protocol to include new 
functions. 

IP routing topics were also introduced, focusing on the ways in which 
routers move packets around networks and the ways in which IP hosts 
and routers process packets they send and receive. 

Finally, we looked at the NAT specifications, under which increasing 
numbers of hosts are attached to the global internet, examining how this 
short-term solution for the IP address shortage has become a long-term 
solution for millions of hosts. 

In the next chapter, we will study the ICMP, which defines a set of mech- 
anisms by which network control messages are exchanged between IP 
systems. 



Internet Control 
Message Protocol 

Although carried within IP datagrams, Internet Control Message Protocol 
(ICMP) messages comprise a protocol running side by side with IP at the 
network layer. Routers use ICMP to notify hosts and other routers that a 
route is unreachable, that there is a problem with a particular path, or that 
a router is being overloaded. Although ICMP can also be used to provide 
certain information to hosts (like the current time or the subnet mask for 
a particular network), these functions are less vital and are often available 
in other ways. 

ICMP is part of the STD-5 specification that includes the Internet Proto- 
col, and it is documented in RFC 792, "Internet Control Message Protocol 
(ICMP)." All IP hosts must implement ICMP so that they can receive 
and send: 

�9 error messages about unreachable destinations 
�9 error and status messages about routes and gateways 
�9 echo requests and replies to indicate status of reachable hosts 

443 



444 Part Four �9 Internet Layer and Below 

error messages about traffic that has timed out (the time to live 
[TTL] value reaches 0) 

ICMP provides an important adjunct to internet protocol (IP) as the channel 
through which nodes can exchange error and other types of message about 
packet exchanges. 

20.1 I nternet Control Message Protocol Headers 
and Messages 

As shown in Figure 20-1, ICMP messages have a simple structure: a one- 
octet type field, which indicates what function the message is fulfilling, and 
a one-octet code field, which may be used to further clarify the contents of 
the message. For example, the code field is not used with echo requests or 
replies (see the section on Ping), although there are many codes to go with 
destination unreachable error messages. 

A two-octet checksum follows the type and code fields, and the contents 
of the ICMP message will vary, but will always include the header and 
the first eight octets of the datagram that caused the error message to be 
sent. ICMP provides no error correction: it simply reports routing errors 
by sending error messages back to the source. 

IP Header Type Code Checksum 
(at least 20 bytes) (1 byte) (1 byte) 

I ICMP Message Contents 
(length and format varies) 

Figure 20-1: ICMP messages are encapsulated within IP datagrams, but they 
operate at the same layer as IP. 



Chapter 20 ~ Internet Control Message Protocol 445 

The message contents field contains the IP header and the first 64 bits of the 
original datagram that caused the ICMP message to be sent. This is enough 
to permit higher level protocols (such as transmission control protocol 
[TCP]) to examine their own headers and take corrective action based on 
the ICMP message. The message may also contain the IP addresses of 
intervening routers between systems or a list of available routers on a 
network with corresponding preference levels, depending on the ICMP 
message type. 

Mostly to avoid having the cure be worse than the disease, ICMP has 
certain limitations built into the specification. For one thing, ICMP error 
messages cannot beget ICMP error messages. For another, broadcast or 
multicast messages also cannot beget ICMP error messages. Both these 
rules help avoid cascading errors which would result in broadcast storms 
that could easily flood a network. 

20.2 Unreachability and Routing Messages 
ICMP unreachability messages indicate there has been a failure somewhere 
in the process of addressing the datagram that triggers the message. For 
example, an incorrectly addressed datagram can cause an unreachable 
message to be sent to the host originaly sending the datagram. The mes- 
sage usually indicates that the host or the network is either unreachable or 
unknown. This happens when a host is turned off, when a network link is 
down, or even when the specified protocol is not available (for instance, 
attempting to connect to a network application port that is prohibited or 
restricted). 

The most obvious uses for ICMP routing messages are requests for lists of 
available routers and the replies that include lists of other available routers 
(each router listed with a priority level). Hosts often use ICMP to request 
a list of available routers when they boot up, to initialize their routing 
tables. Routers advertise gateways when they boot up, and they will also 
periodically broadcast this information. 

These routing messages include a field to indicate how long to retain 
the enclosed information because sometimes routers fail, are taken down, 
become overloaded, or lose connectivity to remote networks. By period- 
ically broadcasting the current routing preferences, routers ensure that 



446 Part Four ~ Internet Layer and Below 

hosts on their networks don't  attempt to use a default router that is 
inappropriate. 

Another type of routing message is generated when a router becomes over- 
loaded. Routers can be overwhelmed by a high-volume of traffic from 
a single host or from a generally high load generated by many hosts 
on the network. Although routers attempt to process all network traffic 
as it is received, when volume is high this is not always possible. The 
use of memory buffers to store incoming traffic before processing can 
help, but it no longer takes a Cray or Thinking Machines supercomputer 
to saturate a typical 10 Mbps Ethernet wire-nor does it take that many 
video-conferencing sessions to saturate a 100 Mbps Fast Ethernet local area 
network (LAN). 

Routers may send out source quench messages when they are overloaded 
(although this is not required). Each time the router receives a datagram 
it can't handle, it discards the datagram and sends back a source quench 
message, basically asking the fast transmitter to slow down. The origi- 
nating host then drops its speed until it stops getting the error messages, 
slowly building up speed again until it starts getting the error messages 
again. 

Another instance where an ICMP message may carry routing information 
occurs when a host sends traffic to one router when a different router 
advertises a better route (a route with fewer hops). This is called a redirect. 
This is a common occurrence on networks with more than one router, 
where the hosts start out with only a single default router in their routing 
tables. 

Figure 20-2 demonstrates this situation. Host A is attempting to send a 
datagram to Host C and is using Router AB as a default gateway. Since 
Host A knows that the datagram is destined for a nonlocal network, it sends 
it to the default gateway. However, Router AB has to route that datagram 
to Router AC to get it to Host C, taking an extra step (the first step is from 
Host A to Router AB, then Router AB to Router AC, then Router AC to 
Host C; the optimal route is from Host A to Router AC to Host C). 

Redirects occur when a router forwards a datagram onto the same network 
on which the datagram was received by the router this means that the 
originating host could have sent the traffic directly to another router on 
the same network. Although the router still forwards the datagram, it also 
generates a message back to the originating host that there is a better route. 



Chapter 20 �9 Internet Control Message Protocol 447 

t!ork A 

o ~  

Router AB 

N e t w o r k  B 

Figure 20-2: ICMP can be used to help a host learn about optimal routes. 

The hos t  can then  i nco rpo ra t e  the  new,  m o r e  efficient, r ou t e  into its r o u t i n g  
table. 

20.3 Ping and Internet Control Message Protocol Echo Messages 
P r o b a b l y  the  m o s t  c o m m o n  explicit  use  of ICMP is the  p i n g  appl ica t ion .  
Wr i t t en  in 1983 by  the  late Mike  M u u s s  at the  U n ive r s i t y  of Cal i forn ia  at 
Berkeley,  p i n g  b e h a v e s  like the  "p ing"  sent  ou t  by  w a r s h i p s  u s i n g  sonar ,  
p r o m p t i n g  the  n a m e  of the  utili ty.  1 P ing  sends  an  ICMP echo  r eques t  

1Writing on his web site (http://ftp.arl.army.mil/~mike/and still available as of 2002) 
Muuss denied that PING was an acronym for anything, and was chosen strictly on the sonar 
analogy. However, Dave Mills, currently a professor at University of Delaware, claimed on 
an IETF mailing list in 1988 to have coined the term "ping" as an acronym for "Packet InterNet 
Groper" in 1980. 



448 Part Four �9 Internet Layer and Below 

out to a specific host, and the host responds to ICMP echo requests by 
sending out an ICMP echo reply. Pings purpose is to see if anything is 
out there. 

Ping represents the simplest level of connectivity possible between two 
hosts on an internetwork, so it is useful for testing whether a remote host 
is reachable or whether the network connection for a local host is prop- 
erly configured and installed. Most ping applications use the command 
format: 

ping <IP host name I IP address> 

By using the IP host name instead of the address, it is possible to verify 
not only that the two hosts have connectivity, but also that the local host 
is resolving names properly (see Chapter 11 for more on network name 
resolution). 

Because organizations connected to the Internet are increasingly using fire- 
wall gateways (see Chapter 24 for more about network security issues) 
to protect against unauthorized use of their hosts, some hosts that 
may be visible to network applications won't respond to ICMP echo 
requests. However, ping continues to be useful as a diagnostic tool on 
unconnected internetworks as well as (usually) within organizational 
internetworks. 

Ping implementations can vary a surprising amount, but all do the same 
task: send out at least one ICMP echo request and report back whether the 
host is reachable or not. Some implementations simply send a single ICMP 
request, and report whether the pinged host responds. Most implementa- 
tions also report the amount of time it took between the request being sent 
and the response being received, which helps diagnose slow links between 
hosts. 

Also fairly standard is the use of multiple pings for each invocation of the 
program, one request per second. In these cases, a sequence number is 
recorded for each request and is reported when the response is received. 
Again, this is useful for identifying links that are dropping traffic (there 
will be missing numbers in the responses received) or that are sending 
traffic out of order or with varying routes (replies will not be received in 
the same order the requests were sent out). 



Chapter 20 �9 Internet Control Message Protocol 449 

Ping implementations usually pad out the datagram with some amount 
of data to simulate actual traffic. Some implementations allow the user 
to modify the amount of padding, making the ping datagrams larger 
or smaller. This function can be subverted into a denial-of-service attack 
known as the ping of death. Sending a ping datagram that is larger than it 
should be has been known to crash some systems. 

20.4 Traceroute 

Ping offers a tool to test connectivity between two individual hosts. The 
IP record route option (see above) will report the route taken by any IP 
datagram, including an ICMP echo request. This option causes every sys- 
tem handling the request to add its own IP address to the IP options field. 
Although useful, record route is severely limited. It records every system, 
every time that system handles the message, which includes the destina- 
tion host and every intervening router, every time the router is traversed. 
So a packet traveling from Host A to Router AB to Router CD to Router 
EF to Host N, and then back to Router EF, to Router CD, to Router AB, to 
Host A would have nine routing entires. 

This would not be a problem except that the route must be stored in the 
IP header options field, which can be no longer than 40 octets. Nine rout- 
ing entries would take up 36 octets (IP addresses are 4 octets long each). 
A simple route like the one just described, with only three routers between 
source and destination, is as long a route as can be recorded by this option. 
A single octet of the options field identifies the option type, another indi- 
cates the length of the options field, and a third indicates where in the field 
the IP address of the next stop in the route is recordedleaving room for a 
maximum of nine IP addresses. 

Some implementations of the traceroute program (including the Microsoft 
version, TRACERT and some *nix versions) offer a different strategy to 
trace the route between hosts on an internetwork. Rather than attempting 
to collect all the intermediate routers in a single pass, traceroute takes 
advantage of rules about handling IP datagrams that are about to expire 
because their TTL (time-to-live) field is almost 0. Routers wont forward a 
datagram with a TTL of 0 or 1; the datagram is thrown awaybut the router 
also sends an ICMP message back to the originating host. The message 
indicates that the offending datagram expired on the network. 



450 Part Four �9 Internet Layer and Below 

ICMP messages are addressed from the router that discovered the error to 
the originating host, so that when the host gets the ICMP error message, 
it then can know where the original ICMP echo request was in its route 
when the TTL counter expired. Traceroute determines the route between 
hosts by sending out pings with varying TTL values. The first ping has a 
TTL field value set to 1. The first router receives the ping, throws it out 
(because the TTL is too low to pass it on), and generates an ICMP error 
message back to the originating host. 

Traceroute stores the address of the first router, then pings the remote host 
again with the TTL counter set to 2. This time the echo request gets past the 
first router, but causes the second router to return an ICMP error message. 
Traceroute keeps this up until the TTL counter is just large enough to reach 
the remote host, which sends back an ICMP echo reply. The program then 
outputs the IP addresses of all the routers that sent ICMP error messages 
in the proper order. 

Traceroute is not foolproof. Because IP provides no connections but simply 
delivers datagrams, it is possible that traffic between two hosts may be sent 
over more than one route. Over time it is likely that the route between any 
two hosts on the Internet will vary due to changes in internet connections, 
modification of routers, and changes in service. However, over the short 
term these changes will usually not be present, making traceroute a useful 
tool. In any case, traceroute normally sends multiple probes per hop so that 
short-term changes in routing can be seen, and also to handle occasional 
packet losses. 

20.5 Using Ping 
Ping is most often used as a connectivity verifier, although it can verify 
only that there is connectivity; failure is not an infallible indicator of lack 
of connectivity. Network software installers often ping a remote host from 
a newly installed workstation to verify that the host is truly connected to 
the internetwork. Pinging a host by name rather than by IP address adds 
the ability to check that name resolution is being done correctly. When 
ping fails in these instances, the problem is almost as likely to be with the 
configuration of the host as with connectivity. 

Ping is much more useful as a diagnostic tool when used from a host suffer- 
ing from a problem connecting to some other host or hosts. For an example, 



Chapter 20 �9 Internet Control Message Protocol 451 

Host A \ 

Host B 

I" 
Telnet client 

(possibly compromised link) 

Internetwork 

I 
I 
I 

(possibly compromised link) 
I 

Host C 

Figure 20-3: Connectivity problems can sometimes be diagnosed with ping. 

look at Figure 20-3. A user attempts a telnet session with remote host A but 
fails to connect and gets an error message that indicates the host is down. 

Depending on the result, different actions may be taken: 

1. If the users system is not properly configured to resolve host 
names, connecting to Host A by its IP address should work. 

2. If attempting to connect by IP address instead of host name still 
doesn't  work, the telnet server may not be running, the host 
may be down, or the hosts network may be inaccessible (its link 
to the internetwork is down). 

3. If after sending a ping to host A (by its IP address) the local host 
gets a response from host A, then the remote hosts telnet server 
may not be running, or it may have been temporarily down, 
or the local hosts telnet client may not be working properly. 



452 Part Four �9 Internet Layer and Below 

The user can verify that the telnet client is working by initiating 
a telnet session with another host, perhaps a local one. 

4. If host A doesn't respond to the ping, it may mean that host A 
is down or that the network is temporarily inaccessible. To 
find out, the user could attempt to connect to another host 
on the same network as host A (for instance, host B) or send 
another ping to host B. If the client cannot connect to any host on 
host As network, the user could check on connectivity to other 
networks, which can help determine if the local network is dis- 
connected from the internetwork or if it is the remote network 
that has connectivity problems. 

Ping is also useful for generating traffic on a network between two hosts. 
Many ping implementations permit the user to specify a size for the packet, 
a delay between packets sent, and the number of times to retry the remote 
host. This controlled transmission can help the administrator identify prob- 
lems, like systems that can't handle lots of traffic, or hosts that have 
sporadic outages, that could not be diagnosed with a single ping. 

It should be clear that ping can be a helpful diagnostic, as long as the user 
understands all the different variables that may be at work. By itself ping 
may sometimes be sufficient to indicate that a problem exists, but it is not 
always sufficient to pinpoint problems. 

20.6 Using Traceroute 

Traceroute offers an ingenious use of the ICMP TTL Exceeded message to 
determine the route taken between a client and a server. The output from 
traceroute includes the names of the different routers forwarding packets 
between the two hosts as well as the round-trip time for the messages from 
source to router. 

Network managers may use traceroute to diagnose slow response time 
between a client and a server: by checking what path network traffic is 
taking from one host to another it is sometimes possible to identify bottle- 
necks (routers that are responding very slowly) or instances where traffic 
is being routed over an unnecessarily long path. 

Like ping, however, traceroute cannot be regarded as a formal and infalli- 
ble management solution but rather as a useful diagnostic tool and guide. 



Chapter 20 �9 Internet Control Message Protocol 453 

20.7 Chapter Summary 
As we've seen in this chapter, ICMP provides an invaluable and ingenious 
tool for generating network reachability information. Ping and traceroute 
are two fundamental network troubleshooting tools as well as important 
learning tools for new network engineers seeking to explore the ways in 
which their networks interoperate. The next chapter takes us to the data 
link layer, where physical systems communicate over a shared medium. 



This Page Intentionally Left Blank



The Data Link Layer 

Mapping a logical (internet protocol [IP]) network onto the real-world 
physical networks requires that the logical network protocol entities be 
able to communicate with data link layer protocol entities, if only to figure 
out how to deliver data. IP and the link layer protocols interact in a variety 
of ways; as discussed in Chapter 20, ICMP operates in parallel with IP to 
deliver messages about IP system status. 

The protocols governing communication between entities on the same 
link layer network, such as Ethernet, must provide some mechanism for 
IP (or any other network layer protocols) to map addresses from IP to the 
link layer network. IP originally used link layer broadcasts, with nodes 
effectively shouting, "who here is using the IP address X.X.X.X?" A single 
message, but all nodes would hear it. 

Not all network media support this kind of broadcasting because they 
have no way for more than one node to receive the same message at the 
same time. This type of network is called a Non-Broadcast Multiple Access 
(NBMA) network, and it just means that all communication is done on 

455 



456 Part Four �9 Internet Layer and Below 

a one-to-one basis. (Think of the difference between a simple telephone 
system, where the only calls possible are from one instrument to another--  
no extra instruments on the same line, no conference calling, not even a 
public address system or intercom system.) 

Increasingly, these NBMA media have become important for IP network- 
ing, and if there is no mechanism for broadcasting at the link layer, address 
resolution must be accomplished some other way. 

This chapter examines three of the most common link layer protocols used 
with IP: Ethernet, the Point to Point Protocol (PPP), and Asynchronous 
Transfer Mode (ATM). Some might argue that of these three, only Ethernet 
is the only true link layer protocol because it specifies how data is to be 
framed, transmitted, and received over a local network medium. PPP is 
most often used for linking home personal computers to internet service 
providers. Strictly speaking, ATM is an internetworking protocol in its 
own right, defining activity at layers 2 and 3 for traversing circuit-oriented 
networks of networks. 

Some might also argue that if we talk about ATM we must also talk about 
Frame Relay (FR), another key NBMA medium. However, most of the 
protocols we'll cover in this book are generalized for NBMA networks 
rather than specifying; ATM is presented largely as an example, one type of 
NBMA network; just as Ethernet is presented as an example of a broadcast 
network. 

Of even more concern to some might be the inclusion of ATM (and FR) in 
a chapter about the data link layer: these protocols have traditionally been 
treated as sort-of link layer protocols by IP engineers, yet actually they are 
designed as internet protocols capable of supporting large, interconnected 
internets on their own. 

However, Ethernet, ATM, and PPP are all examples of protocols used to 
convey IP packets across networks, they all interact to a greater or lesser 
degree with IP entities, and they're all examined in this chapter. 

We start with a look at how IP interacts with the link layer protocols, follo- 
wed by an overview of fundamental Ethernet specifications. Inasmuch 
as the basic IP mechanism for address resolution, the Address Resolution 
Protocol (ARP), is strongly linked with Ethernet, we cover ARP and vari- 
ations such as Reverse ARP (RARP), and Proxy ARP next. After ARP, we 
look at ATM, which is representative of the NBMA family of protocols 



Chapter 21 �9 The Data Link Layer 457 

over which ARP will not work without significant modificationmso we 
also discuss how ARP has been adapted. 

PPP, over which IP/link layer addressing issues are simplified (a signal can 
have only one source and one destination on the link), is discussed next. 
The last section introduces the family of "IP over X" specifications defining 
how IP packets are to be handled over various different link layer protocols. 

21.1 Internet Protocol and the Link Layer 

Strictly speaking, TCP/IP should not be concerned with the data link layer. 
Networked hosts use the data link layer to move data between the net- 
work interfaces of two different computers on the same physical network. 
At this level, network traffic is just one level above the physical signal: 
whether the signal is a variation in current on a conducting medium, a 
variation in light signals on a fiberoptic medium, or a variation in sound 
on an analog telephone wire. The data link layer is concerned with prop- 
erly sending and receiving these signals between communicating hosts 
through their network interfaces. 

The most important function transacted between IP and the link layer is 
linking an IP address with a local network address. ARP solves this prob- 
lem handily--as long as the local network uses a broadcast~multiple access 
medium, such as Ethernet, in which there are mechanisms for broadcast 
(one datagram reaches all nodes on the network) and for allowing all nodes 
to monitor the medium simultaneously. Early Ethernet networks based on 
coaxial cables used a bus topology, with all nodes interfacing to the net- 
work through a physical tap into the wire; likewise, wireless networks lend 
themselves to protocols similar to Ethernet because all nodes can monitor 
the local network simultaneously and all can be reached with a single 
broadcast packet. 

Important IP functions, starting with local link address resolution, require 
a broadcast mechanism to work. If a network supports only unicast data- 
grams, then address resolution for IP based on standard ARP becomes 
difficult if not impossible. Although Ethernet, and increasingly wireless, 
dominate the market for organizational networks, 1 ATM, Fibre Channel, 

1 Token Ring and others are increasingly viewed as legacy systems to be replaced when 
possible. 



458 Part Four �9 Internet Layer and Below 

and other high-performance, circuit-oriented data communications proto- 
cols are based on point-to-point connections. They are known collectively 
as NBMA networks. There is no support for broadcast in these networks; 
since there is no common bus or medium through which a single packet 
can be received by more than one node, there is no support for multiple 
access either. 

As illustrated in Figure 21-1, broadcast is simple on an Ethernet network 
because it is transmitted once, but all nodes on the network (including the 
sender) can detect the transmission and determine that they should accept 
it for processing. In this case, host A sends a broadcast message out on the 
LAN, and all nodes identify it as a broadcast, accept it, and process it. If the 
message had been intended only for host D, all the nodes would still check 
the message just enough to determine that it was not a broadcast and that 
it was not intended for them, and ignore it (except for the recipient, D). 

In an ATM network, all communication is done through circuits, shown 
here as a pipeline through the network cloud from E to H. IP over NBMA 
networks is further complicated by the fact that many NBMA networks are 

I ! i 

il Ethernet 

ATM 
network 

I I ....... 

Figure 21-1: Broadcast/multiple access networks and non-broadcast/multiple 
access networks. 



Chapter 21 �9 The Data Link Layer 459 

not simple local area network/ l ink layer protocols but are rather full-blown 
internetworking protocols themselves. Many NBMA network protocols 
are aimed at accomplishing the same function in their protocols stacks that 
IP does in the TCP/IP suite: routing data across internets. 

This section introduces the fundamentals of Ethernet networking, ATM 
networking, and the PPP. 

21.2 Ethernet 

Ethernet is actually a set of standards specifications that define network 
MAC addresses, frame formats, and transmission standards. Ethernet took 
its basic form in research labs during the mid-1970s and its modern form 
by 1982. The commercial version that came to dominate the market runs at 
10 Mbps and is sometimes referred to as DIX Ethernet, where DIX stands 
for Digital Equipment Corporation (DEC), IBM, and Xeroxmthe compa- 
nies that underwrote the specification (DIX Ethernet is sometimes also 
called Ethernet II; both of these terms are now rarely used). 

The IEEE maintains the IEEE 802.3 of standards that define what is now 
more commonly known as Ethernet. There are minor differences between 
the IEEE 802.3 standards and the Ethernet standard, some purely semantic 
in the use of different nomenclature for the same frame fields. 

The IEEE called their Ethernet standards group Project 802 because it was 
started in February 1980, and they came up with several sets of standards 
relating to the standard networks of that time (Table 21-1). 

Ethernet is considered a CSMA/CD network; the acronym stands for Carrier 
Sense Multiple Access/Collision Detection, and it represents Ethernet's most 
important characteristics: 

Carrier Sense: All nodes on an Ethernet share the medium, so only one can 
transmit at a time. Before a node can transmit on the network, it must 
check to see if any other node is already transmitting--carrier sensing 
is the process of checking the wire to see if anyone else is using it. 

Multiple Access: This means that all nodes on an Ethernet share the 
medium and any or all of them can, at any time, detect any signals 
traveling over it. 



460 Part Four �9 Internet Layer and Below 

IEEE Standard Area Standardized 

IEEE 802.2 

IEEE 802.3 

IEEE 802.4 

IEEE 802.5 

IEEE 802. II 

Logical Link Control (LLC) 

Standardization for Ethernet 
(CSMA/CD baseband networks) 

Token Bus network standards 

Token Ring network standards 

Wireless networks 

Table 21-1: The IEEE 802 standards apply to various types of networks, with 
the 802.2 standard applicable to all. 802.3 refers to Ethernet-type networks, while 
802.11 is for wireless. 

Collision Detection: This means that not only does each node have to check 
to make sure that no other node is transmitting before it sends any- 
thing, but also that nodes must have a mechanism by which they 
are able to detect if any other node (having also determined that the 
medium was available) has also attempted to transmit at the same 
time. Such events are known as collisions and call for specific action 
on the part of both nodes. 

The IEEE standard numbers aren't version numbers as one might think, 
but rather differentiate the standards. The 802.2 standard provides trans- 
parency to the physical layers for all the 802 network standards (802.3, 
802.4, and 802.5). So, if a CSMA/CD baseband network runs IEEE 802.2, 
it generates 802.3 frames and uses the 802.2 Logical Link Control (LLC) 
specifications within those frames. Likewise, if a network uses the IEEE 
802.3 standard, one should expect that it uses the 802.2 extensions (but this 
is not always the case). 

21.2.1 ETHERNET FRAMES 

The protocol data unit for Ethernet is the frame, consisting of header fields 
and a field for a payload. The payload will almost always contain network 
traffic relating to a higher layer. In TCP/IP internetworks the payload is 
invariably an IP datagram, though in heterogenous networks IP datagrams 
can coexist with other types of network traffic. The nodes that process 
the frame are unconcerned with the payload: the frame functions as a 



Chapter 21 �9 The Data Link Layer 461 

., . . , . :  : L , . . . . ~ . / , ~ . ~ : .  ~ . .  :. 

Data Link Layer 
Destination: 
Router AB 

Network Layer 
Destination: 

Host C 

Network 
Traffic 

I" 
Host A 

~ . . . . . ~ . . . ;  . , ; . . : .~  ..:: ..:....~...... 

Data Link Layer 
Destination: 
Router BC 

Network Layer 
Destination: 

Host C 

Network 
Traffic 

Router BC Router AB 

Data Link Layer i!~'.~ 
Destination: ~:ii::i~: 

Host C 
Network Layer 
Destination: 

Host C 

Network 
Traffic 

Host C 

Figure 21-2: The data link layer addresses of a frame change as the frame 
passes from one network to another, but the IP source and destination 
addresses remain unchanged. 

container in which to deliver the payload to the correct destination host on 
the local network. 

The source and destination hosts may or may not be the source and des- 
tination hosts for the frames payload. Consider Figure 21-2, a simple 
internetwork. Host A is sending a piece of data to Host C across an inter- 
network. Host A begins (at the application layer) collecting the application 
data, adds TCP headers to address it to a specific remote process (at the 
transport layer), then adds IP network addressing to address it to a par- 
ticular host (at the network layer). Before the resulting IP datagram can 
be sent out on the Ethernet, the originating host adds network link layer 
information to create an Ethernet frame. 

There are three different PDUs involved here: 

Transport  layer PDU: In this case, a TCP segment addressed to a particular 
process running on the destination node. 



462 Part Four �9 Internet Layer and Below 

Network layer PDU- In this case, an IP datagram addressed to a particular 
hosts IP address somewhere on the internet in the figure. 

Link layer PDU- In this case, an Ethernet frame addressed to a specific 
network interface directly connected to the same network as the 
source. 

Host A knows the ultimate destination for the IP datagram is off the 
local network; therefore, the originating source host addresses an Ethernet 
frame to the local router. Even though the IP datagram is addressed to 
Host C, the Ethernet frame sent by the originating host is addressed to 
Router AB. 

Although Network A and Network C in our example are both Ethernets, 
intermediate internet B could just as easily be a high-speed ATM back- 
bone, a token ring network, or something else. Once the frame is received 
by Router AB, it strips away the Ethernet frame headers, checks the IP 
destination address, and determines that the IP datagram is intended for 
a host on a different network. 

Because Router AB is configured to send all packets destined for Network 
C to Router BC, it creates a new network frame (perhaps an Ethernet 
frame, perhaps not) containing the IP datagram (from Host A to Host C). 
The new network frame, traveling from Router AB to Router BC, will have 
Router AB as the source and Router BC as the destinationmbut the IP 
packet itself remains unchanged, and the packet's destination IP address 
remains unchanged. Figure 21-2 shows that the headers are stripped off 
and the router converts the frame into the proper format for Network B; 
Router BC in turn must accept the resulting frame, determine the local 
network address of the destination host, Host C, and create a new Eth- 
ernet frame for Network C. The final network frame in this example will 
show Router BC as the source and Host C as the destinationmbut the 
IP destination address is still unchanged, with the IP destination still 
Host C. 

21.2.2 ETHERNET AND IEEE 802.:3 FRAMES 

The host requirements specification (RFC 1122) mandates IP nodes con- 
nected to an Ethernet network MUST be capable of handling Ethernet 
frames. The requirements specification indicates only that nodes SHOULD 



463 

Ethernet II 
Header 

Z ii i ..i. ii . . . . . . . . . . . . . . . . . .  

Destination MAC Address 
(6 bytes) 

Source MAC Address 
(6 bytes) 

Protocol ~i 1 
Type ~i] 

(2 bytes) ~ 

. . . . . . . . . . . . . . . . . . . . . . .  , .  , .  " . ' .  �9  . . . . .  .~ . . . . . . .  . . . . .  ' , " . .  . . ,~ .,~,., i." : , . . o .~ *o . . ~ . r ' . . ; ~ :  

Chapter 21 �9 The Data Link Layer 

. . . . . .  ~ : ;  ~ ~ .  d " " '  , " ; ' "  a . . . . .  ~ r  ~" " "  ,~.'. " ' ' "  �9 ~ .  " ~  ~ :  , " '  " ~ " "  " E'" ', ~. " "" a :  b.," Y ' : ' " ~  

Z ... . . . . . .  " . . . . . . . .  : . . . . . . .  .: ............... : ; . . . .  .~ . . . . . . . . . . . . . . .  ~ . . . . .  ; .  ~...~...:" ........... . . . . , . . . . ~ .  ; . ~ . . ~ . .  ,a : , ,  .~.. . . . : . , ; . ' . . . .=.: . ; . .G.~ G . . . d .~  ~ , . ~  .~. ~ . . .  

data continued (46-1500 bytes) CRC (4 bytes) 

Figure 21-3: An Ethernet frame contains from 46 to 1500 octets. 

accept frames formatted with the more strict IEEE 802.3 specification (most 
IP nodes on Ethernets do support both, however). 

Network frames literally frame the data being sent, with header fields (and 
often with trailer fields, which indicate the end of the frame). Network data 
fits in the data field. Figure 21-3 shows the structure of an Ethernet frame, 
and Figure 21-4 shows the IEEE 802.2/802.3 frame. 

First, note the similarities: Ethernet and IEEE headers both begin with the 
destination and source media access control (MAC) address, six-octet values 
typically hard-coded into the network interface, and both terminate with 
a four-octet Cyclic Redundancy Check (CRC) as their trailer. Both specify 
a two-octet header field following the source and destination fields. The 
differences between Ethernet and 802.3 frames lie in the definition of this 
field and in the use of the eight octets following it. 



464 Part Four �9 Internet Layer and Below 

Destination MAC Address (6 bytes) Source MAC Address (6 bytes) 

802.3 Ethernet 
Frame Header 

DSAP I SSAP[Control I Organization Code SNAP Type 
(3 bytes) (2 bytes) 

802.2 LLC~I 802.2 SNAP 
I 

data (38-1492 bytes)... ~ 

.:~ .~.;;~ ,.%.~ .,, ~ ~ . . . , . : , , , . .  �9 , : , .  -: ~ , . . . , ~  . . . . . . . . . . .  , 4 ,  ,., : : . . , . . , :~.~,  ;~ ,~ . . , .~  . ; . .  : ,  ;,~ ~ ,  ; ~ , . : ~  . . ~  ,..., . .> , ]  , . ~ . , . ' ~ . , ~ t  ..~, . ~ . : ~  .~:  , ~  "", " " ' r  ". ' . .  : �9 ' , , "  : "  , : :  

data continued (38-1492 bytes) 

Figure 21-4: The IEEE 802.2/802.3 frame varies slightly from the original 
Ethernet specifications, but is compatible with those specifications. 

Following the addresses, Ethernet defines a two-octet ethertype field identi- 
fying the frame's payload protocol type to indicate the upper layer protocol 
to receive the payload once the frame is processed. The value of this 
field is used to distinguish frame payload encodings. For example, IPv4 
traffic is indicated by the hex value of OxO 8 0 o, IPv6 by Ox8 6DD, and ARP 
messages by 0x0806. 

IEEE 802.3 specifies that these two octets be used as a length field, indicating 
a value in octets representing the frame payload length; this value may be 
no smaller than 46 octets (frames containing less than that much data are 
padded to that length to enable collision detection) and no longer than 
1,500 octets. 

IEEE standard permits further classification of the frame's contents by 
using additional fields for Logical Link Control (LLC) and Subnetwork Access 
Protocol (SNAP) fields, while Ethernet uses the ethertype (a value that 



Chapter 21 �9 The Data Link Layer 465 

indicates the protocol being carried in the payload) field to identify a 
frame's contents. 

Because valid ethertype values are all higher than 1,500 (the maximum 
number of octets for the data portion of the network frame), IEEE 802 
frames are distinguished from Ethernet frames simply by checking the 
two octets that follow the destination and source addresses: if the value is 
larger than the hexadecimal for 1,500, the frame is an Ethernet frame (and 
the value defines a protocol type); if it is 1,500 or less, it is an IEEE frame. 
Because the original Ethernet specification limited payload length to 1,500 
octets, the IEEE 802.3 committee was able to specify the use of ethertypes 
whose values are greater than 1,500 while maintaining compatibility with 
Ethernet. 

The important part of the frame, the actual payload, differs between 
Ethernet and IEEE in the first eight octets, assigned by IEEE to LLC and 
SNAP functions. As a result, an Ethernet data field can be no longer than 
1,500 octets and no smaller than 46 octets; valid IEEE data fields range from 
38 octets to 1,492 octets. 

One further difference (semantic though it may be) between IEEE and 
Ethernet is in the name given to the 64-bit sequence with which each frame 
opens. Ethernet defines a preamble sequence: 

I0101010 I0101010 I0101010 i0101010 

I0101010 I0101010 I0101010 I0101011 

IEEE 802.3 defines a seven-octet preamble: 

I0101010 I0101010 I0101010 I0101010 

I0101010 i0101010 I0101010 

followed by the Start of Frame Delimiter (SFD): 

I0101011 

Ethernet/802.3 frames have strict size limitations, which in turn affect the 
size of the IP packets that may be carried in each frame. A complete frame 
may be no larger than 1,518 octets: a maximum of 1,500 octets for the 
payload, 14 octets for the headers, and 4 octets for the CRC. 



466 Part Four �9 Internet Layer and Below 

The lower bound for the entire frame size is set at 64 octets (14 octets for 
the headers, 4 octets for the CRC, and 46 octets of data or padding) to put 
enough data on the wire at any given time during the transmission so that 
it will collide with data sent by any other node. 

While the minimum Ethernet frame is limited to 64 octets by the nature 
of the medium, the upper value for frame length is more flexible. The 
1,500-octet frame limit was chosen apparently because it balances overall 
network efficiency, by maximizing the time during which the network 
is actually carrying traffic, while minimizing network delay, which is 
increased when larger frame sizes are permitted. Larger frame sizes are 
possible, and jumbo frames, up to 9,000 octets long, are allowed in gigabit 
Ethernet. To ensure compatibility with "standard" 10-Mbps Ethernet, the 
1,500-octet payload is enforced for Fast / 100-Mbps Ethernet, but the jumbo 
frames at higher-bandwidth Ethernet to improve overall performance. The 
32-bit CRC becomes less reliable as the frame length increases, with 12-K 
octet frames the largest for which a 32-bit CRC is adequate. 

The use of 8 octets of the Ethernet payload for LLC/SNAP encapsulation 
in 802.3 frames results in maximum payload size of 1,492 octets, but most 
modern systems and networks support an IPv4 MTU of at least 1,500 octets, 
which in turn implies that non-optioned IP packet payloads will be 1,480 
octets in length (1,500 octets for the packet less 20 octets for IP headers). 
The IP payload can therefore encapsulate TCP segments whose payloads 
are no greater than 1,460 octets (1,480 octets of IP payload less 20 octets for 
TCP headers). 

Other link layer protocols, with other limitations on frame size, may sup- 
port local MTUs that are greater or smaller than 1,500 octets, but the 
predominance of Ethernet and similar protocols means that a path MTU 
of 1,500 octets is often a safe bet. The minimum path MTU allowed for 
IPv4 is 576 octets, a figure that should accommodate even the most archaic 
systems. 

21.3 Address Resolution 

If you could make IP addresses and physical addresses (so called because 
they refer to the physical device receiving network data; also referred to 
as link layer or MAC addresses) match, linking an IP adress to a network 
address becomes trivial. Unfortunately, this is not feasible for the most 



Chapter 21 ~ The Data Link Layer 467 

common network media. MAC addresses are 6 octets long, and cannot be 
mapped directly onto four-octet IP addresses. You could try padding the IP 
addresses and inserting them into the MAC address, but MAC addresses 
are hard-coded into network interface cards. 

You could also try copying all the physical addresses of hosts on the local 
Ethernet into a file and associating them with the hosts IP addresses. 
However, this approach is flawed. Although the IP addresses are asso- 
ciated with specific hosts, the network addresses are bound to the network 
interface cards. When a card fails or a new card is installed, that link 
layer/IP address list becomes useless. A more dynamic approach is 
required. 

When a host determines that an IP datagram is destined for a node on the 
local network, it uses the Address Resolution Protocol (ARP) to get that 
address, as documented in RFC 826, "An Ethernet Address Resolution 
Protocol - or - Converting Network Protocol Addresses to 48-bit Ethernet 
Address for Transmission on Ethernet Hardware." Reverse Address Reso- 
lution Protocol (RARP) takes a similar approach to allow hosts to find out 
their own IP address on the basis of their network address. 

ARP is simple. The host that wishes to send the IP datagram broadcasts 
an ARP request to the local physical network. The request is for the sys- 
tem assigned to the specified IP address to respond with its physical 
address. All the systems on the network process these requests, but only 
the host with the specified IP address responds. The system originating 
the ARP request then uses the physical address supplied to address the 
local network frames. 

One might ask whether it would be more sensible for nodes on an 
Ethernet to dispense with ARP entirely, and process all network frames. 
Unwrapping all frames' Ethernet headers would reveal the true destina- 
tion of the payload, allowing the intended recipient to further process the 
packet and all others to discard it. Of course, this is hugely wasteful: in 
effect, it would turn all network traffic into broadcast traffic with all nodes 
required to allocate resources to process all frames. Also, modern Ethernets 
typically rely on switches that transmit frames only to their intended des- 
tinations; broadcasting all frames to all nodes would impose much greater 
demands on switches. 

A few elaborations make ARP less unwieldy than it appears at first glance. 
The first is the ARP cache: each system maintains a list of network address 



468 Part Four �9 Internet Layer and Below 

and IP address pairings, which is consulted before sending out any ARP 
requests. The next is that ARP requests include the network address/IP 
address of the requesting system; if host A needs a network address to 
direct traffic to host B, chances are good that host B will soon be sending 
some kind of traffic to host A. Finally, even though only the requesting and 
responding hosts generate any traffic on the local network, all the hosts on 
that network listen in and update their own ARP caches with the network 
address/IP address of the requesting node. 

21.3.1 ADDRESS RESOLUTION PROTOCOL MESSAGE FORMAT 

Most often, ARP is used to correlate 6-octet link layer addresses with 
4-octet network layer addresses, but ARP can be used to link any size 
network addresses with any size link layer addresses. ARP operates at 
the data link layer, so ARP messages are carried in network frames 
rather than in IP datagrams. Figure 21-5 shows a typical Ethernet ARP 
frame. To conform with the standard Ethernet frame, the Ethernet des- 
tination will be "all ones": the Ethernet broadcast address. Every host 
on the network will receive the frame. The Ethernet source address 
is the originating host's Ethernet address, and the Ethernet frame 
protocol type value is 0x0806, indicating the frame carries an ARP 
message. 

The first two fields within the Ethernet frame indicate the kind of net- 
work hardware address (Ethernet) that must be located to match the 
address of the network protocol type (IP). The next two fields, hard- 
ware length and protocol length, indicate in octets how long the hardware 
and protocol addresses are. These four fields may vary for different net- 
work and protocol types, but for IP over Ethernet they specify that the 
ARP packet will be 28 octets long: 8 octets for the header fields, 10 
octets for the originating host's IP address (4 octets) and Ethernet address 
(6 octets), and 10 octets for the target host's IP address and Ethernet 
address (which the originating host leaves blank when it sends the ARP 
request). 

Finally, the operation field indicates the function the ARP packet is fulfill- 
ing. An ARP request has the value of I here, and an ARP reply has the 
value 2. RARP requests are indicated by the value 3, and RARP replies by 
the value 4. The requests have all the fields filled in except for the address 
being sought: the network address of the host with the specified IP address, 



Chapter 21 �9 The Data Link Layer 469 

Destination MAC Address Source MAC Address 
(6 bytes) (6 bytes) 

Ethernet 
Header 

(2 bytes) F 

/ .............. ;.. :i,,.....i Z .................... .. 
Hardware Protocol 

Type Type 
(2 bytes) (2 bytes) 

/ . . . .  / / .  : .... ii~ 
H/W Prot Operation 
Size Size Code 
(1) (1) (2 bytes) 

Source Ethernet Address 
(6 bytes) if!i:: 

~ .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  :L..:L..L........:....... . . . . . . . . . . . .  / .  . . . . . . .  .:. . . . . . .  ~ . . . . .  : . . . . . . . . . . . . . . . . .  2 . . . . . . . . . . . . . . . . . . . . .  

Source IP Address Target Ethernet Address 
(4 bytes) (6 bytes) 

• 
: . ~ .  , ~  .o... ~ :  . . . . . . .  ,2 2.. ,~/.....:.....:.:., . . , . . . . . ~ , . . . . Z  

(4 bytes) 

Figure 21-5: An ARP packet, as encapsulated in an Ethernet frame, wil l  result 

in a 28-octet Ethernet payload. 

for ARP requests, or the IP address of the host with the specified network 
address, for RARP requests. 

ARP requests and ARP replies differ only in the values held in the operation 
field (indicating request or reply) and the requested address field (replies 
will contain the requested address). 

21.3.2 ADDRESS RESOLUTION PROTOCOL CACHE 

ARPs are broadcasts, and broadcasts are a nuisance to almost all hosts that 
receive them. We try to keep broadcasts to a minimum because they can 
really cut into network performance. So, to keep the number of broad- 
cast ARP requests to a minimum, hosts store the addresses they receive 
from ARP replies in an ARP cache. When a host needs to send an IP 
datagram, it first looks in the ARP cache to see if it has a data link layer 
address for that datagram. If it does, the host can forego sending out an 
ARP request. 



470 Part Four �9 Internet Layer and Below 

Hosts build up their ARP caches by adding the address mapping in every 
response they receive to their own ARP requests. Because all ARP requests 
are broadcast, all nodes will receive all those requests--if a node already 
has an entry for the requested address, that node can update its own cache 
(but if the node doesn't already have an entry for that address, the data in 
the request is ignored). 

Gratuitous ARP also enhances ARP cache efficiency. Every host, as it boots, 
sends itself an ARP request. The purpose is not to try to determine its own 
address so much as to verify that its IP/network address is not already 
being used by some other host on the network, as well as to register the 
IP/MAC address pairing in other nodes' ARP caches. 

21.3.3 PROXY ADDRESS RESOLUTION PROTOCOL 

Proxy ARP is a method used when two parts of the same network 
are divided by a router. Hosts on one side need to be able to address 
Ethernet frames that encapsulate IP datagrams for hosts on the other side. 
Although the originating host thinks the remote host is on the same phys- 
ical network, network traffic is actually being directed through the router. 
Addressing the network frame to the remote host would not work, since it 
isn't on the same physical network, so the router performs the proxy ARP 
service, filling in its own Ethernet address in response to ARP requests for 
hosts on opposite sides of the network. 

This is also the approach to ARP used in nonbroadcast networks like ATM. 
An ARP server keeps track of all connected nodes and maintains a list of 
data link layer and network layer addresses. When a node needs a data 
link layer address, it sends out an ARP request to the ARP server, which 
responds on behalf of all connected nodes. 

21.3.4 REVERSE ADDRESS RESOLUTION PROTOCOL 

As the name implies, RARP is simply the reverse of ARP. Used by diskless 
workstations to get their assigned IP addresses, RARP requires that at least 
one host on the internetwork be designated a RARP server. The RARP 
source fills its own network address in both the source and target network 
address fields, and the RARP servers respond to the requester with the 
required IP address. RARP packets use a different set of values for the 



Chapter 21 ~ The Data Link Layer 471 

operations field and use the value 0x0835 for Ethernet frame type (instead 
of the value 0 x0806 used by ARP). 

Whereas ARP is handy when the transmitting host knows the IP address 
of the destination host, RARP is useful when a host knows a hardware 
address but does not know the IP address it desires. The most common 
situation in which this occurs is booting a diskless workstation. The work- 
station reads its own MAC address, but needs to send a request to a RARP 
server to map an IP address to itself. 

Multiple RARP servers are desirable to allow nodes on a subnetted network 
to access the RARP service locally. Because RARP requests are broadcasts, 
and therefore not forwarded by routers, there must  be a local RARP server 
on every subnet with nodes that require one. In the case of multiple RARP 
servers on the same subnet, requesting nodes use the first reply and ignore 
any additional responses. 

RARP must be distinguished from the Boot Protocol (BOOTP) and 
Dynamic Host Configuration Protocol (DHCP). Those protocols permit 
hosts to boot (BOOTP) and configure (DHCP) themselves as IP nodes- -and  
those protocols operate at the IP layer, with BOOTP using a minimal 
UDP/IP  and Trivial FTP implementation to download a boot image and 
DHCP allowing a host to request an IP address as well as routing and DNS 
configuration information. RARP operates at the link layer and may be 
used before BOOTP. 

21.3.5 INVERSE ADDRESS RESOLUTION PROTOCOL 

Inverse ARP, or InARP, was first described in RFC 1293 in 1992 and 
updated in RFC 2390 in 1998. InARP lets a node find the IP address of 
another node to which it already has a data link layer connection. ARP 
and RARP are used to determine an IP address to link to a data link 
layer address through the use of broadcasts. In contrast, InARP is used 
in networks where broadcasts must  be replicated across all virtual circuits. 
Instead of sending the request to all connected nodes, the requesting node 
can just send a single request down a single virtual circuit to ask the node 
at the other end what its IP address is. 

InARP adds two values to the ARP operation type. The InARP request 
uses the value 8, and the InARP response uses the value 9. Other than this 



472 Part Four ~ Internet Layer and Below 

and their use of unicast rather than broadcast to make requests, InARP 
messages are identical to ARP messages. 

21.4 Asynchronous Transfer Mode 

Unlike Ethernet, ATM protocols were devised to be independent of the 
physical layer, and to be used for transmission of any kind of digital 
information, voice as well as network data. The objective was to build 
a technology capable of handling a lot of data at very high speed over 
large internets. ATM differs from IP in several important ways and can be 
made to coexist in more than one way. This section covers these differences 
as well as the approaches to coexistence. 

21.4.1 VIRTUAL CIRCUITS AND ROUTES 

IP packets are (at least in theory) each delivered independently. A host 
sending a stream of packets must somehow check for the proper desti- 
nation for every packet before sending it; the routing decision process is 
repeated at every hop, whether or not a similarly addressed packet was 
just processed. The routers must check each packet against a routing table 
and make a next-hop decision, adding incrementally to delivery overhead 
and latency throughout the data exchange. However, packets can be gen- 
erated and immediately sent on their way by nodes that have no detailed 
knowledge of the internetwork topology in which they exist. 

ATM is virtual circuit (VC)-based, meaning that when two nodes set up a 
communication link, they use often complex protocols to identify a stable 
path through the network cloud (based on the switches through which 
the data must pass), and then they blast data back and forth through 
those switches. Rather than carrying complete source and destination 
node addresses within each switched cell (ATM's unit of transport: 53 octets 
each, 48 for data and 5 for cell header fields), they carry short labels 
indicating how each switch should process the cell. 

With less data to process and fewer decisions to make, switched circuit 
networks can move data extremely quickly. However, the process of set- 
ting up the circuit at the start of an exchange (or during the exchange 
when network conditions change) can add significantly to the delay in the 



Chapter 21 ~ The Data Link Layer 473 

connection, unless virtual circuits are set up in advance, just in case they 
are needed. 

21.4.2 INTERNET PROTOCOL AND ASYNCHRONOUS TRANSFER MODE ISSUES 

IP leaves the framing of data to link layer protocols such as Ethernet; 
ATM, on the other hand, performs many of the functions associated with 
the network layer as well as the link layer. ATM cells contain small frag- 
ments of the data that ATM frames into larger chunks, in much the same 
way that Ethernet organizes data and header information into 1,518-octet 
frames. ATM frames data by gathering it into appropriately sized chunks 
and adding addressing information, and then slices those frames up into 
53-octet cells for speedy delivery. 

If ATM is treated as a link layer protocol, however, it means that any given 
ATM network cloud may consist of more than one distinct IP network. 
What happens then is that IP traffic is passed to the ATM cloud by way 
of a router that seeks a next-hop IP router. Packets can be routed around 
inside the ATM cloud from one IP network to another, each packet being 
decapsulated and encapsulated over and over as ATM/IP switch/routers 
put the cells together into frames and then unwrap the packets to determine 
what to do with them. 

The performance benefits of ATM are in this way negated unless the rout- 
ing/switching systems can find a way to map an optimal route across an 
ATM internet using the ATM network layer. This is particularly relevant 
when a packet from outside an ATM network is sent to a destination within 
the ATM nework. The distance between any two stations on an ATM net- 
work is (for all practical purposes) one hop, because all circuits are direct 
links between two stations. This means that since the ATM network may 
be composed of more than one logical IP network, a packet might take 
several trips across the IP networks within the ATM network when only 
one would be sufficient. 

To clarify this last point, consider what happens when an ATM network 
contains IP internets. Figure 21-6 shows what can happen, with a packet 
entering the ATM network via Router A, destined for host 10.1.100.99. The 
entire destination network (10.x.x.x) is interconnected through a single 
ATM network, so it should be possible to switch a packet directly from its 
entry point to its destination. 



474 Part Four �9 Internet Layer and Below 

i '!== Local 
,~:, net .... =G,.~.::. 

BB ~i! 
B ...~ 

l.outer l 
ATM 

internet 

Figure 21-6: ATM and IP are both internetworking protocols, but the 
traditional approach to IP over ATM treats ATM as a l ink  layer  protocol, 
while ignor ing  ATM's  internetworking function. 

However, when the ATM network is treated purely as the link layer net- 
work, Router A will forward the packet to Router B (because that is the 
router responsible for all packets destined for network 10.x.x.x), which 
forwards the packet to Router C, before it is ultimately delivered to the 
destination host. The packet passes through four routers en route to its 
destination, and is processed from ATM to IP at each stop. 

This is the traditional approach to layering IP over ATM, described in RFC 
2225, "Classical IP and ARP over ATM," and the ATM Forum's contribu- 
tion, LAN Emulation (LANE). As defined in the eponymous RFC 2332, 
Next-Hop Resolution Protocol (NHRP) allows IP routers at the edges of an 
NBMA network to determine the best next hop for a packet: if the destina- 
tion is inside the NBMA network, the next hop will be the destination-even 
though the destination node may be on a different logical IP network. 



Chapter 21 �9 The Data LJnk Layer 475 

As shown in Figure 21-6, Router A would be able to determine that the 
packet should be routed through directly to Router D. This protocol allows 
IP and ATM networks to get the best of both worlds when data passes 
across both. 

Multiprotocol Label Switching (MPLS), specified in RFC 3031, "Multipro- 
tocol Label Switching Architecture," allows routers to assign a Forwarding 
Equivalency Class (FEC) to packets just once, as they enter a network, 
to designate how the packets are to be treated by systems within the 
network. 

Standard IP routers can be said to assign packets to FECs based on their 
destination addresses: if the destination addresses of two packets indicate 
to the router that both should be sent to the same next hop, then they are in 
the same FEC. MPLS provides a mechanism that allows routers to process 
packet headers, determine the best path for it to take through the network, 
and then attach a label specifying its FEC. As that packet transits the ATM 
network, the label changes at each switching point, to indicate how the 
upstream switch should treat the packet (or any other packet within the 
same FEC). 

MPLS makes possible some interesting things. Connectionless IP data- 
grams are ordinarily divorced from their past and future: when they arrive 
at a router, the router looks at the headers and determines the next best hop. 
Where the packet came from and where it is going don't really matter m 
even if the packets were treated specially for some reason on an earlier 
hop. With MPLS, packets can be tagged for special treatment as they enter 
a network and be accorded the same treatment at all hops within that 
network. 

Also now possible is the use of networks (such as ATM and other high- 
performance NBMA networks) where there are no routers capable of 
evaluating headers and selecting a best next hop. ATM switches are well 
adapted to this approach, and MPLS is becoming an increasingly important 
part of the global internet infrastructure as well as organizational internet 
infrastructures. 

For detailed discussion of MPLS and related protocols, the inter- 
ested reader is referred to MPLS: Technology and Applications by 
Bruce S. Davie, Yakov Rekhter (Morgan Kaufmann Publishing, 2000). 
Rekhter and Davie are the principal authors of many key MPLS 
specifications. 



476 Part Four �9 Internet Layer and Below 

21.4.3 BROADCASTS 

Another important implication of a circuit-based network is that there are 
no free rides for broadcasts. All transmissions require that a circuit be set 
up (as with TCP, see Chapter 18), with the result that ATM networks look 
more like a collection of ad hoc point-to-point links between pairs of nodes. 
As a result, broadcasts and multicasts must be repeated once for every 
intended recipientmonce for each node on the ATM network. Ethernet 
and wireless make broadcasts easy, which in turn makes them well suited 
to IP networks where multi-recipient packets are used frequently. ATM 
does not have a native facility for broadcasting, so to support IP over ATM 
a mechanism that behaves like broadcast must be put in place. We'll discuss 
this mechanism in section 21.4.6, below. 

Despite all these issues, ATM and IP are well on their way to learning to 
play well together. 

ATM is representative of the family of NBMA network protocols that 
include Frame Relay and others. Many of the issues raised, and solved, 
for IP and ATM apply equally to other protocols; in fact, many of these 
solutions have been generalized in specifications that refer to NBMA net- 
works rather than ATM-only or Frame Relay-only. We'll first look at the 
ATM cell and then move on to a general solution for address resolution in 
NBMA networks. 

21.4.4 ATM CELLS 

ATM cells are small; 5 octets for the header and 48 octets for payload. 
Such small units make very high performance, solid-state switches easier 
to design and build; ATM switches can provide higher throughput using 
the same resources necessary to build a router. The benefits even outweigh 
the relatively heavy (roughly 10%) overhead associated with the small cell 
sizes, not to mention overhead associated with framing activity. 

Figure 21-7 shows the 5-octet header in detail. ATM header fields include 
the following: 

Generic Flow Control (GFC): This 4-bit field carries data that governs 
how traffic flows across the interface, indicating whether an interface 
should slow down or speed up its transmission rate. ATM provides 



Chapter 21 �9 The Data Link Layer 477 

8 bits wide 

Generic Flow Control (GFC) 

Virtual Path Identifier (VPI) 

Virtual Path Identifier (VPI) 

Virtual Channel Identifier (VCI) 

Virtual Channel Identifier (VCI) 

Virtual Channel Identifier (VCI) Payload Type (PTI) 

Header Error Control (HEC) 

Cell Loss 
Priority 
(CPI) 

Payload 

Figure 21-7: ATM header fields. 

no cell-buffering mechanisms so it uses the GFC field to control traffic 
flow. 

Virtual Path Identifier (VPI): Eight bits for user-network interface links 
or 12 bits for network to network interface links, the VPI identifies 
the cell's source and destination. 

Virtual Channel Identifier (VCI): This 16-bit field, with the VPI, is used 
to route the cell within the ATM network. 

Payload Type (PT): This 3-bit field identifies the cell's payload data type, 
useful for distinguishing data that may require special handling or 
that may be necessary for maintaining the network. 

Cell Loss Priority (CLP): This flag bit indicates whether the cell is expend- 
able or whether network resources must be allocated to guarantee its 
delivery (not all cells will have the same priority, even within the 
same circuit). 



478 Part Four �9 Internet Layer and Below 

Header Error Control (HEC): An eight-bit data integrity field used by the 
physical layer to verify that the cell has not been damaged in transit. 

ATM framing creates large chunks of data, while the cells are merely indi- 
vidual units taken from those chunks and formatted for rapid transmission. 
A cell by itself will usually have no protocol information relating it to either 
its upper  layer (e.g., IP) destination or source. 

Issues of framing, ATM station addressing, signaling, and circuit man- 
agement are outside the scope of this book, but a short list of resources, 
including relevant RFCs, is included at the end of the chapter. 

21.4.5 NON-BROADCAST MULTI-ACCESS ADDRESS RESOLUTION 

Traditional address resolution over ATM networks is described in RFC 
2225, "Classical IP and ARP over ATM," where ATMARP is specified as 
a service provided on each logical IP subnet within an ATM network. 
The ATMARP server maintains an ARP table whose entries are created 
whenever a new station registers its IP/ATM station link layer addresses 
with the server. ATM client stations are responsible for notifying the 
ATMARP server periodically to refresh a n d / o r  update their listings. 

Traditional ARP, as defined in RFC 826, works "normally" on NBMA net- 
works, except that instead of broadcasting an address resolution request 
over the local network the requesting station unicasts the address resolu- 
tion request to the NBMA ARP (NARP) server. The requesting node gets 
its response from the NARP server, acting as a proxy, instead of directly 
from the station associated with the requested IP address. 

21.4.6 NON-BROADCAST MULTI-ACCESS BROADCAST 

ARP over an NBMA network does not require the emulation of broadcast, 
as a proxy ARP system operates on behalf of attached nodes and eliminates 
the need for broadcasts. However, broadcasts are still useful for other pro- 
tocols (including some IP routing protocols to be discussed in Chapter 23). 

NBMA networks emulate broadcast capability using a system that acts on 
behalf of all connected stations for the purposes of dealing with broad- 
casts. Figure 21-8 shows how it works: the system works as a proxy for 



Chapter 21 �9 The Data Link Layer 479 

I 

...... / 

I_AN Emulation ATM I ' ~ : ]  
Server network .. . . . . .  -.. 

Broadcast and ', ......... ~ ........... il 

Server ' ;~;~ ~ ..... 

Figure 21-8: Using "proxy" systems in an ATM network allows NBMA 
networks to operate similarly to broadcast media. 

"all systems on the network" (a similar arrangement can be made for "all 
systems subscribed to the multicast address" as well). When an NBMA sta- 
tion needs to broadcast, such as when doing address resolution, it sends 
over a preconfigured circuit between the station and the proxy system. 
That proxy system then resends the broadcast (or multicast) message to all 
the appropriate nodes. 

Multicast (see Chapter 25) and broadcast are similar enough that the solu- 
tion for multicast over ATM described in RFC 2022, "Support for Multicast 
over UNI 3.0/3.1 based ATM Networks," a Multicast Addresss Resolution 
Server (MARS) can be used for broadcasts as well. Broadcast is a sort of 
special case of multicast: an address to which all nodes on the network 
subscribe. 

The MARS keeps track of all stations on the logical IP network it serves 
and repeats all broadcasts and multicasts as appropriate. 



480 Part Four �9 Internet Layer and Below 

21.5 Point to Point Protocol 

The simplest useful network consists of a pair of nodes connected only 
to each other. In this special case network, many of the complications 
that multi-node networks face are absent. For example, when one node 
emits a signal, there is only one other node that can detect it; naming and 
addressing issues are simplified as well. 

In addition to consumer-oriented dialup internet access services, this 
type of point to point connection is commonly used in high-performance 
circuit-oriented networks such as ATM and FR. A protocol capable of 
encapsulating IP (or other network layer protocol) packets for transmission 
over a point-to-point link, the PPP provides a mechanism for two nodes to 
initiate and carry on data communications over such a link. 

The Serial Line IP (SLIP) protocol is explicitly referred to as a "non- 
standard." It began as an ad hoc solution for engineers who wanted to 
access IP networks over their phone lines with a basic PC and a modem. 
SLIP provided a mechanism for running IP over a serial line (most com- 
monly a telephone link) with a simple protocol for encapsulating IP data 
in modem signals. 

Though once the primary protocol mechanism for dialup internet connec- 
tion, SLIP has long been replaced by a formal, and standard, specification 
for the PPP. 

PPP uses a frame format that includes a protocol field, so the remote host 
can connect to the network and use IP (or any other supported) network 
protocols. It includes a protocol to control the actual link, and it can nego- 
tiate connection parameters as well as compression. And it includes a CRC 
to protect against transmission errors. 

PPP defines a network frame with a 5-octet header and a 3-octet trailer. 
As shown in Figure 21-9, the PPP frame starts and ends with an octet 
control value. The address and control octet values are constant, and many 
implementations drop these octets upon negotiation. 

The 2-octet protocol field indicates the contents of the PPP frame. This field 
may indicate whether the data portion of the frame contains an IP or an 
IPX datagram, or it may indicate that the frame is carrying information 
relating to the link itself. 



Chapter 21 �9 The Data Link Layer 481 

,.. , . .  , , . : . . ,  . . . . .  . :  , . . , . . .  " ~a .a  _~ , : . : , , . : . . " , i ~ , ,  , ' . . : ~  ~ .  " : . . . . .  . .  . . . . . .  " . . / , . . .  : , : . ,  i . ~ ,~ .  

Flag Address Control Protocol 
ox7e oxff 0x03 (2 bytes) 

(1 byte) (1 byte) (1 byte) 

PPP Header 

�9 .: . , .  . . . . . . .  : ~ .. �9 . . . . . . .  ,~ . . . ,  �9 .~ . . ;  . ~ . ;  . . .  . . . .  �9 

. . . . . . . . . . . . . . . . . . . . . .  , . . . . . . .  . . . . . . . .  . . . . / . . . .  �9 . . . . . . . . . . . . . . .  . . . . . . . . . . .  . / ,  . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . .  

a I Flag t continued (up to 1500 bytes) CRC (2 bytes) ox7e 
(1 byte) 

Figure 21-9: PPP network frame format. 

PPP uses the link control protocol to control the data link layer connec- 
tion: starting and ending the actual serial connection and negotiating line 
parameters are done through this protocol. 

Likewise, various sets of protocols are defined for controlling the net- 
work layer. Called network control protocols, these are defined for different 
network protocols, including NetWare/IPX, DECnet, AppleTalk, and 
others. For example, header compression options (like Van Jacobson 
compression, discussed in Chapter 18) may be negotiated through these 
protocols. 

21.6 Internet Protocol on Everything 

IP is designed to operate over virtually any network medium capable of 
carrying packets. The motto "IP on everything," introduced as a t-shirt 
motto by IP pioneer Vinton Cerf in 1992, has inspired (and been inspired 
by) much serious work. 



482 Part Four �9 Internet Layer and Below 

To interoperate independently of lower layer protocols, standards for how 
IP and the various link layer protocols over which it operates are required. 
Table 21-1 lists most of these specifications. Many are full standards, most 
are on the standards track. As with most IETF specifications, the earlier 
RFCs tend to be shorter and the later ones longer, in part becuase stan- 
dards for writing RFCs were not formally spelled out until well into the 
1990s, so earlier RFC authors might not cover all aspects of a protocol, 
all implications of the protocol, or portions of the protocol that might 
have been considered "common knowledge." In general they follow the 
same pattern: describe the link layer protocol or refer to its specifications, 
describe how IP packets can be encapsulating within the link layer pro- 
tocol's frames, and discuss any issues involved along with appropriate 
solutions or workarounds. 

STD 36 RFC 1390: Transmission of IP and ARP over FDDI Networks 

STD 41 (RFC 894): A Standard for the Transmission of IP Datagrams over 
Ethernet Networks 

STD 42 RFC 895: A Standard for the Transmission of IP Datagrams over 
Experimental Ethernet Networks 

STD 43 (RFC 1042): A Standard for the Transmission of IP Datagrams over 
IEEE 802 Networks 

STD 46 (RFC 1201): Transmitting IP traffic over ARCNET Networks 

STD 47 (RFC 1055): A Nonstandard for Transmission of IP Datagrams 
over Serial Lines: SLIP 

STD 51 (RFC 1661): The Point to Point Protocol (PPP) 

STD 52 (RFC 1209): The Transmission of IP Datagrams over the SMDS 
Service 

RFC 1188: Proposed Standard for the Transmission of IP Datagrams over 
FDDI Networks 

RFC 1469: IP Multicast over Token-Ring Local Area Networks 

RFC 2067: IP over HIPPI 



Chapter 21 ~ The Data Link Layer 483 

RFC 2176:IPv4 over MAPOS Version 1 

RFC 2225: Classical IP and ARP over ATM 

RFC 2549: IP over Avian Carriers with Quality of Service 

RFC 2625: IP and ARP over Fiber Channel 

RFC 2728: The Transmission of IP over the Vertical Blanking Interval of a 
Television Signal 

RFC 2734:IPv4 over IEEE 1394 

RFC 2834: ARP and IP Broadcast over HIPPI-800 

RFC 2835: IP and ARP over HIPPI-6400 (GSN) 

21.7 Chapter Summary 
After an overview of the interaction between IP and related link layer 
protocols, this chapter introduced the Ethernet and IEEE 802.3 protocols 
that are so commonly used in corporate and home networks. Although 
address resolution is required to allow IP hosts to communicate over any 
link layer protocol, ARP is most readily understood as implemented for 
Ethernet; we examined ARP as well as ARP messages, ARP caches, and 
Proxy ARP and related address resolution protocols including RARP and 
InARP. 

Although the ATM protocols span both Layer 2 and Layer 3, in this chapter 
we look at how ATM and IP have traditionally interoperated, with IP 
treating ATM as a link layer protocol. We also examine the use of non- 
broadcast media with IP, particularly the mechanisms necessary to allow 
address resolution and multicast/broadcast under NBMA protocols. 

While Ethernet and ATM are both recognizably network protocols, PPP is 
less obviously a link layer protocol: it does not even require nodes to be 
addressed, but that is only because addresses are superfluous when only 
two nodes are allowed on the medium--al l  outbound packets are destined 
to the "other" node, while all inbound packets are destined for "this" node. 



484 Part Four �9 Internet Layer and Below 

These three link layer protocols account for a significant portion, if not the 
majority, of all internet transmission; however, there are many other link 
layer protocols over which IP can be carried. This chapter concluded with 
a listing of current (as of mid-2002) specifications for IP over various link 
layers. 

The next chapter digs deeper into the intricacies of IP routing protocols, 
which specify how IP routing information is exchanged and interpreted 
by IP routers across sometimes quite large networks. 



�9 - �9 �9 

Internet Protocol Routing 

As described in Chapter 20, internet protocol (IP) routing can be defined 
strictly in terms of a node choosing the best next hop for a packet to take 
based on the information available. A host sending a packet makes a rout- 
ing decision based on whether the packet is destined for a node on the local 
IP network; if not, most hosts will send the packet to a default gateway~the 
local router that handles traffic destined outside the local IP network. 

As soon as a packet is passed to a router, the process by which the routing 
table is created may be more complicated than what happens on a regular 
host, but the actual process, already described in Chapter 20, remains the 
same. Complications arise because routers link two or more distinct logical 
IP subnetworks (LISes) and the routers must choose the best route for those 
packets. 

One way to route packets would be to have every system that forwards 
packets maintain a complete map of the entire internet: comparing the 
destination address to this master map, the router can determine how 
best to handle the packet. This approach might be acceptable in smaller 

485 



486 Part Four �9 Internet Layer and Below 

internets that are stable and centrally administered; however, it won't work 
for the global internet or most other routed intranets, all of which change 
too frequently, too fast, and with little or no coordination. 

Routers must be able to keep track of which networks they have direct 
connections to and which networks they are connected to through inter- 
mediaries; routers in the same AS will communicate with each other 
periodically to update network and link status as well as to verify their 
own connectivity. Routing protocols define the ways in which routers com- 
municate with other routers in order to exchange information about their 
network and link status, and use that information to build up their own 
maps to the internet: their routing tables. 

In this chapter we introduce the fundamentals of routing in general, 
starting with the options available for any network routing protocol stra- 
tegy, followed by an overview of the different types of routing protocol 
we'll encounter in internets, both private and global. The next section 
introduces distance-vector and link state routing, two important algo- 
rithms for the distribution of routing information within a network, 
followed by an introduction to the routing protocols based on those 
algorithms, the Routing Information Protocol (RIP) and Open Shortest 
Path First (OSPF) protocols for interior routing. The chapter ends with 
a discussion of routing issues such as slow convergence and routing 
loops. 

22.1 Routing Protocol Objectives 
Routing protocols are designed to distribute routing information, with 
routers sharing information about which networks and links are available 
and which are not. In the venerable textbook for university-level net- 
working students, Data and Computer Communications, (Macmillan, 1985), 
William Stallings breaks down the elements of routing techniques into six 
different categories, each with its own selection of strategies (see p 254, 
Table 9-2 in Stallings, 1985). The categories he cites are: 

Performance: What criteria form the basis for routing performance 
decisions? Should routing performance be measured by how 
many hops a packet takes en route (fewer hops means higher 
performance), or should performance be measured by through- 
put? Can a cost basis be applied to routing performance over 



Chapter 22 �9 Internet Protocol Routing 487 

different links? Should latency be considered a key part of the 
performance equation? 

Decision time: At what point in a packet's transmission should a 
route be determined? Datagram services, in which each packet is 
treated individually, allow routers and intermediate systems to 
make routing decisions as each packet is accepted; just because 
one packet from source X to destination Y used a particular path 
through network doesn't mean the next packet from X to Y must 
take the same route. 

The other alternative is to use a circuit-based approach to rout- 
ing, in which case a session path is determined at the start of each 
session. The routing problem is solved once for all data in that 
session. 

Decision place: Where are routing decisions made? In a dis- 
tributed network, the decision to route (or not route) a packet is 
made everywhere: all nodes that receive data over the network 
may participate in the routing determination process. 

A centralized routing structure provides a single routing ter- 
minus through which all packets are processed: every packet is 
sent to the central router, which determines how best to route 
the packets to their destinations. This offers a simple, though far 
from scalable, solution. 

Or, the originating node can generate the route for its packets 
itself, by somehow having access to complete and current net- 
work routing information. 

Information source: Where do the routing nodes get their infor- 
mation about network paths? Maybe they aren't able to handle 
any information at all; maybe they access routing information 
from a local routing table. Other sources might be neighbor- 
ing nodes, nodes that are encountered by a packet traveling 
from a source to a destination, or even all nodes in the entire 
network. 

Routing strategy: How do routing nodes approach the problem 
of determining the best next hop for a packet? A simple, fixed 
routing strategy uses a static routing table that matches sources 
and destinations. A packet from source X will always be routed 
the same way to arrive at destination Y. ATM and other switched 
protocols use an approach of this type. 



488 Part Four �9 Internet Layer and Below 

A less efficient but more flexible and robust approach is to 
flood the network: source X sends a copy of the packet to every 
node with which it has a direct link. Those nodes then repeat 
the packet to every node with which they are linked (except for 
the link on which they just received the packet). The process 
generates huge volumes of network traffic, particularly as the 
network increases in size, but it also reduces the need for com- 
plex routing architectures and protocolsmno information about 
the network is required, other than how to send packets to a 
neighbor. 

A variation on the flooding approach is to use a random 
approach to routing. A node can pick an interface at random 
over which to forward an inbound packet (other than the inter- 
face over which the packet arrived). Eventually, the packet will 
arrive at its destination; network load will be higher than opti- 
mal (some packets taking many hops before they arrive) but 
considerably lower than in the flooding approach. 

The adaptive routing approach is the one most frequently 
encountered, especially in modern networks. Routers collect 
information about the network, usually in the form of the sta- 
tus of various links and routers as reported by other nodes, 
and try to use that information to determine optimal routes. 
As conditions change, the routers adapt so as to maximize one 
or more of the performance criteria listed in the first item of 
this list. 

Adaptive update strategies: When adaptive routing is chosen (as 
it invariably is), choices must be made as to whether to have 
routers update their data continuously, periodically, whenever 
there are significant changes to network traffic patterns or to the 
network itself. 

The original IP routing strategy for the ARPANET (the US military research 
network), as described by Stallings, was to minimize network delay (per- 
formance), allow routing decisions to be made individually for each 
packet with a datagram service (decision time), distribute the routing 
task to all nodes (decision place), allow nodes to gather information from 
adjacent nodes (information source), and periodically update its adap- 
tive routing Strategy. Strategy for ARPANET later was changed to allow 
all nodes in the network to provide routing information, not just adja- 
cent nodes. This description still applies to the global internet to a great 
extent. 



Chapter 22 �9 Internet Protocol Routing 489 

Routing as we know it can be discussed in terms of routing algorithms that 
define the abstract process by which a router determines the appropriate 
path for a packet, and routing protocols that define the concrete processes 
by which routers exchange information about routes and routing. 

22.2 Routing Fundamentals 
As noted in section 20.3.3, RFC 1122 provides an excellent rundown of 
the process by which IP hosts route packets. Although we often speak of 
routing infrastructures and routing complexity, IP routing is a process that 
is done one hop at a time, from source host to destination. Although we 
often speak of routing as the aggregated result of the individual routing 
decisions made by all the intermediate devices through which a packet 
passes from source to destination, each node that receives a packet must 
process it and determine an appropriate route for it based on data in its 
own routing table and configuration. 

The primary difference between an ordinary host and a router is that the 
router is configured to accept packets intended for another destination, 
and to forward those packets to what the router determines is the best 
next hop. The router usually also supports at least one routing protocol, 
through which it can acquire current information about network routes. 

22.2.1 GATEWAY ROUTING 

The simplest of routers are those serving a single network with two inter- 
faces: one for the local network and the other for sending all other traffic. 
These routers function as gateways for the local network. Local hosts recog- 
nize two types of destinations: those hosts that are on the local LIS and that 
can be reached directly over the local link, and those hosts that are not local 
(everywhere else). Hosts on this network are configured to deliver local 
packets directly, on their own, over the link layer, and all other packets 
are sent to the IP gateway system (the local router) which forwards them 
along its "other" interface. 

The typical small office/home office (SOHO) network uses a simple 
gateway like this, as do almost all networks connected to the internet 
via broadband services. The local router (or gateway) will typically be 



490 Part Four �9 Internet Layer and Below 

�9 . Local Gateway 
~,i~; Intranet Router 

. j .  

Upstream 
Router 

:, T h e  R e s t  o f  
t h e  W o r l d  

[/ 

Figure 22-1: Simple local gateway router architecture. 

configured to accept inbound packets destined for the local network and 
to forward any packets it receives from within the network to its own 
upstream router. If the gateway is on a point-to-point link, as is frequently 
the case, the gateway does nothing more than pass along packets from the 
local network to the system on the other end of that link. See Figure 22-1. 

22.2.2 ROUTED NETWORKS 

As intranets become more complex with more than one internal LIS span- 
ning multiple local area networks, metropolitan area networks, or wide 
area networks, internal routers become necessary. These routers provide 
connectivity to hosts within the intranet as well as (perhaps) the rest of the 
global internet. The number and type of routers, as well as the number of 
networks each router links, all depend on the intranet's design and orga- 
nization's goals and requirements for that network. Figure 22-2 shows a 
simple multi-router intranet, in which internal routers must decide how 
best to forward packets not intended for the local network. 



Chapter 22 �9 Internet Protocol Routing 491 

B 

10.100.200.0 

B 

lo.10oi2o 

10.100.210.0 

Global 
Internet 

E 

,/ 

D 

10.100.208.0 10.100.205 

Figure 22-2: Increasingly complicated intranet routing domain. 

Using the example in Figure 22-2, it becomes clear that packets sent from 
a host on network A and destined for a host on network D would have to 
be sent to Router1, which would then forward it to Router5 on network E; 
from there the packet is forward to Router4 on network D. Router4 then 
forwards the packet directly to the destination host. 

When that same packet is to be delivered but Router5 is unavailable for 
some reason, Router1 will have to forward the packet to another router that 
is capable of, ultimately, delivering the packet to network D. The only other 
options open in that case are to forward the packet to the global internet 
(not acceptable) or to Router2 on network B. Router2 forwards the packet to 
Router3, which forwards the packet to Router4, which delivers the packet 
to its destination. Router/is the internet gateway, forwarding packets to 
and from the global internet; Router1 is a backup internet gateway. 

With five internal LISes, and the global internet, there are six different 
LISes to contend with; fully interconnecting them all so that all networks 



492 Part Four �9 Internet Layer and Below 

are reachable from each other in one hop requires 15 dedicated links. By 
permitting more than one hop between local LISes, full interconnectivity 
can be achieved with fewer links. 

However, the routers need informationmwhich of their own links are up 
and which down, what portions of the network the other routers can reach. 
The exchange and update of this information is the primary goal of inter- 
net routing protocols; in support of this goal is the corollary need to avoid 
propagating false information or acting on faulty information while at the 
same time optimizing performance (by minimizing the number of hops it 
takes from source to destination). 

The routers in Figure 22-2 are interior routers, because they route pack- 
ets inside an AS or other routing domain; inside that domain, the LISes 
are separate administrative domains (ADs). An AD is comparable to an AS, 
except on a smaller scale. As we'll see later in this chapter and in Chapter 23, 
exterior routing, which occurs between routers linking different ASes 
through a backbone, requires a different approach to the exchange of 
information and determination of optimal routes. 

22.2.3 INTERIOR AND EXTERIOR ROUTING PROTOCOLS 

The two basic routing tasks are, first, making sure that all networks within 
internets route traffic appropriately among themselves (interior routing), 
and second, making sure that all internetworks connected to a large inter- 
net (such as the global internet) are able to route reliably between each 
other (exterior routing). Simple routing strategies like default gateways 
and internet control message protocol route advertising will be sufficient 
to move network traffic inside most intranets. 

However, routing protocols do not define the routing processmthey define 
the process by which routers exchange information about the network. 
Routing table information must be kept current, and r0uters are constantly 
communicating with each other to announce their own connectivity. 

Typically, hosts acquire routing information either as part of their 
static configuration or through the Dynamic Host Configuration Protocol 
(DHCP). The host uses address resolution protocol (ARP) to acquire a 
physical address for all local internet traffic, and everything else is passed 
to the default gateway router. In smaller networks, that router connects 
directly to the ISP's router, connected in turn to an internet backbone, a 



Chapter 22 �9 Internet Protocol Routing 493 

network linking more than one AS. Routers on backbone networks must 
maintain far more comprehensive routing tables because they must route 
between and among all networks--they don't usually have a default 
gateway specified, and backbone routers are sometimes referred to as 
non-default routers. 

Exterior or backbone routing protocols must allow communicating routers 
to report frequent changes in conditions and connectivity, quickly and 
efficiently. An interior routing protocol enables routers within smaller 
internets to report their own conditions and connectivity, but generally 
support less complicated routing architectures. The interior routing proto- 
col supported by a router is often referred to as its Interior Gateway Protocol 
(IGP), where "gateway" is used as a synonym for router; an exterior rout- 
ing protocol is likewise termed an Exterior Gateway Protocol (EGP). In this 
chapter, we focus on IGPs, starting with RIP and then moving on to OSPF. 

22.2.4 ROUTING ALGORITHMS 

The simplest formulation of a routing strategy is to opt for the shortest-path 
route whenever there is a choice. How to determine which is the shortest 
path presents the greater challenge. There are two dominant strategies 
for determining the shortest path for interior routing, each of which is 
implemented in its own protocol. The distance-vector routing algorithm I is 
described in RFC 1058, "Routing Information Protocol," which also defines 
the RIP routing protocol for IP networks. Another approach to interior 
routing is called Dijkstra's Algorithm, and is also known as the link state 
or open shortest path first algorithm. OSPF is also the name of the interior 
routing protocol defined in RFC 2328, "OSPF Version 2," which, as of 2002, 
is also STD 54. 

Together, RIP and OSPF represent the IGPs you are most likely to find on 
an internet or intranet. 

22.3 Distance-Vector Routing 
Routing protocols can use two basic methods to measure connectivity 
across internetworks, as exemplified by the RIP and OSPF protocols. 

1This algorithm may also be identified as Bellman-Ford, or other combinations of the names 
of the researchers who did the original work on it. 



494 Part Four �9 Internet Layer and Below 

We begin with RIP, which uses the distance-vector approach: routers share 
their routing tables and make additions and corrections based on reports 
from other routers. 

The distance-vector algorithm takes its name from the way routers share 
their routing tables. A router expresses each route as a pair of values, the 
vector or destination network, and the distance from that router to that 
network (usually measured in hops, or the number of intermediate routers 
a packet would have to traverse to arrive at the destination network). 

A router sends advertisements of its routes, containing all the routes 
(vectors) and distances to those routes, to neighboring routers. In this way, 
routes can be propagated across an internet, as can changes in available 
routes. 

22.3.1 THE DISTANCENECTOR ALGORITHM 

A distance-vector router begins with no knowledge of the internet other 
than the networks to which it is directly connected. When it first boots, this 
router will have a routing table that consists of only as many entries as the 
router has network interfaces; it might look like this: 

Destination Distance Route 

I0.0.0.0 0 direct 

192. 168. I00.0 0 direct 

The router then begins building its routing table up by listening to other 
router announcements that are broadcast on whatever network interfaces 
each router is connected to. In other words, routers advertise their routes 
to any neighboring router, where "neighboring" means connected to the 
same link. 

For example, consider what happens when this router (let's call it router X) 
receives an announcement from router Y. The announcement lists routes 
as pairs of destination and distance values, like this: 

Destination Distance 

192.168.200.0 0 

10.5.0.0 0 



Chapter 22 �9 Internet Protocol RoutJng 495 

i0.i0.0.0 3 

i0.0.0.0 4 

192.168.100.0 4 

Router X can now update its own routing table by comparing it to the 
distance-vector data supplied by router Y. The first two distance-vector 
pairs are not already in router X's routing table, so they can be added; the 
distance to those networks is 0 hops from router Y, which means they are 
only one hop from router X (router Y is a neighbor to router X, so it is only 
one hop away). Router X adds those networks to its routing table, with a 
distance value of 1. 

The third pair is also for a network heretofore unknown to router X, but 
at a distance of three hops from router Y; router X adds this network to its 
routing table, with a distance value of 4. 

The last two routes are the only networks that router X started out with 
in its routing table; after comparing the distance value, router X ignores 
those pairs. Router X's routing table now looks like this: 

Destination Distance Route 

I0.0.0.0 0 direct 

192.168.100.0 0 direct 

192.168.200.0 1 router Y 

10.5.0.0 1 router Y 

i0.i0.0.0 4 router Y 

Distance-vector routers may be thought of as street hawkers who advertise 
their routes by shouting them out to their neighbors; in the example above, 
router Y in effect yelled out, "I can reach 192.168.200.0 in zero hops; I can 
reach 10.5.0.0 in zero hops; I can reach 10.10.0.0 in three hops; I can reach 
10.0.0.0 in four hops; I can reach 192.168.100.0 in four hops." 

Router X, listening to this advertisement, could be anthropomorphized to 
be thinking, "Y can reach 192.168.200.0 in zero hops, so now I can reach it 
in one hop; Y can reach 10.5.0.0 in zero hops, so now I can reach it in one 
hop; Y can reach 10.10.0.0 in three hops, so now I can reach it in four hops; 
Y can reach 10.0.0.0 in four hops, but I can reach it directly; Y can reach 
192.168.100.0 in four hops, but I can reach it directly." 



496 Part Four �9 Internet Layer and Below 

When Router X sends out its route advertisement, router Y will undoubt-  
edly amend its own routes for 10.0.0.0 and 192.168.100.0, changing the 
distance from those networks from 4 to 1. 

22.3.2 BASIC ROUTING INFORMATION PROTOCOL 

All systems on an internetwork can use RIP, but hosts generally are pas- 
sive participants, listening to the routing information and updating their 
routing tables, whereas routers can both listen to routing broadcasts and 
transmit routing information. Routes can be propagated on request by a 
router that has just booted up, although routers typically broadcast their 
routes every 30 seconds. 

Routes are broadcast as distance-vector pairs: a network and a hop count. 
Other routing protocols use the convention that a hop indicates a trans- 
mission to another router, so the hop count from a gateway to a network 
to which the gateway is connected directly would be 0. RIP counts that as 
one hop, so the lowest number of hops possible with RIP is one; with other 
protocols zero hops are possible. 

The rules for RIP are fairly simple: 

1. Active routers broadcast their routes every 30 seconds by 
default (although this may vary if the network administrator 
wishes). 

2. All listening systems compare these broadcasts to their own 
routing tables and update their routing tables IF 
a. there are routes to new networks previously unlisted, 
b. there are better (e.g., shorter) routes to existing networks, 
c. a route is reported unreachable (it should be removed). 

3. A route is kept until a better route is reported. 
4. If there are two equivalent routes (same hop count), the first 

received goes into the routing table. 
5. Routes are timed out if they are not updated after 3 minutes; in 

other words, a route must be assumed down if it is not being 
reported. 

6. Routers broadcast route changes as they occur, without waiting 
(triggered updates). 

7. A hop count of 16 is considered unreachable (which means RIP 
is unusable in any intranet wider than 15 hops). 



Chapter 22 �9 Internet Protocol Routing 497 

RIP tends not to propagate corrections to routing tables very quickly, 
although errors are passed along more quickly. RIPs relatively low 
maximum hop count and the use of triggered updates help minimize 
some of the inherent problems with the distance-vector method of sharing 
routing information, as described in the next section. 

22.3.3 ROUTING WITH ROUTING INFORMATION PROTOCOLS 

Implemented for IP before any actual standard specifications had been 
agreed upon, RIP is currently documented in RFC 2453, "RIP Version 2," 
(also published as STD 56). RIP's success has more to do with the way it 
was implemented-- in  the routed program that was a part of the original 
BSD/UNIX distributionsmthan with its technical merits. 

RIP is a protocol implementation of distance-vector routing: RIP messages, 
encapsulated in UDP datagrams, are sent out with a header and at least 
one and no more than 25 RIP entries. The header has three fields (followed 
by I to 25 RIP entries): 

Command:  A one-octet field, whose value may currently contain either 1, 
indicating a request for all or part of a routing table; or 2, indicat- 
ing a response, containing all or part of a router's routing table. An 
advertisement is a response, even though it may not have been sent 
in response to a particular request. 

Version: RIP versions I and 2 are valid values for this one-octet field. 

The RIP entry itself is 20 octets and consists of the address family identifier 
(AFI) field, a two-octet value indicating the type of address family (i.e., 
internet addresses, or some other type of address), and a second 2-octet 
field that, for RIPvl, is left set to 0. In RIPv2, this field is the route tag field, 
and it contains a tag that can differentiate internal routes (those pertaining 
to the local routing domain) from external routes (those imported from 
adjacent interior or exterior routing domains). 

RIPvl uses the next 4 octets for network destination IPv4 address, followed 
by 8 octets set to 0, followed by a 4-octet metric field containing a value from 
0 through 15 indicating the "distance" of the route. 

This is an important limitation, and it is imposed on RIP rather than 
imposed by RIP: the field is large enough, at 32 bits, to accommodate 



498 Part Four �9 Internet Layer and Below 

RIP headers: 

huge distances but the protocol designers felt that RIP should not be used 
for networks that have a diameter greater than 15 hops. Routing changes 
take too long to propagate across a larger RIP network, and the volume of 
router network traffic also becomes a burden as the internet grows larger. 

The RIP headers are shown here (from RFC 2453): 

0 1 2 3 
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1  

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

I command (I) ( version (I) must be zero (2) i 
+ + + + 

~ RIP Entry (20) ~ 

I i 
+ + + + + 

RIPvl entry- 

0 1 2 3 
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1  

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

I address family identifier (2) I must be zero (2) I 
+ + + 

I IPv4 address (4) I 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  --_~ 

I must be zero (4) I 
+ + 

I must be zero (4) I 
+ + 

i metric (4) l 
+ + 



Chapter 22 �9 Internet Protocol RoutJng 499 

RIPv2 entry- 

0 1 2 3 
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1  

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

I address family identifier (2) I Route Tag (2) I 
+ + + 

] IPv4 address (4) I 
+ + 

I Subnet Mask (4) 
+ 

I Next Hop (4) 
+ 

I metric (4) I 
+ + 

22.3.4 ROUTING INFORMATION PROTOCOL: v i vs. v2 

As is clear from the differences in the RIP entry formats for RIPvl and 
RIPv2, RIPv2 can transmit considerably more information about each 
route, including a subnet mask value and a next hop value (to be used 
in concert with the route tag). RIPv2 incorporates an extension facility and 
in addition to transmitting more routing information, it uses an algorithm 
for multicast routing and improved security. 

RIP does not send subnet mask information in routing updates, so there 
is the potential for routing problems in internetworks that are highly sub- 
netted, particularly if more than one subnetworking scheme is being used 
in the internetwork. RIP-2 addresses many of the shortcomings of RIP, 
and adds support for subnets something that the original RIP lacks simply 
because subnets had yet to be accepted as part of the IP networks at the 
time that RIP was first designed. 

Despite RIPs flaws, development of RIP-2 continued for several reasons. 
RIP is widely implemented on many different platforms, partly because 
it is an easy protocol to implement. On small intranets, RIP can be a 
very efficient routing protocol making few demands on system over- 
head and bandwidth. Finally, RIP is relatively easy to configure and 
manage. 



500 Part Four �9 Internet Layer and Below 

22.3.5 ROUTING INFORMATION PROTOCOL ADVANTAGES AND DISADVANTAGES 

Distance-vector algorithms are relatively easy to implement: the routers 
need only be able to transmit and process two types of message (requests 
and responses), process a routing table and compare routing table entries 
with the distance-vector pairs contained in router advertisements. These 
algorithms also result in all routers maintaining reliable and complete 
routing tables for the interior routing domain, eventually. 

RIP is still widely implemented throughout the world, so there is a huge 
installed base making for a high degree of interoperability with new RIP 
nodes. And RIP provides an easy routing solution for smaller networks 
that uses relatively little bandwidth for routing protocol exchanges. 

On the down side, however, RIP is limited to small networks (15 hops 
across is the maximum permitted, but in practice RIP is probably best 
used in even smaller networks). RIP is also subject to routing loops (see 
next section) that may take either lots of time (when router updates are 
infrequent) or lots of bandwidth (when router updates are more frequent) 
to resolve when they involve many different networks. 

Another important limitation of RIP is that it is inflexible in the way it 
measures network hops: one hop is always considered equivalent to one 
hop. A one-hop route that is experienced high delay may be more "costly" 
(take longer) than a three-hop route where delay is minimal. While the 
protocol provides no way to accommodate the evaluation of actual network 
conditions and take that information into account when deciding on a 
route, many RIP implementations do allow administrators to configure 
different hop increments as a remedy. 

22.3.6 SLOW CONVERGENCE 

One common dynamic routing problem occurs when a router or network 
goes out of service. Consider the example in Figure 22-3. Assuming that 
all routers advertise all known routes to all other routers, if the internet 
router goes down, it might take some time before all the other routers 
would become aware of the failure. 

What happens is this: Router ACD would know that its one-hop link to 
the internet was no longer available, but Router AB would be advertising 



Chapter 22 �9 Internet Protocol Routing 501 

Local 
Network A 

Router A B  
I 

Router A C D  

I 

. . . .  ,....,~ ~ ~,.~ .. ,, ~: ~. 

% 

~ ~  T h e l n t e r n e t  :J 
...! 

,.; , ~ ,  

I 

Internet Router 

...o 

o . ,  

Local Local 
Network B , N e t w o r k  D , 

' 

Router B C  

/ 

Local 
Network C 

. : . . . : , .  . . . .  . 
d "  

. . : , . . . . ,  ~ 

Figure 22-3: Most internets connect local subnets together with multiple 
interior roub.~rs, but only one connecting to the global internet. 

a two-hop route to the internet (actually via Router ACD). Router ACD 
would then say to itself, the direct route via the internet router is down, 
but there is an indirect, two-hop route to the internet via Router AB. It 
would then reset its own routing table to show a three-hop link to the 
internet. 

This problem is called slow convergence because it means that it takes quite 
a few routing table updates before all the participating routers become 
aware of the fact that they are all actually routing through the failed 
link. There are several solutions to this problem, which is already limi- 
ted by the maximum number of hops that the routing protocol allows 
(e.g., RIP allows no more than 15 hops before it considers the route to be 
unreachable). 



502 Part Four �9 Internet Layer and Below 

22.3.7 ROUTING LOOPS 

Changes to internet topology require changes to routing tables; one of 
the drawbacks to RIP is that it may take a while for changes in the rout- 
ing domain to propagate to all routers in the domain. Active (meaning 
they advertise routes) RIP routers advertise once every 30 seconds; passive 
(they listen only) RIP routers accept those advertisements and incorporate 
them into their routing tables. However, consider what happens when 
something changes. 

In Figure 22-4, Network A is reachable only through Router AB. Router AB 
advertises to the other routers that it can reach Network A in a single hop. 
Router BC receives this information and incorporates it into its routing 
table, indicating that it can reach Network A in two hops (one from Router 
BC, and one more from Router AB). If the link to Network A fails just before 

N e t w o r k  A 

l 
l 
I 

! 

R o u t e r  A B  

. . . . . . . . . . . . .  i i  ' . . . . . . . . . . . . . .  i i  

, .  , . .  

�9 "  llml .... 
�9 N e ~ o r k  B ~ N e t w o r k  C ~.~ ~ 

�9 . ~ , ~ , ~  

~�9 R o u t e r  B C  .... ~ ..... 

Figure 22--4: The interval between routing reports can cause a routing loop 
when the only link to a network fails. 



Chapter 22 �9 Internet Protocol Routing 503 

Router BC advertises its own routes, Router AB, knowing that its link to 
Network A is down, may add Router BC to its own routing table as the 
way to get to Network Ain three hops (the two that Router BC advertised 
and itself, again). 

With timers that expire advertised routes, Router BC may drop the link 
that (it thinks) gets it to Network A and may add it again when some 
other router advertises this three-hop link to Network A as a four-hop link. 
This could go on forever, but it is a well-known problem with distance- 
vector routing, and protocols based on distance-vector routing usually also 
include fixes that do things like put limits on the maximum number of hops 
allowed in a route. 

22.3.8 RiP FIXES 

There are several strategies that can be used to fix RIP's slow conver- 
gence and loop problems. One solution is to use a split-horizon update. 
This method calls for routers to keep a record of each interface for which 
they received a route. When a router sends out routing information, it 
avoids sending information to any interface over which it originally heard 
about a particular route. In other words, it assumes that the routers on a 
particular interface already have more current information about routes 
reported over that interface. Routers thus are made aware of changes on 
connected networks without incorrectly propagating status about those 
connections. 

Another solution to this problem is called hold-down. Instead of updating 
routing tables right away, any changes are ignored for a long enough time 
that the changes are likely to have been propagated to all participating 
routers. Usually, the hold-down period is twice as long as the normal 
reporting period, so if routers advertise routes every 30 seconds, the hold- 
down period would be 60 seconds. 

Another approach is called poison reverse. This approach mandates that 
routers continue to advertise any failed routes, even after the link has 
been dropped, but advertise them as accessible only as unreachable (i.e., 
hop count of 16 for RIP) for a number of reporting periods. This is 
especially effective when used in conjunction with triggered updates, 
which require routers to broadcast a failed route as soon as they become 
aware of it. 



504 Part Four �9 Internet Layer and Below 

22.4 Link State Routing with Open Shortest Path First 

Defined in RFC 2328 (STD 54) "OSPF Version 2," the current version of the 
Open Shortest Path First (OSPF) protocol uses the link-state method to let 
routers create their own internetwork maps. Developed partly in response 
to some of the shortcomings of RIP, OSPF propagates routing information 
more quickly and stably than RIP, handles subnets appropriately, can bal- 
ance loads where equivalent routes are available, supports type of service 
routing, and uses multicastingmall advantages over RIPvl. 

Link state routing protocols, of which OSPF is an example, mandate that 
each router in an AS maintain a link state database. This database represents 
a map of the entire AS's topology, a map that is shared by all routers in 
the AS. Each router floods (see section 22.1, above, in discussion of routing 
strategies) the AS with its own reachable neighbors and usable network 
interfacesmknown as the router's local state. In short order, all routers in 
the AS can build their own map by aggregating the data in these adver- 
tisements and connecting the dots. If router A announces that it is directly 
connected to routers B, C, and D, on network 10.0.0.0, and router E on 
network 192.168.100.0, then any router in the AS can start assembling the 
map: routers A, B, C, and D all have interfaces on 10.0.0.0; routers A and 
E have interfaces on 192.168.100.0. 

Once the map is assembled, each router calculates the shortest paths to any 
given route by walking the map from its own location in the network. 
Figure 22-5 shows how a simple network map can be created. The link 
state approach to routing keeps the volume of information passed along 
to other routers to a minimum. Each router periodically checks on the 
status of neighboring routers, reporting which links are alive to all other 
participating routers. With this information, each router can then create its 
own map of the internetwork. 

Link state routing addresses most of the problems posed by distance-vector 
protocols like RIP. OSPF adds features not available in RIP, and calculating 
routes based on the link state database is easier than mapping routes based 
on periodic RIP advertisements. Link state routing protocols even have less 
impact on the network because they generate a lower volume of data and 
because that data is passed to neighboring routers, which pass it on to other 
routers. By virtue of being a link state protocol OSPF also makes changes 
propagate in a more orderly and reliable fashion. Since a link is either up 
or down, there is no reason for hosts to retain looped routes. 



Chapter 22 �9 Internet Protocol Routing 505 

Network A connects to Networks B and C 

Network B connects to Networks A and D 

Network C connects to Networks A and D 

Network D connects to Networks B and C / 
...... / 

/ 
Network A / 

Network B 

i 

/ 

Network D 

:. , 

.......... ., . /  

Network C 

, , ,  

Figure 22-5: Routers using a link state routing protocol can deduce the 
structure of their AS. 

OSPF allows routing decisions to be made explicitly in cases where there 
are equivalent alternate routes, as is required for applications such as 
load balancing. Under RIP, the first of any group of equivalent advertised 
routes is the route that will be recorded; OSPF allows network managers 
to distribute traffic across these equivalent routes. 

Another OSPF feature that offers greater flexibility is the use of sepa- 
rate routes for different types of IP services. For example, it supports 
routing of FTP traffic over one route (perhaps a faster link, to give bet- 
ter overall file transfer performance) and Telnet over a different route 
(perhaps a link with lower latency or roundtrip time for better interactive 
response). 

Support of subnet addressing is an important feature, as is the use of mul- 
ticasting to routers. OSPF also includes an authentication mechanism that 



506 Part Four �9 Internet Layer and Below 

prevents routers from accepting routing information from unauthenticated 
sources. 

Whereas RIP is relatively straightforward, OSPF presents a higher degree 
of complexity than RIP. As defined in RFC 2328, OSPF takes over 240 
pages to specify; RIP, in RFC 2453, takes under 40 pages to specify. The 
interested reader is urged to read RFC 2328 for more details about how 
routers exchange routing information using OSPF. 

With the acceptance of RIP-2 as an Internet standard alongside OSPF, these 
two routing protocols will continue to coexist. Neither is likely to dominate 
TCP/IP interior routing any time soon. 

22.5 Chapter Summary 
The task of routing in an IP network requires only that the router have 
a routing table and be capable of using it to make appropriate decisions 
about where to forward packets. However, as we have seen, IP routing 
protocols provide the mechanisms by which routers are able to exchange 
information about their links and update their routing tables to reflect 
changes reported by other routers. 

The difference between interior and exterior routing is an important one, 
inasmuch as interior routers usually have the simpler task of routing pack- 
ets within smaller internets. When the interior router encounters a packet 
with a destination address outside its routing domain, it passes the packet 
along to its upstream default gateway. Exterior or backbone routers do not 
have the luxury of default gateways, and must be able to route packets 
to any destination. That means the exterior router must maintain rout- 
ing table entries for every valid destination network in the entire routing 
domain--in the case of the global internet, this domain may contain over 
100,000 routes. 

Routing protocols generally rely on either the distance-vector or link 
state approaches to distributing routing table data. RIP is a simple 
distance-vector routing protocol, while OSPF is a more complex routing 
protocol based on the link state algorithm. As we saw at the start of this 
chapter, routing is a task that has several different and sometimes con- 
tradictory measures of successmis it better to be fast at the risk of being 



Chapter 22 �9 Internet Protocol Routing 507 

inaccurate, or to be accurate at the risk of slowing network traffic? The 
attempt to somehow balance these strategies means that other problems 
can arise, including slow convergence and routing loops--most of which 
are remediable in some form. 

In the next chapter we focus on exterior routing, in particular looking at 
how classless inter-domain routing changed the task of routing within 
the global internet, and how the border gateway protocol works to keep 
backbone routing tables up to date. 



This Page Intentionally Left Blank



Exterior Routing 

In the early days of the internet, routing that happened outside organiza- 
tional networksminternet routing--was accomplished through centrally 
managed routers called core gateways. We've already discussed the term 
gateway as it relates to providing an interface system between different 
protocols; however, when speaking of IP routing, a gateway is defined as a 
router that passes packets from one autonomous system to another. 

Non-core gateways were controlled by the organizations connected to the 
internet and needed some connection to core gateways for proper routing 
of internet traffic. The connection from organization to core doesn't neces- 
sarily have to be direct, meaning that one organization can function as a 
gateway to the core gateway for other organizations. But there does have 
to be some connectivity between the organization and the core. 

This was effective, but the mechanism did not scale well as the internet 
grew. Tracking all possible routes rapidly increased in difficulty, especially 
as more organizations linked to the core indirectly. Finally, as the Inter- 
net grew more complex, with multiple, parallel backbones, the routing 

509 



510 Part Four �9 Internet Layer and Below 

Network A 

Router 

Backbone A I 

Router 
IJmilU i 

Router 

Backbone B 

.............. I. 

Network B 

Figure 23-1: Routing between backbones can be direct, moving from one to 
another just once. If routing tables aren't properly maintained, however, a 
packet might zigzag back and forth between backbones. 

problem became more intractable. Figure 23-1 shows that with more 
choices there are more opportunities for making the wrong choices, and 
the right choice is often far from obvious. Choosing the right route between 
two networks separated by backbones can be considerably more efficient 
than choosing what might appear to be a slightly worse route. 

23.1 Interior vs. Exterior Routing 

Interior routing requires that participating gateways be able to exchange 
information about which networks they can reach and which networks 



Chapter 23 �9 Exterior Routing 511 

they can't reach. In simple intranets, particularly those with only a couple 
of networks and routers, static routing tables can be maintained by hand. 
However, it doesn't  take much complexity before this task can overwhelm 
the network managers, and dynamic routing protocols are required. 

To illustrate, look at Figure 23-2. Before adding the new router between 
Network B and Network D, all the networks were reachable in just one 
way. Traffic from Network B destined for Network D all was routed to 
Router BC to Router CE to Router DE to the destination on Network D. 
With the new router in place, there are now two routes from Network B 
to Network E, both apparently equivalent just as there are now two routes 
for traffic from Network A to Network E. Routing protocols allow routers 

Network A 

Network C 

Router CE 

.. 

Router AB 

Router BC 

Network B 

/ 
/ 

I !  
i 

New Router 
i 

.1_. 

Network E ~ 1 ~ ] ~  Network D 
Router ED 

Figure 23-2: Adding  a router in a s imple internet shows why  reachability 

advertisement is so important; when  a router or l ink fails, routers need to know 
how to decide which route to choose. 



512 Part Four �9 Internet Layer and Below 

to communicate  network connectivity across network boundaries to other 
routers. Reachability data can be passed along, as well  as changes in reach- 
ability: if the new router fails after being installed, routing protocols al low 
the other neighboring routers to report the failure to their neighbors. 

Look at the same internetwork, as it relates to the rest of the internet, as 
shown in Figure 23-3. For one thing, there is only a single point of contact 
between the local internetwork and the connected internet, that is, the inter- 
net router itself. This router knows directly about Networks  A, B, C, and 
D it is connected to Network  B, just as Routers AB, BC, and the new router 
are, so it can exchange routing information with those routers. However ,  
it may not know about Network  E or other more remotely connected 
networks. 

..~:., ~ ~-,,,,,-~..--.,~,. ,,,. 

..,, ~,~. 
,~...- ~, ,,~,, 

.... "): The Internet ii 

.., .................. ............. , ~  I nte'~net Router 
..... , . Router AB 

. .  

. 

NetworkC " ~ ~ ~ / ' ; i  .. 
Router BC 

Router CE 

Network B " 

\ 

r lu 
New I~outer 

. j  
., 

~.. 

�9 :~ Network D 
k 

�9 , ,  ; 

Network E : Router ED . . . . . . .  , . . . . . . . . . . . . .  . . . . . . . . .  
. . . .  

, .  
. . ,  

, . . .  ~ , . .  

�9 : . . . .  

Figure 23-3: Interior routing, within an AS, presents a different problem from 
routing over the global internet. 



Chapter 23 �9 Exterior Routing 513 

Rather than requiring that the internet router in this example be able to 
notify other internet routers of all internal routes automatically as well as 
keeping track of internet routes, interior routing is assigned to the organi- 
zation that runs the local internetwork and internet routing is reserved for 
routing systems that run on the backbones of the internet. 

Exterior routing, on the other hand, is done externally to organizational 
internetworks. There are a number of issues, not the least of which is the 
number of different networks (and the rapid pace of change to the internet 
overall) to track. You could require each organizational unit to arrange 
somehow for internal routes to be reported to its internet router, but all 
core routers for the Internet would then have to communicate those routes 
to each other. 

Figure 23--4 illustrates one of the main reasons why internet-connected 
gateways need to be able to route traffic dynamically to the internet. 
Each of the autonomous systems is actually an organizational internet- 
work, but for the purpose of the internet, each autonomous systems router 
passes traffic from the interior out into the internet and routes traffic in 
from the Internet. When there are few internetworks connected to the 
internet and a single backbone to carry all internet traffic, routing traffic 
by default gateways might almost make sense: give each internet router 
another gateway to send internet traffic to, as shown in Figure 23-4. If each 
unit routes to the right along the backbone (which is as reasonable a 
scheme as any), traffic intended for the neighbor on the left will have to 
transit the entire internet before it arrives at its destination a single hop 
away. 

The problem is compounded as soon as more than one backbone appears; 
in today's internet there are many different backbones and carriers to con- 
sider and special routing protocols have been introduced to handle this 
kind of exterior routing. 

23.2 Exterior Routing Problems 

Global internet backbone routing is different from interior routing: 

Exterior routers need only interconnect ASes while interior 
routers need only interconnect hosts and networks inside a 
single AS. 



514 Part Four �9 Internet Layer and Below 

Network E 

Network A 

: .  

...... ::-.. 

The Internet 

Network B 

%: ..,.;:{y 

Network C 

Network D ..... :;:%, 

Figure 23-4: Multiple ASes all linked through an internet backbone cloud. All 
networks are technically "neighbors" but if routers use a simple algorithm for 
routing such as "pass packets clockwise around the backbone" then from A to 
B is only one hop while from B to A becomes a four-hop trip. 

Border routers, which link ASes to core networks (backbones) 
should be able to route packets from a source AS to a destination 
AS in a single hop, as long as both ASes are directly connected 
to the same backbone. 

A major factor in complicating exterior routing has been the addition of 
the Classless Inter-Domain Routing (CIDR) protocol which removes  class 
limitations from IP networks. As described in the next section, with CIDR, 
a single network may be considered as a single autonomous  system in the 



Chapter 23 �9 Exterior Routing 515 

context of the network owner's ISP routing domain, while at the same time 
being an interior network within the ISP's autonomous system--which 
may in turn be viewed by global internet backbone routers as just a part of 
some larger AS. 

The concept of relative addressing, as discussed later, demonstrates how 
routers at different locations in a packet's route can treat the source and 
destination networks. Exterior routers don't care about destination or 
source hostsmthey move packets from one AS to another, leaving the 
actual delivery of packets to interior routers. 

23.2.1 CLASSLESS INTER-DOMAIN ROUTING 

Classful addressing, as we've seen, turns out to be incredibly wasteful of 
IPv4 address space. For a complete discussion of address space efficiency, 
see RFC 1715 "The H Ratio for Address Assignment Efficiency," and RFC 
3194 "The H-Density Ratio for Address Assignment Efficiency An Update 
on the H ratio," both of which discuss the degree to which it is possible 
to use the IPv4 address space efficiently. Although a 32-bit address space 
places an unalterable limit on the number of unique addresses possible 
(something over four billion), the practical limit is considerably less. The 
authors of RFC 3194 conclude that as host density increases, the "pain" of 
maintaining the address space increases as well. The authors also explain 
how to calculate the number of nodes on any particular network that corre- 
spond with more or less painful densities. They conclude that 240 million 
nodes in the IPv4 address space likely represents a practical maximum. 

The CIDR protocol extends the idea of subnetting in the opposite direction: 
taking contiguous blocks of Class C networks and stealing bits from the 
first 3 octets of the address to aggregate routes. In other words, just as 
all datagrams addressed to a single Class B address are routed to a single 
router, all datagrams addressed to any of a block of Class C addresses 
could also be routed to a single router. 

This is known as classless routing because it tells the router to ignore the 
network class (Class C) address and walk up higher in the network address 
than usual to determine where to send the datagram. And unlike subnet- 
ting, where the subnet mask is irrelevant outside the network, the supernet 
path is used externally for routers to slim down their routing tables. For 
example, an ISP might be granted a block of 256 Class C addresses. This 
can be considered the equivalent of a Class B address, only the first three 



516 Part Four �9 Internet Layer and Below 

bits will be set to 110, instead of 1 Qx. With supernetting, routers can be 
set to include the first 16 bits of the address block and treat it as a single 
route with 8 bits of supernet, instead of having to deal with as many as 
256 different routes for each of the included Class C network addresses. 
ISPs are given these blocks because they often provide the routing for their 
customers' networks, so all datagrams for those customers will be routed 
through the ISP's router anyway. 

Due to the relative scarcity of Class B networks, the relative abundance 
of Class C networks, and the fact that Class C addresses can be bundled 
in blocks that work well for moderate-sized organization, this approach 
makes a lot of sense. CIDR also reduces the size of routing tables, thereby 
improving routing performance. However, while CIDR improves the effi- 
ciency of network address allocation, it does not do anything to increase 
the total number of host addresses possible under IPv4 and should be con- 
sidered purely a short-term tool rather than a long-term solution to the 
problems of IPv4. 

More recently, some organizations assigned Class A network addresses 
have returned them. Though they weren't able to use them efficiently, 
the regional registries are starting to allocate portions of them to ISPs 
(especially broadband internet providers) that need them and can fill them. 

23.2.2 INTERNET PROTOCOL ADDRESS PREFIX NOTATION 

With classful addressing, determining how much of an address should be 
processed as the network part is easy: the first octet of Class A addresses, 
the first two octets of Class B addresses, and the first three octets of Class C 
addresses. However, classless addressing removes this mechanism, and 
requires a new notation for nodes to indicate how much of an address 
should be treated as network address. 

The address~prefix notation for CIDR addressing takes the form of a network 
address followed by a slash and the number of bits of the address to be 
considered the network part. For example, when discussing the reserved 
private IP network addresses, the following notations can be used: 

Address Range Prefix Notation 

i0.0.0.0 - i0.255.255.255 10/8 



Chapter 23 �9 Exterior Routing 517 

172.16.0.0 - 172.31.255.255 

192.168.0.0 - 192.168.255.255 

172.16/12 

192.168/16 

The first address range; 10 /8 ,  can also be referred to as a 24-bit block 
because it provides the owner of the network with 24 bits of host address- 
ing space. The second address range, 1 7 2 . 1 6  / 12, indicates that 12 bits 
of the address are treated as the network part and may also be referred 
to as a 20-bit block because it offers the owner 20 bits of host address- 
ing. The last address range covers a 16-bit block, where the high-order 
16 bits define the network and the low-order 16 bits are used for host 
addressing. 

This notation is used in routing tables and elsewhere, and has replaced the 
use of a number of bits to specify a subnet mask which was made obsolete 
when network classes were made obsolete. 

23.2.3 RELATIVE ADDRESSING 

As mentioned earlier, the network part of the address uniquely identifies 
the administrative network on which the node is found. This is all that 
a remote system needs to know in order to properly deliver a packet to 
its destination network (or to determine that the address is a local one). 
The host part of the address is useful only within the local administrative 
domain, where it is used for delivery to individual destinations. 

The network part of an address may vary, depending on who is interpret- 
ing the address. In general, the network part of any address will be the 
longest string of bits (starting from the left, or most significant, bit of the 
address) that a non-destination node must examine to determine how to 
handle the packet. 

Postal analogies help clarify matters. If I have a letter for my next-door 
neighbor, I know that he is local to me and I need not use the postal sys- 
tem to deliver it. In this case, almost the entire address matches my own 
address, and I don' t  need anyone to route my mail for me. 

When I mail my water bill payment to Town Hall, I put it in the "local 
delivery" slot at the post office. The network part of the address is my 
town, state, and country. I know what to do with letters going to my own 
town; the host part of the address is everything else. I can pick the correct 



518 Part Four �9 Internet Layer and Below 

slot, but after that, it's all just a postal cloud to me--the postal service has 
to figure out how to deliver the letters from there. 

Consider the world's global postal network and a package sent from: 

Joan Smith 

123 High Street 

London, Ontario N6B IXl 

Canada 

to: 

John Smith 

321 High Street 

London SWI9 5 

England 

The information in these addresses becomes increasingly general as you 
progress through the data in themmthis is different from IP addresses. But 
if you read them from the bottom line (indicating the country) to the top 
(individual's name) as is typically done at a post office processing mail, 
the data starts out general and becomes specific: 

1. Joan drops the package off at the local London, Ontario, post 
office, where a postal worker checks the bottom line of the 
address. That worker notes that there is a country name there, 
so it's an international package which must go to the interna- 
tional sorting station. The worker puts it into a bin designated 
for international mail. 

This postal worker doesn't need to know that much about 
geography, just that an extra line at the bottom of the address 
means "international." 

Host JoanSmith emits a packet into the interpostalnet, sending it to 
the local post router. The router directs the packet to its international 
link. 

2. At the international mail sorting center, another postal worker 
checks the bottom line of the address. This worker needs to 



Chapter 23 �9 Exterior Routing 519 

know more about geography and very likely has a sheet of paper 
holding a list of country names that will tell her what to do 
with each item. Mail bound for England goes in a bin labled 
"NWEurope." 

The international link router forwards the package to a router called 
NWEurope for further processing. 

3. The northwestern Europe-bound mail is put on a jet to London; 
when it arrives, the package is sorted into a bin bound for the 
postal facility serving all London SW postal codes. 

After traveling over the intercontinental link to router NWEurope, 
the packet is forwarded over NWEurope's LondonS W link. 

4. At the London SW postal facility, the package is passed along 
to the SW19 post office. 

LondonS W forwards the packet to the SW19 router. 

5. At the SW19 post office, a local postal worker sorts the package 
into a bin to be placed in the mail van driven by the letter car- 
rier serving High Street in the SW19 5 zone. That letter carrier 
delivers the package to John Smith. 

S W19 routes the packet to the areas router named 19-5, which passes 
it to the local router HIGH-STREET, which delivers it directly to host 
JohnSmith. 

The list above includes, in italics, a "translation" of the postal analogy into 
network-speak. Figure 23-5 shows what's happening in steps I through 3, 
which should give an idea of what's going on in the remaining steps. 

When Joan emits her packet into the global postal network, she has to spec- 
ify a complete address. For the local postal worker who initially receives 
the packet, the network part of the address is "international"rathe fact 
that the packet is even going to another country is sufficient for them to 
determine the postage needed and to put it in the right bin. At the next 
step, the country name actually becomes the network partmthe smallest 
chunk of address the international mail sorter can use to correctly route the 
packet. 

As far as Joan is concerned, there are three "postalnets" to choose from: the 
local one for London, Ontario, everywhere else in Canada, and the rest of 
the world. They are just clouds to her--she doesn't need to know what the 
rest of an address means, as long as it is accurate. When she realizes she's 



520 Part Four �9 Internet Layer and Below 

Canada 
Post Air 
Service 

Joan Package 

Worker 

I 
s w  =6tl:.l 

Europei J Sorterl 

iENEpeb.~ ' .... ~ :  NE J Int'l .Europe 
�9 Mail 

j Afr icat/ /  De, "1: Asia:! 
IN, Am;I Is!Am:,! : 

C~n.ad.J 
Postal J 

Service J 

...,....~..,. ....... .~,~,~! 

I Inbound 
Air Facility 

~ ......... 

~,~- ~,: ~ ,  N,,~, ,~ ;/! 

~.~.~.. . ~X ~ 

Figure 23-5: A p o s t a l  a n a l o g y .  

got to send the package out of the country (to England, though it could be 
Mauritius or San Marino or anywhere else), she has enough information 
to completely and correctly process her package. 

For Joan, the network part of the address is the existence of a country 
(indicating international mail). She sees that part of the global postalnet as 
a huge network, and the bulk of John's address is the host part as far as 
Joan is concerned. 

As the package moves through the global postalnet, more and more of the 
entire address becomes relevant to making decisions about how to handle 
the mail. At the airport in London, England, as the mail is processed into 
the postal service there, someone checks that the destination country is 



Chapter 23 �9 Exterior Routing 521 

England--but  they've also got to check the city, because there's no point 
to sending the package to a distribution center for southern England in 
Bristol when the packet is going to be delivered locally. So, at that point, 
the network part of the address includes the country and the city (and 
perhaps even part of the postal code). 

The length of the network part of an address won't  necessarily be the 
same for all addresses being processed by the same system. Consider the 
inbound British mail processor. A destination address in London will have 
a rather long network part, while the network part of a destination address 
in France will be shorter since all mail for France goes through the Chunnel. 

How does this all relate to IP addresses? Quite simply: think 4 octets instead 
of five address lines, and the analogy is quite close. IP nodes all have 
some understanding of the nature of their network. A simple node might 
understand nothing more than "me" (the node itself) and "everyone else." 
In that case, any data bound for an external node would be forwarded 
based on the contents of the node's routing table. For that node, the network 
address for a destination could be as short as 1 bit if the most-significant 
bit of the destination is different from the node's own address, or as long 
as 30 bits if the destination address is identical to the node's own except for 
the last 2 bits. If the network address part were 31 bits, the very most nodes 
possible on the remaining I bit of network would be 2--except the all-ones 
and all-zeros addresses in any network are usually reserved to indicate 
"this network" (all zeros) and the local broadcast address (all ones). 

As the packet progresses toward its destination, intermediate nodes will 
interpret more of the IP address as network part, and less of it as the host 
part, until it arrives at its final destination network where the local router 
will pass the packet along directly over the local link. 

23.3 Exterior Gateway Protocols 

Historically, internet exterior routing protocols have evolved over the 
years to accommodate increasingly large and complex routing environ- 
ments. An early such protocol, the Gateway to Gateway Protocol (GGP) 
was described in RFC 823, "The DARPA Internet Gateway," in 1982. GGP 
uses a distance-vector routing algorithm similar to that incorporated in 
RIP: gateways boot up assuming that all their links are down and no 



522 Part Four �9 Internet Layer and Below 

networks are reachable, but as they test out their own links and receive 
routing updates from other gateways, they are able to build up their rout- 
ing tables to reflect the current state of the internet. RFC 823 has been 
assigned "Historic" status. 

Also historic, the Exterior Gateway Protocol (EGP) formally specified in 
RFC 904 "Exterior Gateway Protocol Formal Specification," in 1984. GGP 
failed to address the issue of organizational internets that could not be 
connected directly to a c o r e  or backbone router. Extra hops were often 
added when non-core routers would send traffic to their own local default 
routers instead of forwarding them to a more appropriate internet router 
that might be closer to the destination. Figure 23-6 shows the problem. 

Network A 

.............. . . . . . . . . . .  ,:~:,~ . . . .  

~iiii~iNiiiiiiiiiiii~iii~i!::iiiiiii!i~ii!,!i!i~iiiiiii 
; ' + ~ - ; N s : I L . . : ! ! ~ ! ! i I . : . : . I I : : N I I I : : I I I I ! : : i l I g ! ! g ~ I I : : ! i i I , . . ' . . ~ N i ~ I ~ .  "* ~:->:: '=-:+ 

:). 

C( 
Ro~ 

, ...... 

~re i 

S :  

.... } 

Figure 23-6: Inefficient routing across a backbone. 



Chapter 23 �9 Exterior Routing 523 

The figure shows a non-core router that is connected to a backbone on 
which various core routers are available. All of the core routers are, in the- 
ory at least, equally capable of routing any packets from any other routers 
connected to the backbone. Node X wants to communicate with node Y; 
ideally, the non-core router sends packets directly to Core Router C, but 
that can only happen if there is a way for the core routers to advertise 
their routes directly to non-core routers. EGP provides such a mecha- 
nism, by which EGP routers, as they come online, attempt to acquire 
some other router to act as a peer; peers exchange routing information 
about which networks they can reach. One of EGP's flaws was that it 
provided no way to compare two or more advertised routes to the same 
destination. 

23.4 Border Gateway Protocol 

If routing across a single backbone can be complicated, imagine routing 
over multiple backbonesmsome of which overlap, and many of which 
offer routes to the same destination networks. Figure 23-7 illustrates some 
of the entities involved, as well as the problems. 

By 1989, a version of today's core internet routing protocol was published 
in RFC 1105, "A Border Gateway Protocol (BGP)," as an experimental 
specification; BGP version 4 is currently an internet draft standard (one 
step away from full standard status), and specified in RFC 1771, "A Border 
Gateway Protocol 4 (BGP-4)," and RFC 1772, "Application of the Border 
Gateway Protocol in the Internet." 

Backbone Z is operated by a backbone service provider, and offers a transit 
service, meaning that they carry packets to and from client networks, such 
as the internet service providers I and J. Backbone Z is called a transit AS, 
because it is an autonomous system that moves packets from one AS to 
anothermthis implies that it has connections to at least two other ASes. 
Traffic from one AS to another is called transit traffic, to be distinguished 
from local traffic, or traffic that remains within a single AS. 

In the modern internet topology, a routing entity may also be a multi- 
homed AS, which differs from a transit AS because it does not carry transit 
traffic but it does carry local traffic. For example, network X in Figure 23-7 
might represent a large organization that maintains connections to several 
backbone networks but that carries traffic only intended for network X. 



524 Part Four �9 Internet Layer and Below 

. . . .  . . . :  .......... ".::.: ....................................... . J  

Backbone A 

�9 ::' "~" i i:.'~".!~ '~"i i ~. " .... " ' e . ' : .  : ",.i . . .  ~ \  

. . . . .  . . . . . .  d 

........ ! 

Figure 23-7: Modern internet topology with multiple backbones. 

Finally, a stub AS is one, like network Y in the figure, that can carry only 
local traffic; a stub router connects a single AS to one other AS. 

EGP worked reasonably well, but was unable to differentiate between 
advertised routes: a router notified other routers only whether or not it 
could reach an AS. With no basis for comparing directness of routes offered 
by two or more routers, a border router could only guess at which router 
was better for a particular packet. Neither the link state nor the distance- 
vector routing approaches will work well for this kind of network: the 
complexity is too great for any single router to handle all of the routes 
between all of the networks. 

BGP addresses the problem by extracting the inter-AS routing issues 
from the intra-AS routing issues. In a BGP-routed network, each AS 
is connected to the rest of the network by at least one each of two 



Chapter 23 �9 Exterior RoutJng 525 

different entities: 

BGI" speaker: Every AS in the network needs at least one BGP representa- 
tive, to exchange reachability information with speakers for the other 
ASes. 

BGP gateway: Every AS in the network needs to be connected to the 
network through at least one BGP gateway. 

A gateway and a speaker may be deployed on the same system, but they 
may be deployed separately. And unlike RIP or OSPF routers, which 
exchange information about their own connectivity only, BGP routers 
exchange complete routes. With a RIP-like protocol, a router in network I 
(Figure 23-7) would have a routing table full of entries from every other 
router it can reach directly for all the other networks on backbone A: net- 
work X would be reachable in two hops through networks M and J, even 
though network I can reach X in a single hop on its own. 

By including not just the number of hops but also the specific path for each 
route, BGP routers can eliminate routing loops. Using speakers, separate 
from routers, to communicate reachability information allows BGP net- 
work administrators to implement routing and forwarding policies that 
affect how packets are routed to and from particular networks that would 
otherwise be indistinguishable. 

Table 23-1 lists some RFCs that document BGP and related issues. 

RFC # Title 

1265 

1266 

1771 

1772 

1773 

1774 

1863 

BGP Protocol Analysis 

Experience with the BGP Protocol 

A Border Gateway Protocol 4 (BGP-4) 

Application of the Border Gateway Protocol 
in the Internet 

Experience with the BGP-4 Protocol 

BGP-4 Protocol Analysis 

A BGP/IDRP Route Server Alternative to a 
Full Mesh Routing [EXP] 



526 Part Four �9 Internet Layer and Below 

1930 

1997 

1998 

2042 

2270 

2385 

2439 

2519 

2547 

2796 

2842 

2858 
2918 

3065 

3107 

3221 

Guidelines for creation, selection, and 
registration of an Autonomous System 
(AS) [BCP 6] 

BGP Communities Attribute 

An Application of the BGP Community Attribute 
in Multi-home Routing 

Registering New BGP Attribute Types 

Using a Dedicated AS for Sites Homed to a 

Single Provider 

Protection of BGP Sessions via the TCP MD5 
Signature Option 

BGP Route Flap Damping 

A Framework for Inter-Domain Route Aggregation 

BGP/MPLS VPNs 

BGP Route Reflection - An Alternative to Full 
Mesh IBGP 

Capabilities Advertisement with BGP-4 

Multiprotocol Extensions for BGP-4 
Route Refresh Capability for BGP-4 

Autonomous System Confederations for BGP 

Carrying Label Information in BGP-4 

Commentary on Inter-Domain Routing in the 
Internet 

Table 23-1: Current RFCs about BGP. 

The BGP replaced EGP as the current solution to Internet routing. 
Routers pass along distance-vector reachability information, but instead 
of just including networks and distances, BGP includes the actual 
route needed to reach each destination. This allows the router to lay 
down the distance-vector routes into an actual map of the internet 
and eliminate the routing loops to which distance-vector protocols are 
prone. 



Chapter 23 �9 Exterior RoutJng 527 

23.5 Chapter Summary 
Backbone routers operate in an environment where traditional interior 
routing protocols are insufficient: they don't scale sufficiently well to allow 
all routers in a very large network to exchange routing information without 
overwhelming parts of the network with routing protocol messages, and 
they don't offer the right tools for mapping routes to the backbone. 

The introduction of CIDR and hierarchical network addressing was an 
important step forward in reducing routing complexity in a global internet 
consisting of many small (/24 and even smaller) networks. 

Exterior routing protocols, such as BGP, make the distribution of routing 
information more scalable and more reliable across very large networks. 

In the next chapter, we examine IP multicast. 



This Page Intentionally Left Blank



Internet Protocol Multicast 

Server capacity and network bandwidth are water and air to networks: 
without them, the network dies. Anything that preserves bandwidth or 
reduces server load is good, and anything that wastes bandwidth or server 
capacity is bad. 

Internet protocol (IP) broadcasts might have once been considered a good 
thing, within l imits~they have always been restricted to the local network. 
Yet broadcast can be wasteful or even dangerous to modern networks, 
wasting bandwidth as well as server capacity, especially in non-broadcast 
multiple access networks. Global internet broadcasts would be disabling 
to the global internet, rapidly filling all bandwidth with broadcasts from 
every conceivable source. 

However, certain desirable applications, such as streaming multimedia 
and audio- video-conferencing, require transmission of the same data to 
many different recipients~often on the same local network. Sending indi- 
vidual copies to each recipient can also overwhelm networks in which 
more than a few hosts receive the same streams of data. Push applications 
rolled out in the middle and late 1990s on the internet, in which individual 

529 



530 Part Four �9 Internet Layer and Below 

users subscribed to news or other broadcast services, alienated corporate 
IT departments as they flooded internet links. 

IP multicast provides a middle path, eliminating the indiscriminate 
retransmission to everyone, no matter whether they're interested or not, 
of broadcasts while minimizing the transmission of duplicate packets over 
networks with multiple subscribers. However, for IP multicast to work 
well it must be implemented in a balanced manner. 

An important tool for using bandwidth more efficiently, IP multicast has 
long been an important part of IP but it is still not used very often for 
internet transmissions. In this chapter, we examine how multicast works, 
why it is useful, and why organizations have been slow to deploy multicast 
across the internet. 

24.1 Network Multicasting 
With broadcast transmission of data across a network, all nodes on the 
network receive the data. This is one way to get information to more than 
one node at a time, while sending only one copy of the message. The 
alternative is to send a separate copy of the message to each recipient. 

Each of these alternatives has serious drawbacks. Broadcasts can be ineffi- 
cient, despite conserving network bandwidth in broadcast/multiple access 
networks like Ethernets: every connected system must process every 
broadcast message. NBMA network broadcasts, which require a server 
to repeat all broadcast messages over circuits to all connected nodes, are 
arguably just as inefficient as unicast to all network nodes. Although 
IP broadcast is hardly likely to disappear entirely, it is gradually being 
deprecated; IPv6 does not include support for broadcasts, for example. 

Sending a separate copy of the message to each recipient takes far less of a 
toll on the systems receiving the messages. However, each copy of the mes- 
sage takes up network bandwidthmeven applications that are not band- 
width intensive can overwhelm a network if data must be retransmitted 
enough. 

A middle path exists in the form of network multicast. Messages sent to a 
multicast address are sent only once on each network link, but any number 
of connected nodes can listen to messages sent to that address. Broadcast 



Chapter 24 �9 Internet Protocol Multicast 531 

can be viewed as a form of multicast in which all nodes on a network link 
are subscribed, by default, to the broadcast address. 

Like broadcast, multicast is most transparent when implemented on a 
broadcast /mult iple  access network medium such as wireless or Ethernet, 
where all nodes can process all frames. Subscribing to a multicast address 
on this type of network is a simple matter of configuring the network 
interface to accept frames addressed to subscribed multicast addresses. 

Multicast over NBMA networks is more efficient than broadcast over 
NBMA because the multicast proxy needs to repeat data only to the nodes 
that are subscribe to a multicast address- -not  to all nodes. 

24.2 Applying Multicast 
Applying multicast across internetworks poses a problem similar to that 
of using multicast (or broadcast) within an NBMA network. Routers (or 
some other systems) must act on behalf of subscribing nodes to accept 
and forward messages sent to a multicast address. To understand how IP 
multicast works, consider an actual application that could have benefited 
from it. 

When Pointcast rolled out its news service to internet users in the late 
1990s, it was heralded as a milestone application. Users signed up for the 
news categories and sources they preferred, and Pointcast pushed those 
items out to users automatically, regularly transmitting updates and new 
content automatically. Individuals could specify the types of content they 
wanted, as well as how often their clients would be updated with new 
material. 

Users loved it, network administrators hated it: Pointcast chewed through 
bandwidth  faster than a school of piranha through a cow. As users sub- 
scribed to essentially identical content streams, Pointcast transmissions 
flooded organizational internet links, and intranets. Instead of a single 
copy of an article, hundreds of copies of the exact same article were 
transmitted to an intranet with hundreds of subscribers. 

Pointcast and other internet push services eventually implemented proxy 
servers to accept updates and new content on behalf of all users within 
a network, and then distribute them locally. A more elegant solution 



532 Part Four �9 Internet Layer and Below 

Broadcast News client B 
Broadcast News 

client A 

B r~ C ews 

Broadcast News ~~i~ea m c l i en t~  ; ~i,,,,nt 

Broadcast News Broadcast News 
client F client E 

Internet 

Figure 24--1: Unicas t  t r a n s m i s s i o n  can w a s t e  b a n d w i d t h  w h e n  the s a m e  

m e s s a g e s  m u s t  be  repeated  to m a n y  n o d e s  on  the s a m e  ne twork .  

is available with multicast, but only if all routers operating between 
subscribers and the Pointcast server support  multicast routing. 

Figure 24-1 shows how a Pointcast-like service works. Subscribers may be 
connected to the same local networks or directly connected to an internet 
service provider, but in each case every subscriber gets a direct stream 
of data sent to its own unicast address. This approach is expensive in 
terms of bandwidth: every new subscriber requires a discrete amount  of 
additional bandwidth  capacity from the server. Within the intranet users 
clog up their organizational internet connection with duplicated inbound 
messages. 

One way to cut down on the waste is to have organizations with many 
users of this service set up a system designated as a proxy or agent for inter- 
nal subscribers. Rather than have a separate stream of messages for each 



Chapter 24 �9 Internet Protocol Multicast 533 

subscriber within the intranet, the service sends a single stream of messages 
to the proxy agent, which distributes the messages to local subscribers. 
Within the intranet, the agent might make duplicates of every message and 
send it out individually to subscribers, or it might make use of network 
multicast functions to reduce the amount  of internal bandwidth wasted. 
However, this approach reduces the wasted Internet bandwidth both for 
the organization receiving the messages and also for the organization 
sending the messages. 

IP multicast offers an even better solution to this problem. If all our ISP's 
internet routers support  multicast (still not always the case), a broadcast 
news service can send a single stream of messages to a single multicast 
address. The multicast-enabled IP routers within the internet act on behalf 
of subscribers. Nodes subscribe to an IP multicast address by notifying its 
local routers; that router now subscribes to the same multicast address on 
behalf of its client node. 

Figure 24-2 shows an ideal result, in which the multicast originator sends 
material once to a multicast group address. Each node subscribes to the 
group by sending a multicast subscription request to Router A. Router A 
sends a request to Router B, subscribing to the same multicast group; 
Router B subscribes through Router C, which subscribes through Router D, 
which is connected to the multicast source. 

When the multicast sender transmits a packet to that multicast address, 
Router D forwards a copy to Router C, which forwards it to Router B, 
which forwards it to Router A, which forwards it to all the subscribing 
nodes. 

Now something similar happens with the other subscribers connected to 
an ISP. Those nodes tell Router E they are subscribing, which tells Router F 
to subscribe, which tells Router D. Thus, Router D sends out two copies of 
that datagram, one to Router F and the other to Router C. Router F forwards 
the packet to Router E, which forwards the packet to the two subscriber 
nodes. 

In practice, the route that a datagram takes is likely to be more complicated 
than what is shown in Figure 24-3. And it assumes that all the routers in 
the paths between subscribers and the broadcaster are multicast-enabled m 
not a likely situation. Internet service providers still can't be assumed to 
routinely enable their routers and backbones for multicast, at least not 
so far. 



534 Part Four �9 Internet Layer and Below 

! I ! ! !  
Broadcast hlews Server 

Broadcast News 
client B 

Broadcast News \ '-',!: ~ ~ ! ' ~ '  l,ii~i~!i~!,iiii:ii:i ? ii!i)[:~\~i:: 1 

Broadcast News. 
client C ~ ~  .,.,.., \ 

~ Intranet  

Broadcast News 
client ~ 

Broadcast News Broadcast News 
client F client E 

Internet 

Figure 24-2: Proxy agents, or proxy servers, can act on behalf of a service to 
reduce duplication of messages within an intranet. 

24.3 Internet Protocol Multicast 

Multicast has long been an integral part of the IP standard: RFC 1112, "Host 
Extensions for IP Multicasting," published in 1989, defines IP multicast. 
Though RFC 1112 is integral to IP, by 1995 when RFC 1812, "Require- 
ments for IP Version 4 Routers," was published, the authors stated that 
forwarding of IP multicasts is still somewhat experimental. That document 
suggests that IP multicast forwarding "should" be supported by routers. 
As a recommendation rather than a requirement, standard-compliant 
implementations are possible without multicast forwarding support. 

RFC 1112 specifies three levels of conformance to IP multicast. At level 0, 
the host has no support for IP multicast. When such a host improperly 



Chapter 24 �9 Internet Protocol Multicast 535 

Multicast 
Client A ~ ili,~ ~. 

Intranet 
, \  

Multicast 
Client B 

Multicast 
Client C 

| 

Multicast Source 

Router C 

Rou,er  
Router A ~  . . . .  

Multicast ~ . . ,  
Client D 

Multicast 
Client E 

ISP 

Router E 

Internet 

Figure 24-3: IP multicast has the potential to improve efficiency of propagating 
a message to many destinations across the internet. 

receives a datagram addressed to a multicast address, its proper response 
is to quietly discard the datagram. Level 0 hosts should be able to iden- 
tify Class D addresses as multicast addresses, but do not have to support 
multicast in any other way. 

Level 1 hosts are able to send multicast datagrams, but not receive them. 
Converting a level 0 host to level I conformance is relatively simple, and 
allows such hosts to participate in applications that require hosts to report 
their status or submit other information to a multicast address, but which 
do not require such hosts to be able to accept multicast datagrams. 



536 Part Four �9 Internet Layer and Below 

To achieve level 2 compliance, a host must not only be able to send 
multicast datagrams but also to join and leave host groups, which are 
the sets of hosts that are identified as being associated with a particular 
multicast address. By joining a host group, a host can receive multicast 
datagrams. 

24.4 Internet Group Management Protocol 
Earlier in this chapter, we spoke of hosts telling routers about which 
multicast addresses they wanted to subscribe. The Internet Group Man- 
agement Protocol (IGMP), specified in RFC 1112, describes the mechanisms 
by which hosts can notify any multicast routers that are in the immediate 
neighborhood of the host's multicast group memberships. 

IGMP specifies two types of messages relevant to multicast hosts. 
Multicast routers send out the IGMP membership query message to a 
standard multicast address that identifies the all-hosts group (224.0.0.1). 
This address differs from the broadcast address in that only level 2 
multicast-enabled hosts respond to it other hosts ignore messages sent 
to this address. 

When a multicast host receives an IGMP membershp query it begins to 
send IGMP membership replies, one for each multicast group to which it 
belongs. The replies are addressed to the multicast address of the group. 
This helps reduce traffic if there are other members of the same multicast 
group on the local link. Once the first member of the group responds to 
the IGMP query, the other members don't have to notify the router of their 
own memberships. 

Multicast routers periodically send out IGMP membership queries to keep 
track of which multicast addresses they should be listening for on their 
other networks. Hosts usually send out IGMP membership replies in 
response to these queries or as soon as the host joins the group. 

As defined in RFC 1112, routers need not keep track of which hosts are 
subscribing to which multicast addresses--if a host is a member of a group, 
it simply listens to multicasts forwarded at the link layer multicast address. 
However, things are different for NBMA networks, where broadcast and 
multicast are more complicated. Such networks require some mechanism 
to keep track of which nodes need multicast retransmissions. 



Chapter 24 �9 Internet Protocol Multicast 537 

24.5 Multicast Routing 
Routing multicast datagrams is more complicated than routing either uni- 
cast or broadcast datagrams. A router that forwards packets on several 
networks might find itself forwarding the same multicast packet on all or 
some of those networksor on none, depending on whether or not hosts on 
those networks are members of the multicast group in question. 

These protocols generally use a mechanism to discover the shortest path 
for multicast datagrams by looking at the source address of the datagram. 
If a router receives a multicast packet on an interface that is on the shortest 
path back to the sender, then the router can forward the packet on to 
other network interfaces to other group members. If the router receives the 
multicast packet on some other interface, then it just discards the packet 
because there is no need to forward it. 

There are two approaches to multicast routing. Dense-mode multicast routing 
algorithms work on the assumption that there are likely to be multicast 
group members on all or most connected networks. Sparse-mode multicast 
routing algorithms work on the assumption that there are relatively few 
members of each multicast group and that most routers won' t  be involved 
in forwarding multicast packets. Each of these approaches has advantages 
and disadvantages, and each has specific types of situations in which it 
works best. 

24.5.1 DENSE-MODE MULTICAST ROUTING 

Dense-mode multicast routing protocols are best suited to networks with 
plentiful bandwidth  where most routers are connected to networks that 
may have multicast group members. These protocols are built on the 
assumptions that there will be many other multicast routers in the routing 
environment and that there will be many hosts that are members of multi- 
cast groups. Routers implementing these protocols use IGMP messages to 
build routing tables, and share their results with other multicast routers. 

One dense-mode protocol, the Distance Vector Multicast Routing Protocol 
(DVMRP), was published as an experimental protocol in 1998, in the 
eponymous RFC 1075. IETF members currently are engaged in work on a 
very different, modern version of this protocol. DVMRP routers are used 
to calculate multicast delivery trees that include the optimal routes to all 
members of the multicast group. As members join or leave the group, the 



538 Part Four ~ Internet Layer and Below 

routing trees are modified. As its name implies, DVMRP uses distance- 
vector routing and has some features in common with RIP (see Chapter 22). 

Multicast Open Shortest Path First (MOSPF) is another dense-mode mul- 
ticast protocol. Described in RFC 1584, Multicast Extensions to OSPF, 
MOSPF extends OSPF to enable OSPF routers to exchange multicast 
routing information. 

The Protocol Independent Multicast-Dense Mode (PIM-DM) protocol is still 
(as of 2002) an IETF work-in-progress, described in Internet-drafts. In PIM- 
DM, it is just assumed that all downstream routes will want copies of a 
multicast datagram. Routes on which there are no group members will 
eventually be pruned off the PIM-DM routing tables. 

24.5.2 SPARSE-MODE MULTICAST ROUTING 

Sparse-mode multicast routing protocols are built on the assumption 
that there just aren't that many multicast group members or multicast 
routers around. Common to sparse-mode multicast routing protocols is an 
approach that uses the concept of a core router or rendezvous point (RP). 
In each case, the core or RP acts as a reference point for multicast groups. 
Rather than attempt to build routing maps, as is done by the dense-mode 
protocols, in sparse-mode protocols the routers route multicast packets to 
and from the core routers or RPs. This approach reduces the overhead of 
keeping track of a multicast routing map. 

RFC 2362, "Protocol Independent Multicast-Sparse Mode (PIM-SM): 
Protocol Specification," specifies a multicast routing protocol that is largely 
identical to PIM-DM, except that it uses rendezvous points through which 
to route packets. The Core-Based Trees (CBT) routing protocol is described 
in RFC 2189, Core-Based Trees (CBT version 2) Multicast Routing, and in 
RFC 2201, Core-Based Trees (CBT) Multicast Routing Architecture. CBT is 
also specified as an experimental protocol, and uses the concept of a core 
router from which multicast routing trees sprout. Other multicast routers 
must determine routes to these trees for multicast group members. 

24.5.3 SPARSE VS. DENSE MOOF MULTICAST 

The two approaches to multicast, sparse- and dense-modes, reflect two dif- 
ferent styles of multicasting. The dense-mode approach works best when 



Chapter 24 �9 Internet Protocol Multicast 539 

it can be assumed that most networks will include at least one host that 
is a member of the multicast group. The dense-mode approach is often 
said to be data-driven meaning that the sender effectively broadcasts the 
data to everyone, and then prunes the routing tree as routers on networks 
with no group members respond with a request to be removed from the 
distribution. 

Sparse-mode multicast works best for demand-driven applications, where 
group members must request (demand) to be added to the routing tree 
for the group. Multicast routers accept requests to join a multicast group 
from individual hosts, and then report (to a core router, designated to 
coordinate sparse-mode multicasting) whenever a host joins or leaves the 
group. 

Dense-mode multicasting does not scale well, certainly not to the global 
internet, but it can be useful for corporate intranets. For example, an invest- 
ment firm might use data-driven multicast to push out stock quotes to all 
employees' workstations. Sparse-mode multicast is deemed more global 
internet-friendly, in that packets are sent only to group members that have 
explicitly opted to receive them. 

24.6 Internet Protocol Multicast Applications 

Multicast lends itself to applications that require the systematic transmis- 
sion of identical information to many different recipients. Financial firms 
often use multicast to enable applications to transmit financial ticker and 
news information to every workstation on a trading floor. 

Multicast is seen as a key enabling technology for the broadcast of audio 
and video over the internet, especially for audio and video conferencing 
applications. These applications can withstand delivery delays or interrup- 
tion in transmission of datagrams, but still require some degree of feedback 
from recipients as well as some kind of framework for the data being deliv- 
ered. The Real-Time Transfer Protocol (RTP), described in RFC 1889, helps 
provide quality of service feedback to multicast originators from multicast 
recipients. 

The Real Time Streaming Protocol (RTSP) described in RFC 2326 defines the 
way data is carried and controlled within the transport layer, and provides 
mechanisms for setting up recipients to receive multicasts. 



540 Part Four �9 Internet Layer and Below 

24.7 Chapter Summary 
Although not often supported on the public global internet, IP multicast 
can be useful within private internets, where it can reduce network traffic 
for widely used applications as well as improve efficiency of subscription 
services. In this chapter, we looked at how multicast works generally: 
while it is almost trivial to implement in broadcast media like Ethernet, 
NBMA networks pose a challenge for multicast implementation. Layering 
IP multicast over these different families of network media requires the 
participation of multicast proxy agents in many cases. 

IP multicast requires solutions to two important problems: allowing indi- 
vidual hosts to join multicast groups, and delivering multicast packets to 
all subscribed hosts without overwhelming the internet with unnecessary 
copies while also making sure that all subscribed hosts get at least one copy 
(but no more than one). Hosts and routers use IGMP to easily join or leave 
a multicast group, while the dense-mode and sparse-mode approaches to 
multicast routing enable routers to make the correct decisions about where 
and when to forward multicast packets. 

In the next part, we introduce internet infrastructure protocols and issues, 
starting with Quality of Service. 



Internet Infrastructure 



This Page Intentionally Left Blank



Quality of Service 

We've already touched briefly on the Quality of Service (QoS) issue in 
Chapter 20, if only by mentioning the DiffServe/ECN header fields in 
Section 20.2.1. Rather than introduce more complexity than absolutely nec- 
essary, we've treated the internet as a reasonably reliable and fair packet 
delivery system. This is a convenient simplification (some might call it 
a fiction), particularly for most of the classic internet applications: a file 
transfer happens one packet at a time, whether those packets are delivered 
quickly or not. A delay in the network may cause a delay in the application 
session, but delays don't  cause the application to fail (although if the delay 
is long enough, the session may time out, of course). 

The phrase Quality of Service implies that there is a way to guarantee a host 
that it will have a certain level (or quality) of network services. For example, 
"quality" may refer to how much bandwidth the host can use or it may refer 
to a ceiling on the delay that can be expected. While classic internet applica- 
tions can deal with delays and bandwidth variations reasonably robustly, 
newer applications such as real-time multimedia streaming require some 
minimum service guarantees to work. 

543 



544 Part Five �9 Internet Infrastructure 

The problem is that a real-time application may gobble up all the 
available bandwidth on a network link because that's what the des- 
tination node requires; other applications would be starved and fail. 
QoS is aimed at making it possible for network systems to negotiate 
their minimum requirements and to allocate some portionmbut not allm 
of the available network resources for applications that need service 
guarantees. 

When using switched, virtual circuit-based networks, such as those carry- 
ing telecommunications signals, QoS features are already available: voice 
telephony requires service above certain thresholds if users are to be able 
to carry on conversations, and telecommunications networks provide far 
better QoS than is possible under internet protocol (IP). For example, 
although multiple conversations can be multiplexed over a single link, 
each conversation is still guaranteed its own dedicated subchannel of 
64 kbps. 

IP, on the other hand, which started out as a datagram service, has been 
used mostly for the transmission of datamloss of data cannot be tolerated, 
but uneven performance is more acceptable. Losing a bit or an octet of a 
file being transferred means that the entire file is worthless and must be 
retransmitted; while losing even a relatively large proportion of a voice 
transmission is acceptable because the remaining signal will still convey 
the spoken voice. 

Quality of Service and related issues represent one of the most challenging 
issues facing network engineers, and the technical details are beyond the 
scope of this book. For the sake of completeness, however, it is worth intro- 
ducing some of these issues, in this chapter, we discuss network congestion 
and traffic engineering efforts, including the Explicit Congestion Notifica- 
tion (ECN) protocol. We also take a look at the Differentiated Services and 
Integrated Services approaches to traffic management, how diffserv has 
been added to IPv4, and more. 

25.1 The Quality Problem 
The IP model is a democratic one: all packets are (in theory) treated equally, 
getting a "best effort" delivery service from the systems in the internet. This 
has several implications for application performance and in some cases 



Chapter 25 �9 QualJty of ServJce 545 

limits applications in a number of ways: 

1. Packets may be delivered in order, or out of order. 
2. Packets may be delivered smoothly, or in spurts. 
3. Packets may be delivered, or not. 

In the case of real-time applications, this can require that receiving hosts 
buffer data as it comes in, adding delay on top of whatever network delay 
exists. Instead of passing incoming network data directly to the applica- 
tion, the incoming data is stored temporarily as the host waits for all data, 
including out of order data and data that may be temporarily delayed, to 
arrive. 

The unpredictability of the IP datagram service is due to the way routers 
handled traffic: packets come in from various sources, arriving at the router 
on different interfaces with different networks, and the router processes 
those packets in the order they are received. 

Despite the first pass at the problem through assignment of Type of Ser- 
vice values, IP as originally defined lacks mechanisms for differentiating 
between packets that have quality of service requirements and those that 
don't: 

�9 Transient congestion, such as caused by a surge of packets 
from one source, can cause unpredictable results. A packet 
surge may delay other traffic passing through a router. Or it 
might not. 

�9 All datagrams are created equal, which means that there is no 
way to give one datagram priority over another. 

�9 Individual routers can be configured to favor packets being 
sent to or from some particular network interface, but once the 
packet is routed it will be treated just like any other packet by 
other routers. IP lacks a mechanism for flagging packets at their 
source and indicating that they should be treated differently in 
some way from source to destination. 

�9 Even if packets can be flagged for special treatment, IP lacks the 
mechanisms for tracking packets and monitoring performance 
and resource use. 

QoS protocols are intended to differentiate between packets on an end- 
to-end basis, and adding the mechanisms necessary to allocate resources 
throughout a path for packets that require them. 



546 Part FJve �9 Internet Infrastructure 

25.2 Approaches to Quality 
The two basic approaches to adding QoS to the internet are the Inte- 
grated Services (intserv) and Differentiated Services (diffserv) models. 
Introduced and defined in 1994 in RFC 1633, "Integrated Services in the 
Internet Architecture: an Overview," the intserv effort grew out of imple- 
mentation experience with multicast of IETF meetings. According to RFC 
1633 authors, real-time applications work poorly across the global internet 
"because of variable queueing delays and congestion losses." 

In addition to QoS for real-time applications, the intserv model would 
allow network service providers control over how bandwidth is shared. 
Allowing all the available bandwidth to be allocated among different 
classes of traffic even when the network is under a heavy load means 
that applications can count on having a minimum amount of bandwidth 
to work with even when the network is congestedminstead of being sum- 
marily cut off when packets are dropped silently and the hosts on the other 
end drop the connections. 

The ability to control which traffic categories are allowed how much of the 
available bandwidth is called controlled link sharing. The intserv approach 
defines a service model in which best-effort and real-time services (services 
over which there is some control of end-to-end packet delay) coexist and 
are facilitated through controlled link sharing. 

Whether or not overly influenced by their experiences with multicast, the 
intserv working group was agreed that any QoS solution would have 
to support multicast: real-time applications such as videoconferencing 
require the ability to handle multiple recipients of the same packets. 

Ultimately, intserv has proven inadequate to the task of providing a single 
solution to the QoS problem: the intserv mechanisms are not seen as being 
scalable to the global internet, and they can be difficult to implement. 

The next pass at the problem became known as diffserv to differentiate it 
from intserv. Cursory examination of the RFCs may not shed much light 
on the differences between the two, but there are considerable differences. 
Where intserv is focused on ways of sharing available bandwidth among 
unique flows (series of packets with the same source and destination IP and 
port addresses), diffserv approached the problem by suggesting that a less 
granular classification of packets could provide the desired result. 



Chapter 25 �9 Quality of Service 547 

25.3 Reserving Resources 

The process of provisioning circuits, as in asynchronous transfer mode 
(ATM) and other telecommunication-oriented network protocols, is nec- 
essary before any communication can occur between a source and a 
destination. The Resource ReSerVation Protocol (RSVP), defined in RFC 2205, 
"Resource ReSerVation Protocol (RSVP)--Version 1 Functional Specifi- 
cation," defines a mechanism by which hosts can, in effect, provision a 
connection across the connectionless IP internet. RSVP, a required part 
of the intserv model, also reqiures intserv-capable routers in the network 
over which services are to be provided. 

This reservation infrastructure can be dispensed with when services are 
provided to more general categories of packet, rather than the very spe- 
cific intserv flows. Diffserv does not specifically require any mechanism 
on hosts, but vests the responsibility for managing bandwidth with the 
network itself. Diffserv packets are marked for special treatment by their 
applications, but the specific way in which those packets are treated is left 
to routers. 

25.4 Intserv in a Nutshell 

Central to intserv is the concept of the flow: if packets share source and 
destination IP addresses as well as source and destination ports, then one 
can assume that those packets are all part of an application's stream of data 
flowing between source and destination, with all that entails. 

The intserv approach requires that routers keep track of all these flows, 
examining each packet to determine whether or not it belongs in a flow, 
and then computing whether or not there is enough available band- 
width to accept the packet. In other words, intserv requires the following 
functions: 

Admission control: Can the router, or the network at large, provide ser- 
vice to the flow? Can it provide service to the individual packets that 
comprise the flow? What about other, non-QoS packets? 

Packet classification: Every packet that is admitted must be classified. 
What flow does it belong to? What level of QoS does it get? The three 



548 Part Five �9 Internet Infrastructure 

options are to treat the packet "normally" giving it best-effort, 
controlled load for allocating some portion of an uncongested network, 
and guaranteed service for real-time delivery with delays minimized 
to within preset levels of service. 

Packet scheduling" Once a packet is classified, how is it scheduled? Should 
some packets jump ahead of others? How are packets within a queue 
treated when the queue exceeds its limits? 

Combined with RSVP, intserv tends to be cumbersome to implement and 
it certainly is not scalable to the global internet--but it is quite good at 
managing flows of data within smaller networks. 

25.5 Diffserv in a Nutshell 

There is no way that internet backbone routers could contend with 
the demands of tracking individual flows in an intserv-enabled global 
internet, but network customers and service providers both increasingly 
demand some form of QoS that can scale well in the global inter- 
net. Differentiated services, diffserv, answers the call by streamlining 
the process. Diffserv over IP is documented in RFC 2474, "Definition 
of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 
Headers." 

Rather than building an elaborate infrastructure for emulating a circuit- 
based network on top of IP, diffserv allows communicating endpoints to 
classify their packets into different treatment categories. These categories 
are identified with a per hop behavior, or PHB. The PHB is the action that 
a diffserv routing node can be observed to take when it receives a packet. 
When a PHB is defined (and a Differentiated Services Code Point value 
assigned, as described in Chapter 20), diffserv routers are supposed to 
treat packets marked with that value in a certain way. 

For example the Expedited Forwarding (EF) PHB (specified in RFC 2598, 
"An Expedited Forwarding PHB") is billed as "premium service" and indi- 
cates that the packets in that behavior aggregate (BA) should all be processed 
as they are received, rather than be queued or dropped. Unlike intserv with 
its traffic flows, the diffserv model calls for the use of BAs at each diffserv 
router: these are associated with a PHB which indicates how the router 
will treat the packet. 



Chapter 25 �9 QualJty of ServJce 549 

Aggregates or aggragated flows may also be referred to as classes of pack- 
ets; routers are configured to respond to these different classes in different 
(appropriate) ways. Routers may also be configured to break up these 
classes into sub-aggregations to be treated slightly differently. For exam- 
ple, a router might be configured to forward premium-service packets from 
preferred customers over links that are more reliable than premium-service 
packets coming from customers subscribing to a "budget-premium" 
service. 

Diffserv brings with it the ability to create network service policies specific 
to a single router, some part of a network, or an entire diffserv rout- 
ing domain. As long as their policies don't  affect the ability to provide 
guaranteed QoS, network providers can fine-tune their diffserv routers to 
differentiate how they treat packets. 

The diffserv model distributes the task of allocating resources to the routers 
within a diffserv domain, providing greater flexibility as well as more 
efficient routing. A backbone router could process diffserv traffic far more 
easily than it can process intserv traffic: there is no need to negotiate RSVP 
reservations with all intermediary routers- -and no overhead necessarily 
associated with failure to maintain an RSVP session with one particular 
router. With diffserv, the PHB mandates how the packet is treated, and 
different routers can provide the same service without having to maintain 
state for a particular connection, as with intserv. 

25.6 Diffserv vs. Intserv? 

At first glance, diffserv and intserv may seem to be competing with each 
other. However, the two models are complementary, with intserv working 
best within smaller domains while diffserv provides somewhat less precise 
handling of packets across much larger networks; the two can even be 
used together, as documented in RFC 2998, "A Framework for Integrated 
Services Operation over Diffserv Networks." 

In this informational document, the authors see intserv, RSVP, and diff- 
serv as "complementary technologies" each of which is intended to achieve 
end-to-end quality of service. "Together," they write, "these mechanisms 
can facilitate deployment of applications such as IP-telephony, video- 
on-demand, and various non-multimedia mission-critical applications. 
Intserv enables hosts to request per-flow, quantifiable resources, along 



550 Part Five �9 Internet Infrastrudure 

end-to-end data paths and to obtain feedback regarding admissibility of 
these requests. Diffserv enables scalability across large networks." 

25.7 Chapter Summary 
What was originally considered an almost trivial problem--assigning pri- 
ority to certain packets while marking others as less important and more 
expendable with the Type of Service field in the IP headermturns out to be 
one of the thorniest issues facing the internet community. Quality of ser- 
vice, whether achieved through the differentiated services approach or the 
integrated services approach, is difficult to achieve in the connectionless, 
best-effort network environment provided by IP network protocols. 

In this chapter we introduced both Diffserv and Intserv, highlighting their 
differences and their approaches to providing QoS. Readers seeking addi- 
tional information about any of these topics are urged to read the RFCs 
cited here, as well as the book Internet QoS: Architectures and Mechanisms 
for Quality of Service by Zheng Wang (Morgan Kaufmann, 2001). 

The next chapter introduces the IP security protocol, the set of protocols 
that, together, can be used to protect network traffic by enforcing privacy 
and providing authentication. 



The Internet Security 
Protocol 

The desirability and utility of authentication and security features at the 
internet protocol (IP) layer have been debated for years. This chapter 
discusses how authentication and security, including secure password 
transmission, encryption, and digital signatures on datagrams, are imple- 
mented under IP through the Authentication Header (AH) and Encapsulating 
Security Payload (ESP) options. Before examining the IP Security Proto- 
col (IPsec), however, we will take a look at the IP security architecture 
described in RFC 2401, "Security Architecture for the Internet Protocol," 
and the different pieces of that architecture. 

IPv4 as originally designed offered no real security features; it was 
intended simply as an internetworking protocol. While not necessarily 
a problem for a networking protocol used largely in research and aca- 
demic settings, the increase in importance of IP networking to the general 
business and consumer networking environments makes the potential 

551 



552 Part FJve �9 Internet Infrastructure 

harm resulting from attacks more devastating than ever. This section 
examines: 

�9 Issues of security for IP. 
�9 Security goals defined for IP. 
�9 Cryptographic elements of IPsec. 
�9 Protocol elements of IPsec. 
�9 Implementing IPsec. 

The next section takes a look at the specifics of IPsec, as well as some of the 
tools being assembled to achieve these goals. 

26.1 Internet Protocol Security Issues 

IPsec as defined in RFC 2401 provides a security architecture for the IPm 
not a security architecture for the internet. The distinction is important: 
IPsec defines security services to be used at the IP layer, both for IPv4 
and IPv6. It is often said that IPv6 is "more secure" than IPv4, but the 
difference is that IPsec is required for all IPv6 while it is optional for IPv4 
nodes. 

The IP Security Protocol (IPsec) provides an interoperable and open stan- 
dard for building security into the network layer, rather than at the 
application or transport layer. Although applications can benefit from net- 
work layer security, the most important application IPsec enables is the 
creation of virtual private networks (VPNs) capable of securely carrying 
enterprise data across the open internet. 

IPsec is often used in conjunction with tunnel management protocols 
including the Layer 2 Tunneling Protocol (L2TP), the Layer 2 Forward- 
ing (L2F) protocol designed by Cisco Systems, and Microsoft's Point to 
Point Tunneling Protocol (PPTP). RFC 2661, "Layer Two Tunneling Pro- 
tocol 'L2TP'," defines L2TP as a standards track specification (as of 2002, 
a proposed standard) for tunneling packets sent over a PPP link. 

While the tunnel management protocols provide access security ser- 
vices, they don't provide authentication or privacy services, so they are 
often used in conjunction with IPsecnwhich does provide those ser- 
vices. However, saying that IPsec specifies protocols for encrypting and 
authenticating data sent within IP packets is an oversimplification, and 



Chapter 26 �9 The Internet Security Protocol 553 

even obscures IPsec's full potential. IPsec enables: 

Encryption of data passing between two nodes, using strong 
public and private key cryptographic algorithms. 

Authentication of data and its source, using strong authentication 
mechanisms. 

Control over access to sensitive data and private networks. 
Integrity verification of data carried by a connectionless pro- 

tocol (IP). 
Protection against replay attacks, in which an intruder inter- 

cepts packets sent between two IP nodes and resends them after 
decrypting or modifying them. 

Limitation of traffic analysis attacks, in which an intruder inter- 
cepts protected data and analyzes source and destination infor- 
mation, size and type of packets, and other aspects of the data 
including header contents that might not otherwise be protected 
by encryption. 

End-to-end security for IP packets, providing assurance to users 
of end-point nodes of the privacy and integrity of their trans- 
missions. 

Secure tunneling through insecure networks such as the global 
internet and other public networks. 

Integration of algorithms, protocols, and security infrastructures 
into an overarching security architecture. 

As defined in RFC 2401, "Security Architecture for the Internet Protocol," 
the goal of the IP security architecture is "to provide various security ser- 
vices for traffic at the IP layer, in both the IPv4 and IPv6 environments." 
This means security services that are: 

Interoperable: As with all internet protocols, interoperability is 
a fundamental goal. This means that any IP node supporting 
IPsec can communicate with any other node supporting IPsec. 
There is a basic set of cryptographic algorithms for encryp- 
tion and integrity checking that all IPsec nodes must support, 
although individual nodes and implementations may support 
many more, optional, algorithms. Although some nodes are con- 
figured to prefer newer or less open algorithms, all nodes are 
required to support the basic ones. 

High-quality: The baseline for security through IPsec must be set 
high enough to guarantee a reasonable degree of actual secu- 
rity. Algorithms and key lengths that are to be vulnerable to 



554 Part FJve �9 Internet Infrastructure 

attack are not acceptable. For example, data encrypted with 
40-bit encryption keys can be brute-forced or successfully and 
quickly decrypted by trying every combination. The number of 
possible keys is 240 - 1, or roughly 1,000,000,000,000; on aver- 
age, the correct key will be discovered after trying half (about 
500 billion) of those combinations. Such attacks are almost 
trivially easy with commercial off the shelf hardware, and 
thus 40-bit keys are not considered to provide "high-quality" 
security. 

Cryptographically based: Cryptographers work with algorithms 
for encryption, secure hashing, and authentication. Encryption 
algorithms allow regular data to be transformed into cyphertext, 
data scrambled so that only the entity holding an appropriate 
key can decrypt it. Secure hash algorithms operate on any size 
chunk of data to generate a fixed-length sequence of bits (the 
hash). An entity can confirm the integrity of the data by running 
the hashing algorithm on received data; if the transmitted hash 
and the calculated hash agreee, the data is verified as having 
been sent without change. Authentication of entities through 
the use of digital signatures depend on public key algorithms. 
Data encrypted with the public key of a public/private key pair 
can be decrypted only by an entity with access to the private 
key; likewise, if an entity encrypts something (such as the text 
of a message) with their private key, then anyone with access 
to the public key can decrypt the message and confirm that the 
sender has access to that key. 

By basing IPsec on cryptography rather than on any other 
mechanisms for security, the protocol designers place limits on 
the security goals possible to attain through its use while at the 
same time insuring that those security goals will be achieved 
through the use of verifiable and reliable mechanisms. 

The IP security architecture allows systems to choose the required security 
protocols, identify the cryptographic algorithms to use with those proto- 
cols, and exchange any keys or other material or information necessary to 
provide security services. 

As may be evident from its highly qualified description, public key 
cryptography-based mechanisms require that all participants can be con- 
fident that public keys are issued only to the entities identified with those 
keys. When a public key is published purporting to represent Microsoft 
Corporation, the possibility that the key has been properly issued to 



Chapter 26 �9 The Internet Security Protocol 555 

Microsoft and not to a computer criminal should approach 100% certainty. 
Unfortunately, as was demonstrated in early 2001 when it was reported 
that leading public key infrastructure vendor Verisign, Inc., issued two 
public key certificates to an imposter claiming to represent Microsoft, this 
is not always possible. 

As a network layer protocol, IPsec provides security only at the network 
layer. This means that packets can be protected from the point at which they 
enter the IP network (the source node's IP interface) to the point at which 
they leave the IP network (the destination node's IP interface). IPsec cannot 
substitute for proper application or transport layer security mechanisms, 
and IPsec cannot protect against attackers taking control of the source or 
destination nodes or processes. 

26.2 Security Goals 
Computer security can be said to embody three general goals: 

Authentication: The ability to reliably determine that data has been 
received as it was sent and to verify that the entity that sent the data 
is what it claims to be. Successful authentication means preventing 
attackers from impersonating an authorized entity. 

Integrity: The ability to reliably determine that the data has not been mod- 
ified during transit from its source to its destination. Successfully 
maintaining data integrity means preventing an attacker from mod- 
ifying authentic data without detection as well as preventing the 
acceptance of data that has been corrupted somewhere in the network 
clouds (as happens occasionally). 

Confidentiality: The ability to transmit data that can be used or read only 
by its intended recipient and not by any other entity. Successfully 
maintaining data confidentiality means preventing anyone other 
than the intended recipient(s) from being able to access private 
data. 

Developments in modern cryptography, specifically in the use of public key 
cryptography (discussed in the next section), make possible the combination 
of these three goals in one set of functions. These goals, authentication, 



556 Part Five �9 Internet Infrastructure 

integrity, and confidentiality, are achieved through three related functions: 

Digital Signatures: unequivocably link the holder of a particular secret 
with data represented as having been signed by that entity. 

Secure Hashes: digitally "summarize" a sequence of data using a repeat- 
able process that will produce identical results only if the data 
sequence being verified matches the data sequence produced by the 
sender. 

Encryption: the process of performing a reversible transformation on read- 
able data so as to render it unreadable by anyone other than the holder 
of the appropriate decryption key. 

Some or all of these functions are possible in combination or individually 
in protocols at every layer of the TCP/IP stack, from IP (through IPsec) to 
TLS (Chapter 17) to application protocols such as BEEP (Chapter 14). 

The goal of IPsec is to provide security mechanisms for all versions of IP. 1 
IPsec provides security services at the IP layer, and systems may require 
other systems to interact with it securely with IPsec and a particular set 
of security algorithms and protocols. While IPsec mandates support for a 
basic set of algorithms, it also allows nodes to negotiate acceptably secure 
interaction with other systems with optional algorithms. IPsec provides 
the framework within which nodes can negotiate appropriate algorithms, 
protocols, key lengths, and other aspects of secure communication. 

IPsec allows maintenance of: 

Access control: IPsec allows security protocols to be invoked governing 
the secure exchange of keys, allowing authentication of users for 
access control purposes. 

Connectionless integrity" IPsec allows nodes to validate each IP packet 
independent of any other packet. There is no need to verify sequences 
of packets or even to have access to other packets exchanged by 
the same nodes. Connectionless integrity is enabled through use of 
secure hashing techniques, similar to the use of check digits but with 
greater reliability and less likelihood of tampering from unauthorized 
entities. 

liPsec support is mandatory for IPv6 nodes, while optional for IPv4 nodes. 



Chapter 26 �9 The Internet SecurJty Protocol 557 

Data origin authentication: Identifying the source of the data contained 
in an IP packet is another security service provided by IPsec. This 
function is accomplished through the use of digital signatures. 

Defense against packet replay attacks: As a connectionless protocol, IP 
is subject to the threat of replay attacks, where an attacker sends a 
packet that has already been received by the destination host. Replay 
attacks can harm system availability by tying up receiving sys- 
tem resources. IPsec provides a packet counter mechanism that 
protects against this ploy. 

Encryption: Data confidentiality--keeping access to data from anyone but 
those with proper authorizationmis provided through the use of 
encryption. 

Limited traffic flow confidentiality: Encrypting data is not always suf- 
ficient to protect systems; merely knowing the endpoints of an 
encrypted exchange, the frequency of such interaction, or other infor- 
mation about the transmissions can provide a determined attacker 
with enough information to disrupt or subvert systems. IPsec pro- 
vides some limited traffic flow confidentiality through the use of IP 
tunneling, especially when coupled with security gateways. 

All of these functions are possible through proper use of the encapsulat- 
ing security payload (ESP) header and the authentication header (AH). 
A handful of cryptographic functions are specified for IPsec and are 
described briefly in the next section. 

Public key encryption provides a mechanisms for performing almost all 
of these functions with a single set of processes. AH provides mechanisms 
for applying authentication algorithms to an IP packet, while ESP provides 
mechanisms for applying any kind of cryptographic algorithm to an IP 
packet including encryption, digital signature, and/or  secure hashes. 

IPsec is aimed at eliminating certain types of attacks, including: 

Denial of service (DOS)attacks: These occur when an entity uses net- 
work transmissions to prevent legitimate users from using network 
resources. For example, an attacker may flood a host with TCP SYN 
requests (see Chapter 18) and thereby crash a system, or the attack 
may consist of repeated transmission of long mail messages with 



558 Part Five �9 Internet Infrastructure 

the intention of filling up a user's or site's bandwidth with nuisance 
traffic. 

Spoofing attacks: These occur when an entity transmits packets that mis- 
represent the packets' origins. For example, one type of spoofing 
attack occurs when the attacker sends a mail message with the 
From: header indicating the source of the message as, say, the pres- 
ident of the United States. More insidious and almost as easy to 
engineer are those attacks that occur when packets are sent out with 
an incorrect source address in the headers. 

Man-in-the-middle attacks: These occur when an attacker (Alice) posi- 
tions herself between two communicating entities (call them Bob and 
Carol) and intercepts all their transmissions. Alice poses as Bob when 
communicating with Carol, and as Carol when communicating with 
Bob. Alice, as a result, is able to send whatever data she wants to Bob 
instead of what  Carol wants to send to Bob. These attacks are rela- 
tively easy when transmissions are not encrypted or authenticated, 
but if Alice can successfully attack even a protected data stream if she 
is able to either gain access to Carol's secret keys or be issued a set of 
her own public/secret key pairs that is sufficiently similar to Carol's 
that Bob will be fooled. 

This last attack is important because it raises the issue of handling keys. 
As previously noted, encryption and digital signature functions require 
the use of keys to decrypt a n d / o r  verify data, and digital certificates are one 
mechanism by which public keys can be distributed. Although all pub- 
lic key infrastructure (PKI) providers, including Verisign, make their own 
efforts to validate all applications, the problem is not a matter of tech- 
nology. As previously noted, Verisign issued two digital certificates to 
someone who improperly posed as a representative of Microsoft; a suf- 
ficiently motivated attacker will presumably use every possible tactic to 
get a desired certification. An attacker's ability to forge credentials (from 
letterhead on which to type a request for a corporate digital certificate 
to passport, birth certificate, or other documents submitted to support 
a fraudulent application) may exceed the ability of the PKI provider to 
detect them. 

As a result of this potential vulnerability, IPsec requires a mechanism by 
which keys can be securely administered and distributed in a way that 
associates public keys with the entities they are supposed to owned by. 



Chapter 26 ~ The Internet Security Protocol 559 

As previously noted, IPsec secures IPmnot the internet, and certainly not 
the systems connected to the internet, or the processes running on those 
systems. IPsec must be considered only one part of the organizational 
security strategy. While IPsec-protected traffic may pass unscathed across 
the global internet, before it leaves its source and after it arrives at its 
destination, that traffic will be vulnerable to attacks on local links, local 
systems, processes, and the protocols used there. 

26.3 Encryption and Authentication Algorithms 
Rather than relying on secrecy to protect an encryption or authentication 
scheme, an approach known as "security through obscurity," TCP/IP 
security protocols always specify that cryptographic algorithms be well 
known and accessible. This is done for several reasons, not least of which 
is that as an open protocol suite, TCP/IP protocol specifications must be 
published freely. The most important reason, however, is that secrecy is a 
poor safeguard over security. 

Attempting to keep an encryption algorithm secret is almost impossible, 
particularly if it is being used by anyone other than the person who knows 
the secret. Attackers have many cryptanalysis tools at their disposal for 
breaking codes, and they need only have access to ciphertexts to break 
them. Having access to the software used to encrypt and/or  decrypt data 
with the secret algorithm makes the task much easier: the attacker must 
only determine what the software does to the data to figure out how to 
reverse the operation. 

The greatest advantage that published algorithms provide is the benefit of 
scrutiny by researchers and others seeking to find ways to further improve 
or break the algorithms. The more trained experts examine an algorithm, 
the less likely they are to overlook an "obvious" attack. 

Security algorithms and protocols are hard to design because there are so 
many different ways to attack themmand designers can't always imagine 
them all. Although national security organizations as well as corpora- 
tions may have their own top-secret codes, secrets are hard to keep. Spies 
and other criminals are well known for their skill at motivating (through 
bribery, extortion, or other means) people who know secrets to share 
them. 



560 Part Five �9 Internet Infrastrudure 

26.3.1 

The prevailing wisdom in security holds that a good encryption or authen- 
tication algorithm should be secure even if an attacker knows what 
algorithm is being used. This is particularly important for internet secu- 
rity, as an attacker with a sniffer will often be able to determine exactly 
what kind of algorithm is being used by listening as systems negotiate 
their connections. 

In this section we'll cover five types of important cryptographic functions: 

�9 Symmetric encryption 
�9 Public key encryption 
�9 Key exchange 
�9 Secure hashes (message digests) 
�9 Digital signature 

SYMMETRIC ENCRYPTION 

Most people are familiar with symmetric encryption if only at a visceral, 
intuitive level: plaintexts are encrypted with a secret key and some set of 
procedures, and decrypted with the same key and the same set of proce- 
dures. If you have the key, you can decrypt all data that has been encrypted 
with that key. Sometimes known as secret key encryption, symmetric encryp- 
tion is computationally efficient and is the most frequent type of encryption 
for network transmission of volumes of data. 

In October, 2000, the National Institute of Standards and Technology 
(NIST) announced that the Rijndael 2 data encryption algorithm had been 
selected for the Advanced Encryption Standard (AES), to replace the outdated 
Data Encryption Standard (DES) algorithm originally developed during the 
1970s by IBM. DES uses 56-bit keys, although a variation called triple DES 
encrypts data three times with the DES algorithm, providing improved 
security. 

Using a secure encryption requires using sufficiently long keys. Shorter 
keys are vulnerable to brute force attacks in which an attacker uses a com- 
puter to try all the different possible keys. Key lengths on the order of 40 
bits, for example, are considered insecure because they can be broken by 
brute force attacks in very short order by relatively inexpensive computers. 

2According to an FAQ at the NIST web site, "The algorithm's developers have suggested 
the following pronunciation alternatives: 'Reign Dahl,' 'Rain Doll' and 'Rhine Dahl." The 
AES home page is http://csrc.nist.gov/encryption/aes/. 



Chapter 26 �9 The Internet Security Protocol 561 

Single-DES has been brute-forced, as well; in general, 128-bit and longer 
keys are likely to be secure against such attacks for the immediate future. 

Symmetric encryption algorithms can be vulnerable to other types of 
attacks. Most applications that use symmetric encryption for internet com- 
munications use session keys, meaning the key is used for only a single 
session data transmission (sometimes several keys are used for in one ses- 
sion). Loss of a session key thus compromises only the data that was sent 
during that session or portion of a session. 

Other symmetric encryption algorithms that have been or are currently 
being used for internet applications include: 

RC2/RC4- Commercial symmetric encryption algorithms developed and 
marketed by cryptography firm RSA. 

CAST: Developed in Canada and used by Nortel's Entrust products, CAST 
supports up to 128-bit keys. 

IDEA" The International Data Encryption Algorithm supports 128-bit 
keys; patented by Swiss firm Ascom, which granted permission for 
IDEA to be used for free non-commercial use in the seminal and 
open source encryption program Pretty Good Privacy (PGP) writ- 
ten by Philip Zimmermann and published for a time by Network 
Associates, Inc. 

GOST: An algorithm reportedly developed by a Soviet security agency. 

Blowfish: An algorithm developed by Bruce Schneier and released to the 
public domain. 

Twofish: Bruce Schneier's submission to the AES competition. 

Skipjack- An algorithm developed by the National Security Agency for 
use with the Clipper chip's escrowed key system. 

26.3.2 PUBLIC KEY ENCRYPTION 

Public key encryption, also called asymmetric encryption, uses pairs of keys: 
one, the public key is associated with the other, the secret key. The public 



562 Part Five �9 Internet Infrastrudure 

key is intended to be made public. Any data encrypted with the public key 
can only be decrypted with the secret key--and any data encrypted with 
the secret key can be decrypted with the public key. 

Anyone can get a public key and encrypt some data with it. That data can 
be decrypted only by the holder of the secret key. As long as an entity 
can keep its secret key a secret, other entities can be sure that any data 
encrypted with the public key will be accessible only to the holder of the 
associated secret key. The holder of the secret key can encrypt something 
using that secret key and make it available to another entity. That entity 
can verify the first entity as holding the secret key of a particular public 
key pair by decrypting the data with the public key. 

Public key encryption tends to be computationally intensive and is most 
often used to encrypt session keys for network transmissions as well as for 
digital signatures. 

The most commonly used type of public key encryption is the RSA algo- 
rithm developed by Ron Rivest, Adi Shamir, and Len Adleman. RSA 
defines a mechanism for choosing and generating the secret/public key 
pairs, as well as for the actual mathematical function to be used for 
encryption. 

26.3.3 KEY MANAGEMENT 

One of the most complex issues facing Internet security professionals is 
how to manage keys. This includes not only the actual distribution of keys 
through a key exchange protocol but also the negotiation of key length, 
lifetime, and cryptographic algorithms between communicating systems. 

An open channel (an open communication medium over which transmis- 
sions can be overheard) like the global internet complicates the process of 
sharing a secret. This process is necessary when two entities need to share 
a key to be used for encryption. Some of the most important cryptographic 
algorithms relate to the process of sharing a key over an open channel 
securely, in a way that keeps the secret from anyone but the intended 
recipients. 

Diffie-Hellman key exchange is an algorithm that allows entities to exchange 
enough information to derive a session encryption key. Alice (the cus- 
tomary entity name for the first participant in a cryptographic protocol) 



Chapter 26 �9 The Internet Security Protocol 563 

calculates a value using Bob's public value and her own secret value (Bob 
is the second participant in cryptographic protocols). Bob calculates his 
own value and sends it to Alice; they each then use their secret values 
to calculate their shared key. The mathematics are relatively simple (but 
outside the scope of this book); the bottom line is that Bob and Alice can 
send each other enough information to calculate their shared key but not 
enough for an attacker to be able to figure it out. 

Diffie-Hellman is often called a public key algorithm, but it is not a public 
key encryption algorithm. Diffie-Hellman is used to calculate a key, but that 
key must be used with some other encryption algorithm. Diffie-Hellman 
can be used for authentication, though, and is also used by PGP. 

Key exchange is integral to any Internet security architecture, and candidates 
for the IPsec security architecture include the Internet Key Exchange (IKE) 
protocol and the Internet Security Association and Key Management Protocol 
(ISAKMP). 

ISAKMP is an application protocol, using UDP as its transport, that defines 
different types of messages that systems send to each other to negotiate 
the exchange of keys. The mechanisms and algorithms for doing the actual 
exchanges, however, are not defined in ISAKMPmit is a framework to 
be used by the specific mechanisms. The mechanisms, often based on 
Diffie-Hellman key exchange, have been defined in a number of different 
proposals over the years. These include: 

Photuris- Based on Diffie-Hellman, Photuris adds the requirement that 
the requesting node send a cookie, a random number that is used 
as a sort of session identifier. The cookie is sent first, and the server 
acknowledges the request by returning the cookie. This reduces the 
risk from denial-of-service attacks made by attackers forging their 
source addresses. Photuris also requires all parties to sign their nego- 
tiated key to reduce the risk of a man-in-the-middle attack (in which 
an attacker pretends to be Bob to one system's Alice, while pretending 
to be Alice to the other system's Bob). 

SKIP: Sun Microsystems' Simple Key-management for Internet Protocols 
(SKIP) is also based on Diffie-Hellman key exchange, but, rather than 
requiring parties to use random values to calculate their keys, SKIP 
calls for the use of a secret table that remains static. The parties look up 
secret values in this table and then transmit calculated values based 
on some secret value from the table. 



564 Part Five �9 Internet Infrastrudure 

OAKLEY: Although this mechanism shares some features with Photuris, it 
provides different modes of key exchange for situations where denial- 
of-service attacks are not of concern. 

By defining a separate protocol, ISAKMP, for the generalized formats 
required to do key and Security Association exchanges, it can be used 
as a base to build specific key exchange protocols. The foundation proto- 
col can be used for any security protocol, and does not have to be replaced 
if an existing key exchange protocol is replaced. 

It should be noted that manual key management is an important option 
and in many cases the only option. This approach requires individuals to 
personally deliver keys and configure network devices to use them. Even 
after open standards have been firmly determined and implemented, par- 
ticularly as commercial products, manual key management will continue 
to be an important choice. 

As more research is done with IPsec, work on an IKE successor proto- 
col (sometimes called Son-of-IKE) is ongoing, with IKEv2 one candidate 
prototocol that (as of 2002) is a work-in-progress. 

26.3.4 SECURE HASHES 

A hash is a digital summary of a chunk of data of any size. Simple 
types of hashes include check digits; secure hashes produce longer 
results (often 128 bits or longer). Good secure hashes are extremely dif- 
ficult for attackers to reverse-engineer or subvert in other ways. Secure 
hashes can be used with keys or without, but their purpose is to pro- 
vide a digital summary of a message that can be used to verify whether 
some data that has been received is the same as the data sent. The 
sender calculates the hash and includes that value with the data; the 
recipient calculates the hash on the data received. If the results match 
the attached hash value, the recipient can be confident in the data's 
integrity. 

Commonly used hashes include the MD2, MD4, and MD5 message digest 
functions published by Network Associates. The Secure Hash Algorithm 
(SHA) is a digest function developed as a standard by NIST. Hashes may 
be used on their own or as part of digital signatures. 



Chapter 26 �9 The Internet Security Protocol 565 

26.3.5 DtmTAL SIGNATURE 

Public key encryption, as noted previously, relies on key pairs. Digital 
signatures rely on the property of public key encryption that allows data 
encrypted with an entity's secret key to be decrypted with the public key 
of the pair. The sender calculates a secure hash on the data to be signed, 
then encrypts the result using a secret key. The recipient calculates the 
same hash and then decrypts the encrypted value attached by the sender. 
If the two values match, the recipient knows that the owner of the public 
key was the entity that signed the message and that the message was not 
modified during transmission. 

The RSA public key encryption algorithm can be used for digital sig- 
natures: The signing entity creates a hash of the data to be signed and 
then encrypts that hash with its own secret key. The certifying entity 
then calculates the same hash on the data being received, decrypts the 
signature using the signing entity's public key, and compares the two 
values. If the hash is the same as the decrypted signature, then the data is 
certified. 

Digital signatures carry with them several implications: 

�9 A signature that can be certified indicates that the message was 
received without any alteration from the time it was signed to 
the time it was received. 

�9 If a signature cannot be certified, then the message was 
corrupted or tampered with in transit, the signature was 
calculated incorrectly, or the signature was corrupted or tam- 
pered with in transit. In any case, an uncertifiable signa- 
ture does not necessarily imply any wrongdoing but does 
require that the message be resigned and resent in order to be 
accepted. 

�9 If a signature is certified, it means that the entity associated with 
the public key was the only entity that could have signed it. In 
other words, the entity associated with the public key cannot 
deny having signed the message. This is called nonrepudiation 
and is an important feature of digital signatures. 

There are other mechanisms for doing digital signatures, but RSA is prob- 
ably the most widely used one and is implemented in the most popular 
internet products. 



566 Part Five �9 Internet Infrastructure 

26.4 IPsec: The Protocols 

IPsec is a security tunneling protocol, defining a mechanism that allows 
a node to encrypt and /or  authenticate packets and encapsulate the 
secured packets (which may now be literally indecipherable, having been 
encrypted) into new packets. Figure 26-1 illustrates the basic idea behind 
IPsec and other security tunneling protocols. 

IPsec depends on the use of security gateways, which encapsulate IP packets 
on behalf of their clients. In Figure 26-1, the security gateway labeled "X" 
serves, among others, hosts A', B', and C'; "Y" serves hosts A, B, and 
C. The PC off on the side has its own software security gateway. In this 
example, the tunnel from X to Y carries all secured traffic between the 

PC 

r, ~-I 
Security / 
Gateway [ ~  

(s/w) 

Publ ic  
Internet  

i:A:...,.I s.cur,  
..... ! ~,  Gateway X 

Branch ~ - >  J / . . . . .  

Net ~ "  Corporate 
Internet 

B' 
..... . . . .  . . . . . . . . . .  

' ........ ! ! 
,..:, 

Security U I " 
Gateway Y I~  ..................... ' .......... 

" '  i l l  \ '  Corporate \ ,  :i ...... 
j ~ ......... Internet ] ,  C- 

Figure 26-1: Security tunneling across a hostile network. 



Chapter 26 �9 The Internet Security Protocol 567 

two pictured internets. In this case, each security gateway integrates all 
traffic for its local network, and encrypts and/or  authenticates all of it 
between itself and the security gateway at the other end. If all traffic is being 
encrypted (a good bet), then any attacker sitting inside the public internet 
could intercept these packets but would get relatively little information 
from them. At best, the attacker would discover that there is a secure 
tunnel between X and Y, but she would likely learn only how much traffic 
was being sent between the two security gateways. 

The security gateways create secure tunnels as shown in Figure 26-2, by 
accepting IP packets sent from one node (A) to another (B). A sends the 

T 

Message [N~t ~ 

 i"o 

,ork 
M :k 

tiP 

york 
,ck. 

=lPacket N'~i#'l'~;~i [Packet 
l..t00. 

Security 
Gateway 

0 

T Packet 
to O 
Packet 
to 0 
Packet 
to O 

 ecun  
.. ~.....~. ~. jr Gateway Packet] [:~~=.il .*- '~ 

to ~; 1 lii i ~ i ; ]  I 0 ! 

Figure 26-2: Using a secure tunnel. 



568 Part Five �9 Internet Infrastructure 

packets off as if they were going to be delivered directly to B; the secu- 
rity gateway X then takes those packets (along with any others from the 
same network) and treats them as raw data to be sent to security gate- 
way Y. The packets sent by A are shown as open envelopes to signify that 
they have not been encrypted while the packets sent from X are shown as 
sealed envelopes to indicate that they contain the encrypted packets sent 
from A. 

The original IPsec specifications define security protocols for the Authen- 
tication Header (AH) and the Encapsulating Security Payload (ESP) IP 
options, as header options (for IPv4) or header extensions (for IPv6). 
As their names imply, AH provides an authentication mechanism while 
ESP provides an encryption ("encapsulated security") mechanism for 
privacy. 

26.5 Internet Protocol and IPsec 

IPsec provides security services for either IPv4 or IPv6, but the way it 
provides those services is slightly different in each. IPv4 uses header 
options: every IP packet contains 20 octets-worth of required fields, 
and any packet that has any "special" requirements can use up to 
40 octets for those options. This tends to complicate packet process- 
ing, since routers must check the length of each packet it receives for 
forwarding--even though many of those options are related to end-to-end 
functions such as security, functions that routers are not concerned with 
otherwise. 

IPv6 simplifies header processing: every IPv6 packet header is the same 
length, 40 octets, but any options can be accommodated in extension 
headers that follow the IPv6 header. IPsec services are provided through 
these extensions. 

The ordering of IPsec headers, whether within IPv4 or IPv6, has signif- 
icance. For example, it makes sense to encrypt a payload with the ESP 
header, and then use the Authentication Header to provide data integrity 
on the encrypted payload. In this case, the AH header appears first, fol- 
lowed by the ESP header and encrypted payload. Reversing the order, by 
doing data integrity first and then encrypting the whole lot, means that 
you can be sure of who originated the data, but not necessarily certain of 
who did the encryption. 



Chapter 26 �9 The Internet Security Protocol 569 

26.5.1 SECURITY ASSOCIATIONS 

The Security Association (SA) is a fundamental element of IPsec. RFC 2401 
defines the SA as "a simplex 'connection' that affords security services 
to the traffic carried by it." This rather murky definition is clarified by a 
description; an SA consists of three things: 

�9 a Security Parameter Index (SPI) 
�9 an IP destination address 
�9 a security protocol (AH or ESP) identifier 

As a simplex connection, the SA associates a single destination with the 
SPI; thus, for typical IP traffic there will be two SAs: one in each direction 
that secure traffic flows (one each for source and destination host). SAs 
provide security services by using either AH or ESP, but not both (if a 
traffic stream uses both AH and ESP, it has two or more SAs). 

The SPI is an identifier indicating the type of IP header the security asso- 
ciation is being used for (AH or ESP). The SPI is a 32-bit value identifying 
the SA and differentiating it from other SAes linked to the same desti- 
nation address. For secure communication between two systems, there 
would be two different security associationsmone for each destination 
address. 

Each security association includes more information related to the type 
of security negotiated for that connection, so systems must keep track of 
their SAs and what type of encryption or authentication algorithms, key 
lengths, and key lifetimes have been negotiated with the SA destination 
hosts. 

26.5.2 USING SECURITY ASSOCIATIONS 

As mentioned earlier, ISAKMP provides a generalized protocol for estab- 
lishing SAes and managing cryptographic keys within an internet 
environment. The procedures and packet formats needed to establish, 
negotiate, modify, and delete SAs are defined within ISAKMP, which also 
defines payloads for exchanging key generation and authentication data. 
These formats provide a consistent framework for transferring this data, 
independent of how the key is generated or what type of encryption or 
authentication algorithms are being used. 



570 Part Five �9 Internet Infrastrudure 

ISAKMP was designed to provide a framework that can be used by any 
security protocols that use SAes, not just IPsec. To be useful for a partic- 
ular security protocol, a Domain of Interpretation (DOI) must be defined. 
The DOI groups related protocols for the purpose of negotiating security 
associations--security protocols that share a DOI all choose protocol and 
cryptographic transforms from a common namespace. They also share 
key exchange protocol identifiers, as well as a common interpretation of 
payload data content. 

While ISAKMP and the IPsec DOI provide a framework for authentication 
and key exchange, ISAKMP does not actually define how those functions 
are to be carried out. The IKE protocol, working within the framework 
defined by ISAKMP, does define a mechanism for hosts to perform these 
exchanges. 

The sending host knows what kind of security to apply to the packet by 
looking in a Security Policy Database (SPD). The sending host determines 
what policy is appropriate for the packet, depending on various selectors 
(e.g., destination IP address and/or  transport layer ports), by looking in 
the SPD. The SPD indicates what the policy is for a particular packet: either 
the packet requires IPsec processing of some sort, in which case it is passed 
to the IPsec module for processing; or it does not, in which case it is simply 
passed along for normal IP processing. 

Outbound packets must be checked against the SPD to see what kind 
(if any) of IPsec processing to apply. Inbound packets are checked against 
the SPD to see what kind of IPsec service should be present in those packets. 

Another database, called the Security Association Database (SAD), includes 
all security parameters associated with all active SAs. When an IPsec host 
wants to send a packet, it checks the appropriate selectors to see what the 
SAD says is the security policy for that destination/port/application. 
The SPD may reference a particular SA, so the host can look up the SA 
in the SAD to identify appropriate security parameters for that packet. 

26.5.3 TUNNEL AND TRANSPORT MODE 

IPsec defines two modes for exchanging secured data, tunnel mode and 
transport mode. IPsec transport mode protects upper-layer protocols, and 
is used between end nodes. This approach allows end-to-end security, 
because the host originating the packet is also securing it and the 



Chapter 26 �9 The Internet Security Protocol 571 

destination host is able to verify the security, either by decrypting the 
packet or certifying the authentication. 

Tunnel mode IPsec protects the entire contents of the tunneled packets. The 
tunneled packets are accepted by a system acting as a security gateway, 
encapsulated inside a set of IPsec/IP headers, and forwarded to the other 
end of the tunnel, where the original packets are extracted (after being 
certified or decrypted) and then passed along to their ultimate destination. 

The packets are only secured as long as they are "inside" the tunnel, 
although the originating and destination hosts could be sending secured 
packets themselves, so that the tunnel systems are encapsulating packets 
that have already been secured. 

Transport mode is good for any two individual hosts that want to commu- 
nicate securely; tunnel mode is the foundation of the Virtual Private Network 
(VPN). Tunnel mode is also required any time a security gateway (a device 
offering IPsec services to other systems) is involved at either end of an 
IPsec transmission. Two security gateways must always communicate by 
tunneling IP packets inside IPsec packets; the same goes for an individ- 
ual host communicating with a security gateway. This occurs any time a 
mobile laptop user logs into a corporate VPN from the road, for example. 

Tunneling, shown in Figure 26-3, allows two systems to set up SAes to 
enable secure communications over the internet. Network traffic originates 
on one system, is encrypted and/or  signed, and is then sent to the desti- 
nation system. On receipt, the datagram is decrypted or authenticated, 

F ~7 
A 

EncryPtion/A~ 
I n t e r n e t  B 

Figure 26-3: A pair of hosts using IPsec to communicate transparently, across 
the internet. 



572 Part Five �9 Internet Infrastrudure 

and the payload is passed along up the receiving system's network stack, 
where it is finally processed by the application using the data. This is a 
transparent mode use of security associations, because the two hosts could 
be communicating just as easily without security headers~and because 
the actual IP headers of the datagrams must be exposed to allow them to 
be routed across the internet. 

An SA can also be used to tunnel secure IP through an internetwork. 
Figure 26-4 shows how this works. All IP packets from system A are for- 
warded to the security gateway X, which creates an IP tunnel through the 
Internet to security gateway Y, which unwraps the tunneled packets and 
forwards them. Security gateway Y might forward those packets to any of 
the hosts (B, C, or D) within its own local intranet, or it could forward them 
to an external host, like M. It all depends on where the originating host 
directs those packets. Whenever an SA destination node is a security gate- 
way, it is by definition a tunneled association. In other words, tunneling 
can be done between two security gateways (as shown in Figure 26-4), or 
it can be done between a regular node and a security gateway. Thus, host 
M could create a tunneled connection with either security gateway, X or Y. 

Intranet m 

Internet 

. . . . . . . . . . . . . . . . . . .  

Intranet 

i!li! I 
Figure 26-4: IP security tunneling. 



Chapter 26 �9 The Internet Security Protocol 573 

It is tunneled by virtue of the fact that datagrams sent from M are passed 
first to the security gateway, which then forwards them appropriately after 
decrypting or authenticating. 

26.5.4 ENCAPSULATING SECURITY PAYLOAD (ESP) 
Specified in RFC 2406, "IP Encapsulating Security Payload (ESP)," the 
ESP header allows IP nodes to exchange datagrams whose payloads are 
encrypted. The ESP header is designed to provide several different services 
(some overlapping with the authentication header), including: 

�9 Confidentiality of datagrams through encryption. 
�9 Authentication of data origin through the use of public key 

encryption. 
�9 Antireplay services through the same sequence number mecha- 

nism as provided by the authentication header. 
�9 Limited traffic flow confidentiality through the use of security 

gateways. 

The ESP header can be used in conjunction with an authentication header. 
In fact, unless the ESP header uses some mechanism for authentication, 
it is recommended that the authentication header be used with the ESP 
header. 

The ESP header must follow any headers that need to be processed by 
nodes intermediate to the destination nodemall data that follows the ESP 
header will be encrypted, with the encrypted payload beginning directly 
after the last ESP header field (see below). 

ESP can be used in tunnel or transport mode, similar to the authentication 
header. In transport mode, the IP header and any hop-by-hop, routing, 
or fragmentation extension headers precede the authentication header (if 
present), followed by the ESP header. Any destination options headers can 
either precede or follow the ESP header, or even both; any headers that 
follow the ESP header are encrypted. 

The result appears, in many respects, to simply be a regular IP datagram 
transmitted from source to destination, with an encrypted payload. This 
use of ESP in transport mode is appropriate in some cases, but it allows 
attackers to study traffic between the two nodes, noting which nodes are 
communicating, how much data they exchange, when they exchange it, 



574 Part Five �9 Internet Infrastructure 

and so forth. All this information may potentially provide the attacker with 
some information that helps defeat the communicating parties. 

An alternative is to use a security gateway, much as described above for 
the authentication header. A security gateway can operate directly with a 
node or can link to another security gateway. A single node can use ESP 
in tunnel mode by encrypting all outbound packets and encapsulating 
them in a separate stream of IP datagrams that are sent to the security 
gateway. That gateway then can decrypt the traffic and resend the original 
datagrams to their destinations. 

When tunneling, the ESP header encapsulates the entire tunneled IP data- 
gram and is an extension to the IP header directing that datagram to a 
security gateway. It is also possible to combine ESP headers with authen- 
tication headers in several different ways; for example, the tunneled 
datagram may have a transport-mode authentication header. 

The ESP header format is shown in below (taken from RFC 2406). 

0 1 2 3 
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1  

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

S e c u r i t y  P a r a m e t e r s  I n d e x  ( S P I )  
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

S e q u e n c e  N u m b e r  
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

P a y l o a d  D a t a  ( v a r i a b l e )  

+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

I Padding (0-255 bytes) 
+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

I Pad Length I Next Header 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Authentication Data ( v a r i a b l e )  

^Auth. 
Cov- 
erage 

A 

I 
Conf. 
Cov- 
erage 

I 
v v 

+ - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - +  

The ESP header includes the Next Header field, which appears near the 
end of the ESP header and indicates the presence (and identity) of any 
other headers (such as AH) that may follow. The rest of the ESP header 
consists of the following: 

Security Parameters Index (SPI): This is the same 32-bit value referred to 
in the section on the authentication header. This value is used by the 



Chapter 26 �9 The Internet Security Protocol 575 

communicating nodes to refer to a security association, which can be 
used to determine how the data should be encrypted. 

Sequence Number: This 32-bit value is set to zero to start and is incre- 
mented by one with each datagram sent. As described above for the 
authentication header, the sequence number can be used to protect 
against replay attacks, and a new security association must be set up 
before this value cycles through all 232 values. 

Payload Data: This is a variable length field and actually contains the 
encrypted portion of the datagram, along with any supplementary 
data necessary for the encryption algorithm (e.g., initialization data). 
The payload begins with an initialization vector, a value that must be 
sent in plaintext; encryption algorithms need this value to decrypt 
the protected data. 

Padding: The encrypted portion of the header (the payload) must end on 
the appropriate boundary, so padding may be necessary. 

Padding Length: This field indicates how much padding has been added 
to the payload data. 

Next Header: This field operates as it normally does with other IPv6 exten- 
sion headers; it just appears near the end of the header rather than at 
the beginning. 

Authentication Data: This is an Integrity Check Value (ICV), calculated 
on the entire ESP header (except for the authentication data). This 
authentication calculation is optional. The ICV is discussed at greater 
length below. 

26.5.5 AUTHENTICATION HEADER 

The authentication header can be used to do the following: 

�9 Provide strong integrity services for IP datagrams, which 
means the AH can be used to carry content verification data 
for the IP datagram. 

�9 Provide strong authentication for IP datagrams, which means 
that the AH can be used to link an entity with the contents of 
the datagram. 



576 Part Five �9 Internet Infrastructure 

�9 Provide nonrepudiation for IP datagrams, assuming that a 
public key digital signature algorithm is used for integrity 
services. 

�9 Protect against replay attacks through the use of the sequence 
number field. 

The authentication header can be used in tunnel mode or in transport 
mode, which means that it can be used to authenticate and protect simple, 
direct datagram transfers between two nodes, or it can be used to encapsu- 
late an entire stream of datagrams that is sent to or from a security gateway. 

AH is specified in RFC 2402, "IP Authentication Header," and the header 
is shown below (taken from RFC 2402): 

0 1 2 3 
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1  

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

i Next Header i Payload Len I RESERVED I 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

i Security Parameters Index (SPI) I 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

i Sequence Number Field I 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

i I 
+ Authentication Data (variable) I 

I I 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

In transport mode, the authentication header protects the payload of the 
original IP datagram as well as the parts of the IP header that do not change 
from hop to hop (e.g., the hop limit field or routing headers). Figure 26-5 
shows what happens to a transport-mode IP datagram as the authentica- 
tion header is calculated and added to it (the destination options header 
may also appear before the authentication header). The destination IP 
address and extension headers are protected only insofar as they do not 
change from hop to hop. 

When the authentication header is used in tunnel mode, however, it is used 
differently. Figure 26-6 shows the difference. The original destination IP 
address, along with the entire original IP datagram, is encapsulated into 
an entirely new IP datagram that is sent to the security gateway. Thus, the 
entire original IP datagram is fully protected, as are the portions of the 
encapsulating IP headers that don't change. 



Chapter 26 �9 The Internet Security Protocol 577 

Datagram prior to calculating AH 

I dest IP hdr I ext headers I TCP I Data I 

Datagram after inserting AH 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

l dest IP hdr I ext headers ] AH ] dest options I TCP I Data I 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I < ....... authenticated except for fields that change >I 

Figure 26-5: Adding an authentication header to an IP datagram in transport 
mode. 

Original IP datagram 

I orig IP hdr I ext hdrs I TCP I Data I 

IP datagram for tunneling to security gateway (GW) 

I GW IP hdr I ext hdrs I AH I orig IP hdr I ext hdrs I TCP I Data I 

Figure 26-6: Adding an authentication header to an IP datagram in tunnel 
mode. 

AH header fields include: 

Payload length: This eight-bit field indicates the entire length of the 
authentication header in units of 32-bit words, minus two. As origi- 
nally defined, the authentication header consisted of 64-bits of header 
with the rest devoted to authentication data (see the following). Thus, 
the payload length field merely indicated the length (in 32-bit words) 
of the authentication data. With the addition of the sequence num- 
ber field (see the following), this value now equals the length of the 
authentication data plus the length of the sequence number field. 

Reserved: The next 16 bits are reserved for future use; at present, they 
must be set to all zeros. 

Security Parameters Index (SPI): This 32-bit value is an arbitrary number. 
Together with the destination IP address and security protocol (in this 



578 Part FJve �9 Internet Infrastructure 

case, AH to indicate the authentication header), the SPI uniquely 
identifies the security association to be used for the authentication 
header. An SPI value of zero is for local use only and should never be 
transmitted; values from I through 255 are reserved by the Internet 
Assigned Numbers Authority (IANA) for future use. 

Sequence Number: This 32-bit value is a mandatory counter; it is also 
included by the sender, though it may not always be used by 
the recipient. Starting from zero, this counter is incremented with 
every datagram sent and is used to prevent replay attacks. When 
the recipient is using it for antireplay purposes, it will discard any 
datagrams that duplicate a sequence number that has already been 
received. This means that when the counter is ready to cycle through 
(when 232 datagrams have been received), a new security association 
must be negotiatedmotherwise, the receiving system will discard all 
datagrams once the counter is reset. 

Authentication Data: This field contains the Integrity Check Value (ICV), 
which is the heart of the authentication header. The contents must 
be a multiple of 32 bits in length and may contain padding to 
attain that length. Calculation of this value is discussed in the next 
section. 

26.5.6 CALCULATING THE INTEGRITY CHECK VALUE 

The Authentication Data fields in the AH and ESP headers are variable- 
length fields, each of which contains an Integrity Check Value (ICV). The 
field is variable length to accommodate variations from ICV algorithms, 
and the length is specified by the selected function. This is an optional field: 
it is included only when an authentication service is in use for the SA that 
corresponds to the header, and information about the ICV function in use 
is maintained along with the rest of the SA data. . 

The ICV calculation is a bit tricky in that some of the data being authenti- 
cated may be modified en route, such as IP header hop counts. According 
to RFC 2402 the AH ICV is computed on the IP header fields that either 
don't change in transit or whose values on arrival can be predicted, the 
AH header itself (though the authentication data field is set to 0 for the 
calculation), and the upper level protocol data that is being authenticated 
(this is assumed to be unchanged in transit). 



Chapter 26 �9 The Internet Security Protocol 579 

The ESP ICV, according to RFC 2406, is computed on the entire ESP 
packet, excluding the Authentication Data field. This includes the SPI, 
Sequence Number, Payload Data, Padding (if present), Pad Length, and 
Next Header; the last 4 fields will be in ciphertext form, since encryption 
is performed prior to authentication. 

Suggested algorithms for ICV include: 

Message Authentication Codes (MACs), the result of which 
are then encrypted with an appropriate symmetric encryption 
algorithm (e.g., AES) 

Secure hash functions, such as MD5 or SHA-1 (an updated version 
of SHA). 

To comply with the standard, implementations must support MD5 and 
SHA-1 keyed hashing, at least. 

26.5.7 IPSEC HEADERS IN ACTION 

IPsec security services are provided through the AH and ESP header in con- 
junction, of course, with appropriate and relevant key management proto- 
cols. The AH protocol is specified in RFC 2402, "IP Authentication Header;" 
ESP is specified in RFC 2406, "IP Encapsulating Security Payload (ESP)." 

Either security header may be used by itself, or both may be used together 
in various combinations of transport or tunnel modes. When used together 
with AH encapsulating ESP, packet authentication can be checked prior 
to decrypting the ESP header payload. These headers can also be nested 
when using IPsec tunneling: an originating node can encrypt and digitally 
sign a packet, then send it to the local security gateway. That gateway may 
then re-encrypt and re-sign the packet as it sends it off to another security 
gateway. 

The ESP and AH authentication services are slightly different: ESP authen- 
tication services are ordinarily provided only on the packet payload, while 
AH authenticates almost the entire packet including headers. 

The Sequence Number field is mandatory for all AH and ESP headers and 
is used to provide anti-replay services. Every time a new packet is sent, the 
Sequence Number is increased by one (the first packet sent with a given 
SA will have a Sequence Number of 1). 



580 Part FJve �9 Internet Infrastructure 

When the receiving host elects to use the anti-replay service for a par- 
ticular SA, the host checks the Sequence Number: if it receives a packet 
with a sequence number value that it has already received, that packet is 
discarded. 

The authentication data field contains whatever data is required by the 
authentication mechanisms specified for that particular SA to authen- 
ticate the packet. The ICV may contain a keyed Message Authentica- 
tion Code (MAC) based on a symmetric encryption algorithm (such 
as AES or Triple-DES) or a one-way hash function such as MD5 or 
SHA-1. 

The most obvious difference between ESP and AH is that the ESP header's 
Next Header field appears at the end of the security payload. Of course, 
since the header may be encapsulating an encrypted payload, you don't 
need to know what next header to expect until after you've decrypted the 
payloadmthus, the ESP Next Header field is placed after rather than before 
the payload. 

ESP's authentication service covers only the payload itself, not the IP 
headers of its own packet as with the Authentication Header. And the 
confidentiality service covers only the payload itself; obviously, you can't 
encrypt the IP headers of the packet intended to deliver the payload and 
still expect any intermediate routers to be able to process the packet. Of 
course, if you're using tunneling, you can encrypt everything, but only 
everything in the tunneled packet itself. 

26.6 Implementing and Deploying IPsec 
IP layer security protects IP datagrams. It does not necessarily have to 
involve the user or any applications. This means users may be merrily 
using all of their applications without ever being aware that all their 
datagrams are being encrypted or authenticated before being sent out 
to the internet (of course, that situation will only occur as long as all 
the encrypted datagrams are properly decrypted by hosts at the other 
end). 

As a result, one question that comes up is how to implement IPsec. RFC 
2401 suggests several strategies for implementing IPsec in a host or in 



Chapter 26 �9 The Internet Security Protocol 581 

conjunction with a router or firewall: 

Integrated implementation. Integrate IPsec into the native IP implemen- 
tation. This approach is probably the best, but also the most difficult, 
as it requires rewriting the native IP implementation to include 
support for IPsec. Integrating IPsec into the IP stack adds security 
natively and makes it an integral part of any IP implementation. 
However, it also requires that the entire stack be updated to reflect 
the changes. 

"Bump-in-the-stack" (BITS). Implement IPsec "beneath" the IP stack and 
above the local network drivers. The IPsec implementation monitors 
IP traffic as it is sent or received over the local link, and IPsec functions 
are performed on the packets before passing them up or down the 
stack. This works reasonably well for individual hosts doing IPsec. 

This approach inserts special IPsec code into the network stack just 
below the existing IP network software and just above the local link 
software. In other words, this approach implements security through 
a piece of software that intercepts datagrams being passed from the 
existing IP stack to the local link layer interface. This software then 
does the necessary security processing for those datagrams and hands 
them off to the link layer. This approach can be used to upgrade sys- 
tems to IPsec support without requiring that their IP stack software 
be rewritten. 

"Bump-in-the-wire" (BITW). Implement IPsec in a hardware crypto- 
graphic processor. The crypto processor gets its own IP address; 
when used for individual hosts, the bump-in-the-wire acts much like 
a BITS implementation, but when the same processor provides IPsec 
services to a router or firewall, it must behave as a security gateway m 
meaning that it must do IPsec security protocols in tunnel mode. 

This approach uses external cryptographic hardware to perform 
the security processing. The device is usually an IP device that acts 
as a sort of a router or, more accurately, security gateway for all IP 
datagrams from any system that sits behind it. When such a device is 
used for a single host, it works very much like the BITS approach, but 
implementation can be more complex when a single BITW device is 
used to screen more than one system. 

These options differ more in terms of where they are appropriate than 
in subjective terms. Applications that require high levels of security may 



582 Part Five �9 Internet Infrastrudure 

be better served with a hardware implementation. Applications run on 
systems for which new IPsec-compliant network stacks are not available 
may be better served by the BITS approach. 

26.7 Chapter Summary 
Network security is probably the subject of as many books and chapters 
within technical books as IP; this chapter provides a concise introduction 
to IP security issues and security goals, starting with the definition of the 
challenges facing security managers and the tools at their disposal. IPsec 
provides authentication services through the use of public key encryption, 
digital signature, and secure hashing tools; it provides privacy services 
through the use of public and secret key encryption as well. 

On top of these cryptographic tools, however, IPsec requires additional 
protocols to handle the secure and verifiable distribution and manage- 
ment of encryption keys. IPsec combines these cryptographic and security 
protocols with IP, using security associations to link packets with hosts and 
a pair of optional IP security headers (ESP and AH) to transmit IP packets 
securely. 

IPsec is often linked to the subject of the next chapter, IPv6, because while 
IPsec support in IPv4 is optional, it is mandatory for all IPv6-capable hosts. 
Although some cite "security" as a reason to prefer IPv6 over IPv4, as we'll 
see, there are better reasons to migrate to the next generation of IP. 



Next Generation IP: IPv6 

This chapter introduces the Internet Protocol version 6 (IPv6), the update 
to IPv4, starting with an overview of IPv6 features and functions and the 
new IPv6 protocol header and header extensions, an overview of the IPv6 
address architecture, and a discussion of the transition from IPv4 to IPv6. 

This chapter introduces IPv6, but is far from exhaustive. The interested 
reader is urged to read the relevant RFCs as well as IPv6 Clearly Explained 
(Morgan Kaufmann 2003) for more information about how IPv6 works. 

27.1 Why IPv6? 

With IPv4, IP addresses are unique and usually persistent identifiers of all 
nodes on IP networks. That view of IP addresses has been changing: it may 
not be necessary or efficient to allocate network and node addresses as we 
have been doing for the past 20 years. There is no question that the IPv4 
address space is being depleted; this has been clear since the late 1980s, 
when work started on the IP Next Generation (IPng) project. 

583 



584 Part Five �9 Internet Infrastructure 

At first, the primary objective for the IPng working group was to come 
up with a way to extend the IP address space so that it could support 
more networks and more hosts. However, it soon became clear that any 
modification to IP to accommodate more hosts would require an update 
to every node's IP networking software, and if an upgrade of that mag- 
nitude was being undertaken, the reasoning went, why not do a true 
upgrade to IP? Fix not just the address space problem, but also the other 
problems, big and little, that have become apparent after 20 years of 
deployment. And while were at it, why not enhance the protocol as 
well? 

It turns out that the address space squeeze was amenable to a variety of 
short-term fixes such as network address translation (NAT) and Classless 
InterDomain Routing (CIDR). However, the way IPv4 routing is done, 
combined with the growth of the number of discrete IP routes, has posed 
an even greater danger to the growth of the internet. Backbone routers 
must store all IP routes in order to forward datagrams anywhere in the 
internet. As the number of routes continues to grow, it becomes more and 
more difficult for routers to forward packets efficiently as they must look 
up routes on larger and larger routing tables. 

The IPng working group published their first specifications for IPv6 as 
standards track RFCs in late 1995: RFC 1883 decribed the protocol itself, 
and RFC 1884 described the IPv6 address architecture. By the end of 1998 
a second wave of revised specifications was published, describing draft 
standards for IPv6 and related protocols. Some networking vendors have 
been working on IPv6 implementations since the early 1990s, and com- 
mercial implementations are available from leading vendors like 3Com 
and Hitachi. As issues related to IPv4 address space and other shortcom- 
ings cause increasing problems and anxiety, IPv6 deployment will grow. 
By design, IPv6 can coexist with IPv4, so there is no need to mandate 
a cutover date when all systems on the internet must support the new 
protocol. 

The internet protocol as we know it was designed during the late 1970s, 
when it seemed that a 32-bit address spacempermitting an absolute maxi- 
mum of 232 (4,294,967,296) hostsmwould be more than enough to address 
all the hosts connected to the Internet for the foreseeable future. For one 
thing, IP was still very much an experimental technology, of interest 
almost exclusively to academics and researchers. For another, the idea 
of ubiquitous networked personal computers was many years in the 
future. 



Chapter27 �9 Next Generation IP: IPv6 585 

IPv6 addresses are four times as long as IPv4 addresses, and at 128 bits 

provide an absolute maximum of 2128264 individual hosts. This is very 
roughly 340 billion billion billion billion different hosts! Even if every 
human now living were to have a personal network, with a billion nodes 
on each network, the IPv6 address space is large enough to support (at least 
theoretically) roughly another 50 billion billion similarly wired planets. 

27.1.1 WHATS NEW IN IPv6 

IPv6 improves on IPv4 in five important areas: 

Expanded addressing: Based on projections made as early as the late 
1980s, the IPv4 address space would have been depleted by the 
early to mid 1990s without numerous stopgap measures such as net- 
work address translation (NAT) and Classless InterDomain Routing 
(CIDR). The IPv6 address space should be sufficient to accommodate 
all network growth for the foreseeable future. 

Simplified header format: In practice, the IPv4 header was found to be 
more complicated than necessary and susceptible to improvement 
in ways that could improve routing efficiency as well as the overall 
performance of attached systems. 

Improved extension and option support: Header extensions and options 
in IPv4 required treating datagrams as special cases, thus ham- 
pering the ability of routers to process those datagrams efficiently. 
A design goal of IPv6 was to improve the way header extensions 
and options are implemented so that they don't affect network and 
routing performance. 

Flow labeling: Although IP is a connectionless, unreliable protocol, some 
applications suffer unless they can depend on the network to treat 
their data flows with some degree of predictability. Flow labeling 
provides a mechanism by which related packets can be treated as 
streams, improving the way IP works as a transport for real-time 
multimedia applications. 

Authentication and privacy: In its original incarnation as a research 
project, IPv4 delegated security issues to higher layer protocols. 
From the start IPv6 was intended to incorporate security features to 



586 Part Five �9 Internet Infrastrudure 

make it a desirable option for business and other types of users who 
need assurance that the information they send is received only by 
authorized entities, unchanged, and unseen by unauthorized entities. 

The original IPng working group charter, approved by the Internet 
Architecture Board (IAB) in 1991, mandated most of these areas of concern. 

27.1.2 IPv6 ADDRESSING 

The IPv4 address space is inefficient for most networks. Although with 32 
bits, over four billion individual nodes could, in theory, be addressed, the 
way the address space is organized means that the actual number of nodes 
and networks possible is considerably lower. The 126 possible Class A 
networks use up almost half of the entire IPv4 address space; Class B 
networks use up one quarter, and Class C networks make up only one 
eighth of the space. Just increasing the number of bits in the address field 
goes a long way toward improving the situation, but is not sufficient to 
solve the problem for the long term. 

IPv6 addresses are 128 bits long, but in addition to moving from a 32-bit 
address space to a 128-bit address space, the IPv6 addressing architecture 
makes some adjustments to the different types of addresses available to an 
IP host. IPv6 eliminates broadcast addresses but adds the concept of any- 
cast addresses. Unicast addresses, specifying a single network interface, 
and multicast addresses, specifying an address to which one or more hosts 
may be listening, continue basically unchanged from their IPv4 incarna- 
tions. IPv6 addresses will be discussed in more detail later in this chapter. 

27.1.3 HEADER SIMPLIFICATION 

IPv6 headers contain eight fields, and all IPv6 headers are exactly 40 octets 
long. IPv4 headers contain at least 12 different fields and may be as short 
as 20 octets with no options or as long as 60 octets with options. By mak- 
ing all headers the same length, routers can process the datagrams more 
efficiently. Figure 27-1 shows the IPv6 header. 

The IPv6 header is simplified partly because the protocol has been simpli- 
fied. With all headers the same length, the header length field can be elim- 
inated. Intermediate routers are not allowed to do packet fragmentation in 
IPv6 fragmentation is available only on an end-to-end basis as an option, so 



Chapter 27 �9 Next Generation IP: IPv6 587 

L 

Version Traffic Class Flow Label 

Payload Length Next Header Hop Limit 

Source Address 

Destination Address 

Figure 27-1: The IPv6 header fields are considerably simpler than the IPv4 
header fields as shown in Figure 19-3. 

all the header fields related to fragmentation have been removed from the 
IPv6 header. Finally, the IP header checksum has been removed from IPv6. 

27.1.4 HEADER EXTENSION AND IPv6 OPTIONS 

Unlike IPv4, in which options are appended as part of the IP header, IPv6 
adds options in separate extension headers. This way routers not involved 
in processing the extension headers can ignore them and treat the datagram 
just like any other datagram. 



588 Part Five �9 Internet Infrastructure 

As previously mentioned, IPv6 doesn't allow intermediate routers to frag- 
ment packets. Communicating nodes may decide they want to fragment 
packets on an end-to-end basis, in which case fragmentation information 
is carried in a fragmentation header extension. Routers don't bother with 
that header; they just process the datagram based on the IPv6 header. The 
source node does the fragmentation, putting fragmentation information 
into the header extension; that extension is processed only by the node at 
the receiving end. 

Now consider a hop-by-hop option extension header specifying some- 
thing that must be done by the router every time the packet is forwarded. 
This option requires that every node along the packets route process that 
extension header. Every router in the datagrams path has to process the 
hop-by-hop option as well as the main IPv6 header. The first such hop-by- 
hop option is defined for handling extra-large IP packets (jumbo payloads). 
Packets with jumbo payloads (over 65,535 octets) require special treatment 
because not all links will be capable of handling such large size transmis- 
sion units, and routers want to avoid attempting to send them out on 
networks that cannot handle them. Thus, it is necessary for the option to 
be checked at every node the packet traverses. 

27.1.5 FLOWS 

In IPv4, all packets are treated roughly equally, which means each is han- 
dled on its own by intermediate routers. Routers do not keep track of 
packets sent between any two hosts so they can remember how to handle 
future packets. IPv6 implements the concept of the flow, which is, accord- 
ing to RFC 2460, a sequence of packets sent from a particular source to a 
particular (unicast or multicast) destination for which the source desires 
special handling by the intervening routers. 

Routers keep track of flows by storing some flow information that persists 
from datagram to datagram within the flow. In this way the router can 
handle all datagrams in the flow similarly. 

27.1.6 AUTHENTICATION AND PRIVACY 

As already covered in the previous chapter, IPsec is a mandatory part of 
IPv6. Although IPv6 advocates often cite improved security as a benefit 



Chapter 27 �9 Next Generation IP: IPv6 589 

to the new protocol, the same security benefits are available to all IPv4 
implementations as an option. 

27.2 I Pv6 Datagram Headers 

The IPv6 protocol specifies the following fields for its header: 

Version: A 4-bit value which for IPv6 must be equal to 6. 

Traffic Class: This 8-bit value specifies what, if any, form of differentiated 
service is to be provided for the packet. Use of this field is defined 
separately from IPv6; see RFC 2474 for more about differentiated 
services. The default value for this field is all zeros. 

Flow label: This 20-bit value identifies packets that belong to the same 
flow. A node can be the source for more than one simultaneous flow. 
The flow label and the address of the source node uniquely identify 
flows. 

Payload length: This 16-bit field contains an integer value equal to the 
length of the packet payload in octets; that is, the number of 
octets contained in the packet after the end of the IPv6 header. 
IPv6 extensions are included as part of the payload for the purposes 
of calculating this field. 

Next header: This field indicates what protocol is in use in the header 
immediately following the IPv6 packet. Similar to the IPv4 proto- 
col field, the next header field may refer to a higher layer protocol 
like TCP or UDP, but it may also indicate an IPv6 extension header. 

Hop limit: Every time a node forwards a packet, it decrements this eight- 
bit field by one. If the hop limit reaches zero, the packet is discarded. 
Unlike in IPv4, where the time-to-live field fulfills a similar purpose, 
sentiment is currently against putting a protocol-defined upper  limit 
on packet lifetime for IPv6. This means that the function of timing-out 
old data should be accomplished in upper  layer protocols. 

Source address: This is the 128-bit address of the node originating the IPv6 
packet. 



590 Part Five �9 Internet Infrastructure 

Destination address: This is the 128-bit address of the intended recipient of 
the IPv6 packet. This address may be a unicast, multicast, or anycast 
address. If a routing extension is being used (which specifies a partic- 
ular route that the packet must traverse), the destination address may 
be one of those intermediate nodes instead of the ultimate destination 
node. 

It is instructive to compare the IPv4 header fields (in Figure 19-3) with 
the IPv6 header fields (in Figure 27-1). Although several of the fields are 
similar for both protocols, the only field entirely unchanged is the version 
field. The version field must remain the same for IPv6 to be backward 
compatible with IPv4. The next IPv4 field, header length, is irrelevant to 
IPv6 because all IPv6 headers are the same length; IPv4 requires this field 
because its headers can be as short as 20 octets and as long as 60 octets. 

The IPv4 Type of Service (ToS) field is similar to the IPv6 traffic class 
field, but ToS is positioned later in the header than that field and it also 
has not found wide acceptance from implementers. The IPv4 datagram 
length field evolved into the payload length field in IPv6. The IPv6 pay- 
load length includes extension headers, whereas the IPv4 datagram length 
field specifies the length of the entire datagram including headers. Routers 
can calculate the length of the IPv4 datagram payload by subtracting the 
header length from the datagram length; this calculation is unnecessary 
in IPv6. 

The datagram identification, flags, and fragment offset fields in the IPv4 
header all pertain to datagram fragmentation, and are therefore dispensed 
with in the IPv6 header. 

The IPv4 time to live (TTL) field has become the IPv6 hop limit field. The 
IPv4 TTL value is an upper bound, in seconds, of the lifetime of a packet 
within the Internet cloud. When the TTL value reaches zero the packet is 
discarded. IPv4 specifies that routers decrement this value by the number 
of seconds it took from receipt of a packet until the packet was forwarded, 
but in practice most routers simply decrement this value by one rather 
than attempting to measure the actual time spent in the router. The hop 
limit field in IPv6 makes official this approach to limiting the lifetime of 
the datagram by hop count. 

The IPv4 protocol field identifies the next-higher layer protocol, usually a 
transport layer protocol. This function is retained in the IPv6 next header 
field, which refers to the protocol of the next header, whether that header 



Chapter 27 �9 Next Generation IP: IPv6 591 

is an IPv6 extension header or a higher layer network protocol like UDP 
or TCP. 

The IPv4 checksum was deemed unnecessary to IPv6 and dispensed with. 
After all, many data link layer protocols (like Ethernet) apply checksums 
in some form or another, TCP and UDP both use their own checksums, 
and more serious integrity checks are available through the IP security 
architecture headers. 

Finally, the 32-bit IPv4 destination and source address fields have been 
expanded to 128 bits to accommodate IPv6 addresses. 

27.3 IPv6 Options 

IPv4 options, as described in Chapter 7, change the shape of the IP head- 
ers. This means that optioned packets must be treated as special cases by 
routers, which are usually optimized to handle standard datagrams. As 
a result, datagrams with options tend to be delivered more slowly not so 
much because they require special processing as because they tend to be 
shunted off to the side to be handled when the router is not busy forward- 
ing normal packets. IPv6 extension headers should drastically reduce, if 
not eliminate, this kind of performance hit on packets that use options. 
Except for hop-by-hop options, which by definition must be processed by 
each forwarding router, options on IPv6 packets are hidden from interme- 
diate routers and thus can have no affect on how the packets are forwarded. 
One of the benefits of IPv6 is that it simplifies the process of defining new 
options. So far, the following are the first options defined for IPv6 extension 
headers. 

Hop-by-hop options header: This header always appears immediately 
after the main IPv6 header and contains optional data that every node 
on the packets path must examine. So far, two hop-by-hop options 
have been specified: the Jumbo payload option and the router alert 
option. The Jumbo payload option identifies the payload of the packet 
as being longer than 65,535 octets (including the hop-by-hop option 
header). If a router cannot forward the packet, it returns an ICMPv6 
error message. The router alert option notifies routers that informa- 
tion inside the IPv6 datagram is intended to be viewed and processed 
by an intermediate router even though the datagram is addressed to 



592 Part Five ~ Internet Infrastructure 

some other node (e.g., control datagrams that contain information 
pertaining to bandwidth reservation protocols). 

Routing header: This header causes the packet to visit specific nodes, 
specified in the header, on its route to its destination. The initial 
destination address of the IPv6 header is not the same as the ulti- 
mate destination of the packet, but rather the first address in the list 
contained in the routing header. When that node receives the packet, 
it processes the IPv6 header and the routing header and resends the 
packet to the second address listed in the routing header. This process 
continues until the packet reaches its ultimate destination. 

Fragment header: The fragment header contains all the information about 
IP fragments that formerly would be stored in the main IPv4 header 
fields. This extension includes fields for a fragment offset, a More 
Fragments flag, and an identification field; it is used to allow a source 
node to fragment a packet too large for the path MTU between the 
source and the destination. 

Destination options header: This header stands in for the IPv4 options 
field. At present, the only destination options specified are padding 
options to fill out the header on a 64-bit boundary if the (future) 
options require it. The destination options header is meant to carry 
information intended to be examined by the destination node. 

Authentication header (AH): This header provides a mechanism for cal- 
culating a cryptographic checksum on some parts of the IPv6 header, 
extension headers, and payload. 

Encapsulating Security Payload (ESP) header: This header will always 
be the last, unencrypted header of any packet. It indicates the rest 
of the payload is encrypted, and provides enough information for 
the authorized destination node to decrypt it. 

27.4 IPv6 Addressing 

The IPv6 addressing architecture is described in RFC 2373. There are sev- 
eral facets of IPv6 addressing that are important: the structure of the 128-bit 
IPv6 address representation, address architecture, address space structure, 



Chapter 27 �9 Next Generation IP: IPv6 593 

and the different types of IPv6 addresses: unicast, multicast, and anycast. 
Each of these is covered in this section. 

27.4.1 I Pv6 ADDRESS REPRESENTATION 

As explained in Chapter 2, IPv4 addresses are usually represented as a 
dot-delimited four-part series of values ranging from 0 to 255 (hexadeci- 
mal values of 00 through FF). IPv6 addresses, four times as long as IPv4 
addresses, are not so easy to represent. The basic representation of an IPv6 
address is of the form: 

X:X:X:X:X:X:X:X 

where X is a four-digit (16 bit) hexadecimal integer. Note that instead of 
being dot-delimited, IPv6 addresses are colon-delimited, for clarity. For 
example, the following are valid IPv6 addresses: 

CDCD: 910A: 2222 : 5498 : 8475 : iiii : 3900:2020 

i030 : 0 : 0 : 0 : C9B4 : FFI2 : 48AA: IA2B 

2000:0:0:0:0:0:0:1 

These are hexadecimal integers; decimal equivalents could also be 
used. 

Some conventions have been designated to simplify IPv6 address repre- 
sentation. A series of zeros in an address can be collapsed, with a double- 
colon replacing the zeros. The last address shown in the preceding 
example would be represented as: 

2000 : : 1 

In mixed IPv4/IPv6 environments, where some IPv6 addresses may 
encapsulate IPv4 addresses, those addresses can be represented in the 
form: 

X :X :X:X:X :X:d. d. d. d 

In these cases, the colon-delimited values are 16-bit integers (standard for 
IPv6 addresses), and the dot-delimited values are 8-bit integers (standard 



594 Part Five �9 Internet Infrastructure 

for IPv4 addresses). For example, the following is a valid IPv6 address, 
encapsulating an IPv4 address: 

0:0:0:0:0:0:I0.0.0.i 

27 .4 .2  IPv6 ADDRESS ARCHITECTURE 

The IPv6 addressing model is similar to the IPv4 model: each address 
consists of two parts. The most significant bits of the address (those bits 
starting at the left of the address) represent the network to which the node 
is attached. The least significant bits of the address (those bits starting 
at the right of the address) represent the unique node connected to the 
network. 

As in IPv4, the network portion of the IPv6 address is aggregatable. This is 
another way of saying that subnets are considered to be part of the parent 
network, and that to nodes outside of a subnetted network, all datagrams 
addressed anywhere within that network are forwarded to a single point. 
Consider a Class B network that has been subnetted. Routers inside that 
network need to be aware of routes for subnets, but routers outside that 
network need to know only one route for that network. 

IPv4 network classes were a good idea, but the implementation turned 
out to be too rigid to accommodate the kind of growth in personal 
computers as well as networks that we've experienced since 1980. IPv6 
addresses are designed to avoid the problems of running out of net- 
work node address space within networks as well as the problem of 
running out of organizational network addresses. At the same time, IPv6 
addresses are all aggregatable, thus solving the problem of IP backbone 
routing. 

A backbone router stores a single route for all nodes on a Class B network, 
no matter that there may be dozens or hundreds of subnets that are routed 
locally inside that network. IPv6 addresses are all aggregatable in a similar 
way. 

IPv6 addresses are divided into two parts: the high-order 64 bits identify 
the network address, the low-order 64 bits identify the node. Each node 
address includes an interface identifier based on the IEEE EUI-64 format 
for interface identifiers. This format builds on existing MAC addresses to 



Chapter 27 �9 Next Generation IP: IPv6 595 

13 I 13 I 8 1 24 I 16 I 
+--+ ..... +___+ + + 

I FP I TLA I RESI NLA i SLA I 

I liD I i ID I ID I 
+--+ ..... +---+ + + 

64 bits 

Interface ID 

Figure 27-2: The format for IPv6 global aggregatable unicast addresses, from 
RFC 2373. 

create 64-bit interface identifiers that can be unique across a local or global 
scope. 1 

With 64-bit interface identifiers, as many as 264 unique physical inter- 
faces (about 18 billion billion) can be addressed on any given network. 
With 64-bit network addresses, the same number of different networks is 
possible. 

So far, all IPv6 network addresses are specified to be aggregatable, either by 
network service provider or by some other basis. Whatever entity provides 
the network address block is also responsible for maintaining the network 
route. IPv6 unicast addresses take the form shown in Figure 27-2, and the 
fields designated within the address are described next. 

The IPv6 unicast address is broken down into these fields: 

FP: The format prefix is the 3-bit prefix to the IPv6 address that identifies 
where it belongs in the IPv6 address space (as shown in the IPv6 
address map in Figure 27-3). 

TLA ID: The top-level aggregation identifier contains the highest-level 
routing information of the address. This is the grossest level of rout- 
ing information in the internetwork, and at 13 bits there can be no 
more than 8,192 different top-level routes. 

The next 8 bits are reserved for future use. They may ultimately be used to 
expand the top-level or next-level aggregation ID fields. 

NLA ID: The next-level aggregation identifier is 24 bits long, and 
is intended to be used by organizations that control top-level 

1 This IEEE standard is available at: standards.ieee.org/db/oui/tutorials/EUI64.html.  



596 Part Five �9 Internet Infrastructure 

Allocation Prefix Fraction of 
(binary) Address Space 

Reserved 0000 0000 1/256 
Unassigned 0000 0001 1/256 

Reserved for NSAP Allocation 
Reserved for IPX Allocation 

0000 001 1/128 
0000 010 1/128 

Unassigned 0000 011 1/128 
Unassigned 0000 1 1/32 
Unassigned 0001 1/16 

Aggregatable Global Unicast Addresses 001 1/8 
Unassigned 010 1/8 
Unassigned 011 1/8 
Unassigned i00 1/8 
Unassigned II0 1/8 
Unassigned 1/8 

Iii0 
Unassigned iiii 0 1/16 
Unassigned iiii i0 1/32 
Unassigned Iiii ii0 1/64 
Unassigned iiii iii0 0 1/128 
Unassigned 1/512 

Link-local Unicast Addresses 
Site-local Unicast Addresses 

iiii iii0 I0 
iiii iii0 II 1/1024 

1/1024 

Multicast Addresses iiii IIIi 1/256 

Figure 27-3: The allocation IPv6 addresses, from RFC 2373. 

aggregation IDs to organize that address space. In other words, those 
organizations (probably to include large Internet service providers 
and others providing public network access) can carve that 24-bit 
field into their own addressing hierarchy. Such an entity might break 
itself down into 16 top-level routes (internal to the entity) by tak- 
ing 4 bits for those routes and leave itself 20 bits of address space to 
allocate to other entities (likely to be smaller-scale, more local ser- 
vice providers). Those entities, in their turn, could also subdivide the 
space they are allocated in the same way, if there is enough room. 

SLA ID" The site-level aggregation identifier is the address space given 
to organizations for their internal network structure. With 16 bits 
available, each organization can create its own internal hierarchi- 
cal network structure using subnets in the same way they are 



Chapter 27 �9 Next Generation IP: IPv6 597 

used in IPv4. As many as 65,535 different subnets are available using 
all 16 bits as a flat address space. Using the first eight bits for higher- 
level routing within the organization would allow 255 high-level 
subnets, each of which has as many as 255 sub-subnets. 

Interface ID: This 64-bit field contains a 64-bit value based on the IEEE 
EUI-64 interface ID discussed earlier. 

Consider a host originating a packet outside the destinations top-level 
aggregation entity. The host forwards the packet to its local router, which 
examines the destination address. It immediately recognizes a foreign 
top-level aggregation entity, so it can forward that packet to the route 
designated for all packets sent to that entity. It works similarly to postal 
services: consider a letter originating in Australia with a destination in the 
United States. The sender drops the letter off at a post office in Adelaide, 
where it is sorted because it is addressed to the United States, it will prob- 
ably be put in a sack with other letters intended for that part of the world. 
The local postal authorities don't worry too much about the rest of the 
address. 

Datagrams that originate within the same top-level aggregation entity (or 
letters that originate within the same country) get forwarded based on 
what the next-level aggregation entity is. A letter originating in Zurich 
with a destination in Berne does not leave Switzerland. 

With aggregation, no routermnot even a backbone routermneeds to know 
every route on the internet. Each router needs to know detailed routes only 
within its own aggregation entity; outside the entity, the router needs to 
know only default routes to each other aggregation entity at the same level. 
Backbone routers can manage with no more than 8,192 routes; reports in 
1998 have put the number of routes some backbone routers were storing 
at over 130,000. Although the 24-bit section of the address devoted to the 
next-level aggregation entity might seem to permit over 16 million (224) 
routes, in practice that section will almost certainly be subject to its own 
aggregation, as mentioned earlier. 

27.4.3 I Pv6 ADDRESS SPACE STRUCTURE 

Figure 27-3 shows how the IPv6 address space is allocated. A similar break- 
down for IPv4 would be considerably simpler and would tell the story 



598 Part Five �9 Internet Infrastructure 

of inefficient address allocation. Fully one half of all IPv4 addresses are 
Class A addresses and largely underused. One fourth are Class B, and 
only one eighth are Class C addresses. Class D (multicast) addresses take 
up one sixteenth of the address space, and the rest is either reserved or 
unassigned. 

By contrast, only one eighth of the IPv6 address space is allocated to aggre- 
gatable unicast addresses; the vast majority of the IPv6 address space is 
left unassigned. Of course, this approach leaves plenty of slack in the event 
that the internet and IP continue their rapid growth for the next 20 years. 
The new address space can accommodate all foreseen and perhaps even 
any imaginable growth for the foreseeable future. 

Two important allocations are for link-local and site-local unicast addres- 
ses. In IPv4, the private network allocations used for network address 
translation (NAT) give organizations an option for setting up networks 
with whatever type of network address they want datagrams sent on those 
networks are not supposed to be forwarded outside the private network. 
These addresses were added more as an after thought, however, than as 
part of the original design of IPv4. 

In IPv6, link-local and site-local unicast addresses are designed to func- 
tion almost like private network addresses. However, there are some big 
differences. Link-local addresses are intended to stay on the physical net- 
work link they are not to be forwarded off the link. Site-local addresses can 
be forwarded throughout the organizational site but not out to the public 
internet. 

Unlike NAT addresses, all IPv6 networks and nodes support link-local 
and site-local addressing. You could use the site-local address range to 
enumerate an entire organizational network, but one important purpose 
of these addresses is to help nodes that haven't yet been configured for their 
correct IP network address to locate various services on the link or site level. 

27.4.4 I Pv6 ADDRESS TYPES 

IPv6 supports three types of addressing: unicast, multicast, and anycast. 
Unicast and multicast work much the same as they do in IPv4; broadcasts 
are not supported in IPv6. The unicast address is defined as an identifier for 
a single network interface. When a datagram is addressed to that unicast 
address, it is delivered to the interface identified by that address. 



Chapter 27 �9 Next GeneratJon IP: IPv6 599 

A multicast address is defined as an identifier for a set of one or more 
interfaces. When a datagram is sent to a multicast address, it is delivered 
to all the interfaces associated with that address. 

An anycast address is, like a multicast address, defined as an identifier 
for a set of one or more interfaces. Unlike multicast, datagrams sent to 
an anycast address are delivered to only one of the interfaces identified 
by that address. The datagram is supposed to be delivered to the nearest 
interface, as defined by a measure of the distance of the receiving node 
from the sender. 

An important use of anycast addresses is for stateless autoconfigura- 
tion. Standard anycast addresses are defined for functional categories like 
domain name servers and time servers. When a node needs one of these ser- 
vices, it can send out an anycast datagram, and it will get a response from 
the closest server rather than from all servers within earshot of the node. 

27.5 Migrating to IPv6 

It was IPv4's success that made an upgrade necessary, which means that 
there is a significant installed base of users to upgrade. Keeping the tran- 
sition orderly was a major objective of the entire IPng program, and there 
are no plans for a cutover date when IPv6 would be turned on and IPv4 
turned off. 

The strategy chosen for the upgrade is to deploy the IPv6 protocol stack in 
parallel with IPv4. In other words, hosts that upgrade to IPv6 will continue 
to exist as IPv4 hosts at the same time. An experimental IPv6 backbone, 
or 6bone, has been set up to handle IPv6 internet traffic in parallel with 
the regular Internet. Such hosts will continue to have 32-bit IPv4 
addresses but will add 128-bit IPv6 addresses. By 1999, hundreds of 
networks were linked to the 6bone. 

The transition can be achieved through two approaches: protocol tunneling 
or IPv4/IPv6 dual stack. 

27.5.1 PROTOCOL TUNNELING 

One strategy that will help facilitate the growth of the IPv6 internet 
is protocol tunneling. Hosts on IPv6 intranets can interoperate fine on 



600 Part Five �9 Internet Infrastructure 

their own network, but if the intranets are connected to the internet only 
through an IPv4 route, they cannot link to other IPv6 hosts via IPv6. The 
answer is to allow tunneling: the IPv6 packets are encapsulated within 
IPv4 packets and forwarded across the internet to a router that can strip 
off the IPv4 headers and forward the IPv6 packets to their destination. 

Likewise, hosts can operate on IPv4 intranets and be connected to the IPv6 
internet through a router. Data from those hosts could be encapsulated 
within IPv6 packets by the router and forwarded across the IPv6 internet 
to a router that would strip off the IPv6 headers and forward the IPv4 
packets to their destination. 

Another possibility that is neither encouraged nor discouraged by the 
authors of the IPv6 protocol is the use of protocol translators. These take 
IPv6 packets and convert them to IPv4 packets, and vice versa. 

The IPv6 tunneling approach makes it possible for isolated IPv6 islands to 
interoperate with each other across seas of IPv4 networks. 

27.5.2 IPv4/IPv6 DUAL STACK 

Any node can run both IPv4 and IPv6 network stacks simultaneously. In 
this way, the node can send and receive both IPv4 and IPv6 packets. This 
approach makes possible heterogenous networks where both IPv4 and 
IPv6 coexist on the same network infrastructure. This makes it possible to 
deploy IPv6 on an organizational network without losing IPv4 connectivity 
for the nodes implementing IPv6. 

27.6 Chapter Summary and References 
In this chapter, we introduced the issues that made IPv6 necessary as 
well as the goals set for the next generation of the internet protocol. We 
looked first at why IPv6 was necessary, followed by an overview of the 
new features and functions available in IPv6. 

We discussed the IPv6 protocol header fields, contrasting them with the 
IPv4 header fields. A discussion the IPv6 network addressing, including 
an overview of the IPv6 network address space, the architecture of IPv6 



Chapter 27 �9 Next Generation IP: IPv6 601 

addresses, the address space allocation, and IPv6 address types including 
anycast, multicast, and unicast followed. We finished up with an intro- 
duction to the transition strategies used to migrate IPv4 populations to 
IPv6. 

In Part VI, we look at some aspects of the practical side of networking with 
TCP/IP, starting with a look at the evolution of the FTP protocol and FTP 
implementations over the past decades. 



This Page Intentionally Left Blank



X 

Practical Internetworking 



This Page Intentionally Left Blank



The Evolution of 
File Transfer Protocol 

Although the protocol-oriented details of FTP have already been covered in 
Chapter  12, there is a difference between the FTP protocol commands  and 
ftp I application commands.  Some of the protocol commands  are similar 
to the application commands;  for example, there is the RMD protocol com- 
mand  for removing a directory which matches the typical ftp application 
command  rmd i  r. 

The evolution of FTP implementat ions over the years has mirrored the 
evolution of many  other types of end-user  application. This brief look 
at the way  FTP protocol commands  and responses have been mapped  
onto end-user  applications over the years should prove instructive to any- 
one interested in using network application protocols or building network 

1in this chapter, "FTP" refers to the File Transfer Protocol, while "ftp" refers to a soft- 
ware implementation of FTP. File transfer programs that support FTP have traditionally 
been named "ftp." Fortunately, the confusion has been lessened since the acquisition of the 
company named "FTP Software" by NetManage, Inc. 

605 



606 Part Six �9 Practical Internetworking 

applications using existing protocols. For reference while reading this 
chapter, FTP commands, ftp commands, and FTP response codes can be 
found in Chapter 12 and Appendix B. 

28.1 Protocol and Applications Commands 

One can imagine a very early version of ftp that accepted raw FTP protocol 
commands, although by the mid-1980s most versions of ftp had added 
some "user friendly" features such as slightly more intuitive commands,  
or new features. Consider the simple process of opening an FTP session. 
Using the raw protocol commands, several steps would be necessary: 

1. Open a TCP session on port 21. 
2. Wait for a positive response (reply code 220 " S e r v e r  ready") .  
3. Send the USER command with a username. 
4. Wait for a positive or intermediate response (if positive, the 

session requires no passphrase; in almost all cases, an interme- 
diate reply of 331 " u s e r  name okay ,  n e e d  p a s s w o r d "  will 
follow). 

5. Send the PASS command with a passphrase. 
6. Wait for a positive response (230 " u s e r  l o g g e d  i n ,  

proceed"). 
7. Send any other initialization commands (e.g., SYST to retrieve 

system information from the server) and wait for results. 

Most command line ftp implementations allow you to open a session just 
by starting up the ftp program with a destination server name: 

ftp ftp.example.net 

All the required protocol commands are then exchanged automatically. 
Another way to get the same result would be to open ftp on the local host, 
and then (from an ftp command line) enter the open  command: 

ftp> open ftp.example.net 

In either case, there is no need for the user to explicitly send every protocol 
command. Similarly, most FTP implementations include a "multiple get" 
command, usually called rage r for retrieving more than one file at a time. 



Chapter 28 �9 The Evolution of File Transfer Protocol 607 

Mger generally allows the use of wildcards to specify filenames to be 
downloaded: 

ftp> mget *.txt 

This command will retrieve all files in the current working directory that 
end with the extension . t x r  even though there is no corresponding FTP 
protocol command for retrieving more than one file at a time. FTP does 
provide a directory listing command that lists only file names in the cur- 
rent or specified directory: LIST. The output  from LIST can be used 
as the basis for further sequences of operations, such as multiple file 
retrieval. 

The mger command may use data already retrieved from the server 
(e.g., if the user has already requested a directory listing of the desired 
directory) to determine what files to request for download, one by one. 
If the data is not already available, the ftp client program will send 
a directory listing command on its own, specifying any desired wild- 
cards, and use the results to send individual RETR commands to the 
server. 

Likewise, FTP specifies a pair of commands to be used for renam- 
ing files; RNFR ("rename from," sent with the file's current name) and 
RRTO ("rename to," and sent with the new file name). Most versions 
of ftp collapse the two protocol commands into a single command, 
rename.  

As has been discussed elsewhere, FTP provides specification for a protocol 
that allows end users, wherever they may be, to manipulate files on an 
FTP host. The goal for FTP was to reduce the complexity of managing files 
on any networked host-- in  effect, to make moving files to a n d / o r  from 
a remote host equivalent to moving files to a n d / o r  from any filesystem 
within the local host. 

Thus, it should not be surprising that ftp programs written for systems 
running MS-DOS would use commands similar to MS-DOS commands 
such as d i  r and those written for *nix would use the 1 s command for the 
same function: listing directory contents of the current directory. If you 
could copy, rename, or delete files on your local host filesystem, doing the 
same functions on an FTP server from an FTP client would not likely be 
any more difficult. 



608 Part SJx ~ Practical InternetworkJng 

28.2 Ease and/or Simplicity 
Most internet development, including the design and testing of applica- 
tion protocols, began on *nix systems. As demand for TCP/IP applications 
grew in the mid-1980s, software publishers ported the network applica- 
tions from *nix platforms to the MS-DOS platform with little or no change 
to the user interface. As a result, what would be fairly intuitive for a *nix 
user could baffle an MS-DOS user. 

At about the same time, interest in graphical user interface (GUI) and "user 
friendliness" was increasing as personal computers were everywhere. 
Apple's Macintosh OS was followed by Microsoft's early forays with Win- 
dows, and other software vendors responded to customer demands. GUIs 
have long been viewed as easy to use for many reasons, largely because 
they free the casual user from having to learn often cryptic commands 
and keystroke combinations: accessing resources is as simple as pointing 
and clicking with the mouse, or choosing options from menus. Even non- 
graphical applications proclaimed their "user friendliness" based on their 
use of menus and submenus: casual users can read the options offered 
from each menu and then choose the one they need. 

Unfortunately, many of the early versions of GUI/user friendly applica- 
tions (in all areas, not just network applications) suffered from one or two 
serious problems. Menu-driven applications are user friendly only inso- 
far as all the menu items are accurately and completely described for the 
user in terms that the user can comprehend. Cryptic commands attached 
to menu options are no easier to use than a command line interface with a 
list of valid commands. 

Another common, and flawed, approach was to take applications already 
equipped with text-based menu interfaces and translate them, unchanged, 
into a GUI operating system (OS)-enabled application. Instead of unap- 
pealing text menus, the new application opens with a nice OS-compliant 
window and nifty looking pulldown menus--but  the underlying applica- 
tion remains unchanged. 

Meanwhile, programmers faced another challenge as they implemented 
FTP on new platforms: what exactly should the ftp program do? Was the 
goal to produce a version of ftp running on DOS (or Windows, MacOS, 
etc.) that behaved to the user in the same way that the original *nix versions 
do? Or should the new OS-based version of ftp adopt a user interface to 
the file transfer functions more in harmony with the OS? 



Chapter 28 �9 The EvolutJon of File Transfer Protocol 609 

In either case, any implementation would have to interoperate with any 
other implementation. A Macintosh version of an ftp client would have 
to be able to exchange files with an IBM MVS version of an ftp server. 
Interoperability between computers is clearly an absolute requirement--  
but the need for interoperability (or compatibility) between the users of 
different computers is less clear. 

One reason to stick with cryptic commands and a text-based interface when 
implementing FTP on new platforms is to make the program easier to use 
for anyone who already knows how to use a version of ftp on another 
platform. To be more honest, however, one might suggest that early PC 
versions of ftp used the same (or almost the same) set of user commands 
(and interface) as that found on *nix systems mostly because the people 
who wanted to use ftp on a PC were already using ftp on some other 
system--most likely a *nix or similar systemmand it would be easier to 
replicate that experience on the PC. 

Only as the population of ftp users expanded to include users most com- 
fortable with a mass market, user-friendly PC OS, did software publishers 
begin to modify their approach to Windows and Macintosh network file 
transfer applications. The change in approach meant acceptance of an 
approach to implementing FTP that emphasized the adaptation of the 
protocol to each platform rather than imposing a single approach to the pro- 
tocol for all platforms. The resulting applications may not have maintained 
a uniform user interface, but they maintained the original philosophy of 
turning the network into an extension of the local system. If you can man- 
age files locally, the local FTP implementation should make seamless the 
process of managing files remotely. 

28.3 Mapping Protocols to Applications 

Implementers must be able to map functions to protocol elements if they 
hope to make FTP (or any other application protocol, for that matter) seam- 
less and transparent to the user. Protocol commands and responses are the 
elements that must be mapped to OS functions. Some FTP elements are 
more easily mapped than others. 

Consider FTP response codes and their accompanying human-readable 
text. Many of these would simply confuse the typical user, while others 
carry useful information. The implementer must consider which responses 



610 Part Six �9 Practical Internetworking 

are relevant and which are not; even then, decisions must be made as to 
how the information in those responses should be delivered to the user. 
Some GUI ftp clients offer users the option of displaying protocol interac- 
tions in a text window: when a file is copied, client commands (USER, PASS, 
RETR) appear in the window, accompanied by the server's responses (2 9 0 
Server ready). 

The requests and responses will always be important to the client and 
server software, but may not be relevant to the user. For example, users 
usually don't need to see responses indicating that a session has been ini- 
tiated, or intermediate success messages during the transfer of many files. 
GUI clients may display progress with a progress bar or by having file 
icons appear in their destination window. Even the use of progress bars 
requires the use of protocol features: with a command line interface, a user 
may not check the size (or any other attributes) of files being downloaded, 
especially when many files are being transferred. A GUI version of ftp can 
provide this information by requesting a detailed directory listing for each 
file to be downloaded, and then calculate and display progress graphically 
to the user. 

Similarly, FTP offers a small set of commands for managing files, just 
enough for a client to maneuver through a directory tree, copy files to 
and from that tree, and add or delete directories. Although there is no 
FTP protocol command for transferring more than one file at a time, the 
implementations make it possible for end users to believe that their local 
ftp client is capable of such transfers. 

More to the point, application developers were far more likely to imple- 
ment the mger and input commands in newer GUI versions without 
changing them substantially. These versions allowed users to specify 
a wildcard template to indicate which files are to be transferred, but 
only with later versions would GUI-style selection of unrelated files be 
supported. 

28.4 Command Line to Graphical User Interface 

The evolution of FTP implementations from command line tools intended 
for use by system administrators and network engineers, to easy-to-use file 
management utilities took more than a decade to occur. The applications 



Chapter 28 �9 The Evolution of File Transfer Protocol 611 

that use FTP have continued to evolve, just as the forms and functions of 
internet applications continue to evolve. 

In less than a decade, the web grew from an academic experiment to a 
staple of daily home and work life for hundreds of millions of people and 
millions of businesses. Not only are there web server programs available 
for virtually any device capable of being networked, but one would be 
hard-pressed to find a commercial computer sold anywhere that did not 
incorporate hypertext transfer protocol (HTTP) client and server support. 
At the same time, FTP continues to carry a respectable share of internet 
traffic for a number of reasons: 

1. It has always been used for certain functions, as long as anyone 
can remember. 

2. Internet hosts are required to support  it, per RFC 1123, 
"Requirements for Internet Hosts--Application and Support." 

3. FTP client and server software is built on a foundation of over 
30 years experience with FTP and related predecessor proto- 
cols, resulting in FTP implementations that might be considered 
more robust, secure, or reliable than HTTP servers. 

4. Older hosts may not support  HTTP. 
5. Long-time FTP services may have become so institutional- 

ized that removing them would cause failures of systems 
that rely on them for downloading information around the 
world. 

6. Maintenance, backup, and administration of FTP servers and 
FTP sites may be less onerous than those same tasks for HTTP 
servers and sites. 

At the same time, the end-user interface continues to improve as imple- 
menters learn to treat FTP not so much as its own special application but 
as a service that can be accessed by other applications. For example, web 
browsers can access files stored on FTP servers without burdening the 
user with logging in. The user may encounter a directory structure, but 
maneuvering is as simple as clicking on a file or directory name and let- 
ting the browser figure out what to do next. When properly configured, the 
browser will automatically download the file and open it in an appropriate 
application. 

FTP may not be the best of all possible application protocols: the use of 
two separate channels for transfers and control provides an interesting 
approach that was in some ways ahead of its time yet at the same time 



612 Part SJx ~ Practical InternetworkJng 

significantly flawed. However, FTP works adequately and its ubiquity 
ensures survival for the foreseeable future. 

28.5 Chapter Summary 
As a product becomes easier to use, more people are willing to try it out. 
This applies to network application protocols as much as it does to auto- 
mobiles, video cassette recorders (VCRs), and mobile telephones. FTP, as 
one of the first application protocols designed for an interoperable inter- 
network, started out as a set of basic file management protocol commands; 
implementers have used those commands to create FTP implementations 
that have grown increasingly easy to use. 

Early on, FTP programs required the use of commands that mirrored com- 
mand line file management on the host system; if you could manipulate 
files on that host, you could also manipulate files on that host from a remote 
host. Implementers were relatively slow to build appropriate GUIs for FTP, 
merely translating commands to pulldown menus at first. However, by 
the late 1990s, GUI FTP programs were available that could be easily, and 
transparently, used by non-expert users. 

Most products change and improve over the years: automobiles no longer 
include a hand-cranked starter, mobile telephone service prices spiral 
downward as service billing grows simpler. FTP has not only become 
easier to use, but has also been modified to make it work more smoothly: 
hosts need not permit inbound connections from servers for downloads, 
for example. Likewise, some artifacts of less than great product features, 
such as the VCR's continuously flashing unset clock and FTP's support for 
proxy file transfers (see section 11.3), take longer to fix or replace. 

Although many, if not most, of the applications for which FTP was impor- 
tant in 1983 are now performed with more modern protocols, newer tech- 
nologies rarely eradicate older ones entirely; just as the radio and motion 
picture industries were not destroyed by the introduction of television, 
they were forced to adapt to an environment in which people turned to 
newer technologies to meet their needs for entertainment and information. 

The next chapter discusses some of the issues involved in planning and 
deploying IP networks. 



Planning Internet 
Protocol Networks 

With modern operating systems and hardware, building an internet pro- 
tocol (IP) network can be as easy as putting together a few personal 
computers and a router/firewall and hooking them all together with a 
network hub or switch. The task is too insignificant, as in the case of most 
small office/home office (SOHO) networks, to take up an entire chapter; 
yet at the same time it is far too broad, as in the case of building an enter- 
prise network, to even begin to cover in a single chapter. 

Yet this chapter looks at some of the issues related to planning and /o r  
building a smallish IP network that may not be covered in other books or 
articles. Well-planned networks support all sorts of organizational change, 
whether it be growth, reorganization, contraction, or anything else; they 
are easier to administer and manage; they are capable of enhancing an 
organization's effectiveness and efficiency. Poorly planned networks can 
become extremely costly in terms of both time and money. 

613 



614 Part Six �9 Pradical Internetworking 

Rather than summarizing the principles of network planning, this chap- 
ter provides some suggestions and tipsmthings to keep in mind when 
designing a network. 

29.1 Problem Statement 

In today's modern world, where all operating systems are TCP/IP capable 
right out of the box, building a small, functional, IP network requires 
little (if any) skill. The most difficult aspect of SOHO networking may be 
assembling the components and getting them plugged together properly. 

As recently as 1995, setting up such a simple network could require 
considerable expense and expertise, with tasks that might include: 

�9 Purchasing and installing network interface cards on every 
system to be networked. 

�9 Purchasing and installing a local area network (LAN) hub. 
�9 Purchasing and installing internet devices including router, 

firewall, and others. 
�9 Purchasing and installing TCP/IP network protocol stack 

software on all hosts. 
�9 Configuring and troubleshooting each host network configura- 

tion; this includes locating appropriate drivers for the network 
card, properly configuring network cards for use with soft- 
ware (operating system as well as TCP/IP stack), properly 
configuring IP options on host. 

The expense of the hardware and software, combined with the difficulty 
of getting it all properly installed and configured, were considerable. Most 
of these difficulties have been eliminated or minimized: 

New computers are now typically delivered with Ethernet net- 
work interface cards; add-on cards for desktops can be had for 
as little as under $10, while even laptops can be outfitted with 
PCMCIA cards for under $40. 
Small hubs and switches, even for high-speed (100 Mbps) 
Ethernet, are widely available for under $100 (or less). Rea- 
sonably priced wireless network interfaces are also avail- 
able; prices are higher than for wired cards, but costs for wiring 
are saved. 



Chapter 29 �9 PlannJng Internet Protocol Networks 615 

�9 Easily configured and inexpensive internet appliances are 
widely available, providing one or more functions including 
router, firewall, network address translation (NAT), virtual pri- 
vate network (VPN), web/mail /f i le/applicat ion server, web 
cache, DNS server, and DHCP server. 

�9 Starting with Windows 95, Microsoft's operating systems all 
bundle support for TCP/IP. Apple's MacOS and OS X, all *nix 
systems, and any other commercial or open source OSes now 
all support TCP/IP as well. 

�9 Newer hardware standards (including PCI and USB) allow 
plug-and-play installation of new hardware. Drivers may be 
necessary, but most operating systems automate the process of 
installation and configuration. Incorporation of TCP/IP sup- 
port in current OSes means no need to use third-party drivers 
to configure the interface between the network interface and 
the protocol stack. 

Although it is possible to put together a small TCP/IP network with 
little or no experience, building even a small network that is reliable, 
robust, secure, efficient, and fulfills all network requirements can still 
be challenging. System administration, router configuration, backbone 
design, and many other key topics are well-documented in a wide range 
of books and courses; some are vendor-specific, others are vendor-neutral, 
but the vast majority offer something of value to the network profes- 
sional. Yet not all networks are designed by network professionals, and 
not all network design documentation is appropriate for novice net- 
work managers. Some of the aspects of network design discussed here 
include: 

�9 What does "network architecture" really mean? 
�9 What components are necessary for a stable, robust, and secure 

network? 
�9 For which ongoing network tasks must resources be allocated? 
�9 What services should a TCP/IP network offer to its users? 
�9 What about security? 

29.2 Network Architecture 

The shape of a network can be considered the outward manifestation of 
the network's architecture. However, that shape goes much farther than 



616 Part Six �9 Practical Internetworking 

I 

....... i 

"Ring . . . .  Star  . . . .  Bus" 

Figure 29-1: Ring, star, and bus network architectures. 

merely defining whether hosts are linked through a ring, star, or bus 
architecture (Figure 29-1). These characterizations have lost much of their 
relevance as existing technologies change and new ones appear. For exam- 
ple, most Ethernet networks in 1988 were based on a bus design, with hosts 
all connected directly to a single cable that would physically run the length 
of the area being networked. By 1998, most Ethernet networks used cables 
to link all nodes to a hub or switch, often with each of those links providing 
a dedicated Ethernet link between node and switch (rather than the shared 
Ethernet bus of 1988). 

The networks shown in Figure 29-1 all share one attribute: a router, which 
connects them to some other network. Small and stable networks without 
any links to other networks are quite simple to setup (some OSes support 
plug-and-play local networking): each node need only be configured with 
a unique IP address, and the desired network services set up. 

However, internet-connected networks of any size require some degree of 
architecture design. For example, a simple SOHO network might consist 
of only two linked internal nodes, both of which are to be given access 
to the global internet. As shown in Figure 29-2, there is no discernable 
architecture here; many blanks must be filled in before a network can be 
implemented. Some of the issues to be resolved include: 

�9 How are the two nodes to be connected to each other? 
The assumption is that both nodes will be connected to the 



Chapter 29 �9 Planning Internet Protocol Networks 617 

I.o , I 

Soho 
LAN 

Global 
Internet 

Figure 29-2: Small IP network with internet link. 

same LAN. This might be through an Ethernet switch, or over 
a wireless hub, but a two-node network could conceivably be 
supported through a direct serial connectionmor through some 
more complex arrangement of switches and hubs or even over 
a telephone line. 
How are the two nodes on the LAN connected to the inter- 
net? One option is to provide direct connections for each node, 
allowing them both to connect through separate links (with a 
modem over a telephone line or through separate broadband 
interfaces). This approach might be acceptable if neither node 
must connect to the internet at the same time, or if only one 
(or none) of the nodes is ever connected for any significant 
length of time, or if only one node is ever used at any given 
time. 

A second option is to connect one of the nodes to the inter- 
net with a single connection, and then have that host act as a 
ga teway/router  for the second host. This approach might be 
appropriate if the gateway host is always up and running and if 
there are no security issues related to it being connected directly 
to the internet. 

A third approach is to add a dedicated gateway/router  to 
the network. All three devices (the two hosts and the router) 
connect to the same LAN, with only the router connected to 



618 Part SJx ~ Practical Internetworking 

the internet. Other variations on this approach, which is well 
suited to any situation---especially those in which security is 
an issue---are covered later in the section on security. 

�9 How is internet connectivity provided? Closely related to, but 
slightly different from the previous bullet, the issue of how to 
connect to the internet includes the choice of internet service 
provider (ISP) as well as the choice of internet service. How 
much inbound and outbound bandwidth is needed? 

Except for the most basic dialup internet access service, these 
questions should be answered before shopping for an ISP. 
Likewise, security issues should be examined early in the pro- 
cess (see section 31.6). Service providers may not always be 
clear about their security offerings--or lack thereof. 

�9 How much bandwidth can the ISP provide? Are there spe- 
cial services offered from within the intranet that need to be 
available to outsiders? Are there special services (mail, web 
hosting, mailing lists, application serving) that cannot be pro- 
vided internally, and if so, does the ISP offer those services? 
Where will the router be situated, and who is responsible for 
maintaining it? 

Some organizations prefer to work with a single vendor for 
all their networking/internet needs, although more often some 
services are provided in-house and /or  from vendors other 
than their ISP. Hiring a single vendor to provide all services 
may reduce costs through special deals as well as reduce the 
overhead of dealing with multiple vendors--but  it presents a 
degree of risk by relying on a single vendor for all network 
function. 

Bringing some or all of the work in-house requires a seri- 
ous commitment from management to provide the resources 
to keep the network running, even if key employees become 
unavailable. When done properly, in-house network support 
allows management more control over the network as well 
as corporate data. Spreading the functions around, between 
in-house groups and multiple vendors, may be the best com- 
promise: it eliminates single points of failure, allows the 
organization to keep sensitive tasks in-house and to maintain 
relationships with different vendors, important in the event 
that the services of any one vendor are no longer acceptable or 
available. 

�9 How are network addresses assigned? Is there a need for a 
routable network address or can a private network address be 



Chapter 29 �9 Planning Internet Protocol Networks 619 

used? Will the ISP provide a stable network address or do they 
require configuration with DHCP? Are there any limitations 
on inbound traffic to internet servers set up on the attached 
network? Who is responsible for maintaining DNS listings? 

In any case, network address space should be managed care- 
fully to allow for growth or change; if a routable network 
address is to be used, chances are it will be small-- in which 
case even more care must be taken. Understanding the basics 
of routing and IP will help in deciding when subnets should 
be used on a single local link, and when they are unneces- 
sary even when the intranet consists of two or more local 
networks. 

Although the task of providing of DHCP and DNS services is 
not necessarily onerous, it is an issue to be aware of. Similarly, 
it pays to be aware of any extra charges for peak or unexpected 
traffic demand. 
How do ISP and customer guarantee performance? What kinds 
of contracts or other agreements must be signed? What kind of 
terms can you set for maintaining adequate service from the 
ISP? Is there a standard service level agreement (SLA)? Again, 
these issues should be discussed internally before meeting with 
potential ISPs; and they should be discussed with the vendor 
before signing any service agreement. 

All networks need an architecture, whether simple or complex, and 
even in the simplest network there will be options. The simplest LAN 
is one in which one or more nodes are connected to a single transport 
layer medium, such as the one shown in Figure 29-3, with hosts all 
linked through an Ethernet switch. As will become apparent, security 
issues often (but not always) t rump performance issues--certainly, a slug- 
gish car with excellent brakes will be appropriate for some applications 
while a rocket-powered car with no brakes will be appropriate for others. 
Performance, cost, and security must all be balanced appropriately for each 
network. 

In the simple intranet, the first architectural decision, to use an Ethernet 
switch instead of a hub, affects performance: every host connected to the 
switch gets the full bandwidth of its own Ethernet. Collisions are elim- 
inated I between switch and host, and the switch takes care of passing 

1At least for full-duplex LANs, where the host-to-switch link is separate from the switch- 
to-host link; in half-duplex LANs, collisions will be significantly reduced. 



620 Part Six �9 Practical Internetworking 

@ 

.~. 

Router "X" 

0 

ISP 

Global 
Internet 

Figure 29-3: Different approaches to firewall /switch /router placement. 

frames from node to node. Adding an internet connection immediately 
increases complexity, as the issue of what to do with that link is raised. 
Figure 29-3 shows some of the possibilities. 

The simplest option is to add (or use an existing) host on the LAN to act 
as a router. Add the necessary equipment at the premises to allow a single 
host to connect to the internet through the ISP, add or modify software 
on that host to allow it to route packets to and from the internet, and the 
other hosts on the Ethernet will be connected. A host/router (in which the 
host acts either as an end-use workstation or a network server) will likely 
provide adequate performance for smaller networks. However, routing 
performance may be affected depending on the type and configuration of 
the system. Routing in SOHO intranets is not a processor-intensive task, 
but if the host must handle significant amounts of local traffic in addition 
to routing packets, its local link interface can become saturated and cause 
problems. 

The next level of complexity, adding a dedicated router, is architecturally 
indistinguishable from turning a host into a host/router,  but it should 



Chapter 29 �9 PlannJng Internet Protocol Networks 621 

improve performance as well as provide the potential for better security 
than if the system has other functions. An attacker targeting a dual-purpose  
hos t / rou te r  can focus on both router and host vulnerabilities; gaining root 
access to the host often means gaining control over everything including 
the router side. Not  only do simple systems allow improved security, but  
they also make it possible to improve performance. Designers can optimize 
hardware  and software for systems that do only one task, such as routing 
packets. 

Either of these approaches work  best for small networks to be integrated 
within organizational networks where  security services are not required 
and where  costs are to be minimized,  but most organizational networks 
require greater attention to security as well as being more sensitive to per- 
formance issues. SOHO networks can function perfectly adequately with 
internet routing performed by an old 80386 PC, but larger organizations 
with high-speed internet connectivity and many  users must  spend more 
for reliable and secure networking. 

The third and fourth approaches shown in Figure 29-3 are also architec- 
turally quite similar but not quite identical. In both cases, Router "X" is 
added  to connect two physical networks,  the product ion network con- 
nected to Switch "A" and the bastion network 2 connected to Switch "B." 
Bastion-connected nodes include the router, firewall, and any other sys- 
tems that must  be accessible to the outside such as web, ftp, and internet 
mail servers. 

The main difference between (3) and (4) in Figure 29-3 is the separation 
of the firewall and router. Each approach has benefits. Combining routing 
and firewall protection in one system reduces maintenance,  operating, 
and administrat ive costs as well as initial costs for ha rdware  and software. 
Another  t ruism of security is that the chain is only as strong as its weakest  
link, a chain with fewer but stronger links will be preferable to a chain 
with more links. Network  architects must  weigh the benefits and risks of 
deploying separate dedicated firewall and router against using a single 
combination device. 

2A bastion network serves as a buffer zone between an intranet and the internet, for place- 
ment of insecure servers, firewalls, and other security systems. The rationale for bastion 
networks is to deny a direct path in from external routers or firewalls to intruders. Attackers 
would have to crack the router/firewall and then pass through the internal router as well as 
any intrusion detection systems, honeypots or honeynets (decoy systems or networks designed 
to attract attackers away from production systems and networks). 



622 Part Six �9 Practical InternetworkJng 

29.3 Network Components 
As can be seen, the architect must balance cost, performance, and security 
in the design of any network. Each network component brings its own 
attributes: a particular network medium may be expensive or inexpensive, 
relatively secure or insecure, fast or slow. Decisions about the components 
with which to build a network depend on balancing the requirements of the 
organization with the attributes of the components--and the combinations 
of components being used. 

This section introduces some of the categories of network components and 
how they fit into modern networks. 

29.3.1 NETWORK MEDIA 

The network medium (as discussed in Chapter 2) offers a physical means 
by which signals move from one network node to another. The sending 
node injects the signal into the medium, and the receiving node plucks the 
signal out of the medium. 

For most organizations, the medium of choice continues to be some form 
of cabling capable of carrying Ethernet segments. Since the 1980s, the 
Ethernet cable of choice has evolved from coaxial (similar to that used 
by cable television providers) to CAT 5 (Category 5, a standard specified 
by the Electronics Industries Association) unshielded twisted pair (UTP) 
cable very similar in appearance to standard telephone cable, though termi- 
nated with broader RJ-45 plugs (allowing access to eight pairs of individual 
wires) rather than the RJ-11 or RJ-8 plugs used for standard telephone con- 
nections. CAT 5 designates the technical specifications of the cable. The 
latest specification for UTP wiring is CAT 5E, an enhanced version of the 
CAT 5 specification, modified to support Gigabit Ethernet. 

Network architects may have to decide what medium to use for a new 
network. Some of the variables that must be balanced include: 

Cost of medium. The actual cable and network interface devices 
that will have to be purchased. The cost of the network inter- 
face devices, including network interface cards for networked 
nodes and network hubs or switches, must also be consi- 
dered as part of the medium chosen. Thus, although wireless 
networking requires no cabling, the medium requires purchase 



Chapter 29 �9 Planning Internet Protocol Networks 623 

of wireless hubs as well as wireless network cards for all 
connected nodes. 

�9 Cost of installation. The potentially prohibitive cost of retro- 
fitting CAT 5 cable in a historic building might easily drive 
an architect to opt for wireless on a basis of cost. Planning 
a network often requires planning for future change: how 
much more expensive will it be to install CAT 6 cable, which 
is (currently) unnecessary for most users but might at some 
future date be required? How much of a site should be 
cabled? 

�9 Performance. An organization that uses very high bandwidth 
applications within the network (such as video-conferencing) 
may find CAT 6 cabling worth the added expense to buy and 
install. Most networks work well within the bounds of 100 Mbps 
or even gigabit Ethernet; there are very few computers that 
can saturate such a big data pipe (or cope with that much 
inbound data), so CAT 6 or optical cabling to the desk is rarely 
needed. 

Often a network designer will choose more than one medium 
for different parts of a network. For example, a high-capacity, 
high-performance medium like optical fiber may be specified 
for an organizational backbone or for linking nodes within 
a bastion network, where premium performance is required. 
Such diversification would be overkill for a network with a 
fractional T-33 internet connection, however. 

�9 Security. Wireless media allow interception of raw network 
data by attackers, wired media make such interception less 
likely. 

�9 Adaptability and useful life. Changing media for all or part 
of a network presents a considerable challenge, so network 
designers may attempt to design the future into their net- 
works. Essentially, this means watching the industry and 
choosing a medium that can be expected to capture and dom- 
inate an appropriate section of the market for a significant 
length of time. Clairvoyance is a helpful skill for this task, 
as it requires accurate predictions in a notoriously surprising 
industry. 

These variables can be applied to any component of the network, 
as can maintenance costs, interoperability with existing systems, and 

3In North America, a standard form in which connectivity can be purchased in 1.544 Mbps 
units. 



624 Part Six ~ Practical Internetworking 

anything else that can affect the overall network cost, performance, or 
security. 

29.3 .2  ROUTING, ADDRESSING, AND MIDDLEBOXES 

By now, the concept of routing should be familiar to the reader. As noted 
earlier in this chapter, the network architect makes decisions about where 
routers should be placed within the architecture, as well as how they 
work. A middlebox is "any intermediary device performing functions other 
than the normal, standard functions of an IP router on the datagram path 
between a source host and destination host. ''4 The implication is that these 
devices modify packets at the IP layer (or higher) without the knowledge of 
the source or destination nodes. Typically, firewalls and NATs are the two 
most common middlebox devices. The network architect decides on the 
placement of all these devices, at least within the network being designed. 

An internet-linked network will have at least one device that acts as a 
router: there must always be a system to connect the inside with the out- 
side. That router acts as the edge device for the network, relaying data from 
inside to destinations outside. In the networks run by and linking ISPs (or 
very large non-ISP networks), BGP (see Chapter 24) is used to link ISPs 
(and private networks that have multiple connections to the global inter- 
net) together through backbones, with most ISP customers using internal 
routing protocols (see Chapter 23) to allow them to link their organizational 
networks with the internet (via their ISP). 

Very large organizations may require their own internal backbones, with 
external routers running BGP at each site; smaller networks can usually 
function with one or a handful of routers running basic routing protocols. 
As was shown in Figure 29-3, router placement is never entirely trivial, 
even in the simplest network. 

Middleboxes present another challenge. Widely used for many years in 
the form of NATs and firewalls, the middlebox category includes other 
devices such as load balancers, application gateways, web caching servers, 
content/application distribution systems, and at least a dozen morembut 
the characterization of these systems as middleboxes only began when 
Lixia Zhang made a presentation at the UCLA Computer Science Depart- 
ment's Sprint Research Symposium in March, 2000. By 2002, the middlebox 

4RFC 3234, "Middleboxes: Taxonomy and Issues." 



Chapter 29 �9 PlannJng Internet Protocol Networks 625 

communications working group (MIDCOM) had already begun work on 
describing the suitability of various internet protocols for use with mid- 
dleboxes and how those protocols could be used for communication with 
and between middleboxes. Though this working group is limited to the 
firewall/NAT subset of middleboxes, the group's work will likely be useful 
for other categories. 

29.3.3 SECURITY DEVICES 

Network security tasks may be active or passive. For example, VPN devices 
and most modern firewalls actively participate in the processing of in- and 
out-bound packets; intrusion detection systems and network/system secu- 
rity scanners evaluate system/network states or contents of network data 
and then report on their findings without modifying anything. The passive 
systems usually leave the remediation to humans, while the active systems 
perform a particular task related to security without human intervention. 

These systems are more or less effective depending on whether or not they 
are positioned correctly within a network. As with most network design 
decisions, the correct position will be determined by circumstances: what 
is correct for one site will be incorrect for another. For example, a sensitive 
internal network might require its own independent VPN for communica- 
tions within the organization, as well as its own internal intrusion detection 
systems. Intrusion detection monitoring stations may not be necessary in a 
small and concentrated network within which there is plentiful bandwidth, 
but monitoring stations may be called for in situations where networks 
encompass many sites and bandwidth between those sites is at a premium. 

When systems are performing an active function on data passing from one 
domain to another, such as with packet filtering (firewalls) or securing 
sensitive traffic (VPNs), the network design should ensure that all traf- 
fic crossing domain boundaries is routed through those systems. Passive 
monitoring systems should be positioned within the network to access the 
entire network. 

29.4 Network Maintenance and Administration 

Although it is possible to build a network with no moving parts, failure 
to properly administer and maintain a network is as surely an invitation 



626 Part Six �9 Practical Internetworking 

to disaster as failure to properly service a motor vehicle. Businesses and 
other organizations increasingly rely on reliable networking as a part of 
mission-critical functions. 

Organizations often neglect to budget for ongoing support, or underesti- 
mate the amount of resources needed to provide that support. Considering 
the degree to which network availability, information security, and pro- 
ductivity all depend on reliable and robust networking, cutting corners on 
network support can be a very costly mistake. Even the smallest organi- 
zation will benefit from assigning the task of network management to 
a specific individual (as well as providing a backup plan for when that 
individual is unavailable), and allocate the appropriate resources (includ- 
ing budget items for software, hardware, training, and tools, as well as 
personnel costs). 

Some of the ongoing tasks associated with network management and 
administration include: 

Evaluation. Most network devices record performance information 
including data about the volume, origin and destination, and type 
of traffic as well as network errors, during the time the systems are 
running. Some entity (whether a person or a system) should monitor, 
collect, and analyze this information, along with any other perform- 
ance data that may be required to evaluate how well the network 
is working. With this information in hand, the network manager 
should be able to determine the degree to which an ISP is meeting (or 
falling short) of service level agreements (SLAs). Other uses of this 
information include tracking down potential legal liabilities in the 
form of inappropriate use of the internet, avoiding network outages 
as a result of growth in demand outstripping the ability of the net- 
work to cope with increased traffic, and opportunities for improving 
performance through reorganization. 

Maintenance. System bugs or security vulnerabilities are bound to crop 
up on even the simplest solid-state internet appliance. Although it is 
not possible to predict where or when these problems crop up, net- 
work administrators should monitor vendor and network security 
web sites and mailing lists for reports of any vulnerabilities or bugs in 
the systems they administer. Most vendors release fixes to these flaws 
fairly quickly, but the most vigilant netadmins will remove com- 
promised systems from service immediately when a flaw has been 
reported (replacing them with systems about which the netadmin 



Chapter 29 �9 Planning Internet Protocol Networks 627 

is more confident). The majority of successful system and network 
attacks launched over the internet depend on vulnerabilities that 
have been reported and fixed by the vendor. They succeed only when 
someone fails to load the patches. 

Authentication. An important facet of security, authentication is the task 
of identifying an entity for the purpose of allowing it access to a 
system. Entity, rather than person, because a system or a process 
may initiate contact with a network resource. The scope of this task, 
coupled with authorization, may be very limited in a smaller organi- 
zation but can quickly become a huge task as the number of systems 
and users increases. 

Authorization. Once an entity has been authenticated, the next task 
is to determine what resources that entity is permitted to access. 
Authenticated users may be authorized to access any system or net- 
work resource (although such unlimited access is at best unwise) or 
restricted from accessing any system or resource on a network (ter- 
minated employees may find their network access restricted in this 
way). Although authorization and authentication for specific systems 
may both be administered by departments rather than by central- 
ized network support groups, single sign-on (SSO) systems are often 
deployed to centralize the task of administering and managing user 
accounts. 

Planning. Any organizational change is likely to precipitate changes to the 
organization's network requirements. Netadmins must be involved 
early in the planning of such changes; even in the absence of such 
changes, they must actively plan for changes in requirements related 
to new applications or other technologies as well as changes in the 
business uses of the network. 

Staffing. Every network should be maintained by experienced and trusted 
netadmins, whether hired as full- or part-time employees or brought 
in as consultants. Given the degree to which a netadmin has access 
to an organization's data, thorough background checks should be a 
part of any hiring process for staff as well as employees. 

Support. Proper network function demands that one or more experts be 
available for resolving network issues. Network services such as 
mail, web, file/printer sharing, and even automated backup and 



628 PartSix �9 Pradicallnternetworking 

configuration, must also be supported and maintained. In well- 
managed networks, netadmins will either support or assist in the 
support of all these systems, even if all they do is to monitor and act 
as an emergency support service. 

Ongoing network tasks may include everything from installing cables 
to managing data communications services. The complexity and cost of 
providing these services will increase as the network grows. The best 
netadmins are the ones who are best able to manage that growth within 
their budgets. 

29.5 Offering Services 
Networks only make sense when services are provided over them (even if 
those services are peer-to-peer applications in which there are no servers). 
Netadmins must be mindful of the services to be offered--and the ser- 
vices that are to be explicitly excluded. As with any other network entities, 
netadmins should be aware of every authorized service on the network as 
well as the contact information of the person or group responsible for it. 

Organizations commonly field some or all of the following services for use 
by their staff and others: 

Web. Most organizations maintain a web presence of some sort, even if 
only a single page with basic contact information. Web services may 
be provided by internal network support staff, by external consultant 
or service providers, or by the same groups that develop web content 
from within sales, marketing, public relations, or other departments. 

Mail. Internet mail services are typically managed centrally, often using 
organizational standards for client and server software. Products 
such as Microsoft Outlook may add proprietary features to basic 
internet standard mail protocols. Netadmins may be called upon to 
manage an organization's mail server architecture centrally, with 
servers placed remotely at remote or branch offices. Netadmins 
should be knowledgeable about the differences in system require- 
ments for deploying different mail protocols. For example, IMAP 
offers the greatest flexibility for a mobile workforce but also requires 
close monitoring to remove unsolicited commercial mail (also known 



Chapter 29 �9 Planning Internet Protocol Networks 629 

as spam) as well as avoiding scalability problems as the mail stores 
grow. 

FTP. Organizations often use FTP servers for both internal and external 
file exchanges. Anonymous servers may be set up to distribute soft- 
ware or to accept contributions from individuals. These services may 
be offered on their own or in conjunction with more sophisticated 
groupware applications. 

Telnet/SecureShellProtocol(SSH).  Legacy applications running on 
mainframes may still be accessed over the internet only through ter- 
minal sessions. Wherever possible, such services should incorporate 
security on top of the basic Telnet specification, with SSH or TLS/SSL 
(Chapter 16) or with Telnet security extensions. 

LAN. Traditional networks offer services such as file and printer sharing 
through proprietary software such as Microsoft's Windows network- 
ing or Novell's NetWare; Samba is an open source networking 
application similar to Windows. LAN services may be administered 
locally or centrally, but may be considered departmental resources. 

Dial-in. Netadmins serving a mobile user population may offer "dial-in" 
services for remote network access. Remote users may use telephone 
lines and modems to dial in to a remote access server (RAS), or they 
may be able to access network services remotely through a standard 
local internet connection. When connecting through a public IP net- 
work, many organizations require the use of data encryption and /o r  
authentication with virtual private network services. Netadmins 
offering dial-in services should make every effort (including mon- 
itoring in-bound data calls routed directly to individual computers) 
to prevent unauthorized use of corporate systems. 

Intranet/extranet. Web services may be offered internally to an organiza- 
tion's employees as well as externally to corporate partners and /o r  
customers. Restrictions on the use of these systems can be imple- 
mented based on user logins or other criteria. 

Backup. Centralized backup services provide a significant benefit for end 
users as well as system administrators managing departmental main- 
frames. Before offering network backup, however, managers must 
consider the impact on network traffic and bandwidth, available 



630 PartSJx ~ Practical Internetworking 

archival storage, backup technologies and strategies, and protocols 
for backup techniques, retrieval, and off-site storage. 

Configuration]Upgrades. In an effort to reduce total cost of ownership, 
network managers may wish to offer configuration support by 
offering software upgrades as well as centrally specified system con- 
figuration services over the network. Benefits include the potential 
for improved support on individual systems and better compliance 
with required system updates and standards. On the down-side, this 
kind of centralized access to corporate systems offers an attractive tar- 
get to attackers seeking to compromise individual systems or entire 
networks. Also, local system administrators may be taken by surprise 
by changes in the absence of appropriate and timely notifications. 

Security. Network managers should be very clear about what security 
services are to be offered, and what should be the responsibility 
of individual system users and administrators. Security is increas- 
ingly a core feature of internet protocols and applications. In most 
organizations security services are mandated centrally; some or 
all responsibility for system administration and support may be 
delegated to remote sites. In general, organizations take on respon- 
sibility for their own network security either by doing it themselves 
or hiring outside consultants to provide it; ISPs and other service 
providers typically do not provide any security services to consumers 
of internet connectivity. 

The degree to which security concerns drive much corporate networking 
activity cannot be understated. Providing for the continued integrity of a 
network is as important as providing for uninterrupted electrical power or 
telephone service. The next section introduces some of the network security 
issues that the network administrator should be prepared to deal with. 

29.6 What About Security? 

The degree to which a network is secure depends upon the combination 
of its systems, services, and attributes of the network's components. Users 
often see security as little more than the rules concerning the appropri- 
ate use of passphrases: how frequently they must be changed, passphrase 
lengths and composition requirements, and so on. Defined more broadly 



Chapter 29 �9 Planning Internet Protocol Networks 631 

network security addresses anything that might cause a network resource 
to be unavailable or unusable in any form. Security tasks may be as dis- 
parate as providing for emergency power supplies to managing server 
backups to implementing secure web commerce: 

Uninterrupted Power Availability. Small uninterruptable power sup- 
plies (UPSes) provide enough backup power to allow PCs to be 
gracefully shut down in the event of a power failure. Data center 
and network managers must provide more powerful UPSes capa- 
ble of powering much larger systems for longer periods of time, to 
allow the sometimes lengthier power-down processes. Backup power 
systems should be tested periodically to ensure they work properly. 

System/Data/Network Backup. Netadmins must provide for backup of 
all network systems, including custom system configurations such 
as those for firewalls and routers, which may be time-consuming to 
reproduce. Netadmins should keep older versions of system software 
so they can reverse upgrades for servers, touters, and other devices 
in the event that the newer versions prove unusable (due to security 
or other flaws). 

Security Updates. Netadmins must monitor system software upgrades, 
revisions, and patches and evaluate when to install them (and be 
prepared to revert to less current versions if the upgrade proves inap- 
propriate). Automated tools and services may be available to check 
daily (or more frequently) for news of vulnerabilities and availability 
of fixes. 

Data Encryption. Data privacy is most often provided through encryption, 
although not always completely effectively. Data can be encrypted 
before it is stored to disk if it must be kept private from anyone with 
access to the system. Data can be encrypted prior to being sent out 
onto the internet to prevent interception by eavesdroppers. Data can 
be encrypted by applications prior to being passed down the pro- 
tocol stack. Maintaining privacy over a public network involves a 
complex set of tasks in addition to those related to encrypting data: 
there are algorithms and protocols for the secure exchange of encryp- 
tion keys, and for proving identity, and for sharing secrets. There are 
also well-known and hard-to-thwart attacks against encrypted data. 
The netadmin should understand how encryption, public key cryp- 
tography, and digital signatures work; what applications use them; 



632 Part Six �9 Practical Internetworking 

and under what circumstances they can be defeated or compromised. 
It does little good to encrypt data transmitted over the internet if it is 
stored to disk in plain text on an unsecured system. 

Data Integrity. Network data integrity relies on the use of strong and 
secure data hashes as well as use of public key cryptography. The 
goal is to detect and discard (and/or log) any attempts to modify data 
in flight. Secure hashes provide a far more reliable mechanism for 
detecting changes than that offered by protocol checksums. Digital 
signatures can be used both to prevent data tampering and to link 
data to the holder of a specific private key--the data can be linked to 
a specific entity only if we trust that no attacker has stolen the key. 

Authentication/Authorization. Already discussed earlier in this chapter, 
these tasks often fall on the netadmin. 

Intrusion Detection. Although computerized systems can help, humans 
do best at discerning patterns of benign internet activity and those 
of attacks. No single tool is sufficient for this task, and many orga- 
nizations are choosing to contract with security service providers 
to monitor their network activity for malicious intruders. Netadmins 
are often key participants in the process of setting up intrusion detec- 
tion systems as well as determining where they must be placed 
and maintaining them; when outside contractors are brought in, the 
netadmin may be called upon to assist in setting requirements, choos- 
ing vendors from whom to request proposals, and evaluate those 
proposals. 

Intrusion detection systems of any kind are literally worthless unless 
an organization has a formal incident response process set up (see next 
item). 

Incident Response. Although it is important to know that an intrusion or 
attack is taking place, without a set of procedures for responding to 
those events, the knowledge may be of little worth. Following one's 
first instinct, to disconnect or power off the system or network being 
compromised, is often not the best response to an attack. Formal 
incident response protocols may include attempting to identify the 
intruder, attempting to identify the attack type and vulnerability used 
in the attack, gathering forensic evidence (evidence of sufficient quality 
to be used in legal proceedings) to be used in the event of legal action, 



Chapter 29 �9 Planning Internet Protocol Networks 633 

identifying the systems and networks that have been compromised, 
isolating systems and networks that appear to be uncompromised, 
determining the degree to which systems/networks have been com- 
promised, remediating (fixing) the damage, and plugging the holes. 

Computer security intrusion response teams (CSIRTs) consist of network, 
system, and other administrators and managers as well as technical, 
legal, and executive members, many of whom will also help in for- 
mulating incident response protocols. Network architects must be 
aware of the need for such teams and make sure that funding and 
staff are allocated to the task. 

Interdepartmental Coordination. Whenever employees terminates em- 
ployment, their authorization to access corporate systems also 
terminates. Netadmins should coordinate termination of former 
employees' network access with corporate personnel departments. 
See also Continuity, below. Likewise, netadmins often coordinate 
responses to network attacks, especially when incident response pro- 
tocols require action by members of different departments (see items 
on intrusion detection and incident response, above). 

Disaster Response/Planning. Netadmins don't have primary responsibi- 
lity for an organization's disaster response and contingency plan- 
ning processes, but they should be involved in such planning and 
should initiate their own programs in the absence of organization- 
wide efforts. Network emergencies may occur independently of any 
more general emergencies, as when a key service provider loses 
connectivity. 

Network Continuity. No network can be considered secure without up- 
to-date plans for continuity. For example, who terminates a network 
administrator's access to sensitive organizational systems when the 
netadmin quits or is fired? Who responds to emergencies that occur 
while the netadmin is on vacation? Who takes charge during an 
emergency when the netadmin is injured or dies? 

System and network security are critical aspects of any organization's 
information technology mission. The corporate investment in systems goes 
far beyond the cost of hardware, software, support services, custom pro- 
gramming, maintenance and any other cost of owning and running those 
systems. To an almost frightening extent, an organization's business exists 



634 Part SJx ~ Practical InternetworkJng 

on and operates through the mediation of computers. Failure to protect the 
systems could result in the failure of the entire organization. Given that 
there is no way to ensure perfect security for any system or network (short 
of encasing it in concrete and submerging it in the ocean depths, after first 
removing all data), the wise network administrator will adopt a policy 
of constant vigilance to minimize the potential threat and the potential 
damage. 

Godel, Escher, Bach: An Eternal Golden Braid, by Douglas R. Hofstadter (1979) 
remains a must-read book for anyone who works with computers and 
particularly for anyone interested in system and network security. Among 
many other things, Hofstadter proves the impossibility of creating a formal 
system (i.e., a computer) with perfect security. 

29.7 Chapter Summary 
Network design and management, like so many other topics covered in 
this book, can only be introduced in a single chapter: anyone seeking com- 
prehensive and detailed help designing and deploying a TCP/IP network 
of any complexity should seek further help, whether from a consultant, 
technical education, the web, or other more specialized books. 

In this chapter we only introduce some of the challenges that must be 
met by the network designer, including choosing a network architecture 
and desiging the network, assembling the network components, allocat- 
ing resources for network support and maintenance, choosing network 
services to offer to users, and how to approach security issues. 

Security issues are raised in almost every RFC published by the IETF, as 
they are in almost every published network protocol. The next chapter 
takes a look at some of the more general issues related to internet security. 



Internet Security 

It seems that since the late 1990s, a staple of the news media has been 
the scary internet story, in which journalists and broadcasters breath- 
lessly report on the endless and sometimes seemingly futile war waged on 
computer criminals of one type or another. These dastards impose their will 
on individuals by ensnaring them in fraudulent schemes, enticing children 
into corrupt behaviors, and illegally assuming honest citizens' identities 
and using their credit cards without permission. These same villains deface 
web sites; steal computer, network, and telephone service; pirate software; 
abuse copyrights of all kinds; and otherwise bedevil corporations as well 
as government agencies. 

These are all serious problems, but reporters tend to exaggerate the impor- 
tance of the internet as the cause of these problems, just as they do almost 
any new technology that is value-neutral but that can be used for both 
good and evil. New technologies enable new techniques for committing 
crimes, and criminals avail themselves of those technologies if they can. 

The telephone prompted similar outcries in its early days, as a useful tool 
for perpetrating frauds as well as for crimes against people. Despite its long 

635 



636 Part Six �9 Practical InternetworkJng 

history, telephone-related crime shows no signs of abating. Likewise the 
automobile provided an excellent means of escaping the scene of a crime 
and still serves that purpose. 

Certainly, the internet is a new technology that can be used in the commis- 
sion of crime. It is hardly unique in being used this way, but the degree to 
which the internet facilitates harm done without the knowledge of the 
victim may be greater than any other technology; more frightening is 
the degree to which harmful acts may be automated and repeated over 
the internet. 

That security is a key element of the TCP/IP internet can be attested to 
by the degree to which security-oriented protocols such as IPsec, secure 
shell protocol (SSH), transport layer security (TLS), and secure sockets 
layer (SSL) have been created and deployed. All new RFCs must include 
a section that discusses security implications raised by the specification, 
protocol, or topic of the RFC. Software vendors routinely disavow all lia- 
bilities associated with the use of their software, and the networking and 
computing trade presses report almost daily new vulnerabilities, flaws, 
and security exploits (instances where attackers have successfully created 
an attack technique). 

Throughout this book we've discussed security issues as they relate to the 
TCP/IP protocols. In this chapter, we will take a brief look at internet 
security issues and see how they relate to the protocols--and how they 
don't. We'll begin with a brief and informal discussion of security issues, 
followed by a discussion of the more prominent internet security threats 
and solutions that may have relatively little to do with technology. 

Hundreds of books about security are available, including some very good 
ones and some not so good ones; rather than attempt to comprehensively 
introduce security here, we will take a less formal look at some of the issues 
and paradoxes inherent in the common approaches to network security. 

30.1 Security Concepts 
Security is about keeping safe the people and things you care about. 
For an individual, that may mean doing a number of things: 

Securing the home. Activities might include making sure all 
the locks are strong, the doors are reinforced. Making windows 



Chapter 30 �9 Internet SecurJty 637 

burglar-unfriendly, lighting the exterior at night, perhaps even 
hiring a security service. 

�9 Securing personal safety. Activities might include installing 
fire extinguishers and smoke detectors throughout the house, 
learning self-defense, teaching one's children how to be safe, 
avoiding dangerous situations, and so on. 

�9 Securing personal health. Activities include prophylactic med- 
ical treatments (flu shots, annual medical and dental examina- 
tions, exercise, healthy diet) as well as education and use of 
safety devices (seatbelts, helmets, knee/e lbow pads). 

�9 Securing financial health. Activities include the purchase of 
health insurance as well as life insurance and homeowners 
(or renters) insurance. Maintenance of balanced investing pro- 
grams, retirement investment, prudent  spending and careful 
investments; keeping an up-to-date will. 

Notice that all of these activities are related to security, but they are also 
spread all over the map: there is no single store you can go to for "one- 
stop solutions for personal security." You may have the strongest locks on 
your doors, but if your children don't  know that they should never allow 
a stranger in the house, they are not safe. If your children know better 
than to invite a stranger in, and your locks are strong, but you leave your 
back door unlocked, you are not safe. And if you take every precaution 
but your house burns down anyway, you are not safe unless you have 
sufficient insurance. 

Anyone who expects internet security protocols to offer a single-source 
solution to every security problem are deluded. Network security depends 
on the people who use it, as well as on the immutable laws of computing 
and the laws of nature. 

30.2 The Human Factor 

Organizations likewise must secure their people (employees) and things 
(assets). There is no single solution, and there is certainly no technology 
that can make a corporation or its network entirely safe. Putting aside the 
problems of securing physical assets and human resources, organizations 
need to protect their digital assets in a number of ways. Corporate networks 
are vulnerable in a number of ways: 

Denial of service (DOS). An attacker may deny legitimate users 
access to a resource by actively attempting to overloading a 



638 Part Six �9 Practical Internetworking 

system or network. In this case, the purpose of the attack may 
actually be to deny access to the resource, or it may be to put 
the resource into a state in which it can be subverted, or it may 
even be to cover a more subtle attack. 

�9 Information theft. The attacker attempts to gain access to 
some proprietary or otherwise sensitive information held by 
the organization. It may be insider information, or a private 
database, or exchanges of internet mail, or resumes, or the 
corporate compensation schedule. When any sensitive data 
passes from one system to another across a network, there 
will be at least a moment when it may be vulnerable to 
interception. 

�9 Information damage. Web site vandals may have a political axe 
to grind, or simply take the same joy as urban taggers defacing 
subway cars. Attacks may be obvious (as with web site deface- 
ments) or they may be subtle, as when a disgruntled employee 
executes a small program that periodically extracts $0.50 from 
a few random accounts. 

�9 Malicious software. Virii, worms, trojan horse programs, back- 
door programs, all can be considered malware. Individuals with 
assorted motivations may release these programs intending to 
damage a specific victim, or just become famous, but a suc- 
cessful piece of malware will invariably cause damage and /o r  
result in denials of service. 

The security technologies available to reduce vulnerability to these attacks 
can only reduce vulnerability--they cannot eliminate vulnerability. In 
general, the technologies aim to provide security through the following 
goals: 

Authentication: Ensures that an entity attempting to access resources is 
who it claims to be. 

Authorization: Controls what resources an entity may access. 

Data integrity: Ensures that data has not been modified or damaged. 

Privacy: Keeps sensitive data accessible only to entities that can be 
authenticated as having proper authorization. 

If all the entities involved in network security were purely mechanical, 
rather than human, network security might be a less difficult problem. 



Chapter 30 �9 Internet Security 639 

Security is as much an issue of human factors as anything else. One can 
approach perfect certainty that all entities accessing a network resource 
are properly authenticated (by submitting valid user ID and passphrase, 
token, and even biometric data), as well as properly authorized to access 
a resource (by comparing the ID with resource permissions)--but all 
that security is worthless if the person who is accessing the resource 
is a spy. 

Network security protocols can protect data in flight, from the moment 
it is entered into a computer or other system to the time it arrives at its 
destination, but no protocol can prevent the social engineering, or extract- 
ing of information from a victim by a clever attacker. Time and again, 
attackers gain access to other people's systems by simply asking for it. 
A common ploy is for the attacker to pose as a system support technician 
and request that the victim log into his system to "check on something" 
so that the attacker can extract authentication data (perhaps through a 
previously installed trojan horse program, or perhaps simply by shoulder 
surfing, or looking over the user's shoulder while she enters passphrase 
and ID). 

Although it is possible to implement security schemes that are 
intractably difficult to break through the means of technology, those 
same schemes invariably are subject to attack through extortion and 
bribery. 

30.3 Laws of Computing 

If one allows that computing and networking systems are mechanisms, 
then the art and science of building and maintaining those systems should 
be considered a form of engineering. A structure can be destroyed by a 
bomb, a delicate instrument may be rendered useless by sand in an escape- 
ment, a mechanism may be affected adversely by excessive magnetic fields; 
computers are also sensitive in this sense, because they can be vulnerable 
in many different ways. 

First, as physical entities, networks and their components are subject to 
theft, fire, flood, or tinkering (whether by hired attackers or by curious 
children, the effect may be the same). Achieving system security frequently 
means adding physical security measures as well as designing, testing, and 
maintaining a catastrophe response program. 



640 Part Six �9 Practical Internetworking 

Other aspects of the systems also present vulnerabilities: how secure is 
the software running on the systems? How secure is the configuration? 
How secure are the passphrases selected by system users? Although eas- 
ily guessed passphrases can be screened out by the system, and frequent 
changes mandated by system policies, it can be difficult to prevent users 
from writing down those passphrases (how else to remember them, if they 
are hard to guess?). 

Configuration and implementation vulnerabilities may be more difficult 
to deal with. Busy system administrators may install their own backdoor 
software to facilitate remote systems support while at the same time open- 
ing up those systems to outside attackers. Or those same admins may 
add a "secret" administrator account to all the systems they manage, or 
even configure those systems to accept without question logins from the 
administrator's PC. 

Purposeful security lapses like these can be reduced or even prevented 
with education and corporate policy, but configuring and implement- 
ing the complex software used for internet mail services and the DNS 
is another matter. Accepting default values for many systems may mean 
leaving a door wide open for attackers; improperly configuring systems 
can also leave a network vulnerable. 

Implementation presents another source of vulnerability. The strongest 
encryption algorithm in the world will not prevent intruders from 
decrypting messages that have been encrypted by software that does 
not implement the algorithm properly. Early versions of the Netscape 
web browser implementing encryption were vulnerable not because of 
any flaw in the encryption algorithm but because the program chose 
keys that were based on the system clock. As a result, attackers 
could narrow down their brute-force searches of the keyspace suffi- 
ciently to consistently read encrypted data almost as fast as it could 
be encrypted. The situation is parallel to building the world's most 
impenetrable vault and then leaving the key somewhere in the vault's 
antechamber. 

Other implementation problems arise from an absence of good program- 
ming practices in much of the industry. Frequent and intense reviews of 
software code generally reveal flaws and vulnerabilities, usually related 
to poor error-checking. Buffer overflow attacks are made possible when 
software checking of data input is not done. The Ping of Death attack 
relies on the ability to send a ping with a too-large payload to a host 



Chapter 30 �9 Internet SecurJty 641 

that doesn't check payload length against the allowed maximum, with 
disastrous results. 

30.4 Laws of Nature 

Godel's Theorem proves, among other things, that no formal system can 
completely describe itself without going outside the system. The details 
are available in Douglas Hofstadter's Godel, Escher, Bach: An Eternal Golden 
Braid, required reading for anyone who depends on computers for their 
livelihood. 

In metaphysical terms, Godel's Theorem demonstrates that for every 
Superman, there will be some Kryptonite. For every software program 
(that does anything interesting) there will be some input that causes the 
software to break. For every method of securing a system, there will be 
some attack that can succeed in breaking in. 

The task of security in networks is similar to the task of security in 
national defense: every measure has a counter-measure, and every 
counter-measure has a counter-counter-measure (and so on, infinitely). 
Country A develops a shield that protects its borders against conven- 
tional weapons, so Country B develops new types of weapons that can 
penetrate the shield. Country A then develops a thicker shield, causing 
Country B to develop stronger weapons (or perhaps a new delivery sys- 
tem that bypasses the shield). For those without time or patience to read 
Hofstadter's book, Dr. Seuss presents a more concise version in The Butter 
Battle Book. 

Perfect security is impossible, although perfection can be approached as 
long as you are willing to expend the resources to cover up every crack and 
every loophole in the system. Unfortunately, every patch on the original 
system may close some vulnerability but it likely opens up some new 
vulnerability. 

Ultimately, the issue of network security must be understood as nothing 
more than another aspect of "security" in general. There are risks, and 
there are ways to reduce those risks--but there is no way to eliminate 
them entirely. Sensible managers understand that and do what they can 
to reduce risk to a sensible level rather than throw endless resources into 
a futile effort to create perfection. 



642 Part SJx ~ Practical Internetworking 

30.5 Chapter Summary 
Security can be enhanced through the use of technologies, but it can never 
be provided entirely by those technologiesmnot as long as there are non- 
technological systems (i.e., people) involved. Despite the fact that the 
TCP/IP protocol suite and application protocols that run on top of it are 
all openly specified and easily intercepted and interpreted, and despite the 
open nature of the security protocols and algorithms themselves, security 
on the internet remains a realistic goal. As long as one is willing to use the 
appropriate tools, and use them appropriately, these open protocols can 
be used in a reasonably secure way. 

We explored some of the challenges that must be faced when attempting 
to secure networks, the most obvious being the potential for subversion 
of networks and other systems through social engineering. In the next 
chapter, we look at the simple network management protocol to see how a 
single application can be used to manage the widest imaginable diversity 
of systems. 



I I  " I I  

Simple Network 
Management Protocol 

Network management covers a lot of ground: anything from workstation 
configuration and assignment of internet protocol (IP) addresses through 
network design, architecture, and topologies can be considered within the 
scope of the network manager. Network management functions can be 
broadly considered as falling into one of the following categories: 

�9 Providing network service without interruption 
�9 Resolving network service interruptions 
�9 Avoiding network service interruptions or degradation 
�9 Deploying and maintaining network systems, hardware and 

software 

The principles of network management are reasonably uniform, whether 
the network being managed is a high-speed Ethernet running TCP/IP, 
a token-ring network running Novell NetWare, a DECnet network, 
or an AppleTalk network. However, when managing an individual 

643 



644 Part Six �9 PractJcal InternetworkJng 

network, the manager has the benefit of a uniform network medium 
over which network management tools can operate at the data link 
layer. 

Managing an internet poses some special problems, though the internet- 
work manager still has to be able to provide consistent, reliable, and 
efficient network services with minimal interruption, and to be capable 
of handling increasing or changing network demands. 

Any protocol or mechanism for managing internetworks must allow net- 
work devices and systems of virtually any type to communicate statistics 
and status information to network management stations, with minimal 
impact on the networks being monitored, and independent of the under- 
lying network transmission medium. Network management workstations 
need to be able to request management information from remote managed 
nodes, and they must be able to make changes in the way the remote node 
handles network traffic without knowing anything about the particular 
node itself. 

31.1 Managing Networks with SNMP 

The standard TCP/IP network management protocol, simple network 
management protocol (SNMP), provides a simple and elegant framework 
in which internetwork management tools can be designed. Vendors design 
SNMP support in their network devices like routers, bridges, and network 
servers, so those devices can be monitored and managed from network 
management stations. These network management stations implement 
SNMP with a user interface, usually a graphical one, that makes manage- 
ment tasks simple. The SNMP protocol itself is not always easy to describe, 
particularly since it uses formal constructs and tools from the discipline of 
computer science to define a set of tools usable across a wide range of 
systems and devices. 

Internetwork management, through SNMP implementations, relies largely 
on the ability of the protocol to monitor network statistics, modify network 
routing tables, and change the status of network links and devices. The 
framework in which all this information is gathered and stored is called 
a Management Information Base (MIB). This is a hierarchical representa- 
tion of data that offers a standard representation of information across all 
network and vendor boundaries. 



Chapter31 �9 Simple Network Management Protocol 645 

Other tools in the internetwork managers toolbox, some discussed ear- 
lier, relate to management issues on a smaller scale. For example, ping 
and traceroute (Chapter 20) are both excellent diagnostic tools for trou- 
bleshooting connectivity problems. Even the use of some standard TCP/IP 
application, like FTP or telnet, can offer insight into connectivity problems. 
Likewise, use of the loopback interface (Chapter 19) can help pinpoint 
problems as well. To these can be added the network traffic analyzer, a 
device that connects to a network and collects network traffic flowing on 
the wire. By carefully filtering out unwanted types of traffic, it is possi- 
ble to diagnose network problems and verify that hosts are sending and 
receiving properly. 

Netstat is another program often included with TCP/IP application suites 
to provide information about the host and its TCP/IP connections. A brief 
description of netstat and its output follows the sections on SNMP. 

31.2 Simple Network Management Protocol 
The whole idea behind the SNMP is to specify a mechanism for net- 
work management that is complete, yet simple. Essentially, information 
is exchanged between agents, which are the devices on the network being 
managed, and managers, which are devices on the network through which 
the management is done. The terms agent and manager are operative when 
discussing network management rather than client and servermjust as a 
client can also be a server, so an agent can also be a manager. Since clients 
and servers may also be, at times, agents and managers, the more general 
terms are usually avoided when discussing network management. 

Items of interest to the manager include things like the current status of 
a network interface on a router, the volume of traffic being passed by a 
router, how many datagrams have been dropped recently, or how many 
error messages have been received by a router. The network manager may 
want to disable a network link, reroute traffic around a downed router, or 
even reboot a router or gateway. 

There are a lot of possible transactions between the manager and the agent, 
and they may vary widely with the different possible types of devices that 
can be agents. Attempting to implement all the different commands that 
a manager could possibly send to an agent would be very difficult, par- 
ticularly for new devices. Instead of attempting to re-create every possible 



646 Part Six �9 Practical Internetworking 

command, SNMP simplifies matters by forcing different commands to be 
expressed as values that are stored in the devices memory. For exam- 
ple, instead of including a down link command to close a network link 
on a router, SNMP agents maintain a variable in memory that indicates 
whether a link is up or down stored along with information about each 
of the routers network links. To down any given link, a manager simply 
sends the value corresponding to down into the link status variable. 

Possible transactions between agent and manager are limited to a handful: 
the manager can request information (get and get-next) from the agent 
or it can modify information (set) on the agent. Under certain specific 
circumstances, the agent will notify the manager of a change in status 
(trap) on the agent. 

Some of the data to be retrieved or changed are stored as simple variables, 
like error message counters, but other information is stored in tables, like 
interface data that includes hardware addresses, IP addresses, hardware 
type, and more, for each network interface. 

By keeping the implementation of the protocol fairly simple through lim- 
ited commands, the barriers to implementing SNMP on a device are kept 
low, which also means that it can be implemented widely, thus making it 
more useful. 

Another implementation issue for any network management protocol is 
whether to have agents be active and transmit updates about their status 
on a regular basis or have them be passive and polled periodically by 
the manager to check on their status. Each has its own drawback. When 
agents are passive, major problems may not be detected in a timely way 
if the manager doesn't check frequently enough, and undue load on the 
network may result if the manager checks too frequently. On the other 
hand, forcing agents to report status changes puts pressure on the network 
devices computing resources and can stress the network further when a 
problem occurs. 

SNMP permits the use of traps from agents to signal changes to man- 
agers, but the model encourages the use of a single trap to be sent when 
an important event occurs and relies on the manager to request further 
relevant information from the agent. 

Reliability is another issue for network management. It might seem 
that a reliable protocol like TCP should be specified to make sure that 



Chapter 31 �9 Simple Network Management Protocol 647 

management information gets passed reliably between agent and man- 
ager. However, UDP is the TCP/IP protocol used for SNMP, for reasons 
that go beyond the fact that most SNMP exchanges are request/response 
pairs. One of the most important functions for network management is to 
resolve problems that occur with transmitting or routing network traffic. 
Network management information is more important at times of network 
failure or reduction in service than at any other time, which also happens 
to be the time that reliable protocols like TCP are more likely to fail to con- 
nect. These are also the times when any extra load on the network is least 
welcome. Finally, it should be recalled that a protocol may be reliable, but 
if the link over which it is being sent has been severed, no data will get 
through. 

31.3 SNMP Commands 

Five different messages are possible with SNMP. Three cover transactions 
initiated by a manager (read and write an individual variable on an agent; 
read a group of variables on an agent), the fourth defines the response from 
the agent to any of these requests from a manager, and the fifth defines the 
reporting of an extraordinary event (a trap) by the agent to the manager. 
Table 31-1 shows these commands; SNMP agents listen to UDP port 161 
for requests from SNMP managers, and the SNMP manager listens to UDP 
port 162 for traps from agents. 

By encoding device status within variables, rather than implementing net- 
work management commands, SNMP makes it possible to manage many 
different types of devices with a minimum command set. 

By using two separate ports for SNMP, one for sending management 
requests and one for sending agent traps, network devices can function 
as both an agent (reporting traps and processing requests from managers) 
and as a manager (making requests of and receiving traps from agents) 
without confusion. 

31.4 Structure of Management Information 

The methods for representing managed information objectsmthe data 
items that network management is concerned with, like network traffic 



648 Part SJx ~ Practical InternetworkJng 

Command Description 

get-request 

get-next-request 

set-request 

get-response 

trap 

Retrieve the value of a specified variable on the 
agent 

Retrieve the value of a specified variable on the 
agent after the one indicated in the request, used 
for traversing tables where there are multiple 
"rows" of information; for example, when getting 
information about a router's network interfaces 

Change the value of a specified variable 

Respond to manager requests with the value of 
the item being queried 

Notify the manager of a change in status or some 
event on the agent 

Table 31-1: SNMP commands. 

counters and interface addresses--are relatively complicated and strictly 
defined by sets of formal rules. A basic understanding of how man- 
aged information is stored is useful, but few people other than those 
responsible for designing SNMP management software need more than 
that. 

The Structure of Management Information (SMI) is a framework within 
which management information can be named and referenced authorita- 
tively. One way to think about the SMI and MIBs is to imagine that TCP/IP 
networks are simply vastly distributed databases, containing nothing but 
network management information stored in network devices like routers 
and servers. These bits of the database may be stored in various differ- 
ent forms at the different network devices, but using a standard schema 
for organizing the data means the devices that store the data know they 
are required to report that data in a particular form when asked for it, 
and to store it locally in a form that they can interpret according to this 
standard. 

Object identifiers for management information are organized like the 
Domain Name System, with an unnamed root parenting three nodes: 
itu(0), iso(1), and joint-iso-itu(2). Each node has a name and a num- 
ber: the name is for people; the number is used by computers for 



Chapter 31 �9 SJmple Network Management Protocol 649 

simplicity of computing. These top nodes represent the partitioning 
of the management information space and allocation of a section for 
joint use by the International Telegraph and International Telecommuni- 
cations Union (ITU) and the International Organization for Standardi- 
zation (ISO). 

Beneath iso(1) are four more nodes used by the ISO to assign standards, 
for use by OSI (Open Systems Interconnection, an effort underwritten 
by ISO in support of open network standards) registration authorities, 
member organizations of ISO, and other organizations that ISO identifies. 
TCP/IP management information falls under the last category, and it is 
listed under the Department of Defense (DOD). As shown in Figure 31-1, 
the MIB (version 2) is listed as a node six layers down in this structure. 
(Figures 22-1 and 22-2 show some of the relevant nodes in this framework 
for simplicity.) 

The use of this system ensures that each managed item can be 
uniquely identified as well as related to its parent nodes, just as the 
Domain Name System (DNS) does for domain and host names. Also 
like DNS, items in this framework have no inherent way to determine 
whether or not an identifier is a leaf node (a node actually referring 
to an item of management information rather than containing other 
nodes). 

The labels are generally used to make the management object identifiers 
easier to deal with for people, whereas computers use the numbers, which 
are easier for them to deal with. So, the representation of the MIB itself 
within this framework is, more formally, 

iso. org. dod. internet, mgmt. mib 

and can be expressed for use by computer as 

1.3.6.1.2.1 

Figure 31-2 shows the main groups in the MIB. Other structures for man- 
aging network information that aren't listed in the MIB can be listed under 
other nodes; for instance, vendors can set up product specific information 
bases under the hierarchy represented by 

iso. org. dod. internet, private, enterprises 



650 Part Six �9 Pradical Internetworking 

�9 ~ enterprise(1 

Figure 31-1: Different approaches to firewall/switch/router placement. 

Each item of management information within this framework can be very 
specifically identified and therefore requested by a manager. Not all man- 
aged nodes will be able to, or even want to, maintain all the defined 
information items, but whatever they keep track of can be requested by a 
manager by specifying the item number. The next section looks at the MIB 
itself. 



Chapter 31 ~ Simple Network Management Protocol 651 

Figure 31-2: Different approaches to firewall/switch/router placement. 

31.5 Management Information Base 

Several basic categories of managed information are listed beneath 
mib-2(1) in the SMI. They correspond to various different categories of 
information relevant to TCP/IP networking. Not discussed here are the 
Transmission Group, where management information for devices relat- 
ing to network medium protocols like Ethernet, IEEE 802, and other 
network hardware is stored, and a special group used for managed infor- 
mation relating to the first version of SNMP. Table 31-2 shows the main 
groups and the types of information they contain. 

Network information may be maintained as single units of informa- 
tion; a counter, for example, indicating the number of user datagram 
protocols sent out by the device. Other types of information require 
a tabular approach: a router will have at least two network interfaces 
(and often more) to manage. Tables are used to represent this type 
of information; for instance, in the IP address translation table, each 
network interface gets a single row in the table, including values for net- 
work interface number, a hardware address, and an IP address for each 
interface. 



652 Part SJx ~ Practical InternetworkJng 

MIB Group Description 

system (I) 

it (2) 

at (3) 

ip (4) 

icmp (5) 

tcp (6) 

udp (7) 

egp (8) 

Information about the device itself, including a descrip- 
tion, what network services it provides, th6 contact 
person, the location, and the name of the device 

"Interfaces" group: basic information about the network 
interfaces on the device, including hardware address 
and statistics on transmissions sent and received on the 
interface 

"Address translation" group: information that relates the 
hardware addresses of the device's network interfaces 
with their IP addresses (this group is currently "depre- 
cated," meaning that with the shift from the first to the 
second version of SNMP, the functions this group fulfills 
have been shifted to the IP group) 

IP specific information including statistics about IP 
datagrams sent and received, and tables that include IP 
addresses and associated hardware interfaces, IP routing 
and forwarding information 

Tracks ICMP messages sent and received and statistics 
on the different types of ICMP messages generated and 
received 

Tracks TCP statistics, including the volume of TCP seg- 
ments sent, received, and retransmitted; error messages 
and types; and a table that tracks current TCP connec- 
tions (which ports and interfaces arein use, connecting to 
which remote IP address and port) 

Tracks UDP statistics, as well as current UDP ports being 
used 

Used on routers using the Exterior Gateway Protocol 

Table 31-2: Management Information Base groups used for TCP/IP network 
management. 

As an example, the first object in the IP group is ipForwarding. There are 
two valid options: if the value is I then the system is configured to forward 
IP datagrams, to act as a router; if the value is 2 the system is not forwarding 
datagrams (is not acting as a router). Not all variables can be modified by 



Chapter 31 �9 Simple Network Management Protocol 653 

a manager, but this one can be, which means that a network manager can 
effectively take a router out of service by changing this variable from I to 2, 
or put a router in service by changing this value from 2 to 1. 

Another similar example is the ifAdminStatus column within the ifTable 
in the interface group. Each network interface has a row of various entries 
in this table, and the ifAdminStatus object can be changed to change the 
status of any particular interface: the interface can be up, down, or testing. 

By and large, however, MIB objects can't be reset by a manager when 
they contain network statistics. For example, within the ifTable are 
other columns like ifInOctets and ifOutOctets, which reflect (respectively) 
the total number of octets received and transmitted over each network 
interface. 

Network devices keep track of all these variables and more, and make them 
available to managers upon request. The network management stations 
collect this information from the different agents (usually routers and other 
critical network devices) and build a picture of where network traffic is 
being passed. With this information, the network administrator is able (in 
theory) to avoid or fix problems due to down systems or interfaces and to 
improve network performance in some cases. 

31.6 Remote Network Monitoring 
In larger internetworks, some value can derive from configuring network 
devices to gather network management information remotely, including 
setting up packet filters for gathering network traffic and analyzing results. 
A separate MIB has been defined for this function, the Remote Network 
Monitoring (RMON) MIB. Remote network monitors can be used to gather 
data link layer network data, which is inaccessible to remote network 
managers connected across an internetwork: routers screen out all that 
information when they forward IP datagrams. 

31.7 Simple Network Management Protocol v2 
The first version of the SNMP proved to be a little too simple for some. 
A handful of major problems and shortcomings flawed SNMPvl, so a 



654 Part Six �9 Practical Internetworking 

second version called SNMPv2 was first issued in 1993 and updated with 
various flavors in 1996. 

31.7.1 SIMPLE NETWORK MANAGEMENT PROTOCOL v l PROBLEMS 

Authentication in SNMP is trivial, based as it is on a simple, unencrypted 
community name. This field is included with all SNMP messages, and 
if the agent's community name is the same as the community name sent 
out from a manager, then the agent will respond. This presents security 
issues, to say the least. Anyone can monitor a TCP/IP network and sniff 
out SNMP packets, determine a valid community name, and perform any 
SNMP management function available, including bringing the network to 
its knees. In fact, the default community name for many devices, public, 
is sufficiently often left unchanged so that a criminal could easily bypass 
network monitoring and perform management functions. 

SNMPvl can generate very high network traffic overhead. Getting a single 
piece of network information from a managed device is relatively easy, but 
getting complete routing tables, network statistics, or even just interface 
status from routers requires a seemingly endless procession of get-next 
requests. Monitoring agents on remote sections of an intranet can also 
generate a lot of traffic as messages may need to be relayed across many 
routers. Even the most basic network management tools can generate huge 
volumes of traffic from simple maintenance functions and can adversely 
impact network function during peak periods. 

Another cause of high network management traffic is the need for network 
management nodes to send and receive SNMP requests and responses 
across large intranets. There is no way for network manager nodes to 
share management information: each manager must gather information 
independently. This can mean additional traffic, either from having mul- 
tiple network management workstations monitoring the same TCP/IP 
intranet, or from a single management workstation monitoring a large 
intranet. 

31.7.2 SIMPLE NETWORK MANAGEMENT PROTOCOL v2 SOLUTIONS 

SNMPv2 adds two new commands, GetBulkRequest and Inform, to address 
the problem of high traffic overhead: 



Chapter 31 �9 Simple Network Management Protocol 655 

The GetBulkRequest command allows an SNMP manager workstation to 
get the entire contents of a part of the MIB, like a routing table, with a single 
command rather than with a continuing stream of get-next requests. The 
result is that instead of dozens of requests and responses, the manager 
workstation can send a single request and the agent device can send a 
single response. 

The Inform command allows remote network manager workstations to 
notify other network manager workstations of the status of network agents 
that they are monitoring, thus reducing the amount of network traffic while 
monitoring a large intranet. 

SNMPv2 does not address the security issue quite as comprehensively 
or completely. There are at present three flavors of SNMPv2, each offer- 
ing a slightly different approach to security. Community-based SNMPv2, 
or SNMPv2c, uses the same trivial authentication scheme as SNMPvl. 
SNMPv2u, or the User-Based Security Model for SNMP, adds authen- 
tication, whereas more complete security is provided by the SNMPv2* 
approach. Because a general consensus on what approach is most useful, 
it is widely believed that this issue will be dealt with more adequately by 
IETF workgroups in the future. 

31.8 Chapter Summary 
At the same time simple and complex, the Simple Network Management 
Protocol (SNMP) provides a mechanism by which virtually any device can 
be managed from virtually any other device. 

SNMP's small set of requests and replies, when combined with the Struc- 
ture of Management Information (SMI) and a Management Information 
Base (MIB), allow network managers to extract information about network 
interfaces as well as to reconfigure those interfaces. 

This brief introduction should not be taken as a comprehensive overview 
of SNMP and network management but rather as yet another example of 
a useful application that can be used over IP networks. For more detailed 
coverage of these protocols, see the relevant RFCs. 



This Page Intentionally Left Blank



Appendices 



This Page Intentionally Left Blank



659 

Appendices include information that is particularly relevant, but doesn't 
always fit into the rest of the book. Appendices included with this volume 
include: 

�9 Appendix A: Internet and Other Network Organizations. This 
appendix provides an overview to the organizations and 
groups that develop, maintain, and manage the deployment 
of the protocols discussed in this book. 

�9 Appendix B: Selected Protocol Summaries. This appendix 
includes quick introductions to various internet protocols that 
have not been discussed at length in this text, including the 
basic header structures and protocol command summaries. 



This Page Intentionally Left Blank



Internet and Network 
Protocol Organizations 

Although many of the examples presented in this book have been fanciful 
and impractical, the internet is based on real networks and using real pro- 
tocols, from those included in the TCP/IP suite to many others defined by 
other bodies for different purposes. This appendix presents an overview 
to the organizations behind the protocols. 

The global internet is more of an anarchy or even a conspiracy than an 
organization. There are organizations that develop internet protocols, and 
there are organizations that administer the internet address and name 
spaces, and there are independent organizations developing protocols 
related to internet protocols. The Internet Society (ISOC) and its affiliated 
organizations are responsible for the development and support of internet 
protocols while the regional internet registries (RIRs) and the Internet Cor- 
poration for Assigned Names and Numbers (ICANN) administer internet 
addresses and domain names. Network protocol development that relates 
to internet protocols is being done by organizations ranging from the 

661 



662 Part Seven �9 Appendices 

International Telecommunications Union (ITU) and the Institute of Electri- 
cal and Electronics Engineers (IEEE) to the World Wide Web Consortium 
(W3C) and the ATM Forum. 

A.i Internet Protocol Development Groups 
ISOC, which bills itself as a professional society for the internet, provides 
an organizational umbrella under which internet protocol development 
occurs. ISOC entities are described below: 

�9 The Internet Engineering Task Force (IETF) is not really an orga- 
nization. Anyone who wants to "join" the IETF merely has to 
show up on the appropriate working group mail list and make 
useful contributions. Most discussion is done through those 
lists, although IETF meetings are held three times each year for 
resolving issues that require more direct contact. There are no 
dues, membership applications, or any other formal or admin- 
istrative requirements. IETF work revolves around the scores 
of working groups, each dedicated to a specific issue, problem, 
application, or protocol. Workgroups (and individuals) may 
publish their results (protocol specifications or other documen- 
tation of their area) as works-in-progress called Internet-Drafts 
(I-Ds). 

�9 The Internet Engineering Steering Group (IESG) is composed 
of IETF area directors and the IETF chair. The IESG approves 
working group results and other actions; once an I-D is 
approved, it can become a Request for Comments (RFC) docu- 
ment. The IESG also determines whether a specification should 
be on the Standards track. Full internet standard specifica- 
tion are considered complete and mature and required for full 
IP-compliance. Draft standards have gone through consider- 
able use and testing and are largely complete, though there 
may still be some issues to be resolved. Proposed standards 
have been implemented and may even be in wide use, but there 
may still be significant issues to be resolved before the spec can 
be advanced. 

�9 The Internet Architecture Board (IAB) consists of a dozen 
chosen IETF leaders plus the IETF chair. These 13 provide over- 
sight to the rest of internet standards organizations, including 
the IETF and the IESG, as well as acting as liaison to other 



AppendJx A �9 Internet and Network Protocol OrganizatJons 663 

standards bodies. The IAB is also responsible for publishing 
RFCs and other documents; this function is performed by the 
RFC Editor. 
The RFC Editor, a position originally held by the late Jon Postel, 
is responsible for making sure all RFCs are published cor- 
rectly and in a timely fashion. The standards track documents 
described above usually require careful editing and checking 
to make sure they fulfill all requirements; in addition to the 
standards track documents, other types of RFC include the 
Informational, which may document a proprietary protocol 
or describe some activity or process; the Experimental, which 
describes a protocol that has yet to be proven in any signif- 
icant use; and Historical, which were once on the standards 
track but which have become obsolete. Certain RFCs are also 
published in several separate series, including the STD (Inter- 
net Standards), BCP (Best Current Practices), and FYI (For 
Your Information) series. Each document in these series gets 
a static series number, but the documents come from the RFC 
series. RFC numbers are never recycled, so when a document 
is revised it gets a new RFC number and (if it is part of one 
of the series) the new RFC is published under the same series 
number. 

There are other bodies, including the Internet Research Task Force 
(IRTF), the Internet Research Steering Group (IRSG), and others that 
tend to be less visible, less active, and generally lower profile than 
these four. The research-oriented groups tend to work more closely 
with universities and research labs on the future directions for internet 
protocols. 

Table A-1 lists URLs for these organizations, where additional information 
and news can be found. 

A.2 Name and Address Administration Groups 

Internet addresses will be discussed at greater length in Chapter 14, and 
internet domain names will be discussed in Chapter 9, but this section 
discusses how these addresses and names are allocated and administered. 
One other related (but less well-known) function, administering internet 
assigned numbers, will also be covered here. 



664 Part Seven ~ Appendices 

Organization URL 

Internet Society (ISOC) 

Internet Engineering Task Force (IETF) 

Internet Engineering Steering Group (IESG) 

Internet Architecture Board (IAB) 

RFC Editor 

Internet Research Task Force (IRTF) 

www.isoc.org 

www.ietf.org 

www.ietf, org / iesg.html 

www.iab.org 

www.rfc-editor.org 

www.irtf.org 

Table A-l: Internet standards development organizations. 

Originally, the Internet Assigned Numbers Authority (IANA) had autho- 
rity over these functions, 1 but since Jon Postel's death in 1998, ICANN has 
taken on reponsibility for them. ICANN has three supporting organiza- 
tions that serve as advisory bodies to !CANN: 

�9 The Address Supporting Organization (ASO) provides support 
for the three RIRs. 

�9 The Domain Name Supporting Organization (DNSO) oversees 
the domain name registrars and provides technical and admin- 
istrative guidance in areas such as intellectual property issues 
related to domain names. 

�9 The Protocol Supporting Organization (PSO) advises ICANN 
on issues related to assignment of parameters, such as proto- 
col version numbers or protocol-related constants, for internet 
protocols. 

The RIRs are independent of ICANN and accept members (usually from 
their own regions). Each RIR administers its own ranges of network 
addresses, which can be assigned to RIR members (mostly ISPs and very 
large organizations) as well as non-members. Addresses are allocated in 
blocks, and fees are assessed based on the number of addresses within 
allocated blocks. The three RIRs are: 

American Registry for Internet Numbers (ARIN) serving North 
and South America as well as the Caribbean and sub-Saharan 
Africa. 

1See RFC 1594, "Domain Name System Structure and Delegation." 



Appendix A �9 Internet and Network Protocol Organizations 665 

�9 Asia Pacific Networking Information Center (APNIC) serving 
Asian and Pacific nations. 

�9 R6seaux IP Europ6ens-Network Coordination Centre (RIPE- 
NCC) serving Europe, Middle East, and parts of Africa. 

The RIRs provide IP network address registration services to all 
regions around the globe, but domain name registration is handled 
by domain name registrars. Originally, all name registration services 
were provided by US-based Network Solutions, Inc., but a large part 
of the justification for creating ICANN revolved around the poten- 
tial for expanding the registrar community. As of early 2002, there 
are already a few dozen registrar members of the DNSO, and the 
original handful of top-level three-letter domains (.com, .net, .org, 
.gov, .mil, .int) and the two-letter ISO international country codes 
are already being augmented by new domains including .aero, .biz, 
.coop, .info, .museum, and .name (more about those domains in 
Chapter 9). 

Finally, there is the matter of assigned numbers. Protocols frequently 
use more or less arbitrary codes as parameters. For example, IP 
packets begin with a four-bit value that indicates which version of 
IP is being used (see Chapter 20 for more details), while transport 
layer protocols use well-known ports (see Chapter 16 for more details). 
The IANA, operating under ICANN, records all valid values of all 
these (and other) protocol parameters, or else maintains links with 
other organizations that may have responsibility for maintaining such 
values. 

Table A-2 lists URLs for these organizations, where considerably more 
information is available. 

A.3 Related Protocol Development Groups 
There are many communication and networking protocols that are crucial 
to the current and future function of the internet, but they are not deve- 
loped within the internet protocol process. Instead, other organizations, 
some of them in existence long before the internet was ever thought of, sup- 
port their development. Notable among these groups are those included 
in Table A-3. 



666 Part Seven �9 Appendices 

Organization URL 

Internet Corporation for Assigned Names 
and Numbers (ICANN) 

Address Supporting Organization (ASO) 

Domain Name Supporting Organization 
(DNSO) 

Protocol Supporting Organization (PSO) 

American Registry for Internet Numbers 
(ARIN) 

Asia Pacific Networking Information Center 
(APNIC) 

R6seaux IP Europ6ens-Network Coordina- 
tion Centre (RIPE-NCC) 

Internet Assigned Numbers Authority 
(IANA) 

www.icann.org 

www.aso.icann.org 

www.dnso.icann.org 

www.pso.icann.org 

www.arin.net 

www.apnic.net 

www.ripe.net 

www.iana.org 

Table A-2: Internet address, name, and protocol parameter organizations. 

Organization Protocols URL 

Institute of Electrical 
and Electronics Engi- 
neers (IEEE) 

International 
Telecommunication 
Union (ITU) 

World Wide Web Con- 
sortium (W3C) 

ATM Forum 

Ethernet, wireless, and 
other 802-series pro- 
tocols 

Standards for telecom- 
munications networks 

Web protocols, includ- 
ing HTML and XML 

Asynchronous Trans- 
fer Mode (ATM) pro- 
tocols 

www.ieee.org 

www.itu.int 

www.w3c.org 

www.atmforum.org 

Table A-3: Non-ISOC/ICANN affiliated organizations involved in internet- 
related protocol development. 



Selected Protocol 
Summaries 

This appendix includes some of the protocol information related to key 
TCP/IP protocols, including protocol commands, extensions, reply codes, 
and header structures. 

B.! Domain Name System 

The DNS standard (STD 13) is documented in RFCs 1034 and 1035 and 
updated or supplemented by the following RFCs: 

RFC3090: DNS Security Extension Clarification on Zone Status 

RFC3110:RSA/SHA-1 SIGs and RSA KEYs in the Domain Name 
System (DNS) 

RFC3130: Notes from the State-of-the-Technology: DNSSEC 

667 



668 Part Seven �9 Appendices 

RFC3152:BCP0049 Delegation of IP6.ARPA 

RFC3172 (BCP 0052): Management Guidelines & Operational Require- 
ments for the Address and Routing Parameter Area 
Domain (arpa)RFC3197 Applicability Statement for 
DNS MIB Extensions 

RFC3225: Indicating Resolver Support of DNSSEC 

RFC3226: DNSSEC and IPv6 A6 Aware Server/Resolver Message Size 
Requirements 

Valid DNS resource record types include: 

TYPE: value and meaning 

A 1 a host address [RFC1035] 

NS 2 an authoritative name server [RFC1035] 

MD 3 a mail destination (Obsolete--use MX) [RFC1035] 

MF 4 a mail forwarder (Obsolete--use MX) [RFC1035] 

CNAME 5 the canonical name for an alias [RFC1035] 

SOA 6 marks the start of a zone of authority [RFC1035] 

MB 7 a mailbox domain name (EXPERIMENTAL) [RFC1035] 

MG 8 a mail group member (EXPERIMENTAL) [RFC1035] 

MR 9 a mail rename domain name (EXPERIMENTAL) [RFC1035] 

NULL 10 a null RR (EXPERIMENTAL) [RFC1035] 

WKS 11 a well-known service description [RFC1035] 

PTR 12 a domain name pointer [RFC1035] 

HINFO 13 host information [RFC1035] 

MINFO 14 mailbox or mail list information [RFC1035] 



Appendix B �9 Selected Protocol Summaries 669 

MX 15 mail exchange [RFC1035] 

TXT 16 text strings [RFC1035] 

RP 17 for Responsible Person [RFCl183] 

AFSDB 18 for AFS Data Base location [RFCl183] 

X25 19 for X.25 PSDN address [RFCl183] 

ISDN 20 for ISDN address [RFCl183] 

RT 21 for Route Through [RFCl183] 

NSAP 22 for NSAP address, NSAP style A record [RFC1706] 

NSAP-PTR 23 

SIG 24 for security signature [RFC2535] 

KEY 25 for security key [RFC2535] 

PX 26 X.400 mail mapping information [RFC2163] 

GPOS 27 Geographical Position [RFC1712] 

AAAA 28 IP6 Address [Thomson] 

LOC 29 Location Information [Vixie] 

NXT 30 Next Domain [RFC2535] 

EID 31 Endpoint Identifier [Patton] 

NIMLOC 32 Nimrod Locator [Patton] 

SRV 33 Server Selection [RFC2782] 

ATMA 34 ATM Address [Dobrowski] 



670 Part Seven �9 Appendices 

NAPTR 35 Naming Authority Pointer [RFC2168, RFC2915] 

KX 36 Key Exchanger [RFC2230] 

CERT 37 CERT [RFC2538] 

A6 38 A6 [RFC28741 

DNAME 39 DNAME [RFC2672] 

SINK 40 SINK [Eastlake] 

OPT 41 OPT [RFC2671] 

APL 42 APL [RFC3123] 

UINFO 100 [IANA-Reserved] 

UID 101 [IANA-Reserved] 

GID 102 [IANA-Reserved] 

UNSPEC 103 [IANA-Reserved] 

TKEY 249 Transaction Key [RFC2930] 

TSIG 250 Transaction Signature [RFC2845] 

IXFR 251 incremental transfer [RFC1995] 

AXFR 252 transfer of an entire zone [RFC1035] 

MAILB 253 mailbox-related RRs (MB, MG or MR) [RFC1035] 

MAILA 254 mail agent RRs (Obsolete---see MX) [RFC1035] 

* 255 A request for all records [RFC1035] 

Note: In RFC 1002, two types are defined (NB, 32, NetBIOS general Name 
Service and NBSTAT, 33, NetBIOS NODE STATUS). It is not clear that 



Appendix B �9 Selected Protocol Summaries 671 

these are in use, though if so their assignment does conflict with those 
above. 

B.i.i DOMAIN NAME SYSTEM MESSAGE HEADER AND FIELDS 

DNS message header fields are show in Figure B-1 and described 
below. 

Header Fields (from RFC 1035): 

ID A 16-bit identifier assigned by the program that generates any kind 
of query. This identifier is copied by the corresponding reply and 
can be used by the requester to match up replies to outstanding 
queries. 

QR A one-bit field that specifies whether this message is a query (0) or a 
response (1). 

OPCODE A four-bit field that specifies kind of query in this message 
(see table below for list of valid values). This value is set by the 

1 1 1 1 1 1 
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 

+- -+- -+- -+- -+- -+- -+- -+- -+- -+- -+- -+- -+- -+- -+- -+- -+ 

ID 

+- -+- -+- -+- -+- -+- -+- -+- -+- -+- -+- - +- - +- - +- - +- - +- - + 

QR I Opcode I AA I TC I RD I RA I Z I RCODE 
+- -+- -+- -+- -+- -+- -+- -+- -+- -+- -+- - +- - +- - +- - +- - +- - + 

QDCOUNT 

+- -+- -+- -+- -+- -+- -+- -+- -+- -+- -+- - +- - +- - +- - +- - +- - + 

ANCOUNT 

+- -+- -+- -+- -+- -+- -+- -+- -+- -+- -+- - +- - +- - +- - +- - +- - + 

NSCOUNT 

+- -+- -+- -+- -+- -+- -+- -+- -+- -+- -+- - +- - +- - +- - +- - +- - + 

ARCOUNT 

+- -+- -+- -+- -+- -+- -+- -+- -+- -+- -+- - +- - +- - +- - +- - +- - + 

Figure B-l: DNS message header format (from RFC 1035). 



672 Part Seven �9 Appendices 

originator of a query and copied into the response. Current values are 
available at the IANA DNS parameters page (h t tp : / /www. iana .o rg /  
assignments / dns-parameters): 

AA Authoritative Answer -  this bit is valid in responses, and specifies that 
the responding name server is an authority for the domain name in 
question section. (Note that the contents of the answer section may 
have multiple owner names because of aliases. The AA bit corre- 
sponds to the name that matches the query name, or the first owner 
name in the answer section.) 

TC TrunCation - specifies that this message was truncated due to length 
greater than that permitted on the transmission channel. 

RD Recursion Desired - this bit may be set in a query and is copied into the 
response. If RD is set, it directs the name server to pursue the query 
recursively. Recursive query support  is optional. 

RA Recursion Available - this is set or cleared in a response, and 
denotes whether recursive query support  is available in the name 
server. 

Z Reserved for future use. Must be zero in all queries and responses. 

RCODE Response code - this 4-bit field is set as part of responses (see 
IANA for current values) 

Q D C O U N T  an unsigned 16-bit integer specifying the number  of entries 
in the question section. 

ANCOUNT an unsigned 16-bit integer specifying the number of resource 
records in the answer section. 

NSCOUNT an unsigned 16-bit integer specifying the number  of name 
server resource records in the authority records section. 

ARCOUNT an unsigned 16-bit integer specifying the number  of resource 
records in the additional records section. 

Valid opcode values for DNS are listed in Table B-1. 



AppendJx B �9 Selected Protocol Summaries 673 

OpCode Name 

0 

1 

2 

3 

4 

5 

6-15 

Query 

IQuery 

Status 

reserved 

Notify 

Update 

available for assignment 

Table B-l: Opcode values (from IANA). 

B.2 Simple Mail Transfer Protocol Details 
RFC 2821 defines valid reply code values based on the scheme reproduced 
here: 

First Digit: 

lyz Positive Preliminary reply The command has 

been accepted, but the requested action is being 

held in abeyance, pending confirmation of the 

information in this reply. The SMTP client should 

send another command specifying whether to 

continue or abort the action. Note- unextended 

SMTP does not have any commands that allow this 

type of reply, and so does not have continue or 

abort commands. 

2yz Positive Completion reply The requested 

action has been successfully completed. A new 

request may be initiated. 



674 Part Seven �9 Appendices 

3yz Positive Intermediate reply The command has 

been accepted, but the requested action is being 

held in abeyance, pending receipt of further 

information. The SMTP client should send another 

command specifying this information. This reply 

is used in command sequence groups (i.e., in 

DATA) . 

4yz Transient Negative Completion reply 

The command was not accepted, and the requested 

action did not occur. However, the error 

condition is temporary and the action may be 

requested again. The sender should return to the 

beginning of the command sequence (if any). It is 

difficult to assign a meaning to ''transient'' 

when two different sites (receiver- and 

sender-SMTP agents) must agree on the 

interpretation. Each reply in this category might 

have a different time value, but the SMTP client 

is encouraged to try again. A rule of thumb to 

determine whether a reply fits into the 4yz or 

the 5yz category (see below) is that replies are 

4yz if they can be successful if repeated without 

any change in command form or in properties of 

the sender or receiver (that is, the command is 

repeated identically and the receiver does not 

put up a new implementation.) 

5yz Permanent Negative Completion reply 

The command was not accepted and the requested 

action did not occur. The SMTP client is 

discouraged from repeating the exact request 



Appendix B ~ Selected Protocol Summaries 675 

(in the same sequence). Even some ''permanent'' 

error conditions can be corrected, so the human 

user may want to direct the SMTP client to 

reinitiate the command sequence by direct action 

at some point in the future (e.g., after the 

spelling has been changed, or the user has 

altered the account status). 

Second Digit : 

xOz Syntax: These replies refer to syntax errors, 

syntactically correct commands that do not fit 

any functional category, and unimplemented or 

superfluous commands. 

xlz Information: These are replies to requests 

for information, such as status or help. 

x2z Connections: These are replies referring to 

the transmission channel. 

x3z Unspecified. 

x4z Unspecified. 

x5z Mail system: These replies indicate the 

status of the receiver mail system vis-a-vis the 

requested transfer or other mail system action. 

Third Digit: 

The third digit provides finer-grained 

information about each reply, and each is 

associated with a recommended message string in 

RFC 2821. However, those messages may be modified 

i f needed. 



676 

B.3 Post Office Protocol v3 

Part Seven �9 Appendices 

The Post Office Protocol (POP), defined in RFC 1939, describes a mecha- 
nism by which users can retrieve mail on demand from mail servers. POP 
makes it possible for users to receive their mail on personal computers 
that are frequently powered off; SMTP services require the receiving host 
to be online at all times. This command summary is taken from RFC 1939, 
Section 9. 

POP3 Command Summary 

Minimal POP3 Commands- 

USER name valid in the AUTHORIZATION state 

PASS string 

QUIT 

STAT 

LIST [msg] 

RETR msg 

DELE msg 

NOOP 

RSET 

QUIT 

valid in the TRANSACTION state 

Optional POP3 Commands- 

APOP name digest valid in the AUTHORIZATION state 

TOP msg n valid in the TRANSACTION state 

UIDL [msg] 

POP3 Replies- 

+OK 

- ERR 



Appendix B �9 Selected Protocol Summaries 677 

B.4 

Note that with the exception of the STAT, LIST, 

and UIDL commands, the reply given by the POP3 

server to any command is significant only to 

''+OK'' and ''-ERR''. Any text occurring after 

this reply may be ignored by the client. 

Telnet Protocol 

Values for basic telnet options, taken from IANA web site 
(http:/ /www.iana.org/assignments/telnet-options);  more authentication 
and encryption related options are available and listed there as well. 

Options Name References 

0 Binary Transmission [RFC856] 

1 Echo [RFC857] 

2 Reconnection [NIC50005] 

3 Suppress Go Ahead [RFC858] 

4 Approx Message Size Negotiation [ETHERNET] 

5 Status [RFC859] 

6 Timing Mark [RFC860] 

7 Remote Controlled Trans and Echo [RFC726] 

8 Output Line Width [NIC50005] 

9 Output Page Size [NIC50005] 

I0 Output Carriage-Return Disposition [RFC652] 

ii Output Horizontal Tab Stops [RFC653] 

12 Output Horizontal Tab Disposition [RFC654] 

13 Output Formfeed Disposition [RFC655] 

14 Output Vertical Tabstops [RFC656] 

15 Output Vertical Tab Disposition [RFC657] 

16 Output Linefeed Disposition [RFC658] 



678 Part Seven �9 Appendices 

17 Extended ASCII [RFC698] 

18 Logout [RFC727] 

19 Byte Macro [RFC735] 

20 Data Entry Terminal [RFCI043,RFC732] 

21 SUPDUP [RFC736,RFC734] 

22 SUPDUP Output [RFC749] 

23 Send Location [RFC779] 

24 Terminal Type [RFCI091] 

25 End of Record [RFC885] 

26 TACACS User Identification [RFC927] 

27 Output Marking [RFC933] 

28 Terminal Location Number [RFC946] 

29 Telnet 3270 Regime [RFCI041] 

30 X.3 PAD [RFCI053] 

31 Negotiate About Window Size [RFCI073] 

32 Terminal Speed [RFCI079] 

33 Remote Flow Control [RFC1372] 

34 Linemode [RFCII84] 

35 X Display Location [RFCI096] 

36 Environment Option [RFCI408] 

37 Authentication Option [RFC2941] 

38 Encryption Option [RFC2946] 

39 New Environment Option [RFC1572] 

40 TN3270E [RFC1647] 

41 XAUTH [Earhart] 

42 CHARSET [RFC2066] 

43 Telnet Remote Serial Port (RSP) [Barnes] 

44 Com Port Control Option [RFC2217] 

45 Telnet Suppress Local Echo [Atmar] 

46 Telnet Start TLS [Boe] 



Appendix B �9 Seleded Protocol Summaries 679 

47 KERMIT [RFC2840] 

48 SEND-URL [Croft] 

49 FORWARD X [Altman] 

50-137 Unassigned [IANA] 

138 TELOPT PRAGMA LOGON [McGregory] 

139 TELOPT SSPI LOGON [McGregory] 

140 TELOPT PRAGMA HEARTBEAT [McGregory] 

255 Extended-Options-List [RFC861] 

B.5 File Transfer Protocol 

ReplycodesdefinedinRFC959include: 

ii0 Restart marker reply. In this case, the text 

is exact and not left to the particular 

implementation; it must read- MARK yyyy = mmmm 

Where yyyy is User-process data stream marker, 

and mmmm server's equivalent marker (note the 

spaces between markers and ''='') . 

120 Service ready in nnn minutes. 

125 Data connection already open; transfer 

starting. 

150 File status okay; about to open data 

connection. 

200 Command okay. 

202 Command not implemented, superfluous at 

this site. 

211 System status, or system help reply. 

212 Directory status. 



680 Part Seven �9 Appendices 

213 File status. 

214 Help message. On how to use the server or the 

meaning of a particular non-standard command. 

This reply is useful only to the human user. 

215 NAME system type. Where NAME is an official 

system name from the list in the Assigned Numbers 

document. 

220 Service ready for new user. 

221 Service closing control connection. Logged 

out if appropriate. 

225 Data connection open; no transfer in 

progress. 

226 Closing data connection. Requested file 

action successful (for example, file transfer or 

file abort) . 

227 Entering Passive Mode (hl,h2,h3,h4,pl,p2) . 

230 User logged in, proceed. 

250 Requested file action okay, completed. 

257 ''PATHNAME'' created. 

331 User name okay, need password. 

332 Need account for login. 

350 Requested file action pending further 

information. 

421 Service not available, closing control 

connection. This may be a reply to any command 

if the service knows it must shut down. 

425 Can't open data connection. 



Appendix B �9 Selected Protocol Summaries 681 

426 Connection closed; transfer aborted. 

450 Requested file action not taken. File 

unavailable (e.g., file busy). 

451 Requested action aborted- local error in 

processing. 

452 Requested action not taken. Insufficient 

storage space in system. 

500 Syntax error, command unrecognized. This may 

include errors such as command line too long. 

501 Syntax error in parameters or arguments. 

502 Command not implemented. 

503 Bad sequence of commands. 

504 Command not implemented for that parameter. 

530 Not logged in. 

532 Need account for storing files. 

550 Requested action not taken. File unavailable 

(e.g., file not found, no access). 

551 Requested action aborted- page type unknown. 

552 Requested file action aborted. Exceeded 

storage allocation (for current directory or 

dataset). 

553 Requested action not taken. File name not 

allowed. 

B.6 Valid Schemes for Uniform Resource Identifiers 

Uniform resource identifiers (URIs) identify web resources uniquely. Most 
web pages are HTTP resources, identified as such by the "ht tp: / /"  string. 



682 Part Seven �9 Appendices 

Other valid schemes are listed here, taken from the IANA web site, last 
updated April 5, 2002. 

Scheme Name Description Reference 

ftp File Transfer Protocol [RFC1738] 

http Hypertext Transfer [RFC2068 ] 
Protocol 

gopher 

mailto 

The Gopher Protocol 

Electronic mail address 

news USENET news 

nntp USENET news using NNTP 
access 

telnet Reference to interactive 
sessions 

wais Wide Area Information 
Servers 

file 

prospero 

z39.50s 

z39.50r 

cid 

mid 

vemmi 

service 

imap 

nfs 

Host-specific file names 

Prospero Directory 
Service 

Z39.50 Session 

Z39.50 Retrieval 

content identifier 

message identifier 

versatile multimedia 
interface 

service location 

internet message access 
protocol 

network file system 
protocol 

[RFC1738] 

[RFC2368] 

[RFC1738] 

[RFC1738] 

[RFC1738] 

[RFC1738] 

[RFC1738] 

[RFC1738] 

[RFC2056] 

[RFC2056] 

[RFC2392] 

[RFC2392] 

[RFC2122] 

[RFC2609] 

[RFC2192] 

[RFC2224] 



Appendix B �9 Selected Protocol Summaries 683 

Scheme Name Description Reference 

acap application configuration [RFC2244 ] 
access Protocol 

rtsp real-time streaming [RFC2326] 
protocol 

tip Transaction Internet [RFC2371] 
Protocol 

pop Post Office Protocol v3 [RFC2384] 

data data [RFC2397] 

dav dav [RFC2518] 

opaquelocktoken opaquelocktoken 

sip session initiation 
protocol 

tel telephone 

fax fax 

modem modem 

idap 

https 

Lightweight Directory 
Access Protocol 

Hypertext Transfer 
Protocol Secure 

soap .beep soap .beep 

soap. beeps soap. beeps 

[RFC2518] 

[RFC2543 ] 

[RFC2806] 

[RFC2806] 

[RFC2806] 

[RFC2255] 

[ RFC2818 ] 

[RFCSOAP] 

[RFCSOAP] 

Reserved URI Scheme Names: 

afs 

tn3270 

mailserver 

Andrew File System global file 
name s 

Interactive 3270 emulation 
sessions 

Access to data available from 
mail servers 



684 Part Seven �9 Appendices 

B.7 I nternet Message Access Protocol 

Proprietary e-mail products, designed to be implemented on an organi- 
zational LAN and served from a single organizational server, offer some 
useful functions and features to the end users. Storing all messages on a 
central server means that those messages can be backed up centrally and 
made accessible at a later date. It also means that users can access their mail- 
box from any network-c0nnected system, not just from their own "home" 
system. SMTP and POP simply don't offer these amenities to users, so the 
Internet Message Access Protocol (IMAP) was developed. 

IMAP, specified in RFC 2060, "INTERNET MESSAGE ACCESS 
PROTOCOL-VERSION 4revl," defines a protocol that allows users to 
access and manipulate their messages stored on a remote server. By design, 
it allows users to read, delete, file into folders, and otherwise manipulate 
messages stored on a server as if they were stored on the user's own local 
system. 

B.8 Network News Transport Protocol 

Network News Transport Protocol (NNTP), as well as Calendaring and 
Scheduling (iCAL) and Workgroup Integration protocols, provide impor- 
tant collaborative tools for Internet users as well as corporate users. 
Calendaring and scheduling tools have long been a part of the work- 
group software toolkit, but these tools have not been a traditional part 
of most TCP/IP application suites. That is changing, as the iCalendar 
and related protocols have been published as proposed Internet standards 
late in 1998. iCalendar, defined in RFC 2445, specifies a special MIME 
content type/subtype called text/calendar and specifies how that MIME 
type is used to carry calendar and scheduling information across network 
transports. 

iCalendar specifies how the text/calendar MIME enclosure can be used 
to carry information necessary to perform calendaring and scheduling 
activities like setting up appointments, checking for free time, notifying 
participants of upcoming meetings, notifying participants of cancellation 
of a scheduled meeting, and other related functions. 

Published as proposed standards at about the same time as iCalendar are 
the iTIP (RFC 2446) and iMIP (RFC 2447) protocols, iTIP, which stands for 



Appendix B �9 Selected Protocol SummarJes 685 

iCalendar Transport-Independent Interoperability Protocol, defines a pro- 
tocol for using iCalendar data with any calendaring or scheduling system. 
iMIP, which stands for iCalendar Message-Based Interoperability Protocol, 
specifies how iCalendar and iTIP data is to be bound into internet e-mail 
messages for delivery. Together, these three protocols make it possible 
for software developers to permit users of personal productivity tools like 
PDA organizers as well as more sophisticated proprietary workgroup tools 
to interoperate with each other, independent of the proprietary products 
each is using. 



This Page Intentionally Left Blank



Index 
A 
AAA area, 106 
ABNF, 200-201,205-208, 219 
AC, 154 
Accuracy, 11 
ACK, 363 
Acknowledgment number, 360 
AD, 492 
Address/prefix notation, 516-517 
Address request, 170-175 
Address Resolution Protocol. See ARP 
Address Supporting Organization (ASO), 

664, 666 
Adleman, Len, 562 
Administrative domain (AD), 492 
Advanced Encryption Standard (AES), 

560 
Advertisements, 494, 511 
.aero, 155 

AES, 560 
AH, 575-578 
AH ICV, 578 
Akamai, 272 
Alias, 174 
All-zeros addresses, 406 
American Registry for Internet Numbers 

(ARIN), 664, 666 
Anonymous FTP, 252-253 
Antireplay services, 573 
Anycast, 70-71,405 
APEX, 304-306 
APNIC, 665-666 
Application Exchange (APEX), 304-306 
Application layer protocols, 104 
Application level entities, 16 
Application Protocol, 337 
ARIN, 664, 666 

687 



688 Index 

ARP, 96-97, 467-472 
cache, 469-470 
InARP, 471-472 
message format, 468-469 
proxy, 470 
RARP, 470-471 
usage example, 136 

ARP cache, 469-470 
ARPANET, 488 
AS, 23 
AS mapping, 24 
Ascension Island (AC), 154 
Asia Pacific Networking Information 

Center (APNIC), 665-666 
ASO, 664, 666 
Asymmetric encryption, 561 
Asynchronous Transfer Mode. See ATM 
Asynchrony, 291-292 
ATM, 472-479 

broadcasts, 476 
cells, 476-478 
header fields, 476-478 
IP, and, 473-475 
MARS, 479 
MPLS, 475 
NBMA address resolution, 478 
NBMA networks, 478-479 
virtual circuits/routes, 472 

ATM cells, 476-478 
ATM Forum, 666 
ATMARP, 478 
Augmented BNF (ABNF), 200-201, 

205-208, 219 
Authentication header (AH), 575-578 
Authoritative data, 161 
Autonomous system (AS), 23 
Autonomous system (AS) mapping, 24 

B 
BA, 548 
Backbone, 23 

Backbone devices, 71-74 
Backbone routers, 434, 493. See also 

Exterior routing 
Bandwidth, 58-59, 62 
Bar, 329n 
Base64, 216, 265 
Bastion network, 621n 
Baz, 329n 
BEEP, 291-304 

asynchrony, 292 
authentication, 293 
BSD syslog, 300-301 
channels, 292 
encoding, 292 
framing, 292 
how it works, 294--295 
IDXP, 302-304 
PDM, 300 
privacy, 293 
profiles, 296-297 
protocols, 296-304 
reporting, 292 
SASL, 297-298 
SOAP, 301-302 
TLS, 297 
TUNNEL, 298-300 
XML-RPC, 301 

BEEP-based protocols, 296-304 
BEEP profiles, 296-297 
BEEP TUNNEL, 298-300, 303 
Behavior aggregate (BA), 548 
Bellman-Ford algorithm, 493n 
Berkeley Software Distribution (BSD), 13 
Berners-Lee, Tim, 257 
Best effort delivery, 68-69 
BGP gateway, 525 
BGP routers, 525 
BGP speaker, 525 
Binary numbering system, 40-41 
BITS, 581 
BITW, 581 
.biz, 155 



Index 689 

Black box, 14 
Block mode, 244 
Blocks architecture, 288-289 
Blocks Extensible Exchange Protocol. 

See BEEP 
Blowfish, 561 
Book, 5-10 

appendices, 10 
graphical conventions, 6-8 
overview, 9-10 
style, 8-9 

Boot Protocol (BOOTP), 471 
BOOTP, 471 
Border routers, 514 
Bounce attack, 250-251 
Bridge, 86-87 
Broadcast, 69-70, 405-406 
Broadcast/multiple access networks, 458 
Broadcasts, 476 
BSD, 13 
BSD syslog, 300-301 
Buffer overflow, 640 
Bump-in-the-attack (BITS), 581 
Bump-in-the-wire (BITW), 581 
Bus network, 616 
Butter Battle Book, The, 641 
Byte-streaming, 331-332 

C 
Cache/caching 

ARP, 468-470 
DNS, 183-184 
web, 270-274 

Cached data, 161 
Calendaring/scheduling tools, 686-687 
Canonical name, 174 
Carrier sense, 459 
CAST, 561 
CAT 5 cable, 622-623 
CAT 6 cable, 623 
Catenet, 29 

CBT, 538 
CC, 154 
CDN, 272 
Cell loss priority (CLP), 477 
Centralized vs. distributed network 

naming/numbering, 34-38 
Cerf, Vinton, 481 
Chat rooms, 314n 
Checksum 

ICMP, 444 
IP, 418-419 
TCP, 361 
UDP, 343, 345-346 

Chunk, 388 
Chunk bundling, 390 
chunked, 266 
Chunking, 291 
CIDR, 514-516 
Cisco, 272 
Class A addresses, 408-410 
Class B addresses, 408-410 
Class C addresses, 408--410 
Class E addresses, 406 
Classful addressing, 515 
Classless inter-domain routing (CIDR), 

514-516 
Classless routing, 515 
Client, 20-21 
Clipper chip, 561 
CLP, 477 
Cocos (Keeling) Islands (CC), 154 
Collectors, 300 
Collision detection, 460 
.com, 153 
Comer, Douglas, 399 
Commands 

FTP, 245-248, 606-607 
SMTP, 196-199 
SNMP, 647-648, 654-655 
Telnet, 229, 231 

Computer network, 11 



690 Index 

Computer security intrusion response 
team (CSIRT), 633 

Congestion, 332-333, 373-374 
Congestion avoidance, 373-374 
Congestion window, 372 
Congestion Window Reduced (CWR) 

flag, 364 
Connection-blasting, 290 
Connection to the internet, 90-92 
Content delivery network (CDN), 272 
COOKED, 301 
Cookie, 275, 563 
.coop, 155 
Core-based trees (CBT), 538 
Core gateways, 509 
Core router, 538 
Country code TLDs, 154 
CRC, 463, 466 
Cryptography, 555. See also IPsec 
CSIRT, 633 
CSMA/CD, 459 
CWR, 364 
Cyclic redundancy check (CRC), 463, 466 
Cyphertext, 554 

D 
Daemon, 125, 329-330 
DATA, 198 
Data and Computer Communications 

(Stallings), 486 
Data Encryption Standard (DES), 560-561 
Data link layer, 96-98, 455-484 

address resolution, 466-472 
ARP, 467-472 
ATM, 472-479 
Ethernet, 459-466 
InARP, 471-472 
IP, and, 457-459 
NBMA networks, 458-459, 478-479 
PPP, 480-481 
RARP, 470-471 

RFCs, 482-483 
usage example, 135-138 

Data offset, 360 
Datagram, 28 
Datagram Control Protocol (DCP), 

391-393 
Datagram identification, 417 
Datagram length, 417 
Davie, Bruce S., 475 
DCP, 391-393 
De-encapsulation, 82n 
Decimal-to-binary conversion, 40-41 
Decimal-to-hexadecimal conversion, 

40-42 
Default gateway, 485 
Definitions. See Networking terminology 
deflate, 266 
Delegated subzones, 162 
Delegation, 47, 52 
Denial of Service (DOS) attack, 302, 366, 

449, 557, 637-638 
Dense-mode multicast routing, 537-539 
DES, 560-561 
Designing IP networks. See Planning IP 

networks 
Destination address fields, 201 
Destination options header, 592 
Devices, 300 
DF bit, 417 
DHCP, 471 
Dialtone, 316 
Differentiated Services CodePoint 

(DSCP), 416 
Diffie-Hellman key exchange, 562 
Diffserv, 548-550 
Digital Island, 272 
Digital signature, 565 
Dijkstra's algorithm, 493 
Direct routing, 433 
Disconnect between 

applications/protocols, 317 



Index 691 

Distance Vector Multicast Routing 
Protocol (DVMRP), 537-538 

Distance-vector routing, 493-503 
Distance-vector routing algorithm, 

493-496 
Distributed vs. centralized network 

naming/numbering, 34-38 
DIX Ethernet, 459 
DNS, 52, 145-186, 667-673 

address request, 170-175 
authoritative domain data, 161 
caching, 183-184 
components, 150-151 
country code TLDs, 154 
database services, 155-158 
DNSSEC, 184-185 
domain name, 152, 157 
header fields, 671-673 
illustrations (in-action examples), 

118-121,125-126, 169-181 
inverse/reverse address lookups, 

181-183 
mail exchange request, 175-181 
messages, 166-168 
problem statement, 146-149 
requests, 164-165 
resource records (RRs), 158-160, 

668-671 
RFCs, 667-668 
top level domains, 153-155 
transport layer, 168-169 
UDP limitations, 168-169 
zone transfers, 169 
zones, 162-163 

DNS distributed database, 156 
DNS message header format, 167 
DNS messages, 166-168 
DNS requests, 164-165 
DNS security extensions (DNSSEC), 149, 

184-185 
DNS zones / subzones, 162-163 
DNSO, 664, 666 

DNSSEC, 149, 184-185 
DoD reference model, 78-80 
DOI, 570 
Domain name, 150, 152, 157 
Domain Name Supporting Organization 

(DNSO), 664, 666 
Domain name system. See DNS 
Domain name system caching, 183-184 
Domain name system messages, 166-168 
Domain name system requests, 164-165 
Domain name system zones, 162-163 
Domain of Interpretation (DOI), 570 
Don't Fragment (DF) bit, 417 
DoS attack, 302, 366, 449, 557, 637-638 
Dotted decimal (dotted quad) notation, 

402 
DSCP, 416 
Dupe FTP server, 250 
Duplexing, 61 
DVMRP, 537-538 
Dynamic Host Configuration Protocol 

(DHCP), 471 
Dynamic ports, 125, 327 

E 
E-mail. See Internet mail 
ECN Echo (ECE) flag, 364 
Edge devices, 71-74 
.edu, 154 
EF PHB, 548 
EGP, 493, 522-523 
EHLO, 197-198 
Encapsulating security payload (ESP), 

573-575 
Encapsulation, 81-84 
End of option list 

IP, 427 
TCP, 376 

Entity, 8, 14, 16 
Envelopes, 205 
Ephemeral ports, 125, 328 



692 Index 

ESMTP, 188 
ESP, 573-575 
ESP ICV, 579 
Ethernet, 136-137, 459-466 
Ethernet II, 136n, 459 
Ethernet frames, 460-466 
Ethertype, 464-465 
Examples. See also In-action illustrations 

application layer, 117-124 
big picture, 138-140 
DNS, 118-121, 125-126 
Ethernet, 136-137 
HTTP, 121-124, 127 
internet layer, 133-135 
IP, 133-135 
Joe's packets, 115-143 
NBMA networks, 137-138 
network link layer, 135-138 
protocol, 26-27 
routing, 140-142 
TCP, 127-133 
transport layer, 124-133 
UDP, 126-127, 348-349 

Expedited Forwarding (EF) PHB, 548 
EXPN, 199 
Extended SMTP (ESMTP), 188 
eXtensible Markup Language (XML), 

285-288 
Exterior Gateway Protocol (EGP), 493, 

522-523 
Exterior routing, 434, 509-527 

address-prefix notation, 516-517 
BGP, 523-526 
CIDR, 515-516 
EGP, 521-523 
interior routing, compared, 492-493, 

510-513 
postal analogy, 517-521 
relative addressing, 517-521 

eXternal Data Representation (XDR), 252 
Extranet, 29-30 

F 
Fast/100 Mbps Ethernet, 466 
Fast recovery, 375 
Fast retransmit, 374-375 
FEC (forward error control), 381 
FEC (forwarding equivalency class), 475 
FEP, 278 
File sharing, 252 
File transfer, 238 
File Transfer Protocol. See FTP 
FIN, 364 
Firewall Enhancement Protocol (FEP), 278 
Flat namespace, 146 
Flooding, 488, 504 
Flow control, 332-333 
Flow labeling, 585, 588-589 
Foo, 329n 
Foobar, 329n 
Footers, 82n 
Forward error control (FEC), 381 
Forwarding equivalency class (FEC), 475 
FP, 595 
FQDN, 39 
Fragment header, 592 
Fragment offset, 417-418 
Fragmentation, 168n, 422-425 
Fragmentation flags, 417 
Frame, 28, 460 
Framing, 290, 292 
FTP, 237-254, 311,605--612 

active/passive modes, 242 
anonymous, 252-253 
architecture, 240-242 
bounce attack, 250-251 
commands, 245-248, 606-607 
downloading from remote server, 

243-244 
ease/simplicity, 608-609 
entities, 240-242 
evolution of, 605-612 
file sharing, 252 
GUI, 610-612 



Index 693 

mapping protocols to applications, 
609-610 

proxy, 250 
reply codes, 679-681 
special features, 249 
TFTP, 250-252 
updates, 253 

FTP bounce attack, 250-251 
FTP file transfer session, 243 
FTP protocol exchange, 246 
Full-mesh architecture, 142 
Fully qualified domain name (FQDN), 39 

G 
Gateway, 24, 271,489, 509 
Gateway routing, 489-490 
Gateway to Gateway Protocol (GGP), 521 
Generic Flow Control (GFC), 476 
GGP, 521 
Gigabit Ethernet, 466 
Global internet backbone routing, 513. 

See also Exterior routing 
Glue data, 162-163 
Godel, Escher, Bach: An Eternal Golden Braid 

(Hofstadter), 634, 641 
Godel's theorem, 641 
Gopher, 312-313 
GOST, 561 
.gov, 154 
gzip, 266 

H 
Handshake, three-way, 365-366 
Hash, 564 
Header, 82 
Header error control (HEC), 478 
HEC, 478 
HELO, 198 
HELP, 199 
Hexadecimal numbering system, 40-42 

Historical overview (Internet application 
protocols), 309-317 

Hofstadter, Douglas R., 634, 641 
Hold-down, 503 
Honeynets, 621n 
Honeypots, 621n 
Hop-by-hop options header, 591 
Hop limit field, 589-590 
Host, 15, 20, 431-432 
Host domain name, 157 
Hostname, 37-38 
Hosts file, 34, 146, 181 
HTCP, 273 
HTML, 256 
HTTP, 255-280 

how it works, 261 
illustration, 118-121,125-126, 267-270 
MIME-like objects, 264-267 
response message, 268 
SET message, 267 
state/statelessness, 274-275 
substrate, as, 276-279 
transparency to firewalls, 278 
web caching/intermediaries, 270-274 

HTTP method, 262 
Hyper text caching protocol (HTCP), 273 
Hypertext markup language (HTML), 256 
Hypertext transfer protocol. See HTTP 

I 
I-D, 662 
IAB, 662-664 
IAC character, 231 
IANA, 155, 655-656, 664 
iCalendar, 687 
ICANN, 155, 661,664, 666 
ICMP, 443-453 

checksum, 444 
echo messages, 448 
limitations, 445 
ping, 447-450 



694 Index 

ICMP (continued) 
traceroute, 449-450, 452 
unreachability/routing message, 

445-447 
ICMP echo messages, 448 
ICMP routing messages, 445-446 
ICMP TTL Exceeded message, 452 
ICMP unreachability messages, 445 
ICP, 273 
ICV, 578-579 
IDEA, 561 
Identification fields, 201 
IDMEF, 303 
IDS, 302 
IDS analyzer, 302 
IDXP, 302-304 
IEEE, 47-48, 666 
IEEE 802.2/802.3 frame, 463-465 
IEEE 802.3 standards, 459-465 
IEEE-compliant network interface 

addresses, 48 
IEEE MAC addresses, 47-48, 51 
IESG, 662, 664 
IETF, 662, 664 
IGMP, 536 
IGP, 493 
IKEv2, 564 
IMAP, 213-214, 276n, 686 
iMIP, 687 
In-action illustrations. See also Examples 

DNS, 169-181 
HTTP, 267-270 
IPsec headers, 579-580 

in-addr.arpa, 182-183 
InARP, 471-472 
Indirect routing, 433 
.info, 155 
Information damage, 638 
Information theft, 638 
Informational fields, 202 
Infrastructure. See Internet infrastructure 
Initial sequence number (ISN), 359 

Initialization vector, 575 
Initiator, 294 
Inktomi, 272 
Instant messaging, 314 
Institute of Electrical and Electronics 

Engineers (IEEE), 47-48, 666 
.int, 154 
Integrity check value (ICV), 578-579 
Interface, 15, 18-19 
Interface ID, 597 
Interior gateway protocol (IGP), 493 
Interior routing, 434, 492-493, 510-513 
International data encrypting algorithm 

(IDEA), 561 
International Telecommunications Union 

(ITU), 666 
internet, 14 
Internet, 14, 29 
Internet address, 45-47 
Internet address types, 402-407 
Internet Architecture Board (IAB), 662-664 
Internet Assigned Numbers Authority 

(IANA), 155, 655-656, 664 
Internet Cache Protocol (ICP), 273 
Internet connectivity, 90-92 
Internet Control Message Protocol. 

See ICMP 
Internet Corporation for Assigned Names 

and Numbers (ICANN), 155 
Internet dialtone, 316 
Internet-draft (I-D), 662 
Internet Engineering Steering Group 

(IESG), 662, 664 
Internet Engineering Task Force (IETF), 

662, 664 
Internet file transfer, 237-254. See also FTP 
Internet group management protocol 

(IGMP), 536 
Internet infrastructure, 541-601 

IPsec, 551-582 
IPv6, 583-601 
quality of service (QoS), 543-550 



Index 695 

Internet key exchange (IKE), 563 
Internet layer protocols, 101 
Internet mail, 187-219, 311 

mail transfer architecture, 190-194 
message hops/message submission, 

194-195 
messaging agents, 189-190 
SMTP. See SMTP 

Internet message access protocol (IMAP), 
213-214, 276n, 686 

Internet message format, 199-201 
Internet messaging architecture, 188-195 
Internet node, 17 
Internet Protocol. See IP 
Internet Protocol address prefix notation, 

516-517 
Internet Protocol addressing, 399-414 
Internet Protocol datagrams, 414-429 
Internet Protocol development groups, 

662-663 
Internet Protocol multicast. See IP 

multicast 
Internet Protocol packet processing, 

432-435 
Internet Protocol routing. See IP routing 
Internet Protocol security. See IPsec 
Internet Protocol subnets, 410-414 
Internet QoS: Architectures and Mechanisms 

for Quality of Service (Wang), 550 
Internet relay chat (IRC), 314n 
Internet Research Steering Group (IRSG), 

663 
Internet Research Task Force (IRTF), 

663-664 
Internet security. See Security 
Internet Security Association and Key 

Management Protocol (ISAKMP), 
563-564, 569-570 

Internet Society (ISOC), 661-664 
Internet Standards for Ethernet (Loshin), 

136n 

Internet terminal emulation protocols. See 
Terminal emulation protocols 

Internet Corporation for Assigned Names 
and Numbers (ICANN), 661,664, 
666 

Internetwork, 29 
Internetwork interfaces devices, 84-90 
Internetwork terms, 28-31 
Internetworking with TCP/IP (volume 1) 

(Comer), 399 
Interoperability, 25 
Interpret As Command (IAC) character, 

231 
Intranet, 29-30 
Intranet routing domain, 491 
Intrusion Detection eXchange Protocol 

(IDXP), 302-304 
Intrusion Detection Message Exchange 

Format (IDMEF), 303 
Intrusion detection system (IDS), 302 
Intserv, 547-549 
Inverse ARP (InARP), 471-472 
Inverse query, 183 
IP, 397-442 

address notation, 401-402 
address types, 402-407 
addresses, 399-414 
ATM, and, 473-475 
class A addresses, 408-410 
class B addresses, 408-410 
class C addresses, 408-410 
datagrams, 414-429 
defined, 397 
fragmentation, 422-425 
header fields, 415-419 
hosts/routers, 431-432 
IPsec, 568-580 
link layer, and, 457-459 
moving packets, 430-431 
NAT, 435-441. See also NAT 
network address architecture, 407-410 
options, 427-429 



696 Index 

IP (continued) 
packet processing, 432-435 
path MTU, 421-422 
routing, 429-435 
source routing, 435 
subnetting, 410-4 14 
ToS field, 420-421 
TTL field, 418, 425-427 
usage example, 133-135 

IPv4, 49, 399-435. See also IP 
IPv4/IPv6 dual shock, 600 
IPv4 network addresses, 407-410 
IPv4 options, 427-429 
IPv4 routing, 429-435 
IPv6, 50-51,583-601 

address types, 598-599 
addressing, 586, 592-599 
authentication/privacy, 588-589 
flaws, 585, 588-589 
header, 586-587, 589-591 
IPv4/IPv6 dual stack, 600 
link-local addresses, 598 
migrating to, 599-600 
new features, 585-589 
options, 587-588, 591-592 
protocol tunneling, 599-600 
site-local addresses, 598 

IPv6 addressing, 586, 592-599 
IPv6 Clearly Explained, 583 
IPv6 options, 591-592 
IP address prefix notation, 516-517 
IP addressing, 399-414 
IP datagrams, 414-429 
IP development groups, 662-663 
IP host, 431-432 
IP multicast, 529-540 

applications, 539 
applying multicast, 531-533 
dense-mode multicast routing, 537-539 
IGMP, 536 
multicast routing, 537-539 
network multicasting, 530-531 

sparse-mode multicast routing, 
538-539 

IP Next Generation (IPng) project, 
583-584. See also IPv6 

IP packet processing, 432-435 
IP reference model, 78-80 
IP router, 431-432 
IP routing, 485-507 

defined, 489 
distance-vector routing, 493-503 
gateway routing, 489-490 
interior vs. exterior routing, 492-493, 

510-513 
link state routing, 504-506 
OSPF, 504-506 
RIP, 493-503. See also RIP 
routed networks, 490-492 
routing algorithms, 493 
routing protocol objectives, 486-488 

IP Security Protocol. See IPsec 
IP security tunneling, 572 
IP subnets, 410-414 
IP tunneling, 428 
IPng project, 583-584. See also IPv6 
IPsec, 105-106, 551-582. See also Security 

AH, 575-578 
digital signature, 565 
ESP, 573-575 
functions, 553-554 
headers (example), 579-580 
ICV, 578-579 
implementing/deploying, 580-582 
IP, and, 568-580 
key management, 562-564 
NAT, 437-438 
public key encryption, 561-562 
secure hashes, 564 
security associations, 569-570 
security goals, 555-559 
security tunneling, 566-568, 572 
symmetric encryption, 560-561 
tunnel/transport mode, 570-573 



Index 697 

IRC, 314n 
IRSG, 663 
IRTF, 663-664 
ISAKMP, 563-564, 569-570 
ISN, 359 
ISOC, 661-664 
ISOC entities, 662-666 
iTIP, 687 
ITU, 666 

J 
Jacobson, Van, 372 
Joe's packets. See Examples 
Jumbo frames, 466 

K 
Kaufman, Charlie, 300 
Key exchange, 563 
Key management, 562-564 
Kudzu, 435 

L 
L2F, 552 
L2TP, 98 
LAN, 15, 21 
LAN Emulation (LANE), 474 
Latency, 64-65 
Layer 2 Forwarding (L2F), 552 
Layer 2 Tunneling Protocol (L2TP), 98, 552 
LDA, 190 
Learning bridge, 86 
Lewis, Edward, 184 
LFN, 381 
Lightning tour of TCP/IP protocol suite. 

See Examples 
Link, 18 
Link latency, 64 
Link layer. See Data link layer 
Link layer PDU, 462 
Link-local addresses, 598 
Link state routing, 504-506 

Linux, 13 
LIS, 485, 492-493 
Listener, 294 
LLC, 464 
Local area network (LAN), 15, 21 
Local delivery agent (LDA), 190 
Local gateway router architecture, 490 
Local state, 504 
Local traffic, 523 
Logical IP subnetwork (LIS), 485, 492-493 
Logical link control (LLC), 464 
Long fat network (LFN), 381 
Long thin network (LTN), 381 
Loopback, 403-404 
Loose source routing, 427 
LTN, 381 

M 
MAC, 579 
MAC address, 463 
Macluhan, Marshall, 17 
MAIL, 198 
Mail. See Internet mail 
Mail address, 39 
Mail delivery agent (MDA), 190 
Mail exchange request, 175-181 
Mail exchange resource record (MX RR), 

160, 176 
Mail object, 196 
Mail transfer agent (MTA), 189 
Mail transfer architecture, 190-194 
Mail user agent (MUA), 189 
Mailbox address, 205-208 
Malicious software, 638 
Malware, 638 
Man-in-the-middle attacks, 558 
Management information base (MIB), 

651-653 
Markup languages, 262, 284-288 
MARS, 479 
Maximum segment size (MSS), 376-377 



698 Index 

Maximum transmission unit (MTU), 381 
MD5, 579 
MDA, 190 
Media / medium, 14-15, 18 
Media access control (MAC) address, 463 
Message authentication code (MAC), 579 
Message header fields, 201-204 
Message hops, 194-195 
Message store, 191 
Message submission, 194-195 
Message submission agent (MSA), 190 
Messaging agents, 189-190 
Metropolitan area network (MAN), 16, 

21-22 
MF bit, 417 
MIB, 651-653 
Middlebox, 623-624 
.mil, 154 
Mills, Dave, 447n 
MIME, 215-217 
Mockapetris, Paul, 147, 150 
More Fragments (MF) bit, 417 
MOSPF, 538 
MPLS, 475 
MPLS: Technology and Applications 

(Davie/Rekhter), 475 
MSA, 190 
MSS, 376-377 
MTA, 189 
MTU, 381 
MUA, 189 
Multi-homed hosts, 385 
Multicast, 70, 404. See also IP multicast 
Multicast Address Resolution Server 

(MARS), 479 
Multicast Open Shortest Path First 

(MOSPF), 538 
Multicast routers, 536 
Multicasting routing, 537-539 
Multihomed AS, 523 
Multihomed hosts, 431 
Multiple access, 459 

Multiprotocol label switching (MPLS), 475 
Multipurpose Internet Message 

Extensions (MIME), 215-217 
.museum, 155 
Muuss, Mike, 447 
MX RR, 160, 176 

N 
.name, 155 
Name/address administration groups, 

663-665 
Nameserver, 150, 169 
Nameserver resource records (NS RRs), 

174 
Naming/addressing. See Network 

naming/addressing 
NARP server, 478 
NAT, 435-441 

IPsec, and, 439-440 
issues / misconceptions, 437-439 
NAT box, 436-437 
NAT/PT, 437 
RFCs, 440-441 
security, 438-439 
why needed, 435-436 

NAT/PT, 437 
NAT box, 436-437 
NBMA ARP (NARP) server, 478 
NBMA networks, 137-138, 458-459, 

478-479 
.net, 154 
Netscape Communications, 275 
Netscape Navigator, 17 
Network, 14 
Network address architecture, 407-410 
Network Address Translation. See NAT 
Network Address Translation/Port 

Translation (NAT/PT), 437 
Network addresses, 33, 45-47 
Network addressing spaces, 42-49 
Network control protocols, 481 



Index 699 

Network design. See Planning IP 
networks 

Network file sharing, 238-239 
Network file system (NFS), 252 
Network identification terms, 38-39 
Network interface, 18 
Network interface card (NIC), 18-19 
Network interface layer protocols, 98 
Network layer PDU, 462 
Network management. See SNMP 
Network medium, 18 
Network multicasting, 530-531 
Network names, 33, 51-52 
Network naming/addressing, 33-53 

centralized vs. distributed systems, 
34-38 

definitions, 38-39 
IEEE MAC addresses, 47-48 
internet address, 45-47 
IPv4, 49 
IPv6, 50-51 
network address, 45-47 
network addressing spaces, 42-49 
network names, 51-52 
numbering systems, 40-42 

professional organizations, 663-665 
Network News Transport Protocol 

(NNTP), 104, 686 
Network node, 17 
Network protocol, 25 
Network sniffing tools, 117 
Network systems, 22-25 
Network terms, 13-17 
Network virtual terminal (NVT), 224-225 
Networking terminology, 11-31 

clients/servers, 20-21 
internetwork terms, 28-31 
LAN, WAN, MAN, SAN, 21-22 
network identification terms, 38-39 
network media/interfaces, 17-19 
network protocols, 25-28 
network systems, 22-25 

network terms, 13-17 
nodes/hosts, 19-20 

New, Darren, 301 
Next-Hop Resolution Protocol (NHRP), 

474 
NFS, 252 
NHRP, 474 
NIC, 18-19 
*nix, 13 
NLA ID, 595-596 
NNTP, 104, 686 
No operation 

IP, 427 
TCP, 376 

Node, 15, 17, 19-20, 151 
Non-broadcast/multiple access (NBMA) 

networks, 137-138, 458-459, 
478-479 

Non-core gateways, 509 
Non-default routers, 434, 493 
Non-edge devices, 71-74 
Non-ISOC/ICANN affiliated 

organizations, 666 
Non-recursive / recursive requests, 165 
Nonrepudiation, 565 
NOOP, 199 
NS RRs, 174 
Numbering systems, 40-42 
NVT, 224-225 

O 
OAKLEY, 564 
Octet-counting, 290 
Octet-stuffing, 290 
Open relays, 194-195 
Open Shortest Path First (OSPF), 504-506 
Open System Interconnection (OSI), 76 
Options 

IP, 427-429 
IPv6, 587-588, 591-592 
TCP, 376-378 



700 Index 

Orders of magnitude, 50 
.org, 154 
Organizationally unique identifier (OUI), 

48 
Originator fields, 201 
OSI, 76 
OSI reference model, 76-78, 84-86 
OSPF, 504-506 
OUI, 48 
Overhead, 59-60 
Overview of book, 9-10. See also Bool~ 
Overview of packet movement, 115-143. 

See also Examples 

P 
Packet, 28, 397 
Packet processing, 432-435 
Packet switching, 65-68 
Packet validation, 390 
Padding, 362, 575 
Password derived moduli (PDM), 300 
Path management, 390 
Path MTU, 381,422 
Payload, 82 
Payload type (PT), 477 
PDU, 28 
Per hoop behavior (PHB), 548 
Perlman, Radia, 300 
Persistent connections, 291 
Petabyte, 65n 
PHB, 548 
Photuris, 563 
Physical layer, 77 
PIM-DM, 538 
PIM-SM, 538 
Ping, 447-452 
Ping of death, 449, 640 
Pipelining, 291 
Planning IP networks, 613-634 

backup, 629, 631 
mail, 628 

maintenance/administration, 625-628 
media, 622-623 
middlebox, 624-625 
network architecture, 615-621 
network components, 622-625 
routing, 624 
security, 630-634 
security devices, 625 
services offered, 628-630 

Point to Point Protocol (PPP), 98, 480-481 
Point to Point Tunneling Protocol (PPTP), 

552 
Pointcast, 531-532 
Pointer resource record (PTR), 182 
Poison reverse, 503 
POP3, 212-213, 676-677, 685-686 
Port 22, 338 
Port 80, 330 
Port numbering, 44 
Ports, 124-125, 326-327 
POSIX, 13 
Post Office Protocol, v3 (POP3), 212-213, 

676-677, 685-686 
Postal analogy, 517-521 
Postalnets, 519 
Postel, Jon, 341,663 
PPP, 98, 480-481 
PPTP, 552 
Precision, 11 
Preference, 180 
Presentation layer, 77 
Primary nameserver, 169 
Private network addresses, 406-407 
Private ports, 125, 327 
.pro, 155 
Process, 16 
Professional organizations, 661-666 
Profile, 292 
Promiscuous mode, 137 
Protocol, 25-26 
Protocol data unit (PDU), 28 
Protocol example, 26-27 



Index 701 

Protocol independent multicast-dense 
mode (PIM-DM), 538 

Protocol independent multicast-sparse 
mode (PIM-SM), 538 

Protocol sniffer, 117 
Protocol Supporting Organization (PSO), 

664, 666 
Protocol tunneling, 298-300, 599-600 
Proxy agents, 534 
Proxy ARP, 138, 470 
Proxy FTP, 250 
Proxy servers, 271,534 
Pseudo header, 343, 345-346 
PSH, 363 
PSO, 664, 666 
PSTN, 42 
PT, 477 
Public key algorithm, 563 
Public key encryption, 561-562 
Public switched telephone network 

(PSTN), 42 
Publish/subscribe, 306 

Q 
Quality of service (QoS), 106-107, 543-550 

approaches to quality, 546 
diffserv, 548-550 
intserv, 547-549 
reserving resources, 547 
RSVP, 547 

QUIT, 199 
Quoted-printable, 216, 265 

R 
R-utilities, 232-233 
RARP, 470-471 
RAW, 301 
RC2/RC4, 561 
RCPT, 198 
RDATA, 160 
RDLENGTH, 159 

"Reach Out and Touch Someone: How 
Bob and His Binoculars Found 
More Bandwidth and Learned to 
Stop Worrying and Love the 
Bond" (Cringely), 22 

Reachability advertisement, 511 
Real-time applications, 63 
Real Time Streaming Protocol (RTSP), 539 
Real-Time Transfer Protocol (RTP), 539 
Realm-Specific IP (RSIP), 440 
Recursive / non-recursive requests, 165 
Redirect, 446 
Regional internet registries (RIRs), 

664-665 
Registered ports, 125, 327 
Registrars, 157 
Rekhter, Yakov, 475 
Relative addressing, 517-521 
Relays, 300 
Remote network monitoring (RMON), 653 
Remote procedure call (RPC), 252, 301 
Rendezvous point (RP), 538 
Repeater, 86 
Request method, 261 
R6seaux IP Europ6ens-Network 

Coordination Centre (RIPE-NCC), 
665-666 

Resent-fields, 202 
Reserved and special addresses, 406 
Resolvers, 150 
Resource record (RR), 158-160 

fields, 158-160 
types, 160, 668-671 

Resource record types, 160, 668-671 
Resource ReSerVation Protocol (RSVP), 

547 
Reverse Address Resolution Protocol 

(RARP), 470-471 
Reverse DNS lookup, 181-183 
RFC 97, 225 
RFC 768, 341-345 
RFC 791,407, 418, 420, 427-428 



702 Index 

RFC 792, 443 
RFC 793, 353, 360, 376-378 
RFC 821,188 
RFC 822, 199 
RFC 823, 521-522 
RFC 826, 467, 478 
RFC 854, 225 
RFC 879, 364 
RFC 894, 482 
RFC 895, 482 
RFC 904, 522 
RFC 906, 250 
RFC 952, 146 
RFC-953, 146 
RFC 959, 240, 679 
RFC 1002, 670 
RFC 1034, 147, 152, 158, 160 
RFC 1035, 147, 168, 182, 671 
RFC 1042, 482 
RFC 1055, 482 
RFC 1058, 493 
RFC 1072, 378 
RFC 1075, 537 
RFC 1105, 523 
RFC 1112, 534, 536 
RFC 1122, 420, 426, 431-432, 462, 489 
RFC 1144, 380 
RFC 1146, 380 
RFC 1188, 482 
RFC 1190, 416 
RFC 1191, 422 
RFC 1201, 482 
RFC 1209, 482 
RFC 1263, 380 
RFC 1265, 525 
RFC 1266, 525 
RFC 1293, 471 
RFC 1323, 380 
RFC 1349, 420 
RFC 1350, 250 
RFC 1390, 482 
RFC 1393, 428 

RFC 1436, 312 
RFC 1455, 420 
RFC 1469, 482 
RFC 1579, 249 
RFC 1584, 538 
RFC 1591, 153 
RFC 1594, 664n 
RFC 1631, 441 
RFC 1661, 482 
RFC 1693, 380 
RFC 1715, 515 
RFC 1771, 523, 525 
RFC 1772, 523, 525 
RFC 1773, 525 
RFC 1774, 525 
RFC 1812, 534 
RFC 1831, 252 
RFC 1832, 252 
RFC 1863, 525 
RFC 1883, 584 
RFC 1884, 584 
RFC 1889, 539 
RFC 1930, 526 
RFC 1939, 212-213, 676, 685 
RFC 1945, 260-261,270 
RFC 1950, 390 
RFC 1952, 266 
RFC 1997, 526 
RFC 1998, 526 
RFC 2003, 428 
RFC 2018, 378, 380 
RFC 2022, 479 
RFC 2042, 526 
RFC 2045, 265 
RFC 2060, 213, 686 
RFC 2067, 482 
RFC 2068, 260 
RFC 2090, 252 
RFC 2168, 160 
RFC 2176, 483 
RFC 2186, 273 
RFC 2187, 273 



Index 703 

RFC 2189, 538 
RFC 2201, 538 
RFC 2222, 291,298 
RFC 2225, 474, 478, 483 
RFC 2228, 253 
RFC 2234, 200 
RFC 2246, 336 
RFC 2267, 380 
RFC 2270, 526 
RFC 2324, 261 
RFC 2326, 539 
RFC 2328, 493, 504, 506 
RFC 2332, 474 
RFC 2347, 252 
RFC 2348, 251 
RFC 2349, 251 
RFC 2362, 538 
RFC 2373, 595 
RFC 2385, 526 
RFC 2390, 471 
RFC 2391, 441 
RFC 2396, 257 
RFC 2398, 380 
RFC 2401, 552-553, 580 
RFC 2402, 576, 578-579 
RFC 2406, 573-574, 579 
RFC 2414, 380 
RFC 2415, 380 
RFC 2416, 380 
RFC 2439, 526 
RFC 2445, 687 
RFC 2446, 687 
RFC 2447, 687 
RFC 2453, 497-498, 506 
RFC 2474, 421,548 
RFC 2476, 190, 195 
RFC 2481, 421 
RFC 2488, 380-381 
RFC 2518, 257 
RFC 2519, 526 
RFC 2525, 380 
RFC 2535, 160, 185 

RFC 2538, 185 
RFC 2547, 526 
RFC 2549, 483 
RFC 2581, 372, 380 
RFC 2582, 380 
RFC 2598, 548 
RFC 2616, 261,263, 266, 270-271 
RFC 2617, 277 
RFC 2625, 483 
RFC 2633, 546 
RFC 2640, 253 
RFC 2660, 335 
RFC 2661, 552 
RFC 2663, 440-441 
RFC 2709, 441 
RFC 2728, 483 
RFC 2734, 483 
RFC 2756, 273 
RFC 2757, 379 
RFC 2760, 379 
RFC 2766, 441 
RFC 2778, 314 
RFC 2779, 314 
RFC 2796, 526 
RFC 2821, 188, 190, 197, 212, 673 
RFC 2822, 188, 200, 204 
RFC 2822/822, 290 
RFC 2834, 483 
RFC 2835, 483 
RFC 2842, 526 
RFC 2845, 185 
RFC 2858, 526 
RFC 2861, 379 
RFC 2883, 379 
RFC 2884, 379 
RFC 2915, 160 
RFC 2918, 526 
RFC 2923, 379 
RFC 2960, 385, 388 
RFC 2962, 441 
RFC 2965, 275 
RFC 2988, 379 



704 Index 

RFC 2993, 441 
RFC 2998, 549 
RFC 3007, 185 
RFC 3008, 185 
RFC 3010, 252 
RFC 3022, 440 
RFC 3027, 441 
RFC 3031, 475 
RFC 3042, 379 
RFC 3065, 526 
RFC 3080, 291,297 
RFC 3090, 667 
RFC 3093, 80, 278 
RFC 3102, 440-441 
RFC 3103, 441 
RFC 3104, 441 
RFC 3105, 441 
RFC 3107, 526 
RFC 3110, 667 
RFC 3117, 288-289, 292 
RFC 3124, 333 
RFC 3130, 184, 667 
RFC 3152, 668 
RFC 3155, 379 
RFC 3168, 360, 364, 379, 421 
RFC 3172, 668 
RFC 3194, 44, 515 
RFC 3195, 301 
RFC 3205, 277, 279 
RFC 3221, 526 
RFC 3225, 668 
RFC 3226, 668 
RFC 3235, 441 
RFC 3253, 257 
RFC 3257, 441 
RFC Editor, 663-664 
Rijndael, 560 
Ring network, 616 
RIP, 496-503 

advantages/disadvantages, 500 
fixes, 503 
header fields, 497 

routing loops, 502-503 
rules, 496 
slow convergence, 500-501 
versions, 497-499 

RIPvl, 497-499 
RIPv2, 497-499 
RIP fixes, 503 
RIPE-NCC, 665-666 
RIRs, 664-665 
Rivest, Ron, 562 
RMON, 653 
Root domain node, 152 
Rose, Marshall, 282, 288-290, 301 
Round trip time (RTT), 370 
Route cache, 433 
Routed networks, 89, 490-492 
Routers, 72, 88-90 

advertisements, 494, 511 
backbone, 434, 493 
BGP, 525 
border, 514 
defined, 24 
host, compared, 489 
IP, 431-432 

Routing, 66-67 
direct, 433 
exterior, 434, 509-527. See also Exterior 

routing 
gateway, 489-490 
indirect, 433 
interior, 434, 492-493, 510-513 
IP, 485-507. See also IP routing 
IPv4, 429-435 
multicast, 537-539 
SOHO networks, 624 
source, 435 
usage example, 140-142 

Routing algorithms, 489, 494 
Routing header, 592 
Routing Information Protocol. See RIP 
Routing loops, 502-503 
Routing messages, 445-446 



Index 705 

Routing protocols, 489 
Routing strategy, 487-488 
RP, 538 
RPC, 252, 301 
RR. See Resource record (RR) 
RSA algorithm, 562 
RSET, 198 
RSIP, 440 
RST, 363 
RSVP, 547 
RTSP, 539 
RTT, 370 

S 
S-HTTP, 335 
SA, 569-570 
SACK, 378-379 
SAD, 570 
SAN, 22 
SASL, 291,297-298 
Satellite channels, 381 
Scheduling/calendaring tools, 686-687 
Schema, 108 
Schneier, Bruce, 561 
SCTP, 384-391 

architecture, 384-385 
association, 386-387 
chunk, 388 
protocol functions, 389-390 
stream, 388 
uses, 390-391 

Secondary nameserver, 169 
Secure electronic transaction (SET), 335 
Secure hash algorithm (SHA), 564 
Secure hash functions, 579 
Secure hashes, 564 
Secure HTTP (S-HTTP), 335 
Secure Shell Protocol (SSH), 233-234, 

337-338 
Secure Socket Layer (SSL), 335 
Security, 104-106, 635-642 

Godel's theorem, 641 
human attacks, 637-639 
IPsec, 551-582. See also IPsec 
law of computing, 639-641 
laws of nature, 641 
NAT, 438-439 
protocol, 105-106 
SMTP, 214-215 
SOHO networks, 630-634 
transport layer, 333-338 

Security association (SA), 569-570 
Security Association Database (SAD), 570 
Security gateway, 566, 571,574 
Security parameter index (SPI) 

AH, 577-578 
ESP, 574-575 
SA, 569 

Security policy database (SPD), 570 
Security protocols, 105-106 
Security through obscurity, 559 
Security tunneling, 566-568 
Security tunnels, 298 
Sega Enterprises, 48 
Segment, 28 
Selective acknowledgment (SACK), 

378-379 
Sequence number 

AH, 578 
ESP, 575 
ISN, 359 
TCP, 359 
TSN, 389 

Serial Line IP (SLIP), 480 
Server, 20-21 
Session initiation protocol (SIP), 283 
Session layer, 77 
SET, 335 
7 bit, 216 
SFD, 465 
SGML, 284 
SHA, 564 
SHA-1,579 



706 Index 

Shamir, Adi, 562 
Signaling System 7 (SS7), 384n 
Simple Authentication and Security Layer 

(SASL), 291,297-298 
Simple Key-management for Internet 

Protocols (SKIP), 563 
Simple Mail Transfer Protocol. See SMTP 
Simple Network Management Protocol. 

See SNMP 
Simple Object Access Protocol (SOAP), 

286-287, 301-302 
SIP, 283 
Site-local addresses, 598 
16-bit block, 517 
SKIP, 563 
Skipjack, 561 
SLA ID, 596-597 
Sliding window, 332, 360 
SLIP, 480 
Slow convergence, 500-501 
Slow start, 372-373 
Small office/home office (SOHO) 

network, 489. See also Planning IP 
networks 

SMI, 648-650 
SMTP, 187-188, 195-217 

ABNF notation, 205-208 
basic architecture, 191-194 
commands, 196-199 
distribution of architectures, 219 
envelopes vs. headers, 205 
extensions, 211-212 
header fields, 201-204 
IMAP, 213-214 
interactions, 218 
lessons to be learned, 217-219 
mailbox address, 205-208 
message format, 199-201 
MIME, 215-217 
POPv3, 212-213 
protocol details, 675-677 
protocol state, 208-210 

replies, 217 
security, 214-215 
sending mail from A to B, 193-194 
translations, 217-218 

SNAP, 464 
Sniffer software, 117 
SNMP, 107-108, 643-655 

commands, 647, 648, 654-655 
MIB, 651-653 
MIB groups, 652 
remote network monitoring, 653 
structure of management information, 

647-650 
version I (SNMPvl), 653-654 
version 2 (SNMPv2), 654-655 

SOAP, 286-287, 301-302 
SOHO network, 489. See also Planning IP 

networks 
Son-of-IKE, 564 
Source routing, 427, 435 
Sparse-mode multicast routing, 538-539 
SPD, 570 
Speedera, 272 
SPI. See Security parameter index (SPI) 
Split-horizon update, 503 
Spoofing attacks, 558 
SS7, 384n 
SSH, 337-338 
SSH Connection Protocol, 338 
SSH Transport Layer Protocol, 337-338 
SSH User Authentication Protocol, 338 
SSL, 335 
Stallings, William, 486 
Standard Generalized Markup Language 

(SGML), 284 
Star network, 616 
Start of frame delimiter (SFD), 465 
STD 36, 482 
STD 41,482 
STD 43, 482 
STD 46, 482 
STD 47, 482 



Index 707 

STD 51,482 
STD 52, 482 
Stevens, W. Richard, 182, 328, 372 
Storage area network (SAN), 22 
Stream, 388 
Stream Control Transmission Protocol. 

See SCTP 
Stream mode, 244 
Strict source routing, 427 
Structure of management information 

(SMI), 648-650 
Stub AS, 524 
Sub-domain, 152n 
Subnet mask, 412-414 
Subnetting, 410-4 14 
Subnetwork access protocol (SNAP), 464 
Switch, 87-88 
Switching, 65-68 
SYN, 363 
SYN flood attack, 366-368 
Synchronization protocol, 365 
Syslog, 300-301 
System, 14, 23 

T 
Tags, 262 
TCP, 351-382 

acknowledgment / retransmission / 
flow control, 369-372 

attributes / features, 353-356 
congestion avoidance, 373-374 
extensions/revisions (RFCs), 379-381 
fast recovery, 375 
fast retransmit, 374-375 
flags, 363-364 
functions, 352-353 
header, 357-363 
LTNs/LFNs, 381 
options, 376-378 
performance enhancements, 372-375 
SACK, 378-379 

satellite channels, 381 
segment size, 364-365 
slow start, 372-373 
SYN flood attacks, 366-368 
termination, 368-369 
three-way handshake, 365-366 
thru-step protocol, 357 
upgrades, 375 
usage example, 127-133 
virtual circuit, 355 

TCP flags, 363-364 
TCP options, 376-378 
TCP segment, 364-365 
Telnet, 222-232, 310-311 

client/server programs, 227-228 
commands, 229, 231 
NVT, 224-225 
options, 230-232 
protocol, 677-679 
steps in interaction, 224-225 
terminal functions, 222-225 
user-session interaction, 227 

Telnet options, 231-232 
Terabyte, 65n 
Terminal emulation protocols, 221-235 

r-utilities, 232-233 
SSH, 233-234 
Telnet, 222-232. See also Telnet 

Terminal functions, 222-225 
Terminology. See Networking 

terminology 
Tertiary nameserver, 169n 
TFTP, 250-252, 346 
Third-generation application protocols, 

281-307 
APEX, 304-306 
BEEP, 291-304. See also BEEP 
blocks architecture, 288-289 
markup languages, 284-288 
SGML, 284 
SOAP, 286-287 
XML, 285-288 



708 Index 

Three-way handshake, 365-366 
Throughput, 58-63 
Throughput strategies, 60-61 
Time stamp 

IP, 427-428 
TCP, 377 

Time to live (TTL) 
IP, 418, 425-427 
RR, 159 

Tin can network, 56 
TLA ID, 595 
TLD, 153-155 
TLS, 335-337 
TLS Alert Protocol, 337 
TLS Change Cipher Spec Protocol, 337 
TLS Handshake Protocol, 336 
TLS Record Protocol, 336 
Token ring, 457n 
Top level domains (TLD), 153-155 
Trace fields, 202 
Traceroute, 428, 449-450, 452 
Traffic analysis, 336 
Traffic class field, 589-590 
Trailers, 82 
Transient ports, 125, 328 
Transit AS, 523 
Transit traffic, 523 
Transmission Control Protocol. See TCP 
Transmission sequence number (TSN), 

389 
Transparent mode, 572 
Transport layer, 321-340 

circuits / connections, 328-329 
congestion/flow control, 332-333 
daemons, 329-330 
data packing, 331-332 
delivery guarantees, 332 
DNS, 168-169 
new approaches, 338-339 
processes/ports, 326-328 
security, 333-338 
services provided, 323-325 
SSH, 337-338 

TLS, 335-337 
usage example, 101-103, 124-133 

Transport layer PDU, 461 
Transport layer security (TLS), 335-337 
Transport mode, 570-571 
Transport protocols, 319-394 

DCP, 391-393 
future directions, 393-394 
SCTP, 384-391. See also SCTP 
TCP, 351-382. See also TCP 
transport layer, 321-340. See also 

Transport layer 
UDP, 341-349. See also UDP 

Triple DES, 560 
Trivial File Transfer Protocol (TFTP), 

250-252, 346 
TSN, 389 
TTL 
IP, 418, 425-427 
RR, 159 
Tuning, 296 
TUNNEL, 303 
Tunnel, 272 
Tunnel management protocols, 552 
Tunnel mode, 570-571 
Tunneling 

BEEP TUNNEL, 298-300 
IP, 428 
IPsec, 572 
L2TP, 98, 552 
PPTP, 552 
protocol, 298-300, 599-600 
security, 566-568, 572 

Tuvalu (TV), 154 
20-bit block, 517 
24-bit clock, 517 
Twofish, 561 

U 
UA, 189 
UDP, 168-169, 341-349 

checksum, 343, 345-346 



Index 709 

examples, 126-127, 348-349 
fields, 342-343 
format, 342 
IP interface, 344 
payload, 346 
protocol number, 344 
pseudo header, 343, 345-346 
RFC 768, 341-345 
uses, 347-348 

Unicast, 69, 404 
Uniform resource identifier (URI), 

257-259, 681-683 
Uniform resource locator (URL), 259-260 
Uniform resource name (URN), 257-258 
Uninterruptable power supplies (UPSes), 

631 
UNIX, 13 
Unshielded twisted pair (UTP) wiring, 

622 
Updates 

FTP, 253 
TCP, 375 
TFTP, 251-252 

UPS, 631 
URG, 363 
Urgent pointer, 362 
URI, 257-259, 681-683 
URL, 259-260 
URN, 257, 258 
User agent (UA), 189 
User data fragmentation, 389 
User Datagram Protocol. See UDP 
UTP wiring, 622 

Virtual circuits, 56-57, 472 
Virtual path identifier (VPI), 477 
Virtual private network (VPN), 571 
VPI, 477 
VPN, 571 
VRFY, 198-199 

W 
W3C, 666 
Wang, Zheng, 550 
Web, 30-31,255-280 

HTTP. See HTTP 
specifications/protocols, 256-257 
specifying resources, 257-260 
URI, 257-259 
URL, 259-260 
URN, 257-258 

Web Intermediaries (WEBI) Working 
Group, 274 

Web intermediary system, 271 
WebDAV, 256-257 
WEBI, 274 
Well-known ports, 124-125, 327 
Wide area network (WAN), 16, 21-22 
World Wide Web Consortium (W3C), 666 
WSOPT (Window Scale) option, 377 

X 
XDR, 252 
XML, 285-288 
XML-RPC, 301 

Y 
Ylonen, Tatu, 233 

V 
VCI, 477 
Verification tag, 390 
Verisign, 558 
Virtual channel identifier (VCI), 477 

Z 
Zhang, Lixia, 624 
Zimmermann, Philip, 561 
Zone transfer, 169 
Zones, 162-163 



This Page Intentionally Left Blank


	TCP/IP Clearly Explained
	Copyright Page
	Contents
	Preface
	Audience
	Acknowledgments
	Part I: Concepts and Fundamentals of Networking
	Chapter 1. Introduction: What is This Book About?
	1.1 Graphical Conventions Used in this Book
	1.2 Notes on Style
	1.3 Overview

	Chapter 2. A Language of Networking
	2.1 Network Terms
	2.2 Network Media and Interfaces
	2.3 Nodes and Hosts
	2.4 Clients and Servers
	2.5 LAN, MAN, WAN, SAN
	2.6 Network Systems
	2.7 Network Protocols
	2.8 Internetwork Terms
	2.9 Chapter Summary

	Chapter 3. Network Addresses, Network Names
	3.1 Scalability and Network Naming/Numbering
	3.2 Network Identification Terms, Defined
	3.3 Binary and Hexadecimal Numbering
	3.4 Network Addressing Spaces
	3.5 Network Names
	3.6 Chapter Summary

	Chapter 4. Applying Networking Concepts
	4.1 Virtual Circuits
	4.2 Bandwidth and Throughput
	4.3 Latency
	4.4 Packet Switching and Routing
	4.5 Best Effort Delivery
	4.6 Unicast, Broadcast, Multicast, and Anycast
	4.7 Switching, Routing, and Bridging
	4.8 Edge, Non-Edge, and Backbone Devices
	4.9 Chapter Summary

	Chapter 5. Network Models and Internetworking Concepts
	5.1 OSI vs IP
	5.2 The OSI Reference Model
	5.3 The DoD (IP) Reference Model
	5.4 Encapsulation
	5.5 Internetwork Interface Devices
	5.6 Defining the Internet
	5.7 Chapter Summary

	Chapter 6. Internet Protocol Overview
	6.1 Network Interface Layer
	6.2 Internet Layer
	6.3 Transport Layer
	6.4 Application Layer
	6.5 Internet Security and IPsec
	6.6 Integrated Services, Differentiated Services
	6.7 Network Management
	6.8 Chapter Summary


	Part II: Internet Applications
	Chapter 7. Meet Joe's Packets
	7.1 Meet Joe
	7.2 The Application Layer: DNS and HTTP
	7.3 The Transport Layer
	7.4 Internet Layer
	7.5 Network Link Layer
	7.6 The Big Picture
	7.7 Routing Joe's Packets
	7.8 Chapter Summary

	Chapter 8.  The Domain Name System
	8.1 Problem Statement
	8.2 The Domain Name System Solution
	8.3 The Database
	8.4 The Protocol
	8.5 Domain Name System in Action
	8.6 Additional Domain Name System Issues
	8.7 Chapter Summary

	Chapter 9. Internet Mail
	9.1 Internet Messaging Architecture
	9.2 Simple Mail Transfer Protocol Details
	9.3 More Simple Mail Transfer Protocol Issues
	9.4 Internet Mail Lessons
	9.5 Chapter Summary

	Chapter 10. Telnet
	10.1 Problem Statement
	10.2 Terminal Functions
	10.3 Telnet Protocol Basics
	10.4 Secure Shell Protocol
	10.5 Chapter Summary

	Chapter 11. Internet File Transfer
	11.1 Problem Statement
	11.2 File Transfer Protocol Basics
	11.3 What's Special About File Transfer Protocol
	11.4 Trivial File Transfer Protocol
	11.5 File Sharing
	11.6 Anonymous File Transfer Protocol
	11.7 FTP Updates
	11.8 Chapter Summary

	Chapter 12. The Web
	12.1 Specifying Web Resources
	12.2 The Hypertext Transfer Protocol (HTTP)
	12.3 Hypertext Transfer Protocol and Multipurpose Internet Message Extensions
	12.4 Hypertext Transfer Protocol in Action
	12.5 Web Caching and Intermediaries
	12.6 State and Statelessness
	12.7 Hypertext Transfer Protocol as Substrate
	12.8 Chapter Summary

	Chapter 13.  Third-Generation Application Protocols
	13.1 Markup Languages
	13.2 Blocks Architecture and BEEP
	13.3 BEEP-Based Protocols
	13.4 Application Exchange (APEX)
	13.5 Chapter Summary

	Chapter 14. Thinking about Internet Application Protocols
	14.1 File Transfer Protocol, Telnet, and Mail
	14.2 Gopher, the Web, Internet Access Message Protocol, and Instant Messaging
	14.3 Beyond Interactivity
	14.4 Chapter Summary


	Part III: Transport Protocols
	Chapter 15. The Transport Layer
	15.1 Problem Statement
	15.2 Transport Layer Components
	15.3 Reliability, Congestion, and Flow Control
	15.4 Security at the Transport Layer
	15.5 New Approaches to the Transport Layer
	15.6 Chapter Summary

	Chapter 16. User Datagram Protocol
	16.1 RFC 768 : User Datagram Protocol
	16.2 A Bit More About User Datagram Protocol
	16.3 User Datagram Protocol Datagram Format
	16.4 Where User Datagram Protocol Data Fits In
	16.5 User Datagram Protocol Examples
	16.6 Chapter Summary

	Chapter 17. Transmission Control Protocol
	17.1 Problem Statement
	17.2 Transmission Control Protocol Attributes and Features
	17.3 Transmission Control Protocol Basics
	17.4 Transmission Control Protocol Performance
	17.5 Improving Transmission Control Protocol
	17.6 Chapter Summary

	Chapter 18. Transport Layer Protocols of the Future
	18.1 Stream Control Transmission Protocol
	18.2 Datagram Control Protocol
	18.3 The Future
	18.4 Chapter Summary


	Part IV: Internet Layer and Below
	Chapter 19. The Internet Protocol
	19.1 Internet Protocol Addressing
	19.2 Internet Protocol Datagrams
	19.3 IPv4 Routing
	19.4 Network Address Translation
	19.5 Chapter Summary

	Chapter 20.  Internet Control Message Protocol
	20.1 Internet Control Message Protocol Headers and Messages
	20.2 Unreachability and Routing Messages
	20.3 Ping and Internet Control Message Protocol Echo Messages
	20.4 Traceroute
	20.5 Using Ping
	20.6 Using Traceroute
	20.7 Chapter Summary

	Chapter 21. The Data Link Layer
	21.1 Internet Protocol and the Link Layer
	21.2 Ethernet
	21.3 Address Resolution
	21.4 Asynchronous Transfer Mode
	21.5 Point to Point Protocol
	21.6 Internet Protocol on Everything
	21.7 Chapter Summary

	Chapter 22. Internet Protocol Routing
	22.1 Routing Protocol Objectives
	22.2 Routing Fundamentals
	22.3 Distance-Vector Routing
	22.4 Link State Routing with Open Shortest Path First
	22.5 Chapter Summary

	Chapter 23. Exterior Routing
	23.1 Interior vs. Exterior Routing
	23.2 Exterior Routing Problems
	23.3 Exterior Gateway Protocols
	23.4 Border Gateway Protocol
	23.5 Chapter Summary

	Chapter 24. Internet Protocol Multicast
	24.1 Network Multicasting
	24.2 Applying Multicast
	24.3 Internet Protocol Multicast
	24.4 Internet Group Management Protocol
	24.5 Multicast Routing
	24.6 Internet Protocol Multicast Applications
	24.7 Chapter Summary


	Part V: Internet Infrastructure
	Chapter 25. Quality of Service
	25.1 The Quality Problem
	25.2 Approaches to Quality
	25.3 Reserving Resources
	25.4 Intserv in a Nutshell
	25.5 Diffserv in a Nutshell
	25.6 Diffserv versus Intserv?
	25.7 Chapter Summary

	Chapter 26. The Internet Security Potocol
	26.1 Internet Protocol Security Issues
	26.2 Security Goals
	26.3 Encryption and Authentication Algorithms
	26.4 IPsec: The Protocols
	26.5 Internet Protocol and IPsec
	26.6 Implementing and Deploying IPsec
	26.7 Chapter Summary

	Chapter 27. Next Generation IP: IPv6
	27.2 IPv6 Datagram Headers
	27.3 IPv6 Options
	27.4 IPv6 Addressing
	27.5 Migrating to IPv6
	27.6 Chapter Summary and References


	Part VI: Practical Internetworking
	Chapter 28. The Evolution of File Transfer Protocol
	28.1 Protocol and Applications Commands
	28.2 Ease and/or Simplicity
	28.3 Mapping Protocols to Applications
	28.4 Command Line to Graphical User Interface
	28.5 Chapter Summary

	Chapter 29. Planning Internet Protocol Networks
	29.1 Problem Statement
	29.2 Network Architecture
	29.3 Network Components
	29.4 Network Maintenance and Administration
	29.5 Offering Services
	29.6 What About Security?
	29.7 Chapter Summary

	Chapter 30. Internet Security
	30.1 Security Concepts
	30.2 The Human Factor
	30.3 Laws of Computing
	30.4 Laws of Nature
	30.5 Chapter Summary

	Chapter 31. Simple Network Management Protocol
	31.1 Managing Networks with SNMP
	31.2 Simple Network Management Protocol
	31.3 SNMP Commands
	31.4 Structure of Management Information
	31.5 Management Information Base
	31.6 Remote Network Monitoring
	31.7 Simple Network Management Protocol v2
	31.8 Chapter Summary


	Part VII: Appendices
	A Internet and Network Protocol Organizations
	A.1 Internet Protocol Development Groups
	A.2 Name and Address Administration Groups
	A.3 Related Protocol Development Groups

	B Selected Protocol Summaries
	B.1 Domain Name System
	B.2 Simple Mail Transfer Protocol Details
	B.3 Post Office Protocol v3
	B.4 Telnet Protocol
	B.5 File Transfer Protocol
	B.6 Valid Schemes for Uniform Resource Identifiers
	B.7 Internet Message Access Protocol
	B.8 Network News Transport Protocol


	Index



