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Description 
The term "peer-to-peer" has come to be applied to networks that expect end users to contribute their 
own files, computing time, or other resources to some shared project. Even more interesting than the 
systems' technical underpinnings are their socially disruptive potential: in various ways they return 
content, choice, and control to ordinary users.  

While this book is mostly about the technical promise of peer-to-peer, we also talk about its exciting 
social promise. Communities have been forming on the Internet for a long time, but they have been 
limited by the flat interactive qualities of email and Network newsgroups. People can exchange 
recommendations and ideas over these media, but have great difficulty commenting on each other's 
postings, structuring information, performing searches, or creating summaries. If tools provided ways 
to organize information intelligently, and if each person could serve up his or her own data and 
retrieve others' data, the possibilities for collaboration would take off. Peer-to-peer technologies along 
with metadata could enhance almost any group of people who share an interest--technical, cultural, 
political, medical, you name it.  

This book presents the goals that drive the developers of the best-known peer-to-peer systems, the 
problems they've faced, and the technical solutions they've found. Learn here the essentials of peer-to-
peer from leaders of the field:  

• Nelson Minar and Marc Hedlund of Popular Power, on a history of peer-to-peer  

• Clay Shirky of acceleratorgroup, on where peer-to-peer is likely to be headed  

• Tim O'Reilly of O'Reilly & Associates, on redefining the public's perceptions  

• Dan Bricklin, cocreator of Visicalc, on harvesting information from end-users  

• David Anderson of SETI@home, on how SETI@Home created the world's largest 
computer  

• Jeremie Miller of Jabber, on the Internet as a collection of conversations  

• Gene Kan of Gnutella and GoneSilent.com, on lessons from Gnutella for peer-to-peer 
technologies  

• Adam Langley of Freenet, on Freenet's present and upcoming architecture  

• Alan Brown of Red Rover, on a deliberately low-tech content distribution system  

• Marc Waldman, Lorrie Cranor, and Avi Rubin of AT&T Labs, on the Publius project 
and trust in distributed systems  

• Roger Dingledine, Michael J. Freedman, and David Molnar of Free Haven, on 
resource allocation and accountability in distributed systems  

• Rael Dornfest of O'Reilly Network and Dan Brickley of ILRT/RDF Web, on metadata  

• Theodore Hong of Freenet, on performance  

• Richard Lethin of Reputation Technologies, on how reputation can be built online  

• Jon Udell of BYTE and Nimisha Asthagiri and Walter Tuvell of Groove Networks, 
on security  

• Brandon Wiley of Freenet, on gateways between peer-to-peer systems  

You'll find information on the latest and greatest systems as well as upcoming efforts in this book. 

 



Peer to Peer: Harnessing the Power of Disruptive Technologies 

 page 1

Preface 
Andy Oram, O'Reilly & Associates, Inc. 

The term peer-to-peer rudely shoved its way to front and center stage of the computing field around 
the middle of the year 2000. Just as the early 20th-century advocates of psychoanalysis saw sex 
everywhere, industry analysts and marketing managers are starting to call everything they like in 
computers and telecommunications "peer-to-peer." At the same time, technologists report that fear 
and mistrust still hang around this concept, sometimes making it hard for them to get a fair hearing 
from venture capitalists and policy makers. 

Yes, a new energy is erupting in the computing field, and a new cuisine is brewing. Leaving sexiness 
aside, this preface tries to show that the term peer-to-peer is a useful way to understand a number of 
current trends that are exemplified by projects and research in this book. Seemingly small 
technological innovations in peer-to-peer can radically alter the day-to-day use of computer systems, 
as well as the way ordinary people interact using computer systems. 

But to really understand what makes peer-to-peer tick, where it is viable, and what it can do for you, 
you have to proceed to the later chapters of the book. Each is written by technology leaders who are 
working 'round the clock to create the new technologies that form the subject of this book. By 
following their thoughts and research, you can learn the state of the field today and where it might go 
in the future. 

Some context and a definition 

I mentioned at the beginning of this preface that the idea of peer-to-peer was the new eyebrow-raiser 
for the summer of 2000. At that point in history, it looked like the Internet had fallen into predictable 
patterns. Retail outlets had turned the Web into the newest mail order channel, while entertainment 
firms used it to rally fans of pop culture. Portals and search engines presented a small slice of Internet 
offerings in the desperate struggle to win eyes for banner ads. The average user, stuck behind a 
firewall at work or burdened with usage restrictions on a home connection, settled down to sending 
email and passive viewing. 

In a word, boredom. Nothing much for creative souls to look forward to. An Olympic sports ceremony 
that would go on forever. 

At that moment the computer field was awakened by a number of shocks. The technologies were not 
precisely new, but people realized for the first time that they were having a wide social impact: 

Napster  

This famous and immensely popular music exchange system caused quite a ruckus, first over 
its demands on campus bandwidth, and later for its famous legal problems. The technology is 
similar to earlier systems that got less attention, and even today is rather limited (since it was 
designed for pop songs, though similar systems have been developed for other types of data). 
But Napster had a revolutionary impact because of a basic design choice: after the initial 
search for material, clients connect to each other and exchange data directly from one 
system's disk to the other. 

SETI@home  

This project attracted the fascination of millions of people long before the Napster 
phenomenon, and it brought to public attention the promising technique of distributing a 
computation across numerous personal computers. This technique, which exploited the 
enormous amounts of idle time going to waste on PCs, had been used before in projects to 
crack encryption challenges, but after SETI@home began, a number of companies started up 
with the goal of making the technique commercially viable. 

Freenet  

Several years before the peer-to-peer mania, University of Edinburgh researcher Ian Clarke 
started to create an elegantly simple and symmetric file exchange system that has proven to be 
among the purest of current models for peer-to-peer systems. Client and server are the same 
thing in this system; there is absolutely no centralization. 
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Gnutella  

This experimental system almost disappeared before being discovered and championed by 
open source developers. It is another file exchange system that, like Freenet, stresses 
decentralization. Its potential for enhanced searches is currently being explored. 

Jabber  

This open source project combines instant messaging (supporting many popular systems) 
with XML. The emergence of Jabber proclaimed that XML was more than a tool for business-
to-business (B2B) transaction processing, and in fact could be used to create spontaneous 
communities of ordinary users by structuring the information of interest to them. 

.NET  

This is the most far-reaching initiative Microsoft has released for many years, and they've 
announced that they're betting the house on it. .NET makes Microsoft's earlier component 
technology easier to use and brings it to more places, so that web servers and even web 
browsers can divide jobs among themselves. XML and SOAP (a protocol for doing object-
oriented programming over the Web) are a part of .NET. 

Analysts trying to find the source of inspiration for these developments have also noted a new world of 
sporadically connected Internet nodes emerging in laptops, handhelds, and cell phones, with more 
such nodes promised for the future in the form of household devices. 

What thread winds itself around all these developments? In various ways they return content, choice, 
and control to ordinary users. Tiny endpoints on the Internet, sometimes without even knowing each 
other, exchange information and form communities. There are no more clients and servers - or at 
least, the servers retract themselves discreetly. Instead, the significant communication takes place 
between cooperating peers. That is why, diverse as these developments are, it is appropriate to lump 
them together under the rubric peer-to-peer. 

While the technologies just listed are so new we cannot yet tell where their impact will be, peer-to-
peer is also the oldest architecture in the world of communications. Telephones are peer-to-peer, as is 
the original UUCP implementation of Usenet. IP routing, the basis of the Internet, is peer-to-peer, 
even now when the largest access points raise themselves above the rest. Endpoints have also 
historically been peers, because until the past decade every Internet- connected system hosted both 
servers and clients. Aside from dial-up users, the second-class status of today's PC browser crowd 
didn't exist. Thus, as some of the authors in this book point out, peer-to-peer technologies return the 
Internet to its original vision, in which everyone creates as well as consumes. 

Many early peer-to-peer projects have an overtly political mission: routing around censorship. Peer-
to-peer techniques developed in deliberate evasion of mainstream networking turned out to be very 
useful within mainstream networking. There is nothing surprising about this move from a specialized 
and somewhat ostracized group of experimenters to the center of commercial activity; similar trends 
can be found in the history of many technologies. After all, organizations that are used to working 
within the dominant paradigm don't normally try to change that paradigm; change is more likely to 
come from those pushing a new cause. Many of the anti-censorship projects and their leaders are 
featured in this book, because they have worked for a long time on the relevant peer-to-peer issues 
and have a lot of experience to offer. 

Peer-to-peer can be seen as the continuation of a theme that has always characterized Internet 
evolution: loosening the virtual from the physical. DNS decoupled names from physical systems, while 
URNs were meant to let users retrieve documents without knowing the domain names of their hosts. 
Virtual hosting and replicated servers changed the one-to-one relationship of names to systems. 
Perhaps it is time for another major conceptual leap, where we let go of the notion of location. 
Welcome to the Heisenberg Principle as applied to the Internet. 
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The two-way Internet also has a social impact, and while this book is mostly about the technical 
promise of peer-to-peer, authors also talk about its exciting social promise. Communities have been 
forming on the Internet for a long time, but they have been limited by the flat interactive qualities of 
email and network newsgroups. People can exchange recommendations and ideas over these media, 
but they have great difficulty commenting on each other's postings, structuring information, 
performing searches, or creating summaries. If tools provided ways to organize information 
intelligently, and if each person could serve up his or her own data and retrieve others' data, the 
possibilities for collaboration would take off. Peer-to-peer technologies could enhance almost any 
group of people who share an interest - technical, cultural, political, medical, you name it. 

How this book came into being 

The feat of compiling original material from the wide range of experts who contributed to this book is 
a story all in itself. 

Long before the buzz about peer-to-peer erupted in the summer of 2000, several people at O'Reilly & 
Associates had been talking to leaders of interesting technologies who later found themselves 
identified as part of the peer-to-peer movement. At that time, for instance, we were finishing a book 
on SETI@home (Beyond Contact, by Brian McConnell) and just starting a book on Jabber. Tim 
O'Reilly knew Ray Ozzie of Groove Networks (the creator of Lotus Notes), Marc Hedlund and Nelson 
Minar of Popular Power, and a number of other technologists working on technologies like those in 
this book. 

As for me, I became aware of the technologies through my interest in Internet and computing policy. 
When the first alarmist news reports were published about Freenet and Gnutella, calling them 
mechanisms for evading copyright controls and censorship, I figured that anything with enough power 
to frighten major forces must be based on interesting and useful technologies. My hunch was borne 
out more readily than I could have imagined; the articles I published in defense of the technologies 
proved to be very popular, and Tim O'Reilly asked me to edit a book on the topic. 

As a result, contributors came from many sources. Some were already known to O'Reilly & Associates, 
some were found through a grapevine of interested technologists, and some approached us when word 
got out that we were writing about peer-to-peer. We solicited chapters from several people who could 
have made valuable contributions but had to decline for lack of time or other reasons. I am fully 
willing to admit we missed some valuable contributors simply because we did not know about them, 
but perhaps that can be rectified in a future edition. 

In addition to choosing authors, I spent a lot of effort making sure their topics accurately represented 
the field. I asked each author to find a topic that he or she found compelling, and I weighed each topic 
to make sure it was general enough to be of interest to a wide range of readers. 

I was partial to topics that answered the immediate questions knowledgeable computer people ask 
when they hear about peer-to-peer, such as "Will performance become terrible as it scales?" or "How 
can you trust people?" Naturally, I admonished authors to be completely honest and to cover 
weaknesses as well as strengths. 

We did our best, in the short time we had, to cover everything of importance while avoiding overlap. 
Some valuable topics could not be covered. For instance, no one among the authors we found felt 
comfortable writing about search techniques, which are clearly important to making peer-to-peer 
systems useful. I believe the reason we didn't get to search techniques is that it represents a relatively 
high level of system design and system use - a level the field has not yet achieved. Experiments are 
being conducted (such as InfraSearch, a system built on Gnutella), but the requisite body of 
knowledge is not in place for a chapter in this book. All the topics in the following pages - trust, 
accountability, metadata - have to be in place before searching is viable. Sometime in the future, when 
the problems in these areas are ironed out, we will be ready to discuss search techniques. 

Thanks to Steve Burbeck, Ian Clarke, Scott Miller, and Terry Steichen, whose technical reviews were 
critical to assuring accurate information and sharpening the arguments in this book. Thanks also to 
the many authors who generously and gently reviewed each other's work, and to those people whose 
aid is listed in particular chapters. 
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Thanks also to the following O'Reilly staff: Darren Kelly, production editor; Leanne Soylemez, who 
was the copyeditor; Rachel Wheeler, who was the proofreader; Matthew Hutchinson, Jane Ellin, 
Sarah Jane Shangraw, and Claire Cloutier, who provided quality control; Judy Hoer, who wrote the 
index; Lucy Muellner and Linley Dolby, who did interior composition; Edie Freedman, who designed 
the cover of this book; Emma Colby, who produced the cover layout; Melanie Wang and David Futato, 
who designed the interior layout; Mike Sierra, who implemented the design; and Robert Romano and 
Jessamyn Reed, who produced the illustrations. 

Contents of this book 

It's fun to find a common thread in a variety of projects, but simply noting philosophical parallels is 
not enough to make the term peer-to-peer useful. Rather, it is valuable only if it helps us develop and 
deploy the various technologies. In other words, if putting two technologies under the peer-to-peer 
umbrella shows that they share a set of problems, and that the solution found for one technology can 
perhaps be applied to another, we benefit from the buzzword. This book, then, spends most of its time 
on general topics rather than the details of particular existing projects. 

Part I contains the observations of several thinkers in the computer industry about the movements 
that have come to be called peer-to-peer. These authors discuss what can be included in the term, 
where it is innovative or not so innovative, and where its future may lie. 

Chapter 1 - describes where peer-to-peer systems might offer benefits, and the problems of fitting such 
systems into the current Internet. It includes a history of early antecedents. The chapter is written by 
Nelson Minar and Marc Hedlund, the chief officers of Popular Power. 

Chapter 2 - tries to tie down what peer-to-peer means and what we can learn from the factors that 
made Napster so popular. The chapter is written by investment advisor and essayist Clay Shirky. 

Chapter 3 - contrasts the way the public often views a buzzword such as peer-to-peer with more 
constructive approaches. It is written by Tim O'Reilly, founder and CEO of O'Reilly & Associates, Inc. 

Chapter 4 - reveals the importance of maximizing the value that normal, selfish use adds to a service. 
It is written by Dan Bricklin, cocreator of Visicalc, the first computer spreadsheet. 

Some aspects of peer-to-peer can be understood only by looking at real systems. Part II contains 
chapters of varying length about some important systems that are currently in operation or under 
development. 

Chapter 5 - presents one of the most famous of the early crop of peer-to-peer technologies. Project 
Director David Anderson explains why the team chose to crunch astronomical data on millions of 
scattered systems and how they pulled it off. 

Chapter 6 - presents the wonderful possibilities inherent in using the Internet to form communities of 
people as well as automated agents contacting each other freely. It is written by Jeremie Miller, leader 
of the Jabber project. 

Chapter 7 - covers a classic system for allowing anonymous email. Other systems described in this 
book depend on Mixmaster to protect end-user privacy, and it represents an important and long-
standing example of peer-to-peer in itself. It is written by Adam Langley, a Freenet developer. 

Chapter 8 - offers not only an introduction to one of the most important of current projects, but also 
an entertaining discussion of the value of using peer-to-peer techniques. The chapter is written by 
Gene Kan, one of the developers most strongly associated with Gnutella. 

Chapter 9 - describes an important project that should be examined by anyone interested in peer-to-
peer. The chapter explains how the system passes around requests and how various cryptographic 
keys permit searches and the retrieval of documents. It is written by Adam Langley. 

Chapter 10 - describes a fascinating system for avoiding censorship and recrimination for the 
distribution of files using electronic mail. It is written by Alan Brown, the developer of Red Rover. 
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Chapter 11 - describes a system that distributes material through a collection of servers in order to 
prevent censorship. Although Publius is not a pure peer-to-peer system, its design offers insight and 
unique solutions to many of the problems faced by peer-to-peer designers and users. The chapter is 
written by Marc Waldman, Lorrie Faith Cranor, and Avi Rubin, the members of the Publius team. 

Chapter 12 - introduces another set of distributed storage services that promotes anonymity with the 
addition of some new techniques in improving accountability in the face of this anonymity. It is 
written by Roger Dingledine, Michael Freedman, and David Molnar, leaders of the Free Haven team. 

In Part III, project leaders choose various key topics and explore the problems, purposes, and 
promises of the technology. 

Chapter 13 - shows how to turn raw data into useful information and how that information can 
support information seekers and communities. Metadata can be created through XML, RDF, and 
other standard formats. The chapter is written by Rael Dornfest, an O'Reilly Network developer, and 
Dan Brickley, a longstanding RDF advocate and chair of the World Wide Web Consortium's RDF 
Interest Group. 

Chapter 14 - covers a topic that has been much in the news recently and comes to mind immediately 
when people consider peer-to-peer for real-life systems. This chapter examines how well a peer-to-
peer project can scale, using simulation to provide projections for Freenet and Gnutella. It is written 
by Theodore Hong of the Freenet project. 

Chapter 15 - begins a series of chapters on the intertwined issues of privacy, authentication, 
anonymity, and reliability. This chapter covers the basic elements of security, some of which will be 
well known to most readers, but some of which are fairly novel. It is written by the members of the 
Publius team. 

Chapter 16 - covers ways to avoid the "tragedy of the commons" in shared systems - in other words, 
the temptation for many users to freeload off the resources contributed by a few. This problem is 
endemic to many peer-to-peer systems, and has led to several suggestions for micropayment systems 
(like Mojo Nation) and reputation systems. The chapter is written by leaders of the Free Haven team. 

Chapter 17 - discusses ways to automate the collection and processing of information from previous 
transactions to help users decide whether they can trust a server with a new transaction. The chapter 
is written by Richard Lethin, founder of Reputation Technologies, Inc. 

Chapter 18 - offers the assurance that it is technically possible for people in a peer-to-peer system to 
authenticate each other and ensure the integrity and secrecy of their communications. The chapter 
accomplishes this by describing the industrial-strength security system used in Groove, a new 
commercial groupware system for small collections of people. It is written by Jon Udell, an 
independent author/consultant, and Nimisha Asthagiri and Walter Tuvell, staff of Groove Networks. 

Chapter 19 - discusses how the best of all worlds could be achieved by connecting one system to 
another. It includes an encapsulated comparison of several peer-to-peer systems and the advantages 
each one offers. It is written by Brandon Wiley, a developer of the Freenet project. 

Appendix A - lists some interesting projects, companies, and standards that could reasonably be 
considered examples of peer-to-peer technology. 

Peer-to-peer web site 

O'Reilly has created the web site http://openp2p.com/ to cover peer-to-peer (P2P) technology for 
developers and technical managers. The site covers these technologies from inside the communities 
producing them and tries to profile the leading technologists, thinkers, and programmers in the P2P 
space by providing a deep technical perspective. 

http://openp2p.com/


Peer to Peer: Harnessing the Power of Disruptive Technologies 

 page 6

We'd like to hear from you 

Please address comments and questions concerning this book to the publisher: 

O'Reilly & Associates, Inc. 
101 Morris Street Sebastopol, CA 95472 
(800) 998-9938 (in the United States or Canada) 
(707) 829-0515 (international or local) 
(707) 829-0104 (fax) 

We have a web page for this book, where we list errata, examples, or any additional information. You 
can access this page at: 

http://www.oreilly.com/catalog/peertopeer  

To comment or ask technical questions about this book, send email to: 

bookquestions@oreilly.com  

For more information about our books, conferences, software, Resource Centers, and the O'Reilly 
Network, see our web site at: 

http://www.oreilly.com/  

http://www.oreilly.com/catalog/peertopeer
http://www.oreilly.com/
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Part I: Context and Overview 
 

 

 

 

This part of the book offers some high-level views, defining the term "peer-to-peer" 
and placing current projects in a social and technological context. 
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Chapter 1. A Network of Peers: Peer-to-Peer 
Models Through the History of the Internet 
Nelson Minar and Marc Hedlund, Popular Power 

The Internet is a shared resource, a cooperative network built out of millions of hosts all over the 
world. Today there are more applications than ever that want to use the network, consume bandwidth, 
and send packets far and wide. Since 1994, the general public has been racing to join the community 
of computers on the Internet, placing strain on the most basic of resources: network bandwidth. And 
the increasing reliance on the Internet for critical applications has brought with it new security 
requirements, resulting in firewalls that strongly partition the Net into pieces. Through rain and snow 
and congested Network Access Providers (NAPs), the email goes through, and the system has scaled 
vastly beyond its original design. 

In the year 2000, though, something has changed - or, perhaps, reverted. The network model that 
survived the enormous growth of the previous five years has been turned on its head. What was down 
has become up; what was passive is now active. Through the music-sharing application called Napster, 
and the larger movement dubbed "peer-to-peer," the millions of users connecting to the Internet have 
started using their ever more powerful home computers for more than just browsing the Web and 
trading email. Instead, machines in the home and on the desktop are connecting to each other 
directly, forming groups and collaborating to become user-created search engines, virtual 
supercomputers, and filesystems. 

Not everyone thinks this is such a great idea. Some objections (dealt with elsewhere in this volume) 
cite legal or moral concerns. Other problems are technical. Many network providers, having set up 
their systems with the idea that users would spend most of their time downloading data from central 
servers, have economic objections to peer-to-peer models. Some have begun to cut off access to peer-
to-peer services on the basis that they violate user agreements and consume too much bandwidth (for 
illicit purposes, at that). As reported by the online News.com site, a third of U.S. colleges surveyed 
have banned Napster because students using it have sometimes saturated campus networks. 

In our own company, Popular Power, we have encountered many of these problems as we create a 
peer-to-peer distributed computing resource out of millions of computers all over the Internet. We 
have identified many specific problems where the Internet architecture has been strained; we have 
also found work-arounds for many of these problems and have come to understand what true 
solutions would be like. Surprisingly, we often find ourselves looking back to the Internet of 10 or 15 
years ago to consider how best to solve a problem. 

The original Internet was fundamentally designed as a peer-to-peer system. Over time it has become 
increasingly client/server, with millions of consumer clients communicating with a relatively 
privileged set of servers. The current crop of peer-to-peer applications is using the Internet much as it 
was originally designed: as a medium for communication for machines that share resources with each 
other as equals. Because this network model is more revolutionary for its scale and its particular 
implementations than for its concept, a good number of past Internet applications can provide lessons 
to architects of new peer-to-peer applications. In some cases, designers of current applications can 
learn from distributed Internet systems like Usenet and the Domain Name System (DNS); in others, 
the changes that the Internet has undergone during its commercialization may need to be reversed or 
modified to accommodate new peer-to-peer applications. In either case, the lessons these systems 
provide are instructive, and may help us, as application designers, avoid causing the death of the 
Internet.[1] 

[1] The authors wish to thank Debbie Pfeifer for invaluable help in editing this chapter. 
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1.1 A revisionist history of peer-to-peer (1969-1995) 

The Internet as originally conceived in the late 1960s was a peer-to-peer system. The goal of the 
original ARPANET was to share computing resources around the U.S. The challenge for this effort was 
to integrate different kinds of existing networks as well as future technologies with one common 
network architecture that would allow every host to be an equal player. The first few hosts on the 
ARPANET - UCLA, SRI, UCSB, and the University of Utah - were already independent computing 
sites with equal status. The ARPANET connected them together not in a master/slave or client/server 
relationship, but rather as equal computing peers. 

The early Internet was also much more open and free than today's network. Firewalls were unknown 
until the late 1980s. Generally, any two machines on the Internet could send packets to each other. 
The Net was the playground of cooperative researchers who generally did not need protection from 
each other. The protocols and systems were obscure and specialized enough that security break-ins 
were rare and generally harmless. As we shall see later, the modern Internet is much more 
partitioned. 

The early "killer apps" of the Internet, FTP and Telnet, were themselves client/server applications. A 
Telnet client logged into a compute server, and an FTP client sent and received files from a file server. 
But while a single application was client/server, the usage patterns as a whole were symmetric. Every 
host on the Net could FTP or Telnet to any other host, and in the early days of minicomputers and 
mainframes, the servers usually acted as clients as well. 

This fundamental symmetry is what made the Internet so radical. In turn, it enabled a variety of more 
complex systems such as Usenet and DNS that used peer-to-peer communication patterns in an 
interesting fashion. In subsequent years, the Internet has become more and more restricted to 
client/server-type applications. But as peer-to-peer applications become common again, we believe 
the Internet must revert to its initial design. 

Let's look at two long-established fixtures of computer networking that include important peer-to-
peer components: Usenet and DNS. 

1.1.1 Usenet 

Usenet news implements a decentralized model of control that in some ways is the grandfather of 
today's new peer-to-peer applications such as Gnutella and Freenet. Fundamentally, Usenet is a 
system that, using no central control, copies files between computers. Since Usenet has been around 
since 1979, it offers a number of lessons and is worth considering for contemporary file-sharing 
applications. 

The Usenet system was originally based on a facility called the Unix-to-Unix-copy protocol, or UUCP. 
UUCP was a mechanism by which one Unix machine would automatically dial another, exchange files 
with it, and disconnect. This mechanism allowed Unix sites to exchange email, files, system patches, 
or other messages. The Usenet used UUCP to exchange messages within a set of topics, so that 
students at the University of North Carolina and Duke University could each "post" messages to a 
topic, read messages from others on the same topic, and trade messages between the two schools. The 
Usenet grew from these original two hosts to hundreds of thousands of sites. As the network grew, so 
did the number and structure of the topics in which a message could be posted. Usenet today uses a 
TCP/IP-based protocol known as the Network News Transport Protocol (NNTP), which allows two 
machines on the Usenet network to discover new newsgroups efficiently and exchange new messages 
in each group. 

The basic model of Usenet provides a great deal of local control and relatively simple administration. 
A Usenet site joins the rest of the world by setting up a news exchange connection with at least one 
other news server on the Usenet network. Today, exchange is typically provided by a company's ISP. 
The administrator tells the company's news server to get in touch with the ISP's news server and 
exchange messages on a regular schedule. Company employees contact the company's local news 
server, and transact with it to read and post news messages. When a user in the company posts a new 
message in a newsgroup, the next time the company news server contacts the ISP's server it will notify 
the ISP's server that it has a new article and then transmit that article. At the same time, the ISP's 
server sends its new articles to the company's server. 
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Today, the volume of Usenet traffic is enormous, and not every server will want to carry the full 
complement of newsgroups or messages. The company administrator can control the size of the news 
installation by specifying which newsgroups the server will carry. In addition, the administrator can 
specify an expiration time by group or hierarchy, so that articles in a newsgroup will be retained for 
that time period but no longer. These controls allow each organization to voluntarily join the network 
on its own terms. Many organizations decide not to carry newsgroups that transmit sexually oriented 
or illegal material. This is a distinct difference from, say, Freenet, which (as a design choice) does not 
let a user know what material he or she has received. 

Usenet has evolved some of the best examples of decentralized control structures on the Net. There is 
no central authority that controls the news system. The addition of new newsgroups to the main topic 
hierarchy is controlled by a rigorous democratic process, using the Usenet group news.admin to 
propose and discuss the creation of new groups. After a new group is proposed and discussed for a set 
period of time, anyone with an email address may submit an email vote for or against the proposal. If 
a newsgroup vote passes, a new group message is sent and propagated through the Usenet network. 

There is even an institutionalized form of anarchy, the alt.* hierarchy, that subverts the news.admin 
process in a codified way. An alt newsgroup can be added at any time by anybody, but sites that don't 
want to deal with the resulting absurdity can avoid the whole hierarchy. The beauty of Usenet is that 
each of the participating hosts can set their own local policies, but the network as a whole functions 
through the cooperation and good will of the community. Many of the peer-to-peer systems currently 
emerging have not yet effectively addressed decentralized control as a goal. Others, such as Freenet, 
deliberately avoid giving local administrators control over the content of their machines because this 
control would weaken the political aims of the system. In each case, the interesting question is: how 
much control can or should the local administrator have? 

NNTP as a protocol contains a number of optimizations that modern peer-to-peer systems would do 
well to copy. For instance, news messages maintain a "Path" header that traces their transmission 
from one news server to another. If news server A receives a request from server B, and A's copy of a 
message lists B in the Path header, A will not try to retransmit that message to B. Since the purpose of 
NNTP transmission is to make sure every news server on Usenet can receive an article (if it wants to), 
the Path header avoids a flood of repeated messages. Gnutella, as an example, does not use a similar 
system when transmitting search requests, so as a result a single Gnutella node can receive the same 
request repeatedly. 

The open, decentralized nature of Usenet can be harmful as well as beneficial. Usenet has been 
enormously successful as a system in the sense that it has survived since 1979 and continues to be 
home to thriving communities of experts. It has swelled far beyond its modest beginnings. But in 
many ways the trusting, decentralized nature of the protocol has reduced its utility and made it an 
extremely noisy communication channel. Particularly, as we will discuss later, Usenet fell victim to 
spam early in the rise of the commercial Internet. Still, Usenet's systems for decentralized control, its 
methods of avoiding a network flood, and other characteristics make it an excellent object lesson for 
designers of peer-to- peer systems. 

1.1.2 DNS 

The Domain Name System (DNS) is an example of a system that blends peer-to-peer networking with 
a hierarchical model of information ownership. The remarkable thing about DNS is how well it has 
scaled, from the few thousand hosts it was originally designed to support in 1983 to the hundreds of 
millions of hosts currently on the Internet. The lessons from DNS are directly applicable to 
contemporary peer-to-peer data sharing applications. 

DNS was established as a solution to a file-sharing problem. In the early days of the Internet, the way 
to map a human-friendly name like bbn to an IP address like 4.2.49.2 was through a single flat file, 
hosts.txt, which was copied around the Internet periodically. As the Net grew to thousands of hosts 
and managing that file became impossible, DNS was developed as a way to distribute the data sharing 
across the peer-to-peer Internet. 
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The namespace of DNS names is naturally hierarchical. For example, O'Reilly & Associates, Inc. owns 
the namespace oreilly.com: they are the sole authority for all names in their domain, such as 
http://www.oreilly.com/. This built-in hierarchy yields a simple, natural way to delegate 
responsibility for serving part of the DNS database. Each domain has an authority, the name server of 
record for hosts in that domain. When a host on the Internet wants to know the address of a given 
name, it queries its nearest name server to ask for the address. If that server does not know the name, 
it delegates the query to the authority for that namespace. That query, in turn, may be delegated to a 
higher authority, all the way up to the root name servers for the Internet as a whole. As the answer 
propagates back down to the requestor, the result is cached along the way to the name servers so the 
next fetch can be more efficient. Name servers operate both as clients and as servers. 

DNS as a whole works amazingly well, having scaled to 10,000 times its original size. There are several 
key design elements in DNS that are replicated in many distributed systems today. One element is that 
hosts can operate both as clients and as servers, propagating requests when need be. These hosts help 
make the network scale well by caching replies. The second element is a natural method of 
propagating data requests across the network. Any DNS server can query any other, but in normal 
operation there is a standard path up the chain of authority. The load is naturally distributed across 
the DNS network, so that any individual name server needs to serve only the needs of its clients and 
the namespace it individually manages. 

So from its earliest stages, the Internet was built out of peer-to-peer communication patterns. One 
advantage of this history is that we have experience to draw from in how to design new peer-to-peer 
systems. The problems faced today by new peer-to-peer applications systems such as file sharing are 
quite similar to the problems that Usenet and DNS addressed 10 or 15 years ago. 

1.2 The network model of the Internet explosion (1995-1999) 

The explosion of the Internet in 1994 radically changed the shape of the Internet, turning it from a 
quiet geek utopia into a bustling mass medium. Millions of new people flocked to the Net. This wave 
represented a new kind of people - ordinary folks who were interested in the Internet as a way to send 
email, view web pages, and buy things, not computer scientists interested in the details of complex 
computer networks. The change of the Internet to a mass cultural phenomenon has had a far-reaching 
impact on the network architecture, an impact that directly affects our ability to create peer-to-peer 
applications in today's Internet. These changes are seen in the way we use the network, the breakdown 
of cooperation on the Net, the increasing deployment of firewalls on the Net, and the growth of 
asymmetric network links such as ADSL and cable modems. 

1.2.1 The switch to client/server 

The network model of user applications - not just their consumption of bandwidth, but also their 
methods of addressing and communicating with other machines - changed significantly with the rise 
of the commercial Internet and the advent of millions of home users in the 1990s. Modem connection 
protocols such as SLIP and PPP became more common, typical applications targeted slow-speed 
analog modems, and corporations began to manage their networks with firewalls and Network 
Address Translation (NAT). Many of these changes were built around the usage patterns common at 
the time, most of which involved downloading data, not publishing or uploading information. 

The web browser, and many of the other applications that sprung up during the early 
commercialization of the Internet, were based around a simple client/server protocol: the client 
initiates a connection to a well-known server, downloads some data, and disconnects. When the user 
is finished with the data retrieved, the process is repeated. The model is simple and straightforward. It 
works for everything from browsing the Web to watching streaming video, and developers cram 
shopping carts, stock transactions, interactive games, and a host of other things into it. The machine 
running a web client doesn't need to have a permanent or well-known address. It doesn't need a 
continuous connection to the Internet. It doesn't need to accommodate multiple users. It just needs to 
know how to ask a question and listen for a response. 

http://www.oreilly.com/
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Not all of the applications used at home fit this model. Email, for instance, requires much more two-
way communication between an email client and server. In these cases, though, the client is often 
talking to a server on the local network (either the ISP's mail server or a corporate one). Chat systems 
that achieved widespread usage, such as AOL's Instant Messenger, have similar "local" properties, and 
Usenet systems do as well. As a result, the typical ISP configuration instructions give detailed (and 
often misunderstood) instructions for email, news, and sometimes chat. These were the exceptions 
that were worth some manual configuration on the user's part. The "download" model is simpler and 
works without much configuration; the "two-way" model is used less frequently but perhaps to greater 
effect. 

While early visions of the Web always called it a great equalizer of communications - a system that 
allowed every user to publish their viewpoints rather than simply consume media - the commercial 
explosion on the Internet quickly fit the majority of traffic into the downstream paradigm already used 
by television and newspapers. Architects of the systems that enabled the commercial expansion of the 
Net often took this model into account, assuming that it was here to stay. Peer-to-peer applications 
may require these systems to change. 

1.2.2 The breakdown of cooperation 

The early Internet was designed on principles of cooperation and good engineering. Everyone working 
on Internet design had the same goal: build a reliable, efficient, powerful network. As the Internet 
entered its current commercial phase, the incentive structures changed, resulting in a series of stresses 
that have highlighted the Internet's susceptibility to the tragedy of the commons. This phenomenon 
has shown itself in many ways, particularly the rise of spam on the Internet and the challenges of 
building efficient network protocols that correctly manage the common resource. 

1.2.2.1 Spam: Uncooperative people 

Spam, or unsolicited commercial messages, is now an everyday occurrence on the Internet. Back in 
the pre-commercial network, however, unsolicited advertisements were met with surprise and 
outrage. The end of innocence occurred on April 12, 1994, the day the infamous Canter and Seigel 
"green card spam" appeared on the Usenet. Their offense was an advertisement posted individually to 
every Usenet newsgroup, blanketing the whole world with a message advertising their services. At the 
time, this kind of action was unprecedented and engendered strong disapproval. Not only were most 
of the audience uninterested in the service, but many people felt that Canter and Seigel had stolen the 
Usenet's resources. The advertisers did not pay for the transmission of the advertisement; instead the 
costs were borne by the Usenet as a whole. 

In the contemporary Internet, spam does not seem surprising; Usenet has largely been given over to 
it, and ISPs now provide spam filtering services for their users' email both to help their users and in 
self-defense. Email and Usenet relied on individuals' cooperation to not flood the commons with junk 
mail, and that cooperation broke down. Today the Internet generally lacks effective technology to 
prevent spam. 

The problem is the lack of accountability in the Internet architecture. Because any host can connect to 
any other host, and because connections are nearly anonymous, people can insert spam into the 
network at any point. There has been an arms race of trying to hold people accountable - closing down 
open sendmail relays, tracking sources of spam on Usenet, retaliation against spammers - but the 
battle has been lost, and today we have all learned to live with spam. 

The lesson for peer-to-peer designers is that without accountability in a network, it is difficult to 
enforce rules of social responsibility. Just like Usenet and email, today's peer-to-peer systems run the 
risk of being overrun by unsolicited advertisements. It is difficult to design a system where socially 
inappropriate use is prevented. Technologies for accountability, such as cryptographic identification 
or reputation systems, can be valuable tools to help manage a peer-to-peer network. There have been 
proposals to retrofit these capabilities into Usenet and email, but none today are widespread; it is 
important to build these capabilities into the system from the beginning. Chapter 16, discusses some 
techniques for controlling spam, but these are still arcane. 
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1.2.2.2 The TCP rate equation: Cooperative protocols 

A fundamental design principle of the Internet is best effort packet delivery. "Best effort" means the 
Internet does not guarantee that a packet will get through, simply that the Net will do its best to get 
the packet to the destination. Higher-level protocols such as TCP create reliable connections by 
detecting when a packet gets lost and resending it. A major reason packets do not get delivered on the 
Internet is congestion: if a router in the network is overwhelmed, it will start dropping packets at 
random. TCP accounts for this by throttling the speed at which it sends data. When the network is 
congested, each individual TCP connection independently slows down, seeking to find the optimal rate 
while not losing too many packets. But not only do individual TCP connections optimize their 
bandwidth usage, TCP is also designed to make the Internet as a whole operate efficiently. The 
collective behavior of many individual TCP connections backing off independently results in a 
lessening of the congestion at the router, in a way that is exquisitely tuned to use the router's capacity 
efficiently. In essence, the TCP backoff algorithm is a way for individual peers to manage a shared 
resource without a central coordinator. 

The problem is that the efficiency of TCP on the Internet scale fundamentally requires cooperation: 
each network user has to play by the same rules. The performance of an individual TCP connection is 
inversely proportional to the square root of the packet loss rate - part of the "TCP rate equation," a 
fundamental governing law of the Internet. Protocols that follow this law are known as "TCP-friendly 
protocols." It is possible to design other protocols that do not follow the TCP rate equation, ones that 
rudely try to consume more bandwidth than they should. Such protocols can wreak havoc on the Net, 
not only using more than their fair share but actually spoiling the common resource for all. This 
abstract networking problem is a classic example of a tragedy of the commons, and the Internet today 
is quite vulnerable to it. 

The problem is not only theoretical, it is also quite practical. As protocols have been built in the past 
few years by companies with commercial demands, there has been growing concern that unfriendly 
protocols will begin to hurt the Internet. 

An early example was a feature added by Netscape to their browser - the ability to download several 
files at the same time. The Netscape engineers discovered that if you downloaded embedded images in 
parallel, rather than one at a time, the whole page would load faster and users would be happier. But 
there was a question: was this usage of bandwidth fair? Not only does it tax the server to have to send 
out more images simultaneously, but it creates more TCP channels and sidesteps TCP's congestion 
algorithms. There was some controversy about this feature when Netscape first introduced it, a debate 
quelled only after Netscape released the client and people discovered in practice that the parallel 
download strategy did not unduly harm the Internet. Today this technique is standard in all browsers 
and goes unquestioned. The questions have reemerged at the new frontier of " download accelerator" 
programs that download different chunks of the same file simultaneously, again threatening to upset 
the delicate management of Internet congestion. 

A more troubling concern about congestion management is the growth of bandwidth-hungry 
streaming broadband media. Typical streaming media applications do not use TCP, instead favoring 
custom UDP-based protocols with their own congestion control and failure handling strategies. Many 
of these protocols are proprietary; network engineers do not even have access to their 
implementations to examine if they are TCP-friendly. So far there has been no major problem. The 
streaming media vendors seem to be playing by the rules, and all is well. But fundamentally the 
system is brittle, and either through a mistake or through greed the Internet's current delicate 
cooperation could be toppled. 

What do spam and the TCP rate algorithm have in common? They both demonstrate that the proper 
operation of the Internet is fragile and requires the cooperation of everyone involved. In the case of 
TCP, the system has mostly worked and the network has been preserved. In the case of spam, 
however, the battle has been lost and unsocial behavior is with us forever. The lesson for peer-to-peer 
system designers is to consider the issue of polite behavior up front. Either we must design systems 
that do not require cooperation to function correctly, or we must create incentives for cooperation by 
rewarding proper behavior or auditing usage so that misbehavior can be punished. 
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1.2.3 Firewalls, dynamic IP, NAT: The end of the open network 

At the same time that the cooperative nature of the Internet was being threatened, network 
administrators implemented a variety of management measures that resulted in the Internet being a 
much less open network. In the early days of the Internet, all hosts were equal participants. The 
network was symmetric - if a host could reach the Net, everyone on the Net could reach that host. 
Every computer could equally be a client and a server. This capability began to erode in the mid-1990s 
with the deployment of firewalls, the rise of dynamic IP addresses, and the popularity of Network 
Address Translation (NAT). 

As the Internet matured there came a need to secure the network, to protect individual hosts from 
unlimited access. By default, any host that can access the Internet can also be accessed on the 
Internet. Since average users could not handle the security risks that resulted from a symmetric 
design, network managers turned to firewalls as a tool to control access to their machines. 

Firewalls stand at the gateway between the internal network and the Internet outside. They filter 
packets, choosing which traffic to let through and which to deny. A firewall changes the fundamental 
Internet model: some parts of the network cannot fully talk to other parts. Firewalls are a very useful 
security tool, but they pose a serious obstacle to peer-to-peer communication models. 

A typical firewall works by allowing anyone inside the internal network to initiate a connection to 
anyone on the Internet, but it prevents random hosts on the Internet from initiating connections to 
hosts in the internal network. This kind of firewall is like a one-way gate: you can go out, but you 
cannot come in. A host protected in this way cannot easily function as a server; it can only be a client. 
In addition, outgoing connections may be restricted to certain applications like FTP and the Web by 
blocking traffic to certain ports at the firewall. 

Allowing an Internet host to be only a client, not a server, is a theme that runs through a lot of the 
changes in the Internet after the consumer explosion. With the rise of modem users connecting to the 
Internet, the old practice of giving every Internet host a fixed IP address became impractical, because 
there were not enough IP addresses to go around. Dynamic IP address assignment is now the norm for 
many hosts on the Internet, where an individual computer's address may change every single day. 
Broadband providers are even finding dynamic IP useful for their "always on" services. The end result 
is that many hosts on the Internet are not easily reachable, because they keep moving around. Peer-to-
peer applications such as instant messaging or file sharing have to work hard to circumvent this 
problem, building dynamic directories of hosts. In the early Internet, where hosts remained static, it 
was much simpler. 

A final trend is to not even give a host a valid public Internet address at all, but instead to use NAT to 
hide the address of a host behind a firewall. NAT combines the problems of firewalls and dynamic IP 
addresses: not only is the host's true address unstable, it is not even reachable! All communication has 
to go through a fairly simple pattern that the NAT router can understand, resulting in a great loss of 
flexibility in applications communications. For example, many cooperative Internet games have 
trouble with NAT: every player in the game wants to be able to contact every other player, but the 
packets cannot get through the NAT router. The result is that a central server on the Internet has to 
act as an application-level message router, emulating the function that TCP/IP itself used to serve. 

Firewalls, dynamic IP, and NAT grew out of a clear need in Internet architecture to make scalable, 
secure systems. They solved the problem of bringing millions of client computers onto the Internet 
quickly and manageably. But these same technologies have weakened the Internet infrastructure as a 
whole, relegating most computers to second-class status as clients only. New peer-to-peer applications 
challenge this architecture, demanding that participants serve resources as well as use them. As peer-
to-peer applications become more common, there will be a need for common technical solutions to 
these problems. 
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1.2.4 Asymmetric bandwidth 

A final Internet trend of the late 1990s that presents a challenge to peer-to-peer applications is the rise 
in asymmetric network connections such as ADSL and cable modems. In order to get the most 
efficiency out of available wiring, current broadband providers have chosen to provide asymmetric 
bandwidth. A typical ADSL or cable modem installation offers three to eight times more bandwidth 
when getting data from the Internet than when sending data to it, favoring client over server usage. 

The reason this has been tolerated by most users is clear: the Web is the killer app for the Internet, 
and most users are only clients of the Web, not servers. Even users who publish their own web pages 
typically do not do so from a home broadband connection, but instead use third-party dedicated 
servers provided by companies like GeoCities or Exodus. In the early days of the Web it was not clear 
how this was going to work: could each user have a personal web server? But in the end most Web use 
is itself asymmetric - many clients, few servers - and most users are well served by asymmetric 
bandwidth. 

The problem today is that peer-to-peer applications are changing the assumption that end users only 
want to download from the Internet, never upload to it. File-sharing applications such as Napster or 
Gnutella can reverse the bandwidth usage, making a machine serve many more files than it 
downloads. The upstream pipe cannot meet demand. Even worse, because of the details of TCP's rate 
control, if the upstream path is clogged, the downstream performance suffers as well. So if a computer 
is serving files on the slow side of a link, it cannot easily download simultaneously on the fast side. 

ADSL and cable modems assume asymmetric bandwidth for an individual user. This assumption takes 
hold even more strongly inside ISP networks, which are engineered for bits to flow to the users, not 
from them. The end result is a network infrastructure that is optimized for computers that are only 
clients, not servers. But peer-to-peer technology generally makes every host act both as a client and a 
server; the asymmetric assumption is incorrect. There is not much an individual peer-to-peer 
application can do to work around asymmetric bandwidth; as peer-to-peer applications become more 
widespread, the network architecture is going to have to change to better handle the new traffic 
patterns. 

1.3 Observations on the current crop of peer-to-peer applications 
(2000) 

While the new breed of peer-to-peer applications can take lessons from earlier models, these 
applications also introduce new characteristics or features that are novel. Peer-to-peer allows us to 
separate the concepts of authoring information and publishing that same information. Peer-to-peer 
allows for decentralized application design, something that is both an opportunity and a challenge. 
And peer-to-peer applications place unique strains on firewalls, something well demonstrated by the 
current trend to use the HTTP port for operations other than web transactions. 

1.3.1 Authoring is not the same as publishing 

One of the promises of the Internet is that people are able to be their own publishers, for example, by 
using personal web sites to make their views and interests known. Self-publishing has certainly 
become more common with the commercialization of the Internet. More often, however, users spend 
most of their time reading (downloading) information and less time publishing, and as discussed 
previously, commercial providers of Internet access have structured their offering around this 
asymmetry. 

The example of Napster creates an interesting middle ground between the ideal of "everyone 
publishes" and the seeming reality of "everyone consumes." Napster particularly (and famously) 
makes it very easy to publish data you did not author. In effect, your machine is being used as a 
repeater to retransmit data once it reaches you. A network designer, assuming that there are only so 
many authors in the world and therefore that asymmetric broadband is the perfect optimization, is 
confounded by this development. This is why many networks such as college campuses have banned 
Napster from use. 
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Napster changes the flow of data. The assumptions that servers would be owned by publishers and 
that publishers and authors would combine into a single network location have proven untrue. The 
same observation also applies to Gnutella, Freenet, and others. Users don't need to create content in 
order to want to publish it - in fact, the benefits of publication by the "reader" have been demonstrated 
by the scale some of these systems have been able to reach. 

1.3.2 Decentralization 

Peer-to-peer systems seem to go hand-in-hand with decentralized systems. In a fully decentralized 
system, not only is every host an equal participant, but there are no hosts with special facilitating or 
administrative roles. In practice, building fully decentralized systems can be difficult, and many peer-
to-peer applications take hybrid approaches to solving problems. As we have already seen, DNS is 
peer-to-peer in protocol design but with a built-in sense of hierarchy. There are many other examples 
of systems that are peer-to-peer at the core and yet have some semi-centralized organization in 
application, such as Usenet, instant messaging, and Napster. 

Usenet is an instructive example of the evolution of a decentralized system. Usenet propagation is 
symmetric: hosts share traffic. But because of the high cost of keeping a full news feed, in practice 
there is a backbone of hosts that carry all of the traffic and serve it to a large number of "leaf nodes" 
whose role is mostly to receive articles. Within Usenet, there was a natural trend toward making traffic 
propagation hierarchical, even though the underlying protocols do not demand it. This form of "soft 
centralization" may prove to be economic for many peer-to-peer systems with high-cost data 
transmission. 

Many other current peer-to-peer applications present a decentralized face while relying on a central 
facilitator to coordinate operations. To a user of an instant messaging system, the application appears 
peer-to-peer, sending data directly to the friend being messaged. But all major instant messaging 
systems have some sort of server on the back end that facilitates nodes talking to each other. The 
server maintains an association between the user's name and his or her current IP address, buffers 
messages in case the user is offline, and routes messages to users behind firewalls. Some systems 
(such as ICQ) allow direct client-to-client communication when possible but have a server as a 
fallback. A fully decentralized approach to instant messaging would not work on today's Internet, but 
there are scaling advantages to allowing client-to-client communication when possible. 

Napster is another example of a hybrid system. Napster's file sharing is decentralized: one Napster 
client downloads a file directly from another Napster client's machine. But the directory of files is 
centralized, with the Napster servers answering search queries and brokering client connections. This 
hybrid approach seems to scale well: the directory can be made efficient and uses low bandwidth, and 
the file sharing can happen on the edges of the network. 

In practice, some applications might work better with a fully centralized design, not using any peer-to-
peer technology at all. One example is a search on a large, relatively static database. Current web 
search engines are able to serve up to one billion pages all from a single place. Search algorithms have 
been highly optimized for centralized operation; there appears to be little benefit to spreading the 
search operation out on a peer-to-peer network (database generation, however, is another matter). 

Also, applications that require centralized information sharing for accountability or correctness are 
hard to spread out on a decentralized network. For example, an auction site needs to guarantee that 
the best price wins; that can be difficult if the bidding process has been spread across many locations. 
Decentralization engenders a whole new area of network-related failures: unreliability, incorrect data 
synchronization, etc. Peer-to-peer designers need to balance the power of peer-to-peer models against 
the complications and limitations of decentralized systems. 

1.3.3 Abusing port 80 

One of the stranger phenomena in the current Internet is the abuse of port 80, the port that HTTP 
traffic uses when people browse the Web. Firewalls typically filter traffic based on the direction of 
traffic (incoming or outgoing) and the destination port of the traffic. Because the Web is a primary 
application of many Internet users, almost all firewalls allow outgoing connections on port 80 even if 
the firewall policy is otherwise very restrictive. 
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In the early days of the Internet, the port number usually indicated which application was using the 
network; the firewall could count on port 80 being only for Web traffic. But precisely because many 
firewalls allow connections to port 80, other application authors started routing traffic through that 
port. Streaming audio, instant messaging, remote method invocations, even whole mobile agents are 
being sent through port 80. Most current peer-to-peer applications have some way to use port 80 as 
well in order to circumvent network security policies. Naive firewalls are none the wiser; they are 
unaware that they are passing the exact sorts of traffic the network administrator intended to block. 

The problem is twofold. First, there is no good way for a firewall to identify what applications are 
running through it. The port number has already been circumvented. Fancier firewalls can analyze the 
actual traffic going through the firewall and see if it is a legitimate HTTP stream, but that just 
encourages application designers to masquerade as HTTP, leading to an escalating arms race that 
benefits no one. 

The second problem is that even if an application has a legitimate reason to go through the firewall, 
there is no simple way for the application to request permission. The firewall, as a network security 
measure, is outmoded. As long as a firewall allows some sort of traffic through, peer-to-peer 
applications will find a way to slip through that opening. 

1.4 Peer-to-peer prescriptions (2001-?) 

The story is clear: The Internet was designed with peer-to-peer applications in mind, but as it has 
grown the network has become more asymmetric. What can we do to permit new peer-to-peer 
applications to flourish while respecting the pressures that have shaped the Internet to date? 

1.4.1 Technical solutions: Return to the old Internet 

As we have seen, the explosion of the Internet into the consumer space brought with it changes that 
have made it difficult to do peer-to-peer networking. Firewalls make it hard to contact hosts; dynamic 
IP and NAT make it nearly impossible. Asymmetric bandwidth is holding users back from efficiently 
serving files on their systems. Current peer-to-peer applications generally would benefit from an 
Internet more like the original network, where these restrictions were not in place. How can we enable 
peer-to-peer applications to work better with the current technological situation? 

Firewalls serve an important need: they allow administrators to express and enforce policies about the 
use of their networks. That need will not change with peer-to-peer applications. Neither application 
designers nor network security administrators are benefiting from the current state of affairs. The 
solution lies in making firewalls smarter so that peer-to-peer applications can cooperate with the 
firewall to allow traffic the administrator wants. Firewalls must become more sophisticated, allowing 
systems behind the firewall to ask permission to run a particular peer-to-peer application. Peer-to-
peer designers must contribute to this design discussion, then enable their applications to use these 
mechanisms. There is a good start to this solution in the SOCKS protocol, but it needs to be expanded 
to be more flexible and more tied toward applications rather than simple port numbers. 

The problems engendered by dynamic IP and NAT already have a technical solution: IPv6. This new 
version of IP, the next generation Internet protocol architecture, has a 128-bit address space - enough 
for every host on the Internet to have a permanent address. Eliminating address scarcity means that 
every host has a home and, in theory, can be reached. The main thing holding up the deployment of 
IPv6 is the complexity of the changeover. At this stage, it remains to be seen when or even if IPv6 will 
be commonly deployed, but without it peer-to-peer applications will continue to need to build 
alternate address spaces to work around the limitations set by NAT and dynamic IP. 

Peer-to-peer applications stress the bandwidth usage of the current Internet. First, they break the 
assumption of asymmetry upon which today's ADSL and cable modem providers rely. There is no 
simple way that peer-to-peer applications can work around this problem; we simply must encourage 
broadband connections to catch up. 
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However, peer-to-peer applications can do several things to use the existing bandwidth more 
efficiently. First, data caching is a natural optimization for any peer-to-peer application that is 
transmitting bulk data; it would be a significant advance to make sure that a program does not have to 
retransmit or resend data to another host. Caching is a well understood technology: distributed caches 
like Squid have worked out many of the consistency and load sharing issues that peer-to-peer 
applications face. 

Second, a peer-to-peer application must have effective means for allowing users to control the 
bandwidth the application uses. If I run a Gnutella node at home, I want to specify that it can use only 
50% of my bandwidth. Current operating systems and programming libraries do not provide good 
tools for this kind of limitation, but as peer-to-peer applications start demanding more network 
resources from hosts, users will need tools to control that resource usage. 

1.4.2 Social solutions: Engineer polite behavior 

Technical measures can help create better peer-to-peer applications, but good system design can also 
yield social stability. A key challenge in creating peer-to-peer systems is to have a mechanism of 
accountability and the enforcement of community standards. Usenet breaks down because it is 
impossible to hold people accountable for their actions. If a system has a way to identify individuals 
(even pseudonymously, to preserve privacy), that system can be made more secure against antisocial 
behavior. Reputation tracking mechanisms, discussed in Chapter 16, and in Chapter 17, are valuable 
tools here as well, to give the user community a collective memory about the behavior of individuals. 

Peer-to-peer systems also present the challenge of integrating local administrative control with global 
system correctness. Usenet was successful at this goal. The local news administrator sets policy for his 
or her own site, allowing the application to be customized to each user group's needs. The shared 
communication channel of news.admin allows a community governance procedure for the entire 
Usenet community. These mechanisms of local and global control were built into Usenet from the 
beginning, setting the rules of correct behavior. New breed peer-to-peer applications should follow 
this lead, building in their own social expectations. 

1.5 Conclusions 

The Internet started out as a fully symmetric, peer-to-peer network of cooperating users. As the Net 
has grown to accommodate the millions of people flocking online, technologies have been put in place 
that have split the Net up into a system with relatively few servers and many clients. At the same time, 
some of the basic expectations of cooperation are showing the risk of breaking down, threatening the 
structure of the Net. 

These phenomena pose challenges and obstacles to peer-to-peer applications: both the network and 
the applications have to be designed together to work in tandem. Application authors must design 
robust applications that can function in the complex Internet environment, and network designers 
must build in capabilities to handle new peer-to-peer applications. Fortunately, many of these issues 
are familiar from the experience of the early Internet; the lessons learned there can be brought 
forward to design tomorrow's systems. 
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Chapter 2. Listening to Napster 
Clay Shirky, The Accelerator Group 

Premature definition is a danger for any movement. Once a definitive label is applied to a new 
phenomenon, it invariably begins shaping - and possibly distorting - people's views. So it is with the 
present movement toward decentralized applications. After a year or so of attempting to describe the 
revolution in file sharing and related technologies, we have finally settled on peer-to-peer as a label 
for what's happening.[1] 

[1] Thanks to Business 2.0, where many of these ideas first appeared, and to Dan Gillmor of the San Jose Mercury 
News, for first pointing out the important relationship between P2P and the Domain Name System. 

Somehow, though, this label hasn't clarified things. Instead, it's distracted us from the phenomena 
that first excited us. Taken literally, servers talking to one another are peer-to-peer. The game Doom is 
peer-to-peer. There are even people applying the label to email and telephones. Meanwhile, Napster, 
which jump-started the conversation, is not peer-to-peer in the strictest sense, because it uses a 
centralized server to store pointers and resolve addresses. 

If we treat peer-to-peer as a literal definition of what's happening, we end up with a phrase that 
describes Doom but not Napster and suggests that Alexander Graham Bell is a peer-to-peer engineer 
but Shawn Fanning is not. Eliminating Napster from the canon now that we have a definition we can 
apply literally is like saying, "Sure, it may work in practice, but it will never fly in theory." 

This literal approach to peer-to-peer is plainly not helping us understand what makes it important. 
Merely having computers act as peers on the Internet is hardly novel. From the early days of PDP-11s 
and Vaxes to the Sun SPARCs and Windows 2000 systems of today, computers on the Internet have 
been peering with each other. So peer-to-peer architecture itself can't be the explanation for the recent 
changes in Internet use. 

What have changed are the nodes that make up these peer-to-peer systems - Internet-connected PCs, 
which formerly were relegated to being nothing but clients - and where these nodes are: at the edges 
of the Internet, cut off from the DNS (Domain Name System) because they have no fixed IP addresses. 

2.1 Resource-centric addressing for unstable environments 

Peer-to-peer is a class of applications that takes advantage of resources - storage, cycles, content, 
human presence - available at the edges of the Internet. Because accessing these decentralized 
resources means operating in an environment of unstable connectivity and unpredictable IP 
addresses, peer-to-peer nodes must operate outside the DNS and have significant or total autonomy 
from central servers. 

That's it. That's what makes peer-to-peer distinctive. 

Note that this isn't what makes peer-to-peer important. It's not the problem designers of peer-to-peer 
systems set out to solve, like aggregating CPU cycles, sharing files, or chatting. But it's a problem they 
all had to solve to get where they wanted to go. 

What makes Napster and Popular Power and Freenet and AIMster and Groove similar is that they are 
all leveraging previously unused resources, by tolerating and even working with variable connectivity. 
This lets them make new, powerful use of the hundreds of millions of devices that have been 
connected to the edges of the Internet in the last few years. 

One could argue that the need for peer-to-peer designers to solve connectivity problems is little more 
than an accident of history. But improving the way computers connect to one another was the 
rationale behind the 1984 design of the Internet Protocol (IP), and before that DNS, and before that 
the Transmission Control Protocol (TCP), and before that the Net itself. The Internet is made of such 
frozen accidents. 
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So if you're looking for a litmus test for peer-to-peer, this is it: 

1. Does it allow for variable connectivity and temporary network addresses? 

2. Does it give the nodes at the edges of the network significant autonomy? 

If the answer to both of those questions is yes, the application is peer-to-peer. If the answer to either 
question is no, it's not peer-to-peer. 

Another way to examine this distinction is to think about ownership. Instead of asking, "Can the nodes 
speak to one another?" ask, "Who owns the hardware that the service runs on?" The huge 
preponderance of the hardware that makes Yahoo! work is owned by Yahoo! and managed in Santa 
Clara. The huge preponderance of the hardware that makes Napster work is owned by Napster users 
and managed on tens of millions of individual desktops. Peer-to-peer is a way of decentralizing not 
just features, but costs and administration as well. 

2.1.1 Peer-to-peer is as peer-to-peer does 

Up until 1994, the Internet had one basic model of connectivity. Machines were assumed to be always 
on, always connected, and assigned permanent IP addresses. DNS was designed for this environment, 
in which a change in IP address was assumed to be abnormal and rare, and could take days to 
propagate through the system. 

With the invention of Mosaic, another model began to spread. To run a web browser, a PC needed to 
be connected to the Internet over a modem, with its own IP address. This created a second class of 
connectivity, because PCs entered and left the network cloud frequently and unpredictably. 

Furthermore, because there were not enough IP addresses available to handle the sudden demand 
caused by Mosaic, ISPs began to assign IP addresses dynamically. They gave each PC a different, 
possibly masked, IP address with each new session. This instability prevented PCs from having DNS 
entries, and therefore prevented PC users from hosting any data or applications that accepted 
connections from the Net. 

For a few years, treating PCs as dumb but expensive clients worked well. PCs had never been designed 
to be part of the fabric of the Internet, and in the early days of the Web, the toy hardware and 
operating systems of the average PC made it an adequate life-support system for a browser but good 
for little else. 

Over time, though, as hardware and software improved, the unused resources that existed behind this 
veil of second-class connectivity started to look like something worth getting at. At a conservative 
estimate - assuming only 100 million PCs among the Net's 300 million users, and only a 100 MHz 
chip and 100 MB drive on the average Net-connected PC - the world's Net-connected PCs presently 
host an aggregate 10 billion megahertz of processing power and 10 thousand terabytes of storage. 

2.1.2 The veil is pierced 

The launch of ICQ, the first PC-based chat system, in 1996 marked the first time those intermittently 
connected PCs became directly addressable by average users. Faced with the challenge of establishing 
portable presence, ICQ bypassed DNS in favor of creating its own directory of protocol-specific 
addresses that could update IP addresses in real time, a trick followed by Groove, Napster, and 
NetMeeting as well. (Not all peer-to-peer systems use this trick. Gnutella and Freenet, for example, 
bypass DNS the old-fashioned way, by relying on numeric IP addresses. United Devices and 
SETI@home bypass it by giving the nodes scheduled times to contact fixed addresses, at which times 
they deliver their current IP addresses.) 

A run of whois counts 23 million domain names, built up in the 16 years since the inception of IP 
addresses in 1984. Napster alone has created more than 23 million non-DNS addresses in 16 months, 
and when you add in all the non-DNS instant messaging addresses, the number of peer-to-peer 
addresses designed to reach dynamic IP addresses tops 200 million. Even if you assume that the 
average DNS host has 10 additional addresses of the form foo.host.com, the total number of peer-to-
peer addresses now, after only 4 years, is of the same order of magnitude as the total number of DNS 
addresses, and is growing faster than the DNS universe today. 
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As new kinds of Net-connected devices like wireless PDAs and digital video recorders such as TiVo 
and Replay proliferate, they will doubtless become an important part of the Internet as well. But for 
now, PCs make up the enormous majority of these untapped resources. PCs are the dark matter of the 
Internet, and their underused resources are fueling peer-to-peer. 

2.1.3 Real solutions to real problems 

Why do we have unpredictable IP addresses in the first place? Because there weren't enough to go 
around when the Web happened. It's tempting to think that when enough new IP addresses are 
created, the old "One Device/One Address" regime will be restored, and the Net will return to its pre-
peer-to-peer architecture. 

This won't happen, though, because no matter how many new IP addresses there are, peer-to-peer 
systems often create addresses for things that aren't machines. Freenet and Mojo Nation create 
addresses for content intentionally spread across multiple computers. AOL Instant Messenger (AIM) 
and ICQ create names that refer to human beings and not machines. Peer-to-peer is designed to 
handle unpredictability, and nothing is more unpredictable than the humans who use the network. As 
the Net becomes more human-centered, the need for addressing schemes that tolerate and even 
expect temporary and unstable patterns of use will grow. 

2.1.4 Who's in and who's out? 

Napster is peer-to-peer because the addresses of Napster nodes bypass DNS, and because once the 
Napster server resolves the IP addresses of the PCs hosting a particular song, it shifts control of the 
file transfers to the nodes. Furthermore, the ability of the Napster nodes to host the songs without 
central intervention lets Napster users get access to several terabytes of storage and bandwidth at no 
additional cost. 

However, Intel's "server peer-to-peer" is not peer-to-peer, because servers have always been peers. 
Their fixed IP addresses and permanent connections present no new problems, and calling what they 
already do "peer-to-peer" presents no new solutions. 

ICQ and Jabber are peer-to-peer, because they not only devolve connection management to the 
individual nodes after resolving the addresses, but they also violate the machine-centric worldview 
encoded in DNS. Your address has nothing to do with the DNS hierarchy, or even with a particular 
machine, except temporarily; your chat address travels with you. Furthermore, by mapping "presence" 
- whether you are at your computer at any given moment in time - chat turns the old idea of 
permanent connectivity and IP addresses on its head. Transient connectivity is not an annoying 
hurdle in the case of chat but an important contribution of the technology. 

Email, which treats variable connectivity as the norm, nevertheless fails the peer-to-peer definition 
test because your address is machine-dependent. If you drop AOL in favor of another ISP, your AOL 
email address disappears as well, because it hangs off DNS. Interestingly, in the early days of the 
Internet, there was a suggestion to make the part of the email address before the @ globally unique, 
linking email to a person rather than to a person@machine. That would have been peer-to-peer in the 
current sense, but it was rejected in favor of a machine-centric view of the Internet. 

Popular Power is peer-to-peer, because the distributed clients that contact the server need no fixed IP 
address and have a high degree of autonomy in performing and reporting their calculations. They can 
even be offline for long stretches while still doing work for the Popular Power network. 

Dynamic DNS is not peer-to-peer, because it tries to retrofit PCs into traditional DNS. 

And so on. This list of resources that current peer-to-peer systems take advantage of - storage, cycles, 
content, presence - is not necessarily complete. If there were some application that needed 30,000 
separate video cards, or microphones, or speakers, a peer-to-peer system could be designed that used 
those resources as well. 
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2.1.5 Peer-to-peer is a horseless carriage 

As with the "horseless" carriage or the "compact" disc, new technologies are often labeled according to 
some simple difference between them and what came before (horse-drawn carriages, non-compact 
records). 

Calling this new class of applications peer-to-peer emphasizes their difference from the dominant 
client/server model. However, like the horselessness of the carriage or the compactness of the disc, 
the "peeriness" of peer-to-peer is more a label than a definition. 

As we've learned from the history of the Internet, adoption is a better predictor of software longevity 
than elegant design. Users will not adopt peer-to-peer applications that embrace decentralization for 
decentralization's sake. Instead, they will adopt those applications that use just enough 
decentralization, in just the right way, to create novel functions or improve existing ones. 

2.2 Follow the users 

It seems obvious but bears repeating: Definitions are useful only as tools for sharpening one's 
perception of reality and improving one's ability to predict the future. Whatever one thinks of 
Napster's probable longevity, Napster is the killer app for this revolution. 

If the Internet has taught technology watchers anything, it's that predictions of the future success of a 
particular software method or paradigm are of tenuous accuracy at best. Consider the history of 
"multimedia." If you had read almost any computer trade magazine or followed any technology 
analyst's predictions for the rise of multimedia in the early '90s, the future they predicted was one of 
top-down design, and this multimedia future was to be made up of professionally produced CD-ROMs 
and "walled garden" online services such as CompuServe and Delphi. And then the Web came along 
and let absolute amateurs build pages in HTML, a language that was laughably simple compared to 
the tools being developed for other multimedia services. 

2.2.1 Users reward simplicity 

HTML's simplicity, which let amateurs create content for little cost and little invested time, turned out 
to be HTML's long suit. Between 1993 and 1995, HTML went from an unknown protocol to the 
preeminent tool for designing electronic interfaces, decisively displacing almost all challengers and 
upstaging CD-ROMs, as well as online services and a dozen expensive and abortive experiments with 
interactive TV - and it did this while having no coordinated authority, no central R&D effort, and no 
discernible financial incentive for the majority of its initial participants. 

What caught the tech watchers in the industry by surprise was that HTML was made a success not by 
corporations but by users. The obvious limitations of the Web for professional designers blinded many 
to HTML's ability to allow average users to create multimedia content. 

HTML spread because it allowed ordinary users to build their own web pages, without requiring that 
they be software developers or even particularly savvy software users. All the confident predictions 
about the CD-ROM-driven multimedia future turned out to be meaningless in the face of user 
preference. This in turn led to network effects on adoption: once a certain number of users had 
adopted it, there were more people committed to making the Web better than there were people 
committed to making CD-ROM authoring easier for amateurs. 

The lesson of HTML's astonishing rise for anyone trying to make sense of the social aspects of 
technology is simple: follow the users. Understand the theory, study the engineering, but most 
importantly, follow the adoption rate. The cleanest theory and the best engineering in the world mean 
nothing if the users don't use them, and understanding why some solution will never work in theory 
means nothing if users adopt it all the same. 
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2.2.2 Listen to Napster 

In the present circumstance, the message that comes from paying attention to the users is simple: 
Listen to Napster. 

Listen to what the rise of Napster is saying about peer-to-peer, because as important as Groove or 
Freenet or OpenCOLA may become, Napster is already a mainstream phenomenon. Napster has had 
over 40 million client downloads at the time of this writing. Its adoption rate has outstripped NCSA 
Mosaic, Hotmail, and even ICQ, the pioneer of P2P addressing. Because Napster is what the users are 
actually spending their time using, the lessons we can take from Napster are still our best guide to the 
kind of things that are becoming possible with the rise of peer-to-peer architecture. 

2.2.2.1 It's the applications, stupid 

The first lesson Napster holds is that it was written to solve a problem - limitations on file copying - 
and the technological solutions it adopted were derived from the needs of the application, not vice 
versa. 

The fact that the limitations on file copying are legal ones matters little to the technological lessons to 
be learned from Napster, because technology is often brought to bear to solve nontechnological 
problems. In this case, the problem Shawn Fanning, Napster's creator, set out to solve was a gap 
between what was possible with digital songs (endless copying at a vanishingly small cost) and what 
was legal. The willingness of the major labels to destroy any file copying system they could reach made 
the classic Web model of central storage of data impractical, meaning Napster had to find a non-Web-
like solution. 

2.2.2.2 Decentralization is a tool, not a goal 

The primary fault of much of the current thinking about peer-to-peer lies in an "if we build it, they will 
come" mentality, where interesting technological challenges of decentralizing applications are 
assumed to be the only criterion that a peer-to-peer system needs to address in order to succeed. The 
enthusiasm for peer-to-peer has led to a lot of incautious statements about the superiority of peer-to-
peer for many, and possibly most, classes of networked applications. 

In fact, peer-to-peer is distinctly bad for many classes of networked applications. Most search engines 
work best when they can search a central database rather than launch a meta-search of peers. 
Electronic marketplaces need to aggregate supply and demand in a single place at a single time in 
order to arrive at a single, transparent price. Any system that requires real-time group access or rapid 
searches through large sets of unique data will benefit from centralization in ways that will be difficult 
to duplicate in peer-to-peer systems. 

The genius of Napster is that it understands and works within these limitations. 

Napster mixes centralization and decentralization beautifully. As a search engine, it builds and 
maintains a master song list, adding and removing songs as individual users connect and disconnect 
their PCs. And because the search space for Napster - popular music - is well understood by all its 
users, and because there is massive redundancy in the millions of collections it indexes, the chances 
that any given popular song can be found are very high, even if the chances that any given user is 
online are low. 

Like ants building an anthill, the contribution of any given individual to the system at any given 
moment is trivial, but the overlapping work of the group is remarkably powerful. By centralizing 
pointers and decentralizing content, Napster couples the strengths of a central database with the 
power of distributed storage. Napster has become the fastest-growing application in the Net's history 
in large part because it isn't pure peer-to-peer. Chapter 4, explores this theme farther. 
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2.3 Where's the content? 

Napster's success in pursuing this strategy is difficult to overstate. At any given moment, Napster 
servers keep track of thousands of PCs holding millions of songs comprising several terabytes of data. 
This is a complete violation of the Web's data model, "Content at the Center," and Napster's success in 
violating it could be labeled "Content at the Edges." 

The content-at-the-center model has one significant flaw: most Internet content is created on the PCs 
at the edges, but for it to become universally accessible, it must be pushed to the center, to always-on, 
always-up web servers. As anyone who has ever spent time trying to upload material to a web site 
knows, the Web has made downloading trivially easy, but uploading is still needlessly hard. Napster 
dispenses with uploading and leaves the files on the PCs, merely brokering requests from one PC to 
another - the MP3 files do not have to travel through any central Napster server. Instead of trying to 
store these files in a central database, Napster took advantage of the largest pool of latent storage 
space in the world - the disks of the Napster users. And thus, Napster became the prime example of a 
new principle for Internet applications: Peer-to-peer services come into being by leveraging the 
untapped power of the millions of PCs that have been connected to the Internet in the last five years. 

2.3.1 PCs are the dark matter of the Internet 

Napster's popularity made it the proof-of-concept application for a new networking architecture based 
on the recognition that bandwidth to the desktop had become fast enough to allow PCs to serve data 
as well as request it, and that PCs are becoming powerful enough to fulfill this new role. Just as the 
application service provider (ASP) model is taking off, Napster's success represents the revenge of the 
PC. By removing the need to upload data (the single biggest bottleneck to the ASP model), Napster 
points the way to a reinvention of the desktop as the center of a user's data - only this time the user 
will no longer need physical access to the PC. 

The latent capabilities of PC hardware made newly accessible represent a huge, untapped resource 
and form the fuel powering the current revolution in Internet use. No matter how it gets labeled, the 
thing that a file-sharing system like Gnutella and a distributed computing network like Data Synapse 
have in common is an ability to harness this dark matter, the otherwise underused hardware at the 
edges of the Net. 

2.3.2 Promiscuous computers 

While some press reports call the current trend the "Return of the PC," it's more than that. In these 
new models, PCs aren't just tools for personal use - they're promiscuous computers, hosting data the 
rest of the world has access to, and sometimes even hosting calculations that are of no use to the PC's 
owner at all, like Popular Power's influenza virus simulations. 

Furthermore, the PCs themselves are being disaggregated: Popular Power will take as much CPU time 
as it can get but needs practically no storage, while Gnutella needs vast amounts of disk space but 
almost no CPU time. And neither kind of business particularly needs the operating system - since the 
important connection is often with the network rather than the local user, Intel and Seagate matter 
more to the peer-to-peer companies than do Microsoft or Apple. 

It's too soon to understand how all these new services relate to one another, and the danger of the 
peer-to-peer label is that it may actually obscure the real engineering changes afoot. With 
improvements in hardware, connectivity, and sheer numbers still mounting rapidly, anyone who can 
figure out how to light up the Internet's dark matter gains access to a large and growing pool of 
computing resources, even if some of the functions are centralized. 

It's also too soon to see who the major players will be, but don't place any bets on people or companies 
that reflexively use the peer-to-peer label. Bet instead on the people figuring out how to leverage the 
underused PC hardware, because the actual engineering challenges in taking advantage of the 
underused resources at the edges of the Net matter more - and will create more value - than merely 
taking on the theoretical challenges of peer-to-peer architecture. 
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2.4 Nothing succeeds like address, or, DNS isn't the only game in 
town 

The early peer-to-peer designers, realizing that interesting services could be run off of PCs if only they 
had real addresses, simply ignored DNS and replaced the machine-centric model with a protocol-
centric one. Protocol-centric addressing creates a parallel namespace for each piece of software. AIM 
and Napster usernames are mapped to temporary IP addresses not by the Net's DNS servers, but by 
privately owned servers dedicated to each protocol: the AIM server matches AIM names to the users' 
current IP addresses, and so on. 

In Napster's case, protocol-centric addressing turns Napster into merely a customized FTP for music 
files. The real action in new addressing schemes lies in software like AIM, where the address points to 
a person, not a machine. When you log into AIM, the address points to you, no matter what machine 
you're sitting at, and no matter what IP address is presently assigned to that machine. This completely 
decouples what humans care about - Can I find my friends and talk with them online? - from how the 
machines go about it - Route packet A to IP address X. 

This is analogous to the change in telephony brought about by mobile phones. In the same way that a 
phone number is no longer tied to a particular physical location but is dynamically mapped to the 
location of the phone's owner, an AIM address is mapped to you, not to a machine, no matter where 
you are. 

2.4.1 An explosion of protocols 

This does not mean that DNS is going away, any more than landlines went away with the invention of 
mobile telephony. It does mean that DNS is no longer the only game in town. The rush is now on, with 
instant messaging protocols, single sign-on and wallet applications, and the explosion in peer-to-peer 
businesses, to create and manage protocol-centric addresses that can be instantly updated. 

Nor is this change in the direction of easier peer-to-peer addressing entirely to the good. While it is 
always refreshing to see people innovate their way around a bottleneck, sometimes bottlenecks are 
valuable. While AIM and Napster came to their addressing schemes honestly, any number of people 
have noticed how valuable it is to own a namespace, and many business plans making the rounds are 
just me-too copies of Napster or AIM. Eventually, the already growing list of kinds of addresses - 
phone, fax, email, URL, AIM, ad nauseam - could explode into meaninglessness. 

Protocol-centric namespaces will also force the browser into lesser importance, as users return to the 
days when they managed multiple pieces of Internet software. Or it will mean that addresses like 
aim://12345678 or napster://green_day_ fan will have to be added to the browsers' repertoire of 
recognized URLs. Expect also the rise of " meta-address" servers, which offer to manage a user's 
addresses for all of these competing protocols, and even to translate from one kind of address to 
another. ( These meta-address servers will, of course, need their own addresses as well.) Chapter 19, 
looks at some of the issues involved . 

It's not clear what is going to happen to Internet addressing, but it is clear that it's going to get a lot 
more complicated before it gets simpler. Fortunately, both the underlying IP addressing system and 
the design of URLs can handle this explosion of new protocols and addresses. But that familiar DNS 
bit in the middle (which really put the dot in dot-com) will never recover the central position it has 
occupied for the last two decades, and that means that a critical piece of Internet infrastructure is now 
up for grabs. 

aim://12345678
napster://green_day_
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2.5 An economic rather than legal challenge 

Much has been made of the use of Napster for what the music industry would like to define as 
"piracy." Even though the dictionary definition of piracy is quite broad, this is something of a 
misnomer, because pirates are ordinarily in business to sell what they copy. Not only do Napster users 
not profit from making copies available, but Napster works precisely because the copies are free. (Its 
recent business decision to charge a monthly fee for access doesn't translate into profits for the 
putative "pirates" at the edges.) 

What Napster does is more than just evade the law, it also upends the economics of the music 
industry. By extension, peer-to-peer systems are changing the economics of storing and transmitting 
intellectual property in general. 

The resources Napster is brokering between users have one of two characteristics: they are either 
replicable or replenishable. 

Replicable resources include the MP3 files themselves. "Taking" an MP3 from another user involves 
no loss (if I "take" an MP3 from you, it is not removed from your hard drive) - better yet, it actually 
adds resources to the Napster universe by allowing me to host an alternate copy. Even if I am a 
freeloader and don't let anyone else copy the MP3 from me, my act of taking an MP3 has still not 
caused any net loss of MP3s. 

Other important resources, such as bandwidth and CPU cycles (as in the case of systems like 
SETI@home), are not replicable, but they are replenishable. The resources can be neither depleted 
nor conserved. Bandwidth and CPU cycles expire if they are not used, but they are immediately 
replenished. Thus they cannot be conserved in the present and saved for the future, but they can't be 
"used up" in any long-term sense either. 

Because of these two economic characteristics, the exploitation of otherwise unused bandwidth to 
copy MP3s across the network means that additional music can be created at almost zero marginal 
cost to the user. It employs resources - storage, cycles, bandwidth - that the users have already paid for 
but are not fully using. 

2.5.1 All you can eat 

Economists call these kinds of valuable side effects " positive externalities." The canonical example of 
a positive externality is a shade tree. If you buy a tree large enough to shade your lawn, there is a good 
chance that for at least part of the day it will shade your neighbor's lawn as well. This free shade for 
your neighbor is a positive externality, a benefit to her that costs you nothing more than what you 
were willing to spend to shade your own lawn anyway. 

Napster's signal economic genius is to coordinate such effects. Other than the central database of 
songs and user addresses, every resource within the Napster network is a positive externality. 
Furthermore, Napster coordinates these externalities in a way that encourages altruism. As long as 
Napster users are able to find the songs they want, they will continue to participate in the system, even 
if the people who download songs from them are not the same people they download songs from. And 
as long as even a small portion of the users accept this bargain, the system will grow, bringing in more 
users, who bring in more songs. 

Thus Napster not only takes advantage of low marginal costs, it couldn't work without them. Imagine 
how few people would use Napster if it cost them even a penny every time someone else copied a song 
from them. As with other digital resources that used to be priced per unit but became too cheap to 
meter, such as connect time or per-email charges, the economic logic of infinitely copyable resources 
or non-conservable and non-depletable resources eventually leads to "all you can eat" business 
models. 

Thus the shift from analog to digital data, in the form of CDs and then MP3s, is turning the music 
industry into a smorgasbord. Many companies in the traditional music business are not going quietly, 
however, but are trying to prevent these "all you can eat" models from spreading. Because they can't 
keep music entirely off the Internet, they are currently opting for the next best thing, which is trying to 
force digital data to behave like objects. 
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2.5.2 Yesterday's technology at tomorrow's prices, two days late 

The music industry's set of schemes, called Digital Rights Management (DRM), is an attempt to force 
music files to behave less like ones and zeros and more like albums and tapes. The main DRM effort is 
the Secure Digital Music Initiative (SDMI), which aims to create a music file format that cannot be 
easily copied or transferred between devices - to bring the inconvenience of the physical world to the 
Internet, in other words. 

This in turn has led the industry to make the argument that the music-loving public should be willing 
to pay the same price for a song whether delivered on CD or downloaded, because it is costing the 
industry so much money to make the downloaded file as inconvenient as the CD. When faced with the 
unsurprising hostility this argument engendered, the industry has suggested that matters will go their 
way once users are sufficiently "educated." 

Unfortunately for the music industry, the issue here is not education. In the analog world, it costs 
money to make a copy of something. In the digital world, it costs money to prevent copies from being 
made. Napster has demonstrated that systems that work with the economic logic of the Internet rather 
than against it can have astonishing growth characteristics, and no amount of user education will 
reverse that. 

2.5.3 30 million Britney fans does not a revolution make 

Within this economic inevitability, however, lies the industry's salvation, because despite the rants of 
a few artists and techno-anarchists who believed that Napster users were willing to go to the ramparts 
for the cause, large-scale civil disobedience against things like Prohibition or the 55 MPH speed limit 
has usually been about relaxing restrictions, not repealing them. 

Despite the fact that it is still possible to make gin in your bathtub, no one does it anymore, because 
after Prohibition ended high-quality gin became legally available at a price and with restrictions 
people could live with. Legal and commercial controls did not collapse, but were merely altered. 

To take a more recent example, the civil disobedience against the 55 MPH speed limit did not mean 
that drivers were committed to having no speed limit whatsoever; they simply wanted a higher one. 

So it will be with the music industry. The present civil disobedience is against a refusal by the music 
industry to adapt to Internet economics. But the refusal of users to countenance per-unit prices does 
not mean they will never pay for music at all, merely that the economic logic of digital data - its 
replicability and replenishability - must be respected. Once the industry adopts economic models that 
do, whether through advertising or sponsorship or subscription pricing, the civil disobedience will 
largely subside, and we will be on the way to a new speed limit. 

In other words, the music industry as we know it is not finished. On the contrary, all of their functions 
other than the direct production of the CDs themselves will become more important in a world where 
Napster economics prevail. Music labels don't just produce CDs; they find, bankroll, and publicize the 
musicians themselves. Once they accept that Napster has destroyed the bottleneck of distribution, 
there will be more music to produce and promote, not less. 

2.6 Peer-to-peer architecture and second-class status 

With this change in addressing schemes and the renewed importance of the PC chassis, peer-to-peer is 
not merely erasing the distinction between client and server. It's erasing the distinction between 
consumer and provider as well. You can see the threat to the established order in a recent legal action: 
a San Diego cable ISP, Cox@Home, ordered several hundred customers to stop running Napster not 
because they were violating copyright laws, but because Napster leads Cox subscribers to use too 
much of its cable network bandwidth. 

Cox built its service on the current web architecture, where producers serve content from always-
connected servers at the Internet's center and consumers consume from intermittently connected 
client PCs at the edges. Napster, on the other hand, inaugurated a model where PCs are always on and 
always connected, where content is increasingly stored and served from the edges of the network, and 
where the distinction between client and server is erased. Cox v. Napster isn't just a legal fight; it's a 
fight between a vision of helpless, passive consumers and a vision where people at the network's edges 
can both consume and produce. 
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2.6.1 Users as consumers, users as providers 

The question of the day is, "Can Cox (or any media business) force its users to retain their second-class 
status as mere consumers of information?" To judge by Napster's growth, the answer is "No." 

The split between consumers and providers of information has its roots in the Internet's addressing 
scheme. Cox assumed that the model ushered in by the Web - in which users never have a fixed IP 
address, so they can consume data stored elsewhere but never provide anything from their own PCs - 
was a permanent feature of the landscape. This division wasn't part of the Internet's original 
architecture, and the proposed fix (the next generation of IP, called IPv6) has been coming Real Soon 
Now for a long time. In the meantime, services like Cox have been built with the expectation that this 
consumer/provider split would remain in effect for the foreseeable future. 

How short the foreseeable future sometimes is. When Napster turned the Domain Name System 
inside out, it became trivially easy to host content on a home PC, which destroys the asymmetry where 
end users consume but can't provide. If your computer is online, it can be reached even without a 
permanent IP address, and any material you decide to host on your PC can become globally accessible. 
Napster-style architecture erases the people-based distinction between provider and consumer just as 
surely as it erases the computer-based distinction between server and client. 

There could not be worse news for any ISP that wants to limit upstream bandwidth on the expectation 
that edges of the network host nothing but passive consumers. The limitations of cable ISPs (and 
Asymmetric Digital Subscriber Line, or ADSL) become apparent only if its users actually want to do 
something useful with their upstream bandwidth. The technical design of the cable network that 
hamstrings its upstream speed (upstream speed is less than a tenth of Cox's downstream) just makes 
the cable networks the canary in the coal mine. 

2.6.2 New winners and losers 

Any media business that relies on a neat division between information consumer and provider will be 
affected by roving, peer-to-peer applications. Sites like GeoCities, which made their money providing 
fixed addresses for end user content, may find that users are perfectly content to use their PCs as that 
fixed address. Copyright holders who have assumed up until now that only a handful of relatively 
identifiable and central locations were capable of large-scale serving of material are suddenly going to 
find that the Net has sprung another million leaks. 

Meanwhile, the rise of the end user as information provider will be good news for other businesses. 
DSL companies (using relatively symmetric technologies) will have a huge advantage in the race to 
provide fast upstream bandwidth; Apple may find that the ability to stream home movies over the Net 
from a PC at home drives adoption of Mac hardware and software; and of course companies that 
provide the Napster-style service of matching dynamic IP addresses with fixed names will have just 
the sort of sticky relationship with their users that venture capitalists slaver over. 

Real technological revolutions are human revolutions as well. The architecture of the Internet has 
effected the largest transfer of power from organizations to individuals the world has ever seen, and it 
is only getting started. Napster's destruction of the serving limitations on end users shows how 
temporary such bottlenecks can be. Power is gradually shifting to the individual for things like stock 
brokering and buying airline tickets. Media businesses that have assumed such shifts wouldn't affect 
them are going to be taken by surprise when millions of passive consumers are replaced by millions of 
one-person media channels. 

This is not to say that all content is going to the edges of the Net, or that every user is going to be an 
enthusiastic media outlet. But enough consumers will become providers as well to blur present 
distinctions between producer and consumer. This social shift will make the next generation of the 
Internet, currently being assembled, a place with greater space for individual contributions than 
people accustomed to the current split between client and server, and therefore provider and 
consumer, had ever imagined. 
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Chapter 3. Remaking the Peer-to-Peer Meme 
Tim O'Reilly, O'Reilly & Associates 

On September 18, 2000, I organized a so-called " peer-to-peer summit" to explore the bounds of peer-
to-peer networking. In my invitation to the attendees, I set out three goals: 

1. To make a statement, by their very coming together, about the nature of peer-to-peer and 
what kinds of technologies people should think of when they hear the term. 

2. To make some introductions among people whom I like and respect and who are working on 
different aspects of what could be seen as the same problem - peer-to-peer solutions to big 
problems - in order to create some additional connections between technical communities 
that ought to be talking to and learning from each other. 

3. To do some brainstorming about the issues each of us are uncovering, so we can keep projects 
from reinventing the wheel and foster cooperation to accelerate mutual growth. 

In organizing the summit, I was thinking of the free software (open source) summit I held a few years 
back. Like free software at that time, peer-to-peer currently has image problems and a difficulty 
developing synergy. The people I was talking to all knew that peer-to-peer is more than just swapping 
music files, but the wider world was still focusing largely on the threats to copyright. Even people 
working in the field of peer-to-peer have trouble seeing how far its innovations can extend; it would 
benefit them to learn how many different types of technologies share the same potential and the same 
problems. 

This is exactly what we did with the open source summit. By bringing together people from a whole lot 
of projects, we were able to get the world to recognize that free software was more than GNU and 
Linux; we introduced a lot of people, many of whom, remarkably, had never met; we talked shop; and 
ultimately, we crafted a new "meme" that completely reshaped the way people thought about the 
space. 

The people I invited to the peer-to-peer summit tell part of the story. Gene Kan from Gnutella 
(http://gnutella.wego.com/) and Ian Clarke from Freenet (http://freenet.sourceforge.net/) were 
obvious choices. They matched the current industry buzz about peer-to-peer file sharing. Similarly, 
Marc Hedlund and Nelson Minar from Popular Power (http://www.popularpower.com/) made sense, 
because there was already a sense of some kind of connection between distributed computation and 
file sharing. 

But why did I invite Jeremie Miller of Jabber and Ray Ozzie of Groove, Ken Arnold from Sun's Jini 
project and Michael Tiemann of Red Hat, Marshall Rose (author of BXXP and IMXP), Rael Dornfest 
of meerkat and RSS 1.0, Dave Stutz of Microsoft, Andy Hertzfeld of Eazel, Don Box (one of the authors 
of SOAP) and Steve Burbeck (one of the authors of UDDI)? (Note that not all of these people made it 
to the summit; Ian Clarke sent Scott Miller in his stead, and Ken Arnold and Don Box had to cancel at 
the last minute.) As I said in my invitation: 

[I've invited] a group of people who collectively bracket what I consider a new 
paradigm, which could perhaps best be summarized by Sun's slogan, "The Network 
is the Computer." They're all working on parts of what I consider the next-
generation Net story. 

This chapter reports on some of the ideas discussed at the summit. It continues the job of trying to 
reshape the way people think about that "next-generation Net story" and the role of peer-to-peer in 
telling that story. It also shows one of the tools I used at the meeting - something I'll call a " meme 
map" - and presents the results of the meeting in that form. 

The concepts we bear in our minds are, at bottom, maps of reality. Bad maps lead to bad decisions. If 
we believe peer-to-peer is about illegal sharing of copyrighted material, we'll continue to see rhetoric 
about copyright and censorship at the heart of the debate, and may push for ill-advised legal 
restrictions on the use of the technology. If we believe it's about a wider class of decentralized 
networking applications, we'll focus instead on understanding what those applications are good for 
and on advancing the state of the art. 

http://gnutella.wego.com/
http://freenet.sourceforge.net/
http://www.popularpower.com/
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The meme map we developed at the peer-to-peer summit has two main benefits. First, the peer-to-
peer community can use it to organize itself - to understand who is doing related work and identify 
areas where developers can learn from each other. Second, the meme map helps the community 
influence outsiders. It can create excitement where there previously was indifference and turn 
negative impressions into positive ones. Tangentially, the map is also useful in understanding the 
thinking behind the O'Reilly Network's P2P directory, a recent version of which is republished in this 
book as an appendix. 

First, though, a bit of background. 

3.1 From business models to meme maps 

Recently, I started working with Dan and Meredith Beam of Beam, Inc., a strategy consulting firm. 
Dan and Meredith help companies build their "business models" - one page pictures that describe 
"how all the elements of a business work together to build marketplace advantage and company 
value." It's easy to conclude that two companies selling similar products and services are in the same 
business, but the Beams think otherwise. 

For example, O'Reilly and IDG compete in the computer book publishing business, but we have 
completely different business models. Their strategic positioning is to appeal to the "dummy" who 
needs to learn about computers but doesn't really want to. Ours is to appeal to the people who love 
computers and want to go as deep as possible. Their marketing strategy is to build a widely recognized 
consumer brand, and then dominate retail outlets and "big box" stores in hopes of putting product in 
front of consumers who might happen to walk by in search of any book on a given subject. Our 
marketing strategy is to build awareness of our brand and products in the core developer and user 
communities, who then buy directly or drive traffic to retail outlets. The former strategy pushes 
product into distribution channels in an aggressive bid to reach unknown consumers; the latter pulls 
products into distribution channels as they are requested by consumers who are already looking for 
the product. Both companies are extremely successful, but our different business models require 
different competencies. I won't say more lest this chapter turn into a lesson for O'Reilly competitors, 
but hopefully I have said enough to get the idea across. 

Boiling all the elements of your business down into a one-page picture is a really useful exercise. But 
what is even more useful is that Dan and Meredith have you run the exercise twice, once to describe 
your present business, and once to describe it as you want it to be. 

At any rate, fresh from the strategic planning process at O'Reilly, it struck me that an adaptation of 
this idea would be useful preparation for the summit. We weren't modeling a single business but a 
technology space - the key projects, concepts, and messages associated with it. 

I call these pictures "meme maps" rather than "business models" in honor of Richard Dawkins' 
wonderful contribution to cultural studies. He formulated the idea of "memes" as ideas that spread 
and reproduce themselves, passed on from mind to mind. Just as gene engineering allows us to 
artificially shape genes, meme engineering lets us organize and shape ideas so that they can be 
transmitted more effectively, and have the desired effect once they are transmitted. That's what I 
hoped to touch off at the summit, using a single picture that shows how a set of technologies fit 
together and demonstrates a few central themes. 

3.1.1 A success story: From free software to open source 

In order to illustrate the idea of a meme map to the attendees at the peer-to-peer summit, I drew some 
maps of free software versus open source. I presented these images at the summit as a way of 
kickstarting the discussion. Let's look at those here as well, since it's a lot easier to demonstrate the 
concept than it is to explain it in the abstract. 

I built the free software map in Figure 3.1 by picking out key messages from the Free Software 
Foundation (FSF) web site, http://www.fsf.org/. I also added a few things (the darker ovals in the 
lower right quadrant of the picture) to show common misconceptions that were typically applied to 
free software. This figure, and the others in this chapter are slightly edited versions of slides used at 
the summit. 

http://www.fsf.org/
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Figure 3.1. Map of the old free software meme 

 
 
Please note that this diagram should not be taken as a complete representation of the beliefs of the 
Free Software Foundation. I simply summarized my interpretation of the attitudes and positioning I 
found on their web site. No one from the Free Software Foundation has reviewed this figure, and they 
might well highlight very different points if given the chance to do so. 

There are a couple of things to note about the diagram. The ovals at the top represent the outward face 
of the movement - the projects or activities that the movement considers canonical in defining itself. 
In the case of the Free Software Foundation, these are programs like gcc (the GNU C Compiler), GNU 
Emacs, GhostScript (a free PostScript display tool), and the GNU General Public License, or GPL . 

The box in the center lists the strategic positioning, the key perceived user benefit, and the core 
competencies. The strategic goal I chose came right up front on the Free Software Foundation web 
site: to build a complete free replacement for the Unix operating system. The user benefit is sold as 
one of standing up for what's right, even if there would be practical benefits in compromising. The web 
site shows little sense of what the core competencies of the free software movement might be, other 
than that they have right on their side, along with the goodwill of talented programmers. 

In the Beam models, the ovals at the bottom of the picture represent internal activities of the business; 
for my purposes, I used them to represent guiding principles and key messages. I used dark ovals to 
represent undesirable messages that others might be creating and applying to the subject of the meme 
map. 

As you can see, the primary messages of the free software movement, thought-provoking and well 
articulated as they are, don't address the negative public perceptions that are spread by opponents of 
the movement. 

Now take a look at the diagram I drew for open source - the alternative term for free software that was 
invented shortly before we held our open source summit in April 1998. The content of this diagram, 
shown in Figure 3.2, was taken partly from the Open Source Initiative web site 
http://www.opensource.org/, but also from the discussions at the summit and from my own thinking 
and speaking about open source in the years since. Take the time to read the diagram carefully; it 
should be fairly self-explanatory, but I'll offer some insights into a few subtleties. The figure 
demonstrates what a well-formed strategic meme map ought to look like. 

http://www.opensource.org/
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Figure 3.2. Map of the new open source meme 

 
 
As you can see by comparing the two diagrams, they put a completely different spin on what formerly 
might have been considered the same space. We did more than just change the name that we used to 
describe a collection of projects from "free software" to "open source." In addition: 

• We changed the canonical list of projects that we wanted to hold up as exemplars of the 
movement. (Even though BIND and sendmail and Apache and Perl are "free software" by the 
Free Software Foundation's definition, they aren't central to its free software "meme map" in 
the way that we made them for open source; even today, they are not touted on the Free 
Software Foundation web site.) What's more, I've included a tag line that explains why each 
project is significant. For example, BIND isn't just another free software program; it's the 
heart of the Domain Name System and the single most mission-critical program on the 
Internet. Apache is the dominant web server on the market, sendmail routes most Internet 
email and Linux is more reliable than Windows. The Free Software Foundation's GNU tools 
are still in the picture, but they are no longer at its heart. 

• The strategic positioning is much clearer. Open source is not about creating a free 
replacement for Unix. It's about making better software through sharing source code and 
using the Internet for collaboration. The user positioning (the benefit to the user) was best 
articulated by Bob Young of Red Hat, who insisted that what Red Hat Linux offers to its 
customers is control over their own destiny. 

• The list of core competencies is much more focused and actionable. The most successful open 
source communities do in fact understand something about distributed software development 
in the age of the Internet, organizing developer communities, using free distribution to gain 
market share, commoditizing markets to undercut dominant players, and creating powerful 
brands for their software. Any aspiring open source player needs to be good at all of these 
things. 
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• We've replaced the negative messages used against free software with directly competing 
messages that counter them. For instance, where free software was mischaracterized as 
unreliable, we set out very explicitly to demonstrate that everyone counts on open source 
programs, and that the peer review process actually improves reliability and support. 

• We've identified a set of guiding principles that can be used by open source projects and 
companies to see if they're hitting all the key points, or that can be used to explain why some 
projects have failed to gain as much traction as expected. For example, Mozilla's initial lack of 
modular code, weak documentation, and long release cycles hampered its quick uptake as an 
open source project. (That being said, key portions of Mozilla code are finally starting to 
appear in a variety of other open source projects, such as ActiveState's Komodo development 
environment and Eazel's Nautilus file manager.) 

• We made connections between open source and related concepts that help to place it in 
context. For example, the concept from The ClueTrain Manifesto of open interaction with 
customers, and the idea of " disruptive technologies" from Clayton Christenson's book The 
Innovator's Dilemma, link open source to trends in business management. 

While some further discussion of the open source meme map might be worthwhile in another context, 
I present it here mainly to clarify the use of meme maps to create a single unifying vision of a set of 
related technologies. 

3.1.2 The current peer-to-peer meme map 

The meme map for peer-to-peer is still very unformed, and consists largely of ideas applied by the 
media and other outsiders. 

Figure 3.3 is the slide I showed to the group at the summit. Things have evolved somewhat since that 
time, partly as a result of efforts such as ours to correct common misconceptions, but this picture still 
represents the view being bandied about by industries that feel threatened by peer-to-peer 
technologies. 

Figure 3.3. Map of currently circulating peer-to-peer meme 
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Not a pretty picture. The canonical projects all feed the idea that peer-to-peer is about the subversion 
of intellectual property. The chief benefit presented to users is that of free music (or other copyrighted 
material). The core competencies of peer-to-peer projects are assumed to be superdistribution, the 
lack of any central control point, and anonymity as a tool to protect the system from attempts at 
control. 

Clearly, these are characteristics of the systems that put the peer-to-peer buzzword onto everyone's 
radar. But are they really the key points? Will they help peer-to-peer developers work together, 
identify problems, develop new technologies, and win the public over to those technologies? 

A map is useful only to the extent that it reflects underlying reality. A bad map gets you lost; a good 
one helps you find your way through unfamiliar territory. Therefore, one major goal for the summit 
was to develop a better map for the uncharted peer-to-peer space. 

3.1.3 The new peer-to-peer meme map 

In a space as vaguely defined as peer-to-peer, we need to consider many angles at once in order to 
come up with an accurate picture of what the technology is and what is possible. Our summit looked at 
many projects from different sources, often apparently unrelated. We spent a few hours brainstorming 
about important applications of peer-to-peer technology, key principles, and so on. I've tried to 
capture the results of that brainstorming session in the same form that I used to spark the discussion, 
as the meme map in Figure 3.4. Note that this is what I took away personally from the meeting. The 
actual map below wasn't fully developed or approved there. 

Figure 3.4. Map of peer-to-peer meme as it is starting to be understood 

 
 
A quick walkthrough of the various projects and how they fit together leads us to a new understanding 
of the strategic positioning and core competencies for peer-to-peer projects. In the course of this 
walkthrough, I'll also talk about some of the guiding principles that we can derive from studying each 
project, which are captured in the ovals at the top of the diagram. This discussion is necessarily quite 
superficial, but suggests directions for further study. 
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3.1.3.1 File sharing: Napster and successors 

One of the most obvious things about the map I've drawn of the peer-to-peer space is that file-sharing 
applications such as Napster, Gnutella, and Freenet are only a small part of the picture, even though 
they have received the lion's share of the attention to date. Nonetheless, Napster 
(http://www.napster.com/), as the application whose rapid uptake and enormous impact on the 
music industry sparked the furor over peer-to-peer, deserves some significant discussion. 

One of the most interesting things about Napster is that it's not a pure peer-to-peer system in the 
same way that radically decentralized systems like Gnutella and Freenet are. While the Napster data is 
distributed across millions of hard disks, finding that data depends on a central server. In some ways, 
the difference between MP3.com and Napster is smaller than it appears: one centralizes the files, 
while the other centralizes the addresses of the files. 

The real genius of Napster is the way it makes participation automatic. By default, any consumer is 
also a producer of files for the network. Once you download a file, your machine is available to pass 
along the file to other users. Automatic "pass along" participation decentralizes file storage and 
network bandwidth, but most importantly, it also distributes the job of building the Napster song 
database. 

Dan Bricklin has written an excellent essay on this subject, which we've printed in this book as 
Chapter 4. In this wonderful reversal of Hardin's tragedy of the commons, Bricklin explains why 
Napster demonstrates the power of collectively assembled databases in which "increasing the value of 
the database by adding more information is a natural by-product of using the tool for your own 
benefit." 

This feature is also captured by an insightful comment by innovative software developer Dave Winer: 
"The P in P2P is People." 

Dave's comment highlights why the connection to the open source movement is significant. Open 
source projects are self-organizing, decentralized workgroups enabled by peer-to-peer Internet 
technologies. If the P in P2P is people, the technologies that allow people to create self-organizing 
communities and the frameworks developed for managing those communities provide important 
lessons for those who want to work in the P2P space. 

Open source isn't driven just by a set of licenses for software distribution, but more deeply by a set of 
techniques for collaborative, wide-area software development. Open source and peer-to-peer come 
full circle here. One of the key drivers of the early open source community was the peer-to-peer 
Usenet, which I'll discuss later in the chapter. Both open source and peer-to-peer are technologies that 
allow people to associate freely, end-to-end, and thus are great levelers and great hotbeds promoting 
innovation. 

Napster also illustrates another guiding principle: tolerance for redundancy and unreliability. I was 
talking recently with Eric Schmidt, CEO of Novell, about lessons from peer-to-peer. He remarked on a 
conversation he'd had with his 13-year-old daughter. "Does it bother you," he asked, "that sometimes 
songs are there, and sometimes they aren't? Does it bother you that there are lots of copies of the same 
song, and that they aren't all the same?" Her answer - that neither of these things bothered her in the 
slightest - seemed to him to illustrate the gulf between the traditional computer scientist's concern for 
reliability and orthogonality and the user's indifference for these issues. 

Another important lesson from Napster is that free riders, "super peers" providing more or better 
resources, and other variations in peer participation will ultimately decrease the system's 
decentralization. Experience is already showing that a hierarchy is starting to emerge. Some users turn 
off file sharing. Even among those who don't, some have more files, and some have better bandwidth. 
As in Orwell's Animal Farm, all animals are equal, but some are more equal than others. While this 
idea is anathema to those wedded to the theory of radical decentralization, in practice, it is this very 
feature that gives rise to many of the business opportunities in the peer-to-peer space. It should give 
great relief to those who fear that peer-to-peer will lead to the leveling of all hierarchy and the end of 
industries that depend on it. The most effective way for the music industry to fight what they fear from 
Napster is to join the trend, and provide sites that become the best source for high-quality music 
downloads. 

http://www.napster.com/
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Even on Gnutella, the concept of super peers is starting to emerge. The service DSS (Distributed 
Search Solutions) from Clip2.com, Inc. (http://dss.clip2.com/) has developed a program that they call 
a Gnutella " Reflector." This is a proxy and index server designed to make Gnutella more scalable. 
According to Kelly Truelove of Clip2, "Multiple users connect to such a Reflector as they might 
connect to a Napster central server, yet, unlike such a central server, the Reflector itself can function 
as a peer, making outgoing connections to other peers on the network." 

3.1.3.2 Mixing centralization and decentralization: Usenet, email, and IP routing 

Not coincidentally, this evolution from a pure peer-to-peer network to one in which peer-to-peer and 
centralized architectures overlap echoes the evolution of Usenet. This history also shows that peer-to-
peer and client/server (which can also be called decentralization and centralization) are not mutually 
exclusive. 

Usenet was originally carried over the informal, peer-to-peer, dial-up network known as UUCPnet. 
Sites agreed to phone each other, and passed mail and news from site to site in a store-and-forward 
network. Over time, though, it became clear that some sites were better connected than others; they 
came to form a kind of de facto "Usenet backbone." One of the chief sites, seismo, a computer at the 
U.S. Geological Society, was run by Rick Adams. By 1987, the load on seismo had become so great that 
Rick formed a separate company, called UUnet (http://www.uu.net/), to provide connectivity services 
for a monthly fee. 

As the UUCPnet was replaced by the newly commercialized Internet, UUnet added TCP/IP services 
and became the first commercial Internet service provider. ISPs create a layer of hierarchy and 
centralization even though the IP routing infrastructure of the Internet is still peer-to-peer. Internet 
routers act as peers in finding the best route from one point on the Net to another, but users don't find 
each other directly any more. They get their Internet connectivity from ISPs, who in turn connect to 
each other in asymmetric hierarchies that are hidden from the end user. Yet beneath the surface, each 
of those ISPs still depends on the same peer-to-peer architecture. 

Similarly, email is routed by a network of peered mail servers, and while it appears peer-to-peer from 
the user point of view, those users are in fact aggregated into clusters by the servers that route their 
mail and the organizations that operate those servers. 

Centralization and decentralization are never so clearly separable as anyone fixated on buzzwords 
might like. 

3.1.3.3 Maximizing use of far-flung resources: Distributed computation 

Some of the earliest projects that excited the public about the potential for coordinating peers were 
distributed computation programs like SETI@home. This project is described by one of its founders in 
Chapter 5. Served from the Space Sciences Lab at U.C. Berkeley, SETI@home runs as a screensaver 
that uses the "spare cycles" from more than 1 million PCs to process radio telescope data in search of 
signs of extraterrestrial intelligence. 

Viewed from one angle, distributed computation programs are not at all peer-to-peer. After all, they 
use an old-style, asymmetric, client/server architecture, in which the million independent 
computational clients download their data sets and upload their computed results to the central 
repository at the Space Sciences Lab. The clients don't peer with each other in any way. 

But look a little deeper, and something else emerges: the clients are active participants, not just 
passive "browsers." What's more, the project uses the massive redundancy of computing resources to 
work around problems such as reliability and network availability of any one resource. 

But even more importantly, look further down the development timeline when startups such as 
United Devices, Popular Power, Parabon, and others have their services in the market. At that point, 
the "ecology" of distributed computation is going to be much more complex. There will be thousands 
(and ultimately, perhaps millions) of compute-intensive tasks looking for spare cycles. At what point 
does it make sense to design a specialized architecture that facilitates a two-way flow of tasks and 
compute cycles? 

Further, many of the key principles of Napster are also at play in distributed computation. Both 
Napster and SETI@home need to create and manage metadata about a large community of 
distributed participants. Both need to make it incredibly simple to participate. 

http://dss.clip2.com/
http://www.uu.net/
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Finally, both Napster and SETI@Home have tried to exploit what Clay Shirky (who contributed 
Chapter 2, to this book) memorably called "the dark matter of the Internet" - the hundreds of millions 
of interconnected PCs that have hitherto been largely passive participants in the network. 

Already, startups like Mojo Nation (http://www.mojonation.net/) are making a link between file 
sharing and distributed computation. In the end, both distributed file sharing and distributed 
computation are aspects of a new world where individual computer systems take on their most 
important role as part of a network - where the whole is much greater than the sum of its parts. 

3.1.3.4 Immediate information sharing: The new instant messaging services 

Napster could be characterized as a "brokered peer-to-peer system," in which a central addressing 
authority connects end points, and then gets out of the way. 

Once you realize this, it becomes clear just how similar the Napster model is to instant messaging. In 
each case, a central authority manages an addressing system and a namespace that allows the unique 
identification of each user. These are employed by the system to connect end users. In some ways, 
Napster can be thought of as an instant messaging system in which the question isn't, "Are you online 
and do you want to chat?" but, "Are you online and do you have this song?" 

Not surprisingly, a project like AIMster (http://www.aimster.com/) makes explicit use of this insight 
to build a file-sharing network that uses the AOL Instant Messenger (AIM) protocol. This brings IM 
features such as buddy lists into the file- sharing arena. 

The Jabber instant messaging platform (http://www.jabbercentral.com/) takes things even further. 
An open source project, Jabber started out as a switching system between incompatible instant 
messaging protocols; it is evolving into a general XML routing system and a basis for applications that 
allow users and their computers to ask each other even more interesting questions. 

Ray Ozzie's Groove Networks (http://www.groove.net/) is an even more mature expression of the 
same insight. It provides a kind of groupware dial tone or "LAN on demand" for ad hoc groups of 
peers. Like Jabber, it provides an XML routing infrastructure that allows for the formation of ad hoc 
peer groups. These can share not only files and chat, but a wide variety of applications. Replication, 
security, and so on are taken care of automatically by the underlying Groove system. 

If systems like AIMster, Jabber, and Groove deliver what they promise, we can see peer-to-peer as a 
solution to the IT bottleneck, allowing users to interact more directly with each other in networks that 
can span organizational boundaries. Beyond the potential efficiency of such networks, peer-to-peer 
systems can help people share ideas and viewpoints more easily, ultimately helping the formation of 
online communities. 

3.1.3.5 The writable Web 

The Web started out as a participatory groupware system. It was originally designed by Tim Berners-
Lee as a way for high-energy physicists to share their research data and conclusions. Only later was it 
recast into a publishing medium, in which sites seek to produce content that attracts millions of 
passive consumers. 

To this day, there is a strong peer-to-peer element at the very heart of the Web's architecture: the 
hyperlink. A web hyperlink can point to any other site on the network, without any central 
intervention, and without the permission of the site being pointed to. What's more, hyperlinks can 
point to a variety of resources, not just web pages. Part of the Web's explosive growth, as compared to 
other early Internet information services, was that the web browser became a kind of universal client 
that was able to link to any kind of Internet resource. Initially, these resources were competing 
services such as FTP, Gopher, and WAIS. But eventually, through CGI, the Web became an interface 
to virtually any information resource that anyone wanted to make available. Mailto and news links 
even provide gateways to mail and Usenet. 

There's still a fundamental flaw in the Web as it has been deployed, though. Tim Berners-Lee created 
both a web server and a web browser, but he didn't join them at the hip the way Napster did. And as 
the Buddhist Dhammapadda says, "If the gap between heaven and earth is as wide as a barleycorn, it 
is as wide as all heaven and earth." Before long, the asymmetry between clients and servers had grown 
wide enough to drive a truck through. 

http://www.mojonation.net/
http://www.aimster.com/
http://www.jabbercentral.com/
http://www.groove.net/
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Browsers were made freely available to anyone who wanted to download one, but servers were seen as 
a high-priced revenue opportunity, and were far less widely deployed. There were free Unix servers 
available (including the NCSA server, which eventually morphed into Apache), but by 1995, 95% of 
Web users were on Windows, and there was no web server at all available to them! In 1995, in an 
attempt to turn the tide, O'Reilly introduced Website. The first web server for Windows, it tried to 
push the market forward with the slogan "Everyone who has a web browser ought to have a web 
server." But by then, the market was fixated on the idea of the web server as a centralized publishing 
tool. Microsoft eventually offered PWS, or Personal Web Server, bundled with Windows, but it was 
clearly a low-powered, second-class offering. 

Perhaps even more importantly, as several authors in this book point out, the rise of dynamic IP 
addressing made it increasingly difficult for individuals to publish to the Web from their desktops. As 
a result, the original "Two-Way Web" became something closer to television, a medium in which most 
of the participants are consumers, and only a relatively small number are producers. 

Web site hosting services and participatory sites like GeoCities made it somewhat easier to participate, 
but these services were outside the mainstream of web development, with a consumer positioning and 
nonstandard tools. 

Recently, there's been a new emphasis on the "writable Web," with projects like Dave Winer's 
EditThisPage.Com (http://www.editthispage.com/), Dan Bricklin's Trellix (http://www.trellix.com/), 
and Pyra's Blogger (http://www.blogger.com/) making it easy for anyone to host their own site and 
discussion area. Wiki (http://c2.com/cgi/wiki?WikiWikiWeb) is an even more extreme innovation, 
creating web sites that are writable by anyone in an area set aside for public comment on a given topic. 
Wiki has actually been around for about six or seven years, but has suddenly started to catch on. 

The writable Web is only one way that the Web is recapturing its peer-to-peer roots. Content 
syndication with Rich Site Summary (RSS), which I'll describe in the following section, and web 
services built with protocols like XML-RPC and SOAP allow sites to reference each other more fully 
than is possible with a hyperlink alone. 

3.1.3.6 Web services and content syndication 

I asked above, "At what point does it make sense to have an architecture that allows a two-way flow of 
tasks and compute cycles?" That's actually a pretty good description of SOAP and other web services 
architectures. 

The contribution of SOAP is to formalize something that sophisticated programmers have been doing 
for years. It's been relatively easy, using Perl and a library like libwww-perl, to build interfaces to web 
sites that do "screen scraping" and then reformulate and reuse the data in ways that the original web 
developers didn't intend. Jon Udell (co-author of Chapter 18) demonstrated that one could even take 
data from one web site and pass it to another for further processing, in a web equivalent to the Unix 
pipeline. 

SOAP makes this process more explicit, turning web sites into peers that can provide more complex 
services than simple CGI forms to their users. The next generation of web applications won't consist of 
single-point conversations between a single server and a single browser, but a multipoint conversation 
between cooperating programs. 

One of the key issues that comes up, once you start thinking about more complex interactions between 
sites on the Net, is that metadata management is critical. In order for web clients and servers to use 
others as resources, they need a standard way to discover each other, the way Java-enabled devices 
discover each other through Jini. An initiative called Universal Description, Discovery, and 
Integration, or UDDI (http://www.uddi.org/) represents a first step in this direction. 

Similarly, content syndication formats like RSS allow web sites to cooperate in delivering content. By 
publishing RSS feeds, sites enable other sites to automatically pick up data about their stories. For 
instance, the O'Reilly Network home page is updated automatically out of a set of RSS news feeds 
from a web of cooperating sites. 

Right now, RSS provides only the simplest of metadata about web pages, useful for simple syndication 
applications like creating news digest pages. But the RSS 1.0 proposal (www.xml.com/pub/r/810) will 
allow for more complex applications based on distributed data. 

http://www.editthispage.com/
http://www.trellix.com/
http://www.blogger.com/
http://c2.com/cgi/wiki?WikiWikiWeb
http://www.uddi.org/
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3.1.3.7 Peer-to-peer and devices 

We've all heard popular descriptions of technologies such as BlueTooth and Jini. I walk into a room 
with my wireless laptop, and it queries other devices: "Hey, are there any printers here that can print a 
PostScript file?" 

If this isn't peer-to-peer, what is? As we have billions of computing devices, some fixed, some mobile, 
some embedded in a variety of appliances (even in our clothing), we'll need technologies that allow the 
formation of ad hoc peer groups between devices. 

As you look at these technologies, you see a great deal of overlap between the kinds of problems that 
need to be solved for peer-to-peer devices and for peer-to-peer network applications ranging from web 
services to file sharing. Key technologies include resource discovery, reliability through redundancy, 
synchronization, and replication. 

3.1.4 Strategic positioning and core competencies 

The whirlwind tour of canonical projects we've just been through weaves a story about peer-to-peer 
that's very different from the one we started with. Not only is peer-to-peer fundamental to the 
architecture of the existing Internet, but it is showing us important directions in the future evolution 
of the Net. In some ways, you can argue that the Net is reaching a kind of critical mass, in which the 
network itself is the platform, more important than the operating system running on the individual 
nodes. 

Sun first articulated this vision many years ago with the slogan "The Network is the Computer," but 
that slogan is only now coming true. And if the network is the computer, the projects under the peer-
to-peer umbrella are collectively involved in defining the operating system for that emergent global 
computer. 

That positioning guides technology developers. But there is a story for users too: you and your 
computer are more powerful than you think. In the peer-to-peer vision of the global network, a PC and 
its users aren't just passive consumers of data created at other central sites. 

Since the most promising peer-to-peer applications of the near future are only beginning to be 
developed, it's crucial to provide a vision of the core competencies that peer-to-peer projects will need 
to bring to the table. 

High on the list is metadata management, which is the subject of Chapter 13. Whether you're dealing 
with networked devices, file sharing, distributed computation, or web services, users need to find each 
other and what they offer. While we don't have a clear winner in the resource discovery area, XML has 
emerged as an important component in the puzzle. 

What do we mean by metadata? In the case of Napster, metadata means the combination of artist and 
song names that users search for. It also includes additional data managed by the central Napster 
server, such as the names and Internet addresses of users, the size of the music files, and the reported 
amount of bandwidth of the user's Internet link. (You can think of this information as the Napster 
"namespace," a privately-managed metadata directory that gives Napster the ability to link users and 
their files with each other.) 

In considering Napster, it's worth noting that it chose an easy information domain because the 
"namespace" of popular music is simple and well-known. The Napster model breaks down in cases 
where more complex metadata is required to find a given piece of data. For example, in the case of 
classical music, an artist/song combination is often insufficient, since the same piece may be 
performed by various combinations of artists. 

A related observation, which Darren New of Invisible Worlds (http://www.invisible.net/) made at the 
summit, is that Napster depends on the music industry itself to "market its namespace." Without 
preexisting knowledge of song titles and artists, there is nothing for the Napster user to search for. 
This will lead to additional centralization layers as unknown artists try to provide additional 
information to help users find their work. This is much the same thing that happened on the Web, as a 
class of portals such as Yahoo! grew up to categorize and market information about the peer-to-peer 
world of hyperlinked web pages. 

http://www.invisible.net/
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It's easy to see, then, how understanding and managing namespaces and other forms of metadata 
becomes central to peer-to-peer applications. What's more, it is also the key to many peer-to-peer 
business models. Controlling namespaces and resource discovery has turned out to be one of the key 
battlegrounds of the Web. From Network Solutions (which largely controls DNS registration) to 
Yahoo! and search engines, identifying and capitalizing on the ways that centralization impacts even 
radically decentralized systems has turned out to be one key to financial success. 

Instant messaging turns out to tell a similar story. The namespace of an instant messaging system, 
and the mapping of identity onto user addresses, is the key to those systems. You have only to witness 
the efforts of AOL to keep other instant messaging vendors from reaching its customers to understand 
just how important this is. 

Note, however, that in the end, an open namespace with multiple providers will create a more 
powerful network than a closed one, just as the open Web trumped closed information services like 
AOL and MSN. AOL now succeeds for its customers as a "first among equals" rather than as a 
completely closed system. 

In the case of a distributed computation application, metadata might mean some identifier that allows 
the distributed data elements to be reassembled, and the address of the user who is working on a 
particular segment. SETI@home tracks user identity as a way of providing a game-like environment in 
which users and companies compete to contribute the most cycles. Startups aiming to compensate 
users for their spare compute cycles will need to track how much is contributed. Depending on the 
type of problem to be computed, they might want to know more about the resources being offered, 
such as the speed of the computer, the amount of available memory, and the bandwidth of the 
connection. Some of the technical means used to track and reward users are explored in Chapter 16. 

We can see, then, that some of the key battlegrounds for peer-to-peer as a business proposition will be 
the standards for metadata, the protocols for describing and discovering network-based resources and 
services, and ownership of the namespaces that are used to identify those resources. 

Returning to Napster, though, it's also clear that the core competencies required of successful peer-to-
peer projects will include seamless communication and connectivity, facilities that support self-
organizing systems, and the management of trust and expectations. 

Ultimately, peer-to-peer is about overcoming the barriers to the formation of ad hoc communities, 
whether of people, of programs, of devices, or of distributed resources. It's about decoupling people, 
data, and services from specific machines, using redundancy to replace reliability of connections as 
the key to consistency. If we get it right, peer-to-peer can help to break the IT bottleneck that comes 
with centralized services. Decentralization and user empowerment enable greater productivity. Edge 
services allow more effective use of Internet resources. 

We're just at the beginning of a process of discovery. To get this right, we'll need a lot of 
experimentation. But if we can learn lessons from Internet history, we also need to remember to focus 
on the interoperability of many systems, rather than treating this as a winner-takes-all game in which 
a single vendor can establish the standard for the network platform. 

The peer-to-peer landscape is changing daily. New companies, applications, and projects appear faster 
than they can be catalogued. Especially with all the hype around peer-to-peer, the connections 
between these projects can be fairly tenuous. Is it marketing buzz or substance, when everyone tries to 
join the parade? 

While there's a danger in casting the net too widely, there's also a danger in limiting it. I believe that 
the story I've told here gives us a good starting point in understanding an emergent phenomenon: the 
kind of computing that results when networking is pervasive, resources are abundant (and 
redundant), and the barriers are low to equal participation by any individual network node. 
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Chapter 4. The Cornucopia of the Commons 
Dan Bricklin, Cocreator of Visicalc 

Let's get to the bottom of the Napster phenomenon - why is this music trading service so popular? One 
could say, trivially, that Napster is successful because you can find what you want (a particular song) 
and get it easily. It's also pretty obvious that songs are easy to find because so many of them are 
available through Napster. If Napster let me get only a few popular songs, once I downloaded those I'd 
lose interest fast. 

But what's the root cause? Why are so many songs available? Hint: It has nothing to do with peer-to-
peer. Peer-to-peer is plumbing, and most people don't care about plumbing. While the "look into other 
people's computers and copy directly" method has some psychological benefit to people who 
understand what's going on (as indicated by thinkers such as Tom Matrullo and Dave Winer), I think 
the peer-to-peer aspects actually get in the way of Napster. 

Let's be blunt: Napster would operate much better if, when you logged in, it uploaded all the songs 
from your disk that weren't already in the Napster database. If the songs were copied to a master 
server, rather than just the names of the songs and who was currently logged in, the same songs would 
be available for download provided by the same people, but at all times (not just when the "owner" 
happened to be connected to the Internet), and probably through more reliable and higher-speed 
connections to the Internet. (Akamai provides the kind of redundancy and efficiency that Napster 
currently relies on its worldwide network of users to provide.) Napster could at least maintain the list 
of who has what songs better than they do now. 

Napster doesn't work this way partly because peer-to-peer may be more legal (or so they argue) and 
harder to litigate against. But other applications may not have Napster's legal problems and would 
therefore benefit from more centralized servers. While I'm a strong proponent for peer-to-peer for 
some things, I don't think architecture is the main issue driving new services. 

The issue is whether you get what you want from the application: "Is the data I want in the database?" 
What's interesting about Napster is where its data ultimately comes from - the users - not when or 
how it's transferred. So in this chapter, I'm going to examine how a service can fill a database with lots 
of whatever people want. 

4.1 Ways to fill shared databases 

There are three common ways to fill a shared database: organized manual, organized mechanical, 
and volunteer manual. 

The classic case of an organized manual database is the original Yahoo! directory. This database was 
filled by organizing an army of people to put in data manually. Another example is the old legal 
databases where armies of typists were paid to retype printed material into computers. 

The original AltaVista is an example of an organized mechanical database. A program running on 
powerful computers followed links and domain names and spidered the Web, saving the information 
as it went. Many databases on the Web today are mechanically created by getting access to somebody 
else's data, sometimes for a fee. Examples include databases of street maps and the status of airline 
flights. Some of those databases are by-products of automated processes. 

Finally, Usenet newsgroups and threaded discussions like Slashdot are examples of volunteer 
databases, where interested individuals provide the data because they feel passionate enough about 
doing so. Amazon.com's well-known reviews are created through a mixture of organized manual and 
volunteer manual techniques: the company recruits some reviews and readers spontaneously put up 
others. 
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4.1.1 CDDB: A case study in how to get a manually created database 

The most interesting databases (for the purposes of this chapter) are the ones that involve manual 
creation. When we look closely at some of them, we find some very clever techniques for getting data 
that are very specific to the subjects they cover and the users they serve. Let's focus on one service that 
employs a very unusual technique to aggregate its data: the CDDB service offered by Gracenote to 
organize information about music CDs (http://www.cddb.com/). 

The CDDB database has information that allows your computer to identify a particular music CD in 
the CD drive and list its album title and track titles. Their service is used by RealJukebox, 
MusicMatch, Winamp, and others. What's interesting is how they accumulate this information that so 
many users rely on without even thinking about it. 

Most CDs do not store title information. The only information on the CD, aside from the audio tracks 
themselves, is the number of tracks (songs) and the length of each one. This is the information your 
CD player displays. What CDDB does is let the software on your PC take that track information, send a 
CD signature to CDDB through Internet protocols (if you're connected), and get back the titles. 

CDDB works because songs are of relatively random length. The chances are good almost all albums 
are unique. To understand this point, figure there are about 10 songs on an album, and that they each 
run from about a minute and a half to about three and a half minutes in length. The times for each 
song therefore vary by 100 seconds. There are 100 × 100 × ... × 100 = 10010 = 1011 = 100 billion = an 
awful lot of possible combinations. So an album is identified by a signature that is a special arithmetic 
combination of the times of all the tracks. 

You'd figure that CDDB just bought a standard database with all the times and titles. Well, there 
wasn't one. What they did was accept postings over the Internet that contained track timing 
information and titles typed in by volunteers. Software for playing music CDs on personal computers 
was developed that let people type in that information if CDDB didn't have it. As people noticed that 
their albums failed to come up with titles when they played them on their PCs, many cared enough to 
type in the information. They benefited personally from typing the information because they could 
then more easily make their own playlists, but in the process they happened also to update the shared 
database. The database could be built even if only one person was willing to do this for each album 
(even an obscure album). 

If you loved your CD collection, you'd want all the albums represented - or at least some people did. 
Some people are the type who like to be organized and label everything. Not everybody needed to be 
this type, just enough people to fill the database. Also, the CDDB site needed this volunteer (user) 
labor only until the database got big enough that it was valuable enough for other companies to pay 
for access. 

CDDB is not run on a peer-to-peer architecture. Their database is on dedicated servers that they 
control. Their web site says: 

CDDB is now a totally secure and reliable service which is provided to users 
worldwide via a network of high availability, mirrored servers which each have 
multiple, high bandwidth connections to the Internet... boasting a database of 
nearly 620,000 album titles and over 7.5 million tracks. 

So CDDB succeeded not through peer-to-peer networking - it succeeded by harnessing the energy of 
its users. 

4.1.2 Napster: Harnessing the power of personal selfishness 

Napster is a manually created database built on work by volunteers. It gets bigger when one of its 
users buys (or borrows) a copy of a CD, converts it to MP3, and stores it in his or her shared music 
directory. It can also be enlarged when somebody creates an MP3 of their own performance that they 
want to share. But Napster cleverly provides a short-circuit around the process of manually creating 
data: In both cases, storing the copy in the shared music directory can be a natural by-product of the 
user's normal work with the songs. It can be done as part of downloading songs to a portable music 
player or burning a personal mix CD. Whenever the users are connected to the Internet and to the 
Napster server, songs in the shared directory are then available to the world. 

http://www.cddb.com/
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Of course, the user may not be connected to the Napster server all the time, so the song is not fully 
available to all who want it (a perennial problem with peer-to-peer systems). However, Napster 
overcomes this problem too, by exploiting the everyday activities of its users. Whenever someone 
downloads a song using Napster and leaves the file in his or her shared music directory, that person is 
increasing the number of Napster users who have that song, increasing the chances you will find 
someone with the song logged in to Napster when you want your copy. So again, the value of the 
database increases through normal use. (The same kind of replication is achieved in a more formal 
way by Freenet through its unique protocol, but Napster gets the same effect more simply - its 
protocol is just the decision of a user to do a download.) 

The genius of Napster is that increasing the value of the database by adding more information is a 
natural by-product of each person using the tool for his or her own benefit. No altruistic sharing 
motives need be present, especially since sharing is the default. It isn't even like the old song about 
"leaving a cup with water by the pump to let the next person have something to prime it with." (I'll 
have to use Napster to find that song....) In other words, nobody has to think of being nice to the next 
guy or put in even a tiny bit of extra effort. 

As Internet analyst Kevin Werbach wrote in Release 1.0, a monthly report on technology trends: 

What made Napster a threat to the record labels was its remarkable growth. That 
growth resulted from two things: Napster's user experience and its focus on music... 
What makes Napster different is that it's drop-dead simple to use. Its interface isn't 
pretty, but it achieves that magic resonance with user expectations that marks the 
most revolutionary software developments. 

I would add that, in using that simple, desirable user interface, you also are adding to the value of the 
database without doing any extra work. I'd like to suggest that one can predict the success of a 
particular system for building a shared database by how much the database is aided through normal, 
selfish use. 

4.1.3 The commons 

We've heard plenty about the tragedy of the commons - in fact, it pops up in several other chapters of 
this book. In the 1968 essay that popularized the concept, "The Tragedy of the Commons," Garrett 
Hardin wrote: 

Therein is the tragedy. Each man is locked into a system that compels him to 
increase his herd without limit - in a world that is limited. Ruin is the destination 
toward which all men rush, each pursuing his own best interest in a society that 
believes in the freedom of the commons. Freedom in a commons brings ruin to all. 

In the case of certain ingeniously planned services, we find a contrasting cornucopia of the commons: 
use brings overflowing abundance. Peer-to-peer architectures and technologies may have their 
benefits, but I think the historical lesson is clear: concentrate on what you can get from users, and use 
whatever protocol can maximize their voluntary contributions. That seems to be where the greatest 
promise lies for the new kinds of collaborative environments. 
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Part II: Projects 
 

 

 

 

This part of the book offers a look at several current systems, giving a sense of what 
actual peer-to-peer systems look like and how they behave. 
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Chapter 5. SETI@home 
David Anderson, SETI@home 

It was January 1986, and I was sitting in a cafe on Berkeley, California's Telegraph Avenue. Looking 
up, I recognized a student in the graduate course I was teaching that semester at the university. We 
talked. His name was David Gedye, and he had just arrived from Australia. Our conversation revealed 
many common interests, both within and outside of computer science. This chance meeting led, 
twelve years later, to a project that may revolutionize computing and science: SETI@home. 

Gedye and I became running partners. Our long forays into the hills above the Berkeley campus 
occasioned many far-ranging discussions about the universe and our imperfect understanding of it. I 
enjoyed these times. But all good things must end, and in 1989 Gedye left Berkeley with a master's 
degree. He worked in Silicon Valley for a few years, then moved to Seattle and started a family. I also 
left academia, but remained in the Bay Area. 

In 1995 Gedye visited me in Berkeley, and we returned to the hills, this time for a leisurely walk. He 
was bursting with excitement about a new idea. It sounded crazy at first: He proposed using the 
computing power of home PCs to search for radio signals from extraterrestrial civilizations. But Gedye 
was serious. He had contacted Woody Sullivan, an astronomy professor at the University of 
Washington and an expert in the theory behind SETI, the Search for Extraterrestrial Intelligence. 
Woody had steered him to Dan Werthimer, a SETI researcher at UC Berkeley. 

The four of us - Gedye, Werthimer, Sullivan, and I - met several times over the next year, trying to 
assess the viability of Gedye's idea. We decided that existing technology was sufficient, though just 
barely, for recording radio data and distributing it over the Internet. And if we managed to get 
100,000 people to participate, the aggregate computing power would let us search for fainter signals, 
and more types of signals, than had ever been done before. But could we get that many people 
interested? We decided to try it and find out. 

5.1 Radio SETI 

SETI is a scientific research area whose goal is to detect intelligent life outside the Earth. In 1959, Phil 
Morrison and Giuseppe Cocconi proposed listening for signals with narrow frequency bandwidth, like 
our own television and radar emissions, but unlike the noise emanating from stars and other natural 
sources. Such signals would be evidence of technology, and therefore of life. 

The first radio SETI experiment was conducted in 1960 by Frank Drake, who pointed an 85-foot radio 
telescope in West Virginia at two nearby stars. Drake didn't detect an extraterrestrial signal, but he 
and other researchers have continued to listen. Since 1960 there have been tremendous advances in 
technology, especially in the digital technology at the heart of radio SETI. The systems that analyze 
radio signals use the Fast Fourier Transform (FFT), an algorithm that divides signals into their 
component frequencies. Most SETI projects have built special-purpose FFT supercomputers, but are 
limited to fairly simple types of analysis. 

There are also larger and more sensitive radio telescopes. The largest is Arecibo, a 1,000-foot 
aluminum dish set into a natural hollow in the hills of northern Puerto Rico. A movable antenna 
platform is suspended 700 feet above the center of the dish. By moving the antenna, one can 
effectively point the telescope anywhere in a band of sky from the celestial equator to 38 degrees 
north. The telescope doesn't form an image like optical telescopes. It's more like a highly directional 
microphone. It sees a fuzzy disk (a beam) about 1/10 of a degree in diameter, or about 1/5 the 
diameter of the moon. 

Arecibo's size and excellent electronics let it hear very faint signals. The telescope is used for many 
scientific purposes: looking for pulsars, imaging asteroids and planets by bouncing radio waves off 
them, and studying the upper atmosphere. Observation time on Arecibo is a precious commodity. 
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In 1992, Dan Werthimer devised a way for his SETI project, SERENDIP, to use Arecibo all the time - 
even while other projects are using it. He mounted a secondary antenna at the opposite end of the 
platform from the main antenna. While the main antenna tracks a fixed point in the sky (as it 
normally does) this secondary antenna moves slowly in an arc about 6 degrees away. SERENDIP 
observers have no control over where the scope points, but over long periods of time their beam covers 
the entire band of sky visible from Arecibo. SERENDIP is thus a sky survey: It covers lots of stars but 
doesn't spend much time on each star. Other radio SETI projects use targeted search: they look at 
specific stars for longer periods, which gives them more sensitivity. No one knows which approach is 
better, or even if radio signals are the right thing to look for. The best bet, SETI experts agree, is to try 
everything. 

5.2 How SETI@home works 

We decided that SETI@home would use SERENDIP's antenna. Like all previous radio SETI projects, 
SERENDIP analyzes its signal using a dedicated supercomputer at the telescope; it doesn't record the 
signal. For SETI@home, we needed to digitally record the signal and transport it to our computers at 
Berkeley. The network connection from Arecibo to the mainland is too slow. Instead, we record the 
data on digital tapes and mail them to Berkeley. The largest-capacity digital tape available in 1998 was 
the 35-GB digital linear tape (DLT). 

We had to decide what frequency range to record. Covering a wide range is good from a scientific 
point of view, but it means more tapes and more network bandwidth. We decided to record a 2.5 MHz 
frequency band. Using 1-bit samples, this gives a data rate of 5 Mbps, meaning that a tape fills up in 
about 16 hours. Like most radio SETI projects, we centered our band at the hydrogen line, 1.42 GHz. 
This is the resonant frequency of the hydrogen molecules that fill interstellar space. Since hydrogen is 
the most abundant element in the universe, we hope that if aliens are sending an intentional signal, 
they will use this frequency. Our 2.5 MHz band is wide enough to contain Doppler shifts (frequency 
shifts due to relative motion) corresponding to any likely velocity of a transmitter in our galaxy. 

SETI@home and SERENDIP are complementary: SETI@home looks at a narrower frequency range 
than SERENDIP (2.5 MHz versus 140 MHz) but does better signal analysis. SETI@home will record 
data for two years, during which time we'll cover Arecibo's visible band about four times. 

Every week about ten newly-recorded tapes arrive from Arecibo. These tapes are catalogued and 
stored. Next, the data is divided into work units, the pieces that are sent to clients. The data is divided 
along two dimensions: time and frequency. We decided that work units should be about 0.3 MB - 
large enough to keep a computer busy for a while, but small enough so that, even over a 28.8- Kbps 
modem, the transmission time is only a few minutes. We wanted each work unit to cover several times 
the beam period (the time it takes for the beam to move across a point in the sky, typically about 20 
seconds). To accomplish this, we divide the data into 256 frequency bands, each about 10 KHz wide. 
We then slice each band into pieces 256,000 samples long - about 107 seconds of recording time. 
Work units in a given band are overlapped in time by 20 seconds, ensuring that each beam period is 
contained entirely in at least one work unit. 

The task of splitting data tapes into work units is itself computationally intensive - enough so that we 
considered making it a distributed task unto itself. In the end we assembled a group of six 
workstations, each equipped with a DLT tape drive, running the splitter program full-time. 

Work units are stored on a computer with about 300 GB of disk space. Ideally, each work unit should 
remain in storage until a result for it has been returned. However, with 50 GB of data pouring in from 
Arecibo every day, and with some slow computers taking a week or more to complete a work unit, this 
can lead to a situation where we run out of space for new work units. Our current policy is to delete 
work units even if no result has been returned yet. 

A relational database keeps track of everything: tapes, work units, results, users, and so on. This 
database has grown to several hundred gigabytes, and we place a tremendous load on it. Although we 
have spread it across two large server machines, it is frequently a performance bottleneck. 
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The most visible component of SETI@home is the client program. For Windows and Macintosh users, 
this program is a screensaver: it only does its work when the computer isn't being used. The client sets 
up an Internet connection to the SETI@home data distribution server, obtains a work unit, and closes 
the connection. It then processes the data; this may take anywhere from an hour to several days, 
depending on the speed of the computer. When it's finished, the client reconnects to the server, sends 
back the results, and gets a new work unit. Every few minutes the program writes a "checkpoint" file 
to disk, so that it can pick up where it left off in case the user turns off the computer. 

The SETI@home data distribution server accepts connections from clients, collects their results, and 
sends them new data. The data server may send either new work units or previously sent work units 
that are still on disk. Many connections may arrive each second, and it may take several minutes (e.g., 
over a modem connection) to handle a request. So the server uses a large number of processes; in 
many respects it is like a web server such as Apache. The server system also uses several other 
programs, such as a "garbage collector" that removes work units for which results have been received. 

If a transmitter and/or receiver is accelerated (e.g., because of planetary rotation or orbit), a signal 
sent at a constant frequency will be heard as drifting in frequency. SETI@home uses a technique 
called "coherent integration" for detecting drifting signals. SETI@home examines about 50,000 drift 
rates, ranging from -50 to +50 Hz/sec. For each drift rate, the client program transforms the data to 
remove the drift and then looks for signals at constant frequency. This gives about 10 times better 
sensitivity than looking for drifting signals directly. 

For a given drift rate, the program uses 15 different FFT lengths, or frequency resolutions. A 
mathematical theorem called the Heisenberg Uncertainty Principle says that you can examine a signal 
with high frequency resolution or high time resolution, but not both. Since we don't know what 
characteristics an alien signal might have, we explore the full range of this trade-off. 

For a given drift rate and FFT length, the program computes the time-varying power spectrum of the 
signal. This produces an array whose dimensions are time and frequency, and whose value is the 
power (the SETI@home graphics show a 3-D color graph of this array). The power array is analyzed, 
looking for several types of signals: 

Spikes  

Power values much higher than the local average. 

Gaussians  

Ridges in the data, along the time axis, whose shape matches the bell-shaped curve (called a 
"Gaussian") of the telescope beam. 

Pulses  

Signals at a constant frequency that cycle on and off, with a Gaussian envelope. The pulse rate, 
phase, and duty cycle are not known in advance. We use an algorithm called Fast Folding, 
originally developed for finding pulsars, that efficiently covers a wide range of possibilities. 

Triplets  

Groups of three evenly spaced spikes at the same frequency. 

Signals that exceed predefined thresholds are returned to the server and added to the database. The 
client doesn't have a flashing light that goes off when an ET signal is found; this isn't possible. Man-
made " radio frequency interference" (RFI), coming from TV stations, cell phones, and car ignitions, 
leaks into the radio telescope and is often indistinguishable from an ET signal. RFI rejection is a hard 
problem for radio SETI. Our approach is to check our database of candidate signals for two or more 
signals at the same frequency and sky position, but at different times. Man-made interference changes 
from one month to the next, but (hopefully) alien signals will remain unchanged. 

So SETI@home's detection of an extraterrestrial signal, if it happens, will show up first on a computer 
screen at Berkeley, sometime towards the end of the project. But our database will have a complete 
record of the users whose PCs contributed to the detection, and they'll share in the credit. 
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SETI@home's web site (http://setiathome.berkeley.edu/) plays an important role in the project. At 
the site, people can download the client program, learn about SETI@home and radio SETI, and create 
and join teams. The web site also shows current statistics and "leader boards:" lists of users and 
teams, ordered by number of work units completed. These pages are generated by programs that 
obtain the latest information from the database. 

5.3 Trials and tribulations 

SETI@home has faced many difficulties and challenges. Server performance, for example, has been a 
major problem. As more and more people downloaded and ran the client, the stream of client requests 
grew from a trickle to a torrent. At first, our server system consisted of three pieces: an Informix 
database server, the data distribution server, and an Apache web server. These ran on three Sun 
workstations, which also served as our personal computers. 

In the first week the server system quickly was overwhelmed. Client connections were being turned 
away, resulting in irritating error messages being displayed to users, and hence a torrent of email. 

We scrambled to fix these problems by modifying the software. For example, we realized that much of 
the load on the database server was due to updating lots of accounting records (for countries, CPU 
types, teams, etc.) for each result received. We hastily revised the system to update the accounting 
records off-line, combining thousands of database writes into a single write. This offline system 
quickly fell behind, producing yet another wave of irate email, but at least the data distribution server 
now kept up. 

It quickly became clear that we needed more powerful server hardware. Sun Microsystems came to 
our rescue, and over the next year they donated several of their high-performance server machines. 
Even with these improvements, server performance continues to be an issue. Resources in general, 
especially funding and manpower, have been a problem. We've received funds from a variety of 
private donors and a grant from the University of California. This money has been enough to hire 
about three full-time employees. A project of similar magnitude in the private sector would probably 
employ 20 or 30 people. We've had to cut corners in many areas (for example, there is no customer 
support), and some tasks have fallen far behind schedule. 

Another problem area involved processor-specific optimizations. The SETI@home client is written in 
C++, and we compile it using standard compilers such as Microsoft VC++ and Gnu's gcc. 
Performance-conscious users disassembled the inner loops of the program and figured out that it was 
doing FFTs and that the code was non-optimal on many processors. For example, several variants of 
the x86 architecture, such as AMD's 3DNow, have instructions that can do FFTs faster. This led to 
demands from 3DNow enthusiasts that we release a version optimized for 3DNow. Similar requests 
came from Altivec, MIPS, and Alpha owners. 

We didn't have the manpower to maintain lots of processor-specific versions of the code. However, 
several people figured out how to replace the FFT routine at the heart of SETI@home with a faster 
routine. Some of them did this incorrectly, producing clients that returned incorrect results. 

Doctored versions of the program were just one of many security challenges. Most of the problems 
involved "credit cheating" by, for example, returning the same result file over and over. People also 
doctored their result files, making it appear that their computers had found a strong signal. It's not 
clear what motivated these activities - after all, there are no financial rewards for work done. We 
invested a large amount of effort in making a more secure version of the client, which uses 
cryptographic checksumming to detect tampering with result files and with the program itself. 

Some people feel that SETI@home should be an "open source" project, that we should distribute the 
source code and solicit the help of volunteer programmers to fix bugs and make enhancements. 
Indeed, we tried this for a short period and (perhaps due to our inexperience managing open source 
projects) were quickly inundated with code that, for various reasons, was unusable. We were also 
concerned that someone might substitute their own signal detection algorithm, announce a signal 
discovery, and destroy our project's credibility. When we launched the project as non-open source, a 
vocal group of critics created a web site calling for a boycott of SETI@home and attacking us for not 
being "free software." (Many people have interpreted this as meaning that we charge money for the 
client software, which is not the case.) 

http://setiathome.berkeley.edu/
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5.4 Human factors 

Early in 1998, we launched a SETI@home web site describing the idea and letting people sign up. It 
was a good time to start a project like SETI@home. Public interest in SETI had been stirred by the 
movie Contact, which was released in July 1997. This movie, based on a novel by Carl Sagan, describes 
radio SETI in reasonably accurate terms, and parts of it were filmed at Arecibo. 

It became clear that there would be no shortage of participants - over 400,000 people signed up at the 
web site. After a long period of development and testing, we released the client software on May 17, 
1999. In the first week after the launch, over 200,000 people downloaded and ran the client. This 
number has grown to 2,400,000 as of October 2000. People in 226 countries around the world run 
SETI@home. 50% of them are outside the U.S.; there are even 73 in Antarctica. 

People have helped SETI@home in every way imaginable. People upgrade their computers, or buy 
new computers, just to run SETI@home faster. In Europe, people run SETI@home in spite of 
expensive Internet connection setup charges. Volunteers translated the web site into about 30 foreign 
languages. A number of people have written programs that track their work in elaborate detail. 
Graphic artists sent us dozens of banner and link graphics; one of these was so attractive that it 
replaced Gedye's original planet-and-wave image (which he threw together in PowerPoint) as our 
logo. 

When it became clear that SETI@home was being widely embraced by the public, several questions 
arose. How was the word about SETI@home being spread? Why were people running SETI@home? 
Were they leaving their computers on longer, or buying faster computers, because of SETI@home? 

We've heard the following "viral marketing" scenario from many sources: one person in an office 
starts running SETI@home; people see the screensaver graphics, ask about it, hear the explanation of 
the project, and try it themselves. Soon the entire office is running it. 

In search of more quantitative information, we ran a poll on our web site, with questions involving 
demographics and attitudes about SETI and distributed computing. Some of the results were 
surprising; for example, only 7% of the respondents are female. We learned that our users are sober in 
their expectations: Only 10% think that a signal will be detected within the two-year duration of the 
project. 

5.5 The world's most powerful computer 

Scientific computations are often measured in units of floating-point operations - additions and 
multiplications of numbers with fractional parts, like 42.0 or 3.14159. A common unit of 
supercomputer speed is trillions of floating-point operations per second, or TFLOPS. 

The 1.0 TFLOPS barrier has been broken only in the last year or so. The fastest supercomputer is 
currently the ASCI White, built by IBM for the U.S. Department of Energy. It costs $110 million, 
weighs 106 tons, and has a peak performance of 12.3 TFLOPS. 

SETI@home is faster than ASCI White, at less than 1% of the cost. The FFT computations for each 
SETI@home work unit require 3.1 trillion floating-point operations. In a typical day, SETI@home 
clients process about 700,000 work units. This works out to over 20 TFLOPS. It has cost about 
$500,000, plus another $200,000 or so in donated hardware, to develop SETI@home and operate it 
for a year. Of course, the cost of the one million PCs running SETI@home greatly exceeds that of ASCI 
White - but these PCs were bought and paid for before SETI@home and would exist even without it. 

As of October 2000, SETI@home has received 200 million results, for a total of 4 × 1020 floating-point 
operations. We believe that this is the largest computation ever performed. And in terms of the 
potential of the Internet for scientific computing, SETI@home is the tip of the iceberg. There are 
projected to be one billion Internet-connected computers by 2003. If 10% of them participate in 
distributed computing projects, there will be enough computing power for 100 projects the size of 
SETI@home. 

To what range of problems is this power applicable? Certainly not all problems. It must be possible to 
factor the problem into a large number of pieces that can be handled in parallel, with few or no 
interdependencies between the pieces. The ratio between communication and computation must be 
fairly low: for example, it mustn't take an hour to transfer the data for one second of computing. 
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Surprisingly many problems meet these criteria. Some of them, such as mathematical problems, are of 
academic interest; others are in areas of commercial importance, such as genetic analysis. The range 
of feasible problems will increase along with communication speed and capacity; for example, it may 
soon be feasible to do computer graphics rendering for movies. 

5.6 The peer-to-peer paradigm 

In the brief history of computer technology, there have been several stages in the way computer 
systems are structured. The dominant paradigm today is called client/server: Information is 
concentrated in centrally located server computers and distributed through networks to client 
computers that act primarily as user interface devices. Client/server is a successor to the earlier 
desktop computing and mainframe paradigms. 

Today's typical personal computer has a very fast processor, lots of unused disk space, and the ability 
to send data on the Internet - the same capabilities required of server computers. The sheer quantity 
of Internet-connected computers suggests a new paradigm in which tasks currently handled by central 
servers (such as supercomputing and data serving) are spread across large numbers of personal 
computers. In effect, the personal computer acts as both client and server. This new paradigm has 
been dubbed peer-to-peer (P2P). SETI@home and Napster (a program, released about the same time 
as SETI@home, that allows people to share sound files over the Internet) are often cited as the first 
major examples of P2P systems. 

The huge number of computers participating in a P2P system can overcome the fact that individual 
computers may be only sporadically available (i.e., their owners may turn them off or disconnect them 
from the Internet). Software techniques such as data replication can combine a large number of slow, 
unreliable components into a fast, highly reliable system. 

The P2P paradigm has a human as well as a technical side - it shifts power, and therefore control, 
away from organizations and toward individuals. This might lead, for example, to a music distribution 
system that efficiently matches musicians and listeners, eliminating the dilution and homogenization 
of mass marketing. For scientific computing, it could contribute to a democratization of science: a 
research project that needs massive supercomputing will have to explain its research to the public and 
argue the merit of the research. This, I believe, is a worthwhile goal and will be a significant 
accomplishment for SETI@home even if no extraterrestrial signal is found. 
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Chapter 6. Jabber: Conversational Technologies 
Jeremie Miller, Jabber 

Conversations are an important part of our daily lives. For most people, in fact, they are the most 
important way to acquire and spread knowledge during a normal working day. 

Conversations provide a comfortable medium in which knowledge flows in both directions, and where 
contributors share an inherent context through their subjects and relationships. In addition to old 
forms of conversations - direct interaction and communication over the phone and in person - 
conversations are becoming an increasingly important part of the networked world. Witness the 
popularity of email, chat, and instant messaging, which enable users to increase the range and scope 
of their conversations to reach those that they may not have before. 

Still, little attention has been paid in recent years to the popular Internet channels that most naturally 
support conversations. Instead, most people see the Web as the driving force, and they view it as a 
content delivery platform rather than as a place for exchanges among equals. The dominance of the 
Web has come about because it has succeeded in becoming a fundamentally unifying technology that 
provides access to content in all forms and formats. However, it tends toward being a traditional one-
way broadcast medium, with the largest base of users being passive recipients of content. 

Conversations have a stubborn way of reemerging in any human activity, however. Recently, much of 
the excitement and buzz around the Web have centered on sites that use it as a conversational 
medium. These conversations take place within a particular web site (Slashdot, eBay, Amazon.com) or 
an application (Napster, AIM/ICQ, Netshow). 

And repeating the history of the pre-Web Internet, the new conversations sprout up in a disjointed, 
chaotic variety where the left hand doesn't know what the right hand is doing. The Web was a godsend 
for lowering the barrier to access information; it increased the value of all content by unifying the 
technologies that described and delivered that content. In the same way, Internet conversations stand 
to benefit significantly by the introduction of a common platform designed to support the rich 
dynamic and flexible nature of a conversation. 

Jabber could well become this platform. It's not a single application (although Jabber clients can be 
downloaded and used right now) nor even a protocol. Instead, using XML, Jabber serves as a glue that 
can tie together an unlimited range of applications that tie together people and services. Thus, it will 
support and encourage the growth of diverse conversational systems - and this moment in Internet 
history is a ripe one for such innovations. 

6.1 Conversations and peers 

So what really is a conversation? A quick search using Dictionary.com reveals the following: 

con·ver·sa·tion (kän-ver-'s -sh n) n. 1. A spoken exchange of thoughts, opinions, and 
feelings; a talk. 2. An informal discussion of a matter by representatives of 
governments, institutions, or organizations. 3. Computer Science. A real-time 
interaction with a computer. 

Essentially, a conversation is the rapid transfer of information between two or more parties. A 
conversation is usually characterized by three simple traits: it happens spontaneously, it is transient 
(lasting a short time), and it occurs among peers - that is, all sides are equal contributors. 

Let's turn then to the last trait. The term "peer" is defined by Dictionary.com: 

peer (pîr) n. 1. A person who has equal standing with another or others, as in rank, 
class, or age; children who are easily influenced by their peers. 
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The Internet expands this definition to include both people (P) and applications (A). Inherently, when 
peers exchange information, it is a conversation, since both sides are equal and are transiently 
exchanging information with each other. Person-to-person conversations (P-P) include email, chat, 
and message boards. But crucial conversations also include application-to-application (A-A) ones such 
as web services, IP routing, and UUCP. Least common, but most intriguing for future possibilities, are 
person-to-application (P-A) conversations such as smart agents and bots. 

It's interesting to take a step back and look at the existing conversations happening on the Internet 
today. How well does each technology map to the kind of natural conversational style we know from 
real life? Let's identify a few important metrics to help evaluate these traditional forms of Internet 
communication as conversational channels: 

Time  

The more rapidly messages can be created and delivered, and the more rapidly the recipient 
can respond, the more productive the conversation is for both participants. 

P-A  

A technology provides greater potential for future innovation if it inherently supports 
applications as well as people. 

Peers  

Participants in a conversation should be equal and the conversation bidirectional. 

Distributed  

Conversations may be constrained if there is a central form of control or authority. 

We can now evaluate a few technologies along some of the metrics just defined. 

Email comes to mind first as the most popular form of conversation now happening on the Internet. It 
is relatively fast, each message taking typically between 30 seconds and a few days to deliver, but 
certainly not real-time. It is predominantly P-P, with some P-A applications, but it is not a very 
natural use for A-A, because it provides no structure for content. Usenet is similar to email but is 
focused on group discussions. Both are innately distributed, and participants are peers. 

Internet Relay Chat (IRC) is a very popular conversational medium, primarily supporting real-time 
group discussions. As with email, it's primarily P-P with some P-A and very little A-A. Participants are 
peers. IRC is a distributed application within a network of groups, but it is restricted to that particular 
network - it does not extend beyond a single collection of groups. 

The traditional Web is real-time, but in a strict sense it does not support conversations, because the 
participants are not peers. The content may be produced by a person, but it has a natural flow in only 
one direction. Applications that support conversations can be built and made available on the Web, 
but they are pretty rigid - each conversation is specific and centralized to that application. 

The next-generation Web - also called the Two-Way Web by visionary developer Dave Winer - is 
represented by Microsoft's .NET; and it tries to solve the shortcomings in the evolution of the Web. It 
involves personal/fractional-horsepower (specialized) HTTP and DAV servers. These systems more 
naturally support peers and conversations than the traditional Web, but the conversations between 
these peers are still predominantly one-way (consumer or producer) and are often centralized based 
on the application or content. 

Traditional instant messaging services, such as AOL Instant Messenger, ICQ, Yahoo! Messenger, and 
MSN Messenger, come the closest to a real-world conversation yet, and that is the reason for their 
soaring popularity. They unfortunately focus primarily on P-P. The most significant drawback is that 
they are commercial and completely centralized around a single closed service. You must be part of 
the service to communicate with others on it. 

None of these existing technologies provides a common platform for Internet conversations as the 
Web does for content. Each is either limited in some important dimension or is specific to one 
application. 
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What could people do with an ideal, standardized conversational platform open to applications that 
can cross boundaries and access end user content? Here are some fanciful future possibilities: 

• I could ask a coworker's word processor or source editor what documents they are editing and 
discuss revisions. 

• My spell checker could ask the entire department to check the validity of unknown acronyms 
and project or employee names. 

• Instead of trying to combine the details of everybody's lives in a central address book or 
schedule, each application that needs to discover this information could ask other peers for it. 
Different conversations could be with different communities I define, such as my department, 
my family (for holiday card or birthday lists), or my friends (for event invitations). 

• My television set or video recorder could ask my friends what programs they are watching and 
use their recorders' extra space to save the programs in case I want to watch them too. With 
broadband, the television sets could have a conversation exchanging the actual video. 

• My games could exchange scores and playing levels with my friends' games and schedule 
times to play collaboratively (possibly invoking some of the other peers above to schedule 
conversations). I could also ask another game to deliver an important message or to join a 
game. 

• Businesses could reproduce some of the warmth and responsiveness of a phone conversation 
online, replacing the cold, faceless e-commerce store or customer support site that serves to 
drive us to our phones. The new sites could combine a rich context and content with the kind 
of conversational medium we all like to have. 

6.2 Evolving toward the ideal 

A look back at a bit of the World Wide Web's brief history proves quite interesting and enlightening. 
Back in its pioneering days, the Web was idealized as a revolutionary peer platform that would enable 
anyone on the Internet to become a publisher and editor. It empowered individuals to publish their 
unique collections of knowledge so that they were accessible by anyone. The vision was of a worldwide 
conversation where everyone could be both a voice and a resource. Here are a few quotes from Tim 
Berners-Lee to pique your interest: 

The World Wide Web was designed originally as an interactive world of shared 
information through which people could communicate with each other and with 
machines (http://www.w3.org/People/Berners-Lee/1996/ppf.html). 

I had (and still have) a dream that the web could be less of a television channel and 
more of an interactive sea of shared knowledge. I imagine it immersing us as a 
warm, friendly environment made of the things we and our friends have seen, 
heard, believe or have figured out. I would like it to bring our friends and colleagues 
closer, in that by working on this knowledge together we can come to better 
understandings (http://www.w3.org/Talks/9510_Bush/Talk.html). 

Although the Web fulfills this vision for many people, it has quickly evolved into a traditional 
consumer/producer relationship. If it had instead evolved as intended, we might be in a different 
world today. Instead of passively receiving content, we might be empowered individuals collectively 
producing content, publishing parts of ourselves online to our family and friends, and collectively 
editing the shared knowledge within our communities. 

So where did it go wrong in this respect? It could be argued that the problem was technological, in that 
the available tools were browsing-centric, and it wasn't easy to become an editor or publisher. A more 
thought-provoking answer might be that the problem was social, in that there was little demand for 
those empowering tools. Perhaps only a few people were ready to become individual publishers, and 
the rest of society wasn't ready to take that step. 

http://www.w3.org/People/Berners-Lee/1996/ppf.html
http://www.w3.org/Talks/9510_Bush/Talk.html
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The Web did not stagnate, however. It continued to evolve from a content distribution medium to an 
application distribution medium. Few users are publishing content, but a huge number of companies, 
groups, and talented individuals are building dynamic applications with new characteristics that reach 
beyond the original design of the Web. The most exciting of these exhibit characteristics of a peer 
medium and empower individuals to become producers as well as consumers. Examples include eBay, 
Slashdot, IMDB, and MP3.com. Although the applications provide a new medium for conversations 
between P-P peers, the mechanisms for doing so are application-specific. These new web-driven peer 
applications also have the drawbacks of being centralized, of not being real-time in the sense of a 
conversation, and of requiring their own form of internal addressing. 

So instead of the Web being used primarily as a peer publishing medium, it has become a client/server 
application medium upon which a breed of peer applications are being built. 

Elsewhere in the computer field we can find still other examples of systems that are incorporating 
greater interactivity. Existing desktop applications are evolving in that direction. They are becoming 
Internet-aware as they face competition from web sites, so that they can take advantage of the Internet 
in order to remain competitive and provide utility to the user. Thus, they are evolving from static, 
standalone, self-contained applications into dynamic, networked, componentized services. 

Microsoft, recognizing the importance of staying competitive with online services, is pushing the 
evolution of desktop applications with their .NET endeavor. By turning applications into networked 
services, .NET blurs the lines even further between the desktop and the Internet. 

The evolution of the Web and the desktop shows a definite trend towards applications becoming peers 
and having conversations with other applications, services, and people. The common language of 
conversations in both mediums is XML. As a way of providing a hierarchical structure and a 
meaningful context for data, XML is being adopted worldwide as the de facto language for moving this 
data between disparate applications. As Tim Bray puts it, "XML is the ASCII of the future." 

6.3 Jabber is created 

To fully realize the potential for unifying the conversations ranging throughout the Internet today, and 
enabling applications and services to run on top of a common platform, a community of developers 
worldwide has developed a set of technologies collectively known as Jabber (http://jabber.org/). 
Jabber was designed from the get-go for peer conversations, both P-P and particularly A-A, and for 
real-time as well as asynchronous/offline conversations. Jabber is fully distributed, while allowing a 
corporation or service to manage its own namespace. Its design is a response to the popularity of the 
closed IM services. We are trying to create a simple and manageable platform that offers the 
conversational traits described earlier in this chapter, traits that none of the existing systems come 
close to providing in full. 

Jabber began in early 1998 out of a desire to create a truly open, distributed platform for instant 
messaging and to break free from the centralized, commercial IM services. The design began with 
XML, which we exploited for its extensibility and for its ability to encapsulate data, which lowers the 
barrier to accessing it. The use of XML is pervasive across Jabber, allowing new protocols to be 
transparently implemented on top of a deployed network of servers and applications. XML is used for 
the native protocol, translated to other formats as necessary in order to communicate between Jabber 
applications and other messaging protocols. 

The Jabber project emerged from that early open collaboration of numerous individuals and 
companies worldwide. The name Jabber symbolizes its existence as numerous independent projects 
sharing common goals, each building a part of the overall architecture. These projects include: 

• A modular open source server written in C 

• Numerous open source and commercial clients for nearly every platform 

• Gateways to most existing IM services and Internet messaging protocols 

• Libraries for nearly every programming language 

• Specialized agents and services such as RSS and language translations 

http://jabber.org/


Peer to Peer: Harnessing the Power of Disruptive Technologies 

 page 55

Jabber is simply a set of common technologies that all of these projects agree on collaboratively when 
building tools for peer-to-peer systems. One important focus of Jabber is to empower conversations 
between both people and applications. 

The Jabber team hopes to create an open medium in which the user has choice and flexibility in the 
software used to manage conversations, instead of being hindered by the features provided by a 
closed, commercial service. We hope to accelerate the development of peer applications built on an 
open foundation, by enabling them to have intelligent conversations with other people and 
applications, and by providing a common underlying foundation that facilitates conversations and the 
accessibility of dynamic data from different services. 

6.3.1 The centrality of XML 

Fundamentally, Jabber enables software to have conversations in XML. When people use Jabber-
based software as a messaging platform to have conversations with other people, data exchanges use 
XML under the surface. Applications use Jabber as an XML storage and exchange service on behalf of 
their users. 

XML is not only the core format for encoding data in Jabber; it is also the protocol, the transport layer 
between peers, the storage format, and the internal data model within most applications. XML 
permeates every conversation. 

The Jabber architecture is also aware of XML namespaces, which permit different groups of people to 
define different sets of XML tags to represent data. Thus, using a namespace, one group (Dublin Core) 
has developed a set of tags for talking about the titles, authors, and other elements of a document. 
Another group might define a namespace for describing music. An instant messaging community 
using Jabber could combine the two namespaces to exchange information on books about music. 
Chapter 13, looks at the promise of Dublin Core and other namespaces for peer-to-peer applications. 

Here is a simple message using Jabber's XML format: 

<message to="hamlet@denmark" from="horatio@denmark" type="chat"> 
  <body>Here, sweet lord, at your service.</body> 
</message> 

 
And here's a hypothetical message with additional data in a namespace included: 

<message to="horatio@denmark" from="hamlet@denmark"> 
  <body>Angels and Ministers of Grace, defend us!</body> 
  <prayer xmlns="http://www.grace.org"> 
    <verse>...</verse> 
  </prayer> 
</message> 

 
By supporting namespaces, Jabber enables the inclusion of any XML data in any namespace anywhere 
within the conversation. This allows applications and services to include, intercept, and modify their 
own XML data at any point. Jabber is thus reduced to serving as a conduit between peers. Ironically, 
this lowly status provides the power that Jabber offers to Internet conversations. 

6.3.2 Pieces of the infrastructure 

While the goal of Jabber is to support other naming conventions and protocols, rather than to create 
brand-new ones, it depends on certain new concepts that require new types of syntax and binding 
technologies. These help create a common architecture. 

6.3.2.1 Identity 

Naming is at the heart of any system - each resource must have a unique identity. In Jabber, each 
resource is identified by a three-part name consisting of a user, a server, and a resource. 

The user is often an individual, and the server is a system that runs a Jabber-based application. In a 
name, the user and server are formatted just like email, user@server. This provides a general way to 
pass identification between people that is already well understood and socially accepted. Since the 
server resolves the username, the format also allows a user's identity to be managed by a service or 
corporation the way America Online and Napster manage their usernames.  

http://www.grace.org
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This is an important point for Internet services that are providing a public utility to consumers or 
companies, and especially for corporations that want to or are required to manage their identities very 
carefully. This also allows any user to use a third party, such as Dynamic DNS Network Services 
(http://dyndns.org/), for transient access to a permanent hostname so as not to be forced to rely on 
someone else's identity. 

The server component of the identity could also provide a community aspect to naming, as it may be 
shared between a small group of friends, a family, or a special interest group. The name then stands 
out and identifies the user's relationship as part of that community. 

The third part of the identity is the resource. As in a Unix filename or URL, the resource follows the 
server and is delimited by a slash, as in user@server/resource. Outside Jabber, the name is formatted 
like a combination of an email address and a web URL: jabber://user@server/resource/data. 

This third aspect of the identity, the resource, allows any Jabber application to provide public access 
to any data within itself, analogous to a web server providing access to any file it can serve. It also 
serves to identify different applications that might be operating for a single user. For example, my 
Jabber ID is jer@jabber.org, and when I'm online at home my client application might be identified as 
jer@jabber.org/desktop. 

6.3.2.2 Presence 

Presence is a concept fundamental to conversations, because it supports the arbitrary coming and 
going of participants. Technically, presence is simply a state that a user or application is in. 
Traditional states in instant messaging include online, offline, and somewhere in between (away, do 
not disturb, sleeping, etc.). The Jabber architecture automatically manages presence information for 
users and applications, distributing the information as needed while strictly protecting privacy. It is 
often this single characteristic that adds the most value to the peers in a conversation: just knowing 
that the other peer is available to have a conversation. 

Presence can go beyond simple online/offline state information. XML could be used to convey 
location, activity, and contextual (work/project) or application-specific data. Presence information 
itself provides an inherent context for P-P conversations, as well as status and location context for A-A 
conversations. 

Here is a simple presence example in XML: 

<presence from="hamlet@denmark"> 
  <show>away</show> 
  <status>Gone to England</status> 
</presence> 

 
6.3.2.3 Roster 

Another powerful feature of a traditional instant messaging service is the buddy list or roster. The 
importance of this list is often underestimated. It is a valuable part of the user's reality that they've 
stored and made available to their applications. 

In social terms, each user's roster is his or her community. It defines the participants in this 
community or relationships to larger communities. A roster is an actualization of personal trust and 
relationships with peers. Applications should use this list intelligently to share their functionality and 
filter conversations. 

The circle of trust in which a user has chosen to include his or her computer is a starting point for 
applications to locate other devices the user utilizes. It should also be used for choosing to collaborate 
with the resources available from trusted peers. This single, simple feature begins to open the door to 
the future possibilities mentioned near the beginning of this chapter, and it forms a step toward the 
warm, friendly environment envisioned by Tim Berners-Lee for the World Wide Web. 

http://dyndns.org/
jabber://user@server/resource/data
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6.3.3 Architecture 

The Jabber architecture closely resembles email. Peers are connected and route data in a chain until it 
reaches the desired recipient. A client is connected to its server only, and its server is responsible for 
negotiating the delivery and receipt of that client's data with other servers or networks using whatever 
protocol is available. All data within the architecture is processed immediately and passed on to the 
next peer, or stored offline for immediate delivery once that peer is available again. 

Peers can play traditional client and server roles within the Jabber architecture. Every server acts as a 
peer with respect to another server, using SRV DNS records to locate the actual server. Servers also 
use hostname dialback, independently contacting the sending server to validate incoming data. This 
prevents spoofing and helps ensure an overall more reliable and secure trust system. 

All clients are peers with respect to other clients, and, after establishing a conversation with their 
servers, are able to establish real-time conversations in XML with any other client. Clients can also 
include or embed a server internally so that they can operate in any role and provide additional 
flexibility and security. 

6.3.3.1 Protocols 

Along with support for all major instant messaging services (AIM, ICQ, MSN, Yahoo!), Jabber is also 
protocol agnostic. It uses a variety of applications between the endpoints of the conversations to 
transparently translate the XML data to and from another protocol. In its immediate applications, 
Jabber's translation capabilities let it support P-P relationships across traditional instant messaging 
services, IRC, and email. But the same flexibility also allows the construction of A-A bridges, such as 
transparent access to SIP, IMXP, and PAM applications, as well as access to Jabber's native presence 
and messaging functionality from those protocols. 

Finally, the protocol-agnostic design of Jabber allows it to participate in the exciting evolution of the 
Web mentioned earlier in Section 6.2: An evolution including such technologies as WebDAV, the use 
of XML over HTTP in the SOAP protocol, the RSS service that broadcasts information about available 
content, and other web services. We hope to set up revolving door access so that HTTP applications 
can access native Jabber functionality and so that Jabber applications can transparently access 
conversations happening over HTTP. 

6.3.3.2 Browsing 

A recent addition to Jabber is browsing, which is similar to the feature of the same name in the 
Network Neighborhood on Microsoft systems. Browsing lets users retrieve lists of peers from other 
peers and establish relationships between peers. It can be used to see what services might be available 
from a server, as well as what applications and paths of communication a user has made available to 
other users and their applications. 

Peers that a user might make available could include their normal instant messaging client (home, 
work, laptop, etc.), a pager transport, an offline inbox, a cell phone, a PDA, a TV, a scheduling 
application, a 3-D game, or a word processor. Additionally, XML information can be made browsable 
by a user or application, so that a user's vCard (verification information), public key, personal recipes, 
music list, bookmarks, or other XML information could be read by both people and applications. 
Browsing also allows people and applications to locate public peers, such as other messaging gateways 
mentioned earlier, web services, group chats, and agents (searching, translation, fortune, 
announcements, Eliza). 

6.3.3.3 Conversation management 

By centralizing and coordinating all of your conversations via a central identity, the software 
managing that identity for you may be empowered to act upon incoming conversations and 
intelligently filter them. This feature can be used to modify the content of a transmission or, even 
more often, to make decisions about what to do with a conversation when you're not available (store it 
offline, copy it to a pager, forward it to another account, etc.).  
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The same feature is also useful to manage the conversations between applications. For instance, if you 
maintain a personal peer and a work-scheduling peer, conversation management software can 
redirect incoming conversations to the correct agent based on the relationship to the sender stored in 
the roster. When you have all of your conversations managed by a common identity, they can be 
managed directly from one single point, enabling you to have more control over your conversations. 

6.4 Conclusion 

For more information about Jabber, or to become involved in the project (we openly welcome anyone 
interested), visit http://jabber.org/ or contact the core team at team@jabber.org. The 1.0 server was 
released in May of 2000 and rapidly evolved into a 1.2 release in October, due to popularity and 
demand. The development focus is now on helping the architecture mature and further developing 
many of the ideas mentioned here. The development team is collaborating to quickly realize the future 
possibilities described in this paper, so that they're not so "future" after all. 

http://jabber.org/
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Chapter 7. Mixmaster Remailers 
Adam Langley, Freenet 

Remailers are one of the older peer-to-peer technologies, but they have stood the test of time. Work 
done on them has helped or motivated much of the current work in the P2P field. Furthermore, they 
can be valuable to users who want to access many of the systems described in other chapters of this 
book by providing a reasonable degree of anonymity during this access, as explained in Chapter 15. 

Anonymous remailers allow people to send mail or post to newsgroups while hiding their identities. 
There are many reasons why people might want to act anonymously. Maybe they fear for their safety if 
they are linked to what they post (a concern of the authors of the Federalist Papers), maybe they think 
people will prejudge what they have to say, or maybe they just prefer to keep their public lives separate 
from their private lives. Whatever the reason, anonymous posting is quite difficult on the Internet. 
Every email has, in its headers, a list of every computer it passed through. Armed with that knowledge, 
an attacker could backtrack an email to you. If, however, you use a good remailer network, you make 
that task orders of magnitude harder. 

Mixmasters (also known as Type 2 remailers) are the most common type of remailer. The Type 1 
remailers are technically inferior and no longer used, though Mixmasters provide backward 
compatibility with them. The first stable, public release of Mixmaster was on May 3, 1995, by Lance 
Cottrell. The current version is 2.0.3, released on July 4, 1996. Don't be put off by the old release date; 
Mixmasters are still the best remailers. 

7.1 A simple example of remailers 

In order to demonstrate the basics of remailers, I'll start with the Type 1 system. The Type 2 system 
builds on it, adding some extra assurances that messages cannot be traced. 

If you wanted to mail something anonymously to alice@world.net, you could send the following 
message to a Mixmaster remailer: 

:: 
Anon-To: alice@world.net 
Latent-Time: +1:30 
 
I have some important information for you. I hope you understand 
why I've taken the precautions I have to keep my identity a secret. 

 
The remailer would hold this message for one and a half hours - to throw off track anyone who might 
be sniffing traffic and trying to match your incoming message to the remailer's outgoing message - and 
then strip all the headers except the subject and forward the mail to Alice. Alice would see that the 
mail had come from the remailer and would have no idea who actually sent it. 

However, this system does have problems. First, the remailer knows the destination and source of the 
message and could be compromised. Second, while your message is in transit to the remailer, anyone 
with privileged access to your local area network or an intervening mail hub can see that you are 
sending anonymous messages to Alice. Finally, Alice has no easy way to reply to you. 

In order to hide the fact that you are sending anonymous messages to Alice, you can encrypt the 
message to the remailer. This assumes that you know the public key of the remailer, and while these 
public keys are widely known, key management is always a weak spot. 

Encryption stops anyone who views the message in transit to the remailer from seeing the message 
and destination. (It should be noted that this doesn't hide the fact that you are sending anonymous 
messages, and even that snippet of information could land you in trouble in some places.)  
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To anyone who saw it, the message would look like this: 

:: 
Encrypted: PGP 
 
-----BEGIN PGP MESSAGE----- 
Version: 5 
Comment: The following is encrypted data 
 
mQGiBDmG74kRBACzWRoHjjbTrgGxp7275Caldaol72oWkPgj6xxHl2KNnDyvSyNi 
D+PDQUk0W86EXTr9fR8mi8V8yDzSuUQCthoD8UPf7Kk/HtR//lCGWRhoN81ynrsm 
FLVhGSR5n4lgf6oNUeIObKYYOWmXzjtKCkgAUtbsImOd8/5hm7zKCQl/LwCgveTW 
3bcbQ+A02SMlrxUZcx4qCfUD/1RRuZsdsJFsX9N/tBDLclqtepGQbtwJG02QSCMa 
ut8ls+WEytb+l/jqBP/qN9Rry3YUtuRXmjjiYFQ8l3JWA5kd4VxzKP6nBTZfggEW 
6BrGB8wDuhqTVL7SqivqrDdgB7S3WQIuZz17Vs1A1wzc37vDmHkw50wshTuvT0Pw 
-----END PGP MESSAGE----- 

 
This also solves the third problem of Alice needing to reply. You can give Alice a block, encrypted to 
the remailer, which contains your email address. If Alice then puts the encrypted block at the top of 
her reply and sends it to the same remailer, the remailer can decrypt it and forward it back to you. 
Alice can send messages to you without any way of knowing where they actually go. Thus, she has no 
way of tracing you. 

That leaves the second problem, namely that the remailer is the weak link. If Alice, or anyone else, can 
compromise it, the whole project falls apart. The solution is a simple extension of the basic idea. 
Instead of the remailer sending the message to Alice, it sends it to another remailer. That remailer 
then sends it to another, and so on, until the last remailer in the chain sends it to Alice. Thus, no 
remailer in the chain knows both the source and the destination of the message. 

7.2 Onion routing 

If any remailer reads the contents of your message, it will know who is receiving it at the end. The 
solution to this involves a series of encryptions that hide the information from remailers in the middle. 

Thus, when you send your message, you add an instruction to send it to alice@world.net, but you 
encrypt this recipient information using a key from the last remailer in the chain. So only this last 
remailer can determine her address. You then add instructions to send the mail to the last remailer 
and encrypt that information so that only the second-to-last remailer can read it, and so on. You thus 
form an "onion" of messages. Each remailer can remove a skin (one layer of encryption) and send the 
message to the next remailer, and no remailer knows anything more than what is under the skin they 
can remove. The layers are illustrated in Figure 7.1. 

Figure 7.1. An onion of encrypted messages 

 
 
You construct a reply block for Alice in the same fashion, an onion of encrypted messages. Alice, or 
anyone else, would then need to compromise every remailer in the chain in order to remove every skin 
of the onion and trace you. 

7.3 How Type 2 remailers differ from Type 1 remailers 

Type 2 remailers were designed to fix some of the problems with the Type 1 system above. Even 
though the Type 1 system seems very good, there are a number of weaknesses that a powerful attacker 
could use. Most of these weaknesses come from being able to do traffic analysis. 
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Traffic analysis means capturing the bits that cross a communications channel so as to see every 
packet that passes around a network - where it came from and where it's going. It is not necessary for 
the snooper to be able to read the contents of every packet; a lot of useful information can be gathered 
just from TCP and IP headers sent in the clear, or, as you will see, just from incidental characteristics 
such as the length of a message. 

In order to hide the connection between your incoming message and the Mixmaster's outgoing 
message, each message must appear to the attacker exactly the same as every other message in the 
system. The most basic difference between messages is their length. (Remember that the message is 
multiply encrypted, so the contents don't count.) If an attacker can see a certain sized message going 
into a remailer and then see a message of a very similar size going out again, he or she can follow the 
message. Even though the message changes size at each remailer because a skin is peeled off, this 
doesn't provide much protection. The change in size as the skins are removed is small and easily 
calculated. 

In order to make all messages the same size and frustrate traffic analysis, every Mixmaster message is 
the same length. This is done by breaking the message into pieces and adding padding to the last part 
to make it the same size. Each part is sent separately and has enough information for the last remailer 
in the chain to reassemble them. Only the last remailer in the chain knows what messages go together, 
because the information is only on the last skin. To every other remailer, each part looks like a 
different message. 

The next identifying mark that needs to be removed is the time. If a message enters a remailer and 
another leaves immediately after, an attacker knows where the message is going and can trace it. This 
is a more difficult problem to solve than it seems at first. Simply reordering messages, or delaying 
them for a time, doesn't work. If the number of other messages is low, or if the attacker can stop other 
messages from reaching the remailer, your message will still stand out. 

Mixmasters try to solve this problem by sending out a random selection of messages periodically, 
while always keeping a certain sized pool of messages. This makes it very difficult to match up 
outgoing messages with incoming ones, but still not impossible. However, if the traffic on the 
Mixmaster network is high enough, tracing the message over the whole chain of remailers becomes a 
massive challenge for an attacker. 

Finally, an attacker can capture your message and attempt to replay it through a remailer. Since your 
message has the encrypted address of the next remailer, by sending many copies of it an attacker can 
watch for an unusually large number of outgoing messages to a certain address. That address is likely 
to be the next remailer in the chain (or the final destination). The attacker can then repeat this for 
each remailer in the chain. 

To stop this, every skin has a random ID number. A remailer will not forward a message with the same 
ID number twice, so all the cloned messages will be dropped and no extra traffic will come out. An 
attacker cannot change the ID number of a message because it is encrypted along with everything else. 

7.4 General discussion 

Mixmasters have taken remailing to a fine art and are very good at it. They are an interesting study in 
peer-to-peer networks in which security is the absolute priority. Unlike many peer-to-peer networks, 
the Mixmaster user must have knowledge of the network in order to build the onion. This means that 
Mixmaster nodes are publicly known. It is possible to have a private remailer by simply not telling 
anyone about it, but this would leave the traffic level very low and thus reduce security. 

Unfortunately, Mixmasters themselves are often the target of attacks by people who, for one reason or 
another, disagree that people have a right to anonymity. It has been known for people to send death 
threats to themselves to try to get remailers shut down. The public nature of remailers makes such 
attacks easier. 

Life can be very hard for a Mixmaster administrator, because he has to explain to angry people why he 
can't give them the email address of someone who has used his remailer. This goes some way to 
explaining why there are only about 20-30 active Mixmasters and serves as a warning to other peer-
to-peer projects that provide anonymity. 
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Chapter 8. Gnutella 
Gene Kan, Gnutella and GoneSilent.com 

When forced to assume [self-government], we were novices in its science. Its 
principles and forms had entered little into our former education. We established, 
however, some, although not all its important principles. 

- Thomas Jefferson, 1824 

Liberty means responsibility. That is why most men dread it. 

- George Bernard Shaw 

Gnutella is among the first of many decentralized technologies that will reshape the Internet and 
reshape the way we think about network applications. The traditional knee-jerk reaction to create a 
hierarchical client/server system for any kind of networked application is being rethought. 
Decentralized technologies harbor many desirable qualities, and Gnutella is a point of proof that such 
technologies, while young, are viable. 

It is possible that Gnutella has walked the Earth before. Certainly many of the concepts it uses - even 
the unconventional ones - were pioneered long ago. It's tricky to determine what's brand-new and 
what's not, but this is for certain: Gnutella is the successful combination of many technologies and 
concepts at the right time. 

8.1 Gnutella in a gnutshell 

Gnutella is a citizen of two different worlds. In the popular consciousness, Gnutella is a peer-to-peer, 
techno-chic alternative to Napster, the popular Internet music swapping service. To those who look 
past the Napster association, Gnutella is a landscape-altering technology in and of itself. Gnutella 
turned every academically correct notion of computer science on its head and became the first large-
scale, fully decentralized system running on the wild and untamed public Internet. 

Roughly, Gnutella is an Internet potluck party. The virtual world's equivalents of biscuits and cheese 
are CPU power, network capacity, and disk space. Add a few MP3s and MPEGs, and the potluck 
becomes a kegger. 

On the technical side, Gnutella brings together a strange mix of CDMA, TCP/IP, and lossy message 
routing over a reliable connection. It's a really strange concept. 

Contrary to popular belief, Gnutella is not branded software. It's not like Microsoft Word. In fact, 
Gnutella is a language of communication, a protocol. Any software that speaks the language is 
Gnutella-compatible software. There are dozens of flavors of Gnutella compatibles these days, each 
catering to different users. Some run on Windows, others on Unix, and others are multi- platform 
Java or Perl. And as Gnutella's name implies, many of the authors of these Gnutella compatibles have 
contributed to the open source effort by making the source code of their projects freely available. 

8.2 A brief history 

Besides its impact on the future of intellectual property and network software technology, Gnutella 
has an interesting story, and it's worth spending a little time understanding how something this big 
happens with nobody writing any checks. 

8.2.1 Gnutella's first breath 

Gnutella was born sometime in early March 2000. Justin Frankel and Tom Pepper, working under the 
dot-com pen name of Gnullsoft, are Gnutella's inventors. Their last life-changing product, Winamp, 
was the beginning of a company called Nullsoft, which was purchased by America Online (AOL) in 
1999. Winamp was developed primarily to play digital music files. According to Tom Pepper, Gnutella 
was developed primarily to share recipes. 
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Gnutella was developed in just fourteen days by two guys without college degrees. It was released as 
an experiment. Unfortunately, executives at AOL were not amenable to improving the state of recipe 
sharing and squashed the nascent Gnutella just hours after its birth. What was supposed to be a GNU 
General Public License product when it matured to Version 1.0 was never allowed to grow beyond 
Version 0.56. Certainly if Gnutella were allowed to develop further under the hands of Frankel and 
Pepper, this chapter would look a lot different. 

At least Gnutella was born with a name. The neologism comes from ramming GNU and Nutella 
together at high speed. GNU is short for GNU's Not Unix, the geekish rallying cry of a new generation 
of software developers who enjoy giving free access to the source code of their products. Nutella is the 
hazelnut and chocolate spread produced by Italian confectioner Ferrero. It is typically used on dessert 
crepes and the like. I think it's great, and chocolate is my nemesis. 

Anyway, Gnutella was declared an "unauthorized freelance project" and put out to pasture like a car 
that goes a hundred miles on a gallon of gas. Or maybe like a technology that could eliminate the need 
for a physical music distribution network. Cast out like a technology that could close the books on a lot 
of old-world business models? Well, something like that, anyway. 

8.2.2 Open source to the rescue 

It was then, in Gnutella's darkest hour, that open source developers intervened. Open source 
developers did for Gnutella what the strange masked nomads did for George Clooney and friends in 
Three Kings. Bryan Mayland, with some divine intervention, reverse engineered Gnutella's 
communication language (also known as "Gnutella protocol") and posted his findings on Gnutella's 
hideout on the Web: gnutella.nerdherd.net. Ian Hall-Beyer and Nathan Moinvaziri created a sort of 
virtual water cooler for interested developers to gather around. Besides the protocol documentation, 
probably the most important bit of information on the Nerdherd web site was the link to Gnutella's 
Internet Relay Chat (IRC) channel, #gnutella. #gnutella had a major impact on Gnutella 
development, particularly when rapid response among developers was required. 

8.3 What makes Gnutella different? 

Gnutella has that simple elegance and minimalism that marks all great things. Like Maxwell's 
equations, Gnutella has no extraneous fluff. The large amount of Gnutella-compatible software 
available is testimony to that: Gnutella is small, easy, and accessible to even first-time programmers. 

Unlike the Internet that we are all familiar with, with all its at signs, dots, and slashes, Gnutella does 
not give meaningful and persistent identification to its nodes. In fact, the underlying structure of the 
Internet on which Gnutella lives is almost entirely hidden from the end user. In newer Gnutella 
software (Gnotella, Furi, and Toadnode, for example), the underlying Internet is completely hidden 
from view. It simply isn't necessary to type in a complex address to access information on the Gnutella 
system. Just type in a keyword and wait for the list of matching files to trickle in. 

Also unlike standard Internet applications such as email, Web, and FTP, which ride on the bare metal 
of the Internet, Gnutella creates an application-level network in which the infrastructure itself is 
constantly changing. Sure, the wires stay in the ground and the routers don't move from place to 
place, but which wires and which routers participate in the Gnutella network changes by the second. 
The Gnutella network comprises a dynamic virtual infrastructure built on a fixed physical 
infrastructure. 

What makes Gnutella different from a scientific perspective is that Gnutella does not rely on any 
central authority to organize the network or to broker transactions. With Gnutella, you need only 
connect to one arbitrary host. Any host. In the early days, discovery of an initial host was done by 
word of mouth. Now it is done automatically by a handful of "host caches." In any case, once you 
connect with one host, you're in. Your Gnutella node mingles with other Gnutella nodes, and pretty 
soon you're in the thick of things. 

Contrast that to Napster. Napster software is programmed to connect to http://www.napster.com/. At 
http://www.napster.com/ is a farm of large servers that broker your every search and mouse click. 
This is the traditional client/server model of computing. Don't get me wrong: client/server is great for 
many things. Among its positive qualities are easy-to-understand scalability and management. The 
downside is that by being the well-understood mainstay of network application science, client/server 
is boring, inflexible, and monolithic. Those are bad words in the Internet lexicon. 

http://www.napster.com/
http://www.napster.com/
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8.3.1 Gnutella works like the real world 

So far, we know that Gnutella is an Internet potluck. We know it's impossible to stop. But how does it 
actually work all this magic? 

In its communication, it's like finding the sushi tray at a cocktail party. The following is a loose 
description of the interaction on the Gnutella network. 

8.3.1.1 A Gnutella cocktail party 

The concepts introduced in this example, primarily the idea that a request is repeated by a host to 
every other host known by that host, is critical to understanding how Gnutella operates. In any case, 
you can see that Gnutella's communication concepts closely reflect those of the real world: 

Cocktail party Gnutella 

You enter at the foyer and say hello to the 
closest person. 

You connect to a Gnutella host and issue a PING 
message. 

Shortly, your friends see you and come to 
say hello. 

Your PING message is broadcast to the Gnutella hosts in 
your immediate vicinity. When they receive your PING, 
they respond with a PONG, essentially saying, "Hello, 

pleased to meet you." 

You would like to find the tray of sushi, so 
you ask your nearby friends. 

You would like to find the recipe for strawberry rhubarb 
pie, so you ask the Gnutella nodes you've encountered. 

None of your drunken friends seem to 
know where the sushi is, but they ask the 
people standing nearby. Those people in 

turn ask the people near them, and so on, 
until the request makes its way around the 

room. 

One of the Gnutella nodes you're connected to has a 
recipe for strawberry rhubarb pie and lets you know. 

Just in case others have a better recipe, your request is 
passed on to other hosts, which repeat the question to all 

hosts known to them. Eventually the entire network is 
canvassed. 

A handful of partygoers a few meters away 
have the tray. They pass back the 

knowledge of its location by word of 
mouth. 

You get several replies, or "hits," routed back to you. 

You walk over to the keepers of the tray 
and partake of their sushi. 

There are dozens of recipes to choose from. You double-
click on one and a request is issued to download the 

recipe from the Gnutella node that has it. 

 



Peer to Peer: Harnessing the Power of Disruptive Technologies 

 page 65

8.3.1.2 A client/server cocktail party 

In contrast, centralized systems don't make much sense in the real world. Napster is a good example 
of a client/server system, so let's look at how things would be if there were a real-life cocktail party 
that mimicked Napster's system: 

Cocktail party Napster 

You enter at the foyer and the host 
of the party greets you. Around 

him are clustered thirty-five 
million of his closest friends. 

You connect to Napster and upload a list of files that you are 
sharing. The file list is indexed and stored in the memory of the 

party host: the central server. 

Your only friend at this party is the 
host. 

The Napster server says, "File list successfully received." 

You would like to find the tray of 
sushi, so you find your way back to 

the foyer and ask the host where 
exactly the tray has gone. 

You would like to find the recipe for strawberry rhubarb pie. So 
you type "rhubarb" into the search box, and the request is 

delivered to the central server. 

The host says, "Oh, yes. It's over 
there." 

You get several replies, or "hits," from the Napster server that 
match your request. 

You hold the tray and choose your 
favorite sushi. 

You decide which MP3 file you want to download and double-
click. A request is issued to the Napster server for the file. The 

Napster server determines which file you desire and whose 
computer it is on, and brokers a download for you. Soon the 

download begins. 

 
As you can see, the idea of a central authority brokering all interaction is very foreign to us. When I 
look at what computer science has espoused for decades in terms of real-world interactions, I wonder 
how we got so far off track. Computer science has defined a feudal system of servers and slaves, but 
technologies like Gnutella are turning that around at long last. 

8.3.2 Client/server means control, and control means responsibility 

As it relates to Napster, the server is at once a place to plant a business model and the mail slot for a 
summons. If Napster threw the switch for Napster subscriptions, they could force everyone to pay to 
use their service. And if the RIAA (Recording Industry Association of America) wins its lawsuit, 
Napster just might have to throw the switch the other way, stranding thirty-five million music 
swappers. We'll see how that suit goes, but whether or not Napster wins in United States Federal 
Court, it will still face suits in countless municipalities and overseas. It's the Internet equivalent of 
tobacco: the lawsuits will follow Napster like so many cartoon rain clouds. 

Gnutella, on the other hand, is largely free of these burdens. In a decentralized world, it's tough to 
point fingers. No one entity is responsible for the operation of the Gnutella network. Any number of 
warrants, writs, and summons can be executed, and Gnutella will still be around to help you find 
recipes for strawberry rhubarb pie and "Oops, I Did It Again" MP3s. 

Thomas Hale, CEO of WiredPlanet, said, "The only way to stop Gnutella is to turn off the Internet." 
Well, maybe it's not the only way, but it's really hard to think of a way to eliminate every single cell of 
Gnutella users, which is truly the only way to wipe Gnutella off the planet. 
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8.3.3 The client is the server is the network 

Standard network applications comprise three discrete modules. There is the server, which is where 
you deposit all the intelligence - the equivalent of the television studio. There is the client, which 
typically renders the result of some action on the server for viewing by the user - the equivalent of the 
television. And there is the network, which is the conduit that connects the client and the server - the 
equivalent of the airwaves. 

Gnutella blends all that into one. The client is the server is the network. The client and server are one, 
of course. That's mainly a function of simplification. There could be two processes, one to serve files 
and another to download files. But it's just easier to make those two applications one; easier for users 
and no more difficult for developers. 

The interesting thing is that the network itself is embedded in each Gnutella node. Gnutella is an 
internet built on top of the Internet, entirely in software. The Gnutella network expands as more 
nodes connect to the network, and, likewise, it does not exist if no users run Gnutella nodes. This is 
effectively a software-based network infrastructure that comes and goes with its users. Instead of 
having specialized routers and switches and hubs that enable communication, Gnutella marries all 
those things into the node itself, ensuring that the communication facilities increase with demand. 
Gnutella makes the network's users the network's operators. 

8.3.4 Distributed intelligence 

The underlying notion that sets Gnutella apart from all other systems is that it is a system of 
distributed intelligence. The queries that are issued on the network are requests for a response, any 
kind of response. 

Suppose you query the Gnutella network for "strawberry rhubarb pie." You expect a few results that let 
you download a recipe. That's what we expect from today's Gnutella system, but it actually doesn't 
capture the unique properties Gnutella offers. Remember, Gnutella is a distributed, real-time 
information retrieval system wherein your query is disseminated across the network in its raw form. 
That means that every node that receives your query can interpret your query however it wants and 
respond however it wants, in free form. In fact, Gnutella file-sharing software does just that. 

Each flavor of Gnutella software interprets the search queries differently. Some Gnutella software 
looks inside the files you are sharing. Others look only at the filename. Others look at the names of the 
parent directories in which the file is contained. Some Gnutella software interprets multiword queries 
as conjunctions, while others look at multiword queries as disjunctions. Even the results returned by 
Gnutella file-sharing software are wildly different. Some return the full path of the shared file. Others 
return only the name of the file. Yet others return a short description extracted from the file. 
Advertisers and spammers took advantage of this by returning URLs to web sites completely unrelated 
to the search. Creative and annoying, yet demonstrative of Gnutella's power to aggregate a collective 
intelligence from distributed sources. 

To prove the point once and for all that Gnutella could be used to all kinds of unimagined benefit, 
Yaroslav Faybishenko, Spencer Kimball, Tracy Scott, and I developed a prototype search engine 
powered by Gnutella that we called InfraSearch. The idea was that we could demonstrate Gnutella's 
broad power by building a search engine that accessed data in a nontraditional way while using 
nothing but pure Gnutella protocol. At the time, InfraSearch was conceived solely to give meat to what 
many Gnutella insiders were unable to successfully convey to journalists interested in Gnutella: that 
Gnutella reached beyond simple file swapping. To illustrate, I'll use the examples we used in our 
prototype. 

InfraSearch was accessed through the World Wide Web using a standard web browser. Its interface 
was familiar to anyone who had used a traditional web search engine. What happened with the query 
was all Gnutella. When you typed a search query into InfraSearch, however, the query was not 
answered by looking in a database of keywords and HTML files. Instead, the query was broadcast on a 
private Gnutella network comprising a few nodes. The nodes themselves were a hodgepodge of 
variegated data sources. A short list of the notables: Online Photo Lab's image database, a calculator, a 
proxy for Yahoo! Finance, and an archive of MoreOver.com's news headlines. 
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When you typed in "MSFT" the query would be broadcast to all the nodes. Each node would evaluate 
the query in relation to its knowledge base and respond only if the node had relevant information to 
share. Typically, that would mean that the Yahoo! Finance node would return a result stating 
Microsoft's current stock price and the MoreOver.com node would return a list of news stories 
mentioning Microsoft. The results were just arbitrary snippets of HTML. The HTML fragments would 
be stitched together by a Gnutella node, which also doubled as a web server, and forwarded on to the 
web browser. Figure 8.1 shows the results of a search for "rose." 

Figure 8.1. Results displayed from Gnutella search 

 
 
The real power of this paradigm showed itself when one entered an algebraic expression into the 
search box, say, "1+1*3" for instance. The query would be disseminated and most nodes would realize 
that they had nothing intelligent to say about such a strange question. All except the calculator node. 
The calculator was a GNU bc calculator hacked to make it speak Gnutella protocol. Every time the 
calculator received a query, it parsed the text to see if it was a valid algebraic expression. If it was not, 
then the calculator remained silent. If the query was an algebraic expression, however, the calculator 
evaluated the expression and returned the result. In this case, "1+1*3 = 4" would be the result.[1] 

[1] Some creative users would search on ridiculously complex algebraic expressions, causing the calculator node 
to become overburdened. Gnutella would then simply discard further traffic to the calculator node until it 
recovered from figuring out what "987912837419847197987971234*1234183743748845765" was. The other 
nodes continued on unaffected. 

One potential application of this is to solve the dynamic page problem on the World Wide Web. 
Instead of trying to spider those pages as web search crawlers currently do, it would be possible to 
access the information databases directly and construct a response based upon data available at the 
time the query was issued. Possibilities that reach even further are within sight. The query could 
become structured or parameterized, making a huge body of data available through what effectively 
becomes a unified query interface. The possibilities for something like that in the enterprise are 
enormous. When peer-to-peer systems take off, accessing data across heterogeneous information 
stores will become a problem that Gnutella has already demonstrated it can solve. 
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What we realized is that this aggregation of intelligence maps very closely to the real world. When you 
ask a question of two different people, you expect two different answers. Asking a question about cars 
of a mechanic and a toy shop clerk would expectedly yield two very different answers. Yet both are 
valid, and each reflects a different sort of intelligence in relation to the topic. Traditional search 
technologies, however, apply only one intelligence to the body of data they search. Distributed search 
technologies such as Gnutella allow the personality of each information provider and software 
developer to show through undiluted. 

8.3.5 Different from Freenet 

Oftentimes Gnutella and Freenet are lumped together as decentralized alternatives to Napster. True, 
Gnutella and Freenet are decentralized. And it's true that one can share MP3 files using either 
Gnutella or Freenet. The technical similarities extend further in various ways, but the philosophical 
division between Gnutella and Freenet picks up right about here. 

Freenet can really be described as a bandwidth- and disk space-sharing concept with the goal of 
promoting free speech. Gnutella is a searching and discovery network that promotes free 
interpretation and response to queries. With Freenet, one allocates a certain amount of one's hard 
drive to the task of carrying files which are in the Freenet. One shares bandwidth with others to 
facilitate the transport of files to their optimal localities in the Freenet. In a sense, Freenet creates a 
very large and geographically distributed hard drive with anonymous access. The network is optimized 
for computerized access to those files rather than human interaction. Each file is assigned a complex 
unique identification that is obscure in its interpretation. The only way to search for files is by 
searching via that unique identification code. 

In contrast, Gnutella is a distributed searching system with obvious applications for humans and less 
obvious applications for automatons. Each Gnutella node is free to interpret the query as it wants, 
allowing Gnutella nodes to give hits in the form of filenames, advertising messages, URLs, graphics, 
and other arbitrary content. There is no such flexibility in the Freenet system. The Japanese Gnutella 
project, http://jnutella.org, is deploying Gnutella on i-Mode mobile phones, where the results of a 
search are tailored to mobile phone interfaces. Freenet's highly regimented system of file location 
based upon unique identification is about cooperative distribution of files. There is nothing wrong 
with this. It's just a different approach with different effects which I'll leave to Freenet's authors to 
explain. 

8.4 Gnutella's communication system 

With the basic understanding that Gnutella works the way real-world interpersonal communication 
works, let's take a look at the concepts that make it all possible in the virtual world. Many of these 
concepts are borrowed from other technologies, but their combination into one system makes for 
interesting results and traffic jams. 

8.4.1 Message-based, application-level routing 

Traditional application-level networks are circuit-based, while Gnutella is message-based. There is no 
idea of a persistent "connection," or circuit, between any two arbitrary hosts on the Gnutella network. 
They are both on the network but not directly connected to each other, and not even indirectly 
connected to each other in any predictable or stable fashion. Instead of forcing the determinism 
provided by circuit-based routing networks, messages are relayed by a computerized bucket-brigade 
which forms the Gnutella network. Each bucket is a message, and each brigadier is a host. The 
messages are handed from host to host willy-nilly, giving the network a unique interconnected and 
redundant topology. 

8.4.2 TCP broadcast 

Another unconventional approach that Gnutella uses is a broadcast communication model over 
unicast TCP. Contrast this to a traditional system such as Napster, where communication is carefully 
regulated to minimize traffic to its absolute lowest levels, and even then to only one or two concerned 
parties. Traditional networking models are highly regimented and about as natural as formal gardens. 

http://jnutella.org
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The broadcast mechanism is extremely interesting, because it maps very closely to our everyday lives. 
Suppose you are standing at a bus stop and you ask a fellow when the next bus is to arrive: "Oi, mate! 
When's the next bus?" He may not know, but someone nearby who has heard you will hopefully chime 
in with the desired information. That is the strength behind Gnutella: it works like the real world. 

One of the first questions I asked upon learning of Gnutella's TCP-based broadcast was, "Why not 
UDP?" The simple answer is that UDP is a pain. It doesn't play nicely with most firewall 
configurations and is tricky to code. Broadcasting on TCP is simple, and developers don't ask 
questions about how to assess "connection" status. Let's not even start on IP multicast. 

8.4.3 Message broadcasting 

Combining the two concepts of message-based routing and broadcast gives us what I'll term message 
broadcasting. Message broadcasting is perfect for situations where more than one network participant 
can provide a valid response to a request. This same sort of thing happens all the time. Auctions, for 
example, are an example of message broadcasting. The auctioneer asks for bids, and one person's bid 
is just as good as another's. 

Gnutella's broadcasting mechanism elegantly avoids continuous echoing. Messages are assigned 
unique identifiers (128-bit unique identifiers, or UUIDs, as specified by Leach and Salz's 1997 UUIDs 
and GUIDs Informational Draft to the IETF). With millions of Gnutella nodes running around, it is 
probably worth answering the question, "How unique is a UUID?" Leach and Salz assert uniqueness 
until 3400 A.D. using their algorithm. Anyway, it's close enough that even if there were one or two 
duplicated UUIDs along the way nobody would notice. 

Every time a message is delivered or originated, the UUID of the message is memorized by the host it 
passes through. If there are loops in the network then it is possible that a host could receive the same 
message twice. Normally, the host would be obligated to rebroadcast the message just like any other 
that it received. However, if the same message is received again at a later time (it will have the same 
UUID), it is not retransmitted. This explicitly prevents wasting network resources by sending a query 
to hosts that have already seen it. 

Another interesting idea Gnutella implements is the idea of decay. Each message has with it a TTL[2] 
number, or time-to-live. Typically, a query starts life with a TTL of 7. When it passes from host to host, 
the TTL is decremented. When the TTL reaches 0, the request has lived long enough and is not 
retransmitted again. The effect of this is to make a Gnutella request fan out from its originating source 
like ripples on a pond. Eventually the ripples die out. 

[2] TTL is not unique to Gnutella. It is present in IP, where it is used in a similar manner. 

8.4.4 Dynamic routing 

Message broadcasting is useful for the query, but for the response, it makes more sense to route rather 
than to broadcast. Gnutella's broadcast mechanism allows a query to reach a large number of potential 
respondents. Along the way, the UUIDs that identify a message are memorized by the hosts it passes 
through. When Host A responds to a query, it looks in its memory and determines which host sent the 
query (Host B). It then responds with a reply message containing the same UUID as the request 
message. Host B receives the reply and looks in its memory to see which host sent the original request 
(Host C). And on down the line until we reach Host X, which remembers that it actually originated the 
query. The buck stops there, and Host X does something intelligent with the reply, like display it on 
the screen for the user to click on (see Figure 8.2). 

The idea to create an ephemeral route as the result of a broadcast for discovery is not necessarily 
novel, but it is interesting. Remember, a message is identified only by its UUID. It is not associated 
with its originator's IP address or anything of the sort, so without the UUID-based routes, there is no 
way for a reply to be delivered to the node that made the request. 

This sort of dynamic routing is among the things that make Gnutella the intriguing technology that it 
is. Without it, there would need to be some kind of fixed Gnutella infrastructure. With dynamic 
routing, the infrastructure comes along with the nodes that join the network, in real time. A node 
brings with it some network capacity, which is instantly integrated into the routing fabric of the 
network at large. 
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Figure 8.2. Results displayed from a Gnutella query 

 
 
 When a node leaves the network, it does not leave the network at large in shambles, as is typical for 
the Internet. The nodes connected to the departing node simply clean up their memories to forget the 
departed node, and things continue without so much as a hiccup. Over time, the network adapts its 
shape to long-lived nodes, but even if the longest-lived, highest-capacity node were to disappear, there 
would be no lasting adverse effects. 

8.4.5 Lossy transmission over reliable TCP 

A further unconventional notion that is core to Gnutella's communication mechanisms is that the TCP 
connections that underlie the Gnutella network are not to be viewed as the totally reliable transports 
they are typically seen as. With Gnutella, when traffic rises beyond the capacity that a particular 
connection can cope with, the excess traffic is simply forgotten. It is not carefully buffered and 
preserved for future transmission as is typically done. Traffic isn't coddled on Gnutella. It's treated as 
the network baggage that it is. 

The notion of using a reliable transport to unreliably deliver data is notable. In this case, it helps to 
preserve the near-real-time nature of the Gnutella network by preventing an overlong traffic backlog. 
It also creates an interesting problem wherein low-speed Gnutella nodes are at a significant 
disadvantage when they connect to high-speed Gnutella nodes. When that happens, it's like drinking 
from a fire hose, and much of the data is lost before it is delivered. 

On the positive side, loss rates provide a simple metric for relative capacity. If the loss rate is 
consistently high, then it's a clear signal to find a different hose to drink from. 

8.5 Organizing Gnutella 

One of the ways Gnutella software copes with constantly changing infrastructure is by creating an ad 
hoc backbone. There is a large disparity in the speeds of Internet connections. Some users have 56-
Kbps modems, and others have, say, T3 lines. The goal is that, over time, the T3-connected nodes 
migrate toward the center of the network and carry the bulk of the traffic, while the 56-Kbps nodes 
simultaneously move out toward the fringes of the network, where they will not carry as much of the 
traffic. 
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In network terms, the placement of a node on the network (in the middle or on the fringes) isn't 
determined geographically. It's determined in relation to the topology of the connections the node 
makes. So a high-speed node would end up being connected to potentially hundreds of other high-
speed Gnutella nodes, acting as a huge hub, while a low-speed node would hopefully be connected to 
only a few other low-capacity nodes. 

Over time this would lead the Gnutella network to have a high concentration of high-speed nodes in 
the middle of the network, surrounded by rings of nodes with progressively decreasing capacities. 

8.5.1 Placing nodes on the network 

When a Gnutella node connects to the network, it just sort of parachutes in blindly. It lands where it 
lands. How quickly it is able to become a productive member of Gnutella society is determined by the 
efficacy of its network analysis algorithms. In the same way that at a cocktail party you want to 
participate in conversations that interest you, that aren't too dull and aren't too deep, a Gnutella node 
wants to quickly determine which nodes to disconnect from and which nodes to maintain connections 
to, so that it isn't overwhelmed and isn't too bored. 

It is unclear how much of this logic has been implemented in today's popular Gnutella client software 
(Gnotella, Furi, Toadnode, and Gnutella 0.56), but this is something that Gnutella developers have 
slowly educated themselves about over time. Early Gnutella software would obstinately maintain 
connections to nodes in spite of huge disparities in carrying capacity. The effect was that modem 
nodes acted as black holes into which packets were sent but from which nothing ever emerged. 

One of the key things that we[3] did to serve the surges of users and new client software was to run 
high-speed nodes that were very aggressive in disconnecting nodes which were obviously bandwidth 
disadvantaged. After a short time, the only active connections were to nodes running on acceptably 
high-speed links. This kind of feedback system created an effective backbone that was captured in 
numerous early network maps. A portion of one is shown in Figure 8.3. 

[3] Bob Schmidt, Ian Hall-Beyer, Nathan Moinvaziri, Tom Camarda, and countless others came to the rescue by 
running software which made the network work in its times of need. This software ranged from standard 
Gnutella software to host caches to so-called Mr. Clean nodes, which aggressively removed binary detritus from 
the network. 

Figure 8.3. Snapshot of effective Gnutella network structure 

 

 
8.6 Gnutella's analogues 

The first thing that technologists say when they think about how Gnutella works is, "It can't possibly 
scale." But that is simply not the case. Gnutella is an unconventional system and as such requires 
unconventional metrics. Millions of users may be using Gnutella simultaneously, but they will not all 
be visible to one another. That is the basic nature of a public, purely peer-to-peer network. Because 
there is no way to guarantee the quality of service throughout the network, it is impossible to 
guarantee that every node on the network can be reached by every other node on the network. In spite 
of that, Gnutella has many existing analogues. 

Of all the analogues that exist, the most interesting two are cellular telephony and Ethernet. 
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8.6.1 The Gnutella horizon 

In Gnutella, there is a concept of a horizon. This is simply a restatement of the effect the TTL has on 
how far a packet can go before it dies, the attenuation of ripples on a pond. Gnutella's standard 
horizon is seven hops. That means that from where you stand, you can see out seven hops. How far is 
that? Typically, a seven-hop radius combined with network conditions means about ten thousand 
nodes are within sight. 

When Gnutella was younger, and the pond analogy hadn't yet crossed my mind, I explained this effect 
as a horizon, because it was just like what happens when you are at the beach and the world seems to 
disappear after some distance (approximately five kilometers if you're two meters tall). Of course, that 
is due to the curvature of the earth, but it seemed like a pretty good analogy. 

A slightly better one is what happens in a mob. Think first day of school at UC Berkeley, or the annual 
Love Parade in Germany. You stand there in the middle of the mob, and you can only see for a short 
distance around you. It's obvious that there are countless more people outside your immediate vision, 
but you can't tell how many. You don't even really know where you are in relation to the crowd, but 
you're certainly in the thick of it. That's Gnutella. 

Each node can "see" a certain distance in all directions, and beyond that is a great unknown. Each 
node is situated slightly differently in the network and as a result sees a slightly different network. 
Over time, as nodes come and go and the network shifts and morphs, your node gets to see many 
different nodes as the network undulates around it. If you've used Gnutella, you've seen this happen. 
Initially, the host count increases very rapidly, but after a minute or two, it stabilizes and increases 
much more slowly than it did at the outset. That is because in the beginning your node discovers the 
network immediately surrounding it: the network it can see. Once that is done, your node discovers 
only the nodes that migrate through its field of view. 

8.6.2 Cellular telephony and the Gnutella network 

In the technological world, this concept is mirrored exactly by cellular telephony cell sites (cellular 
telephony towers). Each site has a predetermined effective radius. When a caller is outside that radius, 
his telephone cannot reach the site and must use another if a nearer one is available. And once the 
caller is outside the operating radius, the site cannot see the caller's telephone either. The effect is the 
irksome but familiar "no coverage" message on your phone. 

Cellular network operators situate cell sites carefully to ensure that cell sites overlap one another to 
prevent no-coverage zones and dropped calls. A real coverage map looks like a Venn diagram gone 
mad. This is, in fact, a very close analogue of the Gnutella network. Each node is like a cell site in the 
sense that it has a limited coverage radius, and each node's coverage area overlaps with that of the 
nodes adjacent to it. The key to making cellular telephony systems scale is having enough cells and 
enough infrastructure to connect the cells. It's a similar story with Gnutella. 

Cell sites are not all that one needs to build a successful cellular network. Behind all those cell towers 
is a complex high-bandwidth packet switching system, also much like Gnutella. In the cellular world, 
this network is very carefully thought out and is a piece of physical infrastructure. As with everything 
else, the infrastructure comes and goes in the Gnutella network, and things are constantly changing 
shape. 

So then the goal is to find a way to create cells that are joined by a high-speed backbone. This is 
entirely what would happen in the early Gnutella network. Gnutella nodes would gather around a local 
hub, forming a cluster. There were numerous clusters interconnected by high-speed lines. All this 
happened in an unplanned and dynamic way. 

8.6.3 Ethernet 

Gnutella is also similar in function to Ethernet. In fact, Ethernet is a broadcast network where each 
message has a unique identifier. Like Gnutella, its scalability metrics are unconventional. The 
question most people ask about Gnutella is, "How many users are on Gnutella?" The answer is 
complicated. 
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Millions of users have Gnutella on their computers. One node can only see about ten thousand others 
from where it stands in the network. So what is the answer? Ten thousand, or several million? 

We could ask the same question about Ethernet, and we'd get the same duality in answer. Hundreds of 
millions of computers have Ethernet, yet only a few dozen can share an Ethernet "segment" before 
causing network gridlock. The solution for Ethernet was to develop specialized hardware in the form 
of Ethernet bridges, switches, and routers. With that hardware, it became possible to squeeze all those 
millions of computers onto the same network: the Internet. 

8.6.4 Cultivating the Gnutella network 

Similar development is underway for Gnutella. Fundamentally, each Gnutella node can contain 
enough logic to make the Gnutella network grow immensely. Broadening the size of a Gnutella cell, or 
segment, is only a matter of reducing the network traffic. A minor reduction by each node can 
translate into a huge reduction in traffic over all nodes. That is what happens with distributed 
systems: a minor change can have a huge effect, once multiplied over the number of nodes. 

There is at least one effort underway to create a specialized Gnutella node which outwardly mimics a 
standard Gnutella node but inwardly operates in a dramatically different manner. It is known as 
Reflector and is being developed by a company called Clip2. The Reflector is effectively a miniature 
Napster server. It maintains an index of the files stored on nodes to which it is connected. When a 
query is issued, the Reflector does not retransmit it. Rather, it answers the query from its own 
memory. That causes a huge reduction in network use.[4] 

[4] Depending on your view, the benefit, or unfortunate downside, of Reflector is that it makes Gnutella usable 
only in ways that Reflector explicitly enables. To date, Reflector is chiefly optimizing the network for file sharing, 
and because it removes the ability for hosts to respond free-form and in real time, it sacrifices one of the key 
ideas behind Gnutella. 

Anyone can run a Reflector, making it an ideal way to increase the size of a Gnutella cluster. 
Connecting Reflectors together to create a super high-capacity backbone is the obvious next step. 
Gnutella is essentially an application-level Internet, and with the development of the Gnutella 
equivalent of Cisco 12000s, Gnutella will really become what it has been likened to so many times: an 
internet on the Internet. 

8.7 Gnutella's traffic problems 

One place where the analogy drawn between Gnutella and cellular telephony and Ethernet holds true 
down to its last bits is how Gnutella suffers in cases of high traffic. We know this because the public 
Gnutella network at the time of this writing has a traffic problem that is systemic, rather than the 
standard transient attack. Cellular telephones show a weakness when the cell is too busy with active 
calls. Sometimes there is crosstalk; at other times calls are scratchy and low quality. Ethernet similarly 
reaches a point of saturation when there is too much traffic on the network, and, instead of coping 
gracefully, performance just degrades in a downward spiral. Gnutella is similar in almost every way. 

In terms of solutions, the bottom line is that when too many conversations take place in one cell or 
segment the only way to stop the madness is to break up the cell. 

On the Gnutella network, things started out pretty peacefully. First a few hundred users, then a few 
thousand, then a few hundred thousand. No big deal. The network just soldiered along. The real 
problem came along when host caches came into wide use. 

8.7.1 Host caches 

In the early days of Gnutella, the way you found your way onto the network was by word of mouth. 
You got onto IRC and asked for a host address to connect to. Or you checked one of the handful of web 
pages which maintained lists of hosts to connect to. You entered the hosts into your Gnutella software 
one by one until one worked. The the software took care of the rest. It was tedious, but it worked for a 
long while. 
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Before host caches, it was fairly random what part of the network you connected to. Ask two different 
people, and they would direct you to connect to hosts on opposite sides of the Gnutella network. Look 
at two different host lists, and it was difficult to find any hosts in common. Host lists encouraged 
sparseness and small clusters. It was difficult for too many new hosts to be concentrated into one cell. 
The cells were sparsely connected with one another, and there wasn't too much crosstalk. That created 
a nearly optimal network structure, where the Gnutella network looked like a land dotted by small 
cities and townships interconnected by only a few roads. 

Users eventually became frustrated by the difficulties of getting onto Gnutella. Enter Bob Schmidt and 
Josh Pieper. Bob Schmidt is the author of GnuCache, a host caching program. Josh Pieper also 
included host caching logic in his popular Gnut software for Unix. Host caches provide a jumping off 
spot for Gnutella users, a host that's always up and running, that gives a place for your Gnutella 
software to connect to and find the rest of the Gnutella network.[5] The host cache greets your node by 
handing off a list of other hosts your node should connect to. This removes the uncertainty from 
connecting to Gnutella and provides a more friendly user experience. We were all very thankful for 
Schmidt and Pieper's efforts until host caches became a smashing success. 

[5] Actually, Gnutella was born with a ready host cache located at findshit.gnutella.org. Unfortunately, the same 
people who took away Gnutella also took away findshit.gnutella.org, leaving us with a host-cacheless world 
until GnuCache and Pieper's Gnut software came along. 

An unexpected consequence evidenced itself when waves of new Gnutella users logged on in the wake 
of the Napster injunction on July 26, 2000. Everyone started relying on host caches as their only 
means of getting onto the Gnutella network. Host caches were only telling new hosts about hosts they 
saw recently. By doing that, host caches caused Gnutella nodes to be closely clustered into the same 
little patch of turf on the Gnutella network. There was effectively only one tightly clustered and highly 
interconnected cell, because the host caches were doling out the same list of hosts to every new host 
that connected. What resulted was overcrowding of the Gnutella airwaves and a downward spiral of 
traffic. 

Oh well. That's life in the rough-and-tumble world of technology innovation. 

To draw an analogy, the Gnutella network became like a crowded room with lots of conversations. 
Sure, you can still have a conversation, but maybe only with one or two of your closest friends. And 
that is what has become frustrating for Gnutella users. Whereas the network used to have a huge 
breadth and countless well-performing cells of approximately ten thousand nodes each, the current 
network has one big cell in which there is so much noise that queries only make it one or two hops 
before drowning in overcrowded network connections. 

Effectively, a crowded network means that cells are only a few dozen hosts in size. That makes the 
network a bear to use and gives a disappointing user experience. 

8.7.2 Returning the network to its natural state 

Host caches were essentially an unnatural addition to the Gnutella network, and the law of 
unintended consequences showed that it could apply to high technology, too. Improving the situation 
requires a restoration of the network to its original state, where it grew organically and, at first glance, 
inefficiently. Sometimes, minor inefficiency is good, and this is one of those cases. 

Host lists, by enforcing a sparse network, made it so that the communities of Gnutella nodes that did 
exist were not overcrowded. Host caches created a tightly clustered network, which, while appearing 
more efficient, in fact led to a major degradation in overall performance. For host caches to improve 
the situation, they need only to encourage the sparseness that we know works well. 

Sort of. An added complication is that each Gnutella host maintains a local host catcher, in which a 
long list of known hosts (all hosts encountered in the node's travels) is deposited for future reference. 
The first time one logs into the Gnutella network, a host list or a host cache must be used. For all 
future logins, Gnutella softwares refer to their host catcher to connect into the Gnutella network. This 
creates a permanent instability in the network as nodes log on and connect to hosts they remember, 
irrespective of the fact that those hosts are often poor choices in terms of capacity and topology. The 
problem is compounded by the reluctance of most Gnutella software to "forget" hosts that are 
unsuitable. 
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Turning the network around is technically easy. Host caches can listen to the levels of traffic on each 
cell they want to serve and distribute new hosts among those cells until the traffic levels become high 
enough to warrant establishment of new cells. By purposely separating nodes into distinct cells, traffic 
in each cell can be reduced to a manageable level. With those well-planted seeds and periodic resets of 
the collective memories of host catchers to allow smart host caches to work their magic, the network 
can be optimized for performance. The trouble with host catchers, though, is that they are seldom 
reset, because that requires manual intervention as well as some understanding of the reset 
mechanism. 

8.7.3 Private Gnutella networks 

One feature that some Gnutella client software implements is the notion of private Gnutella networks. 
To join a private network, one needs to know the secret handshake or password. That enforces 
manageably-sized networks with a predetermined community membership, and it is a pretty good way 
to ensure a high quality of service no matter what is happening out in the wilds of the public Gnutella 
network. 

8.7.4 Reducing broadcasts makes a significant impact 

Broadcasts are simultaneously the most powerful and the most dangerous feature of the Gnutella 
protocol. Optimally, there are two broadcast packet types: PING and QUERY. PING packets are issued 
when a node greets the network and wants to learn what other nodes are available to connect to. 
QUERY packets are issued when a search is conducted. Some Gnutella developers also implemented 
the PUSH REQUEST packet as a broadcast packet type. PUSH REQUEST packets are used to request 
files from hosts which are protected by firewalls. The concept is one of the unsung heroes of Gnutella, 
making it work in all but the most adverse of Internet environments (the double firewall, arch enemy 
of productivity). 

Unfortunately, the PUSH REQUEST packet should be implemented as a routed packet rather than a 
broadcast packet. At times, PUSH REQUEST packets comprised 50% of all Gnutella network traffic. 
Simply routing those packets rather than broadcasting them would reduce the overall network traffic 
dramatically. 

Reductions can also be made in the number of queries that are broadcast to large expanses of the 
network by intelligently caching results from similar searches. Clip2's Reflector software is an example 
of such a product. Portions of Reflector can be integrated into each Gnutella client, leading to a small 
increase in the software's internal complexity (the user need not concern herself with this behind-the-
scenes activity) in exchange for a massive improvement in network performance. 

The final broadcast packet that was the carrier of some early abuses is the PING packet. In early 
Gnutella software, PING packets could have a payload, even though it was not clear what that payload 
might contain. It was subsequently abused by script kiddies to debilitate the Gnutella network. 
Gnutella developers responded immediately by altering their software to discard PING packets with 
payloads, causing a several thousand-fold traffic reduction on the Gnutella network and 
simultaneously foiling what amounted to a denial of service attack. 

What developers have been debating ever since is how to reduce the level of traffic usurped by PING 
packets. Suggestions have ranged from eliminating PING packets to reducing the allowed number of 
retransmissions of a PING packet. Personally, I favor something in the middle, where every host on 
the network behaves as a miniature host cache for its locality, returning proxied greetings for a few 
nearby hosts in response to a PING and only occasionally retransmitting the PING. That would allow 
the PING to continue to serve its valuable duty in shaping the network's structure and connectivity, 
while reducing the network's traffic levels dramatically. Figure a thousand-fold reduction in traffic. 

One thing to consider in distributed applications is that, no matter how difficult the code is to write 
and how much it bloats the code (within reason), it's worth the trouble, because the savings in 
network utilization pay dividends on every packet. As an example, just consider that if a PUSH 
REQUEST packet is broadcast, it may reach 1,000 hosts. If it is routed, it may reach four or five. That 
is a 200-fold reduction in traffic in exchange for a dozen lines of code. 
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The analogy that Gnutella is like an Internet potluck rings true. Everyone brings a dish when they join 
the Gnutella network. At a minimum, the one dish that everyone brings is network capacity. So then 
there is definitely enough bandwidth to go around. The only matter is to organize the combined 
capacity and manage the traffic to make sure the network operates within its limits. 

We just covered what is probably Gnutella's biggest problem, so if this was a corporate memorandum, 
this would be the perfect point at which to introduce the engineering organization. This isn't a memo, 
but let's do it anyway. Keep in mind the Thomas Jefferson quotation at the beginning of the chapter: 
none of us knew what we were doing, but we got our hands dirty and took responsibility for what we 
did. 

8.8 The policy debates 

Napster and Gnutella have really been at the center of the policy debate surrounding the new breed of 
peer-to-peer technologies. For the moment, let's forget about the debate that's burning in the 
technology community about what is truly peer-to-peer. We'll get back to that later and tie all these 
policy questions back to the technology. 

8.8.1 Napster wars 

There is only one thing that gets people more riled up than religion, and that is money. In this case, 
the squabble is over money that may or may not be lost to online music swaps facilitated by services 
such as Napster and systems like the Gnutella network. This war is being fought by Napster and the 
RIAA, and what results could change the lives of everyone, at least in the United States. 

Well, sort of. The idea that lawsuit or legislature can stop a service that everyone enjoys is certainly a 
false one. Prohibition was the last real effort (in the U.S.) by the few against the many, and it was a 
dismal failure that gave rise to real criminal activity and the law's eventual embarrassing repeal. We 
have an opportunity to see all that happen again, or the recording industry could look at what's 
coming down the road and figure out a way to cooperate with Napster before the industry gets run 
down by next-generation peer-to-peer technologies. 

Napster, at least, provides a single place where file swappers can be taxed. With Gnutella and Freenet, 
there is no place to tax, no person to talk to about instituting a tax, and no kinds of controls. The 
recording industry may hope that Gnutella and Freenet will "just go away," but that hope will probably 
not materialize into reality. 

8.8.2 Anonymity and peer-to-peer 

One of the big ideas behind peer-to-peer systems is their potential to provide a cloak under which 
users can conduct information exchanges without revealing their identities or even the information 
they are exchanging. The possibility of anonymity in nearly every case stems from the distribution of 
information across the entire network, as well as the difficulty in tracking activities on the network as 
a whole. 

Gnutella provides some degree of anonymity by enabling an essentially anonymous searching 
mechanism. It stops there, though. Gnutella reveals the IP address of a downloading host to the 
uploading host, and vice versa. 

8.8.2.1 Gnutella pseudoanonymity 

Gnutella is a prime example of peer-to-peer technology. It was, after all, the first successful, fully 
decentralized, peer-to-peer system. But in the policy debate, that's not a huge matter. What does 
matter is that Gnutella's message-based routing system affords its users a degree of anonymity by 
making request and response packets part of a crowd of similar packets issued by other participants in 
the network. 
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In most messages that are passed from node to node, there is no mention of anything that might tie a 
particular message to a particular user. On the Internet, identity is established using two points of 
data: An IP address and the time at which the packet containing the IP address was seen. Most 
Gnutella messages do not contain an IP address, so most messages are not useful in identifying 
Gnutella users. Also, Gnutella's routing system is not outwardly accessible. The routing tables are 
dynamic and stored in the memory of the countless Gnutella nodes for only a short time. It is 
therefore nearly impossible to learn which host originated a packet and which host is destined to 
receive it. 

Furthermore, Gnutella's distributed nature means that there is no one place where an enforcement 
agency can plant a network monitor to spy on the system's communications. Gnutella is spread 
throughout the Internet, and the only way to monitor what is happening on the Gnutella network is to 
monitor what is happening on the entire Internet. Many are suspicious that such monitoring is 
possible, or even being done already. But given the vastness of today's Internet and its growing traffic, 
it's pretty unlikely. 

What Gnutella does subject itself to, however, are things such as Zeropaid.com's Wall of Shame. The 
Wall of Shame, a Gnutella Trojan Horse, was an early attempt to nab alleged child pornography 
traffickers on the Gnutella network. This is how it worked: a few files with very suggestive filenames 
were shared by a special host. When someone attempted to download any of the files, the host would 
log the IP address of the downloader to a web page on the Wall of Shame. The host obtained the IP 
address of the downloader from its connection information. 

That's where Gnutella's pseudoanonymity system breaks down. When you attempt to download, or 
when a host returns a result, identifying information is given out. Any host can be a decoy, logging 
that information. There are systems that are more interested in the anonymity aspects of peer-to-peer 
networking, and take steps such as proxied downloads to better protect the identities of the two 
endpoints. Those systems should be used if anonymity is a real concern. 

The Wall of Shame met a rapid demise in a rather curious and very Internet way. Once news of its 
existence circulated on IRC, Gnutella users with disruptive senses of humor flooded the network with 
suggestive searches in their attempts to get their IP addresses on the Wall of Shame. 

8.8.2.2 Downloads, now in the privacy of your own direct connection 

So Gnutella's message-based routing system and its decentralization both give some anonymity to its 
users and make it difficult to track what exactly is happening. But what really confounds any attempt 
to learn who is actually sharing files is that downloads are a private transaction between only two 
hosts: the uploader and the downloader. 

Instead of brokering a download through a central authority, Gnutella has sufficient information to 
reach out to the host that is sharing the desired file and grab it directly. With Napster, it's possible not 
only to learn what files are available on the host machines but what transactions are actually 
completed. All that can be done easily, within the warm confines of Napster's machine room. 

With Gnutella, every router and cable on the Internet would need to be tapped to learn about 
transactions between Gnutella hosts or peers. When you double-click on a file, your Gnutella software 
establishes an HTTP connection directly to the host that holds the desired file. There is no brokering, 
even through the Gnutella network. In fact, the download itself has nothing to do with Gnutella: it's 
HTTP. 

By being truly peer-to-peer, Gnutella gives no place to put the microscope. Gnutella doesn't have a 
mailing address, and, in fact, there isn't even anyone to whom to address the summons. But because 
of the breakdown in anonymity when a download is transacted, Gnutella could not be used as a system 
for publishing information anonymously. Not in its current form, anyway. So the argument that 
Gnutella provides anonymity from search through response through download is impossible to make. 
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8.8.2.3 Anonymous Gnutella chat 

But then, Gnutella is not exclusively a file-sharing system. When there were fewer users on Gnutella, it 
was possible to use Gnutella's search monitor to chat with other Gnutella users. Since everyone could 
see the text of every search that was being issued on the network, users would type in searches that 
weren't searches at all: they were messages to other Gnutella users (see Figure 8.4). 

Figure 8.4. Gnutella search monitor 

 
 
It was impossible to tell who was saying what, but conversations were taking place. If you weren't a 
part of the particular thread of discussion, the messages going by were meaningless to you. This is an 
excellent real-world example of the ideas behind Rivest's "Chaffing and Winnowing."[6] Just another 
message in a sea of messages. Keeping in mind that Gnutella gives total anonymity in searching, this 
search-based chat was in effect a totally anonymous chat! And we all thought we were just using 
Gnutella for small talk. 

[6] Ronald L Rivest (1998), "Chaffing and Winnowing: Confidentiality without Encryption," 
http://www.toc.lcs.mit.edu/~rivest/chaffing.txt. 

8.8.3 Next-generation peer-to-peer file-sharing technologies 

No discussion about Gnutella, Napster, and Freenet is complete without at least a brief mention of the 
arms race and war of words between technologists and holders of intellectual property. What the 
recording industry is doing is sensitizing software developers and technologists to the legal 
ramifications of their inventions. Napster looked like a pretty good idea a year ago, but today Gnutella 
and Freenet look like much better ideas, technologically and politically. For anyone who isn't 
motivated by a business model, true peer-to-peer file-sharing technologies are the way to go. 

It's easy to see where to put the toll booths in the Napster service, but taxing Gnutella is trickier. Not 
impossible, just trickier. Whatever tax system is successfully imposed on Gnutella, if any, will be 
voluntary and organic - in harmony with Gnutella, basically. The same will be true for next-generation 
peer-to-peer file-sharing systems, because they will surely be decentralized. 

Predicting the future is impossible, but there are a few things that are set in concrete. If there is a 
successor to Gnutella, it will certainly learn from the lessons taught to Napster. It will learn from the 
problems that Gnutella has overcome and those that frustrate it today. For example, instead of the 
pseudoanonymity that Gnutella provides, next generation technologies may provide true anonymity 
through proxying and encryption. In the end, we can say with certainty that technology will outrun 
policy. It always has. The question is what impact that will have. 

http://www.toc.lcs.mit.edu/~rivest/chaffing.txt
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8.9 Gnutella's effects 

Gnutella started the decentralized peer-to-peer revolution.[7] Before it, systems were centralized and 
boring. Innovation in software came mainly in the form of a novel business plan. But now, people are 
seriously thinking about how to turn the Internet upside down and see what benefits fall out. 

[7] The earliest example of a peer-to-peer application that I can come up with is Zephyr chat, which resulted from 
MIT's Athena project in the early 1990s. Zephyr was succeeded by systems such as ICQ, which provided a 
commercialized, graphical, Windows-based instant messaging system along the lines of Zephyr. Next was 
Napster. And that is the last notable client/server-based, peer-to-peer system. Gnutella and Freenet were next, 
and they led the way in decentralized peer-to-peer systems. 

Already, the effects of the peer-to-peer revolution are being felt. Peer-to-peer has captured the 
imagination of technologists, corporate strategists, and venture capitalists alike. Peer-to-peer is even 
getting its own book. This isn't just a passing fad. 

Certain aspects of peer-to-peer are mundane. Certain other aspects of it are so interesting as to get 
notables including George Colony, Andy Grove, and Marc Andreessen excited. That doesn't happen 
often. The power of peer-to-peer and its real innovation lies not just in its file-sharing applications and 
how well those applications can fly in the face of copyright holders while flying under the radar of legal 
responsibility. Its power also comes from its ability to do what makes plain sense and what has been 
overlooked for so long. 

The basic premise underlying all peer-to-peer technologies is that individuals have something 
valuable to share. The gems may be computing power, network capacity, or information tucked away 
in files, databases, or other information repositories, but they are gems all the same. Successful peer-
to-peer applications unlock those gems and share them with others in a way that makes sense in 
relation to the particular applications. 

Tomorrow's Internet will look quite different than it does today. The World Wide Web is but a little 
blip on the timeline of technology development. It's only been a reality for the last six years! Think of 
the Web as the Internet equivalent of the telegraph: it's very useful and has taught us a lot, but it's 
pretty crude. Peer-to-peer technologies and the experience gained from Gnutella, Freenet, Napster, 
and instant messaging will reshape the Internet dramatically. 

Unlike what many are saying today, I will posit the following: today's peer-to-peer applications are 
quite crude, but tomorrow's applications will not be strictly peer-to-peer or strictly client/server, or 
strictly anything for that matter. Today's peer-to-peer applications are necessarily overtly peer-to-peer 
(often to the users' chagrin) because they must provide application and infrastructure simultaneously 
due to the lack of preexisting peer-to-peer infrastructure. Such infrastructure will be put into place 
sooner than we think. Tomorrow's applications will take this infrastructure for granted and leverage it 
to provide more powerful software and a better user experience in much the same way modern 
Internet infrastructure has. 

In the short term, decentralized peer-to-peer may spell the end of censorship and copyright. Looking 
out, peer-to-peer will enable crucial applications that are so useful and pervasive that we will take 
them for granted. 
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Chapter 9. Freenet 
Adam Langley, Freenet 

Freenet is a decentralized system for distributing files that demonstrates a particularly strong form of 
peer-to-peer. It combines many of the benefits associated with other peer-to-peer models, including 
robustness, scalability, efficiency, and privacy. 

In the case of Freenet, decentralization is pivotal to its goals, which are the following: 

• Prevent censorship of documents 

• Provide anonymity for users 

• Remove any single point of failure or control 

• Efficiently store and distribute documents 

• Provide plausible deniability for node operators 

Freenet grew out of work done by Ian Clarke when he was at the University of Edinburgh, Scotland, 
but it is now maintained by volunteers on several continents. 

Some of the goals of Freenet are very difficult to bring together in one system. For example, efficient 
distribution of files has generally been done by a centralized system, and doing it with a decentralized 
system is hard. 

However, decentralized networks have many advantages over centralized ones. The Web as it is today 
has many problems that can be traced to its client/server model. The Slashdot effect, whereby popular 
data becomes less accessible because of the load of the requests on a central server, is an obvious 
example. 

Centralized client/server systems are also vulnerable to censorship and technical failure because they 
rely on a small number of very large servers. 

Finally, privacy is a casualty of the structure of today's Web. Servers can tell who is accessing or 
posting a document because of the direct link to the reader/poster. By cross-linking the records of 
many servers, a large amount of information can be gathered about a user. For example, DoubleClick, 
Inc., is already doing this. By using direct marketing databases and information obtained through 
sites that display their advertisements, DoubleClick can gather very detailed and extensive 
information. In the United States there are essentially no laws protecting privacy online or requiring 
companies to handle information about people responsibly. Therefore, these companies are more or 
less free to do what they wish with the data. 

We hope Freenet will solve some of these problems. 

Freenet consists of nodes that pass messages to each other. A node is simply a computer that is 
running the Freenet software, and all nodes are treated as equals by the network. This removes any 
single point of failure or control. By following the Freenet protocol, many such nodes spontaneously 
organize themselves into an efficient network. 

9.1 Requests 

In order to make use of Freenet's distributed resources, a user must initiate a request. Requests are 
messages that can be forwarded through many different nodes. Initially the user forwards the request 
to a node that he or she knows about and trusts (usually one running on his or her own computer). If a 
node doesn't have the document that the requestor is looking for, it forwards the request to another 
node that, according to its information, is more likely to have the document. The messages form a 
chain as each node forwards the request to the next node. Messages time out after passing through a 
certain number of nodes, so that huge chains don't form. (The mechanism for dropping requests, 
called the hops-to-live count, is a simple system similar to that used for Internet routing.) The chain 
ends when the message times out or when a node replies with the data. 
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The reply is passed back though each node that forwarded the request, back to the original node that 
started the chain. Each node in the chain may cache the reply locally, so that it can reply immediately 
to any further requests for that particular document. This means that commonly requested documents 
are cached on more nodes, and thus there is no Slashdot effect whereby one node becomes 
overloaded. 

The reply contains an address of one of the nodes that it came through, so that nodes can learn about 
other nodes over time. This means that Freenet becomes increasingly connected. Thus, you may end 
up getting data from a node you didn't even know about. In fact, you still might not know that that 
node exists after you get the answer to the request - each node knows only the ones it communicates 
with directly and possibly one other node in the chain. 

Because no node can tell where a request came from beyond the node that forwarded the request to it, 
it is very difficult to find the person who started the request. This provides anonymity to the users who 
use Freenet. 

Freenet doesn't provide perfect anonymity (like the Mixmaster network discussed in Chapter 7) 
because it balances paranoia against efficiency and usability. If someone wants to find out exactly 
what you are doing, then given the resources, they will. Freenet does, however, seek to stop mass, 
indiscriminate surveillance of people. 

A powerful attacker that can perform traffic analysis of the whole network could see who started a 
request, and if they controlled a significant number of nodes so that they could be confident that the 
request would pass through one of their nodes, they could also see what was being requested. 
However, the resources needed to do that would be incredible, and such an attacker could find better 
ways to snoop on users. 

An attacker who simply controlled a few nodes, even large ones, couldn't find who was requesting 
documents and couldn't generate false documents (see "Key Types," later in this chapter). They 
couldn't gather information about people and they couldn't censor documents. It is these attackers 
that Freenet seeks to stop. 

9.1.1 Detail of requests 

Each request is given a unique ID number by the node that initiates it, and this serves to identify all 
messages generated by that request. If a node receives a message with the same unique ID as one it 
has already processed, it won't process it again. This keeps loops from forming in the network, which 
would congest the network and reduce overall system performance. 

The two main types of requests are the InsertRequest and the DataRequest . The DataRequest simply 
asks that the data linked with a specified key is returned; these form the bulk of the requests on 
Freenet. InsertRequests act exactly like DataRequests except that an InsertReply, not a TimedOut 
message, is returned if the request times out. 

This means that if an attacker tries to insert data which already exists on Freenet, the existing data will 
be returned (because it acts like a DataRequest), and the attacker will only succeed in spreading the 
existing data as nodes cache the reply. 

If the data doesn't exist, an InsertReply is sent back, and the client can then send a DataInsert to 
actually insert the new document. The insert isn't routed like a normal message but follows the same 
route as the InsertRequest did. Intermediate nodes cache the new data. After a DataInsert, future 
DataRequests will return the document. 

9.1.2 The data store 

The major tasks each node must perform - deciding where to route requests, remembering where to 
return answers to requests, and choosing how long to store documents - revolve around a stack model. 
Figure 9.1 shows what a stack could contain. 
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Figure 9.1. Stack used by a Freenet node 

 
 
Each key in the data store is associated with the data itself and an address to the node where the data 
came from. Below a certain point the node no longer stores the data related to a key, only the address. 
Thus the most often requested data is kept locally. Documents that are requested more often are 
moved up in the stack, displacing the less requested ones. The distance that documents are moved is 
linked to the size, so that bigger documents are at a disadvantage. This gives people an incentive not to 
waste space on Freenet and so compress documents before inserting. 

When a node receives a request for a key (or rather the document that is indexed by that key), it first 
looks to see if it has the data locally. If it does, the request is answered immediately. If not, the node 
searches the data store to find the key closest to the requested key (as I'll explain in a moment). The 
node referenced by the closest key is the one that the request is forwarded to. Thus nodes will forward 
to the node that has data closest to the requested key. 

The exact closeness function used is complex and linked to details of the data store that are beyond 
this chapter. However, imagine the key being treated as a number, so that the closest key is defined as 
the one where the absolute difference between two keys is a minimum. 

The closeness operation is the cornerstone of Freenet's routing, because it allows nodes to become 
biased toward a certain part of the keyspace. Through routine node interactions, certain nodes 
spontaneously emerge as the most often referenced nodes for data close to a certain key. Because 
those nodes will then frequently receive requests for a certain area of the keyspace, they will cache 
those documents. And then, because they are caching certain documents, other nodes will add more 
references to them for those documents, and so on, forming a positive feedback. 

A node cannot decide what area of the keyspace it will specialize in because that depends on the 
references held by other nodes. If a node could decide what area of the keyspace it would be asked for, 
it could position itself as the preferred source for a certain document and then seek to deny access to 
it, thus censoring it. 

For a more detailed discussion of the routing system, see Chapter 14. The routing of requests is the key 
to Freenet's scalability and efficiency. It also allows data to "move." If a document from North America 
is often requested in Europe, it is more likely to soon be on European servers, thus reducing expensive 
transatlantic traffic. (But neighboring nodes can be anywhere on the Internet. While it makes sense 
for performance reasons to connect to nodes that are geographically close, that is definitely not 
required.) 

Because each node tries to forward the request closer and closer to the data, the search is many times 
more powerful than a linear search and much more efficient than a broadcast. It's like looking for a 
small village in medieval times. You would ask at each village you passed through for directions. Each 
time you passed through a village you would be sent closer and closer to your destination. This 
method (akin to Freenet's routing closer to data) is much quicker than the linear method of going to 
every village in turn until you found the right one. It also means that Freenet scales well as more 
nodes and data are added. It is also better than the Gnutella-like system of sending thousands of 
messengers to all the villages in the hope of finding the right one. 
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The stack model also provides the answer to the problem of culling data. Any storage system must 
remove documents when it is full, or reject all new data. Freenet nodes stop storing the data in a 
document when the document is pushed too far down the stack. The key and address are kept, 
however. This means that future requests for the document will be routed to the node that is most 
likely to have it. 

This data-culling method allows Freenet to remove the least requested data, not the least agreeable 
data. If the most unpopular data was removed, this could be used to censor documents. The Freenet 
design is very careful not to allow this. 

The distinction between unpopular and unwanted is important here. Unpopular data is disliked by a 
lot of people, and Freenet doesn't try to remove that because that would lead to a tyranny of the 
majority. Unwanted data is simply data that is not requested. It may be liked, it may not, but nobody 
is interested in it. 

Every culling method has problems, and on balance this method has been selected as the best. We 
hope that the pressure for disk space won't be so high that documents are culled quickly. Storage 
capacity is increasing at an exponential rate, so Freenet's capacity should also. If an author wants to 
keep a document in Freenet, all he or she has to do is request or reinsert it every so often. 

It should be noted that the culling is done individually by each node. If a document (say, a paper at a 
university) is of little interest globally, it can still be in local demand so that local nodes (say, the 
university's node) will keep it. 

9.2 Keys 

As has already been noted, every document is indexed by a key. But Freenet has more than one type of 
key - each with certain advantages and disadvantages. 

Since individual nodes on Freenet are inherently untrusted, nodes must not be allowed to return false 
documents. Otherwise, those false documents will be cached and the false data will spread like a 
cancer. The main job of the key types is to prevent this cancer. Each node in a chain checks that the 
document is valid before forwarding it back toward the requester. If it finds that the document is 
invalid, it stops accepting traffic from the bad node and restarts the request. 

Every key can be treated as an array of bytes, no matter which type it is. This is important because the 
closeness function, and thus the routing, treats them as equivalent. These functions are thus 
independent of key type. 

9.2.1 Key types 

Freenet defines a general Uniform Resource Indicator (URI) in the form: 

freenet:keytype@data  

where binary data is encoded using a slightly changed Base64 scheme. Each key type has its own 
interpretation of the data part of the URI, which is explained with the key type. 

Documents can contain metadata that redirects clients to another key. In this way, keys can be 
chained to provide the advantages of more than one key type. The rest of this section describes the 
various types of keys. 

9.2.1.1 Content Hash Keys (CHKs) 

A CHK is formed from a hash of the data. A hash function takes any input and produces a fixed-length 
output, where finding two inputs that give the same output is computationally impossible. For further 
information on the purpose of hashes, see Section 15.2.1 in Chapter 15. 

Since a document is returned in response to a request that includes its CHK, a node can check the 
integrity of the returned document by running the same hash function on it and comparing the 
resulting hash to the CHK provided. If the hashes match, it is the correct document. CHKs provide a 
unique and tamperproof key, and so the bulk of the data on Freenet is stored under CHKs. CHKs also 
reduce the redundancy of data, since the same data will have the same CHK and will collide on 
insertion. However, CHKs do not allow updating, nor are they memorable. 
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A CHK URI looks like the following example: 

freenet:CHK@ DtqiMnTj8YbhScLp1BQoW9In9C4DAQ,2jmj7l5rSw0yVb-vlWAYkA  

9.2.1.2 Keyword Signed Keys (KSKs) 

KSKs appear as text strings to the user (for example, "text/books/1984.html"), and so are easy to 
remember. A common misunderstanding about Freenet, arising from the directory-like format of 
KSKs, is that there is a hierarchy. There isn't. It is only by convention that KSKs look like directory 
structures; they are actually freeform strings. 

KSKs are transformed by clients into a binary key type. The transformation process makes it 
impractical to recover the string from the binary key. KSKs are based on a public key system where, in 
order to generate a valid KSK document, you need to know the original string. Thus, a node that sees 
only the binary form of the KSK does not know the string and cannot generate a cancerous reply that 
the requestor would accept. 

KSKs are the weakest of the key types in this respect, as it is possible that a node could try many 
common human strings (such as "Democratic" and "China" in many different sentences) to find out 
what string produced a given KSK and then generate false replies. 

KSKs can also clash as different people insert different data while trying to use the same string. For 
example, there are many versions of the Bible. Hopefully the Freenet caching system should cause the 
most requested version to become dominant. Tweaks to aid this solution are still under discussion. 

A KSK URI looks like this: 

freenet:KSK@text/books/1984.html  

9.2.1.3 Signature Verification Keys (SVKs) 

SVKs are based on the same public key system as KSKs but are purely binary. When an SVK is 
generated, the client calculates a private key to go with it. The point of SVKs is to provide something 
that can be updated by the owner of the private key but by no one else. 

SVKs also allow people to make a subspace, which is a way of controlling a set of keys. This allows 
people to establish pseudonyms on Freenet. When people trust the owner of a subspace, documents in 
that subspace are also trusted while the owner's anonymity remains protected. Systems like Gnutella 
and Napster that don't have an anonymous trust capability are already finding that attackers flood the 
network with false documents. 

Named SVKs can be inserted "under" another SVK, if one has its private key. This means you can 
generate an SVK and announce that it is yours (possibly under a pseudonym), and then insert 
documents under that subspace. People trust that the document was inserted by you, because only you 
know the private key and so only you can insert in that subspace. Since the documents have names, 
they are easy to remember (given that the user already has the base SVK, which is binary), and no one 
can insert a document with the same key before you, as they can with a KSK. 

An SVK URI looks like this: 

freenet:SVK@ XChKB7aBZAMIMK2cBArQRo7v05ECAQ,7SThKCDy~QCuODt8xP=KzHA  

or for an SVK with a document name: 

freenet:SSK@ U7MyLl0mHrjm6443k1svLUcLWFUQAgE/text/books/1984.html  

9.2.2 Keys and redirects 

Redirects use the best aspects of each kind of key. For example, if you wanted to insert the text of 
George Orwell's 1984 into Freenet, you would insert it as a CHK and then insert a KSK like 
"Orwell/1984" that redirects to that CHK. Recent Freenet clients will do this automatically for you. By 
doing this you have a unique key for the document that you can use in links (where people don't need 
to remember the key), and a memorable key that is valuable when people are either guessing the key 
or can't get the CHK. 
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All documents in Freenet are encrypted before insertion. The key is either random and distributed by 
the requestor along with the URI, or based on data that a node cannot know (like the string of a KSK). 
Either way, a node cannot tell what data is contained in a document. This has two effects. First, node 
operators cannot stop their nodes from caching or forwarding content that they object to, because they 
have no way of telling what the content of a document is. For example, a node operator cannot stop 
his or her node from carrying pro-Nazi propaganda, no matter how anti-Nazi he or she may be. It also 
means that a node operator cannot be responsible for what is on his or her node. 

However, if a certain document became notorious, node operators could purge that document from 
their data stores and refuse to process requests for that key. If enough operators did this, the 
document could be effectively removed from Freenet. All it takes to bypass explicit censorship, 
though, is for an anonymous person to change one byte of the document and reinsert it. Since the 
document has been changed, it will have a different key. If an SVK is used, they needn't even change it 
at all because the key is random. So trying to remove documents from Freenet is futile. 

Because a node that does not have a requested document will get the document from somewhere else 
(if it can), an attacker can never find which nodes store a document without spreading it. It is 
currently possible to send a request with a hops-to-live count of 1 to a node to bypass this protection, 
because the message goes to only one node and is not forwarded. Successful retrieval can tell the 
requestor that the document must be on that node. 

Future releases will treat the hops-to-live as a probabilistic system to overcome this. In this system, 
there will be a certain probability that the hops-to-live count will be decremented, so an attacker can't 
know whether or not the message was forwarded. 

9.3 Conclusions 

In simulations, Freenet works well. The average number of hops for requests of random keys is about 
10 and seems largely independent of network size. The simulated network is also resilient to node 
failure, as the number of hops remains below 20 even after 10% of nodes have failed. This suggests 
that Freenet will scale very well. More research on scaling is presented in Chapter 14. 

At the time of writing, Freenet is still very much in development, and a number of central issues are 
yet to be decided. Because of Freenet's design, it is very difficult to know how many nodes are 
currently participating. But it seems to be working well at the moment. 

Searching and updating are the major areas that need work right now. During searches, some method 
must be found whereby requests are routed closer and closer to the answer in order to maintain the 
efficiency of the network. But search requests are fuzzy, so the idea of routing by key breaks down 
here. It seems at this early stage that searching will be based on a different concept. Searching also 
calls for node-readable metadata in documents, so node operators would know what is on their nodes 
and could then be required to control it. Any searching system must counter this breach as best it can. 

Even at this early stage, however, Freenet is solving many of the problems seen in centralized 
networks. Popular data, far from being less available as requests increase (the Slashdot effect), 
becomes more available as nodes cache it. This is, of course, the correct reaction of a network storage 
system to popular data. Freenet also removes the single point of attack for censors, the single point of 
technical failure, and the ability for people to gather large amounts of personal information about a 
reader. 
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Chapter 10. Red Rover 
Alan Brown, Red Rover 

The success of Internet-based distributed computing will certainly cause headaches for censors. Peer-
to-peer technology can boast populations in the tens of millions, and the home user now has access to 
the world's most advanced cryptography. It's wonderful to see those who turned technology against 
free expression for so long now scrambling to catch up with those setting information free. But it's far 
too early to celebrate: What makes many of these systems so attractive in countries where the Internet 
is not heavily regulated is precisely what makes them the wrong tool for much of the world. 

Red Rover was invented in recognition of the irony that the very people who would seem to benefit the 
most from these systems are in fact the least likely to be able to use them. A partial list of the reasons 
this is so includes the following: 

The delivery of the client itself can be blocked  

The perfect stealth device does no good if you can't obtain it. Yet, in exactly those countries 
where user secrecy would be the most valuable, access to the client application is the most 
guarded. Once the state recognized the potential of the application, it would not hesitate to 
block web sites and FTP sites from which the application could be downloaded and, based on 
the application's various compressed and encrypted sizes, filter email that might be carrying it 
in. 

Possession of the client is easily criminalized  

If a country is serious enough about curbing outside influence to block web sites, it will have 
no hesitation about criminalizing possession of any application that could challenge this 
control. This would fall under the ubiquitous legal category "threat to state security." It's a 
wonderful advance for technology that some peer-to-peer applications can pass messages 
even the CIA can't read. But in some countries, being caught with a clever peer-to-peer 
application may mean you never see your family again. This is no exaggeration: in Burma, the 
possession of a modem - even a broken one - could land you in court. 

Information trust requires knowing the origin of the information  

Information on most peer-to-peer systems permits the dissemination of poisoned information 
as easily as it does reliable information. Some systems succeed in controlling disreputable 
transmissions. On most, though, there's an information free-for-all. With the difference 
between freedom and jail hinging on the reliability of information you receive, would you 
really trust a Wrapster file that could have originated with any one of 20 million peer clients? 

Non-Web encryption is more suspicious  

Encrypted information can be recognized because of its unnatural entropy values (that is, the 
frequencies with which characters appear are not what is normally expected in the user's 
language). It is generally tolerated when it comes from web sites, probably because no country 
is eager to hinder online financial transactions. But especially when more and more states are 
charging ISPs with legal responsibility for their customers' online activities, encrypted code 
from a non-Web source will attract suspicion. Encryption may keep someone from reading 
what's passing through a server, but it never stops him from logging it and confronting the 
end user with its existence. In a country with relative Internet freedom, this isn't much of a 
problem. In one without it, the cracking of your key is not the only thing to fear. 

I emphasize these concerns because current peer-to-peer systems show marked signs of having been 
created in relatively free countries. They are not designed with particular sensitivity to users in 
countries where stealth activities are easily turned into charges of subverting the state. States where 
privacy is the most threatened are the very states where, for your own safety, you must not take on the 
government: if they want to block a web site, you need to let them do so for your own safety. 

Many extant peer-to-peer approaches offer other ways to get at a site's information (web proxies, for 
example), but the information they provide tends to be untrustworthy and the method for obtaining it 
difficult or dangerous. 
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Red Rover offers the benefits of peer-to-peer technology while offering a clientless alternative to those 
taking the risk behind the firewall. The Red Rover anti-censorship strategy does not require the 
information seeker to download any software, place any incriminating programs on her hard drive, or 
create any two-way electronic trails with information providers. The benefactor of Red Rover needs 
only to know how to count and how to operate a web browser to access a web-based email account. 

Red Rover is technologically very "open" and will hopefully succeed at traversing censorship barriers 
not by electronic stealth but by simple brute force. The Red Rover distributed clients create a 
population of contraband providers which is far too large, changing, and growing for any nation's 
web-blocking software to keep up with. 

10.1 Architecture 

Red Rover is designed to keep a channel of information open to those behind censorship walls by 
exploiting some now mundane features of the Internet, such as dynamic IP addresses and the 
unbalanced ratio of Red Rover clients to censors. Operating out in the open at a low-tech level helps 
keep Red Rover's benefactors from appearing suspicious. In fact, Red Rover makes use of aspects of 
the current Internet that other projects consider liabilities, such as the impermanent connections of 
ordinary Internet users and the widespread use of free, web-based email services. The benefactors, 
those behind the censorship barrier (hereafter, "subscribers"), never even need to see a Red Rover 
client application: users of the client are in other countries. 

The following description of the Red Rover strategy will be functional (i.e., top-down) because that is 
the best way to see the rationale behind decisions that make Red Rover unique among peer-to-peer 
projects. It will be clear that the Red Rover strategy openly and necessarily embraces human 
protocols, rather than performing all of its functions at the algorithmic level. The description is 
simplified in the interest of saving space. 

The Red Rover application is not a proxy server, not a site mirror, and not a gate allowing someone to 
surf the Web through the client. The key elements of the system are hosts on ordinary dial-up 
connections run by Internet users who volunteer to download data that the Red Rover administrator 
wants to provide. Lists of these hosts and the content they offer, changing rapidly as the hosts come 
and go over the course of a day, are distributed by the Red Rover hub to the subscribers. The 
distribution mechanism is done in a way that minimizes the risk of attracting attention. 

It should be clear, too, that Red Rover is a strategy, not just the software application that bears the 
name. Again, those who benefit the most from Red Rover will never see the program. The strategy is 
tripartite and can be summarized as follows. (The following sentence is deliberately awkward, for 
reasons explained in the next section.) 

3 simple layers: the hub, the client, & sub scriber. 

10.1.1 The hub 

The hub is the server from which all information originates. It publishes two types of information. 

First, the hub creates packages of HTML files containing the information the hub administrator wants 
to pass through the censorship barrier. These packages will go to the clients at a particular time. 
Second, the hub creates a plain text, email notification that explains what material is available at a 
particular time and which clients (listing their IP addresses) have the material. The information may 
be encoded in a nontraditional way that avoids attracting attention from software sniffers, as 
described later in this chapter. 

The accuracy of these text messages is time-limited, because clients go on- and offline. A typical 
message will list perhaps 10 IP addresses of active clients, selected randomly from the hub's list of 
active clients for a particular time. 

The hub distributes the HTML packages to the clients, which can be done in a straightforward 
manner. The next step is to get the text messages to the subscribers, which is much trickier because it 
has to be done in such a way as to avoid drawing the attention of authorities that might be checking all 
traffic. 
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The hub would never send a message directly to any subscriber, because the hub's IP address and 
domain name are presumed to be known to authorities engaged in censorship. Instead, the hub sends 
text messages to clients and asks them to forward them to the subscribers. Furthermore, the client 
that forwards this email would never be listed in its own outgoing email as a source for an HTML 
package. Instead, each client sends mail listing the IP addresses of other clients. The reason for this is 
that if a client sent out its own IP address and the subscriber were then to visit it, the authorities could 
detect evidence of two-way communication. It would be much safer if the notification letter and the 
subscriber's decision to surf took different routes. 

The IP addresses on these lists are "encrypted" at the hub in some nonstandard manner that doesn't 
use hashing algorithms, so that they don't set off either entropy or pattern detectors. For example, that 
ungrammatical "3 simple layers" sentence at the end of the last section would reveal the IP address 
166.33.36.137 to anyone who knew the convention for decoding it. The convention is that each digit in 
an IP address is represented by the number of letters in a word, and octets are separated by 
punctuation marks. Thus, since there is 1 letter in "3," 6 in "simple," and 6 in "layers," the phrase "3 
simple layers" yields the octet 166 to someone who understands the convention. 

Sending a list of 10 unencoded IP addresses to someone could easily be detected by a script. But by 
current standards, high-speed extraction of any email containing a sentence with bad grammar would 
result in an overwhelming flood of false positives. The "encryption" method, then, is invisible in its 
overtness. Practical detection would require a great expenditure of human effort, and for this reason, 
this method should succeed by its pure brute force. The IP addresses will get through. 

The hub also keeps track of the following information about the subscriber: 

• Her web-based email address, allowing her the option of proxy access to email and frequent 
address changes without overhead to the hub. 

• The dates and times that she wishes to receive information (which she could revise during 
each Red Rover client visit, perhaps via SSL, in order to avoid identifiable patterns of online 
behavior). 

• Her secret key, in case she prefers to take her chances with encrypted list notifications (an 
option Red Rover would offer). 

10.1.2 The clients 

The clients are free software applications that are run on computers around the world by ordinary, 
dial-up Internet users who volunteer to devote a bit of their system usage to Red Rover. Clients run in 
the background and act as both personal web servers and email notification relays. When the user on 
the client system logs on, the client sends its IP address to the hub, which registers it as active. For 
most dial-up accounts, this means that, statistically, the IP will differ from the one the client had for 
its last session. This simple fact plays an important role in client longevity, as discussed below. 

Once the client is registered, the hub sends it two things. The first is an HTML package, which the 
client automatically posts for anyone accessing the IP address through a browser. (URL encryption 
would be a nice feature to offer here, but not an essential one.) 

The second message from the hub is an email containing the IP list, plus some filler to make sure the 
size of the message is random. This email will be forwarded automatically from the receiving Red 
Rover client to a subscriber's web-based email account. These emails will be generated in random 
sizes as an added frustration to automated censors which hunt for packet sizes. 

The email list, with its unhashed encryption of the IP addresses, is itself fully encrypted at the hub and 
decrypted by a client-specific key by the client just before mailing it to the subscriber. This way, the 
client user doesn't know anything about who she's sending mail to. The client will also forward the 
email with a spoofed originating IP address so that if the email is undelivered, it will not be returned 
to the sender. If it did return, it would be possible for a malicious user of the client (censors and 
police, for example) to determine the subscriber's email address simply by reading it off of the route-
tracing information revealed by any of a variety of publicly available products. Together with the use 
of web-based accounts for subscriber email, rather than ISP accounts, subscriber privacy will benefit 
from these precautions. 
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10.1.3 The subscribers 

The subscriber's role requires a good deal of caution, and anyone taking it on must understand how to 
make the safest use of Red Rover as well as the legal consequences of getting caught. The subscriber's 
actions should be assumed, after all, to be entirely logged by the state or its agents from start to finish. 

The first task of the subscriber is to use a side channel (a friend visiting outside the country, for 
instance, or a phone call or postal letter) to give the hub the information needed to maintain contact. 
She also needs to open a free web-based email account in a country outside the area being censored. 
Then, after she puts in place any other optional precautions she feels will help keep her under the 
authorities' digital radar (and perhaps real-life radar), she can receive messages and download 
controversial material. Figure 10.1 shows how information travels between the hub, clients, and 
servers. 

Figure 10.1. The flow of information between the hub, clients, and servers 

 
 
In particular, it is wise for subscribers to change their notification times frequently. This decreases the 
possibility of the authorities sending false information or attempting to entrap a subscriber by sending 
a forged IP notification email (containing only police IPs) at a time they suspect the subscriber expects 
notification. If the subscriber is diligent and creates new email addresses frequently, it is far less likely 
that a trap will succeed. The subscriber is also advised to ignore any notification sent even one second 
different from her requested subscription time. Safe subscription and subscription-changing protocols 
involve many interesting options, but these will not be detailed here. 

When the client is closed or the computer disconnected, the change is registered by the hub, and that 
IP address is no longer included on outgoing notifications. Those subscribers who had already 
received an email with that IP address on it would find it did not serve Red Rover information, if 
indeed it worked at all from the browser. The subscribers would then try the other IP addresses on the 
list. The information posted by the hub is identical on all clients, and the odds that the subscriber 
would find one that worked before all the clients on the list disconnect are quite high. 

10.2 Client life cycle 

Every peer-to-peer system has to deal with the possibility that clients will disappear unexpectedly, but 
senescence is actually assumed for Red Rover clients. Use it long enough and, just as with tax 
cheating, they'll probably catch up with you. In other words, the client's available IPs will eventually 
all be blocked by the authorities. 

The predominant way nations block web sites is by IP address. This generally means all four octets are 
blocked, since C-class blocking (blocking any of the possibilities in the fourth octet of the IP address) 
could punish unrelated web sites. Detection has so far tended to result not in prosecution of the web 
visitor, but only in the blocking of the site. In China, for example, it will generally take several days, 
and often two weeks, for a "subversive" site to be blocked. 
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The nice thing about a personal web server is that when a user logs on to a dial-up account, the user 
will most likely be assigned a fourth octet different from the one she had in previous sessions. With 
most ISPs, odds are good of getting a different third octet as well. This means that a client can sustain 
a great number of blocks before becoming useless, and, depending on the government's methods (and 
human workload), many events are likely to evade any notice whatsoever. But whenever the adversary 
is successful in completely blocking a Red Rover client's accessible IP addresses, that's the end of that 
client's usefulness - at least until the user switches ISPs. (Hopefully she'll choose a new ISP that hasn't 
been blocked due to detection of another Red Rover client.) Some users can make their clients more 
mobile, and therefore harder to detect, by subscribing to a variety of free dial-up services. 

A fact in our favor is that it is considered extremely unlikely that countries will ever massively block 
the largest ISPs. A great deal of damage to both commerce and communication would result from a 
country blocking a huge provider like, for example, America Online, which controls nearly a quarter of 
the American dial-up market. This means that even after many years of blocking Red Rovers, there 
will still always be virgin IPs for them. Or so we hope. 

The Red Rover strategy depends upon a dynamic population. On one level, each user can stay active if 
she has access to abundant, constantly changing IP addresses. And at another level, Red Rover clients, 
after they become useless or discontinued, are refreshed by new users, compounding the frustration of 
would-be blockers. 

The client will be distributed freely at software archives and partner web sites after its release, and will 
operate without user maintenance. A web site (see Section 10.4) is already live to provide updates and 
news about the strategy, as well as a downloadable client. 

10.3 Putting low-tech "weaknesses" into perspective 

Red Rover creates a high-tech relationship between the hub and the client (using SL and strong 
encryption) and a low-tech relationship between the client and the subscriber. Accordingly, this latter 
relationship is inherently vulnerable to security-related difficulties. Since we receive many questions 
challenging the viability of Red Rover, we present below in dialogue form our responses to some of 
these questions in the hope of putting these security "weaknesses" into perspective. 

Skeptic:  

I understand that the subscriber could change subscription times and addresses during a Red 
Rover visit. But how would anyone initially subscribe? If subscription is done online or to an 
email site, nothing would prevent those sites from being blocked. The prospective subscriber 
may even be at risk for trying to subscribe. 

Red Rover:  

True, the low-tech relationship between Red Rover and the client means that Red Rover must 
leave many of the steps of the strategy to the subscriber. As we've said above, another channel 
such as a letter or phone call (not web or email communication) will eventually be necessary 
to initiate contact since the Red Rover site and sites which mirror it will inevitably be victims 
of blocking. But this requirement is no different than other modern security systems. SSL 
depends on the user downloading a browser from a trusted location; digital signatures require 
out-of-band techniques for a certificate authority to verify the person requesting the digital 
signature. 

This is not a weakness; it is a strength. By permitting a diversity of solutions on the part of the 
subscribers, we make it much harder for a government to stop subscription traffic. It also lets 
the user determine the solution ingredients she believes are safest for her, whether public key 
cryptography (legal, for now, in many blocking countries), intercession by friends who are 
living in or visiting countries where subscribing would not be risky, proxy-served requests to 
forward email to organizations likely to cooperate, etc. 

We are confident that word of mouth and other means will spread the news of the availability 
of Red Rover. It is up to the subscriber, though, to first offer her invitation to crash the 
censorship barrier. For many, subscribing may not be worth the risk. But for every subscriber 
who gets information from Red Rover, word of mouth can also help hundreds to learn of the 
content. 
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If this response is not as systematic as desired, remember that prospective subscribers face 
vastly different risks based on their country, profession, technical background, criminal 
history, dependents, and other factors. Where a problem is not recursively enumerable, the 
best solution to it will rarely be an algorithm. A variety of subscription opportunities, 
combined with non-patterned choices by each subscriber, leads to the same kind of protection 
that encryption offers in computing: Both benefit from increased entropy. 

Skeptic:  

What is to stop a government from cracking the client and cloning their own application to 
entrap subscribers or send altered information? 

Red Rover:  

Red Rover has to address this problem at both the high-tech and low-tech levels. I can't cover 
all strategies available to combat counterfeiting, but I can lay out what we've accomplished in 
our design. 

At the high-tech level, we have to make sure the hub can't be spoofed, that the client knows if 
some other source is sending data and pretending to be the hub. This is a problem any secure 
distributed system must address, and a number of successful peer-to-peer systems have 
already led the way in solving this problem. Red Rover can adopt one of these solutions for the 
relationship between the hub and clients. This aspect of Red Rover does not need to be novel. 

Addressing this question for the low-tech relationship is far more interesting. An alert 
subscriber will know, to the second, what time she is to receive email notifications. This 
information is sent and recorded using an SSL-like solution, so if that time (and perhaps other 
clues) isn't present on the email, the subscriber will know to ignore any IP addresses encoded 
in it. 

Skeptic:  

Ah, but what stops the government from intercepting the IP list, altering it to reflect different 
IP addresses, and then forwarding it to the subscriber? After all, you don't use standard 
encryption and digest techniques to secure the list. 

Red Rover:  

First, we have taken many precautions to make it hard for surveillance personnel to actually 
notice or suspect the email containing the IP list. Second, remember that we told the 
subscribers to choose web-based email accounts outside the boundaries of the censoring 
country. If the email is waiting at a web-based site in the United States, the censoring 
government would have to intercept a message during the subscriber's download, determine 
that it contained a Red Rover IP address (which we've encoded in a low-tech manner to make 
it hard to recognize), substitute their own encoded IP address, and finish delivering the 
message to the subscriber. All this would have to be done in the amount of time it takes for 
mail to download, so as not to make the subscriber suspicious. It would be statistically 
incredible to expect such an event to occur. 

Skeptic:  

But the government could hack the web-based mail site and change the email content without 
the subscriber knowing. So there wouldn't be any delay. 

Red Rover:  

Even if this happened, the government wouldn't know when to expect the email to arrive, 
since this information was passed from the subscriber to the client via SSL. And if the 
government examined and counterfeited every unread email waiting for the subscriber, the 
subscriber would know from our instructions that any email which is not received 
"immediately" (in some sense based on experience) should be distrusted. It is in the 
subscriber's interest to be prompt in retrieving the web pages from the clients anyway, since 
the longer the delay, the greater the chance that the client's IP address will become inactive. 
Still, stagnant IP lists are far more likely to be useless than dangerous. 

Skeptic:  

A social engineering question, then. Why would anyone want to run this client? They don't get 
free music, and it doesn't phone E.T. Aren't you counting a little too much on people's good 
will to assume they'll sacrifice their valuable RAM for advancing human rights? 
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Red Rover:  

This has been under some debate. Options always include adding file server functions or IRC 
capability to entice users into spending a lot of time at the sponsor's site. Another thought was 
letting users add their own, client- specific customized page to the HTML offering, one which 
would appear last so as not to interfere with the often slow downloading of the primary 
content by subscribers in countries with stiff Internet and phone rates and slow modems. This 
customized page could be pictures of their dog, editorials, or, sadly but perhaps crucially, 
advertising. Companies could even pay Red Rover users to post their ads, an obvious 
incentive. But many team members are rightfully concerned that if Red Rover becomes 
viewed as a mercantile tool, it would repel both subscribers and client users. These 
discussions continue. 

Skeptic:  

Where does the name " Red Rover" come from? 

Red Rover:  

Red Rover is a playground game analogous to the strategy we adopted for our anti-censorship 
system. Children form two equal lines, facing each other. One side invites an attacker from the 
other, yelling to the opposing line: "Red Rover, Red Rover, send Lena right over." Lena then 
runs at full speed at the line of children who issued the challenge, and her goal is to break 
through the barrier of joined arms and cut the line. If Lena breaks through, she takes a child 
back with her to her line; if she fails, she joins that line. The two sides alternate challenges 
until one of the lines is completely absorbed by the other. 

It is a game, ultimately, with no losers. Except, of course, the kid who stayed too rigid when 
Lena rammed him and ended up with a dislocated shoulder. 

We hope Red Rover leads to similar results. 
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Chapter 11. Publius 
Marc Waldman, Lorrie Faith Cranor, and Avi Rubin, AT&T Labs-Research 

Publius is a web-based publishing system that resists censorship and tampering. A file published with 
Publius is replicated across many servers, making it very hard for any individual or organized group to 
destroy the document. Distributing the document also provides resistance to so-called distributed 
denial of service (DDoS) attacks, which have been used in highly publicized incidents to make a 
resource unavailable. Another key feature of Publius is that it allows an individual to publish a 
document without providing information that links the document to any particular computer. 
Therefore, the publisher of a document can remain anonymous. 

Publius has been designed with ease of access for end users in mind. HTML pages, images, or any 
other type of file can be published with the system. Documents published with Publius can be read 
with a standard web browser in combination with an HTTP proxy that can run locally or remotely. 
Files published with Publius are assigned a URL that can be entered into a web browser or embedded 
in a hyperlink. 

The current architecture of the World Wide Web does not lend itself easily to censorship-resistant, 
anonymous publication. Published documents have a URL that can be traced back to a specific 
Internet host and usually a specific file owner. However, there are many reasons why someone might 
wish to publish something anonymously. Among the nobler of these reasons is political dissent or 
"whistleblowing." It is for these reasons that we designed Publius. Chapter 12 covers Free Haven, a 
project with some similarities, and provides more background on anonymity. 

Anonymous publishing played an important role in the early history of the United States. James 
Madison, Alexander Hamilton, and John Jay collectively wrote the Federalist Papers under the pen 
name Publius. This collection of 85 articles, published pseudonymously in New York State newspapers 
from October 1787 through May 1788, was influential in convincing New York voters to ratify the 
proposed United States Constitution. It is from these distinguished authors that our system gets its 
name. 

Like many of the other systems in this book, Publius is seen from the outside as a unified system that 
works as a monolithic service, not as a set of individual Internet hosts. However, Publius consists of a 
set of servers that host content. These servers are collectively referred to as Publius Servers. The 
Publius Servers are independently owned and operated by volunteers located throughout the world. 
The system resists attack because Publius as a whole is robust enough to continue serving files even 
when many of the hosts go offline. 

Publius uses two main pieces of software. The first is the server software, which runs on every Publius 
server. The second piece of software is the client software. This software consists of a special HTTP 
proxy that interfaces with a web browser and allows an individual to publish and retrieve files. In this 
chapter we use the terms proxy and client software interchangeably, as they both refer to the HTTP 
proxy. In order to use Publius an individual runs the proxy on their computer or connects to a proxy 
running on someone else's computer. 

11.1 Why censorship-resistant anonymous publishing? 

The publication of written words has long been a tool for spreading new (and sometimes 
controversial) ideas, often with the goal of bringing about social change. Thus the printing press, and 
more recently, the World Wide Web, are powerful revolutionary tools. But those who seek to suppress 
revolutions possess powerful tools of their own. These tools give them the ability to stop publication, 
destroy published materials, or prevent the distribution of publications. And even if they cannot 
successfully censor the publication, they may intimidate and physically or financially harm the author 
or publisher in order to send a message to other would-be revolutionaries that they would be well 
advised to consider an alternative occupation. Even without a threat of personal harm, authors may 
wish to publish their works anonymously or pseudonymously because they believe they will be more 
readily accepted if not associated with a person of their gender, race, ethnic background, or other 
characteristics. 
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11.1.1 Publius and other systems in this book 

The focus of this book is peer-to-peer systems. While Publius is not a pure peer-to-peer system, it does 
share many characteristics with such systems. In addition, Publius provides unique and useful 
solutions to many of the problems faced by users and designers of such systems. 

Distributed publishing tools and peer-to-peer file-sharing tools are still in their infancy. Many of these 
systems are changing very rapidly - each system continually gains new features or improves on old 
ones. This complicates any sort of direct comparison. However, in certain areas Publius does have 
some advantages over other file-sharing systems described in this book, such as Gnutella and Freenet. 
This is not to say that Publius is necessarily better than other systems. Indeed, in certain areas other 
systems offer marked advantages over Publius. Each system has its strengths and weaknesses. 

One of Publius' strengths is that it allows a publisher (and only the publisher) to update previously 
published material in such a way that anyone retrieving the old version is automatically redirected to 
the newly updated document. Publius also allows a publisher to delete a published document from all 
of the servers it is stored on. Safeguards are in place to prevent anyone but the publisher from deleting 
or updating the published document. A tamper-check mechanism is built into the Publius URL. This 
allows the Publius client to verify that a retrieved document has not been tampered with. 

Publius is one of a handful of file-sharing and publishing systems that are entirely implemented on 
top of the standard HTTP protocol. This makes Publius portable and simplifies installation as it easily 
interfaces with a standard web browser. By portable we mean that Publius can run on a variety of 
different operating systems with little or no modification. Of course, as with everything in life, there is 
a trade-off. Implementing Publius over HTTP means that Publius is not as fast as it could be. There is 
a slight overhead in using HTTP as opposed to implementing the communication between server and 
browser directly. 

11.2 System architecture 

The Publius system consists of a collection of web servers called Publius Servers. The list of web 
servers, called the Publius Server List, is known to all Publius clients. An individual can publish a 
document using the client software. 

The first part of the publication process involves using the Publius client software to encrypt the 
document with a key. This key is split into many pieces, called shares, such that only a small number 
of shares are required to form the key. For example, the key can be split into 30 shares such that any 3 
of these shares can be used to form the key. But anyone combining fewer than 3 shares has no hint as 
to the value of the key. The choice of 3 shares is arbitrary, as is the choice of 30. The only constraint is 
that the number of shares required to form the key must be less than or equal to the total number of 
shares. 

The client software then chooses a large subset of the servers listed in the Publius Server List and 
uploads the document to each one. It places the complete encrypted document and a single share on 
each server; each server has a different share of the key. The encrypted file and a share are typically 
stored on at least 20 servers. Three shares from any of these servers are enough to form the key. 

A special URL called the Publius URL is created for each published document. The Publius URL is 
needed to retrieve the document from the various servers. This URL tells the client software where to 
look for the encrypted document and associated shares. 

Upon receiving a Publius URL, the client software randomly retrieves three shares from the servers 
indicated by the URL. The shares are then combined to form the key. The client software also retrieves 
one copy of the encrypted file from one of the servers. The key is used to decrypt the file and a tamper 
check is then performed. If the document successfully passes the tamper check, it is displayed in the 
browser; otherwise, a new set of shares and a new encrypted document are retrieved from another set 
of servers. 
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The encryption prevents Publius server administrators from reading the documents stored on their 
servers. It is assumed that if server administrators don't know what is stored on their servers they are 
less likely to censor them. Only the publisher knows the Publius URL - it is formed by the client 
software and displayed in the publisher's web browser. Publishers can do what they wish with their 
URLs. They can post them to Usenet news, send them to reporters, or simply place them in a safe 
deposit box. To protect their identities, publishers may wish to use anonymous remailers when 
communicating these URLs. 

The Publius client software is implemented as an HTTP proxy. Most web browsers can be configured 
to send web requests to an HTTP proxy, which retrieves the requested document (usually performing 
some extra service, such as caching, in the process) and returns it to the web browser. The HTTP 
proxy may be located on the user's computer or on some other computer on the Internet. In the case 
of Publius, the HTTP proxy is able to interpret Publius URLs, fetch the necessary shares and 
encrypted documents, and return a decrypted document to the user's web browser. 

11.3 Cryptography fundamentals 

Before describing the Publius operations, we briefly introduce some cryptographic topics that are 
essential to all Publius operations. For more information about these cryptographic topics see an 
introductory cryptography text.[1] 

[1] See, for example, Bruce Schneier (1996), Applied Cryptography Protocols, Algorithms, and Source Code in C, 
2nd Edition, John Wiley & Sons. 

11.3.1 Encryption and decryption 

Encryption is the process of hiding a message's true content. An unencrypted message is called a 
plaintext , while a message in encrypted form is called a ciphertext . 

A cipher is a function that converts plaintext to ciphertext or ciphertext back to plaintext. Rijndael, the 
Advanced Encryption Standard, is an example of a well-known cipher. Decryption is the process of 
converting ciphertext back to plaintext. The encryption and decryption processes require a key. Trying 
to decrypt a message with the wrong key results in gibberish, but when the correct key is used, the 
original plaintext is revealed. Therefore it is important to keep the key secret and to make sure it is 
virtually impossible for an adversary to guess. 

Ciphers that use the same key to encrypt and decrypt messages are called symmetric ciphers . These 
are the type of ciphers used in Publius. 

11.3.2 Secret sharing 

A message can be divided into a number of pieces in such a way that combining only a fraction of 
those pieces results in the original message. Any combination of pieces is sufficient, so long as you 
have the minimum number required. 

An algorithm that divides data in such a manner is called a secret sharing algorithm. The secret 
sharing algorithm takes three parameters: the message to divide, the number of pieces to divide the 
message into, and the number of pieces needed to reconstruct the message. The individual pieces are 
called shares. Publius uses Shamir's secret sharing algorithm. Other secret sharing algorithms also 
exist. 

11.3.3 Hash functions 

A hash function takes a variable-length input and returns a fixed-length output. Publius uses the 
cryptographically strong hash functions MD5 and SHA-1. Cryptographically strong hash functions 
possess two properties. First, the hash function is hard to invert - that is, if someone is told the hash 
value, it is hard to find a message that produces that hash value. Second, it is hard to find two 
messages that produce the same hash value. By hard we mean that it is not feasible, even using 
massive amounts of computing power, to accomplish the specified task. 

The slightest change to a file completely changes the value of the hash produced. This characteristic 
makes hash functions ideal for checking whether the content of a message has been changed. The 
MD5 hash function produces a 128-bit output and SHA-1 produces a 160-bit output. 
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11.4 Publius operations 

Given the previous description of Publius-related cryptographic functions, we now describe the 
Publius operations Publish, Retrieve, Update, and Delete. 

11.4.1 Publish operation 

Suppose that we wish to publish the file homepage.html with Publius. The accompanying sidebar 
outlines the steps the Publius proxy follows to publish a file. First, a key is created from the MD5 and 
SHA-1 hash of the contents of the file homepage.html. This key is then used to encrypt the file, 
producing a new file we will call homepage.enc. Using Shamir's secret sharing algorithm, the key is 
split into 30 shares such that any 3 of these shares can be used to reconstruct the key. The first share 
is named Share_1, the second Share_2, and so on. The MD5 hash of the contents of homepage.html 
and Share_1 is calculated. This MD5 hash results in a 128-bit number. An operation is performed on 
this number to determine an index into the Publius Server List. The Publius Server List is essentially 
just a numbered table of web servers, each running the Publius server software. The index is used to 
locate a particular server. For instance, the index value 5 corresponds to the 5th entry in the Publius 
Server List. You will recall that all Publius client software has the same list, and therefore the 5th server 
is the same for everyone. 

For the sake of argument let's assume that our index number is 5 and that the 5th server is named 
www.nyu.edu. The proxy now attempts to store the file homepage.enc and Share_1 on 
www.nyu.edu. The files are stored in a directory derived from the previously calculated MD5 hash of 
homepage.html and Share_1. The file homepage.enc is stored in a file named file and Share_1 is 
stored in a file named share. These same two names are used for every piece of content published with 
Publius, regardless of the type of the file. One of the reasons for storing homepage.enc as file rather 
than as homepage.enc is that we don't want to give anyone even a hint as to the type of file being 
stored. The neutrality of the name, along with the use of encryption so that no one can read the file 
without the key, allows Publius server administrators to plausibly deny any knowledge of the content 
of the files being hosted on the Publius server. While each server possesses a part of the encryption 
key, it is of no value by itself for decrypting the file. We thus expect that server administrators have 
little motive to delete, and thereby censor, files stored on their servers. 

The whole process of performing the MD5 hash and storing the files on a Publius server is repeated for 
each of the 30 shares. A file is stored on a particular server only once - if Publius generates the same 
index number more than once, the corresponding share is discarded. 

Each time a file and share are stored on a Publius server, the file and share's corresponding MD5 hash 
(calculated in line 5 of Process for publishing the file homepage.html in Publius) is used in the 
formation of the Publius URL. A Publius URL has the following form: 

http://!publius!/options MD5_hash MD5_hash MD5_hash...MD5_hash  

where each MD5_hash is the hash defined in line 5 of the sidebar. Each MD5_hash is Base64-
encoded to generate an ASCII representation of the hash value. Here is an example of a Publius URL: 

http://!publius!/010310023/  
VYimRS+9ajc=B20wYdxGsPk=kMCiu9dzSHg=xPTuzOyUnNk=/  
O5uFb3KaC8I=MONUMmecuCE=P5WY8LS8HGY=KLQGrFwTcuE=/  
kJyiXge4S7g=6I7LBrYWAV0=  
 

The options part of the Publius URL is made up of several flags that specify how the proxy should 
interpret the URL. The options section includes a "do not update" flag, the number of shares needed 
to form the key, and the version number of the Publius client that published the URL. 

The version number allows us to add new features to future versions of Publius while at the same time 
retaining backward compatibility. 

 
 
 
 



Peer to Peer: Harnessing the Power of Disruptive Technologies 

 page 97

Process for publishing the file 
homepage.html in Publius 

1. Generate a key. 

2. Using the key, encrypt file homepage.html to produce homepage.enc. 

3. Perform Shamir's secret sharing algorithm on the key. This produces Share_1, 
Share_2...Share_30. Any three shares can be used to form the key. 

4. Set share to Share_1. 

5. Set h as the MD5 hash of share appended to content of file homepage.html. 

6. Set index to h mod (the number of entries in the Publius Server List). 

7. Set server to the Publius server at the location specified by index. 

8. On server : Create a directory derived from h. In this directory store the contents of 
homepage.enc into a file named file and share into a file named share. 

Repeat steps 4 through 8 once for each of the remaining shares (Share_2...Share_30), 
setting the variable share appropriately before each repetition. 

 

The update flag determines whether the update operation can be performed on the Publius content 
represented by the URL. If the update flag is 1, the retrieval of updated content may be performed 
when update URLs are discovered. If the update flag is 0, however, the client ignores update URLs 
sent by Publius servers in response to share and encrypted file requests. 

The options part of the Publius URL also includes a number that indicates the size of the Publius 
Server List at the time the file was published. The Publius Server List is not static - it can grow over 
time. Servers can be added without affecting previously published files. The index calculation 
performed on line 6 of the Publius Publish algorithm (see the sidebar Process for publishing the file 
homepage.html in Publius) depends on the size of the Publius Server List. Changes to this value 
change the computed index location. Therefore it is necessary to store this value in the URL. When 
interpreting a given Publius URL, the proxy essentially ignores all entries in the server list with index 
greater than the one stored in the Publius URL. This ensures that the proxy will calculate the correct 
index value for every server hosting the shares and encrypted file. 

11.4.2 Retrieve operation 

Upon receiving a request to retrieve a Publius URL, the proxy first breaks the URL into its MD5 hash 
components. As the size of each MD5 hash is exactly 128 bits, this is an easy task. As you may recall, 
each of these hash values determines which servers in the Publius Server List are storing the 
encrypted file and a share. In order to retrieve the encrypted file and share, the proxy randomly selects 
one of the hash values and performs the same operation performed by the Publish operation (line 6 in 
the sidebar). The value returned is used as an index into the Publius Server List, revealing the name of 
the server. The proxy retrieves the encrypted file and share file from the server. Recall that the file 
named file contains the encrypted version of the published file and the file named share contains a 
single share. In order to form the key, the proxy needs to find two additional shares. Thus, the client 
selects two other MD5 hash values randomly from the Publius URL and performs the same operation 
as before on each. This reveals two other servers that in turn lead to two more shares. The 3 shares can 
now be combined to form the key used to encrypt the file. 
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During the Publish operation, the key was broken into 30 shares. Assume that after testing each of 
these shares, the proxy ends up storing the encrypted file and a corresponding share on 20 servers. 
This means that 20 MD5 hashes appear in the Publius URL. During the retrieval process only 3 of 
these 20 shares are needed. Publius derives its fault-tolerant and censorship-resistant properties from 
the storage of these additional shares and encrypted files. By fault tolerant we mean that if for some 
reason several servers are unavailable, the proxy can still successfully retrieve the Publius document. 
In fact, if the file is stored on 20 servers, even if 17 servers are unavailable we can successfully retrieve 
the Publius document. However, if 18 Publius servers are unavailable, the Publius document cannot 
be retrieved because 2 shares are not enough to form the key needed to decrypt the content. 

The additional copies also provide censorship resistance - if several Publius server administrators 
decide to delete the encrypted files and shares corresponding to a particular Publius file, the file can 
still be retrieved if at least three servers still contain the shares and encrypted file. With Publius 
servers located throughout the world, it becomes increasingly difficult to force Publius server 
administrators to delete files corresponding to a particular Publius URL, by legal or other means. 

Many of the other systems in this book also have fault-tolerant features. However, most of these 
systems focus on maintaining a network of nodes with variable connectivity and temporary network 
addresses. Publius does not address the use of servers with temporary network addresses. 

Once the key has been reconstructed from the shares, it can be used to decrypt the file. The decrypted 
file can now be displayed in the web browser. However, just before the file is displayed in the web 
browser, a tamper check is initiated. The tamper check verifies that the file has not changed since the 
time it was initially published. The MD5 hashes stored in the URL are used to perform the tamper 
check. The hash was formed from the unencrypted file and a share - both of which are now available. 
Therefore, the client recalculates the MD5 hash of the unencrypted file and of each share (as in line 5 
in the sidebar). If the calculated hashes do not match the corresponding hashes stored in the URL, the 
file has been tampered with or corrupted. In this case, the proxy simply throws away the encrypted file 
and shares and tries another set of encrypted files and shares. If a tamper check is successfully 
performed, the file is sent to the web browser. If the proxy runs out of share and encrypted file 
combinations, a message appears in the browser stating that the file could not be retrieved. 

11.4.3 Update operation 

Files, especially web pages, change over time. An individual may find a particular web document 
interesting and add it to his collection of bookmarks or link to it from a web page. The problem with 
linking to a Publius URL is that if anyone changes the document and tries to republish it, a new 
Publius URL is generated for the document. Therefore, anyone linking to the old document may never 
learn that the document has been updated because the link or bookmark still points to the older 
Publius document. 

To remedy this situation, Publius supports an Update operation. The operation allows the publisher of 
a document to replace an older version of the Publius document with a newer one while still retaining 
the old URL. This is accomplished by allowing a Publius URL to be stored in a file called update in the 
same directory where the old version of the file resided. 

For example, let's say that one encrypted file and share are stored on http://www.nyu.edu/ in 
directory pubdir. Upon receiving the update command, the proxy contacts the server 
http://www.nyu.edu/, deletes the files named file and share from the directory pubdir, and places the 
new Publius URL in a file named update. Of course, the Update command is issued to all servers 
holding copies of the file to be updated. 

Now, whenever http://www.nyu.edu/ receives a request for the encrypted file or share in the directory 
pubdir, the server sends the new Publius URL found in the update file. If several of the queried 
Publius servers also respond with this same Publius URL, the proxy retrieves the document referenced 
by the new Publius URL. Therefore, whenever a proxy requests the old file it is automatically 
redirected to the updated version of the file. 

http://www.nyu.edu/
http://www.nyu.edu/
http://www.nyu.edu/
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Of course, we want only the publisher of the document to be able to perform the Update command. In 
order to enforce this, the Publish operation allows a password to be specified. This password is stored 
in the file password and is checked by the server during an Update operation. In order for this scheme 
to work, the password must be stored on each server so that the server can check that the password 
sent with the Update command matches the stored password. However, simply storing the password 
on the server would be dangerous, because it would permit Publius server administrators to update 
the document on all servers if they discover the corresponding URL. This is essentially a form of 
censorship, as the original file would no longer be accessible. So instead of simply storing the 
password, we store the MD5 hash of the password appended to the domain name of the particular 
server. The server stores this value in the password file associated with the particular document. The 
hash by itself provides no clues as to the actual value of the password, so it cannot be used to update 
the document on all of the servers. 

11.4.4 Delete operation 

There are circumstances in which a publisher may wish to delete a document from Publius. Publius 
therefore supports the Delete operation. Only the publisher may delete the document. The same 
password that controls the Update operation also ensures that only the publisher can perform the 
Delete operation. 

The ability to delete Publius documents gives an adversary the option of trying to force the publisher 
of a Publius document to delete it. In order to prevent this scenario, Publius provides a "do not delete" 
option during the Publish operation. This option allows someone to publish a document in such a way 
that Publius servers deny requests to delete the document. 

Of course, nothing stops a Publius server administrator from deleting the document from her own 
server, but the safeguards in this section do prevent a single person from deleting the Publius file from 
all the servers at once. 

Both the Delete and Update commands attempt to make the required changes on all of the relevant 
servers. For example, the Update command tries to update every server storing a particular document. 
However, this may not always be possible due to a server being down or otherwise unavailable. This 
could lead to an inconsistent state in which some servers are updated and others are not. Although 
Publius does not currently deal with the problem of an inconsistent state, it does report the names of 
the servers on which the operation failed. At a later time, the Update command can be executed again 
in an attempt to contact the servers that failed to get updated. The same is true for the Delete 
command. 

11.5 Publius implementation 

Publius is a working system that has been in operation since August 2000. In the following sections, 
we describe several important aspects of the implementation. As you will recall, Publius consists of 
both client and server software. All Publius servers run the server software. The client software 
consists of a special HTTP proxy that interfaces with any standard web browser. This special proxy 
handles all Publius commands and therefore interacts with the Publius servers. Upon connecting to 
the proxy, the web browser displays the Publius User Interface. This user interface is essentially an 
HTML form that allows an individual to select a Publius operation (Delete, Publish, or Update). This 
form is not required for the Retrieve operation as it is the default operation. 

11.5.1 User interface 

The web browser interface, as shown in Figure 11.1, allows someone to select the Publius operation 
(Delete, Publish, or Update) and enter the operation's required parameters such as the URL and 
password. Each Publius operation is bound to a special !publius! URL that is recognized by the proxy. 
For example, the Publish URL is http://!publius!PUBLISH. The operation's parameters are sent in 
the body of the HTTP POST request to the corresponding !publius! URL. The proxy parses the 
parameters and executes the corresponding Publius operation. An HTML message indicating the 
success or failure of the operation is returned. If the Retrieve operation is requested and is successful, 
the requested document is displayed in a new web browser window. 
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Figure 11.1. User interface for publishing a Publius document 

 

 

11.5.1.1 Server software 

To participate as a Publius server, one needs to install the Publius CGI script on a system running an 
HTTP server. The client software communicates with the server by executing an HTTP POST 
operation on the URL corresponding to the server's CGI script. The requested operation (Retrieve, 
Update, Publish, or Delete), the filename, the password, and any other required information is passed 
to the server in the body of the POST request. 

11.5.1.2 Client software 

The client software consists of the special HTTP proxy. The proxy transparently sends non-Publius 
URLs to the appropriate servers and passes the returned content back to the browser. Upon receiving 
a request for a Publius URL, the proxy retrieves the encrypted document and shares, as described in 
Section 11.4.2 earlier. The proxy also handles the Delete, Publish, and Update commands. 

11.6 Publius MIME type 

The filename extension of a particular file usually determines the way in which a web browser or other 
software interprets the file's content. For example, a file that has a name ending with the extension 
.html usually contains HTML. Similarly, a file that has a name ending with the extension .jpg usually 
contains a JPEG image. The Publius URL does not retain the file extension of the file it represents. So 
the Publius URL gives no hint to the browser, or anyone else for that matter, as to the type of file it 
points to. However, in order for the browser to correctly interpret the byte stream sent to it by the 
proxy, the proxy must properly identify the type of data it is sending. Therefore, before publishing a 
file, Publius prepends the first three-letters of the file's name extension to the file. The file is then 
published as described earlier, in Section 11.4.1. When the proxy is ready to send the requested file 
back to the browser, the three-letter extension is removed from the file and checked to determine an 
appropriate MIME type for the document. The MIME type is sent in an HTTP Content-type header. If 
the three-letter extension is not helpful in determining the MIME type, a default type of text/plain is 
sent for text files. The default MIME type for binary files is octet/stream. 
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11.7 Publius in a nutshell 
Documents are published in a censorship-resistant manner  

This is partially achieved by storing the encrypted document and a share on a large number of 
servers. 

Retrieved documents can be tamper-checked  

The Publius URL is made up of MD5 hashes that allow the document to be checked for 
changes since publication. 

Published documents can be updated  

Any requests for the previous document are redirected to the new document. 

Published documents can be securely deleted  

A password mechanism is utilized for the Delete and Update commands. 

A document can be anonymously published  

Once the document is published there is no way to directly link the document to the publisher. 
However, indirect mechanisms of identification may exist, so one may wish to use an 
anonymizing proxy or publish the file in a cyber café or library. 

The stored document is resistant to distributed denial of service attacks  

The published file can still be retrieved even if a large number of servers are unavailable. 

The Publius web site is http://www.cs.nyu.edu/waldman/publius. The source code, a technical paper 
describing Publius, and instructions for using Publius are available at this site. 

http://www.cs.nyu.edu/waldman/publius
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Chapter 12. Free Haven 
Roger Dingledine, Reputation Technologies, Inc., Michael J. Freedman, MIT, and David Molnar, 
Harvard University 

The Free Haven Project is dedicated to designing a system of anonymous storage that resists the 
attempts of powerful adversaries to find or destroy any stored data. Our goals include the following: 

Anonymity  

We try to meet this goal for all parties: the publishers that insert documents, the readers that 
retrieve documents, and the servers that store documents. 

Persistence  

The publisher of a document - not the servers holding the document - determines its lifetime. 

Flexibility  

The system functions smoothly as servers are added or remove themselves. 

Accountability  

We apply a reputation system to servers that attempts to limit the damage done by those that 
misbehave. 

In this chapter, we'll show how Free Haven tries to meet these goals. We spend a particularly large 
amount of time on anonymity. It is not adequate to speak of "anonymity" as a monolithic concept. In 
Section 12.2, we'll enumerate the many different kinds of anonymity that are important to protect 
participants in the system. 

Free Haven differs from the other projects in this book in the wide range of difficult goals we have 
taken on. We try to assure anonymity, server accountability, and persistent storage for data 
independent of its popularity, all at the same time. Here are some comparisons to other projects: 

Gnutella  

The strength of Gnutella is its extremely flexible network design. But when a search is 
performed, servers respond with an external IP address or URL where the user can download 
the document. Since this actual retrieval is done without any privacy protection, using 
Gnutella is not a good choice if publishers or readers want anonymity. Further, documents in 
the Gnutella network last only as long as their host servers; when a user logs out for the night, 
all of his files leave with him. 

Freenet and Mojo Nation  

These systems make files highly accessible and offer some level of anonymity. But since the 
choice to drop a file is a purely local decision, and since files that aren't requested for some 
time tend to disappear automatically, these systems don't guarantee a specified lifetime for a 
document. Indeed, we expect that Freenet will provide a very convenient service for porn and 
popular audio files, but anything less popular will be driven off the system. 

Publius  

This project is closest to ours, because it addresses file storage rather than easy accessibility. 
But Publius provides no smooth decentralized support for adding new servers and excising 
dead or malicious servers. More importantly, Publius provides no accountability - there is no 
way to prevent publishers from entirely filling the system with garbage data. 

Currently, Free Haven sacrifices efficiency and convenience to achieve its design requirements. Free 
Haven is designed more for anonymity and persistence of documents than for frequent querying. We 
expect that interesting material will be retrieved from the system and published in a more accessible 
fashion (such as in Freenet or normal web pages). Then the document in Free Haven will only need to 
be accessed if the other sources are shut down or the reader requires stronger anonymity. For more 
discussion of such "gatewaying" issues, refer to Chapter 19. 
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12.1 Privacy in data-sharing systems 

Privacy is a term with positive connotations that every person can appreciate. One key way to achieve 
privacy, however - anonymity - is widely misunderstood both in daily life and in computer networking. 
The media and politicians stress socially disapproved activities (such as the exchange of unauthorized 
music files or erotic pictures involving children) and ignore the important contributions that 
anonymity provides. Anonymity is used on an everyday basis in forums ranging from radio shows to 
Usenet newsgroups, by people who suffer from child abuse, drug dependency, or other social 
problems. 

Anonymous publication and storage services allow individuals to speak freely without fear of 
persecution. Political dissidents must publish their views in order to reach enough people for their 
criticisms of a regime to be effective, yet they and their readers require anonymity at the same time. 
Less extreme examples involve cases in which a large and powerful private organization attempts to 
silence its critics by attacking either the critics themselves or those who make the criticism publicly 
available. 

Developers and potential users of other peer-to-peer systems should be interested in the techniques 
we are developing to preserve anonymity in Free Haven, because they may prove useful in protecting 
the privacy of users in other systems as well. Many people would like to participate in communities 
and share information without revealing who they are. Their reasons may range from the trivial - such 
as avoiding spam - to deep social concerns. It is time to face these concerns directly so solutions can be 
designed fundamentally into peer-to-peer systems. 

Peer-to-peer systems that attempt to address anonymity are just starting to be deployed, and the exact 
requirements and design choices are not yet clear. Recent events have highlighted some shortcomings 
of current systems. For instance, the limitations of Gnutella were dramatized by the Gnutella Wall of 
Shame, where someone lured readers to a web site by claiming to offer child pornography and then 
published each visitor's IP address. While Napster allowed people with MP3 files to find each other, it 
also made it easy for the band Metallica to find people who were offering unauthorized copies of 
Metallica songs and force them off the system. 

These shortcomings cause people to look toward a new generation of anonymous publication services 
that address anonymity. In developing Free Haven, we hope to clarify some of the requirements for 
such systems and highlight the design choices. 

12.1.1 Reliability with anonymity 

In the physical world, people use safety deposit boxes to protect valuable items. Everything from 
passports to house titles to krugerrands - if it's important, it goes in the box, which is kept at the local 
bank. The bank has armed guards, smiling tellers, and a history going back to the Knights Templar. 
Now suppose someone suggested to you that instead of going to the bank, it would be a better idea to 
hand your gold bars to the next guy on the street and ask him to "just hold these for a bit." You'd look 
at a person with such notions as though he had three heads... yet in some sense, this is exactly what 
distributed peer-to-peer file- sharing systems like Free Haven ask you to do. 

The critical point is that for a safety deposit box, the only thing that really matters is reliability and 
availability: can you get your items when you want them? The rest is irrelevant. If the guy on the street 
could guarantee that you'll get your gold back and follow through, he would be "just as good" as the 
bank. In fact, if you're interested in protecting your privacy, the guy on the street may be better - he 
doesn't know or care who you really are. Of course, in the physical world, it's still a bad idea to give 
gold bars to random people on the street. Online, however, cryptography allows things to work out 
differently. 

Many systems in addition to Free Haven need reliability, particularly peer-to-peer systems that ask 
people to share resources. When offering and retrieving resources, users want to preserve their 
privacy. When evaluating whether to transfer custody of their resources to another party on the 
system, users want to know whether that party can be trusted. 
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Initially these goals seem mutually exclusive, but the solution is to allow users to have pseudonyms , 
and to assign a reputation to each pseudonym. Free Haven differs from other systems in that the 
servers in the Free Haven system are known only by their pseudonyms, and we provide an automated 
system to track reputations (honesty and performance) for each server. A server's reputation 
influences how much data it can store in Free Haven and provides an incentive to act correctly. 
Reputation can be a complex matter - just think of all the reader reviews and "People also bought..." 
ratings on the Amazon.com retail site - so we'll leave its discussion to Chapter 16, and Chapter 17. 
Establishing trust through the use of pseudonyms is covered in Chapter 15. 

What lets a malicious adversary find a person in real life? One way is to know his or her true name , a 
term first used in a short story by fiction author Vernor Vinge[1] and popularized by Tim May.[2] The 
true name is the legal identity of an individual and can be used to find an address or other real-life 
connection. Obviously, a pseudonym should not be traceable to a true name. 

[1] Vernor Vinge (1987), True Names... and Other Dangers, Baen. 

[2] Tim May, Cyphernomicon, http://www-swiss.ai.mit.edu/6805/articles/crypto/cypherpunks/cyphernomicon. 

As an author can use a pseudonym to protect his or her true name, in a computerized storage system a 
user can employ a pseudonym to protect another form of identity called location . This is an IP 
address or some other aspect of the person's physical connection to the computer system. In a 
successful system, a pseudonym always reflects the activities of one particular entity - but no one can 
learn the true name or location of the entity. The ability to link many different activities to a 
pseudonym is the key to supporting reputations. 

12.2 Anonymity for anonymous storage 

The word " anonymous" can mean many different things. Indeed, some systems claim "anonymity" 
without specifying a precise definition. This introduces a great deal of confusion when users are trying 
to evaluate and compare publishing systems to understand what protections they can expect from 
each system. 

A publishing situation creates many types of anonymity - many requirements that a system has to 
meet in order to protect the privacy of both content providers and users. Here, we'll define the author 
of a document as whoever initially created it. The author may be the same as or different from the 
publisher, who places the document into Free Haven or another storage system. Documents may have 
readers, who retrieve the document from the system. And many systems, including Free Haven, have 
servers, who provide the resources for the system, such as disk space and bandwidth. 

Free Haven tries to make sure that no one can trace a document back to any of these people - or trace 
any of them forward to a document. In addition, we want to prevent adversaries who are watching 
both a user and a document from learning anything that might convince them that the user is 
connected to that document. Learning some information that might imply a connection allows 
"linking" the user to that action or document. Thus, we define the following types of anonymity: 

Author-anonymity  

A system is author-anonymous if an adversary cannot link an author to a document. 

Publisher-anonymity  

A system is publisher-anonymous if it prevents an adversary from linking a publisher to a 
document. 

Reader-anonymity  

To say that a system has reader-anonymity means that a document cannot be linked with its 
readers. Reader-anonymity protects the privacy of a system's users. 

Server-anonymity  

Server-anonymity means no server can be linked to a document. Here, the adversary always 
picks the document first. That is, given a document's name or other identifier, an adversary is 
no closer to knowing which server or servers on the network currently possess this document. 

http://www-swiss.ai.mit.edu/6805/articles/crypto/cypherpunks/cyphernomicon
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Document-anonymity  

Document-anonymity means that a server does not know which documents it is storing. 
Document-anonymity is crucial if mere possession of some file is cause for action against the 
server, because it provides protection to a server operator even after his or her machine has 
been seized by an adversary. This notion is sometimes also known as "plausible deniability," 
but see below under query-anonymity. There are two types of document-anonymity: isolated-
server and connected-server. 

Passive-server document-anonymity means that if the server is allowed to look only at the 
data that it is storing, it is unable to figure out the contents of the document. This can be 
achieved via some sort of secret sharing mechanism. That is, multiple servers split up either 
the document or an encryption key that recreates the document (or both). An alternative 
approach is to encrypt the document before publishing, using some key which is external to 
the server - Freenet takes this approach. Mojo Nation takes a different approach to get the 
same end: it uses a "two-layer" publishing system, in which documents are split up into 
shares, and then a separate "share map" is similarly split and distributed to participants called 
content trackers . In this way, servers holding shares of a document cannot easily locate the 
share map for that document, so they cannot determine which document it is. 

Active-server document-anonymity refers to the situation in which the server is allowed to 
communicate and compare data with all other servers. Since an active server may act as a 
reader and do document requests itself, active-server document-anonymity seems difficult to 
achieve without some trusted party that can distinguish server requests from "ordinary" 
reader requests. 

Query-anonymity  

Query-anonymity means that the server cannot determine which document it is serving when 
satisfying a reader's request. A weaker form of query-anonymity is server deniability - the 
server knows the identity of the requested document, but no third party can be sure of its 
identity. Query-anonymity can provide another aspect of plausible deniability. 

12.2.1 Partial anonymity 

Often an adversary can gain some partial information about the users of a system, such as the fact that 
they have high-bandwidth connections or all live in California. Preventing an adversary from 
obtaining any such information may be impossible. Instead of asking "Is the system anonymous?" the 
question shifts to "Is it anonymous enough?" 

We might say that a system is partially anonymous if an adversary can only narrow down a search for 
a user to one of a "set of suspects." If the set is large enough, it is impractical for an adversary to act as 
if any single suspect were guilty. On the other hand, when the set of suspects is small, mere suspicion 
may cause an adversary to take action against all of them. 

12.3 The design of Free Haven 

Free Haven offers a community of servers called the servnet. Despite the name, all servers count the 
same, and within the servnet Free Haven is a peer-to-peer system. There are no "clients" in the old 
client/server sense; the closest approximation are users looking for files and potential publishers. 
Users query the entire servnet at once, not any single server in particular. Potential publishers do 
convince a single server to publish a document, but the actual publishing of a document is done by a 
server itself in a peer-to-peer fashion. 

All of these entities - server, reader, and publisher - make up the Free Haven players. Thanks to 
pseudonymity, nobody knows where any server is located - including the one they use as their entry 
point to the system. Users query the system via broadcast. 

Servers don't have to accept just any document that publishers upload to them. That would permit 
selfish or malicious people to fill up the available disk space. Instead, servers form contracts to store 
each other's material for a certain period of time. 
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Successfully fulfilling a contract increases a server's reputation and thus its ability to store some of its 
own data on other servers. This gives an incentive for each server to behave well, as long as cheating 
servers can be identified. We illustrate a technique for identifying cheating servers in Section 12.3.9. 
In Section 12.3.11, we discuss the system that keeps track of trust in each server. 

Some of these contracts are formed when a user inserts new data into the servnet through a server she 
operates. Most of them, however, are formed when two servers swap parts of documents ( shares) by 
trading. Trading allows the servnet to be dynamic in the sense that servers can join and leave easily 
and without special treatment. To join, a server starts building up a reputation by storing shares for 
others - we provide a system where certain servers can act as introducers in order to smoothly add 
new servers. To leave, a server trades away all of its shares for short-lived shares, and then waits for 
them to expire. The benefits and mechanisms of trading are described later in Section 12.3.7. 

The following sections explain how the design of Free Haven allows it to accomplish its goals. Section 
12.3.1 describes the design of the Free Haven system and the operations that it supports, including the 
insertion and retrieval of documents. We describe some potential attacks in Section 12.4 and show 
how well the design does (or does not) resist each attack. We then compare our design to other 
systems aimed at anonymous storage and publication using the kinds of anonymity described in 
Section 12.5, allowing us to distinguish systems that at first glance look very similar. We conclude with 
a list of challenges for anonymous publication and storage systems, each of which reflects a limitation 
in the current Free Haven design. 

12.3.1 Elements of the system 

This chapter focuses on Free Haven's publication system, which is responsible for storing and serving 
documents. Free Haven also has a communications channel, which is responsible for providing 
confidential and anonymous communications between parties. Since this communications channel is 
implemented using preexisting systems that are fairly well known in the privacy community, we won't 
discuss it here. On the other hand, the currently available systems are largely insufficient for our 
accountability requirements; see Chapter 16. 

The agents in our publication system are the author, publisher, server, and reader. As we stated in 
Section 12.2, authors are agents that produce documents and wish to store them in the service, 
publishers place the documents in the storage system, servers are computers that store data for 
authors, and readers are people who retrieve documents from the service. 

These agents know each other only by their pseudonyms and communicate only using the secure 
communications channel. Currently, the pseudonyms are provided by the Cypherpunks remailer 
network,[3] and the communications channel consists of remailer reply blocks provided by that 
network. Each server has a public key and one or more reply blocks, which together can be used to 
provide secure, authenticated, pseudonymous communication with that server. Every machine in the 
servnet has a database that contains the public keys and reply blocks of other servers in the servnet. 

[3] David Mazieres and M. Frans Kaashoek (1998), "The Design and Operation of an E-mail Pseudonym Server," 
5th ACM Conference on Computer and Communications Security. 

As we said in Section 12.3, documents are split into pieces and stored on different servers; each piece 
of a document is called a share. Unlike Publius or Freenet, servers in Free Haven give up something 
(disk space) and get other servers' disk space in return. In other words, you earn the right to store your 
data on the rest of the servnet after you offer to store data provided by the rest of the servnet. 

The servnet is dynamic: shares move from one server to another every so often, based on each server's 
trust of the others. The only way to introduce a new file into the system is for a server to use (and thus 
provide) more space on its local system. This new file will migrate to other servers by the process of 
trading. 

Publishers assign an expiration date to documents when they are published; servers make a promise 
to keep their shares of a given document until its expiration date is reached. To encourage honest 
behavior, some servers check whether other servers "drop" data early and decrease their trust of such 
servers. This trust is monitored and updated by use of a reputation system. Each server maintains a 
database containing its perceived reputation of the other servers. 
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12.3.2 Storage 

When an author (call her Alice) wishes to store a new document in Free Haven, she must first identify 
a Free Haven server that's willing to store the document for her. Alice might do this by running a 
server herself. Alternatively, some servers might have public interfaces or publicly available reply 
blocks and be willing to publish data for others. 

12.3.3 Publication 

To introduce a file f into the servnet, the publishing server first splits it into shares. Like the Publius 
algorithm described in Chapter 11, we use an algorithm that creates a large number (n) of shares but 
allows the complete document to be recreated using a smaller number (k) of those shares. We use 
Rabin's information dispersal algorithm (IDA)[4] to break the file into shares f1...fn. (For any integer i, 
the notation fi indicates share i of document f.) 

[4] Michael O. Rabin (1989), "Efficient Dispersal of Information for Security, Load Balancing, and Fault 
Tolerance," Journal of the ACM, vol. 36, no. 2, pp. 335-348. 

The server then generates a key pair (PKdoc,SKdoc), constructs and signs a data segment for each 
share, and inserts these shares into its local server space. Attributes in each share include a 
timestamp, expiration information, hash(PKdoc) (a message digest or hash of the public key from the 
key pair[5]), information about share numbering, and the signature itself. 

[5] Chapter 15 describes the purpose of message digests. Briefly, the digest of any data item can be used to prove 
that the data item has not been modified. However, no one can regenerate the data item from the digest, so the 
data item itself remains private to its owner. 

The robustness parameter k should be chosen based on some compromise between the importance of 
the file and the size and available space. A large value of k relative to n makes the file more brittle, 
because it will be unrecoverable after a few shares are lost. On the other hand, a smaller value of k 
implies a larger share size, since more data is stored in each share. 

We maintain a content-neutral policy toward documents in the Free Haven system. That is, each 
server agrees to store data for the other servers without regard for the legal or moral issues for that 
data in any given jurisdiction. For more discussion of the significant moral and legal issues that 
anonymous systems raise, see the first author's master's degree thesis.[6] 

[6] Roger Dingledine (2000), The Free Haven Project, MIT master's degree thesis, 
http://freehaven.net/papers.html. 

12.3.4 Retrieval 

Documents in Free Haven are indexed by the public key PKdoc from the key pair that was used to sign 
the shares of the document. Readers must locate (or be running) a server that performs the document 
request. The reader generates a key pair (PKclient,SKclient) for this transaction, as well as a one-time 
remailer reply block. The servnet server broadcasts a request containing a message digest or hash of 
the document's public key, hash(PKdoc), along with the client's public key, PKclient, and the reply 
block. This request goes to all the other servers that the initial server knows about. These broadcasts 
can be queued and then sent out in bulk to conserve bandwidth. 

Each server that receives the query checks to see if it has any shares with the requested hash of PKdoc. 
If it does, it encrypts each share using the public key PKclient enclosed in the request and then sends 
the encrypted share through the remailer to the enclosed address. These shares will magically arrive 
out of the ether at their destination; once enough shares arrive (k or more), the client recreates the file 
and is done. 

12.3.5 Share expiration 

Each share includes an expiration date chosen at share creation time. This is an absolute (as opposed 
to relative) timestamp indicating the time after which the hosting server may delete the share with no 
ill consequences. Expiration dates should be chosen based on how long the publisher wants the data to 
last; the publisher has to consider the file size and likelihood of finding a server willing to make the 
trade. 

http://freehaven.net/papers.html
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By allowing the publisher of the document to set its expiration time, Free Haven distinguishes itself 
from related works such as Freenet and Mojo Nation that favor frequently requested documents. We 
think this is the most useful approach to a persistent, anonymous data storage service. For example, 
Yugoslav phone books are currently being collected "to document residency for the close to one 
million people forced to evacuate Kosovo";[7] those phone books might not have survived a popularity 
contest. The Free Haven system is designed to provide privacy for its users. Rather than being a 
publication system aimed at convenience like Freenet, it is designed to be a private, low-profile 
storage system. 

[7] University of Michigan News and Information Services, "Yugoslav Phone Books: Perhaps the Last Record of a 
People," http://www.umich.edu/~newsinfo/Releases/2000/Jan00/r012000e.html. 

12.3.6 Document revocation  

Some publishing systems, notably Publius, allow for documents to be "unpublished" or revoked. 
Revocation has some benefits. It allows the implementation of a read/write filesystem, and published 
documents can be updated as newer versions became available. 

Revocation could be implemented by allowing the author to come up with a random private value x 
and then publishing a hash of it inside each share. To revoke the document, the author could 
broadcast his original value x to all servers as a signal to delete the document. 

On the other hand, revocation allows new attacks on the system. Firstly, it complicates accountability. 
Revocation requests may not reach all shares of a file, due either to a poor communication channel or 
to a malicious adversary who sends unpublishing requests only to some members of the servnet. 
Secondly, authors might use the same hash for new shares and thus "link" documents. Adversaries 
might do the same to make it appear that the same author published two unrelated documents. 
Thirdly, the presence of the hash in a share assigns "ownership" to a share that is not present 
otherwise. An author who remembers his x has evidence that he was associated with that share, thus 
leaving open the possibility that such evidence could be discovered and used against him later. 

One of the most serious arguments against revocation was raised by Ross Anderson.[8] If the capability 
to revoke exists, an adversary has incentive to find who controls this capability and threaten or torture 
him until he revokes the document. 

[8] Ross Anderson, "The Eternity Service," http://www.cl.cam.ac.uk/users/rja14/eternity/eternity.html. 

We could address this problem by making revocation optional: the share itself could make it clear 
whether that share can be unpublished. If no unpublishing tag is present, there would be no reason to 
track down the author. (This solution is used in Publius.) But this too is subject to attack: If an 
adversary wishes to create a pretext to hunt down the publisher of a document, he can republish the 
document with a revocation tag and use that as "reasonable cause" to target the suspected publisher. 

Because the ability to revoke shares may put the original publisher in increased physical danger, as 
well as allow new attacks on the system, we chose to leave revocation out of the current design. 

12.3.7 Trading  

In the Free Haven design, servers periodically trade shares with each other. There are a number of 
reasons why servers trade: 

To provide a cover for publishing  

If trades are common, there is no reason to assume that somebody offering a trade is the 
publisher of a share. Publisher-anonymity is enhanced. 

To let servers join and leave  

Trading allows servers to exit the servnet gracefully by trading for short-lived shares and then 
waiting for them to expire. This support for a dynamic network is crucial, since many of the 
participants in Free Haven will be well-behaved but transient relative to the duration of the 
longer-lived shares. 

To permit longer expiration dates  

Long-lasting shares would be rare if trading them involved finding a server that promised to 
be available for the next several years. 

http://www.umich.edu/~newsinfo/Releases/2000/Jan00/r012000e.html
http://www.cl.cam.ac.uk/users/rja14/eternity/eternity.html
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To accommodate ethical concerns of server operators  

Frequent trading makes it easy and unsuspicious for server operators to trade away a 
particular piece of data with which they do not wish to be associated. If the Catholic Church 
distributes a list of discouraged documents, server operators can use the hash of the public 
key in each share to determine if that document is in the list and then trade away the share 
without compromising either their reputation as a server or the availability of the document. 
In a non-dynamic environment, the server would suffer a reputation hit if it chose not to keep 
the document. While we do not currently offer this functionality, trading allows this flexibility 
if we need it down the road. In particular, the idea of servers getting an "ISP exemption" for 
documents they hold currently seems very dubious. 

To provide a moving target  

Encouraging shares to move from server to server through the servnet means that there is 
never any specific, static target to attack. 

The frequency of trading should be a parameter set by the server operator. When server Alice wants to 
make a trade, it chooses another server, Bob from its list of known servers (based on reputation) and 
offers a share x and a request for size or duration of a return share. If Bob is interested, it responds 
with a share y of its own. 

Trades are considered "fair" based on the two-dimensional currency of size × duration. That is, the 
bigger the size and the longer the document is to be held, the more expensive the trade becomes. The 
price is adjusted based on the preferences of the servers involved in the trade. 

The negotiation is finalized by each server sending an acknowledgment of the trade (including a 
receipt, as described in Section 12.3.8) to the other. In addition, each server sends a receipt to both the 
buddy of the share it is sending and the buddy of the share it is receiving; buddies and the 
accountability they provide are described later in Section 12.3.9. Thus, the entire trading handshake 
takes four rounds: the first two to exchange the shares themselves, and the next two to exchange 
receipts while at the same time sending receipts to the buddies. 

By providing the receipt on the third round of the trading handshake, Alice makes a commitment to 
store the share y. Similarly, the receipt that Bob generates on the fourth round represents a 
commitment to store the share x. Bob could cheat Alice by failing to continue the protocol after the 
third step; in this case, Alice has committed to keeping the share from Bob, but Bob has not 
committed to anything. At this point, Alice's only recourse is to broadcast a complaint against Bob and 
hope that the reputation system causes others to recognize that Bob has misbehaved. The alternative 
is to use a fair exchange protocol, which is unreasonably communications-intensive without a trusted 
third party. 

When Alice trades a share to server Bob, Alice should keep a copy of the share around for a while, just 
in case Bob proves untrustworthy. This will increase the amount of overhead in the system by a factor 
of two or so (depending on duration), but provides greatly increased robustness. In this case, when a 
query is done for a share, the system responding should include a flag for whether it believes itself to 
be the "primary provider" of the data or just happens to have a copy still lying around. The optimum 
amount of time requires further study. 

A diagram describing a trade is given in Figure 12.1. In this diagram, server Alice starts out in 
possession of share Gitaw - that is, share w of document Gita - and server Bob starts out in possession 
of document Tuney. In this case, server Charlie has share x of document Gita, and server David has 
share z of document Tune. w and x are buddies, and y and z are buddies. 
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Figure 12.1. Trade handshake 

 

 

12.3.8 Receipts 

A receipt contains a hash of the public keys for the source server and the destination server, 
information about the share traded away, information about the share received, and a timestamp. For 
each share, it includes a hash of that document's key, which share number it was, its expiration date, 
and its size. 

This entire set of information about the transaction is signed by server A. If B (or any other server) has 
to broadcast a complaint about the way A handled the transaction, furnishing this receipt along with 
the complaint will provide some rudimentary level of "proof" that B is not fabricating its complaint. 
Note that the expiration date of both shares is included within the receipt, and the signature makes 
this value immutable. Thus, other servers observing a receipt can easily tell whether the receipt is still 
"valid" - that is, they can check to see whether the share is still supposed to be kept on A. The size of 
each share is also included, so other servers can make an informed decision about how influential this 
transaction should be on their perceived reputation of the two servers involved in the trade. 

We really aren't treating the receipt as proof of a transaction, but rather as proof of half of a 
transaction - an indication of a commitment to keep a given share safe. This is because the trading 
protocol is not bulletproof: The fact that Alice has a receipt from Bob could mean that they performed 
a transaction, or it could mean that they performed 3 out of the 4 steps of the transaction, and then 
Alice cheated Bob and never gave him a receipt. Thus, the most a given server can do when it detects a 
misbehaving server is broadcast a complaint and hope the reputation system handles it correctly. 

12.3.9 Accountability and the buddy system 

Malicious servers can accept document shares and then fail to store them. If enough shares are lost, 
the document is unrecoverable. Malicious servers can continue their malicious behavior unless there 
are mechanisms in place for identifying and excising them. 

We've designed a buddy system that creates an association between two shares within a given 
document. Each share is responsible for maintaining information about the location of the other 
share, or buddy. When a share moves, it notifies its buddy,[9] as described earlier in Section 12.3.7. 

[9] More precisely, it notifies both the server it's moving from and the server it's moving to. 
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Periodically, a server holding a given share should query for its buddy, to make sure its buddy is still 
alive. Should the server that is supposed to contain its buddy stop responding, the server with the 
share making the query is responsible for reporting an anomaly. This server announces which server 
had responsibility for the missing share when it disappeared. The results of this announcement are 
described later in this chapter Section 12.3.11. 

We considered allowing abandoned shares to optionally spawn a new share if their buddies disappear, 
but we discarded this notion. Buddy spawning would make the service much more robust, since lost 
shares could be regenerated. However, such spawning could cause an exponential population 
explosion of shares for the wrong reasons. If two servers are out of touch for a little while but are not 
misbehaving or dead, both shares will end up spawning new copies of themselves. This is a strong 
argument for not letting shares replicate. 

When a share x moves to a new machine, there are two " buddy notifications" sent to its buddy x'. But 
since the communications channel we have chosen currently has significant latency, a notification to x' 
might arrive after x' has already been traded to a new server. The old server is then responsible for 
forwarding these buddy notifications to the new server that it believes currently holds x'. Since the old 
server keeps a receipt as a record of the transaction, it can use this information to remember the new 
location of x'. The receipt, and thus the forwarding address, is kept by the old server until the share's 
expiration date has passed. 

When a buddy notification comes in, the forwarder is checked and the notification is forwarded if 
appropriate. This forwarding is not done in the case of a document request, since this document 
request has presumably been broadcast to all servers in the servnet. 

We have attempted to distinguish between the design goals of robustness and accountability. The 
system is quite robust, because a document cannot be lost until a high threshold of its shares has been 
lost. Accountability, in turn, is provided by the buddy checking and notification system among shares, 
which protects against malicious or otherwise ill-behaving servers. Designers can choose the desired 
levels of robustness and accountability independently. 

12.3.10 Communications channel 

The Free Haven design requires a means of anonymously passing information between agents. One 
such means is the remailer network, including the Mixmaster remailers first designed by Lance 
Cottrell. This system is described in fairly nontechnical terminology in Chapter 7. 

Other examples of anonymous communication channels are Onion Routing[10] and Zero-Knowledge 
Systems' Freedom.[11] David Martin's doctoral thesis offers a comprehensive overview of anonymous 
channels in theory and practice.[12] 

[10] P.F. Syverson, D.M. Goldschlag, and M.G. Reed (1997), "Anonymous Connections and Onion Routing," 
Proceedings of the 1997 IEEE Symposium on Security and Privacy. 

[11] Ian Goldberg and Adam Shostack (1999), Freedom Network 1.0 Architecture. 

[12] David Michael Martin (2000), "Network Anonymity," Boston University Ph.D. thesis, 
http://www.cs.du.edu/~dm/anon.html. 

The first implementation of the Free Haven design will use the Cypherpunks and Mixmaster remailers 
as its anonymous channel. 

12.3.11 Reputation system 

The reputation system in Free Haven is responsible for creating accountability. Accountability in a 
system so committed to anonymity is a difficult task. There are many opportunities to try to take 
advantage of other servers, such as neglecting to send a receipt after a trade or wrongly accusing 
another server of losing a share. Some of the attacks are quite insidious and complex. The history and 
issues to consider when developing a reputation system can be found in much more detail in Chapter 
16. 

http://www.cs.du.edu/~dm/anon.html
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Careful trust management should enable each server to keep track of which servers it trusts. Given the 
large number of shares into which documents are divided - and the relatively few shares required to 
reconstitute a document - no document should be irretrievably lost unless an astoundingly large 
number of the servers prove evil. 

Each server needs to keep two values that describe each other server it knows about: reputation and 
credibility. Reputation signifies a belief that the server in question will obey the Free Haven Protocol. 
Credibility represents a belief that the utterances of that server are valuable information. For each of 
these two values, each server also needs to maintain a confidence rating. This represents the 
"stiffness" of the reputation and credibility values. 

Servers should broadcast referrals in several circumstances, such as when they log the honest 
completion of a trade, when they suspect that a buddy of a share they hold has been lost, and when the 
reputation or credibility values for a server change substantially. 

12.3.12 Introducers 

Document request operations are done via broadcast. Each server wants to store its documents on a 
lot of servers, and if it finds a misbehaving server it wants to complain to as many as possible. But how 
do Free Haven servers discover each other? 

The reputation system provides an easy method of adding new servers and removing inactive ones. 
Servers that have already established a good reputation act as introducers. New servers can contact 
these introducers via the anonymous communication channel; the introducers will then broadcast 
referrals of this new server. This broadcast by itself does not imply an endorsement of the new server's 
honesty or performance; it is simply an indication that the new server is interested in performing 
some trades to increase its reputation. Likewise, a server may mark another as "dormant" given some 
threshold of unanswered requests. Dormant servers are not included in broadcasts or trade requests. 
If a dormant server starts initiating requests again, the other servers conclude it is not actually 
dormant and resume sending broadcasts and offering trades to this server. 

12.3.13 Implementation status 

The Free Haven Project is still in its design stages. Although we have a basic proof-of-concept 
implementation, we still wish to firm up our design, primarily in the areas of accountability and 
bandwidth overhead. Before deploying any implementation, we want to convince ourselves that the 
Free Haven system offers better anonymity than current systems. Still, the design is sufficiently simple 
and modular, allowing both a straightforward basic implementation and easy extensibility. 

12.4 Attacks on Free Haven 

Anonymous publishing and storage systems will have adversaries. The attacks and pressures that 
these adversaries employ might be technical, legal, political, or social in nature. The system's design 
and the nature of anonymity it provides also affect the success of nontechnical attacks. 

We now consider possible attacks on the Free Haven system based on their respective targets: the 
availability of documents and servnet operation, the accountability offered by the reputation system, 
and the various aspects of anonymity relevant to anonymous storage and publication, as described 
earlier in Section 12.2. For a more in-depth consideration of attacks, we refer to Dingledine's thesis.[13] 

[13] Dingledine, op. cit. 

This list of attacks is not complete. In particular, we do not have a systematic discussion of what kinds 
of adversaries we expect. Such a discussion would begin with the most powerful adversaries possible, 
asking questions like, "What if the adversary controls all but one of the servers in the servnet?" and 
scaling back from there. In analyzing systems like Free Haven, it is not enough to look at the everyday, 
plausible scenarios - every effort must be made to provide security against adversaries more powerful 
than the designers ever expect, because in real life, adversaries have a way of being more powerful 
than anyone ever expects. 
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12.4.1 Attacks on documents or the servnet 

We've considered a wide variety of ways for adversaries to stop Free Haven or make it less effective, 
and some ways that we might prevent such attacks: 

Physical attack  

Destroy a server. 

Prevention: Because we are breaking documents into shares, and only k of n shares are 
required to reconstruct the document, an adversary must find and destroy many servers 
before availability is compromised. 

Legal action  

Find a physical server and prosecute the owner based on its contents. 

Prevention: Because of the passive-server document-anonymity property that the Free Haven 
design provides, the servnet operator may be able to plausibly deny knowledge of the data 
stored on his computer. This depends on the laws of the country in question. 

Social pressure  

Bring various forms of social pressure against server administrators. Claim that the design is 
patented or otherwise illegal. Sue the Free Haven Project and any known server 
administrators. Conspire to make a cause "unpopular," convincing administrators that they 
should manually prune their data. Allege that they "aid child pornographers" and other 
socially unacceptable activities. 

Prevention: We rely on the notion of jurisdictional arbitrage. Information illegal in one place 
is frequently legal in others. Free Haven's content-neutral policies mean that there is no 
reason to expect that the server operator has looked at the data she holds, which might make 
it more difficult to prosecute. We further rely on having enough servers in enough different 
jurisdictions that organizations cannot conspire to bully a sufficient fraction of servers to 
make Free Haven unusable. 

Denial of service  

Attack the servnet by continued flooding of queries for data or requests to join the servnet. 
These queries may use up all available bandwidth and processing power for a server. 

Prevention: We must assume that our communications channel has adequate protection and 
buffering against this attack, such as the use of client puzzles or other protections described in 
Chapter 16. Most communications channels we are likely to choose will not protect against 
this attack. This is a real problem. 

Data flooding  

Attempt to flood the servnet with shares, to use up available resources. 

Prevention: The trading protocol implicitly protects against this type of denial of service 
attack against storage resources. The ability to insert shares, whether "false" or valid, is 
restricted to trading: that server must find another that trusts its ability to provide space for 
the share it would receive in return. 

Similarly, the design provides protection against the corrupting of shares. Altering (or 
"spoofing") a share cannot be done, because the share contains a particular public key and is 
signed by the corresponding private key. Without knowledge of the original key that was used 
to create a set of shares, an adversary cannot forge new shares for a given document. 
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Share hoarding  

Trade until a sufficient fraction of an objectionable document is controlled by a group of 
collaborating servers, and then destroy this document. Likewise, a sufficiently wealthy 
adversary could purchase a series of servers with very large drives and join the servnet, 
trading away garbage for "valuable data." He can trade away enough garbage to have a 
significant portion of all the data in the servnet on his drives, subject to deletion. 

Prevention: We rely on the overall size of the servnet to make it unlikely or prohibitively 
expensive for any given server or group of collaborating servers to obtain a sufficient fraction 
of the shares of any given document. The failure of this assumption would leave us with no 
real defense. 

12.4.2 Attacks on the reputation system 

While attacks against the reputation system[14] are related to attacks directly against servers, their goal 
is not to directly affect document availability or servnet operation. Rather, these attacks seek to 
compromise the means by which we provide accountability for malicious or otherwise misbehaving 
servers. 

[14] Parts of this section were originally written by Brian T. Sniffen in "Trust Economies in the Free Haven 
Project," May 2000, http://theory.lcs.mit.edu/~cis/cis-theses.html. 

Some of these attacks, such as temporary denials of service, have negative repercussions on the 
reputation of a server. These repercussions might be qualified as "unfair," but are best considered in 
the following light: if a server is vulnerable to these attacks, it may not be capable of meeting the 
specifications of the Free Haven Protocol. Such a server is not worthy of trust to meet those 
specifications. The reputation system does not judge intent, merely actions. Following are some 
possible attacks on the reputation system, and ways that we might prevent such attacks: 

Simple betrayal  

An adversary may become part of the servnet, act correctly long enough to gain a good 
reputation, and then betray this trust by deleting files before their expiration dates. 

Prevention: The reputation economy is designed to make this unprofitable. In order to obtain 
enough "currency" to store data, a server must reliably store data for others. Because a corrupt 
server must store at least as much data for others as the amount of data it deletes, such an 
adversary at worst does no overall harm to the system and may even help. 

A server that engages in this behavior should be caught by the buddy system when it deletes 
each share. 

Buddy coopting  

If a corrupt server (or group of colluding servers) can gain control of both a share and its 
buddy, it can delete both of them without repercussions. 

Prevention: We assume a large quantity of shares in the servnet, making buddy capture more 
difficult. Servers also can modify reputation ratings if precise trading parameters, or constant 
trading, suggests an attempt to capture buddies. More concretely, a possible work-around 
involves separating the reply-block addresses for trading and for buddy checking, preventing 
corrupt servers from acquiring the buddies of the shares they already have. Such an approach 
adds complexity and possibly opens other avenues for attack. 

False referrals  

An adversary can broadcast false referrals, or even send them only to selected servers. 

Prevention: The confidence rating of credibility can provide a guard against false referrals, 
combined with a single-reporting policy (i.e., at most one referral per target per source is used 
for reputation calculations). 

http://theory.lcs.mit.edu/~cis/cis-theses.html


Peer to Peer: Harnessing the Power of Disruptive Technologies 

 page 115

Trading receipt games  

While we believe that the signed timestamps attest to who did what and when, receipt-based 
accountability may be vulnerable to some attacks. Most likely, these will involve multiserver 
adversaries engaging in coordinated bait-and-switch games with target servers. 

Entrapment  

There are several ways in which an adversary can appear to violate the protocols. When 
another server points them out, the adversary can present receipts that show her wrong and 
can accuse her of sending false referrals. A more thorough system of attestations and protests 
is necessary to defend against and account for this type of attack. 

12.4.3 Attacks on anonymity 

There are a number of attacks that might be used to determine more information about the identity of 
some entity in the system: 

Attacks on reader-anonymity  

An adversary might develop and publish on Free Haven a customized virus that automatically 
contacts a given host upon execution. A special case of this attack would be to include mime-
encoded URLs in a document to exploit reader software that automatically loads URLs. 
Another approach might be to become a server on both the servnet and the mix net and 
attempt an end-to-end attack, such as correlating message timing with document requests. 
Indeed, servers could claim to have a document and see who requests it, or simply monitor 
queries and record the source of each query. Sophisticated servers might attempt to correlate 
readers based on the material they download and then try to build statistical profiles and 
match them to people (outside Free Haven) based on activity and preferences. We prevent 
this attack by using each reply block for only one transaction. 

Attacks on server-anonymity  

Adversaries might create unusually large shares and try to reduce the set of known servers 
that might have the capacity to store such shares. This attacks the partial anonymity of these 
servers. An adversary could become a server and then collect routine status and participation 
information (such as server lists) from other servers. This information might be combined 
with extensive knowledge of the bandwidth characteristics and limitations of the Internet to 
map servnet topology. By joining the mix net, an adversary might correlate message timing 
with trade requests or reputation broadcasts. An alternate approach is simply to spread a 
Trojan Horse or worm that looks for Free Haven servers and reports which shares they are 
currently storing. 

Attacks on publisher-anonymity  

An adversary could become a server and log publishing acts, and then attempt to correlate 
source or timing. Alternatively, he might look at servers that recently have published a 
document and try to determine who has been communicating with them recently. 

There are also entirely social attacks that can be very successful, such as offering a large sum of money 
for information leading to the current location of a given document, server, reader, etc. 

We avoid or reduce the threat of many of these attacks by using an anonymous channel that supports 
pseudonyms for our communications. This prevents most or all adversaries from being able to 
determine the source or destination of a given message or establish linkability between each endpoint 
of a set of messages. Even if server administrators are subpoenaed or otherwise pressured to release 
information about these entities, they can openly disclaim any knowledge. 
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12.5 An analysis of anonymity 

We describe the protections offered for each of the broad categories of anonymity. In Table 12.1, we 
provide an overview of Free Haven and the different publishing systems that we examined. We 
consider the level of privacy provided - computational (C) and perfect-forward (P-F) anonymity - by 
the various systems. 

Table 12.1, Anonymity properties of publishing systems 

Project Publisher Publisher Reader Reader Server Server Document Query

 C P-F C P-F C P-F C C 

Gnutella         

Eternity 
Usenet   ?      

Freenet   ?      

Mojo Nation ? ?       

Publius         

Free Haven         

 
Computational anonymity means that an adversary with "reasonable" computing resources and 
knowledge is unable to break the anonymity involved. The adversary may do anything it likes to try to 
break the system but is limited in how much power it has; for example, it may not be able to break the 
cryptography involved in building a system or be able to break into the computers of every single 
machine running the system. 

Perfect-forward anonymity is analogous to perfect-forward secrecy: A system is perfect-forward 
anonymous if no information remains after a transaction is completed that could later identify the 
participants if one side or the other is compromised. This notion is a little bit trickier - think of it from 
the perspective of an adversary watching the system over a long period of time. Is there anything that 
the adversary can discover from watching several transactions that he can't discover from watching a 
single transaction? 

Free Haven provides computational and perfect-forward author-anonymity, because authors 
communicate with publishers via an anonymous channel. Servers trade with other servers via 
pseudonyms, providing computational but not perfect-forward anonymity, as the pseudonyms can be 
broken later. Because trading is constant, however, Free Haven achieves publisher-anonymity for 
publishers trying to trade away all shares of the same document. The use of IDA to split documents 
provides passive-server document-anonymity, but the public key embedded in each share (which we 
require for authenticating buddy messages) makes it trivial for active servers to discover what they are 
storing. Because requests are broadcast via an anonymous channel, Free Haven provides 
computational reader-anonymity, and different reply blocks used and then destroyed after each 
request provide perfect-forward reader-anonymity. 

Gnutella fails to provide publisher-anonymity, reader-anonymity, or server-anonymity because of the 
direct connections for actual file transfer. Because Gnutella servers start out knowing the intended 
contents of each document they are offering, they also fail to provide document-anonymity. 
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Eternity Usenet provides publisher-anonymity via the use of one-way anonymous remailers. Server-
anonymity is not provided, because every Usenet server that carries the Eternity newsgroup is a 
server. Anonymity expert Adam Back, designer of the Eternity Usenet service, has pointed out that 
passive-server document-anonymity can be provided by encrypting files with a key derived from the 
URL; active servers might find the key and attempt to decrypt stored documents. Reader-anonymity is 
not provided by open public proxies unless the reader uses an anonymous channel, because the proxy 
can see what a user queries or downloads, and at what time. For local proxies, which connect to a 
separate news server, however, the situation is better because the news server knows only what the 
user downloads. Even so, this is not quite satisfactory, because the user can be tied by the server to the 
contents of the Eternity newsgroup at a certain time. 

Freenet achieves passive-server document-anonymity because servers are unable to reverse the hash 
of the document name to determine the key with which to decrypt the document. For active-server 
document-anonymity, the servers can check whether they are carrying a particular key but cannot 
easily match a stored document to a key due to the hash function. Server-anonymity is not provided 
because, given a document key, it is very easy to locate a server that is carrying that document - 
querying any server at all will result in that server carrying the document! Because of the TTL and 
Hops fields for both reading and publishing, it is also not clear that Freenet achieves publisher- or 
reader-anonymity, although it is much better in these regards than Gnutella. We note that the most 
recent Freenet design introduces randomized TTL and Hops fields in each request, and plans are in 
the works to allow a Publish or Retrieve operation to traverse a mix net chain before entering the 
Freenet system. These protections will make attacks based on tracking queries much more difficult. 

Mojo Nation achieves document-anonymity, as described earlier, because the server holding a share 
doesn't know how to reconstruct that document. The Mojo Nation design is amenable to integrating 
publisher-anonymity down the road - a publisher can increase her anonymity by paying more Mojo 
and chaining requests through participants that act as "relays." The specifics of prepaying the path 
through the relays are not currently being designed. It seems possible that this technique could be 
used to ensure reader-anonymity as well, but the payment issues are even more complex. Indeed, the 
supplied digital cash model is not even anonymous currently; users need to uncomment a few lines in 
the source, and this action breaks Chaum's patents. 

Publius achieves document-anonymity because the key is split between n servers, and without 
sufficient shares of the key, a server is unable to decrypt the document that it stores. The secret 
sharing algorithm provides a stronger form of this anonymity (albeit in a storage-intensive manner), 
since a passive server really can learn nothing at all about the contents of a document that it is helping 
to store. Because documents are published to Publius through a one-way anonymous remailer, it 
provides publisher-anonymity. Publius provides no support for protecting readers by itself, however, 
and the servers containing a given file are clearly marked in the URL used for retrieving that file. 
Readers can use a system such as ZKS Freedom or Onion Routing to protect themselves, but servers 
may still be liable for storing "bad" data. 

We see that systems can often provide publisher-anonymity via one-way communication channels, 
effectively removing any linkability; removing the need for a reply pseudonym on the anonymous 
channel means that there is "nothing to crack." The idea of employing a common mix net as a 
communication channel for each of these publication systems is very appealing. We could leave most 
of the anonymity concerns to the communication channel itself and provide a simple backend 
filesystem or equivalent service to transfer documents between agents. Thus the design of the backend 
system could be based primarily on addressing other issues such as availability of documents, 
protections against flooding and denial of service attacks, and accountability in the face of this 
anonymity. 
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12.6 Future work 

Our experience designing Free Haven revealed several problems that have no simple solutions; further 
research is surely required. We state some of these problems here and refer to Dingledine's thesis[15] 
for in-depth consideration: 

[15] Dingledine, op. cit. 

Deployed free low-latency pseudonymous channel  

Free Haven requires pseudonyms in order to create server reputations. The only current 
widely deployed channels that support pseudonyms seem to be the Cypherpunk remailer 
network and ZKS Freedom mail. The Cypherpunk and ZKS Version 1 networks run over 
SMTP and consequently have high latency. This high latency complicates protocol design. The 
recently announced Version 2 of ZKS Freedom mail runs over POP and may offer more 
opportunity for the kind of channel we desire. 

Modelling and metrics  

When designing Free Haven, we made some choices, such as the choice to include trading, 
based on only our intuition of what would make a robust, anonymous system. A mathematical 
model of anonymous storage would allow us to test this intuition and run simulations. We 
also need metrics: Specific quantities that can be measured and compared to determine which 
designs are better. For example, we might ask, "How many servers must be compromised by 
an adversary for how long before any document's availability is compromised? Before a 
specific targeted document's availability is compromised?" or, "How many servers must be 
compromised by an adversary for how long before the adversary can link a document and a 
publisher?" This modelling could draw from a wide variety of previous work. 

Formal definition of anonymity  

Closely related to the last point is the need to formalize the kinds of anonymity presented in 
Section 12.2. By formally defining anonymity, we can move closer to providing meaningful 
proofs that a particular system provides the anonymity we desire. We might leverage our 
experience with cryptographic definitions of semantic security and nonmalleability to produce 
similar definitions and proofs.[16] A first step in this direction might be to carefully explore the 
connection remarked upon by Simon and Rackoff between secure multiparty computation 
and anonymous protocols.[17] 

[16] Oded Goldreich (1999). Modern Cryptography, Probabilistic Proofs, and Pseudo-Randomness. 
Springer-Verlag. 

[17] Simon and Rackoff (1993), "Cryptographic Defense Against Traffic Analysis," STOC 1993, pp. 672-
681. 

Usability requirements and interface  

We stated in the introduction that we began the Free Haven Project out of concern for the 
rights of political dissidents. Unfortunately, at this stage of the project, we have contacted few 
political dissidents and, as a consequence, do not have a clear idea of the usability and 
interface requirements for an anonymous storage system. Our concern is heightened by a 
recent paper which points out serious deficiencies in PGP's user interface.[18] 

[18] Alma Whitten and J.D. Tygar (1999), "Why Johnny Can't Encrypt," USENIX Security 1999, 
http://www.usenix.org/publications/library/proceedings/sec99/whitten.html. 

Efficiency  

It seems like nearly everyone is doing a peer-to-peer system or WWW replacement these days. 
Which one will win? Adam Back pointed out that in many cases, the efficiency and perceived 
benefit of the system is more important to an end user than its anonymity properties. This is a 
major problem with the current Free Haven design: we emphasize a quality relatively few 
potential users care about at the expense of something nearly everyone cares about. Is there a 
way to create an anonymous system with a tolerable loss of perceived efficiency compared to 
its non-anonymous counterpart? And what does "tolerable" mean, exactly? 

We consider the above to be "challenge problems" for anonymous publication and storage systems. 

http://www.usenix.org/publications/library/proceedings/sec99/whitten.html
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12.7 Conclusion 

Free Haven aims to solve a problem that no other system currently addresses - creating a 
decentralized storage service that at the same time protects the anonymity of publishers, readers, and 
servers, provides a dynamic network, and ensures the availability of each document for a publisher-
specified lifetime. We have made progress in identifying the requirements for each of these goals and 
designing solutions that meet them. 

The current Free Haven design is unfortunately unsuitable for wide deployment, because of several 
remaining problems. The primary problem is efficiency - unless we can provide a sufficiently friendly 
and efficient interface to the documents stored in the system, we will find ourselves with very few 
servers. Indeed, since we need systems that are relatively reliable, we can't make as good use of typical 
end-user machines as a system like Freenet can. This small number of servers will in turn decrease the 
amount of robustness that our system offers. 

Free Haven uses inefficient broadcasts for communication. A large step to address this problem is 
coupling Free Haven with a widely deployed efficient file-sharing service such as Freenet or Mojo 
Nation. Popular files will be highly accessible from within the faster service; Free Haven will answer 
queries for less popular documents that have expired in this service. 

Free Haven sets out to accomplish several goals not considered en masse by other peer-to-peer 
publishing/storage systems: Flexibility, anonymity for all parties, content-neutral persistence of data, 
and accountability. These ambitious goals are the root cause of existing design difficulties. Without 
the requirement of long-term persistent storage, strong accountability measures are not as necessary. 
Without these measures, computational overhead can be greatly lowered, making unnecessary many 
communications that are used to manage reputation metrics. And without the requirement for such 
anonymity and the resulting latency from the communications channel, readers could enjoy much 
faster document retrieval. Yet, the study and emphasis of these ambitious goals are Free Haven's 
contribution and importance in a rapidly evolving peer-to-peer digital world. 
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Part III: Technical Topics 
 

 

 

 

In this part, project leaders choose various key topics in order to focus on the 
problems, purposes, and promises of peer-to-peer technologies. 
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Chapter 13. Metadata 
Rael Dornfest, O'Reilly Network, and Dan Brickley, ILRT and RDFWeb 

Today's Web is a great, big, glorious mess. Spiders, robots, screen-scraping, and plaintext searches are 
standard practices that indicate a desperate attempt to draw arbitrary distinctions between needles 
and hay. And they go only so far as the data we've taken the trouble to make available online. 

Now peer-to-peer promises to turn your desktop, laptop, palmtop, and fridge into peers, chattering 
away with one another and making swaths of their data stores available online. Of course, if every 
single device on the network exposes even a small percentage of the resources it manages, it will 
exacerbate the problem by piling on more hay and needles in heaps. How will we cope with the sudden 
logarithmic influx of disparate data sources? 

The new protocols being developed at breakneck speed for peer-to-peer applications also add to the 
mess by disconnecting data from the fairly bounded arena of the Web and the ubiquitous port 80. 
Loosening the hyperlinks that bind all these various resources together threatens to scatter hay and 
needles to the winds. Where previously we had application user interfaces for each and every 
information system, the Web gave us a single user interface - the browser - along with an organizing 
principle - the hyperlink - that allowed us to reach all the material, at least in theory. Peer-to-peer 
might undo all this good and throw us back into the dark ages of one application for each application 
type or application service. We already have Napster for MP3s and work has begun on Docster for 
documents - can JPEGster and Palmster be very far off? 

And how shall we search these disparate, transitory clumps of data, winking in and out of existence as 
our devices go on and offline, to say nothing of finding the clumps in the first place? Napster is held up 
as a reassurance that everything can work out on its own. The inherent ubiquity of any one MP3 track 
gets around the problem of resource transience. However, isn't this abundance simply the direct result 
of its rather constrained problem space? MP3 files are popular, and MP3 rippers make it easy for huge 
numbers of people to create decent-quality files. As industry attention turns to peer-to-peer 
technologies, and as the content within these systems becomes more heterogeneous, the technology 
will have to accommodate content that is harder to accumulate and less popular; the critical mass of 
replicated files will not be attained. Familiar problems associated with finding a particular item may 
reemerge, this time in a decentralized environment rather than around the familiar Web hub. 

Whether or not peer-to-peer fares any better than the Web, it certainly presents a new challenge for 
people concerned with describing and classifying information resources. Peer-to-peer provides a rich 
environment and a promising early stage for putting in place all we've learned about metadata over 
the past decade. 

So, before we go much further, what exactly is metadata? 

13.1 Data about data 

Metadata is the stuff of card catalogues, television guides, Rolodexes, taxonomies, tables of contents - 
to borrow a Zen concept, the finger pointing at the moon. It is labels like "title," "author," "type," 
"height," and "language" used to describe a book, person, television program, species, etc. Metadata is, 
quite simply, data about data. 

There are communities of specialists who have spent years working on - and indeed solving some of - 
the hard problems of categorizing, cataloguing, and making it possible to find things. Even in the early 
days of the Web, developers enlisted the help of these information scientists and architects, realizing 
that otherwise we'd be in for quite a mess. The Dublin Core Metadata Initiative (DMCI)[1] is just such 
an effort. An interdisciplinary, international group founded in 1994, the DCMI's charter is to use a 
minimal set of metadata constructs to make it easier to find things on the Web. We'll take a closer look 
at Dublin Core in a moment. 

[1] Dublin Core Metadata Initiative, http://www.dublincore.org/; "Metadata With a Mission: Dublin Core", 
http://www.xml.com/pub/; Dublin Core Metadata Element Set, Version 1.1, http://purl.org/dc/elements/1.1. 

http://www.dublincore.org/
http://www.xml.com/pub/
http://purl.org/dc/elements/1.1
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Yet, while well-understood systems exist for cataloguing and classifying some classic types of 
information, such as books (e.g., MARC records and the Dewey Decimal System), equivalent facilities 
were late to arrive on the Web - some would say far too late. They are emerging, however, just in time 
for peer-to-peer. 

13.2 Metadata lessons from the Web 

Peer-to-peer's power lies in its willingness to rethink old assumptions and reinvent the way we do 
things. This can be quite constructive, even revolutionary, but it also risks being hugely destructive in 
that we can throw out lessons previously learned from the web experience. In particular, we know that 
the Web suffered because metadata infrastructure was added relatively late (1997+), an add-on 
situation that had an impact on various levels. 

The Web burst onto the scene before we managed to agree on common descriptive practices - ways of 
describing "stuff." Consequently, the vast majority of web-related tools lack any common 
infrastructure for specifying or using the properties of web content. WYSIWYG HTML editors don't go 
out of their way to make their metadata support (if any) visible, nor do they request metadata for a 
document when authors press the "Save" button. Search engines provide little room for registering 
metadata along with their associated sites. Robots and spiders often discard any metadata in the form 
of HTML <meta> tags they might find. This has resulted in an enormous hodgepodge of a data set with 
little rhyme or reason. The Web is hardly the intricately organized masterpiece represented by its 
namesake in nature. 

Early peer-to-peer applications come from relatively limited spheres (MP3 file-sharing, messaging, 
Weblogs, groupware, etc.) with pretty well understood semantics and implicit metadata - we know it's 
an MP3 because it's in Napster. These communities have the opportunity, before heterogeneity and 
ubiquity muddy the waters, to describe and codify their semantics to allow for better organization, 
extraction, and search functionality down the road. Yet even at this early stage, we're already seeing 
the same mistakes creeping in. 

13.2.1 Resource description 

Until recently, the means available to content providers for describing the resources they make 
available on the Web have been inconsistent at best. About the only consistent metadata in an HTML 
document is the <title> element, which provides only a hint at best as to the content of the page. 
HTML's <meta> element is supposed to provide a method for embedding arbitrary metadata - but that 
creates more of a problem than a solution, because applications, books, articles, tutorials, and 
standards bodies alike express little guidance as to what good metadata should look like and how best 
to express it. 

The work of the aforementioned Dublin Core offers a wonderful start. The Dublin Core Metadata 
Element Set is a set of 15 elements (title, description, creator, date, publisher, etc.) that are useful in 
describing almost any web resource. Rather than attempt to define semantics for specific instances 
and situations, the DCMI focused on the commonalities found in resources of various shapes and 
flavors. The Dublin Core may just as easily be used to describe "a journal article in PDF format," "an 
MPEG encoding of an episode of Buffy the Vampire Slayer recorded on a hacked TiVO," or "a 
healthcare speech given by the U.S. President on March 2, 2000." 

Example 13.1 shows a typical appearance of Dublin Core metadata in a fragment of HTML. Each 
<meta> tag contains an element of metadata defined by Dublin Core. 

While useful up to a point, the original HTML mechanism for embedding metadata has proven 
limited. There is no built-in convention to control the names given to the various embedded metadata 
fields. As a consequence, HTML <meta> tags can be ambiguous: we don't know which sense of "title" 
or "date" is being used. 
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Example 13.1. Dublin Core metadata in an HTML document 

<html> 
  <head> 
    <title>Distributed Metadata</title> 
    <meta name="description" content="This article addresses..."> 
    <meta name="subject" content="metadata, rdf, peer-to-peer"> 
    <meta name="creator" content="Dan Brickley and Rael Dornfest"> 
    <meta name="publisher" content="O'Reilly & Associates"> 
    <meta name="date" content="2000-10-29T00:34:00+00:00"> 
    <meta name="type" content="article"> 
    <meta name="language" content="en-us"> 
    <meta name="rights" content="Copyright 2000, O'Reilly & Associates, Inc."> 
    ... 
  </head> 
  ... 

 
XML represents another evolution in web architecture, and along with XML come namespaces. 
Example 13.2 illustrates some namespaces in use. Like peer-to-peer, namespaces exemplify 
decentralization. We can now mix descriptive elements defined by independent communities, without 
fear of naming clashes, since each piece of data is tied a URI that provides a context and definition for 
it. 

Example 13.2. Dublin Core metadata in an XML document 

<?xml version="1.0" encoding="iso-8859-1"?> 
 
<rdf:RDF 
  xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
  xmlns:dc="http://purl.org/dc/elements/1.1/" 
  xmlns="http://purl.org/rss/1.0/" 
> 
... 
  <item rdf:about="http://www.oreillynet.com/.../metadata.html"> 
    <title>Distributed Metadata</title> 
    <link>http://www.oreillynet.com/.../metadata.html </link> 
    <dc:description>This article addresses...</dc:description> 
    <dc:subject>metadata, rdf, peer-to-peer </dc:subject> 
    <dc:creator>Dan Brickley and Rael Dornfest </dc:creator> 
    <dc:publisher>O'Reilly & Associates</dc:publisher> 
    <dc:date>2000-10-29T00:34:00+00:00</dc:date> 
    <dc:type>article</dc:type> 
    <dc:language>en-us</dc:language> 
    <dc:format>text/html</dc:format> 
    <dc:rights>Copyright 2000, O'Reilly & Associates, Inc.</dc:rights> 
    ... 
  </item> 
  ... 

 
In the example above, Dublin Core elements are prepended by the namespace name "dc:". The name 
is associated with the URI http://purl.org/dc/elements/1.1 by the "xmlns:dc" construct at the 
beginning of the document. "dc:subject" is therefore understood to mean "the subject element in the 
dc namespace as defined at http://purl.org/dc/elements/1.1." 

Namespaces let each author weave additional semantics required by particular types of resources or 
appropriate to a specific realm with the more general resource description such as that provided by 
the Dublin Core. In the book world, an additional definition might be the ISBN or Library of Congress 
number, while in the music world, it might be some form of compact disc identifier. 

Now, we're not insisting that each and every document be described using all 15 Dublin Core elements 
and along various other lines as well. Something to keep in mind, however, is that every bit of 
metadata provides a logarithmic increase in available semantics, making resources less ambiguous 
and easier to find. Peer-to-peer application developers may then use the descriptions provided by a 
resource rather than having to resort to guesswork or such extremes as sequestering resources of a 
certain type to their own network. 

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://purl.org/dc/elements/1.1/
http://purl.org/rss/1.0/
http://www.oreillynet.com/.../metadata.html
http://www.oreillynet.com/.../metadata.html
http://purl.org/dc/elements/1.1
http://purl.org/dc/elements/1.1
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13.2.2 Searching 

Searching is the bane of the Web's existence, despite the plethora of search tools - Yahoo currently 
lists 193 registered web search engines.[2] Search engines typically suffer from a lack of semantics on 
both the gathering and querying ends. On the gathering side, search engines typically utilize one of 
two methods: 

[2] Yahoo!'s "Search Engines" category, 
http://dir.yahoo.com/computers_and_internet/internet/world_wide_web/searching_the_web/ 

1. Internet directories typically ask content providers to register their web sites through an 
online form. Unfortunately, such forms don't provide slots for metadata such as publisher, 
author, subject keywords, etc. 

2. Search engines scour the Web with armies of agents/spiders, scraping pages and following 
links for hints at semantics. Sadly, even if a site does embed metadata (such as HTML's 
<meta> tags) in its documents, this information is often ignored. 

On the querying end, while some sites do make an attempt to narrow the context for particular word 
searches (using such categories as "all the words," "any of the words," or "in the title"), successful 
searching still comes down to keywords and best guess. It's virtually impossible to disambiguate 
between concepts like "by" and "about" - "find me all articles written by Andy Oram" versus "find me 
anything about Andy Oram." Queries like "find me anything on Perl written by the person whose 
email address is larry@wall.org" are out of the question. 

While the needs of users clearly call for semantically rich queries, some peer-to-peer applications and 
systems are doing little to provide even the simplest of keyword searches. The categories "artist" and 
"title," which may be enough within Napster, will fold up and collapse in more heterogeneous peer-to-
peer environments populated by MP3s, documents, images, and the various other data types found on 
the Web today. While Freenet does provide the boon of an optional accompanying metadata file to 
accompany any resource added to the cloud, this is currently of minimal use for a couple of reasons: a) 
No guidance exists on what this metadata file should contain, and b) There is currently no search 
functionality. Gnutella's InfraSearch allows for a wonderfully diverse interpretation and subsequent 
processing of search terms: While a dictionary node sees "country" as a term to be looked up, an MP3 
node may see it as a music genre. Unfortunately, however, the InfraSearch user interface still provides 
only a simple text entry field and little chance for the user to be an active participant in defining the 
parameters of his or her search. 

Hopefully we'll see peer-to-peer applications emerging that empower both the content provider and 
end user by providing semantically rich environments for the description and subsequent retrieval of 
content. This should be reflected both in the user interface and in the engine itself. 

13.3 Resources and relationships: A historical overview 

So where does this all leave us? How do we infuse our peer-to-peer applications with the metadata 
lessons learned from the Web? 

The core of the World Wide Web Consortium's (W3C) metadata vision is a concept known as the 
Semantic Web . This is not a separate Web from the one we currently weave and wander, but a layer of 
metadata providing richer relationships between the ostensibly disparate resources we visit with our 
mouse clicks. While HTML's hyperlinks are simple linear paths lacking any obvious meaning, such 
semantics do exist and need only a means of expression. 

Enter the Resource Description Framework (RDF),[3] a data model and XML serialization syntax for 
describing resources both on and off the Web. RDF turns those flat hyperlinks into arcs, allowing us to 
label not only the endpoints, but the arc itself - in other words, ascribe meaning to the relationship 
between the two resources at hand. A simple link between Andy Oram's home page and an article on 
the O'Reilly Network provides little insight into the relationship between the two. RDF disambiguates 
the relationship: "Andy wrote this particular article" versus "this is an article about Andy" versus 
"Andy found this article rather interesting." 

[3] Resource Description Framework, http://www.w3.org/RDF. 

http://dir.yahoo.com/computers_and_internet/internet/world_wide_web/searching_the_web/
http://www.w3.org/RDF
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RDF's history itself shows how emerging peer-to-peer applications can benefit from a generalized and 
consistent metadata framework. RDF has roots in an earlier effort, the Platform for Internet Content 
Selection , or PICS. One of the original goals for PICS was to facilitate a wide range of rating and 
filtering services, particularly in the areas of child protection and filtering of pornographic content. It 
defined a simple metadata "label" format that could encode a variety of classification and rating 
vocabularies (e.g., RSACi, MedPICS[4]). It included the goal of allowing diverse communities to create 
their own content rating languages and networked metadata services for distributing these descriptive 
labels. While originally it defined a pretty comprehensive set of tools for rating and filtering systems, 
PICS as initially defined did not play well with other metadata applications. The protocols, data 
formats, and accompanying infrastructure were too tightly coupled to one narrow application - it 
wasn't general enough to be useful for everyone. 

[4] Links to PICS vocabularies and W3C specifications, http://www.w3.org/PICS; "Metadata, PICS and Quality" 
(1997), http://www.ariadne.ac.uk/issue9/pics. 

One critical piece PICS lacked was a namespaces mechanism that would allow a single PICS label to 
draw upon multiple, independently managed vocabularies. The designers of PICS eventually realized 
that all the work they had put into a well-designed query protocol, a digital signatures system, 
vocabularies, and so forth risked being reinvented for various other, non-PICS-specific metadata 
applications. 

The threat of such duplication led to the invention of RDF. Unlike PICS, RDF has a highly general 
information model designed from the ground up to allow diverse applications to create data that can 
be easily intermingled. However diverse, RDF applications all share a common strategy: they talk 
about unambiguously named properties of unambiguously named resources. To eliminate ambiguous 
interpretations of properties such as "type" or "format," RDF rests on unique identifiers. 

13.3.1 Foundations of resource description: Unique identifiers 

Unique identification is the critical empowering technology for metadata. We benefit from having 
unique identifiers for both the things we describe (resources), and the ways we describe them 
(properties). In RDF, we call the things we're describing resources regardless of whether they're 
people, places, documents, movies, images, databases, etc. All RDF applications adopt a common 
convention for identifying these things (regardless of what else they disagree about!). 

We identify the things we're describing with Uniform Resource Identifiers, or URIs.[5] You're most 
probably familiar with one subset of URIs, the Uniform Resource Locator, or URL. While URLs are 
concerned with the location and retrieval of resources, URIs more generally are unique identifiers for 
things that may not necessarily be retrievable. 

[5] URI defines a simple text syntax for URLs, URNs and similar controlled names for use on the Internet, 
http://www.w3.org/Addressing. 

We also need clarity concerning properties, which are how we describe our resources. To say that 
something is of a particular type, or has a certain relationship to another resource, or has some 
specified attribute, we need to uniquely identify our descriptive concepts. RDF uses URIs for these 
too. Different communities can invent new descriptive properties (such as person, employee, price, 
and classification) and assign URIs to these properties. 

Since the assignment of URIs is decentralized, we can be sure that uniquely named descriptive 
properties don't get mixed up when we integrate metadata from multiple sources. An auto-maker's 
concept of "type" is different from that of a cheese-maker's. The use of URIs such as 
http://webuildcars.org/descriptions/types and http://weagecheese.org/descriptions/type serves to 
uniquely identify the particular "type" we're using to describe a resource. 

One critical lesson we can take away from the PICS story is that, when it comes to metadata, it is very 
hard to partition the problem space. The things we want to describe, the things we want to say about 
them, and the things we want to do with this data are all deeply entangled. RDF is an attempt to 
provide a generalized framework for all types of metadata. By providing a consistent abstraction layer 
that goes below surface differences, we gain an elegant core architecture on which to build.  

http://www.w3.org/PICS
http://www.ariadne.ac.uk/issue9/pics
http://www.w3.org/Addressing
http://webuildcars.org/descriptions/types
http://weagecheese.org/descriptions/type
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There is no limit to the material or applications RDF supports: through different URIs and 
namespaces, different groups can extend the common RDF model to describe the needs of the peer-to-
peer application at hand. No standards committee or centralized initiative gets to decide how we 
describe things. Applications can draw upon multiple descriptive vocabularies in a consistent, 
principled manner. The combination of these two attributes - consistent framework and decentralized 
descriptive concepts - is a powerful architecture for the peer-to-peer applications being built today. 

When it comes to metadata, the network becomes a poorer information resource whenever we create 
artificial boundaries between metadata applications. The Web's own metadata system, RDF, was built 
in acknowledgment of this. There is little reason to suppose peer-to-peer content is different in this 
regard since we're talking about pretty much the same kind of content, albeit in a radically new 
environment. 

13.3.2 A contrasting evolution: MP3 and the metadata marketplace 

The alternatives to erecting a rigorous metadata architecture like RDF can be illustrated by the most 
popular decentralized activity on the Internet today: MP3 file exchange. 

How do people find out the names of songs on the CDs they're playing on their networked PCs? One 
immediate problem is that there is nothing resembling a URI scheme for naming CDs; this makes it 
difficult to agree on a protocol for querying metadata servers about the properties of those CDs. While 
one might imagine taking one of the various CDDB-like algorithms and proposing a URI scheme for 
universal adoption (for instance, cd:894120720878192091), in practice this would be time-consuming 
and somewhat politicized. Meanwhile, peer-to-peer developers just want to build killer apps; they 
don't want to spend 18 months on a standards committee specifying the identifiers for compact discs 
(or people or films...). Most of us can't afford the time to create metadata tags, and if we could, we'd 
doubtless think of more interesting ways of using that time. 

What to do? Having just stressed the importance of unique names when describing content, can we 
get by without them? Actually, it appears so. 

Every day thousands of MP3 users work around the unique identification problem without realizing it. 
Their CD rippers inspect the CD, compute one of several identifying properties for the CD they're 
digitizing, and use this uniquely identifying property to consult a networked metadata service. This is 
metadata in action on a massive scale. But it also smacks of the PICS problem. MP3 listeners have 
settled on an application-specific piece of infrastructure rather than a more useful, generalized 
approach. 

These metadata services exist and operate very successfully today, despite the lack of any canonical 
"standard" identifier syntax for compact discs. The technique they use to work around the standards 
bottleneck is simple, being much the same as saying things like "the person whose personal mailbox 
is..." or "the company whose corporate homepage is...". Being simple, it can (and should) be applied in 
other contexts where peer-to-peer and web applications want to query networked services for 
metadata. There's no reason to use a different protocol when asking for a CD track list and when 
asking for metadata describing any other kind of thing. 

The basic protocol being used in CD metadata query is both simple and general: "tell me what you 
know about the resource whose CD checksum is some-huge-number" - a protocol reminiscent of the 
PICS label bureau protocol. The MP3 community could build enormously useful services on top of 
this, even without adopting a more general framework such as that provided by RDF, but they have 
stopped short of the next step. 

On the contrary, while MP3 CD rippers currently embed lots of descriptive information (track listings) 
right into the encoding, they omit the most crucial piece of data from a fan's point of view: the CD and 
track identifiers. The simple unique identifier for a song on a CD, while only a tiny fragment of data, 
could allow both peer-to-peer and web applications to hook into a marketplace of descriptive services. 
How could MP3 services use this information? 
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One application is to update the metadata inside MP3 files, either to correct errors or to add 
additional information. If we don't know which CD an MP3 file was derived from, it becomes hard to 
know which MP3 files to update when we learn more about that CD. MP3s of collected works (i.e., 
compilations) typically have very poor embedded metadata. Artist names often appear inside the track 
name, for example. This makes for difficulties in finding information: If I want to generate a 
browsable listing organized alphabetically by artist, I don't want half the songs filed away under 
"Various Artists," nor do I want to find dozens of artist names in the "By Track Title" listings. 
Embedding unique identifiers in MP3s would allow this mess to be fixed at a later date. 

Another example can be found in the practice of sharing playlists: Given some convention for 
identifying songs and tracks, we can describe virtual, personalized compilation albums that another 
listener can recreate on his personal system by asking a peer-to-peer network for files representing 
those tracks. Unique identification strategies would provide the architectural glue that would allow us 
to reconnect fragmented information resources. Were someone to put a unique identification service 
in place, we could soon expect all kinds of new applications built on top: 

• Collaborative filtering ("Who likes songs that I like?") 

• E-commerce ("Where can I can I buy this T-shirt, CD, or book?" or "Is there a compilation 
album containing these tracks?") 

• Discovery ("What are the words to this song?" or "Where can I find other offerings by this 
artist?") 

The lesson for peer-to-peer metadata architecture is simple. Unique identifiers create markets. If you 
want to build interesting peer-to-peer applications that hook into a wide range of additional services, 
adopt the same strategy for uniquely identifying things that others are using. 

13.4 Conclusion 

Metadata applied at a fundamental level, early in the game, will provide rich semantics upon which 
innovators can build peer-to-peer applications that will amaze us with their flexibility. While the 
symmetry of peer-to-peer brings about a host of new and interesting ways of interacting, there's no 
substitute for taking the opportunity to rethink our assumptions and learn from the mistakes made on 
the Web. Let's not continue the screen-scraping modus operandi; rather, let's replace extrapolation 
with forethought and rich assertions. 

To summarize with a call to action for peer-to-peer architects, project leaders, developers, and end 
users: 

• Use a single, coherent metadata framework such as that provided by RDF. When it comes to 
metadata, the network becomes a poorer information resource whenever we create artificial 
boundaries between metadata applications. 

• Work on the commonalities between seemingly disparate data sources and formats. Work in 
your community to agree on some sort of common descriptive concepts. If such concepts 
already exist, borrow them. 

• Describe your resources well, in a standard way, getting involved in this standardization 
process itself where necessary. Be sure to make as much of this description as possible 
available to peer applications and end users through clear semantics and simple APIs. 

• Design ways of searching for (and finding) resources on the Net that take full advantage of any 
exposed metadata. 
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Chapter 14. Performance 
Theodore Hong, Imperial College of Science, Technology, and Medicine 

We live in the era of speed. Practically as a matter of course, we expect each day to bring faster disks, 
faster networks, and above all, faster processors. Recently, a research group at the University of 
Arizona even published a tongue-in-cheek article arguing that large calculations could be done more 
quickly by slacking off for a few months first, then buying a faster computer: 

[B]y fine tuning your slacktitude you can actually accomplish more than either the 
lazy bum at the beach for two years or the hard working sucker who got started 
immediately. Indeed with a little bit of algebra we convince ourselves that there 
exists an optimal slack time s .[1] 

[1] C. Gottbrath, J. Bailin, C. Meakin, T. Thompson, and J.J. Charfman (1999), "The Effects 
of Moore's Law and Slacking on Large Computations," arXiv:astro-ph/9912202. 

In a world like this, one might well wonder whether performance is worth paying attention to 
anymore. For peer-to-peer file-sharing systems, the answer is a definite yes, for reasons I will explain 
in the next section. 

Let me first emphasize that by performance, I don't mean abstract numerical benchmarks such as, 
"How many milliseconds will it take to render this many millions of polygons?" Rather, I want to 
know the answers to questions such as, "How long will it take to retrieve this file?" or "How much 
bandwidth will this query consume?" These answers will have a direct impact on the success and 
usability of a system. 

Fault tolerance is another significant concern. Peer-to-peer operates in an inherently unreliable 
environment, since it depends on the personal resources of ordinary individual users. These resources 
may become unexpectedly unavailable at any time, for a variety of reasons ranging from users 
disconnecting from the network or powering off a machine to users simply deciding not to participate 
any longer. In addition to these essentially random failures, personal machines tend to be more 
vulnerable than dedicated servers to directed hacking attacks or even legal action against their 
operators. Therefore, peer-to-peer systems need to anticipate failures as ordinary, rather than 
extraordinary, occurrences, and must be designed in a way that promotes redundancy and graceful 
degradation of performance. 

Scaling is a third important consideration. The massive user bases of Napster and of the Web have 
clearly shown how huge the demand on a successful information-sharing system can potentially be. A 
designer of a new peer-to-peer system must think optimistically and plan for how it might scale under 
strains orders of magnitude larger in the future. If local indices of data are kept, will they overflow? If 
broadcasts are used, will they saturate the network? Scalability will also be influenced by 
performance: some design inefficiencies may pass unnoticed with ten thousand users, but what 
happens when the user base hits ten million or more? A recent report from Gnutella analysts Clip2, 
indicating that Gnutella may already be encountering a scaling barrier, should serve to sound a note of 
warning. 

14.1 A note on terminology 

We can classify peer-to-peer systems into three main categories, broadly speaking: centrally 
coordinated, hierarchical, and decentralized. 

In a centrally coordinated system, coordination between peers is controlled and mediated by a central 
server, although peers may later act on information received from the central server to contact one 
another directly. Napster and SETI@home fall into this category. 

A hierarchical peer-to-peer system devolves some or all of the coordination responsibility down from 
the center to a tree of coordinators. In this arrangement, peers are organized into hierarchies of 
groups, where communication between peers in the same group is mediated by a local coordinator, 
but communication between peers in different groups is passed upwards to a higher-level coordinator. 
Some examples are the Domain Name System (DNS) and the Squid web proxy cache. 
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Finally, completely decentralized peer-to-peer systems have no notion of global coordination at all. 
Communication is handled entirely by peers operating at a local level. This usually implies some type 
of forwarding mechanism in which peers forward messages on behalf of other peers. Freenet and 
Gnutella are examples in this last category. 

In this chapter, when I refer to peer-to-peer systems, I will be talking only about decentralized peer-
to-peer. Since the performance issues of centralized systems have been discussed so much, it will be 
interesting to look at the issues of a fully decentralized system. 

14.2 Why performance matters 

Several factors combine to make decentralized peer-to-peer systems more sensitive to performance 
issues than other types of software. First, the essential characteristic of such systems is 
communication - a characteristic that makes them fundamentally dependent on the network. In 
network communication, as every dial-up user knows, connection speed dominates processor and I/O 
speed as the bottleneck. Since this situation will most likely persist into the foreseeable future, 
Moore's Law (so helpful elsewhere) provides little comfort. The problem is compounded by the highly 
parallel nature of peer-to-peer: A connection fast enough to talk to one remote peer quickly becomes 
much less so for ten trying to connect simultaneously. Thus, traffic minimization and load balancing 
become important considerations. 

Second, decentralized systems like Freenet and Gnutella need to use messages that are forwarded over 
many hops from one peer to the next. Since there is no central server to maintain a master index, it 
necessarily takes more effort to search through the system to find out where data is. Each hop not only 
adds to the total bandwidth load but also increases the time needed to perform a query, since it takes a 
nontrivial amount of time to set up a connection to the next peer or to discover that it is down. As 
mentioned previously, the latter occurrence can be extremely common in peer-to-peer environments. 
If a peer is unreachable, TCP/IP can take up to several minutes to time out the connection. Multiply 
that by several times for retries to other peers and add the time needed to actually send the message 
over a possibly slow dial-up connection, and the elapsed time per hop can get quite high. It is 
therefore important to cut down on the number of hops that messages travel. 

Third, the balance between resource providers and consumers must be considered. Like their 
counterparts in the real world, peer-to-peer communities depend on the presence of a sufficient base 
of communal participation and cooperation in order to function successfully. 

However, there will always be those who consume resources without giving any back. Recent analysis 
by Eytan Adar and Bernardo Huberman at Xerox PARC[2] indicates that as many as 70% of current 
Gnutella users may be sharing no files at all. 

[2] E. Adar and B.A. Huberman (2000), "Free Riding on Gnutella," First Monday 5(10), 
http://firstmonday.org/issues/issue5_10/adar/index.html. 

If a high enough proportion of users are free riders, performance degrades for those who do 
contribute. A substantial decline in performance may impel some contributors to pull out of the 
system altogether. Their withdrawal worsens the situation further for the remainder, who will have 
even less incentive to stay, leading to a downward spiral (the well-known " tragedy of the commons"). 

To avoid this outcome, system designers must take into account the impact of free riding on 
performance and devise strategies to encourage higher rates of community participation. Some such 
strategies are discussed in Chapter 16. 

14.3 Bandwidth barriers 

There has been some progress on the network speed front, of course. Today's 56-Kbps dial-up lines 
are a huge improvement on the 300-baud modems of yore. Still, true broadband has been slow to 
arrive. 

Clip2's analysis of Gnutella is instructive in showing how bandwidth limitations can affect system 
capabilities. Based on a series of measurements over a period of a month, Clip2 noted an apparent 
scalability barrier of substantial performance degradation when query rates went above 10 queries per 
second. To explain this, they proposed the following model.  

http://firstmonday.org/issues/issue5_10/adar/index.html
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A typical Gnutella query message is about 560 bits long, including TCP/IP headers. Clip2 observed 
that queries made up approximately a quarter of all message traffic, with another half being pings and 
the remainder miscellaneous messages. At any given time, Gnutella peers were seen to have an 
average of three remote peers actively connected simultaneously. Taking these numbers together, we 
get the following average burden on a user's link: 
                 10 queries per second 
     ×    560 bits per query 
     ×      4 to account for the other three-quarters of message traffic 
     ×      3 simultaneous connections 
     _______________________________________________________________________ 
     67,200 bits per second 

That's more than enough to saturate a 56-Kbps link. This calculation suggests that 10 queries per 
second is the maximum rate the system can handle in the presence of a significant population of dial-
up users. 

Even when broadband finally becomes widespread, it is unlikely to eliminate the importance of 
conserving bandwidth and usher in a new era of plenty. Just as building more highways failed to 
decrease traffic congestion because people drove more, adding more bandwidth just causes people to 
send larger files. Today's kilobit audio swapping becomes tomorrow's megabit video swapping. Hence, 
bandwidth conservation is likely to remain important for quite some time in the foreseeable future. 

14.4 It's a small, small world 

In 1967, Harvard professor Stanley Milgram mailed 160 letters to a set of randomly chosen people 
living in Omaha, Nebraska. He asked them to participate in an unusual social experiment in which 
they were to try to pass these letters to a given target person, a stockbroker working in Boston, 
Massachusetts, using only intermediaries known to one another on a first-name basis. That is, each 
person would pass her letter to a friend whom she thought might bring the letter closest to the target; 
the friend would then pass it on to another friend, and so on until the letter reached someone who 
knew the target personally and could give it to him. For example, an engineer in Omaha, on receiving 
the letter, passed it to a transplanted New Englander living in Bellevue, Nebraska, who passed it to a 
math teacher in Littleton, Massachusetts, who passed it to a school principal in a Boston suburb, who 
passed it to a local storekeeper, who gave it to a surprised stockbroker. 

In all, 42 letters made it through, via a median number of just 5.5 intermediaries. Such a surprisingly 
low number, compared to the then-U.S. population of 200 million, demonstrated concretely for the 
first time what has become popularly known as the small-world effect . This phenomenon is familiar 
to anyone who has exclaimed "Small world, isn't it!" upon discovering a mutual acquaintance shared 
with a stranger. 

Milgram's experiment was designed to explore the properties of social networks : the interconnecting 
bonds of friendship among individuals in a society. One way we can think about social networks is to 
use the mathematical discipline of graph theory. Formally, a graph is defined as a collection of points 
(called vertices) that are connected in pairs by lines (called edges).[3] Figure 14.1 shows an example of a 
graph. 

[3] By the way, these graphs have nothing to do with the familiar graphs of equations used in algebra. 

Figure 14.1. An example of a graph 
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How are graphs related to social networks? We can represent a social network as a graph by creating a 
vertex for each individual in the group and adding an edge between two vertices whenever the 
corresponding individuals know one another. Each vertex will have a different number of edges 
connected to it going to different places, depending on how wide that person's circle of acquaintances 
is. The resulting structure is likely to be extremely complex; for example, a graph for the United States 
would contain over 280 million vertices connected by a finely tangled web of edges. 

Computer networks bear a strong resemblance to social networks and can be represented by graphs in 
a similar way. In fact, you've probably seen such a graph already if you've ever looked at a connectivity 
map for a LAN or WAN, although you might not have thought of it that way. In these maps, points 
representing individual computers or routers are equivalent to graph vertices, and lines representing 
physical links between machines are edges. 

Another electronic analogue to a social network is the World Wide Web. The Web can be viewed as a 
graph in which web pages are vertices and hyperlinks are edges. Just as friendship links in a social 
network tend to connect members of the same social circle, hyperlinks frequently connect web pages 
that share a common theme or topic. 

There is a slight complication because (unlike friendships) hyperlinks are one-way; that is, you can 
follow a hyperlink from a source page to a target page but not the reverse. For Web links, properly 
speaking, we need to use a directed graph , which is a graph in which edges point from a source vertex 
to a target vertex, rather than connecting vertices symmetrically. Directed graphs are usually 
represented by drawing their edges as arrows rather than lines, as shown in Figure 14.2. 

Figure 14.2. A directed graph 

 
Most importantly for our purposes, peer-to-peer networks can be regarded as graphs as well. We can 
create a Freenet graph, for example, by creating a vertex for each computer running a Freenet node 
and linking each node by a directed edge to every node referenced in its data store. Similarly, a 
Gnutella graph would have a vertex for each computer running a Gnutella "servent" and edges linking 
servents that are connected to each other. These graphs form a useful abstract representation of the 
underlying networks. By analyzing them mathematically, we ought to be able to gain some insight into 
the functioning of the corresponding systems. 

14.4.1 An excursion into graph theory 

There are a number of interesting questions you can ask about graphs. One immediate question to ask 
is whether or not it is connected. That is, is it always possible to get from any vertex (or individual) to 
any other via some chain of intermediaries? Or are there some groups which are completely isolated 
from one another, and never the twain shall meet? 

An important property to note in connection with this question is that paths in a graph are transitive . 
This means that if there is a path from point A to point B, and also a path from point B to point C, then 
there must be a path from A to C. This fact might seem too obvious to need stating, but it has broader 
consequences. Suppose there are two separate groups of vertices forming two subgraphs, each 
connected within itself but disconnected from the other. Then adding just one edge from any vertex V 
in one group to any vertex W in the other, as in Figure 14.3, will make the graph as a whole connected. 
This follows from transitivity: by assumption there is a path from every vertex in the first group to V, 
and a path from W to every vertex in the second group, so adding an edge between V and W will 
complete a path from every vertex in the first group to every vertex in the second (and vice versa). 
Conversely, deleting one critical edge may cause a graph to become disconnected, a topic we will 
return to later in the context of network robustness. 
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Figure 14.3. Adding an edge between V and W connects the two subgraphs 

 
If it is possible to get from any vertex to any other by some path, a natural follow-up question to ask is 
how long these paths are. One useful measure to consider is the following: for each pair of vertices in 
the graph, find the length of the shortest path between them; then, take the average over all pairs. This 
number, which we'll call the characteristic pathlength of the graph, gives a sense of how far apart 
points are in the network. 

In the networking context, the relevance of these two questions is immediately apparent. For example, 
performing a traceroute from one machine to another is equivalent to finding a path between two 
vertices in the corresponding graph. Finding out whether a route exists, and how many hops it takes, 
are basic questions in network analysis and troubleshooting. 

For decentralized peer-to-peer networks, these two questions have a similar significance. The first 
tells us which peers can communicate with one another (via some message-forwarding route); the 
second, how much effort is involved in doing so. To see how we can get a handle on these questions, 
let's return to the letter-passing experiment in more depth. Then we'll see if we can apply any insights 
to the peer-to-peer situation. 

14.4.2 The small-world model 

The success of Milgram's volunteers in moving letters between the seemingly disparate worlds of rural 
heartland and urban metropolis suggests that the social network of the United States is indeed 
connected. Its characteristic pathlength corresponds to the median number of intermediaries needed 
to complete a chain, measured to be about six. 

Intuitively, it seems that the pathlength of such a large network ought to be much higher. Most 
people's social circles are highly cliquish or clustered; that is, most of the people whom you know also 
know each other. Equivalently, many of the friends of your friends are people whom you know 
already. So taking additional hops may not increase the number of people within reach by much. It 
seems that a large number of hops would be necessary to break out of one social circle, travel across 
the country, and reach another, particularly given the size of the U.S. How then can we explain 
Milgram's measurement? 

The key to understanding the result lies in the distribution of links within social networks. In any 
social grouping, some acquaintances will be relatively isolated and contribute few new contacts, 
whereas others will have more wide-ranging connections and be able to serve as bridges between far-
flung social clusters. These bridging vertices play a critical role in bringing the network closer 
together. In the Milgram experiment, for example, a quarter of all the chains reaching the target 
person passed through a single person, a local storekeeper. Half the chains were mediated by just 
three people, who collectively acted as gateways between the target and the wider world. 
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It turns out that the presence of even a small number of bridges can dramatically reduce the lengths of 
paths in a graph, as shown by a recent paper by Duncan Watts and Steven Strogatz in the journal 
Nature.[4] They began by considering a simple type of graph called a regular graph , which consists of 
a ring of n vertices, each of which is connected to its nearest k neighbors. For example, if k is 4, each 
vertex is connected to its nearest two neighbors on each side (four in total), giving a graph such as the 
one shown in Figure 14.4. 

[4] D.J. Watts and S.H. Strogatz (1998), "Collective Dynamics of `Small-World' Networks," Nature 393, p.440. 

Figure 14.4. A regular graph 

 
If we look at large regular graphs in which n is much larger than k, which in turn is much larger than 1, 
the pathlength can be shown to be approximately n/2k. For example, if n is 4,096 and k is 8, then 
n/2k is 256 - a very large number of hops to take to get where you're going! (Informally, we can justify 
the formula n/2k by noticing that it equals half the number of hops it takes to get to the opposite side 
of the ring. We say only half because we are averaging over all pairs, some of which will be close 
neighbors and some of which will be on opposite sides.) 

Another property of regular graphs is that they are highly clustered, since all of their links are 
contained within local neighborhoods. To make this notion more precise, we can define a measure of 
clustering as follows. For the k neighbors of a given vertex, the total number of possible connections 
among them is k × (k-1)/2. Let's define the clustering coefficient of a vertex as the proportion 
(between and 1) of these possible links that are actually present in the graph. For example, in the 
regular graph of Figure 14.4, each vertex has four neighbors. There are a total of (4 × 3)/2 = 6 possible 
connections among the four neighbors (not counting the original vertex itself), of which 3 are present 
in the graph. Therefore the clustering coefficient of each vertex is 3/6 = 0.5. 

In social terms, this coefficient can be thought of as counting the number of connections among a 
person's friends - a measure of the cliquishness of a group. If we do the math, it can be shown that as 
the number of vertices in the graph increases, the clustering coefficient approaches a constant value of 
0.75 (very cliquish). 

More generally, in a non-regular graph, different vertices will have different coefficients. So we define 
the clustering coefficient of a whole graph as the average of all the clustering coefficients of the 
individual vertices. 

The opposite of the completely ordered regular graph is the random graph . This is just a graph whose 
vertices are connected to each other at random. Random graphs can be categorized by the number of 
vertices n and the average number of edges per vertex k. Notice that a random graph and a regular 
graph having the same values for n and k will be comparable in the sense that both will have the same 
total number of vertices and edges. For example, the random graph shown in Figure 14.5 has the same 
number of vertices (12) and edges (24) as the regular graph in Figure 14.4. It turns out that for large 
random graphs, the pathlength is approximately log n/log k, while the clustering coefficient is 
approximately k/n. So using our previous example, where n was 4,096 and k was 8, the pathlength 
would be log 4,096/log 8 = 4 - much better than the 256 hops for the regular graph! 
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Figure 14.5. A random graph 

 
On the other hand, the clustering coefficient would be 8/4,096 0.002 - much less than the regular 
graph's 0.75. In fact, as n gets larger, the clustering coefficient becomes practically 0. 

If we compare these two extremes, we can see that the regular graph has high clustering and a high 
pathlength, whereas the random graph has very low clustering and a comparatively low pathlength. 
(To be more precise, the pathlength of the regular graph grows linearly as n gets larger, but the 
pathlength of the random graph grows only logarithmically.) 

What about intermediate cases? Most real-world networks, whether social networks or peer-to-peer 
networks, lie somewhere in between - neither completely regular nor completely random. How will 
they behave in terms of clustering and pathlength? 

Watts and Strogatz used a clever trick to explore the in-between region. Starting with a 1000-node 
regular graph with k equal to 10, they "rewired" it by taking each edge in turn and, with probability p, 
moving it to connect to a different, randomly chosen vertex. When p is 0, the regular graph remains 
unchanged; when p is 1, a random graph results. The region we are interested in is the region where p 
is between and 1. Figure 14.6 shows one possible rewiring of Figure 14.4 with p set to 0.5. 

Figure 14.6. A rewiring of a regular graph 

 
Surprisingly, what they found was that with larger p, clustering remains high but pathlength drops 
precipitously, as shown in Figure 14.7. Rewiring with p as low as 0.001 (that is, rewiring only about 
0.1% of the edges) cuts the pathlength in half while leaving clustering virtually unchanged. At a p 
value of 0.01, the graph has taken on hybrid characteristics. Locally, its clustering coefficient still looks 
essentially like that of the regular graph. Globally, however, its pathlength has nearly dropped to the 
random-graph level. Watts and Strogatz dubbed graphs with this combination of high local clustering 
and short global pathlengths small-world graphs. 
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Figure 14.7. Evolution of pathlength and clustering under rewiring, relative to initial 
values 

 
Two important implications can be seen. First, only a small amount of rewiring is needed to promote 
the small-world transition. Second, the transition is barely noticeable at the local level. Hence it is 
difficult to tell whether or not your world is a small world, although it won't take much effort to turn it 
into one if it isn't. 

These results can explain the small-world characteristics of the U.S. social network. Even if local 
groups are highly clustered, as long as a small fraction (1% or even fewer) of individuals have long-
range connections outside the group, pathlengths will be low. This happens because transitivity causes 
such individuals to act as shortcuts linking entire communities together. A shortcut doesn't benefit 
just a single individual, but also everyone linked to her, and everyone linked to those who are linked to 
her, and so on. All can take advantage of the shortcut, greatly shortening the characteristic pathlength. 
On the other hand, changing one local connection to a long-range one has only a small effect on the 
clustering coefficient. 

Let's now look at how we can apply some of the concepts of the small-world model to peer-to-peer by 
considering a pair of case studies. 

14.5 Case study 1: Freenet 

The small-world effect is fundamental to Freenet's operation. As with Milgram's letters, Freenet 
queries are forwarded from one peer to the next according to local decisions about which potential 
recipient might make the most progress towards the target. Unlike Milgram's letters, however, Freenet 
messages are not targeted to a specific named peer but toward any peer having a desired file in its data 
store. 

To take a concrete example, suppose I were trying to obtain a copy of Peer-to-Peer. Using Milgram's 
method, I could do this by trying to get a letter to Tim O'Reilly asking for a copy of the book. I might 
begin by passing it to my friend Dan (who lives in Boston), who might pass it to his friend James (who 
works in computers), who might pass it to his friend Andy (who works for Tim), who could pass it to 
Tim himself. Using Freenet's algorithm, I don't try to contact a particular person. Instead, I might ask 
my friend Alison (who I know has other O'Reilly books) if she has a copy. If she didn't, she might 
similarly ask her friend Helena, and so on. Freenet's routing is based on evaluating peers' bookshelves 
rather than their contacts - any peer owning a copy can reply, not just Tim O'Reilly specifically. 
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For the Freenet algorithm to work, we need two properties to hold. First, the Freenet graph must be 
connected, so that it is possible for any request to eventually reach some peer where the data is stored. 
(This assumes, of course, that the data does exist on Freenet somewhere.) Second, despite the large 
size of the network, short routes must exist between any two arbitrary peers, making it possible to 
pass messages between them in a reasonable number of hops. In other words, we want Freenet to be a 
small world. 

The first property is easy. Connectedness can be achieved by growing the network incrementally from 
some initial core. If each new node starts off by linking itself to one or more introductory nodes 
already known to be reachable from the core, transitivity will assure a single network rather than 
several disconnected ones. There is a potential problem, however: If the introductory node fails or 
drops out, the new node and later nodes connected to it might become stranded. 

Freenet's request and insert mechanisms combat this problem by adding additional redundant links 
to the network over time. Even if a new node starts with only a single reference to an introductory 
node, each successful request will cause it to gain more references to other nodes. These references 
will provide more links into the network, alleviating the dependence on the introductory node. 
Conversely, performing inserts creates links in the opposite direction, as nodes deeper in the network 
gain references to the inserting node. Nonetheless, the effect of node failures needs to be examined 
more closely. We will return to this subject later. 

The second property presents more of a challenge. As we saw earlier, it is difficult to tell from local 
examination alone whether or not the global network is a small world, and Freenet's anonymity 
properties deliberately prevent us from measuring the global network directly. For example, it is 
impossible to even find out how many nodes there are. Nor do we know precisely which files are 
stored in the network or where, so it is hard to infer much from local request outcomes. We therefore 
turn to simulation. 

14.5.1 Initial experiments 

Fortunately, simulation indicates that Freenet networks do evolve small-world characteristics. 
Following Watts and Strogatz, we can initialize a simulated Freenet network with a regular topology 
and see how it behaves over time. Suppose we create a network of 1,000 identical nodes having 
initially empty data stores with a capacity of 50 data items and 200 additional references each. To 
minimally bootstrap the network's connectivity, let's number the nodes and give each node references 
to 2 nodes immediately before and after it numerically (modulo 1,000). For example, node would be 
connected to nodes 998, 999, 1, and 2. We have to associate keys with these references, so for 
convenience we'll use a hash of the referenced node number as the key. Using a hash has the 
advantage of yielding a key that is both random and consistent across the network (that is, every node 
having a reference to node will assign the same key to the reference, namely hash(0)). Figure 14.8 
shows some of the resulting data stores. Topologically, this network is equivalent to a directed regular 
graph in which n is 1,000 and k is 4. 

Figure 14.8. Initial data stores for a simulated network 
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What are the initial characteristics of this network? Well, from the earlier discussion of regular graphs, 
we know that its pathlength is n/2k, or 1,000/8 = 125. Each node has four neighbors - for example, 
node 2 is connected to nodes 0, 1, 3, and 4. Of the 12 possible directed edges among these neighbors, 6 
are present (from to 1, 1 to 3, and 3 to 4, and from 1 to 0, 3 to 1, and 4 to 3), so the clustering 
coefficient is 6/12 = 0.5. 

A comparable random graph, on the other hand, would have a pathlength of log 1,000/log 4 5 and a 
clustering coefficient of 4/1,000 = 0.004. 

Now let's simulate a simple network usage model. At each time step, pick a node at random and flip a 
coin to decide whether to perform a request or an insert from that node. If requesting, randomly 
choose a key to request from those known to be present in the network; if inserting, randomly choose 
a key to insert from the set of all possible keys. Somewhat arbitrarily, let's set the hops-to-live to 20 on 
both insert and request. 

Every 100 time steps, measure the state of the network. We can directly calculate its clustering 
coefficient and characteristic pathlength by examining the data stores of each node to determine 
which other nodes it is connected to and then performing a breadth-first search on the resulting 
graph. 

Figure 14.9 shows the results of simulating this model. Ten trials were taken, each lasting 5,000 time 
steps, and the results were averaged over all trials. 

Figure 14.9. Evolution of pathlength and clustering over time in a Freenet network 

 
As we can see, the pathlength rapidly decreases by a factor of 20 within the first 500 time steps or so 
before leveling off. On the other hand, the clustering coefficient decreases only slowly over the entire 
simulation period. The final pathlength hovers slightly above 2, while the final clustering is about 
0.22. If we compare these figures to the values calculated earlier for the corresponding regular graph 
(125 pathlength and 0.5 clustering) and random graph (5 pathlength and 0.004 clustering), we can see 
the small-world effect: Freenet's pathlength approximates the random graph's pathlength while its 
clustering coefficient is of the same order of magnitude as the regular graph. 

Does the small-world effect translate into real performance, however? To answer this question, let's 
look at the request performance of the network over time. Every 100 time steps, we probe the network 
by simulating 300 requests from randomly chosen nodes in the network. During this probe period, the 
network is frozen so that no data is cached and no links are altered. The keys requested are chosen 
randomly from those known to be stored in the network and the hops-to-live is set to 500. By looking 
at the number of hops actually taken, we can measure the distance that a request needs to travel 
before finding data. For our purposes, a request that fails will be treated as taking 500 hops. At each 
snapshot, we'll plot the median pathlength of all requests (that is, the top 50% fastest requests). 
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These measurements are plotted in Figure 14.10 and Figure 14.11. Reassuringly, the results indicate 
that Freenet does actually work. The median pathlength for requests drops from 500 at the outset to 
about 6 as the network converges to a stable state. That is, half of all requests in the mature network 
succeed within six hops. A quarter of requests succeed within just three hops or fewer. 

Figure 14.10. Median request pathlength over time (linear scale) 

 
 

Figure 14.11. Median request pathlength over time (logarithmic scale) 

 
Note that the median request pathlength of 6 is somewhat higher than the characteristic pathlength of 
2. This occurs because the characteristic pathlength measures the distance along the optimal path 
between any pair of nodes. Freenet's local routing cannot always choose the globally optimal route, of 
course, but it manages to get close most of the time. 

On the other hand, if we look at the complete distribution of final pathlengths, as shown in Figure 
14.12, there are some requests that take a disproportionately long time. That is, Freenet has good 
average performance but poor worst-case performance, because a few bad routing choices can throw a 
request completely off the track. 
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Figure 14.12. Distribution of all request pathlengths at the end of the simulation 

 
Indeed, local routing decisions are extremely important. Although the small-world effect tells us that 
short routes exist between any pair of vertices in a small-world network, the tricky part is actually 
finding these short routes. 

To illustrate this point, consider a Freenet-like system in which nodes forward query messages to 
some peer randomly chosen from the data store, rather than the peer associated with the closest key to 
the query. Performing the same simulation on this system gives the measurements shown in Figure 
14.13. 

Figure 14.13. Median request pathlength under random routing 

 
We see that the median request pathlength required now is nearly 50, although analysis of the 
network shows the characteristic pathlength to still be about 2. This request pathlength is too high to 
be of much use, as 50 hops would take forever to complete. So although short paths exist in this 
network, we are unable to make effective use of them. 



Peer to Peer: Harnessing the Power of Disruptive Technologies 

 page 140

These observations make sense if we think about our intuitive experience with another small-world 
domain, the Web. The process of navigating on the Web from some starting point to a desired 
destination by following hyperlinks is quite similar to the process of forwarding a request in Freenet. 
A recent paper in Nature by Réka Albert, Hawoong Jeong, and Albert-László Barabási[5] reported that 
the Web is a small-world network with a characteristic pathlength of 19. That is, from any given web 
page, it is possible to surf to any other one of the nearly 800 million reachable pages in existence with 
an average of 19 clicks. 

[5] R. Albert, H. Jeong, and A. Barabási (1999), "Diameter of the World-Wide Web," Nature 401, p.130. 

However, such a path can be constructed only by an intelligent agent able to make accurate decisions 
about which link to follow next. Even humans often fail in this task, getting "lost in the Web." An 
unintelligent robot choosing links at random would clearly get nowhere. The only hope for such a 
robot is to apply brute-force indexing, and the force required is brute indeed: Albert et al. estimated 
that a robot attempting to locate a web page at a distance of 19 hops would need to index at least a full 
10% of the Web, or some 80 million pages. 

14.5.2 Simulating growth 

Having taken a preliminary look at the evolution of a fixed Freenet network, let's now look at what 
happens in a network that grows over time. When a new node wants to join Freenet, it must first find 
(through out-of-band means) an initial introductory node that is already in the network. The new 
node then sends an announcement message to the introductory node, which forwards it into Freenet. 
Each node contacted adds a reference to the new node to its data store and sends back a reply 
containing its own address, before forwarding the announcement on to another node chosen 
randomly from its data store. In turn, the new node adds all of these replies to its data store. The net 
result is that a set of two-way links are established between the new node and some number of 
existing nodes, as shown in Figure 14.14. 

Figure 14.14. Adding a new node to Freenet (arrows show the path of the announcement 
message; dotted lines show the new links established) 

 
We can simulate this evolution by the following procedure. Initialize the network with 20 nodes 
connected in a regular topology as before, so that we can continue to use a hops-to-live of 20 from the 
outset. Add a new node every 5 time steps until the network reaches a size of 1,000. When adding a 
new node, choose an introductory node at random and send an announcement message with hops-to-
live 10. Meanwhile, inserts and requests continue on every time step as before, and probes every 100 
time steps. 

It might seem at first that this simulation won't realistically model the rate of growth of the network, 
since nodes are simply added linearly every five steps. However, simulation time need not correspond 
directly to real time. The effect of the model is essentially to interpose five requests between node 
additions, regardless of the rate of addition. In real time, we can expect that the number of requests 
per unit time will be proportional to the size of the network. If we assume that the rate at which new 
nodes join is also proportional to the size of the network, the linear ratio between request rate and 
joining rate is justified. 

Figure 14.15 shows the results of simulating this model. As before, 10 trials were run and the results 
averaged over all trials. 
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Figure 14.15. Median request pathlength in a growing network 

 
The results are extremely promising. The request pathlength starts off low, unsurprisingly, since the 
network is so small initially that even random routing should find the data quickly. However, as the 
network grows, the request pathlength remains low. 

By the end of the simulation, the network is performing even better than the fixed-size simulation 
having the same number of nodes. Now 50% of all requests succeed within just 5 hops or fewer, while 
84% succeed within 20. Meanwhile, the characteristic pathlength and the clustering coefficient are not 
appreciably different from the fixed case - about 2.2 for the pathlength and about 0.25 for the 
clustering coefficient. 

14.5.3 Simulating fault tolerance 

Let's turn to some aspects of robustness. As mentioned earlier, an important challenge in designing a 
peer-to-peer system is coping with the unreliability of peers. Since peers tend to be personal machines 
rather than dedicated servers, they are often turned off or disconnected from the network at random. 
Another consideration for systems that may host content disapproved of by some group is the 
possibility of a deliberate attempt to bring the network down through technical or legal attacks. 

Taking as a starting point the network grown in the second simulation, we can examine the effects of 
two node failure scenarios. One scenario is random failure, in which nodes are simply removed at 
random from the network. The other scenario is targeted attack, in which the most important nodes 
are targeted for removal. Here we follow the approach of another paper by Albert, Jeong, and Barabási 
on the fault tolerance of the Internet.[6] 

[6] R. Albert, H. Jeong, and A. Barabási (2000), "Error and Attack Tolerance of Complex Networks," Nature 406, 
p.378. 

We can model the random failure scenario by progressively removing more and more nodes selected 
at random from the network and watching how the system's performance holds up. Figure 14.16 
shows the request pathlength plotted against the percentage of nodes failing. The network remains 
surprisingly usable, with the median request pathlength remaining below 20 even when up to 30% of 
nodes fail. 



Peer to Peer: Harnessing the Power of Disruptive Technologies 

 page 142

Figure 14.16. Change in request pathlength under random failure 

 
An explanation can be offered by looking at the distribution of links within the network. If we draw a 
histogram of the proportion of nodes having different numbers of links, as shown in Figure 14.17, we 
can see that the distribution is highly skewed. Most nodes have only a few outgoing links, but a small 
number of nodes toward the right side of the graph are very well-connected. (The unusually large 
column at 250 links is an artifact of the limited data store size of 250 - when larger data stores are 
used, this column spreads out farther to the right.) 

Figure 14.17. Histogram showing the proportion of nodes vs. the number of links 

 
When nodes are randomly removed from the network, most of them will probably be nodes with few 
links, and thus their loss will not hurt the routing in the network much. The highly connected nodes in 
the right-hand tail will be able to keep the network connected. These nodes correspond to the 
shortcuts needed to make the small-world effect happen. 

The attack scenario, on the other hand, is more dangerous. In this scenario, the most-connected nodes 
are preferentially removed first. Figure 14.18 shows the trend in the request pathlength as nodes are 
attacked. Now the network becomes unusable much more quickly, with the median request pathlength 
passing 20 at the 18% failure level. This demonstrates just how important those nodes in the tail are. 
When they are removed, the network starts to fall apart into disconnected fragments. 
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Figure 14.18. Change in request pathlength under targeted attack 

 

Figure 14.19 shows the contrast between the two failure modes in more detail, using a semi-log scale. 

Figure 14.19. Comparison of the effects of attack and failure on median request 
pathlength 

 

14.5.4 Link distribution in Freenet 

Where do the highly connected nodes come from? We can get some hints by trying to fit a function to 
the observed distribution of links. If we redraw the histogram as a log-log plot, as shown in Figure 
14.20, we can see that the distribution of link numbers roughly follows a straight line (except for the 
anomalous point at 250). Since the equation for a downward-sloping line is: 

y = -kx + b  

where k and b are constants, this means that the proportion of nodes p having a given number of links 
L satisfies the equation: 

log p = -k log L + b  

By exponentiating both sides, we can express this relationship in a more normal-looking way as: 

p = A × L -k  
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This is called a scale-free relationship, since the total number of nodes doesn't appear in the equation. 
Therefore it holds regardless of the size of the network, big or small. In fact, scale-free link 
distributions are another characteristic often used to identify small-world networks. 

Figure 14.20. Log-log scatter plot of the proportion of nodes vs. the number of links 

 
It turns out that this type of relationship arises naturally from the interaction of two processes: 
Growth and preferential attachment. Growth just means that new nodes are added over time. 
Preferential attachment means that new nodes tend to add links to nodes that have a lot of links 
already. This makes sense because nodes that are well known (i.e., have lots of links) will tend to see 
more requests and hence will tend to become even better connected. 

14.5.5 The impact of free riding 

In addition to being robust against node failures, peer-to-peer systems must be able to cope with free 
riders. Just as in any other social system, there are always those who take from the system without 
contributing anything back. In the peer-to-peer context, this might mean downloading files but not 
sharing any for upload, or initiating queries without forwarding or answering queries from others. At 
best, such behavior just means increased load for everyone else; at worst, it can significantly harm the 
functioning of the system. 

Freenet deals with free riders by simply ignoring them. If a node never provides any files, no other 
nodes will gain references to it. To the rest of the network, it might as well not exist, so it won't have 
any effect on the pathlengths of others' requests. However, its own requests will contribute to the total 
bandwidth load on the network while providing no additional capacity. Similarly, if a node refuses to 
accept incoming connections, other nodes will treat it as though it were down and try elsewhere. Only 
if a node drops messages without responding will untoward things start to happen, although in that 
case it is behaving more like a malicious node than a free riding one. 

14.5.6 Scalability 

Finally, let's consider Freenet's scaling properties. In small-world graphs, the characteristic 
pathlength scales logarithmically with the size of the network, since it follows the random-graph 
pathlength of log n/log k. That is, a geometric increase in the number of vertices results in only a 
linear increase in the characteristic pathlength. This means that for example, if k is 3, increasing the 
size of the network by 10 times would increase the pathlength by just 2. If Freenet's routing continues 
to work in large networks, the request pathlength should scale similarly. (Remember that the 
correlation between the request pathlength and the characteristic pathlength depends on the accuracy 
of the routing.) 

Figure 14.21 shows the results of extending our earlier growth simulation up to 200,000 nodes. As 
hoped, the request pathlength does appear to scale logarithmically. 
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Figure 14.21. Median request pathlength vs. network size (linear scale) 

 
We can see the scaling more clearly on the semi-log plot shown in Figure 14.22. On this plot, the data 
follow approximately straight lines, showing that pathlength is indeed roughly proportional to 
log(size). The median line has a "knee" where it changes slope at 50,000 nodes. This probably results 
from data stores becoming filled and could be corrected by creating larger data stores. Note that our 
data stores were limited to 250 links by the memory requirements of the simulation, whereas real 
Freenet nodes can easily hold thousands of references. In fact, if we recall the connectivity distribution 
shown in Figure 14.17, only a small number of high-capacity nodes should be necessary. Even with 
small data stores, the trend shows that Freenet scales very well: Doubling the network size brings a 
pathlength increase of only 4 hops. 

Figure 14.22. Median request pathlength vs. network size (logarithmic scale) 

 
The number of messages that must be transmitted per request is proportional to the request 
pathlength, since the latter indicates the number of times a request is forwarded. In turn, the 
bandwidth used is proportional to the number of messages sent. Thus, the bandwidth requirements of 
requests should also scale logarithmically in relation to the size of the network. Considering that, in 
general, the effort required to search for an item in a list grows logarithmically in relation to the size of 
the list, this is probably the best scaling that can be expected from a decentralized peer-to-peer 
system. 
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14.6 Case study 2: Gnutella 

Gnutella uses a simple broadcast model to conduct queries, which does not invoke the small-world 
effect. Nonetheless, many of the concepts presented in this chapter can be taken as a useful framework 
for thinking about Gnutella's performance, which has been in the trade press so much recently. 

In Gnutella, each peer tries to maintain a small minimum number (typically around three) of active 
simultaneous connections to other peers. These peers are selected from a locally maintained host 
catcher list containing the addresses of the other peers that this peer knows about. Peers can be 
discovered through a wide variety of mechanisms, such as watching for PING and PONG messages, 
noting the addresses of peers initiating queries, receiving incoming connections from previously 
unknown peers, or using out-of-band channels such as IRC and the Web. However, not all peers so 
discovered may accept new connections, since they may already have enough connections or be picky 
about the peers they will talk to. Establishing a good set of connections can in general be a somewhat 
haphazard process. Further, peers leaving the network will cause additional shuffling as the remaining 
peers try to replace lost connections. 

It therefore seems reasonable to model a Gnutella network by a random graph with a k of 3. Note that 
such a graph does not necessarily have exactly three edges per vertex. Rather, there will be some 
distribution in which the probability of finding a vertex having a given number of edges peaks around 
3 and decreases exponentially with increasing numbers of edges. We will have more to say about this 
later. 

Gnutella queries propagate through the network as follows. Upon receiving a new query, a peer 
broadcasts it to every peer that it is currently connected to, each of which in turn will broadcast the 
query to the peers it is connected to, and so on, in the manner of a chain letter. If a peer has a file that 
matches the query, it sends an answer back to the originating peer, but still forwards the query 
anyway. This process continues up to a maximum depth (or "search horizon") specified by the time-
to-live field in the query. Essentially, Gnutella queries perform breadth-first searches on the network 
graph, in which searches broaden out and progressively cover the vertices closest to the starting point 
first. (By contrast, Freenet's style is closer to depth-first search, in which searches are directed deeper 
into the graph first.) 

As before, it is necessary for the network graph to be connected, so that it is possible for any query to 
eventually reach some peer having the desired data. Achieving complete connectivity is somewhat 
more difficult than in Freenet because of the random nature of Gnutella connectivity. We can imagine 
that a random assignment of connections might leave some subset of peers cut off from the rest. 
However, in practice connectedness appears to hold. 

Second, there must again be short routes between arbitrary peers, so that queries will be able to reach 
their targets before exceeding their depth limits. We turn to simulation to explore these properties. 

14.6.1 Initial experiments 

Suppose we create a network of 1,000 identical nodes initially sharing no files. To model its 
connectivity, let's add 1,500 edges by picking random nodes to be connected, two at a time, and 
creating edges between them. Topologically, the resulting network will be equivalent to a random 
graph in which n is 1,000 and k is 3. 

Now let's add data to fill the network, since Gnutella does not have an explicit "insert" or "publish" 
mechanism. To make this simulation broadly comparable to the Freenet simulation, we'll randomly 
generate data items to be stored on 20 nodes each (the equivalent of a Freenet insert with hops-to-live 
20). This can be imagined as 20 users independently choosing to share the same file, perhaps a 
particular MP3. We set the number of different data items added to be the same as the number 
inserted over the course of the Freenet simulation - that is, about 2,500. 

As before, we simulate a simple network usage model. Since a Gnutella network does not evolve 
organically over time the way a Freenet network does, a single set of probe measurements should 
suffice. Following our previous method, we perform 300 queries from randomly chosen nodes in the 
network. The keys requested are chosen randomly from those known to be stored in the network, and 
the time-to-live is set to infinity, so these queries will always succeed eventually.  
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To gauge the distance a query must travel before finding data, we stop the query as soon as a hit is 
found and note the number of hops taken to that point. (In the real Gnutella, queries proceed in 
parallel on a large number of nodes, so it is not practicable to halt them after finding a match on one 
node.) Figure 14.23 shows the resulting distribution of query pathlengths. 

Figure 14.23. Distribution of query pathlengths in Gnutella 

 
We see that Gnutella queries are satisfied extremely quickly, under both average-case and worst-case 
conditions. Indeed, the breadth-first search guarantees that the optimal shortest path to the data will 
always be found, making the query pathlength equal to the characteristic pathlength. However, this is 
not a true measure of the effort expended by the network as a whole, since queries are broadcast to so 
many nodes. A better measure is to consider the number of nodes contacted in the course of a query, 
as shown in Figure 14.24. 

Figure 14.24. Distribution of the number of nodes contacted per query 

 
A significant number of queries require the participation of 50 nodes, and many even call for 100 or 
more. It is apparent that the price paid for a quick result is a large expenditure of effort to exhaustively 
search a significant proportion of the network. Vis-à-vis Freenet, Gnutella makes a trade-off of much 
greater search effort in return for optimal paths and better worst-case performance. 
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14.6.2 Fault tolerance and link distribution in Gnutella 

What are Gnutella's fault-tolerance characteristics? As before, we can consider its behavior under two 
node failure scenarios: random failure and targeted attack. The distribution of links in Freenet was an 
important factor in its robustness, so let's look at Gnutella's corresponding distribution, shown in 
Figure 14.25. 

Figure 14.25. Histogram showing the distribution of links in Gnutella 

 
Mathematically, this is a "Poisson" distribution peaked around the average connectivity of 3. Its tail 
drops off exponentially, rather than according to a power law as Freenet's does. This can be seen more 
clearly in the log-log plot of Figure 14.26. 

Figure 14.26. Log-log scatter plot of the distribution of links in Gnutella 

 
Comparing this plot to Figure 14.20, we can see that Figure 14.26 drops off much more sharply at high 
link numbers. As a result, highly connected nodes are much less of a factor in Gnutella than they are in 
Freenet. 
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Let's see how Gnutella behaves under the targeted attack scenario, in which the most-connected nodes 
are removed first. Figure 14.27 shows the number of nodes contacted per query (as a percentage of the 
surviving nodes) versus the percentage of nodes attacked. (A request that fails is treated as a value of 
100%.) If we compare this plot to Figure 14.18, we can see that Gnutella resists targeted attack better 
than Freenet does, since the highly connected nodes play less of a role. 

Figure 14.27. Change in number of nodes contacted per query, under targeted attack 

 
On the other hand, the random failure scenario is the opposite. Figure 14.28 shows the number of 
nodes contacted versus the percentage of nodes failing. If we compare this to Figure 14.16, Freenet 
does better. 

Figure 14.28. Change in number of nodes contacted per query, under random failure 

 
In fact, this occurs because Gnutella performs about the same under both random failure and targeted 
attack, as can be seen more clearly in Figure 14.29. Here again is a trade-off: Gnutella responds 
equally to failure and attack, since all of its nodes are roughly equivalent. Freenet's highly connected 
nodes enable it to better cope with random failure, but these then become points of vulnerability for 
targeted attack. 
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Figure 14.29. Comparison of the effects of attack and failure 

 
This is brought out in more detail by Figure 14.30, which plots the four scenarios together using an 
arbitrary scale. We can see that the Freenet failure curve grows much more slowly than the Gnutella 
curves, while the Freenet attack curve shoots up sooner. 

Figure 14.30. Comparison of attack and failure nodes in Freenet and Gnutella 

 

14.6.3 The impact of free riding 

Free riding in Gnutella is of more than merely theoretical interest, as indicated by the Xerox PARC 
paper mentioned earlier. Gnutella is vulnerable to free riders because its peers do not maintain any 
state information about other peers, so they cannot distinguish free riding from non-free riding peers. 
In particular, free riding peers will still have queries sent to them even if they never answer any. The 
presence of free riders will thus "dilute" the network, making queries travel farther before finding 
data. This can cause queries to fail if the desired data is pushed beyond the search horizon. 
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Ironically, it may be better for the network if free riding peers drop queries altogether instead of 
forwarding them, since queries will then simply flow around the free riders (unless portions of the 
network are completely cut off, of course). This is the opposite of the Freenet situation: Freenet free 
riders that drop queries are harmful since they kill off those queries, but those that forward queries 
unanswered actually help the network to route around them later on by propagating information 
about downstream peers. 

14.6.4 Scalability 

Finally, let's consider Gnutella's scalability. As a random graph, its characteristic pathlength scales 
logarithmically with the size of the network. Since its breadth-first search finds optimal paths, the 
request pathlength always equals the characteristic pathlength and also scales logarithmically. We 
have already seen that these pathlengths are quite low, so the amount of time taken by queries should 
be manageable up to very large network sizes. This does not accurately reflect their bandwidth usage, 
however. 

The bandwidth used by a query is proportional to the number of messages sent, which in turn is 
proportional to the number of nodes that must be contacted before finding data. Actually, this is an 
underestimate, since many nodes will be sent the same query more than once and queries continue 
after finding data. Figure 14.31 shows the median number of nodes contacted per query versus 
network size, up to 200,000 nodes. 

Figure 14.31. Median number of nodes contacted per query, vs. network size 

 
We can see that the number of nodes that must be contacted scales essentially linearly, meaning that 
every doubling of network size will also double the bandwidth needed per query. An alternate way of 
looking at this is to see that if bandwidth usage is kept lower by limiting search depths, success rates 
will drop since queries will not be able to reach the data. This may pose a serious scalability problem. 

One solution already being explored is to modify Gnutella from a pure decentralized peer-to-peer 
model to a partly hierarchical model by using super peers . These are special peers that act as 
aggregators for other peers located "behind" them in the manner of a firewall. Super peers maintain 
indices of all the files their subordinate peers are sharing, and appear to the rest of the network as 
though they were sharing those files themselves. When queried for a file, a super peer can route the 
query directly to the relevant peer without a broadcast. In addition, if one of its subordinates requests 
a file held by another subordinate, it can satisfy the request immediately without involving the wider 
network. Super peers thus reduce the effective size of the network by replacing a group of ordinary 
peers with a single super peer. 
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From there, it is a short step to imagine "super-super peers" that aggregate queries for super peers, 
"super-super-super peers," and so on. Taken to the extreme, this could yield a completely hierarchical 
search tree like DNS. Such an arrangement would place each peer in successively larger aggregate 
groups, ultimately ending in a root peer managing the entire network. Searches in such a tree would 
scale logarithmically; however, it implies a considerable loss of the autonomy promised by peer-to-
peer. 

14.7 Conclusions 

Performance is likely to remain an important issue in peer-to-peer systems design well into the 
foreseeable future. Within the peer-to-peer model, a number of trade-offs can be used to tailor 
different sets of performance outcomes. Freenet, for example, emphasizes high scalability and 
efficient searches under average conditions while sacrificing worse-case performance. At the other end 
of the spectrum, Gnutella sacrifices efficiency for faster searches and better worst-case guarantees. 
Ideas drawn from graph theory and the small-world model can help to quantify these trade-offs and to 
analyze systems in concrete terms. 

Fault tolerance and free riding are additional challenges to deal with, and here again we can see 
different approaches. Systems like Freenet that develop specialized nodes can improve their 
robustness under random failure, but more uniform systems like Gnutella can better cope with 
targeted attacks. Free riding, a different type of failure mode, needs to be addressed in terms of 
routing around or otherwise neutralizing uncooperative nodes. 

Last but not least, scalability is a crucial concern for systems that hope to make the leap from 
conceptual demonstration to world-wide usage. For systems that do not inherently scale well, a 
further set of trade-offs can allow better scalability through a move toward a hierarchical peer-to-peer 
model, though at the expense of local autonomy. 

The peer-to-peer model encompasses a diverse set of approaches. By recognizing the wide range of 
possibilities available, inventing new ideas and new combinations, and using analytical methods to 
evaluate their behaviors, system designers will be well-equipped to exploit the power of peer-to-peer. 
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Chapter 15. Trust 
Marc Waldman, Lorrie Faith Cranor, and Avi Rubin, AT&T Labs-Research 

Trust plays a central role in many aspects of computing, especially those related to network use. 
Whether downloading and installing software, buying a product from a web site, or just surfing the 
Web, an individual is faced with trust issues. Does this piece of software really do what it says it does? 
Will the company I make purchases from sell my private information to other companies? Is my ISP 
logging all of my network traffic? All of these questions are central to the trust issue. In this chapter 
we discuss the areas of trust related to distributed systems - computers that communicate over a 
network and share information. 

Trust in peer-to-peer, collaborative, or distributed systems presents its own challenges. Some systems, 
like Publius, deliberately disguise the source of data; all of the systems use computations or files 
provided by far-flung individuals who would be difficult to contact if something goes wrong - much 
less to hold responsible for any damage done. 

15.1 Trust in real life, and its lessons for computer networks 

In the physical world, when we talk about how much we trust someone, we often consider that 
person's reputation. We usually are willing to put great trust in someone whom we have personally 
observed to be highly capable and have a high level of integrity. In the absence of personal 
observation, the recommendation of a trusted friend can lead one to trust someone. When looking for 
someone to provide a service for us in which trust is an issue - whether a doctor, baby-sitter, or barber 
- we often ask our friends for recommendations or check with a trusted authority such as a childcare 
referral service. In real life, trust is often increased by establishing positive reputations and networks 
for conveying these reputations. This is true for computer networks as well. More will be said about 
this in Chapter 16, and Chapter 17. Once reputations are established, digital certificates and networks 
like the PGP web of trust (described later in this chapter) can be used to convey reputation 
information in a trustworthy way. 

Information conveyed by a trusted person is itself seen to be trustworthy, especially if it is based on a 
personal observation by that person. Information conveyed via a long chain of people, trustworthy or 
not, is generally viewed to be less trustworthy - even if the entire chain is trustworthy, the fact that it 
was conveyed via a long chain introduces the possibility that somewhere along the way the facts may 
have been confused. So we may trust all of the people in the chain to be honest, but we may not trust 
all of them to accurately remember and convey every detail of a story told by someone else. If it is 
important to us to have confidence in the veracity of a piece of information, we may try to follow the 
chain back to its source. Essentially, we are able to increase trust by reducing the number of people 
that must be trusted. This applies to real life situations as well as computer networks. 

We can also look at trust from a risk assessment perspective. We tend to be more willing to place trust 
in people when the risk of adverse consequences should our trust be misplaced is small. Likewise, 
even if there is high risk, if the potential consequences are not that bad, we may still be willing to trust. 
Thus, we can also increase trust by reducing risk. Just as in real life we may reduce risk by removing 
valuable items from a car before leaving it with a parking lot attendant, in a networked environment 
we may reduce risk by creating protected "sandboxes" where we can execute untrusted code without 
exposing critical systems to danger. 

Sometimes we interact with people whose reputations are unknown to us, but they somehow seem 
worthy of our trust. We may talk about people who seem to have an honest face or a trustworthy 
demeanor. In the online world, a web site that looks very professional may also appear to be 
trustworthy, even if we do not know anything else about it. Clearly there are ways of changing 
perceptions about trust when our later experiences conflict with our first impressions. Indeed, many 
companies spend a lot of effort honing a marketing message or corporate image in an effort to convey 
more of an image of trustworthiness to consumers. 
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In this chapter, we are concerned less about perceptions of trustworthiness than we are about 
designing systems that rely as little as possible on trust. Ultimately, we would like to design systems 
that do not require anyone to trust any aspect of the system, because there is no uncertainty about 
how the system will behave. In this context, the ideal trusted system is one that everyone has 
confidence in because they do not have to trust it. Where that is impossible, we use techniques such as 
reputation building and risk reduction to build trust. 

We first examine the issue of downloaded software. For the most part, the software described in this 
book can be downloaded from the Web. This simple act of downloading software and running it on 
your computer involves many trust-related issues. We then examine anonymous publishing systems. 
This discussion uses Publius as an example, but many of these issues apply to other systems as well. 
The last part of the chapter examines the trust issues involved in file sharing and search engines. 

15.2 Trusting downloaded software 

Trust issues exist even before an individual connects her computer to any network. Installing software 
supplied with your computer or that perhaps was bought in a retail store implies a level of trust - you 
trust that the software will work in the manner described and that it won't do anything malicious. By 
purchasing it from a "reputable" company, you believe that you know who wrote the software and 
what kind of reputation is associated with their software products. In addition, you may be able to 
take legal action if something goes horribly wrong. 

The advent of the Internet changes this model. Now software can be downloaded directly onto your 
computer. You may not know who the author is and whether the software has been maliciously 
modified or really does what it claims. We have all heard stories of an individual receiving an 
attachment via email that, when executed, deleted files on the victim's hard drive. 

Ideally, when downloading software from the Internet, we would like to have the same assurances that 
we have when we purchase the software directly from a store. One might think that simply 
downloading software from companies that one is already familiar with raises no trust issues. 
However, you can see from the sampling of potential problems in Table 15.1 this is really not true. The 
software you are downloading may have been modified by a malicious party before you even begin 
downloading it. Even if it begins its journey unmodified, it has to travel to you over an untrusted 
network - the Internet. The software, while it is traveling on the network, can be intercepted, 
modified, and then forwarded to you - all without your knowledge. Even if this doesn't happen, your 
Internet service provider (ISP) or another party could be logging the fact that you are downloading a 
particular piece of software or visiting a particular web site. This information can, for example, be 
used to target specific advertising at you. At the very least, this logging is an invasion of privacy. As we 
shall see there are ways of overcoming each of these problems.[1] 

[1] For a more comprehensive discussion of this topic, see Bruce Schneier (1999), Secrets and Lies: Digital Security 
in a Networked World, John Wiley & Sons. 

Table 15.1, Trust issues when downloading software 

Risk Solution Trust principle 

Software doesn't behave as 
advertised, and may even 

damage your computer 
system. 

Only download software from companies or 
individuals who have established a good 

reputation, or those you know where to find 
should a problem occur. 

Look for positive 
reputations. 

Software is modified (on 
server or in transit). 

Check for digital signature on message digest 
and verify signature against author's certificate. 

Use tools that 
accurately convey 

reputations. 

Your downloads (and other 
online behavior) are logged 
by your ISP or other parties. 

Use an anonymity tool so other parties do not 
get access to information that might link you to 

a particular download. 
Reduce risk. 

 



Peer to Peer: Harnessing the Power of Disruptive Technologies 

 page 155

15.2.1 Message digest functions 

Almost all of the software described in this book is given away for free. The only way to acquire it is to 
download it - you can't walk into your local computer store and purchase it. We would like some way 
to verify that the downloaded files have not been tampered with in any way. This can be accomplished 
through the use of a message digest function , which is also known as a cryptographically secure hash 
function. A message digest function takes a variable-length input message and produces a fixed-length 
output. The same message will always produce the same output. If the input message is changed in 
any way, the digest function produces a different output value. This feature makes digest functions 
ideal for detecting file tampering. 

Now that we have message digest functions, it looks like all of our tamper problems are solved - the 
author of a piece of software just places the value of the file's hash on the same web page that contains 
the file download link. After the user downloads the file, a separate program finds the digest of the file. 
This digest is then compared with the one on the web page. If the digests don't match the file has been 
tampered with; otherwise it is unchanged. Unfortunately things are not that simple. How do we know 
that the digest given on the web page is correct? Perhaps the server administrator or some malicious 
hacker changed the software and placed the digest of the modified file on the web page. If someone 
downloaded the altered file and checked the replaced digest everything would look fine. The problem 
is that we do not have a mechanism to guarantee that the author of the file was the one who generated 
the particular digest. What we need is some way for the author to state the digest value so that 
someone else cannot change it. 

15.2.2 Digital signatures 

Public key cryptography and digital signatures can be used to help identify the author of a file. 
Although the mathematics behind public key cryptography are beyond the scope of this book, suffice it 
to say that a pair of keys can be generated in such a way that if one key is used to sign some piece of 
data, the other key can be used to verify the signed data. Keys are essentially large numbers that are 
needed for the signature and verification operations. One of these keys is kept secret and is therefore 
called the private key. The other key is made available to everyone and is called the public key. 
Someone can send you an authenticated message simply by signing the message with his private key. 
You can then use his public key to verify the signature on the message. 

So it looks like our problem is almost solved. The author of the software generates a public and private 
key. The author then computes the digest of the software package. This digest is then signed using a 
private key. A file containing the signed digest is placed on the same web page as the file to be 
downloaded (the software package). After downloading the software an individual finds its digest. The 
signed digest file is downloaded from the web site and verified using the author's public key. 

15.2.3 Digital certificates 

The problem with the scheme is that we have no way of verifying the author's public key. How do we 
know that someone didn't just generate a public/private key pair, modify the file, and sign its digest 
with the private key just generated? The public key on the web site cannot necessarily be trusted. We 
need a way to certify that a particular public key does indeed belong to the author of the software. 
Digital certificates are meant to provide this binding of public keys to individuals or organizations. 

Digital certificates are issued by companies called certifying authorities (CAs). These are organizations 
that mint digital certificates for a fee; they are often called trusted third parties because both you and 
your correspondent trust them. An individual or corporation requesting a certificate must supply the 
CA with the proper credentials. Once these credentials have been verified, the CA mints a new 
certificate in the name of the individual or corporation. The CA signs the certificate with its private key 
and this signature becomes part of the certificate. The CA signature guarantees its authenticity. 

The certificate creation process just described is a simplification of the actual process. Different 
classes of certificates exist corresponding to the type of credentials presented when applying for the 
certificate. The more convincing the credentials, the more verification work is created for the CA, and 
therefore it assesses a higher annual fee on the individual or corporation applying for the certificate. 
Therefore, certain types of certificates are more trustworthy than others. 



Peer to Peer: Harnessing the Power of Disruptive Technologies 

 page 156

15.2.4 Signature verification 

Now all the pieces are in place. The author of some software applies to a CA for a certificate. This 
certificate binds her to a public key - only she knows the associated private key. She signs her software 
using the method described above. The signed digest and a link to the software are placed on the 
author's web page. In addition, a link to the author's certificate is added to the web page. At some later 
time, an individual downloads the software and author's certificate. The digest function is performed 
on the file. The author's certificate is verified using the CA's public key, which is available on the CA's 
web page. Once verified, the author's public key is used to verify the signature on the digest. This 
digest is compared to the one just performed on the file. If the digests match, the file has not been 
tampered with. See Figure 15.1 for an illustration of the process. 

Figure 15.1. Digital signatures and how they are verified 

 
 
This verification process provides assurance that the downloaded software is signed by someone who 
has a private key that was issued to a software author with a particular name. Of course, there is no 
guarantee that the software author did not let someone else use her key, or that the key was not stolen 
without her knowledge. Furthermore, if we don't know anything about the reputation of this particular 
software author, knowing her name may not give us any confidence in her software (although if we 
have confidence in the CA, we may at least believe that it might be possible to track her down later 
should her software prove destructive). 

The previously described verification process is not performed by hand. A number of software 
products are available that automate the task. 

Pretty Good Privacy (PGP) is a well-known tool for encrypting files and email. It also allows 
individuals to sign and verify files. Rather than having to trust a third party, the CA, PGP allows 
individuals to create their own certificates. These certificates by themselves are not very helpful when 
trying to verify someone's identity; however, other people can sign the certificates. People that know 
you can sign your certificate, and you in turn can sign their certificates. If you receive a certificate from 
someone you don't trust, you can check the signatures on the certificate and see if you trust any of 
them. Based on this information you can decide if you wish to trust the certificate. This is a trust 
system based on intermediaries, and it forms what is called the " web of trust." The web of trust can be 
thought of as a peer-to-peer certification system. No centralized certifying authority is needed. A free 
version of PGP is available for download at http://web.mit.edu/network/pgp.html. 

Unfortunately, digital certificates and signatures don't solve all of our problems. Not all software 
packages are signed. An author's private key can become compromised, allowing others to sign any 
piece of software with the compromised key. Just because software is signed doesn't mean that it 
doesn't have malicious intent. So one must still be vigilant when it comes to downloaded software. 

http://web.mit.edu/network/pgp.html
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15.2.5 Open source software 

Much of the software available for download is available as source code, which needs to be compiled 
or interpreted in order to run on a specific computer. This means that one can examine the source 
code for any malicious intent. However, this is really practical only for rather small programs. This 
naturally leads to the question of whether it is possible to write a program that examines the source 
code of another program to determine if that program really does what it claims to do. Unfortunately, 
computer scientists have shown that, in general, it is impossible to determine if a program does what 
it claims to do.[2] However, we can build programs to monitor or constrain the behavior of other 
programs. 

[2] Proving certain properties of programs can be reduced to proving the " Halting Problem." See, for example, 
Michael Sipser (1997). Introduction to the Theory of Computation. PWS Publishing Company. 

15.2.6 Sandboxing and wrappers 

Programs that place limits on the behavior of other programs existed before the Internet. The most 
obvious example of this type of program is an operating system such as Unix or Windows NT. Such an 
operating system, for example, won't allow you to delete a file owned by someone else or read a file 
owned by another user unless that user has granted you permission. Today, programs exist that can 
constrain the behavior of programs you download while surfing the Web. When a web page contains a 
Java applet, that applet is downloaded and interpreted by another program running on your 
computer. This interpreter prevents the applet from performing operations that could possibly 
damage your computer, such as deleting files. The term used to describe the process of limiting the 
type of operations a program can perform is called sandboxing. The applet or other suspicious 
program is allowed to execute only in a small sandbox. Thus the risk of damage is reduced 
substantially. Programs called wrappers allow the behavior of CGI scripts to be constrained in a 
similar manner. 

15.3 Trust in censorship-resistant publishing systems 

We now examine trust issues specific to distributed file-sharing and publishing programs. We use 
Publius as an example; however, the problems and solutions discussed are applicable to many of the 
other programs discussed in this book. 

Publius is a web-based publishing system that allows people to publish documents in such a way that 
they are resistant to censorship. For a full description of Publius, see Chapter 11. 

Publius derives its censorship resistance in part from a collection of independently owned web 
servers. Each server donates a few hundred megabytes of disk space and runs a CGI script that allows 
it to store and retrieve Publius files. Since each server is independently owned, the server 
administrator has free rein over the server. This means the administrator can arbitrarily read, delete 
or modify any files on the server including the Publius files. Because the Publius files are encrypted, 
reading a file does not reveal anything interesting about the file (unless the server administrator 
knows the special Publius URL). 

15.3.1 Publius in a nutshell 

Before describing the trust issues involved in Publius, we briefly review the Publius publication 
process. When an individual publishes a file, the Publius client software generates a key that is used to 
encrypt the file. This key is split into a number of pieces called shares. Only a small number of these 
shares are required to reconstruct the key. For example, the key can be split into 30 shares such that 
any 3 shares are needed to reconstruct the document. 

A large number of Publius servers - let's say 20 - then store the file, each server taking one share of the 
key along with a complete copy of the encrypted file. Each server stores a different share, and no 
server holds more than one share. A special Publius URL is generated that encodes the location of the 
encrypted file and shares on the 20 servers. In order to read the document, the client software parses 
the special URL, randomly picks 3 of these 20 servers, and downloads the share stored on each of 
them. In addition, the client software downloads one copy of the encrypted file from one of the 
servers. 
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The client now combines the shares to form the key and uses the key to decrypt the file. A tamper 
check is performed to see if the file was changed in any way. If the file was changed, a new set of three 
shares and a new encrypted document are retrieved and tested. This continues until a file passes the 
tamper check or the system runs out of different encrypted file and share combinations. 

15.3.2 Risks involved in web server logging 

Most web servers keep a log of all files that have been requested from the server. These logs usually 
include the date, time, and the name of the file that was requested. In addition, these logs usually hold 
the IP address of the computer that made the request. This IP address can be considered a form of 
identification. While it may be difficult to directly link an individual to a particular IP address, it is not 
impossible. 

Even if your IP address doesn't directly identify you, it certainly gives some information about you. 
For example, an IP address owned by an ISP appearing in some web server log indicates that an 
individual who uses that ISP visited the web site on a certain date and time. The ISP itself may keep 
logs as to who was using a particular IP address during a particular date and time. So while it may not 
be possible to directly link an individual to a web site visit, an indirect route may exist. 

Web servers almost always log traffic for benign reasons. The company or individual who owns the 
server simply wishes to get an idea how many requests the web server is receiving. The logs may 
answer questions central to the company's business. However, as previously stated, these logs can also 
be used to identify someone. This is a problem faced by Publius and many of the other systems 
described in this book. 

Why would someone want to be anonymous on the Internet? Well, suppose that you are working for a 
company that is polluting the environment by dumping toxic waste in a local river. You are outraged 
but know that if you say anything you will be fired from your job. Therefore you secretly create a web 
page documenting the abuses of the corporation. You then decide you want to publish this page with 
Publius. Publishing this page from your home computer could unwittingly identify you. Perhaps one 
or more of the Publius servers are run by friends of the very corporation that you are going to expose 
for its misdeeds. Those servers are logging IP addresses of all computers that store or read Publius 
documents. In order to avoid this possibility you can walk into a local cyber café or perhaps the local 
library and use their Internet connection to publish the web page with Publius. Now the IP address of 
the library or cyber café will be stored in the logs of the Publius servers. Therefore there is no longer a 
connection to your computer. This level of anonymity is still not as great as we would like. If you are 
one of a very few employees of the company living in a small town, the company may be able to figure 
out you leaked the information just by tracing the web page to a location in that town. 

Going to a cyber café or library is one option to protect your privacy. Anonymizing software is another. 
Depending on your trust of the anonymity provided by the cyber café or library versus your trust of the 
anonymity provided by software, you may reach different conclusions about which technique provides 
a higher level of anonymity in your particular situation. Whether surfing the Web or publishing a 
document with Publius, anonymizing software can help you protect your privacy by making it difficult, 
if not impossible, to identify you on the Internet. Different types of anonymizing software offer 
varying degrees of anonymity and privacy protection. We now describe several anonymizing and 
privacy-protection systems. 

15.3.3 Anonymizing proxies 

The simplest type of anonymizing software is an anonymizing proxy. Several such anonymizing 
proxies are available today for individuals who wish to surf the Web with some degree of anonymity. 
Two such anonymizing proxies are Anonymizer.com and Rewebber.de. These anonymizing proxies 
work by acting as the intermediary between you and the web site you wish to visit. For example, 
suppose you wish to anonymously view the web page with the URL http://www.oreilly.com/. Instead 
of entering this address into the browser, you first visit the anonymizing proxy site (e.g., 
http://www.anonymizer.com/). This site displays a form that asks you to enter the URL of the site you 
wish to visit. You enter http://www.oreilly.com/, and the anonymizing proxy retrieves the web page 
corresponding to this URL and displays it in your browser. In addition, the anonymizing proxy 
rewrites all the hyperlinks on the retrieved page so that when you click on any of these hyperlinks the 
request is routed through the anonymizing proxy. Any logs being kept by the server 
http://www.oreilly.com/ will only record the anonymizing proxy's IP address, as this is the computer 
that actually made the request for the web page. The process is illustrated in Figure 15.2. 

http://www.oreilly.com/
http://www.anonymizer.com/
http://www.oreilly.com/
http://www.oreilly.com/
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Figure 15.2. How requests and responses pass through an anonymizing proxy 

 
 
The anonymizing proxy solves the problem of logging by the Publius servers but has introduced the 
problem of logging by the anonymizing proxy. In other words, if the people running the proxy are 
dishonest, they may try to use it to snare you. 

In addition to concern over logging, one must also trust that the proxy properly transmits the request 
to the destination web server and that the correct document is being returned. For example, suppose 
you are using an anonymizing proxy and you decide to shop for a new computer. You enter the URL of 
your favorite computer company into the anonymizing proxy. The company running the anonymizing 
proxy examines the URL and notices that it is for a computer company. Instead of contacting the 
requested web site, the proxy contacts a competitor's web site and sends the content of the 
competitor's web page to your browser. If you are not very familiar with the company whose site you 
are visiting, you may not even realize this has happened. In general, if you use a proxy you must just 
resolve to trust it, so try to pick a proxy with a good reputation. 

15.3.4 Censorship in Publius 

Now that we have a possible solution to the logging problem, let's look at the censorship problem. 
Suppose that a Publius server administrator named Eve wishes to censor a particular Publius 
document. Eve happened to learn the Publius URL of the document and by coincidence her server is 
storing a copy of the encrypted document and a corresponding share. Eve can try a number of things 
to censor the document. 

Upon inspecting the Publius URL for the document she wishes to censor, Eve learns that the 
encrypted document is stored on 20 servers and that 3 shares are needed to form the key that decrypts 
the document. After a bit of calculation Eve learns the names of the 19 other servers storing the 
encrypted document. Recall that Eve's server also holds a copy of the encrypted document and a 
corresponding share. If Eve simply deletes the encrypted document on her server she cannot censor 
the document, as it still exists on 19 other servers. Only one copy of the encrypted document and three 
shares are needed to read the document. If Eve can convince at least 17 other server administrators to 
delete the shares corresponding to the document then she can censor the document, as not enough 
shares will be available to form the key. (This possibility means that it is very difficult, but not 
impossible, to censor Publius documents. The small possibility of censorship can be viewed as a 
limitation of Publius. However, it can also be viewed as a "safety" feature that would allow a document 
to be censored if enough of the server operators agreed that it was objectionable.) 

15.3.4.1 Using the Update mechanism to censor 

Eve and her accomplices have not been able to censor the document by deleting it; however, they 
realize that they might have a chance to censor the document if they place an update file in the 
directory where the encrypted file and share once resided. The update file contains the Publius URL of 
a file published by Eve. 

Using the Update file method described in Chapter 11, Eve and her accomplices have a chance, albeit a 
very slim one, of occasionally censoring the document. When the Publius client software is given a 
Publius URL it breaks up the URL to discover which servers are storing the encrypted document and 
shares. The client then randomly chooses three of these servers from which to retrieve the shares. The 
client also retrieves the encrypted document from one of these servers. If all three requests for the 
share return with the same update URL, instead of the share, the client follows the update URL and 
retrieves the corresponding document. 



Peer to Peer: Harnessing the Power of Disruptive Technologies 

 page 160

How successful can a spoofed update be? There are 1,140 ways to choose 3 servers from a set of 20. 
Only 1 of these 1,140 combinations leads to Eve's document. Therefore Eve and her cohorts have only 
a 1 in 1,140 chance of censoring the document each time someone tries to retrieve it. Of course, Eve's 
probability of success grows as she enlists more Publius server administrators to participate in her 
scheme. Furthermore, if large numbers of people are trying to retrieve a document of some social 
significance, and they discover any discrepancies by comparing documents, Eve could succeed in 
casting doubt on the whole process of retrieval. 

A publisher worried about this sort of update attack has the option of specifying that the file is not 
updateable. This option sets a flag in the Publius URL that tells the Publius client software to ignore 
update URLs sent from any Publius server. Any time the Publius client receives an update URL, it 
simply treats it as an invalid response from the server and attempts to acquire the needed information 
from another server. In addition to the "do not update" option, a "do not delete" option is available to 
the publisher of a Publius document. While this cannot stop Eve or any other server administrator 
from deleting files, it does protect the publisher from someone trying to repeatedly guess the correct 
password to the delete the file. This is accomplished by not storing a password with the encrypted file. 
Because no password is stored on the server, the Publius server software program refuses to perform 
the Delete command. 

As previously stated, the Publius URL also encodes the number of shares required to form the key. 
This is the same as the number of update URLs that must match before the Publius client retrieves an 
update URL. Therefore, another way to make the update attack more difficult is to raise the number of 
shares needed to reconstruct the key. The default is three, but it can be set to any number during the 
Publish operation. However, raising this value increases the amount of time it takes to retrieve a 
Publius document because more shares need to be retrieved in order to form the key. 

On the other hand, requiring a large number of shares to reconstruct the document can make it easier 
for an adversary to censor it. Previously we discussed the possibility of Eve censoring the document if 
she and two friends delete the encrypted document and its associated shares. We mentioned that such 
an attack would be unsuccessful because 17 other shares and encrypted documents exist. If the 
document was published in such a way that 18 shares were required to form the key, Eve would have 
succeeded in censoring the document because only 17 of the required 18 shares would be available. 
Therefore, some care must be taken when choosing the required number of shares. 

Alternatively, even if we do not increase the number of shares necessary to reconstruct a Publius 
document, we could develop software for retrieving Publius documents that retrieves more than the 
minimum number of required shares when an update file is discovered. While this slows down the 
process of retrieving updated documents, it can also provide additional assurance that a document has 
not been tampered with (or help the client find an unaltered version of a document that has been 
tampered with). 

The attacks in this censorship section illustrate the problems that can occur when one blindly trusts a 
response from a server or peer. Responses can be carefully crafted to mislead the receiving party. In 
systems such as Publius, which lack any sort of trust or reputation mechanism, one of the few ways to 
try to overcome such problems is to utilize randomization and replication. By replication we mean 
that important information should be replicated widely so that the failure of one or a small number of 
components will not render the service inoperable (or, in the case of Publius, easy to censor). 
Randomization helps because it can make attacks on distributed systems more difficult. For example, 
if Publius always retrieved the first three shares from the first three servers in the Publius URL, then 
the previously described update attack would always succeed if Eve managed to add an update file to 
these three servers. By randomizing share retrieval the success of such an attack decreases from 100% 
to less than 1%. 

15.3.5 Publius proxy volunteers 

In order to perform any Publius operation one must use the Publius client software. The client 
software consists of an HTTP proxy that intercepts Publius commands and transparently handles non-
Publius URLs as well. This HTTP proxy was designed so that many people could use it at once - just 
like a web server. This means that the proxy can be run on one computer on the Internet and others 
can connect to it. Individuals who run the proxy with the express purpose of allowing others to 
connect to it are called Publius proxy volunteers. 
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Why would someone elect to use a remote proxy rather than a local one? The current Publius proxy 
requires the computer language Perl and a cryptographic library package called Crypto++. Some 
individuals may have problems installing these software packages, and therefore the remote proxy 
provides an attractive alternative. 

The problem with remote proxies is that the individual running the remote proxy must be trusted, as 
we stated in Section 15.3.3 earlier in this chapter. That individual has complete access to all data sent 
to the proxy. As a result, the remote proxy can log everything it is asked to publish, retrieve, update, or 
delete. Therefore, users may wish to use an anonymizing tool to access the Publius proxy. 

The remote proxy, if altered by a malicious administrator, can also perform any sort of transformation 
on retrieved documents and can decide how to treat any Publius commands it receives. The solutions 
to this problem are limited. Short of running your own proxy, probably the best thing you can do is 
use a second remote proxy to verify the actions of the first. 

15.4 Third-party trust issues in Publius 

Besides trusting the operators of the Publius servers and proxies, users of Publius may have to place 
trust in other parties. Fortunately some tools exist that reduce the amount of trust that must be placed 
in these parties. 

15.4.1 Other anonymity tools 

While not perfect, anonymizing proxies can hide your IP address from a Publius server or a particular 
web site. As previously stated, the anonymizing proxy itself could be keeping logs. 

In addition, your Internet service provider (ISP) can monitor all messages you send over the Internet. 
An anonymizing proxy doesn't help us with this problem. Instead, we need some way of hiding all 
communication from the ISP. Cryptography helps us here. All traffic (messages) between you and 
another computer can be encrypted. Now the ISP sees only encrypted traffic, which looks like 
gibberish. The most popular method of encrypting web traffic is the Secure Sockets Layer (SSL) 
Protocol. 

15.4.1.1 SSL 

SSL allows two parties to create a private channel over the Internet. In our case this private channel 
can be between a Publius client and a server. All traffic to and from the Publius client and server can 
be encrypted. This hides everything from the ISP except the fact that you are talking to a Publius 
server. The ISP can see the encrypted channel setup messages between the Publius client and server. 
Is there a way to hide this piece of information too? It turns out there is. 

15.4.1.2 Mix networks 

Mix networks are systems for hiding both the content and destination of a particular message on the 
Internet.[3] One of the best-known mix networks is discussed in Chapter 7. 

[3] Mix networks were first introduced by David Chaum. See David Chaum (1981), "Untraceable Electronic Mail, 
Return Addresses, and Digital Pseudonyms," Communications of the ACM, vol. 24, no. 2, pp. 84-88. 

A mix network consists of a collection of computers called routers that use a special layered encryption 
method to hide the content and true destination of a message. To send a message, the sender first 
decides on a path through a subset of the mixes. Each mix has an associated public and private key 
pair. All users of the mix network know all the public keys. The message is repeatedly encrypted using 
the public keys of the routers on the chosen path. First the message is encrypted with the public key of 
the last router in the chosen path. This encrypted message is then encrypted once again using the 
public key of the next-to-last router. This is repeated until the message is finally encrypted with the 
public key of the first router in the chosen path. As the encrypted message is received at each router, 
the outer layer of encryption is removed by decrypting it with the router's private key. This reveals 
only the next router in the mix network to receive the encrypted message. Each router can only 
decrypt the outer layer of encryption with its private key. Only the last router in the chosen path 
knows the ultimate destination of the message; however, it doesn't know where the message 
originated. The layers of encryption are represented in Figure 15.3. 
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Figure 15.3. A mix network adds and strips off layers of encryption 

 
 
Mix networks are also used to try to thwart traffic analysis. Traffic analysis is a method of correlating 
messages emanating from and arriving at various computers or routers. For instance, if a message 
leaves one node and is received by another shortly thereafter, and if the pattern is immediately 
repeated in the other direction, a monitor can guess that the two systems are engaged in a request and 
acknowledgment protocol. Even when a mix network is in use, this type of analysis is feasible if all or a 
large percentage of the mix network can be monitored by an adversary (perhaps a large government). 
In an effort to combat this type of analysis, mix networks usually pad messages to a fixed length, 
buffer messages for later transmission, and generate fake traffic on the network, called covering 
traffic. All of these help to complicate or defeat traffic analysis. 

Researchers at the U.S. Department of Defense developed an implementation of mix networks called 
Onion Routing (http://www.onion-router.net/) and deployed a prototype network. The network was 
taken offline in January 2000. Zero-Knowledge Systems developed a commercial implementation of 
mix networks in a product called Freedom - see http://www.freedom.net/ for more information. 

15.4.1.3 Crowds 

Crowds is a system whose goals are similar to that of mix networks but whose implementation is quite 
different. Crowds is based on the idea that people can be anonymous when they blend into a crowd. As 
with mix networks, Crowds users need not trust a single third party in order to maintain their 
anonymity. A crowd consists of a group of web surfers all running the Crowds software. When one 
crowd member makes a URL request, the Crowds software on the corresponding computer randomly 
chooses between retrieving the requested document or forwarding the request to a randomly selected 
member of the crowd. The receiving crowd member can also retrieve the requested document or 
forward the request to a randomly selected member of the crowd, and so on. Eventually, the web 
document corresponding to the URL is retrieved by some member of the crowd and sent back to the 
crowd member that initiated the request. 

Suppose that computers A, B, C, D, E, and F are all members of a crowd. Computer B wants to 
anonymously retrieve the web page at the URL http://www.oreilly.com/. The Crowds software on 
computer B sends this URL to a random member of the crowd, say computer F. Computer F decides to 
send it to computer C. Computer C decides to retrieve the URL. Computer C sends the web page back 
to computer F. Computer F then sends the web page back to computer B. Notice that the document is 
sent back over the path of forwarding computers and not directly from C to B. All communication 
between crowd members is encrypted using symmetric ciphers. Only the actual request from 
computer C to http://www.oreilly.com remains unencrypted (because the software has to assume 
that http://www.oreilly.com is uninterested in going along with the crowd). The structure of the 
system is shown in Figure 15.4. 

http://www.onion-router.net/
http://www.freedom.net/
http://www.oreilly.com/
http://www.oreilly.com
http://www.oreilly.com
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Figure 15.4. Crowds hides the origin of a request to a web server 

 
 
Notice that each computer in the crowd is equally likely to make the request for the specific web page. 
Even though computer C's IP address will appear in the log of the server http://www.oreilly.com, the 
individual using computer C can plausibly deny visiting the server. Computer C is a member of the 
crowd and therefore could have been retrieving the page for another member of the crowd. Notice that 
each crowd member cannot tell which other member of the crowd requested the particular URL. In 
the previous example, computer B sends the URL to computer F. Crowd member F cannot tell if the 
URL request originated with B or if B was simply an intermediary forwarding the request from 
another crowd member. This is the reason that the retrieved web page has to be passed back over the 
list of crowd members that forwarded the URL. 

Crowds is itself an example of a peer-to-peer system. 

15.4.2 Denial of service attacks 

Publius relies on server volunteers to donate disk space so others can publish files in a censorship-
resistant manner. Disk space, like all computer resources, is finite. Once all the disks on all the Publius 
servers are full, no more files can be published until others are deleted. Therefore an obvious attack on 
Publius is to fill up all the disks on the servers. Publius clients know the locations of all the servers, so 
identifying the servers to attack is a simple matter. Attacks with the intention of making resources 
unavailable are called denial of service attacks. 

Systems that blindly trust users to conserve precious resources are extremely vulnerable to this kind of 
attack. Therefore, non-trust based mechanisms are needed to thwart such attacks. 

Can systems be designed to prevent denial of service attacks? The initial version of Publius tried to do 
so by limiting the size of any file published with Publius to 100K. While this certainly won't prevent 
someone from trying to fill up the hard drives, it does make this kind of attack more time consuming. 
Other methods such as CPU payment schemes, anonymous e-cash payment schemes, or quota 
systems based on IP address may be incorporated into future versions of Publius. While these 
methods can help deter denial of service attacks, they cannot prevent them completely. 

15.4.2.1 Quota systems 

Quota systems based on IP address could work as follows. Each Publius server keeps track of the IP 
address of each computer that makes a Publish request. If a Publius client has made more than ten 
Publish requests to a particular server in the last 24 hours, subsequent Publish requests will be denied 
by that server. Only after a 24-hour time period has elapsed will the server once again honor Publish 
requests from that Publius client's IP address. 

The problem with this scheme is that it is not foolproof. An attacker can easily fake IP addresses. In 
addition, the 10-file limit may unfairly limit individuals whose IP addresses are dynamically assigned. 
For example, suppose someone with an IP address from AOL publishes ten files on some server. If 
later in the day someone else is assigned that same IP address, the individual will be unfairly excluded 
from publishing on that particular server. 

http://www.oreilly.com
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15.4.2.2 CPU-based payment schemes 

CPU-based payment schemes are used to help prevent denial of service attacks by making it 
expensive, in terms of time, to carry out such an attack. In Publius, for example, before the server 
agrees to publish a file, it could ask the publishing client to solve some sort of puzzle. The client 
spends some time solving the puzzle and then sends the answer to the server. The server agrees to 
publish the file only if the answer is correct. Each time the particular client asks to publish a file the 
server can make the puzzle a bit harder - requiring the client to expend more CPU time to find the 
puzzle answer. 

While this scheme makes denial of service attacks more expensive, it clearly does not prevent them. A 
small Publius system created by civic-minded individuals could be overwhelmed by a large company 
or government willing to expend the computing resources to do the necessary calculations. 

By design, Publius and many other publishing systems have no way of authenticating individuals who 
wish to publish documents. This commitment to anonymous publishing makes it almost impossible to 
stop denial of service attacks of this sort. 

15.4.2.3 Anonymous e-cash payment schemes 

Another way of preventing denial of service attacks is to require publishers to pay money in order to 
publish their documents with Publius. An anonymous e-cash system could allow publishers to pay 
while still remaining anonymous. Even if a well-funded attacker could afford to pay to fill up all 
available Publius servers, the fees collected from that attacker could be used to buy more disks. This 
could, of course, result in an arms race if the attacker had enough money to spend on defeating 
Publius. Chapter 16 discusses CPU- and anonymous e-cash-based payment schemes in more detail. 

15.4.3 Legal and physical attacks 

All of the methods of censorship described so far involve using a computer. However, another method 
of trying to censor a document is to use the legal system. Attackers may try to use intellectual property 
law, obscenity laws, hate speech laws, or other laws to try to force server operators to remove Publius 
documents from their servers or to shut their servers down completely. However, as mentioned 
previously, in order for this attack to work, a document would have to be removed from a sufficient 
number of servers. If the Publius servers in question are all located in the same legal jurisdiction, a 
single court order could effectively shut down all of the servers. By placing Publius servers in many 
different jurisdictions, such attacks can be prevented to some extent. 

Another way to censor Publius documents is to learn the identity of the publishers and force them to 
remove their documents from the Publius servers. By making threats of physical harm or job loss, 
attackers may "convince" publishers to remove their documents. For this reason, it may be especially 
important for some publishers to take precautions to hide their identities when publishing Publius 
documents. Furthermore, publishers can indicate at the time of publication that their documents 
should never be deleted. In this case, no password exists that will allow the publishers to delete their 
documents - only the server operators can delete the documents. 

15.5 Trust in other systems 

We now examine issues of trust in some popular file-sharing and anonymous publishing systems. 

15.5.1 Mojo Nation and Free Haven 

Many of the publishing systems described in this book rely on a collection of independently owned 
servers that volunteer disk space. As disk space is a limited resource, it is important to protect it from 
abuse. CPU-based payment schemes and quotas, both of which we mentioned previously, are possible 
deterrents to denial of service attacks, but other methods exist. 

Mojo Nation uses a digital currency system called Mojo that must be paid before one can publish a file 
on a server. In order to publish or retrieve files in the Mojo Nation network, one must pay a certain 
amount of Mojo. 
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Mojo is obtained by performing a useful function in the Mojo Nation network. For example, you can 
earn Mojo by volunteering to host Mojo content on your server. Another way of earning Mojo is to run 
a search engine on your server that allows others to search for files on the Mojo Nation network. 

The Free Haven project utilizes a trust network. Servers agree to store a document based on the trust 
relationship that exists between the publisher and the particular server. Trust relationships are 
developed over time and violations of trust are broadcast to other servers in the Free Haven network. 
Free Haven is described in Chapter 12. 

15.5.2 The Eternity Service 

Publius, Free Haven, and Mojo Nation all rely on volunteer disk space to store documents. All of these 
systems have their roots in a theoretical publishing system called the Eternity Service.[4] In 1996, Ross 
Anderson of Cambridge University first proposed the Eternity Service as a server-based storage 
medium that is resistant to denial of service attacks. 

[4] See Ross Anderson (1996), "The Eternity Service," PragoCrypt'96. 

An individual wishing to anonymously publish a document simply submits it to the Eternity Service 
with an appropriate fee. The Eternity Service then copies the document onto a random subset of 
servers participating in the service. Once submitted, a document cannot be removed from the service. 
Therefore, an author cannot be forced, even under threat, to delete a document published on the 
Eternity Service. 

Anderson envisioned a system in which servers were spread all over the world, making the system 
resistant to legal attacks as well as natural disasters. The distributed nature of the Eternity Service 
would allow it to withstand the loss of a majority of the servers and still function properly. 

Anderson outlined the design of this ambitious system, but did not provide the crucial details of how 
one would construct such a service. Over the years, a few individuals have described in detail and 
actually implemented scaled-down versions of the Eternity Service. Publius, Free Haven, and the 
other distributed publishing systems described in this book fit into this category. 

15.5.2.1 Eternity Usenet 

An early implementation of a scaled-down version of the Eternity Service was proposed and 
implemented by Adam Back. Unlike the previously described publishing systems, this system didn't 
rely on volunteers to donate disk space. Instead, the publishing system was built on top of the Usenet 
news system. For this reason the system was called Eternity Usenet. 

The Usenet news system propagates messages to servers all over the world and therefore qualifies as a 
distributed storage medium. However, Usenet is far from an ideal long-term storage mechanism. 
Messages posted to a Usenet newsgroup can take days to propagate to all Usenet servers. Not all 
Usenet news servers subscribe to all Usenet newsgroups. In fact, any system administrator can locally 
censor documents by not subscribing to a particular newsgroup. Usenet news posts can also become 
the victims of cancel or supercede messages. They are relatively easy to fake and therefore attractive to 
individuals who wish to censor a particular Usenet post. 

The great volume of Usenet traffic necessitates the removal of old Usenet articles in favor of newer 
ones. This means that something posted to Usenet today may not be available two weeks from now, or 
even a few days from now. There are a few servers that archive Usenet articles for many years, but 
because there are not many of these servers, they present an easy target for those who wish to censor 
an archived document. 

Finally, there is no way to tell if a Usenet message has been modified. Eternity Usenet addresses this 
by allowing an individual to digitally sign the message. 
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15.5.3 File-sharing systems 

Up until now we have been discussing only systems that allow an individual to publish material on 
servers owned by others. However, Napster, a program that allows individuals to share files residing 
on their own hard drives, has been said to have started the whole peer-to-peer revolution. Napster 
allows individuals to share MP3 files over the Internet. The big debate concerning Napster is whether 
this file sharing is legal. Many of the shared MP3 files are actually copied from one computer to 
another without any sort of royalty being paid to the artist that created the file. We will not discuss 
this particular issue any further as it is beyond the scope of this chapter. We are interested in the file-
sharing mechanism and the trust issues involved. 

15.5.3.1 Napster 

Let's say Alice has a collection of MP3 files on her computer's hard drive. Alice wishes to share these 
files with others. She downloads the Napster client software and installs it on her computer. She is 
now ready to share the MP3 files. The list of MP3 files and associated descriptions is sent to the 
Napster server by the client software. This server adds the list to its index of MP3 files. In addition to 
storing the name and description of the MP3 files, the server also stores Alice's IP address. Alice's IP 
address is necessary, as the Napster server does not actually store the MP3 files themselves, but rather 
just pointers to them. 

Alice can also use the Napster client software to search for MP3 files. She submits a query to the 
Napster server and a list of matching MP3 files is returned. Using the information obtained from the 
Napster server, Alice's client can connect to any of the computers storing these MP3 files and initiate a 
file transfer. Once again the issue of logging becomes important. Not only does Alice have to worry 
about logging on the part of the Napster server, but she also has to worry about logging done by the 
computer that she is copying files from. It is this form of logging that allowed the band Metallica to 
identify individuals who downloaded their music. 

The natural question to ask is whether one of our previously described anonymizing tools could be 
used to combat this form of logging. Unfortunately the current answer is no. The reason for this is that 
the Napster server and client software speak a protocol that is not recognized by any of our current 
anonymizing tools. A protocol is essentially a set of messages recognized by both programs involved in 
a conversation - in this case the Napster client and server. This does not mean that such an 
anonymizing tool is impossible to build, only that current tools won't fit the bill. 

15.5.3.2 Gnutella 

Gnutella, described in Chapter 8, is a pure peer-to-peer file-sharing system. Computers running the 
Gnutella software connect to some preexisting network and become part of this network. We call 
computers running the Gnutella software Gnutella clients. Once part of this network, the Gnutella 
client can respond to queries sent by other members of the network, generate queries itself, and 
participate in file sharing. Queries are passed from client to client and responses are passed back over 
the same set of clients that the requests originated from. This prevents meaningful logging of IP 
addresses and queries, because the client attempting to log the request has no way of knowing which 
client made the original request. Each client is essentially just forwarding the request made by another 
member of the network. Queries therefore remain for the most part anonymous. The individual that 
made the query is hidden among the other members of the peer-to-peer network, as with the Crowds 
system. 

File transfer in Gnutella is done directly instead of via intermediaries. This is done for performance 
reasons; however, it also means that file transfer is not anonymous. The individual copying the file is 
no longer hidden among the other network members. The IP address of the client copying the file can 
now be logged. 

Let's say that client A wishes to copy a file that resides on client B. Gnutella client A contacts client B 
and a file transfer is initiated. Client B can now log A's IP address and the fact that A copied a 
particular file. Although this sort of logging may seem trivial and harmless, it led to the creation of the 
web site called the Gnutella Wall of Shame. This web site lists the IP addresses and domain names of 
computers that allegedly downloaded a file that was advertised as containing child pornography. The 
file did not actually contain child pornography, but just the fact that a client downloaded the file was 
enough to get it placed on the list. Of course, any web site claiming to offer specific content could 
perform the same violation of privacy. 
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15.5.3.3 Freenet 

Freenet, described in Chapter 9, is a pure peer-to-peer anonymous publishing system. Files are stored 
on a set of volunteer file servers. This set of file servers is dynamic - servers can join and leave the 
system at any time. A published file is copied to a subset of servers in a store-and-forward manner. 
Each time the file is forwarded to the next server, the origin address field associated with the file can 
be changed to some random value. This means that this field is essentially useless in trying to 
determine where the file originated. Therefore, files can be published anonymously. 

Queries are handled in exactly the same way - the query is handed from one server to another and the 
resulting file (if any) is passed back through the same set of servers. As the file is passed back, each 
server can cache it locally and serve it in response to future requests for that file. It is from this local 
caching that Freenet derives its resistance to censorship. This method of file transfer also prevents 
meaningful logging, as each server doesn't know the ultimate destination of the file. 

15.5.4 Content certification 

Now that we have downloaded a file using one of the previously described systems, how do we know it 
is the genuine article? This is exactly the same question we asked at the beginning of this chapter. 
However, for certain files we may not really care that we have been duped into downloading the wrong 
file. A good example of this is MP3 files. While we may have wasted time downloading the file, no real 
harm was done to our computer. In fact, several artists have made bogus copies of their work available 
on such file-sharing programs as Napster. This is an attempt to prevent individuals from obtaining the 
legitimate version of the MP3 file. 

The "problem" with many of the publishing systems described in this book is that we don't know who 
published the file. Indeed this is actually a feature required of anonymous publishing systems. 
Anonymously published files are not going to be accompanied by a digital certificate and signature 
(unless the signature is associated with a pseudonym). Some systems, such as Publius, provide a 
tamper-check mechanism. However, just because a file passes a tamper check does not mean that the 
file is virus-free and has actually been uploaded by the person believed by the recipient to have 
uploaded it. 

15.6 Trust and search engines 

File-sharing and anonymous publishing programs provide for distributed, and in some cases fault 
tolerant, file storage. But for most of these systems, the ability to store files is necessary but not 
sufficient to achieve their goals. Most of these systems have been built with the hope of enabling 
people to make their files available to others. For example, Publius was designed to allow people to 
publish documents so that they are resistant to censorship. But publishing a document that will never 
be read is of limited use. As with the proverbial tree falling in the forest that nobody was around to 
hear, an unread document makes no sound - it cannot inform, motivate, offend, or entertain. 
Therefore, indexes and search engines are important companions to file-sharing and anonymous 
publishing systems. 

As previously stated, all of these file-sharing and anonymous publishing programs are still in their 
infancy. Continuing this analogy, we can say that searching technologies for these systems are in the 
embryonic stage. Unlike the Web, which now has mature search engines such as Google and Yahoo!, 
the world of peer-to-peer search engines consists of ad hoc methods, none of which work well in all 
situations. Web search engines such as Google catalogue millions of web pages by having web crawlers 
(special computer programs) read web pages and catalogue them. This method will not work with 
many of the systems described in this book. Publius, for example, encrypts its content and only 
someone possessing the URL can read the encrypted file. It makes no sense for a web crawler to visit 
each of the Publius servers and read all the files stored on them. The encrypted files will look like 
gibberish to the web crawler. 

The obvious solution is to somehow send a list of known Publius URLs to a special web crawler that 
knows how to interpret them. Of course, submitting the Publius URL to the web crawler would be 
optional, as one may not wish to widely publicize a particular document. 

Creating a Publius web crawler and search engine would be fairly straightforward. Unfortunately this 
introduces a new way to censor Publius documents. The company or individual operating the Publius 
web crawler can censor a document by simply removing its Publius URL from the crawler's list.  
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The owners of the search engine can not only log your query but can also control exactly what results 
are returned from the search engine. 

Let us illustrate this with a trivial example. You go to the Publius search engine and enter the phrase 
"Windows 95." The search engine examines the query and decides to send you pages that only 
mention Linux. Although this may seem like a silly example, one can easily see how this could lead to 
something much more serious. Of course, this is not a problem unique to Publius search engines - this 
problem can occur with the popular web search engines as well. Indeed, many of the popular search 
engines sell advertisements that are triggered by particular search queries, and reorder search results 
so that advertisers' pages are listed at the top. 

15.6.1 Distributed search engines 

The problem with a centralized search engine, even if it is completely honest, is that it has a single 
point of failure. It presents an enticing target to anyone who wishes to censor the system. This type of 
attack has already been used to temporarily shut down Napster. Because all searches for MP3 files are 
conducted via the Napster server, just shut down the server and the system becomes useless. 

This dramatically illustrates the need for a distributed index, the type of index that we find in Freenet. 
Each Freenet server keeps an index of local files as well as an index of some files stored in some 
neighboring servers. When a Freenet server receives a query it first checks to see if the query can be 
satisfied locally. If it cannot, it uses the local index to decide which server to forward the request to. 
The index on each server is not static and changes as files move through the system. 

One might characterize Gnutella as having a distributed index. However, each client in the network is 
concerned only with the files it has stored locally. If a query can be satisfied locally, the client sends a 
response. If not, it doesn't respond at all. In either case the previous client forwards its query to other 
members of the network. Therefore, one query can generate many responses. The query is essentially 
broadcast to all computers on the Gnutella network. 

Each Gnutella client can interpret the query however it sees fit. Indeed, the Gnutella client can return 
a response that has nothing at all to do with the query. Therefore, the query results must be viewed 
with some suspicion. Again it boils down to the issue of trust. 

In theory, an index of Publius documents generated by a web crawler that accepts submissions of 
Publius URLs could itself be published using Publius. This would prevent the index from being 
censored. Of course, the URL submission system and the forms for submitting queries to the index 
could be targeted for censorship. 

Note that in many cases, indexes and search engines for the systems described in this book can be 
developed as companion systems without changing the underlying distributed system. It was not 
necessary for Tim Berners-Lee (the inventor of the World Wide Web) to build the many web search 
engines and indexes that have developed. The architecture of the Web was such that these services 
could be built on top of the underlying infrastructure. 

15.6.2 Deniability 

The ability to locate Publius documents can actually be a double-edged sword. On the one hand, being 
able to find a document is essential for that document to be read. On the other hand, the first step in 
censoring a document is locating it. 

One of the features of Publius is that server administrators cannot read the content stored on their 
servers because the files are encrypted. A search engine could, in some sense, jeopardize this feature. 
Armed with a search engine, Publius administrators could conceivably learn that their servers are 
hosting something they find objectionable. They could then go ahead and delete the file from their 
servers. Therefore, a search engine could paradoxically lead to greater censorship in such anonymous 
publishing systems. 

Furthermore, even if server administrators do not wish to censor documents, once presented with a 
Publius URL that indicates an objectionable document resides on their servers, they may have little 
choice under local laws. Once the server operators know what documents are on their servers, they 
lose the ability to deny knowledge of the kinds of content published with Publius. 
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Some Publius server operators may wish to help promote free speech but may not wish to specifically 
promote or endorse specific speech that they find objectionable. While they may be willing to host a 
server that may be used to publish content that they would find objectionable, they may draw the line 
at publicizing that content. In effect, they may be willing to provide a platform for free speech, but not 
to provide advertising for the speakers who use the platform. 

Table 15.2 summarizes the problems with censorship-resistant and file sharing systems we have 
discussed in this chapter. 

Table 15.2, Trust issues in censorship-resistant publishing systems 

Risk Solution Trust principle 

Servers, proxies, ISPs, or 
other "nodes" you interact 

with may log your 
requests (making it 

possible for your actions 
to be traced). 

Use a secure channel and/or an anonymity tool so 
other parties do not get access to information that 

might link you to a particular action. 

Reduce risk, and 
reduce the number 

of people that 
must be trusted. 

Proxies and search 
engines may alter content 
they return to you in ways 

they don't disclose. 

Try multiple proxies (and compare results before 
trusting any of them) or run your own proxy. 

Reduce risk, and 
reduce the number 

of people that 
must be trusted. 

Multiple parties may 
collaborate to censor your 

document. 

Publish your document in a way that requires a large 
number of parties to collaborate before they can 

censor successfully. (Only a small subset of parties 
needs to be trusted not to collaborate, and any 

subset of that size will do.) 

Reduce the 
number of people 

that must be 
trusted. 

Parties may censor your 
document by making it 

appear as if you updated 
your document when you 

did not. 

Publish your document in a way that it cannot be 
updated, or publish your document in a way that 
requires a large number of parties to collaborate 
before they can make it appear that you updated 
your document. (Only a small subset of parties 
needs to be trusted not to collaborate, and any 

subset of that size will do.) 

Reduce the 
number of people 

that must be 
trusted. 

Publishers may flood disks 
with bogus content as part 

of a denial of service 
attack. 

Impose limits or quotas on publishers; require 
publishers to pay for space with money, 

computation, space donations; establish a 
reputation system for publishers. 

Reduce risk; look 
for positive 
reputations. 

Censors may use laws to 
try to force documents to 

be deleted. 

Publish your document in a way that requires a large 
number of parties to collaborate before they can 

censor successfully. (Only a small subset of parties 
needs to be trusted not to collaborate, and any 

subset of that size will do.) 

Reduce the 
number of people 

that must be 
trusted. 

Censors may threaten 
publishers to get them to 

delete their own 
documents. 

Publish your document in a way that even the 
publisher cannot delete it. 

Reduce risk, and 
reduce the number 

of people that 
must be trusted. 
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15.7 Conclusions 

In this chapter we have presented an overview of the areas where trust plays a role in distributed file-
sharing systems, and we have described some of the methods that can be used to increase trust in 
these systems. By signing software they make available for download, authors can provide some 
assurance that their code hasn't been tampered with and facilitate the building of a reputation 
associated with their name and key. Anonymity tools and tools for establishing secure channels can 
reduce the need to trust ISPs and other intermediaries not to record or alter information sent over the 
Internet. Quota systems, CPU payment systems, and e-cash payment systems can reduce the risk of 
denial of service attacks. Search engines can help facilitate dissemination of files but can introduce 
additional trust issues. 

There are several open issues. The first is the lack of existence of a global Public Key Infrastructure 
(PKI). Many people believe that such a PKI is not ever going to be possible. This has ramifications for 
trust, because it implies that people may never be able to trust signed code unless they have a direct 
relationship with the signer. While the problem of trusting strangers exists on the Net, strangely, it is 
also very difficult to truly be anonymous on the Internet. There are so many ways to trace people and 
correlate their online activity that the sense of anonymity that most people feel online is misplaced. 
Thus, there are two extremes of identity: both complete assurance of identity and total anonymity are 
very difficult to achieve. More research is needed to see how far from the middle we can push in both 
directions, because each extreme offers possibilities for increased trust in cyberspace. 
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Chapter 16. Accountability 
Roger Dingledine, Reputation Technologies, Inc., Michael J. Freedman, MIT, and David Molnar, 
Harvard University 

One year after its meteoric rise to fame, Napster faces a host of problems. The best known of these 
problems is the lawsuit filed by the Recording Industry Association of America against Napster, Inc. 
Close behind is the decision by several major universities, including Yale, the University of Southern 
California, and Indiana University, to ban Napster traffic on their systems, thus depriving the Napster 
network of some of its highest-bandwidth music servers. The most popular perception is that 
universities are blocking Napster access out of fear of lawsuit. But there is another reason. 

Napster users eat up large and unbounded amounts of bandwidth. By default, when a Napster client is 
installed, it configures the host computer to serve MP3s to as many other Napster clients as possible. 
University users, who tend to have faster connections than most others, are particularly effective 
servers. In the process, however, they can generate enough traffic to saturate a network. It was this 
reason that Harvard University cited when deciding to allow Napster, yet limit its bandwidth use. 

Gnutella, the distributed replacement for Napster, is even worse: not only do downloads require large 
amounts of bandwidth, but searches require broadcasting to a set of neighboring Gnutella nodes, 
which in turn forward the request to other nodes. While the broadcast does not send the request to the 
entire Gnutella network, it still requires bandwidth for each of the many computers queried. 

As universities limit Napster bandwidth or shut it off entirely due to bandwidth usage, the utility of 
the Napster network degrades. As the Gnutella network grows, searching and retrieving items 
becomes more cumbersome. Each service threatens to dig its own grave - and for reasons independent 
of the legality of trading MP3s. Instead, the problem is resource allocation . 

Problems in resource allocation come up constantly in offering computer services. Traditionally they 
have been solved by making users accountable for their use of resources. Such accountability in 
distributed or peer-to-peer systems requires planning and discipline. 

Traditional filesystems and communication mediums use accountability to maintain centralized 
control over their respective resources - in fact, the resources allocated to users are commonly 
managed by "user accounts." Filesystems use quotas to restrict the amount of data that users may 
store on the systems. ISPs measure the bandwidth their clients are using - such as the traffic 
generated from a hosted web site - and charge some monetary fee proportional to this amount. 

Without these controls, each user has an incentive to squeeze all the value out of the resource in order 
to maximize personal gain. If one user has this incentive, so do all the users. 

Biologist Garrett Hardin labeled this economic plight the " tragedy of the commons."[1] The 
"commons" (originally a grazing area in the middle of a village) is any resource shared by a group of 
people: it includes the air we breathe, the water we drink, land for farming and grazing, and fish from 
the sea. The tragedy of the commons is that a commonly owned resource will be overused until it is 
degraded, as all agents pursue self-interest first. Freedom in a commons brings ruin to all; in the end, 
the resource is exhausted. 

[1] Garrett Hardin (1968), "The Tragedy of the Commons," Science 162, pp. 1243-1248. 

We can describe the problem by further borrowing from economics and political science. Mancur 
Olson explained the problem of collective actions and public goods as follows: 

"[U]nless the number of individuals in a group is quite small, or unless there is 
coercion or some other special device to make individuals act in their common 
interest, rational, self-interested individuals will not act to achieve their common or 
group interests.[2] 

[2] Mancur Olson (1982), "The Logic of Collective Action." In Brian Barry and Russell 
Hardin, eds., Rational Man and Irrational Society. Beverly Hills, CA: Sage, p. 44. 
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The usual solution for commons problems is to assign ownership to the resource. This ownership 
allows a party to profit from the resource, thus providing the incentive to care for it. Most real-world 
systems take this approach with a fee-for-service business model. 

Decentralized peer-to-peer systems have similar resource allocation and protection requirements. The 
total storage or bandwidth provided by the sum of all peers is still finite. Systems need to protect 
against two main areas of attack: 

Denial of service (DoS) attacks  

Overload a system's bandwidth or processing ability, causing the loss of service of a particular 
network service or all network connectivity. For example, a web site accessed millions of times 
may show "503" unavailability messages or temporarily refuse connections. 

Storage flooding attacks  

Exploit a system by storing a disproportionally large amount of data so that no more space is 
available for other users. 

As the Napster and Gnutella examples show, attacks need not be malicious. System administrators 
must be prepared for normal peaks in activity, accidental misuse, and the intentional exploitation of 
weaknesses by adversaries. Most computers that offer services on a network share these kinds of 
threats. 

Without a way to protect against the tragedy of the commons, collaborative networking rests on shaky 
ground. Peers can abuse the protocol and rules of the system in any number of ways, such as the 
following: 

• Providing corrupted or low-quality information 

• Reneging on promises to store data 

• Going down during periods when they are needed 

• Claiming falsely that other peers have abused the system in these ways 

These problems must be addressed before peer-to-peer systems can achieve lasting success. Through 
the use of various accountability measures, peer-to-peer systems - including systems that offer 
protection for anonymity - may continue to expand as overlay networks through the existing Internet. 

This chapter focuses on types of accountability that collaborative systems can use to protect against 
resource allocation attacks. The problem of accountability is usually broken into two parts: 

Restricting access  

Each computer system tries to limit its users to a certain number of connections, a certain 
quantity of data that can be uploaded or downloaded, and so on. We will describe the 
technologies for doing this that are commonly called micropayments , a useful term even 
though at first it can be misleading. (They don't necessarily have to involve an exchange of 
money, or even of computer resources.) 

Selecting favored users  

This is normally done through maintaining a reputation for each user the system 
communicates with. Users with low reputations are allowed fewer resources, or they are 
mistrusted and find their transactions are rejected. 

The two parts of the solution apply in different ways but work together to create accountability. In 
other words, a computer system that is capable of restricting access can then use a reputation system 
to grant favored access to users with good reputations. 
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16.1 The difficulty of accountability 

In simple distributed systems, rudimentary accountability measures are often sufficient. If the list of 
peers is generally static and all are known to each other by hostname or address, misbehavior on 
anyone's part leads to a permanent bad reputation. Furthermore, if the operators of a system are 
known, preexisting mechanisms such as legal contracts help ensure that systems abide by protocol. 

In the real world, these two social forces - reputation and law - have provided an impetus for fair trade 
for centuries. Since the earliest days of commerce, buyers and merchants have known each others' 
identities, at first through the immediacy of face-to-face contact, and later through postal mail and 
telephone conversations. This knowledge has allowed them to research the past histories of their 
trading partners and to seek legal reprisal when deals go bad. Much of today's e-commerce uses a 
similar authentication model: clients (both consumers and businesses) purchase items and services 
from known sources over the Internet and the World Wide Web. These sources are uniquely identified 
by digital certificates, registered trademarks, and other addressing mechanisms. 

Peer-to-peer technology removes central control of such resources as communication, file storage and 
retrieval, and computation. Therefore, the traditional mechanisms for ensuring proper behavior can 
no longer provide the same level of protection. 

16.1.1 Special problems posed by peer-to-peer systems 

Peer-to-peer systems have to treat identity in special ways for several reasons: 

• The technology makes it harder to uniquely and permanently identify peers and their 
operators. Connections and network maps might be transient. Peers might be able to join and 
leave the system. Participants in the system might wish to hide personal identifying 
information. 

• Even if users have an identifying handle on the peer they're dealing with, they have no idea 
who the peer is and no good way to assess its history or predict its performance. 

• Individuals running peer-to-peer services are rarely bound by contracts, and the cost and time 
delay of legal enforcement would generally outweigh their possible benefit. 

We choose to deal with these problems - rather than give up and force everyone on to a centralized 
system with strong user identification - to pursue two valuable goals on the Internet: privacy and 
dynamic participation. 

Privacy is a powerfully appealing goal in distributed systems, as discussed in Chapter 12. The design of 
many such systems features privacy protection for people offering and retrieving files. 

Privacy for people offering files requires a mechanism for inserting and retrieving documents either 
anonymously or pseudonymously.[3] Privacy for people retrieving files requires a means to 
communicate - via email, Telnet, FTP, IRC, a web client, etc. - while not divulging any information 
that could link the user to his or her real-world persona.[4] 

[3] A pseudonymous identity allows other participants to link together some or all the activities a person does on 
the system, without being able to determine who the person is in real life. Pseudonymity is explored later in this 
chapter and in Chapter 12. 

[4] In retrospect, the Internet appears not to be an ideal medium for anonymous communication and publishing. 
Internet services and protocols make both passive sniffing and active attack too easy. For instance, email 
headers include the routing paths of email messages, including DNS hostnames and IP addresses. Web browsers 
normally display user IP addresses; cookies on a client's browser may be used to store persistent user 
information. Commonly used online chat applications such as ICQ and Instant Messenger also divulge IP 
addresses. Network cards in promiscuous mode can read all data flowing through the local Ethernet. With all 
these possibilities, telephony or dedicated lines might be better suited for this goal of privacy protection. 
However, the ubiquitous nature of the Internet has made it the only practical consideration for digital 
transactions across a wide area, like the applications discussed in this book. 
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Dynamic participation has both philosophical and practical advantages. The Internet's loosely 
connected structure and explosive growth suggest that any peer-to-peer system must be similarly 
flexible and dynamic in order to be scalable and sustain long-term use. Similarly, the importance of ad 
hoc networks will probably increase in the near future as wireless connections get cheaper and more 
ubiquitous. A peer-to-peer system should therefore let peers join and leave smoothly, without 
impacting functionality. This design also decreases the risk of systemwide compromise as more peers 
join the system. (It helps if servers run a variety of operating systems and tools, so that a single exploit 
cannot compromise most of the servers at once.) 

16.1.2 Peer-to-peer models and their impacts on accountability 

There are many different models for peer-to-peer systems. As the systems become more dynamic and 
diverge from real-world notions of identity, it becomes more difficult to achieve accountability and 
protect against attacks on resources. 

The simplest type of peer-to-peer system has two main characteristics. First, it contains a fairly static 
list of servers; additions and deletions are rare and may require manual intervention. Second, the 
identities of the servers (and to some extent their human operators) are known, generally by DNS 
hostname or static IP host address. Since the operators can be found, they may have a legal 
responsibility or economic incentive - leveraged by the power of reputation - to fulfill the protocols 
according to expectation. 

An example of such a peer-to-peer system is the Mixmaster remailer. A summary of the system 
appears in Chapter 7. The original Mixmaster client software was developed by Lance Cottrell and 
released in 1995.[5] Currently, the software runs on about 30 remailer nodes, whose locations are 
published to the newsgroup alt.privacy.anon-server and at web sites such as http://efga.org/.[6] The 
software itself can be found at http://mixmaster.anonymizer.com/. 

[5] Lance Cottrell (1995) "Mixmaster and Remailer Attacks," http://www.obscura.com/~loki/remailer/remailer-
essay.html. 

[6] "Electronic Frontiers Georgia List of Public Mixmaster Remailers," http://anon.efga.org/Remailers. 

Remailer nodes are known by hostname and remain generally fixed. While anybody can start running 
a remailer, the operator needs to spread information about her new node to web pages that publicize 
node statistics, using an out-of-band channel (meaning that something outside the Mixmaster system 
must be used - most of the time, manually sent email). The location of the new node is then manually 
added to each client's software configuration files. This process of manually adding new nodes leads to 
a system that remains generally static. Indeed, that's why there are so few Mixmaster nodes. 

A slightly more complicated type of peer-to-peer system still has identified operators but is dynamic in 
terms of members . That is, the protocol itself has support for adding and removing participating 
servers. One example of such a system is Gnutella. It has good support for new users (which are also 
servers) joining and leaving the system, but at the same time, the identity and location of each of these 
servers is generally known through the hosts list, which advertises existing hosts to new ones that wish 
to join the network. These sorts of systems can be very effective, because they're generally easy to 
deploy (there's no need to provide any real protection against people trying to learn the identity of 
other participants), while at the same time they allow many users to freely join the system and donate 
their resources. 

Farther still along the scale of difficulty lie peer-to-peer systems that have dynamic participants and 
pseudonymous servers. In these systems, the actual servers that store files or proxy communication 
live within a digital fog that conceals their geographic locations and other identifying features. Thus, 
the mapping of pseudonym to real-world identity is not known. A given pseudonym may be pegged 
with negative attributes, but a user can just create a new pseudonym or manage several at once. Since 
a given server can simply disappear at any time and reappear as a completely new entity, these sorts of 
designs require a micropayment system or reputation system to provide accountability on the server 
end. An example of a system in this category is the Free Haven design: each server can be contacted 
via a remailer reply block and a public key, but no other identifying features are available. 

http://efga.org/
http://mixmaster.anonymizer.com/
http://www.obscura.com/~loki/remailer/remaileressay.html
http://anon.efga.org/Remailers
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The final peer-to-peer model on this scale is a dynamic system with fully anonymous operators. A 
server that is fully anonymous lacks even the level of temporary identity provided by a pseudonymous 
system like Free Haven. Since an anonymous peer's history is by definition unknown, all decisions in 
an anonymous system must be based only on the information made available during each protocol 
operation. In this case, peers cannot use a reputation system, since there is no real opportunity to 
establish a profile on any server. This leaves a micropayment system as the only reasonable way to 
establish accountability. On the other hand, because the servers themselves have no long-term 
identities, this may limit the number of services or operations such a system could provide. For 
instance, such a system would have difficulty offering long-term file storage and backup services. 

16.1.3 Purposes of micropayments and reputation systems 

The main goal of accountability is to maximize a server's utility to the overall system while minimizing 
its potential threat. There are two ways to minimize the threat. 

• One approach is to limit our risk (in bandwidth used, disk space lost, or whatever) to an 
amount roughly equivalent to our benefit from the transaction. This suggests the fee-for-
service or micropayment model mentioned at the beginning of the chapter. 

• The other approach is to make our risk proportional to our trust in the other parties. This calls 
for a reputation system. 

In the micropayment model, a server makes decisions based on fairly immediate information. 
Payments and the value of services are generally kept small, so that a server only gambles some small 
amount of lost resources for any single exchange. If both parties are satisfied with the result, they can 
continue with successive exchanges. Therefore, parties require little prior information about each 
other for this model, as the risk is small at any one time. As we will see later in this chapter, where we 
discuss real or existing micropayment systems, the notion of payment might not involve any actual 
currency or cash. 

In the reputation model, for each exchange a server risks some amount of resources proportional to its 
trust that the result will be satisfactory. As a server's reputation grows, other nodes become more 
willing to make larger payments to it. The micropayment approach of small, successive exchanges is 
no longer necessary. 

Reputation systems require careful development, however, if the system allows impermanent and 
pseudonymous identities. If an adversary can gain positive attributes too easily and establish a good 
reputation, she can damage the system. Worse, she may be able to "pseudospoof," or establish many 
seemingly distinct identities that all secretly collaborate with each other. 

Conversely, if a well-intentioned server can incur negative points easily from short-lived operational 
problems, it can lose reputation too quickly. (This is the attitude feared by every system administrator: 
"Their web site happened to be down when I visited, so I'll never go there again.") The system would 
lose the utility offered by these "good" servers. 

As we will see later in this chapter, complicated protocols and calculations are required for both 
micropayments and reputation systems. Several promising micropayment systems are in operation, 
while research on reputation systems is relatively young. These fields need to develop ways of 
checking the information being transferred, efficient tests for distributed computations, and, more 
broadly, some general algorithms to verify behavior of decentralized systems. 

There is a third way to handle the accountability problem: ignore the issue and engineer the system 
simply to survive some faulty servers. Instead of spending time on ensuring that servers fulfill their 
function, leverage the vast resources of the Internet for redundancy and mirroring. We might not 
know, or have any way to find out, if a server is behaving according to protocol (i.e., whether that 
server is storing files and responding to file queries, forwarding email or other communications upon 
demand, and correctly computing values or analyzing data). Instead, if we replicate the file or 
functionality through the system, we can ensure that the system works correctly with high probability, 
despite misbehaving components. This is the model used by Napster, along with some of the systems 
discussed in this book, such as Freenet and Gnutella. 
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In general, the popular peer-to-peer systems take a wide variety of approaches to solving the 
accountability problem. For instance, consider the following examples: 

• Freenet dumps unpopular data on the floor, so people flooding the system with unpopular 
data are ultimately ignored. Popular data is cached near the requester, so repeated requests 
won't traverse long sections of the network. 

• Gnutella doesn't "publish" documents anywhere except on the publisher's computer, so 
there's no way to flood other systems. (This has a great impact on the level of anonymity 
actually offered.) 

• Publius limits the submission size to 100K. (It remains to be seen how successful this will be; 
they recognize it as a problem.) 

• Mojo Nation uses micropayments for all peer-to-peer exchanges. 

• Free Haven requires publishers to provide reliable space of their own if they want to insert 
documents into the system. This economy of reputation tries to ensure that people donate to 
the system in proportion to how much space they use. 

16.1.4 Junk mail as a resource allocation problem 

The familiar problem of junk email (known more formally as unsolicited commercial email , and 
popularly as spam) yields some subtle insights into resource allocation and accountability. Junk mail 
abuses the unmetered nature of email and of Internet bandwidth in general. Even if junk email 
achieves only an extremely small success rate, the sender is still successful because the cost of sending 
each message is essentially zero. 

Spam wastes both global and individual resources. On a broad scale, it congests the Internet, wasting 
bandwidth and server CPU cycles. On a more personal level, filtering and deleting spam can waste an 
individual's time (which, collectively, can represent significant person-hours). Users also may be faced 
with metered connection charges, although recent years have seen a trend toward unmetered service 
and always-on access. 

Even though the motivations for junk email might be economic, not malicious, senders who engage in 
such behavior play a destructive role in "hogging" resources. This is a clear example of the tragedy of 
the commons. 

Just as some environmental activists suggest curbing pollution by making consumers pay the "real 
costs" of the manufacturing processes that cause pollution, some Internet developers are considering 
ways of stopping junk email by placing a tiny burden on each email sent, thus forcing the sender to 
balance the costs of bulk email against the benefits of responses. The burden need not be a direct 
financial levy; it could simply require the originator of the email to use significant resources. The cost 
of an email message should be so small that it wouldn't bother any individual trying to reach another; 
it should be just high enough to make junk email unprofitable. We'll examine such micropayment 
schemes later in this chapter. 

We don't have to change the infrastructure of the Internet to see a benefit from email micropayments. 
Individuals can adopt personal requirements as recipients. But realistically, individual, nonstandard 
practices will merely reduce the usability of email. Although individuals adopting a micropayment 
scheme may no longer be targeted, the scheme would make it hard for them to establish relationships 
with other Internet users, while junk emailers would continue to fight over the commons. 

16.1.5 Pseudonymity and its consequences 

Many, if not most, of the services on the Internet today do not deal directly with legal identities. 
Instead, web sites and chat rooms ask their users to create a handle or pseudonym by which they are 
known while using that system. These systems should be distinguished from those that are fully 
anonymous; in a fully anonymous system, there is no way to refer to the other members of the system. 
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16.1.5.1 Problems with pseudospoofing and possible defenses 

The most important difficulty caused by pseudonymity is pseudospoofing . A term first coined by L. 
Detweiler on the Cypherpunks mailing list, pseudospoofing means that one person creates and 
controls many phony identities at once. This is a particularly bad loophole in reputation systems that 
blithely accept input from just any user, like current web auction sites. An untrustworthy person can 
pseudospoof to return to the system after earning a bad reputation, and he can even create an entire 
tribe of accounts that pat each other on the back. Pseudospoofing is a major problem inherent in 
pseudonymous systems. 

Lots of systems fail in the presence of pseudospoofing. Web polls are one example; even if a web site 
requires registration, it's easy for someone to simply register and then vote 10, 15, or 1,500 times. 
Another example is a free web hosting site, such as GeoCities, which must take care to avoid someone 
registering under six or seven different names to obtain extra web space. 

Pseudospoofing is hard in the real world, so most of us don't think about it. After all, in the real world, 
changing one's appearance and obtaining new identities is relatively rare, spy movies to the contrary. 
When we come online, we bring with us the assumptions built up over a lifetime of dealing with 
people who can be counted on to be the "same person" next time we meet them. Pseudospoofing 
works, and works so well, because these assumptions are completely unjustified online. As shown by 
the research of psychologist Sherry Turkle and others, multiple identities are common in online 
communities. 

So what can we do about pseudospoofing? Several possibilities present themselves: 

• Abandon pseudonymous systems entirely. Require participants in a peer-to-peer system to 
prove conclusively who they are. This is the direction taken by most work on Public Key 
Infrastructures (PKIs), which try to tie each online users to some legal identity. Indeed, 
VeriSign used to refer to its digital certificates as "driver's licenses for the information 
superhighway." 

This approach has a strong appeal. After all, why should people be allowed to "hide" behind a 
pseudonym? And how can we possibly have accountability without someone's real identity? 

Unfortunately, this approach is unnecessary, unworkable, and in some cases undesirable. It's 
unnecessary for at least three reasons: 

o Identity does not imply accountability. For example, if a misbehaving user is in a 
completely different jurisdiction, other users may know exactly who he or she is and 
yet be unable to do anything about it. Even if they are in the same jurisdiction, the 
behavior may be perfectly legal, just not very nice. 

o Accountability is possible even in pseudonymous systems. This point will be 
developed at length in the rest of this chapter. 

o The problem with pseudospoofing is not that someone acts under a "fake" name, but 
that someone acts under more than one name. If we could somehow build a system 
that ensured that every pseudonym was controlled by a distinct person, a reputation 
system could handle the problem. 

Furthermore, absolute authentication is unworkable because it requires verifying the legal 
identities of all participants. On today's Internet, this is a daunting proposition. VeriSign and 
other PKI companies are making progress in issuing their "digital driver's licenses," but we 
are a far cry from that end. In addition, one then has to trust that the legal identities have not 
themselves been fabricated. Verification can be expensive and leaves a system that relies on it 
open to attack if it fails. 

Finally, this proposed solution is undesirable because it excludes users who either cannot or 
will not participate. International users of a system may not have the same ways of verifying 
legal identity. Other users may have privacy concerns. 
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• Allow pseudonyms, but ensure that all participants are distinct entities. This is all that is 
strictly necessary to prevent pseudospoofing. Unfortunately, it tends to be not much easier 
than asking for everyone's legal identity. 

• Monitor user behavior for evidence of pseudospoofing. Remove or "expose" accounts that 
seem to be controlled by the same person. The effectiveness of this approach varies widely 
with the application. It also raises privacy concerns for users. 

• Make pseudospoofing unprofitable. Give new accounts in a system little or no resources until 
they can prove themselves by doing something for the system. Make it so expensive for an 
adversary to prove itself multiple times that it has no inclination to pseudospoof. This is the 
approach taken by the Free Haven project, which deals with new servers by asking them to 
donate resources to the good of the system as a whole. 

All of these alternatives are just rules of thumb. Each of them might help us combat the problems of 
pseudospoofing, but it's hard to reach a conclusive solution. We'll return to possible technical 
solutions later in this chapter when we describe the Advogato system. 

16.1.5.2 Reputation for sale - SOLD! 

Pseudonymous systems are based on the assumption that each pseudonym is controlled by the same 
entity for the duration of the system. That is, the adversary's pseudonyms stay controlled by the 
adversary, and the good guys' pseudonyms stay controlled by the good guys. 

What happens if the adversary takes control of someone who already has a huge amount of trust or 
resources in the system? Allowing accounts to change hands can lead to some surprising situations. 

The most prevalent example of this phenomenon comes in online multiplayer games. One of the best-
known such games is Ultima Online. Players gallivant around the world of Brittania, completing 
quests, fighting foes, and traipsing around dungeons, in the process accumulating massive quantities 
of loot. Over the course of many, many hours, a player can go from a nobody to the lord and master of 
his own castle. Then he can sell it all to someone else. 

Simply by giving up his username and password, an Ultima Online player can transfer ownership of 
his account to someone else. The new owner obtains all the land and loot that belonged to the old 
player. More importantly, she obtains the reputation built up by the old player. The transfer can be 
carried out independently of the game; no one need ever know that it happened. As far as anyone else 
knows, the game personality is the same person. Until the new owner does something "out of 
character," or until the news spreads somehow, there is no way to tell that a transfer has occurred. 

This has led to a sort of cottage industry in trading game identities for cash online. Ultima Online 
game identities, or " avatars," can be found on auction at eBay. Other multiplayer online games admit 
the occurrence of similar transactions. Game administrators can try to forbid selling avatars, but as 
long as it's just a matter of giving up a username and password, it will be an uphill battle. 

The point of this example is that reputations and identities do not bind as tightly to people online as 
they do in the physical world. Reputations can be sold or stolen with a single password. While people 
can be coerced or "turned" in the physical world, it's much harder. Once again, the assumptions 
formed in the physical world turn out to be misleading online. 

One way of dealing with this problem is to embed an important piece of information, such as a credit 
card number, into the password for an account. Then revealing the password reveals the original 
user's credit card number as well, creating a powerful incentive not to trade away the password. The 
problem is that if the password is ever accidentally compromised, the user now loses not just the use 
of his or her account, but the use of a credit card as well. 

Another response is to make each password valid only for a certain number of logins; to get a new 
password, the user must prove that he is the same person who applied for the previous password. This 
does not stop trading passwords, however - it just means the "original" user must hang around to 
renew the password each time it expires. 
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16.2 Common methods for dealing with flooding and DoS attacks 

We've seen some examples of resource allocation problems and denial of service attacks. These 
problems have been around for a long while in various forms, and there are several widespread 
strategies for dealing with them. We'll examine them in this section to show that even the most 
common strategies are subject to attack - and such attacks can be particularly devastating to peer-to-
peer systems. 

16.2.1 Caching and mirroring 

One of the simplest ways to maintain data availability is to mirror it. Instead of hosting data on one 
machine, host it on several. When one machine becomes congested or goes down, the rest are still 
available. Popular software distributions like the Perl archive CPAN and the GNU system have a 
network of mirror sites, often spread across the globe to be convenient to several different nations at 
once. 

Another common technique is caching: If certain data is requested very often, save it in a place that is 
closer to the requester. Web browsers themselves cache recently visited pages. 

Simple to understand and straightforward to implement, caching and mirroring are often enough to 
withstand normal usage loads. Unfortunately, an adversary bent on a denial of service attack can 
target mirrors one by one until all are dead. 

16.2.2 Active caching and mirroring 

Simple mirroring is easy to do, but it also has drawbacks. Users must know where mirror sites are and 
decide for themselves which mirror to use. This is more hassle for users and inefficient to boot, as 
users do not generally know their networks well enough to pick the fastest web site. In addition, users 
have little idea of how loaded a particular mirror is; if many users suddenly decide to visit the same 
mirror, they may all receive worse connections than if they had been evenly distributed across mirror 
sites. 

In 1999, Akamai Technologies became an overnight success with a service that could be called active 
mirroring. Web sites redirect their users to use special "Akamaized" URLs. These URLs contain 
information used by Akamai to dynamically direct the user to a farm of Akamai web servers that is 
close to the user on the network. As the network load and server loads change, Akamai can switch 
users to the best server farm of the moment. 

For peer-to-peer systems, an example of active caching comes in the Freenet system for file retrieval. 
In Freenet, file requests are directed to a particular server, but this server is in touch with several 
other servers. If the initial server has the data, it simply returns the data. Otherwise, it forwards the 
request to a neighboring server which it believes more capable of answering the request, and keeps a 
record of the original requester's address. The neighboring server does the same thing, creating a 
chain of servers. Eventually the request reaches a server that has the data, or it times out. If the 
request reaches a server that has the data, the server sends the data back through the chain to the 
original requester. Every server in the chain, in addition, caches a copy of the requested data. This 
way, the next time the data is requested, the chance that the request will quickly hit a server with the 
data is increased. 

Active caching and mirroring offer more protection than ordinary caching and mirroring against the " 
Slashdot effect" and flooding attacks. On the other hand, systems using these techniques then need to 
consider how an adversary could take advantage of them. For instance, is it possible for an adversary 
to fool Akamai into thinking a particular server farm is better- or worse-situated than it actually is? 
Can particular farms be targeted for denial of service attacks? In Freenet, what happens if the 
adversary spends all day long requesting copies of the complete movie Lawrence of Arabia and thus 
loads up all the local servers to the point where they have no room for data wanted by other people? 
These questions can be answered, but they require thought and attention. 

For specific answers on a specific system, we might be able to answer these questions through a 
performance and security analysis. For instance, Chapter 14, uses Freenet and Gnutella as models for 
performance analysis. Here, we can note two general points about how active caching reacts to 
adversaries. 
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First, if the cache chooses to discard data according to which data was least recently used, the cache is 
vulnerable to an active attack. An adversary can simply start shoving material into the cache until it 
displaces anything already there. In particular, an adversary can simply request that random bits be 
cached. Active caching systems whose availability is important to their users should have some way of 
addressing this problem. 

Next, guaranteeing service in an actively cached system with multiple users on the same cache is 
tricky. Different usage patterns fragment the cache and cause it to be less useful to any particular set 
of users. The situation becomes more difficult when adversaries enter the picture: by disrupting cache 
coherency on many different caches, an adversary may potentially wreak more havoc than by 
mounting a denial of service attack on a single server. 

One method for addressing both these problems is to shunt users to caches based on their observed 
behavior. This is a radical step forward from a simple least-recently-used heuristic. By using past 
behavior to predict future results, a cache has the potential to work more efficiently. This past 
behavior can be considered a special kind of reputation, a topic we'll cover in general later in this 
chapter. 

But systems can also handle resource allocation using simpler and relatively well tested methods 
involving micropayments. In the next section, we'll examine some of them closely. 

16.3 Micropayment schemes 

Accountability measures based on micropayments require that each party offer something of value in 
an exchange. Consider Alice and Bob, both servers in a peer-to-peer system that involves file sharing 
or publishing. Alice may be inserting a document into the system and want Bob to store it for her. 
Alternatively, Alice may want Bob to anonymously forward some email or real-time Internet protocol 
message for her. In either case, Alice seeks some resource commodity - storage and bandwidth, 
respectively - from Bob. In exchange, Bob asks for a micropayment from Alice to protect his resources 
from overuse. 

There are two main flavors of micropayments schemes. Schemes of the first type do not offer Bob any 
real redeemable value; their goal is simply to slow Alice down when she requests resources from Bob. 
She pays with a proof of work (POW), showing that she performed some computationally difficult 
problem. These payments are called nonfungible , because Bob cannot turn around and use them to 
pay someone else. With the second type of scheme, fungible micropayments, Bob receives a payment 
that holds some intrinsic or redeemable value. The second type of payment is commonly known as 
digital cash. Both of these schemes may be used to protect against resource allocation attacks. 

POWs can prevent communication denial of service attacks. Bob may require someone who wishes to 
connect to submit a POW before he allocates any non-trivial resources to communication. In a more 
sophisticated system, he may start charging only if he detects a possible DoS attack. Likewise, if Bob 
charges to store data, an attacker needs to pay some (prohibitively) large amount to flood Bob's disk 
space. Still, POWs are not a perfect defense against an attacker with a lot of CPU capacity; such an 
attacker could generate enough POWs to flood Bob with connection requests or data. 

16.3.1 Varieties of micropayments or digital cash 

The difference between micropayments and digital cash is a semantic one. The term "micropayment" 
has generally been used to describe schemes using small-value individual payments. Usually, Alice 
will send a micropayment for some small, incremental use of a resource instead of a single large 
digital cash "macropayment" for, say, a month's worth of service. We'll continue to use the commonly 
accepted phrase "micropayment" in this chapter without formally differentiating between the two 
types, but we'll describe some common designs for each type. 

Digital cash may be either anonymous or identified. Anonymous schemes do not reveal Alice's identity 
to Bob or the bank providing the cash, while identified spending schemes expose her information. 
Hybrid approaches can be taken: Alice might remain anonymous to Bob but not to the bank or 
anonymous to everybody yet traceable. The latter system is a kind of pseudonymity; the bank or 
recipient might be able to relate a sequence of purchases, but not link them to an identity. 
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No matter the flavor of payment - nonfungible, fungible, anonymous, identified, large, or small - we 
want to ensure that a malicious user can't commit forgery or spend the same coin more than once 
without getting caught. A system of small micropayments might not worry about forgeries of 
individual micropayments, but it would have to take steps to stop large-scale, multiple forgeries. 

Schemes identifying the spender are the digital equivalent of debit or credit cards. Alice sends a 
"promise of payment" that will be honored by her bank or financial institution. Forgery is not much of 
a problem here because, as with a real debit card, the bank ensures that Alice has enough funds in her 
account to complete the payment and transfers the specified amount to Bob. Unfortunately, though, 
the bank has knowledge of all of Alice's transactions. 

Anonymous schemes take a different approach and are the digital equivalent of real cash. The 
electronic coin itself is worth some dollar amount. If Alice loses the coin, she's lost the money. If Alice 
manages to pay both Bob and Charlie with the same coin and not get caught, she's successfully double-
spent the coin. 

In the real world, government mints use special paper, microprinting, holograms, and other 
technologies to prevent forgery. In a digital medium, duplication is easy: just copy the bits! We need to 
find alternative methods to prevent this type of fraud. Often, this involves looking up the coin in a 
database of spent coins. Bob might have a currency unique to him, so that the same coin couldn't be 
used to pay Charlie. Or coins might be payee-independent, and Bob would need to verify with the 
coin's issuing "mint" that it has not already been spent with Charlie. 

With this description of micropayments and digital cash in mind, let's consider various schemes. 

16.3.2 Nonfungible micropayments 

Proofs of work were first advocated by Cynthia Dwork and Moni Naor[7] in 1992 as " pricing via 
processing" to handle resource allocation requests. 

[7] Cynthia Dwork and Moni Naor (1993), "Pricing via Processing or Combating Junk Mail," in Ernest F. Brickell, 
ed., Advances in Cryptology - Crypto '92, vol. 740 of Lecture Notes in Computer Science, pp. 139-147. Springer-
Verlag,16-20 August 1992. 

The premise is to make a user compute a moderately hard, but not intractable, computation problem 
before gaining access to some resource. It takes a long time to solve the problem but only a short time 
to verify that the user found the right solution. Therefore, Alice must perform a significantly greater 
amount of computational work to solve the problem than Bob has to perform to verify that she did it. 

Dwork and Naor offer their system specifically as a way to combat electronic junk mail. As such, it can 
impose a kind of accountability within a distributed system. 

To make this system work, a recipient refuses to receive email unless a POW is attached to each 
message. The POW is calculated using the address of the recipient and must therefore be generated 
specifically for the recipient by the sender. These POWs serve as a form of electronic postage stamp, 
and the way the recipient's address is included makes it trivial for the recipient to determine whether 
the POW is malformed. Also, a simple lookup in a local database can be used to check whether the 
POW has been spent before. 

The computational problem takes some amount of time proportional to the time needed to write the 
email and small enough that its cost is negligible for an individual user or a mail distribution list. Only 
unsolicited bulk mailings would spend a large amount of computation cycles to generate the necessary 
POWs. 

Recipients can also agree with individual users or mail distribution lists to use an access control list ( 
"frequent correspondent list") so that some messages do not require a POW. These techniques are 
useful for social efficiency: if private correspondence instead costs some actual usage fee, users may be 
less likely to send email that would otherwise be beneficial, and the high bandwidth of the electronic 
medium may be underutilized. 

Dwork and Naor additionally introduced the idea of a POW with a trap door: A function that is 
moderately hard to compute without knowledge of some secret, but easy to compute given this secret. 
Therefore, central authorities could easily generate postage to sell for prespecified destinations. 
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16.3.2.1 Extended types of nonfungible micropayments 

Hash cash, designed by Adam Back in late 1997,[8] is an alternative micropayment scheme that is also 
based on POWs. Here, Bob calculates a hash or digest , a number that can be generated easily from a 
secret input, but that cannot be used to guess the secret input. (See Chapter 15.) Bob then asks Alice to 
guess the input through a brute-force calculation; he can set how much time Alice has to "pay" by 
specifying how many bits she must guess. Typical hashes used for security are 128 bits or 160 bits in 
size. Finding another input that will produce the entire hash (which is called a " collision") requires a 
prohibitive amount of time. 

[8] Adam Back, "Hash Cash: A Partial Hash Collision Based Postage Scheme," 
http://www.cypherspace.org/~adam/hashcash. 

Instead, Bob requires Alice to produce a number for which some of the low-order bits match those of 
the hash. If we call this number of bits k, Bob can set a very small k to require a small payment or a 
larger k to require a larger payment. Formally, this kind of problem is called a "k -bit partial hash 
collision." 

For example, the probability of guessing a 17-bit collision is 2-17; this problem takes approximately 
65,000 tries on average. To give a benchmark for how efficient hash operations are, in one test, our 
Pentium-III 800 MHz machine performed approximately 312,000 hashes per second. 

Hash cash protects against double-spending by using individual currencies. Bob generates his hash 
from an ID or name known to him alone. So the hash cash coins given to Bob must be specific to Bob, 
and he can immediately verify their validity against a local spent-coin database. 

Another micropayment scheme based on partial hash collisions is client puzzles, suggested by 
researchers Ari Juels and John Brainard of RSA Labs.[9] Client puzzles were introduced to provide a 
cryptographic countermeasure against connection depletion attacks, whereby an attacker exhausts a 
server's resources by making a large number of connection requests and leaving them unresolved. 

[9] A. Juels and J. Brainard, "Client Puzzles: A Cryptographic Defense Against Connection Depletion Attacks," 
NDSS '99. 

When client puzzles are used, a server accepts connection requests as usual. However, when it 
suspects that it is under attack, marked by a significant rise in connection requests, it responds to 
requests by issuing each requestor a puzzle: A hard cryptographic problem based on the current time 
and on information specific to the server and client request.[10] 

[10] "RSA Laboratories Unveils Innovative Countermeasure to Recent `Denial of Service' Hacker Attacks," press 
release, http://www.rsasecurity.com/news/pr/000211.html. 

Like hash cash, client puzzles require that the client find some k -bit partial hash collisions. To 
decrease the chance that a client might just guess the puzzle, each puzzle could optionally be made up 
of multiple subpuzzles that the client must solve individually. Mathematically, a puzzle is a hash for 
which a client needs to find the corresponding input that would produce it.[11] 

[11] For example, by breaking a puzzle into eight subpuzzles, you can increase the amount of average work 
required to solve the puzzle by the same amount as if you left the puzzle whole but increased the size by three 
bits. However, breaking up the puzzle is much better in terms of making it harder to guess. The chance of 
correctly guessing the subpuzzle version is 2-8k, while the chance of guessing the larger single version is just 2-

(k+3), achieved by hashing randomly selected inputs to find a collision without performing a brute-force search. 

16.3.2.2 Nonparallelizable work functions 

Both of the hash collision POW systems in the previous section can easily be solved in parallel. In 
other words, a group of n machines can solve each problem in 1/n the amount of time as a single 
machine. Historically, this situation is like the encryption challenges that were solved relatively 
quickly by dividing the work among thousands of users. 

Parallel solutions may be acceptable from the point of view of accountability. After all, users still pay 
with the same expected amount of burnt CPU cycles, whether a single machine burns m cycles, or n 
machines burn m cycles collectively. But if the goal of nonfungible micropayments is to ensure public 
access to Bob's resources, parallelizable schemes are weak because they can be overwhelmed by 
distributed denial of service attacks. 

http://www.cypherspace.org/~adam/hashcash
http://www.rsasecurity.com/news/pr/000211.html
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Let's actually try to make Alice wait for a fixed period between two transactions, in order to better 
protect Bob's resources. Consider a "proof of time": we desire a client to spend some amount of time, 
as opposed to work, to solve a given problem. An example is MIT's LCS35 Time Capsule Crypto-
Puzzle. The time capsule, sealed in 1999, will be opened either after 35 years or when the supplied 
cryptographic problem is solved, whichever comes first. The problem is designed to foil any benefit of 
parallel or distributed computing. It can be solved only as quickly as the fastest single processor 
available. 

Time-lock puzzles, such as the LCS35 time capsule, were first presented by Ron Rivest, Adi Shamir, 
and David Wagner.[12]  

[12] Ronald L. Rivest, Adi Shamir, and David A. Wagner (1996), "Time-Lock Puzzles and Timed-Release Crypto." 

These types of puzzles are designed to be "intrinsically" or "inherently" sequential in nature. The 
problem LCS35 used to compute is: 

 
where n is the product of two large primes p and q, and t can be arbitrarily chosen to set the difficulty 
of the puzzle. This puzzle can be solved only by performing t successive squares modulo n. There is no 
known way to speed up this calculation without knowing the factorization of n. The reason is the same 
reason conventional computer encryption is hard to break: there is no existing method for finding two 
primes when only their product is known. 

It's worth noting in passing that the previous construction is not proven to be nonparallelizable. 
Besides the product-of-two-primes problem, its security rests on no one knowing how to perform the 
repeated modular squaring in parallel. This problem is tied up with the "P vs. NC" problem in 
computational complexity theory and is outside the scope of this chapter. Similar to the better known 
"P vs. NP" problem, which concerns the question, "Which problems are easy?" the P vs. NC problem 
asks, "Which problems are parallelizable?"[13] 

[13] Historical note: NC stands for Nick's Class, named after Nicholas Pippenger, one of the first researchers to 
investigate such problems. For more information, see Raymond Greenlaw, H. James Hoover, and Walter L. 
Ruzzo (1995), Limits to Parallel Computation: P-Completeness Theory. Oxford University Press. 

16.3.3 Fungible micropayments 

All of the micropayment schemes we have previously described are nonfungible. While Alice pays Bob 
for resource use with some coin that represents a proof of work, he cannot redeem this token for 
something of value to him. While this micropayment helps prevent DoS and flooding attacks, there's 
no measure of "wealth" in the system. Bob has no economic incentive to engage in this exchange. 

Nonfungible micropayments are better suited for ephemeral resources, like TCP connections, than 
they are for long-term resources like data storage. Consider an attacker who wants to make a 
distributed datastore unusable. If an attacker is trying to fill up a system's storage capacity and is 
allowed to store data for a long time, the effects of DoS attacks can be cumulative. This is because the 
attacker can buy more and more space on the system as time goes on. 

If micropayments just use up CPU cycles and cannot be redeemed for something of value, an attacker 
can slowly nibble at resources, requesting a megabyte now and then as it performs enough work to pay 
for the space. This can continue, bit by bit, until the attacker controls a large percentage of the total. 
Furthermore, the victim is unable to use these payments in exchange for other peers' resources, or 
alternatively to purchase more resources. 

Enter redeemable payments. This compensation motivates users to donate resources and fixes the 
cost for resources in a more stable way. 
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16.3.3.1 Freeloading 

The history of the Internet records a number of users who have freely donated resources. The hacker 
ethos and the free software movement can be relied on to provide resources to an extent. Johan 
Helsingius ran the initial "anonymous" remailer - anon.penet.fi - for its own sake. The Cypherpunks 
(Type I) and Mixmaster (Type II) remailers for anonymous email are run and maintained for free 
from around the globe. Processing for SETI@home and Distributed.net is also performed without 
compensation, other than the possibility of fame for finding an alien signature or cracking a key. 

Unfortunately, not everybody donates equally. It is tempting for a user to "let somebody else pay for 
it" and just reap the rewards. 

Peer-to-peer systems may combat this effect by incorporating coercive measures into their design or 
deployment, ensuring that users actually donate resources. This is not a trivial problem. Napster 
provides a good example: users need to connect to Napster only when actually searching for MP3 files; 
otherwise they can remain offline. Furthermore, users are not forced to publicly share files, although 
downloaded files are placed in a public directory by default. 

A fairly recent analysis of Gnutella traffic showed a lot of freeloading. One well-known study[14] found 
that almost 70% of users share no files, and nearly 50% of all responses are returned by the top 1% of 
sharing hosts. 

[14] Eytan Adar and Bernardo A. Huberman, "Free Riding on Gnutella." Xerox Palo Alto Research Center, 
http://www.parc.xerox.com/istl/groups/iea/papers/gnutella. 

Free Haven tackles this problem by attempting to ensure that users donate resources in amounts 
proportional to the resources they use. The system relies on accountability via reputation, which we 
discuss later. Mojo Nation, on the other hand, pays users Mojo - the system's private digital currency - 
for donated resources. Mojo has no meaning outside the system yet, but it can be leveraged for other 
system resources. 

16.3.3.2 Fungible payments for accountability 

Fungible micropayments are not used solely, or even largely, for economic incentives. Instead, they 
act as an accountability measure. Peers can't freeload in the system, as they can earn wealth only by 
making their own resources available (or by purchasing resource tokens via some other means). This 
is a more natural and more effective way to protect a system from flooding than proofs of work. In 
order to tie up resources protected by fungible payments, an adversary needs to donate a proportional 
amount of resources. The attempted denial of service becomes self-defeating. 

If payments can actually be redeemed for real-world currencies, they provide yet another defense 
against resource misuse. It may still be true that powerful organizations (as opposed to a script-kiddie 
downloading DoS scripts from http://rootshell.com/) can afford to pay enough money to flood a 
system. But now the victim can purchase additional physical disk space or bandwidth with the money 
earned. Since the prices of these computer resources drop weekly, the cost of successfully attacking 
the system increases with time. 

Business arrangements, not technology, link digital cash to real-world currencies. Transactions can be 
visualized as foreign currency exchanges, because users need to convert an amount of money to digital 
cash before spending it. The Mark Twain Bank "issued" DigiCash eCash in the U.S. in the mid-1990s, 
joined by other banks in Switzerland, Germany, Austria, Finland, Norway, Australia, and Japan.[15] 
eCash can as easily be used for private currencies lacking real-world counterparts; indeed, Mojo is 
based on eCash technology (although without, in default form, the blinding operations that provide 
anonymity). The digital cash schemes we describe, therefore, can be used for both private and real-
world currencies. 

[15] "DigiCash Loses U.S. Toehold," CNET news article, http://www.canada.cnet.com/news/0-1003-200-
332852.html. 

http://www.parc.xerox.com/istl/groups/iea/papers/gnutella
http://rootshell.com/
http://www.canada.cnet.com/news/0-1003-200-
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16.3.3.3 Micropayment digital cash schemes 

Ronald Rivest and Adi Shamir introduced two simple micropayment schemes, PayWord and 
MicroMint, in 1996.[16] PayWord is a credit-based scheme based on chains of paywords (hash values), 
while MicroMint represents coins by k -way hash function collisions. Both of these schemes follow the 
lightweight philosophy of micropayments: nickels and dimes don't matter. If a user loses a payment or 
is able to forge a few payments, we can ignore such trivialities. The security mechanisms in these 
schemes are not as strong nor expensive as the full macropayment digital cash schemes we will discuss 
later. At a rough estimate, hashing is about 100 times faster than RSA signature verification and about 
10,000 times faster than RSA signature generation. 

[16] R. Rivest and A. Shamir (1997), "PayWord and MicroMint: Two Simple Micropayment Schemes," Lecture 
Notes in Computer Science, vol. 1189, Proc. Security Protocols Workshop, Springer-Verlag, pp. 69-87. 

PayWord is designed for applications in which users engage in many repetitive micropayment 
transactions. Some examples are pay-per-use web sites and pay-per-minute online games or movies. 
PayWord relies on a broker (better known as a "bank" in many digital cash schemes), mainly for 
online verification, but seeks to minimize communication with the broker in order to make the system 
as efficient as possible. 

It works like this. Alice establishes an account with a broker and is issued a digital certificate. When 
she communicates with vendor Bob for the first time each day, she computes and commits to a new 
payword chain w1, w2, ..., wn. This chain is created by choosing some random wn and moving 
backward to calculate each hash wi from the hash wi+1. 

Alice starts her relationship with Bob by offering w0. With each micropayment she moves up the chain 
from w0 toward wn. Just knowing w0, vendor Bob can't compute any paywords and therefore can't 
make false claims to the broker. But Bob can easily verify the ith payment if he knows only wi-1. Bob 
reports to the broker only once at the end of the day, offering the last (highest-indexed) micropayment 
and the corresponding w0 received that day. The broker adjusts accounts accordingly. 

As payword chains are both user- and vendor-specific, the vendor can immediately determine if the 
user attempts to double-spend a payword. Unfortunately, however, PayWord does not provide any 
transaction anonymity. As this is a credit-based system, the broker knows that Alice paid Bob. 

MicroMint takes the different approach of providing less security, but doing so at a very low cost for 
unrelated, low-value payments. Earlier, we described k-bit collisions, in which Alice found a value that 
matched the lowest k bits in Bob's hash. MicroMint coins are represented instead by full collisions: all 
the bits of the hashes have to be identical. A k-way collision is a set of distinct inputs (x1, x2, ..., xk) that 
all map to the same digests. In other words, hash(x1) = hash(x2) = ... = hash(xk). These collisions are 
hard to find, as the hash functions are specifically designed to be collision-free![17] 

[17] Given a hash function with an n-bit output (e.g., for SHA-1, n=160), we must hash approximately 2n(k-1)/k 
random strings in order to find a k-way collision. This follows from the "birthday paradox" as explained in 
Rivest and Shamir, ibid. 

The security in MicroMint rests in an economy of scale: minting individual coins is difficult, yet once 
some threshold of calculations has been performed, coins can be minted with accelerated ease. 
Therefore, the broker can mint coins cost-effectively, while small-scale forgers can produce coins only 
at a cost exceeding their value. 

As in PayWord, the MicroMint broker knows both Alice, to whom the coins are issued, and vendor 
Bob. This system is therefore not anonymous, allowing the broker to catch Alice if she attempts to 
double-spend a coin. 

PayWord and MicroMint are just two representative examples of micropayment schemes. Many 
others exist. The point to notice in both schemes is the extreme ease of verification and the small 
space requirements for each coin. Not only are these schemes fast, but they remain fast even in 
environments with severe resource constraints or at larger amounts of money. 
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Micropayment schemes such as these make it possible to extend peer-to-peer applications beyond the 
desktop and into embedded and mobile environments. Routers can use micropayments to retard 
denial of service attacks with minimal extra computation and then store the proceeds. Music players 
can act as mobile Napster or Gnutella servers, creating ad hoc local networks to exchange music 
stored in their memories (and possibly make money in the process). These possibilities are just 
beginning to be explored. 

16.3.3.4 Making money off others' work 

Proofs of work can be exchanged for other resources in a system, even without a systemwide digital 
cash scheme. The key is to make a POW scheme in which Bob can take a POW submitted by Alice and 
pass it on to Charlie without expending any significant calculation of his own. 

This scheme was introduced by Markus Jakobsson and Ari Juels in 1999 as a bread pudding protocol 
.[18] Bread pudding is a dish that originated with the purpose of reusing stale bread. In a similar spirit, 
this protocol defines a POW that may be reused for a separate, useful, and verifiably correct 
computation. This computation is not restricted to any specific problem, although the authors further 
specify a simple bread pudding protocol for minting MicroMint coins. 

[18] Markus Jakobsson and Ari Juels (1999), "Proofs and Work and Bread Pudding Protocols." In B. Preneel, ed., 
Communications and Multimedia Security. Kluwer Academic Publishers, pp. 258-272. 

In this variant on MicroMint's original minting scheme, the broker no longer has to generate each 
individual payment made by each user. Instead, a single, valid coin can be redistributed by users in 
the system to satisfy each others' POWs. The fundamental idea is to make clients solve partial hash 
collisions, similar to the concept of hash cash. This computation is useful only to the mint, which 
holds some necessary secret. With enough of these POWs, the minter can offload the majority of 
computations necessary to minting a coin. 

Effectively, Bob is asking Alice to compute part of a MicroMint coin, but this partial coin is useful only 
when combined with thousands or millions of other similar computations. Bob collects all of these 
computations and combines them into MicroMint coins. Without requiring systemwide fungible 
digital cash, Bob can reuse others' computation work for computations of value to him (and only to 
him). The scheme is extensible and can potentially be used with many different types of payment 
schemes, not just MicroMint. 

16.3.3.5 Anonymous macropayment digital cash schemes 

Up until now, we have described payments in which the value of each coin or token is fairly small. 
These make forgery difficult because it's useful only if it can be performed on a large scale. Now we 
will move to more complex schemes that allow large sums to be paid in a secure manner in a single 
transaction. These schemes also offer multiparty security and some protection for user privacy. 

The macropayment digital cash schemes we are about to discuss offer stronger security and 
anonymity. However, these protections come at a cost. The computational and size requirements of 
such digital cash are much greater. In cryptographic literature, micropayments are usually considered 
extremely small (such as $0.01) and use very efficient primitives such as hash functions. In contrast, 
macropayment digital cash schemes use public key operations, such as exponentiation, which are 
much slower. The use of techniques from elliptic curve cryptography can alleviate this problem by 
making it possible to securely use much shorter keys. 

Other clever tricks, such as " probabilistic" checking - checking selected payments on the grounds that 
large-scale forgery will be caught eventually - can help macropayment techniques compete with 
micropayment schemes. This is an active research area and a source of continual innovation. 
Macropayment schemes will prove useful when used with the reputation systems discussed later in 
this chapter in Section 16.4, because reputation systems let us make large transactions without 
assuming incommensurate risk. 
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Pioneering work on the theoretical foundations of anonymous digital cash was carried out by David 
Chaum in the early 1980s.[19] Chaum held patents on his electronic cash system, and founded DigiCash 
in 1990 to implement his ideas, but he exclusively licensed his patents to Ecash Technologies in 1999. 

[19] D. Chaum (1983), "Blind Signatures for Untraceable Payments," Advances in Cryptology - Crypto '82, 
Springer-Verlag, pp. 199-203. D. Chaum (1985), "Security Without Identification: Transaction Systems to Make 
Big Brother Obsolete," Communications of the ACM, vol. 28, no. 10, pp. 1030-1044. D. Chaum, A. Fiat, and M. 
Naor (1988), "Untraceable Electronic Cash," Advances in Cryptology - Crypto '88, Lecture Notes in Computer 
Science, no. 403, Springer-Verlag, pp. 319-327. D. Chaum (August 1992), "Achieving Electronic Privacy" 
(invited), Scientific American, pp. 96-101, http://www.chaum.com/articles/Achieving_Electronic_Privacy.htm. 

The electronic cash system he developed is based on an extension of digital signatures, called blind 
signatures. A digital signature uses a PKI to authenticate that a particular message was sent by a 
particular person. (See Chapter 15 for a greater description of signatures and PKI.) A blind signature 
scheme allows a person to get a message signed by another party, while not revealing the message 
contents to that party or allowing the party to recognize the message later. 

In digital cash, Alice creates some number called a proto-coin and "blinds" it by multiplying by a 
secret random number. She sends this blinded proto-coin to the bank, which cannot link it with the 
original proto-coin. The bank checks that she has a positive balance and signs the proto-coin with the 
assurance that "this is a valid coin," using a private key specific to the particular amount of money in 
the coin. The bank returns this to Alice and subtracts the corresponding amount from Alice's bank 
account. Alice then divides out the random number multiplier and finds herself with a properly 
minted coin, carrying a valid signature from the bank. This is just one way to do digital cash, but it will 
suffice for this discussion. 

In real life, the digital cash transaction would be like Alice slipping a piece of paper into a carbon-lined 
envelope, representing the blinded proto-coin. The bank just writes its signature across the envelope, 
which imprints a carbon signature onto the inside paper. Alice removes the paper and is left with a 
valid coin. 

Alice can then spend this coin with Bob. Before accepting it, Bob needs to check with the issuing bank 
that the coin hasn't already been spent, a process of online verification. Afterwards, Bob can deposit 
the coin with the bank, which has no record of to whom that coin was issued. It saw only the blinded 
proto-coin, not the underlying "serial" number. 

This digital cash system is both anonymous and untraceable. Its disadvantage, however, is that coins 
need to be verified online during the transaction to prevent double-spending. This slows down each 
transaction. 

Stefan Brands proposed an alternative digital cash scheme in 1993.[20] It forms the core of a system 
implemented and tested by CAFE, a European project with both academic and commercial members. 
His patents are currently held by the Montreal-based privacy company Zero-Knowledge Systems, Inc. 

[20] Stefan Brands (1993), "Untraceable Off-Line Cash in Wallet with Observers," Advances in Cryptology - 
Crypto '93, Lecture Notes in Computer Science, no. 773, Springer-Verlag, pp. 302-318. Stefan Brands (2000), 
Rethinking Public Key Infrastructures and Digital Certificates: Building in Privacy. MIT Press. Stefan Brands, 
online book chapter from Rethinking Public Key Infrastructures and Digital Certificates: Building in Privacy, 
http://www.xs4all.nl/~brands/cash.html. 

Brands's digital cash scheme allows offline checking of double-spending for fraud tracing, with 
obvious performance benefits compared to online verification. It is also well suited for incorporation 
into smart cards, and the underlying technology provides an entire framework for privacy-protecting 
credential systems. 

Brands's scheme uses a restrictive blind signature protocol rather than a normal blind signature 
protocol as proposed by Chaum. In the digital cash context, this certificate is a valid coin, represented 
as three values - secret key, public key, and digital signature - certified by the bank. A key aspect of 
this protocol is that the bank knows - and encodes attributes into - part of Alice's secret key, but it has 
no idea what the corresponding public key and certificate look like (except that they are consistent 
with the known part of the secret key). At the end of the issuing protocol, Alice uses techniques 
somewhat similar to Chaum's protocol to generate a valid coin. 

http://www.chaum.com/articles/Achieving_Electronic_Privacy.htm
http://www.xs4all.nl/~brands/cash.html
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Payment is very different in Brands's system. Alice's coin contains her secret key, so she doesn't 
actually give her coin to the vendor Bob. Instead, she proves to Bob that she is the proper holder of 
that coin (that is, that she knows the secret key associated with the public key), without actually 
disclosing its contents. This type of payment, a signed proof of knowledge transcript, is a fundamental 
shift from Chaum's e-cash model, in which the coin is merely an "immutable" bit string. 

Privacy is maintained together with honesty by Brands's system in a very clever manner. If Alice only 
spends the coin once, the bank can gain no information as to her identity. After all, during the issuing 
protocol, the bank saw only part of Alice's secret key, not the public key used to verify Alice's payment 
transcript signature. Nor did the bank see its own signature on that public key. Yet if Alice double-
spends the coin, the bank can use it to extract her identity! 

We won't provide the math necessary to understand the security in this system, but you can 
understand why it works by comparing it to a Cartesian x-y plane. The first random number challenge 
used during payment provides one point (x0,y0) on this plane. An infinite number of lines can pass 
through this one point. If Alice uses the same coin to pay Charlie, a different random number is used. 
Now we know a second (x1,y1) point, and two points uniquely define a line. In the same way, Alice's 
identity will be exposed if she spends the coin twice. 

Brands's scheme - useful for both digital cash and credentials - can be used to encode other useful 
information, such as negotiable attributes exposed during payment or high-value secrets that can 
prevent lending. A "high-value secret" refers to the same strategy we discussed when trying to prevent 
people from sharing their accounts - if a certificate to do X includes the user's credit card number, the 
user will be less willing to loan the certificate to others. 

The "negotiable attributes" are an extension of a powerful idea - that of "credentials without identity." 
If you have a credential without identity, you have a way of proving that you belong to a certain class 
of people without actually having to prove anything about who you are. For example, you may have a 
credential which certifies that you are over 21 but doesn't include your name. The entity that 
authorized your age wouldn't want you to be able to lend this certificate to someone else. Therefore, 
we utilize these high-value secrets: the user needs to know the secret in order to use the over-21 
certificate. Brands's scheme takes this farther and allows you to selectively reveal or hide various 
certifications on the fly, thereby allowing you to negotiate your degree of privacy. 

One final note: whether a peer-to-peer system uses micropayments or macropayments, system 
designers must consider the possibility that these can be DoS targets in themselves. Perhaps an 
attacker can flood a system with cheaply minted counterfeit coins, eating up computational resources 
through verification-checking alone. The extent of this problem depends largely on the computational 
complexity of coin verification. Many of the systems we describe - hash cash, client puzzles, 
MicroMint, PayWord - can very quickly verify coins with only a single or a few hash operations. Public 
key operations, such as modular exponentiation, can be significantly more expensive. Again, digital 
cash schemes are an active area of cryptographic research; before specifying a scheme it is worth 
checking out the proceedings of the Financial Cryptography, CRYPTO, and EUROCRYPT conferences. 

16.3.4 The use and effectiveness of micropayments in peer-to-peer 
systems 

So far, we have spent quite a bit of time describing various micropayment and digital cash schemes. 
Our discussion is not meant as exhaustive, yet it provides some examples of various cryptographic 
primitives and technologies used for electronic cash: public key encryption, hash functions, digital 
signatures, certificates, blinding functions, proofs of knowledge, and different one-way and trap door 
problems based on complexity theory. The list reads like a cryptographic cookbook. Indeed, the 
theoretical foundations of digital cash - and the design of systems - have been actively researched and 
developed over the past two decades. 

Only in the past few years, however, have we begun to see the real-world application of 
micropayments and digital cash, spurred by the growth of the Internet into a ubiquitous platform for 
connectivity, collaboration, and even commerce. Electronic cash surely has a place in future society. 
But its place is not yet secured. We are not going to try to predict either how fast or how widespread its 
adoption will be; that depends on too many economic, social, and institutional factors. 
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Instead, we'll focus on how micropayments might be useful for peer-to-peer systems: what issues the 
developers of peer-to-peer systems need to consider, when certain digital cash technologies are better 
than others, how to tell whether the micropayments are working, and how to achieve stronger or 
weaker protections as needed. 

16.3.4.1 Identity-based payment policies 

When designing a policy for accepting micropayments, a peer-to-peer system might wish to charge a 
varying amount to peers based on identity. For instance, a particular peer might charge less to local 
users, specified friends, users from academic or noncommercial subnets, or users within specified 
jurisdictional areas. 

Such policies, of course, depend on being able to securely identify peers in the system. This can be 
hard to do both on the Internet as a whole (where domain names and IP addresses are routinely 
spoofed) and, in particular, on systems that allow anonymity or pseudonymity. Chapter 15 discusses 
this issue from several general angles, and Chapter 12 discusses how we try to solve the problem in 
one particular pseudonymous system, Free Haven. Many other systems, like ICQ and other instant 
messaging services, use their own naming schemes and ensure some security through passwords and 
central servers. Finally, systems with many far-flung peers need a reputation system to give some 
assurance that peers won't abuse their privileges. 

16.3.4.2 General considerations in an economic analysis of micropayment design 

Designers choosing a micropayment scheme for a peer-to-peer system should not consider merely the 
technical and implementation issues of different micropayment schemes, but also the overall 
economic impact of the entire system. Different micropayment schemes have different economic 
implications. 

A classic economic analysis of bridge tolls serves as a good analogy for a peer-to-peer system. In 1842, 
the French engineer Jules Dupuit reached a major breakthrough in economic theory by arguing the 
following: the economically efficient toll on an uncongested bridge is zero, because the extra cost from 
one more person crossing the bridge is zero. Although bridge building and maintenance is not free - it 
costs some money to the owner - it is socially inefficient to extract this money through a toll. Society as 
a whole is worse off because some people choose not to cross due to this toll, even though their 
crossing would cost the owner nothing, and they would not interfere with anyone else's crossing 
(because the bridge is uncongested). Therefore, everyone should be allowed to cross the bridge for 
free, and the society should compensate the bridge builder through a lump-sum payment.[21] 

[21] Arsene Jules Etienne Dupuit (1842), "On Tolls and Transport Charges," Annales des Ponts et Chaussees, 
trans. 1962, IEP. 

This bridge example serves as a good analogy to a peer-to-peer system with micropayments. Tolls 
should be extracted only in order to limit congestion and to regulate access to people who value 
crossing the most. Given the same economic argument, resource allocation to limit congestion is the 
only justifiable reason for micropayments in a peer-to-peer system. Indeed, excessive micropayments 
can dissuade users from using the system, with negative consequences (known as " social 
inefficiencies") for the whole society. Users might not access certain content, engage in e-commerce, 
or anonymously publish information that exposes nefarious corporate behavior. 

This analysis highlights the ability of micropayments to prevent attacks and adds the implied ability to 
manage congestion. Congestion management is a large research area in networking. Micropayments 
can play a useful role in peer-to-peer systems by helping peers prioritize their use of network 
bandwidth or access to storage space. Users who really want access will pay accordingly. Of course, 
such a system favors wealthy users, so it should be balanced against the goal of providing a system 
with the broadest social benefits. Reputation can also play a role in prioritizing resource allocation. 

Most economic research relevant for micropayments has focused on owner-side strategies for 
maximizing profit. AT&T researchers compared flat-fee versus pay-per-use fee methods where the 
owner is a monopolist and concluded that more revenues are generated with a flat-fee model.  
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Similar research at MIT and NYU independently concluded that content bundling and fixed fees can 
generate greater profits per good.[22] 

[22] P. C. Fishburn and A. M. Odlyzko (1999), "Competitive Pricing of Information Goods: Subscription Pricing 
Versus Pay-Per-Use," Economic Theory, vol. 13, pp. 447-470, 
http://www.research.att.com/~amo/doc/competitive.pricing.ps. Y. Bakos and E. Brynjolfsson (December 
1999), "Bundling Information Goods: Pricing, Profits, and Efficiency," Management Science, 
http://www.stern.nyu.edu/~bakos/big.pdf. 

We try to take a broader view. We have to consider the well-being of all economic agents participating 
in and affected by the system. Three general groups come to mind in the case of a peer-to-peer system: 
The owner of the system, the participants, and the rest of society. 

How does a micropayment scheme impact these three agents? Participants face direct benefits and 
costs. The owner can collect fees or commissions to cover the fixed cost of designing the system and 
the variable costs of its operation. The rest of society can benefit indirectly by synergies made possible 
by the system, knowledge spillovers, alternative common resources that it frees up, and so on. 

To simplify our discussion, we assume that whatever benefits participants also benefits society. 
Furthermore, we can realistically assume a competitive market, so that the owner is probably best off 
serving the participants as well as possible. Therefore, we focus on the cost/benefit analysis for the 
participant. 

We believe that a focus on costs and benefits to participants is more suited to the peer-to-peer market 
than the literature on information services, for several reasons. First, peer-to-peer system owners do 
not enjoy the luxury of dictating exchange terms, thanks to competition. Second, nonfungible 
micropayments do not generate revenues for the owner; it is not always worthwhile to even consider 
the benefit to the owner. Third, we expect that a large amount of resources in peer-to-peer systems 
will be donated by users: people donate otherwise unused CPU cycles to SETI@home calculations, 
unused bandwidth to forward Mixmaster anonymous email, and unused storage for Free Haven data 
shares. For these situations, the sole role of micropayments is to achieve optimal resource allocation 
among participants. In other words, micropayments in a peer-to-peer system should be used only to 
prevent congestion, where this concept covers both bandwidth and storage limitations. 

16.3.4.3 Moderating security levels: An accountability slider 

Poor protection of resources can hinder the use of a peer-to-peer system on one side; attempts to 
guard resources by imposing prohibitive costs can harm it on the other. Providing a widely used, 
highly available, stable peer-to-peer system requires a balance. 

If a peer-to-peer system wishes only to prevent query-flooding (bandwidth) attacks, the congestion 
management approach taken by client puzzles - and usable with any form of micropayment - answers 
the problem. Query-flooding attacks are transient; once the adversary stops actively attacking the 
system, the bandwidth is readily available to others. 

As we have suggested, other forms of congestion are cumulative, such as those related to storage 
space. Free Haven seeks "document permanence," whereby peers promise to store data for a given 
time period (although the Free Haven trading protocol seeks to keep this system dynamic, as 
discussed in Chapter 12). If we wait until the system is already full before charging micropayments, 
we've already lost our chance to adequately protect against congestion. 

This is the freeloading problem: we wish to prevent parasitic users from congesting the system 
without offering something of value in return. Furthermore, an adversary can attempt to flood the 
system early to fill up all available space. Therefore, for systems in which resource pressures accrue 
cumulatively, micropayments should always be required. Free Haven's answer is to require that peers 
offer storage space proportional to that which they take up. (Even though cash-based micropayments 
are not used, the idea of payment by equivalent resources is similar.) 

http://www.research.att.com/~amo/doc/competitive.pricing.ps
http://www.stern.nyu.edu/~bakos/big.pdf
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The alternative to this design is the caching approach taken by systems such as Freenet. Old data is 
dropped as newer and more "popular" data arrives. This approach does not remove the resource 
allocation problem, however; it only changes the issue. First, flooding the system can flush desirable 
data from nearby caches as well. System designers simply try to ensure that flooding will not congest 
the resources of more distant peers. Second, freeloading is not as much of a concern, because peers 
are not responsible for offering best-effort availability to documents. However, if many peers rely on a 
few peers to store data, only the most popular data remains. Social inefficiencies develop if the system 
loses data that could be desired in the long run because short-term storage is insufficient to handle the 
requirements of freeloading peers. Furthermore, disk space is only one of several resources to 
consider. Massive freeloading can also affect scalability through network congestion. 

Always charging for resources can prevent both freeloading and attacks. On the other hand, excessive 
charges are disadvantageous in their own right. So it would be useful to find a balance. 

Consider an accountability slider: Peers negotiate how much payment is required for a resource 
within a general model specified by the overall peer-to-peer system. Using only a micropayment 
model, systems like Free Haven or Publius may not have much leeway. Others, like Freenet, Gnutella, 
or Jabber, have notably more. When we later add the concept of reputation, this accounting process 
becomes even more flexible. 

Each of the micropayment schemes described earlier in this chapter can be adapted to provide a 
sliding scale: 

Hash cash  

Partial hashes can be made arbitrarily expensive to compute by choosing the desired number 
of bits of collision, denoted by k. No matter how big k gets, systems providing the resources 
can verify the requests almost instantly. 

Client puzzles  

The work factor of these puzzles is also based on the number of bit collisions. The number of 
subpuzzles can also be increased to limit the possibility of random guessing being successful; 
this is especially important when k becomes smaller. 

Time puzzles  

The LCS35 time-lock includes a parameter t that sets the difficulty of the puzzle. 

MicroMint  

The "cost" of a coin is determined by its number of colliding hash values. The greater the k-
way collision, the harder the coin is to generate. 

PayWord  

In the simplest adaptation, a commitment within PayWord can be a promise of varying 
amount. However, PayWord is designed for iterative payments. To be able to use the same 
PayWord chain for successive transactions, we want to always pay with coins of the same 
value. Therefore, to handle variable costs, we can just send several paywords for one 
transaction. The very lightweight cost of creating and verifying paywords (a single hash per 
payword) also makes this multiple-coin approach suitable for macropayment schemes. 

Anonymous digital cash  

Coins can have different denominations. In Chaum's design, the bank uses a different public 
key to sign the coin for different denominations. In Brands's model, the denomination of the 
coin is encoded within the coin's attributes; the bank's public key is unique to currency, not 
denomination. Brands's digital cash system also allows negotiable attributes to be revealed or 
kept secret during payment. This additional information can play a role in setting the 
accountability slider. 

By negotiating these various values, we can change the level of accountability and security offered by a 
peer-to-peer system. Based on overall system requirements, this process can be fixed by the system 
designers, changed by the administrators of individual peer machines, or even fluctuate between 
acceptable levels at runtime! 
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While payment schemes can be used in a variety of peer-to-peer situations - ranging from systems in 
which peers are fully identified to systems in which peers are fully anonymous - they do involve some 
risk. Whenever Alice makes an electronic payment, she accepts some risk that Bob will not fulfill his 
bargain. When identities are known, we can rely on existing legal or social mechanisms. In fully 
anonymous systems, no such guarantee is made, so Alice attempts to minimize her risk at any given 
time by making small, incremental micropayments. However, there is another possibility for 
pseudonymous systems, or identified systems for which legal mechanisms should only be used as a 
last resort: reputation schemes. In this next section, we consider the problem of reputation in greater 
depth. 

16.4 Reputations 

While micropayments provide an excellent mechanism for anonymous exchange, a number of systems 
call for more long-term pseudonymous or even public relationships. For instance, in the case of 
transactions in which one party promises a service over a long period of time (such as storing a 
document for three years), a simple one-time payment generally makes one party in the transaction 
vulnerable to being cheated. A whistleblower or political dissident who publishes a document may not 
wish to monitor the availability of this document and make a number of incremental micropayments 
over the course of several years, since this requires periodic network access and since continued 
micropayments might compromise anonymity. (While third-party escrow monitoring services or 
third-party document sponsors might help to solve this issue, they introduce their own problems.) In 
addition, some systems might want to base decisions on the observed behavior of entities - how well 
they actually perform - rather than simply how many resources they can provide. 

In the real world, we make use of information about users to help distribute resources and avoid poor 
results. Back before the days of ubiquitous communication and fast travel, doing business over long 
distances was a major problem. Massive amounts of risk were involved in, say, sending a ship from 
Europe to Asia for trade. Reputations helped make this risk bearable; large banks could issue letters of 
credit that could draw on the bank's good name both in Europe and Asia, and they could insure 
expeditions against loss. As the bank successfully helped expeditions finance their voyages, the bank's 
reputation grew, and its power along with it. Today's business relationships still follow the same path: 
two parties make a decision to trust each other based on the reputations involved. 

While the online world is different from the brick-and-mortar world, it too has benefited from 
reputations - and can continue to benefit. 

The main difference between reputation-based trust systems and micropayment-based trust systems 
is that, in reputation-based trust systems, parties base their decisions in part on information provided 
by third parties. Peers are motivated to remain honest by fear that news of misdealings will reach yet 
other third parties. 

Reputation systems are not useful in all situations. For instance, if there were thousands of buyers and 
one or two vendors, being able to track vendor performance and reliability would not help buyers pick 
a good vendor. On the other hand, tracking performance might provide feedback to the vendor itself 
on areas in which it might need improvement. This in turn could result in better performance down 
the road, but only if the vendor acted on this feedback. 

Similarly, in fields in which a given buyer generally doesn't perform transactions frequently, the 
benefits of a reputation system are more subtle. A buyer might benefit from a real estate reputation 
system, since she expects to rent from different people over time. Even for a domain in which she 
expects to do just one transaction over her whole lifetime (such as laser eye surgery), she would 
probably contribute to a reputation site - first out of altruism, and second in order to give the surgeon 
an incentive to do well. 

This is the tragedy of the commons in reverse: when the cost of contributing to a system is low 
enough, people will contribute to it for reasons not immediately beneficial to themselves. 

Chapter 17, describes some of the practical uses for a reputation system and the difficulties of 
developing such a system. That chapter focuses on the solution found at Reputation Technologies, Inc. 
In this chapter we'll give some background on reputation and issues to consider when developing a 
reputation system. 
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16.4.1 Early reputation systems online 

The online world carries over many kinds of reputation from the real world. The name "Dennis 
Ritchie" is still recognizable, whether listed in a phone book or in a posting to comp.theory. Of course, 
there is a problem online - how can you be sure that the person posting to comp.theory is the Dennis 
Ritchie? And what happens when "Night Avenger" turns out to be Brian Kernighan posting under a 
pseudonym? These problems of identity - covered earlier in this chapter - complicate the ways we 
think about reputations, because some of our old assumptions no longer hold. 

In addition, new ways of developing reputations evolve online. In the bulletin board systems of the 
1980s and early 1990s, one of the more important pieces of data about a particular user was her 
upload/download ratio. Users with particularly low ratios were derided as "leeches," because they 
consumed scarce system resources (remember, when one user was on via a phone line, no one else 
could log in) without giving anything in return. As we will see, making use of this data in an 
automated fashion is a promising strategy for providing accountability in peer-to-peer systems. 

16.4.1.1 Codifying reputation on a wide scale: The PGP web of trust 

Human beings reason about reputations all the time. A large-scale peer-to-peer application, however, 
cannot depend on human judgments for more than a negligible portion of its decisions if it has any 
hope of scalability. Therefore, the next step in using reputations is to make their development and 
consequences automatic. 

We've already mentioned the value of knowing upload/download ratios in bulletin board systems. In 
many systems, gathering this data was automatic. In some cases, the consequences were automatic as 
well: drop below a certain level and your downloading privileges would be restricted or cut off entirely. 
Unfortunately, these statistics did not carry over from one BBS to another - certainly not in any 
organized way - so they provided for reputations only on a microscopic scale. 

One of the first applications to handle reputations in an automated fashion on a genuinely large scale 
was the " web of trust" system introduced in Phil Zimmermann's Pretty Good Privacy (PGP). This was 
the first program to bring public key cryptography to the masses. In public key cryptography, there are 
two keys per user. One is public and can be used only to encrypt messages. The other key is private 
and can be used only to decrypt messages. A user publishes his public key and keeps the private key 
safe. Then others can use the public key to send him messages that only he can read. 

With public key cryptography comes the key certification problem, a type of reputation issue. 
Reputations are necessary because there is no way to tell from the key alone which public key belongs 
to which person. 

For example, suppose Alice would like people to be able to send encrypted messages to her. She 
creates a key and posts it with the name "Alice." Unbeknownst to her, Carol has also made up a key 
with the name "Alice" and posted it in the same place. When Bob wants to send a message to Alice, 
which key does he choose? This happens in real life; as an extreme example, the name "Bill Gates" is 
currently associated with dozens of different PGP keys available from popular PGP key servers. 

So the key certification problem in PGP (and other public key services) consists of verifying that a 
particular public key really does belong to the entity to whom it "should" belong. PGP uses a system 
called a web of trust to combat this problem. Alice's key may have one or more certifications that say 
"Such and such person believes that this key belongs to Alice." These certifications exist because Alice 
knows these people personally; they have established to their satisfaction that Alice really does own 
this key. Carol's fake "Alice" key has no such certifications, because it was made up on the spot. 

When Bob looks at the key, his copy of PGP will assign it a trust level based on how many of the 
certifications are made by people he knows. The higher the trust level, the more confidence Bob can 
have in using the key. 

A perennial question about the web of trust, however, is whether or not it scales. Small groups of 
people can create a web of trust easily, especially if they can meet each other in person. What happens 
when we try to make the web of trust work for, say, a consumer and a merchant who have never met 
before? The conventional wisdom is that the web of trust does not scale. After all, there is a limit to 
how many people Alice and Bob can know. 
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The most frequently cited alternative to the web of trust is a so-called Public Key Infrastructure. Some 
trusted root party issues certificates for keys in the system, some of which go to parties that can issue 
certificates in turn. The result is to create a certification tree. An example is the certificate system used 
for SSL web browsers; here VeriSign is one of the trusted root certificate authorities responsible for 
ensuring that every public key belongs to the "right" entity. A hierarchical system has its own 
problems (not least the fact that compromise of the root key, as may recently have happened to Sun 
Microsystems,[23] is catastrophic), but at least it scales, right? 

[23] Sun Security Bulletin 198, "Revocation of Sun Microsystems Browser Certificates," "How to Detect or Remove 
the Invalid Certificate," http://sunsolve5.sun.com/secbull/certificate_howto.html. Computer Emergency 
Response Team Bulletin CA-2000-19, http://www.cert.org/advisories/CA-2000-19.html. 

As it turns out, the web of trust may not be as unworkable as conventional wisdom suggests. A study 
of publicly available PGP keys in 1997 showed that on average, only six certificates linked one key to 
another.[24] This "six degrees of separation" or " small-world" effect (also discussed in Chapter 14) 
means that for a merchant and a user who are both good web of trust citizens - meaning that they 
certify others' keys and are in turn certified - the odds are good that they will have reason to trust each 
others' keys. In current practice, however, most commercial sites elect to go with VeriSign. The one 
major commercial exception is Thawte's Freemail Web of Trust system.[25] 

[24] Neal McBurnett, "PGP Web of Trust Statistics," http://bcn.boulder.co.us/~neal/pgpstat. 

[25] Thawte, "Personal Certificates for Web and Mail: The Web of Trust," 
http://www.thawte.com/certs/personal/wot/about.html. 

A more serious problem with PGP's implementation of the web of trust, however, comes with key 
revocation. How do you tell everyone that your key is no longer valid? How do you tell everyone that 
your certificate on a key should be changed? For that matter, what exactly did Bob mean when he 
certified Charlie's key, and does Charlie mean the same thing when he certifies David's key? 

A more sophisticated - but still distributed - approach to trust management that tries to settle these 
questions is the Rivest and Lampson Simple Distributed Security Infrastructure/Simple Public Key 
Infrastructure (SDSI/SPKI). A thorough comparison of this with PGP's web of trust and PKI systems 
is given by Yang, Brown, and Newmarch.[26] 

[26] Yinan Yang, Lawrie Brown, and Jan Newmarch, "Issues of Trust in Digital Signature Certificates," 
http://www.cs.adfa.oz.au/~yany97/auug98.html. 

All of this brings up many issues of trust and public key semantics, about which we refer to Khare and 
Rifkin.[27] The point we're interested in here is the way in which the web of trust depends on reputation 
to extend trust to new parties. 

[27] Rohit Khare and Adam Rifkin, "Weaving a Web of Trust," 
http://www.cs.caltech.edu/~adam/papers/trust.html. 

16.4.1.2 Who will moderate the moderators: Slashdot 

The news site Slashdot.org is a very popular news service that attracts a particular kind of " Slashdot 
reader" - lots of them. Each and every Slashdot reader is capable of posting comments on Slashdot 
news stories, and sometimes it seems like each and every one actually does. Reputations based on this 
interaction can help a user figure out which of the many comments are worth reading. 

To help readers wade through the resulting mass of comments, Slashdot has a moderation system for 
postings. Certain users of the system are picked to become moderators. Moderators can assign scores 
to postings and posters. These scores are then aggregated and can be used to tweak a user's view of the 
posts depending on a user's preferences. For example, a user can request to see no posts rated lower 
than 2. 

The Slashdot moderation system is one existing example of a partially automated reputation system. 
Ratings are entered by hand, using trusted human moderators, but then these ratings are collected, 
aggregated, and displayed in an automatic fashion. 

Although moderation on Slashdot serves the needs of many of its readers, there are many complaints 
that a posting was rated too high or too low. It is probably the best that can be done without trying to 
maintain reputations for moderators themselves. 

http://sunsolve5.sun.com/secbull/certificate_howto.html
http://www.cert.org/advisories/CA-2000-19.html
http://bcn.boulder.co.us/~neal/pgpstat
http://www.thawte.com/certs/personal/wot/about.html
http://www.cs.adfa.oz.au/~yany97/auug98.html
http://www.cs.caltech.edu/~adam/papers/trust.html
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16.4.1.3 Reputations worth real money: eBay 

The eBay feedback system is another example of a reputation service in practice. Because buyers and 
sellers on eBay usually have never met each other, neither has much reason to believe that the other 
will follow through on their part of the deal. They need to decide whether or not to trust each other. 

To help them make the decision, eBay collects feedback about each eBay participant in the form of 
ratings and comments. After a trade, eBay users are encouraged to post feedback about the trade and 
rate their trading partner. Good trades, in which the buyer and seller promptly exchange money for 
item, yield good feedback for both parties. Bad trades, in which one party fails to come through, yield 
bad feedback which goes into the eBay record. All this feedback can be seen by someone considering a 
trade. 

The idea is that such information will lead to more good trades and fewer bad trades - which translates 
directly into more and better business for eBay. As we will see, this isn't always the case in practice. It 
is the case often enough, however, to give eBay a reputation of its own as the preeminent web auction 
site. 

16.4.1.4 A reputation system that resists pseudospoofing: Advogato 

Another example of reputations at work is the "trust metric" implemented at 
http://www.advogato.org/, which is a portal for open source development work. The reputation 
system is aimed at answering the fundamental question, "How much can you trust code from person 
X?" This question is critical for people working on open source projects, who may have limited time to 
audit contributed code. In addition, in an open source project, attempts by one contributor to fix the 
perceived "mistakes" of another contributor may lead to flame wars that destroy projects. As of this 
writing, the open source development site http://www.sourceforge.net/ (host to Freenet) is 
considering using a similar reputation system. 

The stakes at Advogato are higher than they are at Slashdot. If the Slashdot moderation system fails, a 
user sees stupid posts or misses something important. If the Advogato trust metric incorrectly certifies 
a potential volunteer as competent when he or she is not, a software project may fail. At least, this 
would be the case if people depended on the trust metric to find and contact free software volunteers. 
In practice, Advogato's trust metric is used mostly for the same application as Slashdot's: screening 
out stupid posts. 

The method of determining trust at Advogato also contains features that distinguish it from a simple 
rating system like Slashdot moderation. In particular, the Advogato trust metric resists a scenario in 
which many people join the system with the express purpose of boosting each others' reputation 
scores.[28] 

[28] Raph Levien, "Advogato's Trust Metric," http://www.advogato.org/trust-metric.html. 

Advogato considers trust relationships as a directed flow graph. That is, trust relationships are 
represented by a collection of nodes, edges, and weights. The system is illustrated in Figure 16.1 (we 
omit weights for simplicity). The nodes are the people involved. An edge exists between A and B if A 
trusts B. The weight is a measure of how much A trusts B. 

What we are interested in, however, is not just how much A trusts B, but how much B is trusted in 
general. So Advogato measures how much trust "flows to" B, by designating a few special trusted 
accounts as a source and by designating B as a sink. It then defines a flow of trust from the source to B 
as a path from the source to B. Advogato assigns numbers to edges on the path that are less than or 
equal to the edge weights. The edge weights act as constraints on how much trust can be "pushed" 
between two points on the flow path. Finally, the trust value of B is defined as the maximum amount 
of trust that can be pushed from the source to B - the maximum flow. 

 

http://www.advogato.org/
http://www.sourceforge.net/
http://www.advogato.org/trust-metric.html
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Figure 16.1. Users and trust relationships in Advogato 

 
 
Calculating flows through networks is a classic problem in computer science. Advogato uses this 
history in two ways. First, the Ford-Fulkerson algorithm lets the system easily find the maximum flow, 
so B's trust value can always be computed.[29] Second, a result called the " maxflow-mincut theorem" 
shows that the Advogato system resists the pseudospoofing attacks described earlier, in Section 
16.1.5.1. Even if one entity joins under many different assumed names, none of these names will gain 
very much more trust than if each had joined alone. 

[29] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest, Introduction to Algorithms (MIT Press and 
McGraw-Hill, Cambridge, MA, 1990). 

Pseudospoofing is resisted because each of the new names, at least at first, is connected only to itself 
in the graph. No one else has any reason whatsoever to trust it. Therefore, there is no trust flow from 
the source to any of the pseudospoofing nodes, and none of them are trusted at all. Even after the 
pseudospoofing nodes begin to form connections with the rest of the graph, there will still be " trust 
bottlenecks" that limit the amount of trust arriving at any of the pseudospoofing nodes. 

This property is actually quite remarkable. No matter how many fake names an adversary uses, it is 
unable to boost its trust rating very much. The downside is that nodes "close" to the source must be 
careful to trust wisely. In addition, it may not be readily apparent what kinds of weights constitute 
high trust without knowing what the entire graph looks like. 

16.4.1.5 System successes and failures 

Reputation in the brick-and-mortar world seems to work quite well; spectacular failures, such as the 
destruction of Barings Bank by the actions of a rogue trader, are exceptions rather than the rule. 
Which reputation-based systems have worked online, and how well have they worked? 

The Slashdot and Advogato moderation systems seem to work. While it is difficult to quantify what 
"working" means, there have been no spectacular failures so far. On the other hand, the eBay fraud of 
mid-2000[30] shows some of the problems with reputation systems used naively. 

[30] "eBay, Authorities Probe Fraud Allegations," CNET news article, http://www.canada.cnet.com/news/0-
1007-200-1592233.html. 

In the eBay case, a group of people engaged in auctions and behaved well. As a result, their trust 
ratings went up. Once their trust ratings were sufficiently high to engage in high-value deals, the 
group suddenly "turned evil and cashed out." That is, they used their reputations to start auctions for 
high-priced items, received payment for those items, and then disappeared, leaving dozens of eBay 
users holding the bag. 

As for PGP's web of trust, it has been overtaken by hierarchical PKIs, like those offered by VeriSign, as 
a widespread means of certifying public keys. In this case, peer-to-peer did not automatically translate 
into success. 

http://www.canada.cnet.com/news/0-
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16.4.2 Scoring systems 

Reputation systems depend on scores to provide some meaning to the ratings as a whole. As shown in 
Chapter 17, scores can be very simple or involve multiple scales and complicated calculations. 

In a reputation system for vendors, buyers might give ratings - that is, numbers that reflect their 
satisfaction with a given transaction - for a variety of different dimensions for each vendor. For 
instance, a given vendor might have good performance in terms of response time or customer service, 
but the vendor's geographic location might be inconvenient. Buyers provide feedback on a number of 
these rating dimensions at once, to provide a comprehensive view of the entity. The job of the 
reputation system is to aggregate these ratings into one or more published scores that are meaningful 
and useful to participants in the system. A good scoring system will possess many of the following 
qualities: 

Accurate for long-term performance  

The system reflects the confidence (the likelihood of accuracy) of a given score. It can also 
distinguish between a new entity of unknown quality and an entity with bad long-term 
performance. 

Weighted toward current behavior  

The system recognizes and reflects recent trends in entity performance. For instance, an entity 
that has behaved well for a long time but suddenly goes downhill is quickly recognized and no 
longer trusted. 

Efficient  

It is convenient if the system can recalculate a score quickly. Calculations that can be 
performed incrementally are important. 

Robust against attacks  

The system should resist attempts of any entity or entities to influence scores other than by 
being more honest or having higher quality. 

Amenable to statistical evaluation  

It should be easy to find outliers and other factors that can make the system rate scores 
differently. 

Private  

No one should be able to learn how a given rater rated an entity except the rater himself. 

Smooth  

Adding any single rating or small number of ratings doesn't jar the score much. 

Understandable  

It should be easy to explain to people who use these scores what they mean - not only so they 
know how the system works, but so they can evaluate for themselves what each score implies. 

Verifiable  

A score under dispute can be supported with data. 

Note that a number of these requirements seem to be contradictory. We will explore the benefits and 
trade-offs from each of them over the course of the rest of this section. 

16.4.2.1 Attacks and adversaries 

Two questions determine how we evaluate the security of reputation systems. First, what information 
needs to be protected? Second, who are the adversaries? 

The capabilities of potential adversaries and the extent to which they can damage or influence the 
system dictate how much energy should be spent on security. For instance, in the case of Free Haven, 
if political dissidents actually began using the system to publish their reports and information, 
government intelligence organizations might be sufficiently motivated to spend millions of dollars to 
track the documents to their sources. 
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Similarly, if a corporation planning a $50 million transaction bases its decisions on a reputation score 
that Reputation Technologies, Inc., provides, it could be worth many millions of dollars to influence 
the system so that a particular company is chosen. Indeed, there are quite a few potential adversaries 
in the case of Reputation Technologies, Inc. A dishonest vendor might want to forge or use bribes to 
create good feedback to raise his resulting reputation. In addition to wanting good reputations, 
vendors might like their competitors' reputations to appear low. Exchanges - online marketplaces that 
try to bring together vendors to make transactions more convenient - would like their vendors' 
reputations to appear higher than those of vendors that do business on other exchanges. Vendors with 
low reputations - or those with an interest in people being kept in the dark - would like reputations to 
appear unusably random. Dishonest users might like the reputations of the vendors that they use to be 
inaccurate, so that their competitors will have inaccurate information. 

Perhaps the simplest attack that can be made against a scoring system is called shilling . This term is 
often used to refer to submitting fake bids in an auction, but it can be considered in a broader context 
of submitting fake or misleading ratings. In particular, a person might submit positive ratings for one 
of her friends ( positive shilling) or negative ratings for her competition ( negative shilling). Either of 
these ideas introduces more subtle attacks, such as negatively rating a friend or positively rating a 
competitor to try to trick others into believing that competitors are trying to cheat. 

Shilling is a very straightforward attack, but many systems are vulnerable to it. A very simple example 
is the AOL Instant Messenger system. You can click to claim that a given user is abusing the system. 
Since there is no support for detecting multiple comments from the same person, a series of repeated 
negative votes will exceed the threshold required to kick the user off the system for bad behavior, 
effectively denying him service. Even in a more sophisticated system that detects multiple comments 
by the same person, an attacker could mount the same attack by assuming a multitude of identities. 

Vulnerabilities from overly simple scoring systems are not limited to "toy" systems like Instant 
Messenger. Indeed, eBay suffers from a similar problem. In eBay, the reputation score for an 
individual is a linear combination of good and bad ratings, one for each transaction. Thus, a vendor 
who has performed dozens of transactions and cheats on only 1 out of every 4 customers will have a 
steadily rising reputation, whereas a vendor who is completely honest but has only done 10 
transactions will be displayed as less reputable. As we have seen, a vendor could make a good profit 
(and build a strong reputation!) by being honest for several small transactions and then being 
dishonest for a single large transaction. 

Weighting ratings by size of transaction helps the issue but does not solve it. In this case, large 
transactions would have a large impact on the reputation score of a vendor, and small transactions 
would have only a small impact. Since small transactions don't have much weight, vendors have no 
real incentive to be honest for them - making the reputation services useless for small buyers. 
Breaking reputation into many different dimensions, each representing the behavior of the vendor on 
a given category of transaction (based on cost, volume, region, etc.), can solve a lot of these problems. 
See Section 16.4.2.6, later in this chapter for more details and an analysis of this idea. 

16.4.2.2 Aspects of a scoring system 

The particular scoring system or algorithm used in a given domain should be based on the amount of 
information available, the extent to which information must be kept private, and the amount of 
accuracy required. 

In some situations, such as verifying voting age, a fine-grained reputation measurement is not 
necessary - simply indicating who seems to be sufficient or insufficient is good enough. 

In a lot of domains, it is very difficult to collect enough information to provide a comprehensive view 
of each entity's behavior. It might be difficult to collect information about entities because the volume 
of transactions is very low, as we see today in large online business markets. 

But there's a deeper issue than just whether there are transactions, or whether these transactions are 
trackable. More generally: does there exist some sort of proof (a receipt or other evidence) that the 
rater and ratee have actually interacted? 
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Being able to prove the existence of transactions reduces problems on a wide variety of fronts. For 
instance, it makes it more difficult to forge large numbers of entities or transactions. Such verification 
would reduce the potential we described in the previous section for attacks on AOL Instant 
Messenger. Similarly, eBay users currently are able to directly purchase a high reputation by giving 
eBay a cut of a dozen false transactions which they claim to have performed with their friends. With 
transaction verification, they would be required to go through the extra step of actually shipping goods 
back and forth. 

Proof of transaction provides the basis for Amazon.com's simple referral system, "Customers who 
bought this book also bought..." It is hard to imagine that someone would spend money on a book just 
to affect this system. It happens, however. For instance, a publishing company was able to identify the 
several dozen bookstores across America that are used as sample points for the New York Times 
bestseller list; they purchased thousands of copies of their author's book at these bookstores, 
skyrocketing the score of that book in the charts.[31] 

[31] David D. Kirkpatrick, "Book Agent's Buying Fuels Concern on Influencing Best-Seller Lists," New York Times 
Abstracts, 08/23/2000, Section C, p. 1, col. 2, c. 2000, New York Times Company. 

In some domains, it is to most raters' perceived advantage that everyone agree with the rater. This is 
how chain letters, Amway, and Ponzi schemes get their shills: they establish a system in which 
customers are motivated to recruit other customers. Similarly, if a vendor offered to discount past 
purchases if enough future customers buy the same product, it would be hard to get honest ratings for 
that vendor. This applies to all kinds of investments; once you own an investment, it is not in your 
interest to rate it negatively so long as it holds any value at all. 

16.4.2.3 Collecting ratings 

One of the first problems in developing reputation systems is how to collect ratings. The answer 
depends highly on the domain, of course, but there are a number of aspects that are common across 
many domains. 

The first option is simply to observe as much activity as possible and draw conclusions based on this 
activity. This can be a very effective technique for automated reputation systems that have a lot of data 
available. If you can observe the transaction flow and notice that a particular vendor has very few 
repeat customers, he probably has a low reputation. On the other hand, lack of repeat customers may 
simply indicate a market in which any given buyer transacts infrequently. Similarly, finding a vendor 
with many repeat customers might indicate superior quality, or it might just indicate a market in 
which one or a few vendors hold a monopoly over a product. Knowledge of the domain in question is 
crucial to knowing how to correctly interpret data. 

In many circumstances it may be difficult or impossible to observe the transaction flow, or it may be 
unreasonable to expect parties to take the initiative in providing feedback. In these cases, a reasonable 
option is to solicit feedback from parties involved in each transaction. This can be done either by 
publicizing interest in such feedback and providing incentives to respond, or even by actively going to 
each party after an observed transaction and requesting comments. Reputation Technologies, Inc., for 
instance, aggressively tries to obtain feedback after each transaction. 

Tying feedback to transactions is a very powerful way of reducing vulnerabilities in the system. It's 
much more difficult for people to spam positive feedback, since each item of feedback has to be 
associated with a particular transaction, and presumably only the latest piece of feedback on a given 
transaction would actually count. 

On the surface, it looks like this requires an exchange or other third-party transaction moderator, to 
make it difficult to simply fabricate a series of several thousand transactions and exploit the same 
vulnerability. However, vendors could provide blinded receipts for transactions - that is, the vendors 
would not be able to identify which buyer was providing the ratings. Without such a receipt, the 
reputation system would ignore feedback from a given buyer. Thus, buyers could not provide feedback 
about a vendor without that vendor's permission. There are a number of new problems introduced by 
this idea, such as how to respond if vendors fail to provide a receipt, but it seems to address many of 
the difficult issues about shilling in a decentralized environment. 
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A final issue to consider when collecting ratings is how fair the ratings will be - that is, how evenly 
distributed are the raters out of the set of people who have been doing transactions? If the only people 
who have incentive to provide ratings are those that are particularly unhappy with their transaction, 
or if only people with sufficient technical background can navigate the rating submission process, the 
resulting scores may be skewed to the point of being unusable. One solution to this could involve 
incentives that lead more people to respond; another approach is to simply collect so much data that 
the issue is no longer relevant. (The Slashdot moderation system, for instance, depends on the 
participation of huge numbers of independent moderators.) But systematic errors or biases in the 
ratings will generally defeat this second approach. 

16.4.2.4 Bootstrapping 

One of the tough questions for a reputation-based trust system is how to get started. If users make 
choices based on the scores that are available to them, but the system has not yet collected enough 
data to provide useful scores, what incentive do buyers have to use the system? More importantly, 
what incentive do they have to contribute ratings to the system? 

Free Haven can avoid this problem through social means. Some participants will be generous and 
willing to try out new nodes just to test their stability and robustness. In effect, they will be performing 
a public service by risking some of their reputation and resources evaluating unknown nodes. 
However, businesses, particularly businesses just getting started in their fields and trying to make a 
name for themselves, won't necessarily be as eager to spend any of their already limited transaction 
volume on trying out unknown suppliers. 

The way to present initial scores for entities depends on the domain. In some noncommercial 
domains, it might be perfectly fine to present a series of entities and declare no knowledge or 
preference; in others, it might be more reasonable to list only those entities for which a relatively 
certain score is known. Reputation Technologies needs to provide some initial value to the users; this 
can be done by asking vendors to provide references (that is, by obtaining out-of-band information) 
and then asking those references to fill out a survey describing overall performance of and happiness 
with that vendor. While this bootstrapping information may not be as useful as actual transaction-
based feedback (and is more suspect because the vendors are choosing the references), it is a good 
starting point for a new system. 

Bootstrapping is a much more pronounced issue in a centralized system than in a decentralized 
system. This is because in a decentralized system, each user develops his own picture of the universe: 
he builds his trust of each entity based on his own evidence of past performance and on referrals from 
other trusted parties. Thus, every new user effectively joins the system "at the beginning," and the 
process of building a profile for new users is an ongoing process throughout the entire lifetime of the 
system. In a centralized environment, on the other hand, ratings are accumulated across many 
different transactions and over long periods of time. New users trust the centralized repository to 
provide information about times and transactions that happened before the user joined the system. 

In a newly developed system, or for a new entity in the system, the choice of the default reputation 
score is critical. If it's easy to create a new identity (that is, pseudonym), and new users start out with 
an average reputation, users who develop a bad reputation are encouraged to simply drop their old 
identities and start over with new ones. One way to deal with this problem is to start all new users with 
the lowest possible reputation score; even users with a bad track record will then have an incentive to 
keep their current identities. 

Another approach to solving this problem is to make it difficult to create a new identity. For instance, 
this can be done by requiring some proof of identity or a monetary fee for registration. Tying the user 
to her real-world identity is the simplest, and probably the most effective, way to reduce abuse - but 
only if it's appropriate for that system. 
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16.4.2.5 Personalizing reputation searches 

The user interface - that is, the way of presenting scores and asking questions - is a crucial element of 
a reputation system. Scores cannot simply be static universal values representing the overall quality of 
an individual. Since a score is an attempt to predict future performance, each score must be a 
prediction for a particular context. That is, the user interface must allow participants to query the 
system for the likelihood of a successful transaction for their particular situation. The more flexibility 
a client has, the more powerful and useful the system is (so long as users can still understand how to 
use it). 

The user interface must also display a confidence value for each score - that is, how likely the score is 
to reflect the reality of the subject's behavior. The mechanism for generating this confidence value 
depends on the domain and the scoring algorithm. For instance, it might reflect the number of ratings 
used to generate the score, the standard deviation of the set of ratings, or the level of agreement 
between several different scoring algorithms that were all run against the ratings set. Confidence 
ratings are a major topic in Chapter 17. 

Not only does a confidence value allow users to have a better feel for how firm a given score is, but it 
can also allow a more customized search. That is, a user might request that only scores with a certain 
minimum confidence value be displayed, which would weed out new users as well as users with 
unusual (widely varying) transaction patterns. 

In some domains, qualitative statements (like verbal reviews) can enhance the value of a quantitative 
score. Simply providing a number may not feel as genuine or useful to users - indeed, allowing for 
qualitative statements can provide more flexibility in the system, because users providing feedback 
might discuss topics and dimensions which are difficult for survey authors to anticipate. On the other 
hand, it is very difficult to integrate these statements into numerical scores, particularly if they cover 
unanticipated dimensions. Also, as the number of statements increases, it becomes less useful to 
display all of them. Choosing which statements to display not only requires manual intervention and 
choice, but might also lead to legal liabilities. Another problem with providing verbal statements as 
part of the score is the issue of using this scoring system in different countries. Statements may need 
to be translated, but numbers are universal. 

16.4.2.6 Scoring algorithms 

As we've seen in the previous sections, there are many different aspects to scoring systems. While we 
believe that query flexibility is perhaps the most crucial aspect to the system, another important 
aspect is the actual algorithm used to aggregrate ratings into scores. Such an algorithm needs to 
answer most of the requirements that we laid out in Section 16.4.2. Broadly speaking, the scoring 
algorithm should provide accurate scores, while keeping dishonest users from affecting the system 
and also preventing privacy leaks (as detailed in the next section). 

Keeping dishonest users from affecting the system can be done in several ways. One simple way is to 
run statistical tests independent of the actual aggregation algorithm, to attempt to detect outliers or 
other suspicious behavior such as a clique of conspiring users. Once this suspicious behavior has been 
identified, system operators can go back, manually examine the system, and try to prune the bad 
ratings. While this appears to be a very time-intensive approach that could not possibly be used in a 
deployed system, eBay has used exactly this method to try to clean up their system once dishonest 
users have been noticed.[32] 

[32] "eBay Feedback Removal Policy," http://pages.ebay.com/help/community/fbremove.html. 

A more technically sound approach is to weight the ratings by the credibility of each rater. That is, 
certain people contribute more to the score of a given entity based on their past predictive ability. 
Google makes use of this idea in its Internet search engine algorithm. Its algorithm counts the number 
of references to a given page; the more pages that reference that page, the more popular it is. In 
addition, the pages that are referenced from popular pages are also given a lot of weight. This simple 
credibility metric produces much more accurate responses for web searches. 

http://pages.ebay.com/help/community/fbremove.html
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By introducing the notion of local credibility rather than simple global credibility for each entity, the 
system can provide a great deal of flexibility and thus stronger predictive value. Local credibility 
means that a rating is weighted more strongly if the situation in which that rating was given is similar 
to the current situation. For instance, a small farmer in Idaho looking into the reputation of chicken 
vendors cares more about the opinion of a small farmer in Arkansas than he does about the opinion of 
the Great Chinese Farming Association. Thus, the algorithm would generate a score that more 
accurately reflects the quality of the vendor according to other similar buyers. Similarly, if Google 
knew more about the person doing the web search, it could provide an even more accurate answer. 
Before being bought by Microsoft, firefly.net offered a service based on this idea. 

One of the problems with incorporating credibility into the scoring algorithm is that, in some 
domains, an individual's ability to perform the protocol honestly is very separate from an individual's 
ability to predict performance of others. 

In the Free Haven system, for instance, a server may be willing to store documents and supply them to 
readers, but keep no logs about transactions or trades (so it has no idea which other servers are 
behaving honestly). In the case of Reputation Technologies, one vendor might be excellent at 
providing high-quality products on time, leading to a high reputation score, but possess only average 
skill at assessing other vendors. Indeed, a consulting firm might specialize in predicting performance 
of vendors but not actually sell any products of its own. 

One way to solve this problem is to have separate scores for performance and credibility. This makes it 
more complex to keep track of entities and their reputations, but it could provide tremendous 
increases in accuracy and flexibility for scoring systems. 

Weighting by credibility is not the only way to improve the accuracy and robustness of the scoring 
algorithm. Another approach is to assert that previous transactions should carry more weight in 
relation to how similar they are to the current transaction. Thus, a vendor's ability to sell high-quality 
Granny Smith apples should have some bearing on his ability to sell high-quality Red Delicious apples. 
Of course, this could backfire if the vendor in question specializes only in Granny Smith apples and 
doesn't even sell Red Delicious apples. But in general, weighting by the so-called category of the 
transaction (and thus the vendor's reputation in related categories) is a very powerful idea. Separating 
reputations into categories can act as a defense against some of the subtle shilling attacks described 
above, such as when a vendor develops a good reputation at selling yo-yos and has a side business 
fraudulently selling used cars. 

The category idea raises very difficult questions. How do we pick categories? How do we know which 
categories are related to which other categories, and how related they are? Can this be automated 
somehow, or do the correlation coefficients have to be estimated manually? 

In the case of Free Haven, where there is only one real commodity - a document - and servers either 
behave or they don't, it might be feasible to develop a set of categories manually and allow each server 
to manually configure the numbers that specify how closely related the categories are. For instance, 
one category might be files of less than 100K that expire within a month. A strongly related category 
would be files between 100K and 200K that expire within a month; perhaps we would say that this 
category is 0.9-related to the first. A mostly unrelated category would be files more than 500MB in 
size that expire in 24 months. We might declare that this category is 0.05-related to the first two. 

With some experience, an algorithm might be developed to tweak the correlation coefficients on the 
fly, based on how effective the current values have been at predicting the results of future transactions. 
Similarly, we might be able to reduce the discrete categories into a single continuous function that 
converts "distance" between file size and expiration date into a correlation coefficient. 

Reputation Technologies is not so lucky. Within a given exchange, buyers and sellers might barter 
thousands of different types of goods, each with different qualities and prices; the correlation between 
any pair of categories might be entirely unclear. To make matters worse, each vendor might only have 
a few transactions on record, leaving data too sparse for any meaningful comparison. 

While we've presented some techniques to provide more accuracy and flexibility in using ratings, we 
still haven't discussed actual algorithms that can be used to determine scores. The simplest such 
algorithm involves treating reputations as probabilities. Effectively, a reputation is an estimate of how 
likely a future transaction in that category is to be honest. In this case, scores are simply computed as 
the weighted sum of the ratings. 
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More complex systems can be built out of neural networks or data-clustering techniques, to try to 
come up with ways of applying nonlinear fitting and optimizing systems to the field of reputation. But 
as the complexity of the scoring algorithm increases, it becomes more and more difficult for actual 
users of these systems to understand the implications of a given score or understand what flaws might 
be present in the system. 

Finally, we should mention the adversarial approach to scoring systems. That is, in many statistical 
or academic approaches, the goal is simply to combine the ratings into as accurate a score as possible. 
In the statistical analysis, no regard is given for whether participants in the system can conspire to 
provide ratings that break the particular algorithm used. 

A concrete example might help to illustrate the gravity of this point. One of the often referenced 
pitfalls of applying neural networks to certain situations comes from the U.S. military. They wanted to 
teach their computers how to identify tanks in the battlefield. Thus they took a series of pictures that 
included tanks, and a series of pictures that did not include tanks. But it turns out that one of the sets 
was taken during the night, and the other set was taken during the day. This caused their high-tech 
neural network to learn not how to identify a tank but how to distinguish day from night. Artificial 
intelligence developers need to remember that there are a number of factors that might be different in 
a set of samples, and their neural network might not learn quite what they want it to learn. 

But consider the situation from our perspective: what if the Russian military were in charge of 
providing the tank pictures? Is there a system that can be set up to resist bad data samples? Many 
would consider that learning how to identify a tank under those circumstances is impossible. How 
about if the Russians could provide only half of the pictures? Only a tenth? Clearly this is a much more 
complicated problem. When developing scoring systems, we need to keep in mind that simply 
applying evaluation techniques that are intended to be used in a "clean" environment may introduce 
serious vulnerabilities. 

16.4.2.7 Privacy and information leaks 

Yet another issue to consider when designing a good scoring system is whether the system will be 
vulnerable to attacks that attempt to learn about the tendencies or patterns of entities in the system. 
In a business-oriented domain, knowledge about transaction frequency, transaction volume, or even 
the existence of a particular transaction might be worth a lot of time and money to competitors. The 
use of a simple and accurate scoring algorithm implies that it should be easy to understand the 
implication of a vendor's score changing from 8.0 to 9.0 over the course of a day. Perhaps one or more 
ratings arrived regarding large transactions, and those ratings were very positive. 

The objectives of providing timeliness and accuracy in the scoring algorithm and of maintaining 
privacy of transaction data seem to be at odds. Fortunately, there are a number of ways to help 
alleviate the leakage problems without affecting accuracy too significantly. We will describe some of 
the more straightforward of these techniques in this section. 

The problem of hiding transaction data for individual transactions is very similar to the problem of 
hiding source and destination data for messages going through mix networks.[33] More specifically, 
figuring out what kind of rating influenced a published score by a certain amount is very similar to 
tracking a message across a middleman node in a mix network. In both cases, privacy becomes 
significantly easier as transaction volume increases. Also in both cases, adversaries observe external 
aspects of the system (in the case of the scoring system, the change in the score; in the case of the mix 
network, the messages on the links to and from the mix node) to try to determine the details of some 
particular message or group of messages (or the existence of any message at all). 

[33] D. Chaum (1981), "Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms." 
Communications of the ACM, vol. 24, no. 2, pp.84-88. 

One common attack against the privacy of a scoring system is a timing attack . For instance, the 
adversary might observe transactions and changes in the scores and then try to determine the rating 
values that certain individuals submitted. Alternatively, the adversary might observe changes in the 
scores and attempt to discover information about the timing or size of transactions. These attacks are 
like watching the timings of messages going through various nodes on a mix network, and trying to 
determine which incoming message corresponds to which outgoing message. 
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A number of solutions exist to protect privacy. First of all, introducing extra latency between the time 
that ratings are submitted and the time when the new score is published can make timing correlation 
more difficult. (On the other hand, this might reduce the quality of the system, because scores are not 
updated immediately.) Another good solution is to queue ratings and process them in bulk. This 
prevents the adversary from being able to determine which of the ratings in that bulk update had 
which effect on the score. 

A variant of this approach is the pooling approach, in which some number of ratings are kept in a 
pool. When a new rating arrives, it is added to the pool and a rating from the pool is chosen at random 
and aggregated into the score. Obviously, in both cases, a higher transaction volume makes it easier to 
provide timely score updates. 

An active adversary can respond to bulk or pooled updates with what is known as an identification 
flooding attack . He submits ratings with known effect, and watches for changes in the score that are 
not due to those ratings. This approach works because he can "flush" the few anonymous ratings that 
remain by submitting enough known ratings to fill the queue. This attack requires the adversary to 
produce a significant fraction of the ratings during a given time period. 

But all this concern over privacy may not be relevant at all. In some domains, such as Free Haven, the 
entire goal of the reputation system is to provide as much information about each pseudonymous 
server as possible. For instance, being able to figure out how Alice performed with Bob's transaction is 
always considered to be a good thing. In addition, even if privacy is a concern, the requirement of 
providing accurate, timely scores may be so important that no steps should be taken to increase user 
privacy. 

16.4.3 Decentralizing the scoring system 

Many of the issues we've presented apply to both centralized and decentralized reputation systems. In 
a decentralized system such as Free Haven, each server runs the entire reputation-gathering system 
independently. This requires each node to make do with only the information that it has gathered 
firsthand, and it generally requires a broadcast mechanism in order for all nodes to keep their 
information databases synchronized. 

Another approach is to decentralize the scoring system itself, spreading it among the entire set of 
machines participating in the system. In this section, we present two ways of decentralizing a scoring 
system. The first exploits redundancy along with user flexibility to reduce the risk from cheating or 
compromised servers. The second is a more traditional approach to decentralizing a system, but it also 
brings along the more traditional problems associated with decentralization, such as high bandwidth 
requirements and difficult crypto problems. 

16.4.3.1 Multiple trusted parties 

Assume there is a set of scorers around the world, each independently run and operated. When a 
transaction happens, the vendor chooses a subset of the scorers and constructs a set of tickets. Each 
ticket is a receipt allowing the buyer to rate the vendor at a particular scorer. The receipts are blinded 
so that the vendor is not able to link a ticket with any given buyer. 

At this point, the buyer can decide to which scorer or scorers he wishes to submit his ratings. Since 
each scorer could potentially use its own algorithm and have its own prices or publishing habits, each 
scorer might have its own set of trade-offs based on accuracy, privacy, and security. This technique 
allows the vendor to veto some of the scorers first. Then the rater chooses from among the remaining 
scorers. Thus, the ratings will only be submitted to mutually agreeable scorers. 

We could extend this scenario to allow both parties in the transaction to provide tickets to each other, 
creating a more symmetric rating process. This approach introduces complications, because both 
parties in the transaction need to coordinate and agree on which tickets will be provided before the 
transaction is completed. There also needs to be some mechanism to enforce or publicize if one side of 
the transaction fails to provide the promised receipts. 
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The beauty of decentralizing the scoring system in this manner is that every individual in the system 
can choose which parts of the system they want to interact with. Participants in transactions can list 
scorers whom they trust to provide accurate scores, raters can choose scorers whom they trust not to 
leak rating information, and users looking for scores on various entities can choose scorers whom they 
trust to provide accurate scores. 

Of course, this decentralization process introduces the issue of meta-reputation: how do we determine 
the reputations of the reputation servers? This sort of reputation issue is not new. Some Mixmaster 
nodes are more reliable than others,[34] and users and operators keep uptime and performance lists of 
various nodes as a public service. We expect that reputation scoring services would similarly gain 
(external) reputations based on their reliability or speed. 

[34] "Electronic Frontiers Georgia Remailer Uptime List," http://anon.efga.org/. 

16.4.3.2 True decentralization 

In this scenario, both sides of the transaction obtain blinded receipts as above. Apart from these 
raters, the system also consists of a set of collectors and a set of scorers. They are illustrated in Figure 
16.2. 

Figure 16.2. Truly decentralized scoring system 

 
 
After the transaction, each rater splits up his rating using Shamir's secret sharing algorithm (described 
in Chapter 11) or some other k-of-n system. At this point, the rater submits one share of her rating to 
each collector. This means that the collectors together could combine the shares to determine her 
rating, but separately they can learn no information. It is the job of the scorers to provide useful 
information to clients: when a client does a reputation query for a specific category (situation), the 
scorer does the equivalent of an encrypted database query on the set of collectors.[35] 

[35] Tal Malkin (1999), MIT Ph.D. thesis, "Private Information Retrieval and Oblivious Transfer." 

A number of technical challenges need to be solved in order to make this scheme work. First of all, the 
collectors need to have some mechanism for authenticating a rating without reading it. Similarly, they 
need to have some way to authorize a rater to put his share onto the system without their knowing the 
author of a given rating. Without this protection, malicious raters could simply flood the system with 
data until it overflowed. 

Once these problems are solved, we need to come up with some sort of computationally feasible and 
bandwidth-feasible way of communication between the scorers and the collectors. We also need a set 
of rules that allow the scorers to get the information they need to answer a given query without 
allowing them to get too much information and learn more than they ought to learn about raters. 

http://anon.efga.org/
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With this decentralization comes some subtle questions. Can scorers "accidentally forget" to include a 
specific rating when they're computing a score? Said another way, is there some way of allowing 
scorers to provide proof that they included a certain rating in the calculation of the score, without 
publishing the actual ratings that were used? This question is similar to the question of allowing mix 
nodes to prove that they forwarded a given message without yielding information that might help an 
adversary determine the source or destination of the message.[36] 

[36] Masayuki Abe (1998), "Universally Verifiable MIX-Network with Verification Work Independent of the 
Number of MIX Servers," EUROCRYPT '98, Springer-Verlag LNCS. 

16.5 A case study: Accountability in Free Haven 

As described in Chapter 12, the Free Haven project is working toward creating a decentralized and 
dynamically changing storage service that simultaneously protects the anonymity of publishers, 
readers, and servers, while ensuring the availability of each document for a lifetime specified by the 
publisher. Our goals of strong anonymity and long-term persistent storage are at odds with each 
other. Providing as much anonymity as possible while still retaining sufficient accountability is a very 
difficult problem. Here we will describe the accountability requirements in greater detail than in 
Chapter 12 and discuss some approaches to solving them. 

Our job is two-fold: We want to keep people from overfilling the bandwidth available from and 
between servers, and we want to keep people from overfilling the system with data. We will examine 
each of these goals separately. 

16.5.1 Micropayments 

In general, there are a number of overall problems with using micropayments in peer-to-peer systems. 
This general analysis will help motivate our discussion of using micropayments in the Free Haven 
context. We'll talk about them, then try to apply them to Free Haven. 

16.5.1.1 The difficulty of distributed systems: How to exchange micropayments among 
peers 

Consider the simple approach to micropayments introduced early in this chapter, in Section 16.3. 
Alice wants resources operated by Bob. Alice pays Bob with some micropayments. Bob provides Alice 
with the access she purchased to his resources. 

This sounds like a great model for economically-based distribution that provides both accountability 
and effective congestion-management of resources. However, the problem is rarely so simple in the 
case of peer-to-peer distributed systems on the Internet. The reason is that many intermediaries may 
be involved in a transaction - and one doesn't know who they are before the transaction starts, or 
perhaps even after the transaction is finished. 

Consider an anonymous remailer like Mixmaster. Alice sends an email to Bob through a number of 
intermediate proxy remailers, which strip all identifying information from the message before 
transmitting it. This design is used to distribute trust across operational and often jurisdictional lines. 
Only a very powerful adversary - able to observe large sections of the network and use advanced traffic 
analysis techniques - should be able to link the sender and recipient of any given message. Hence, we 
achieve an essentially anonymous communications path for email. 

Consider again the Gnutella routing protocol. Alice seeks some piece of information contained in the 
network. She sends out a query to all peers that she knows about (her "friends"); these peers in turn 
propagate the request along, branching it through the network. Hopefully, before the time-to-live 
(TTL) of the query expires, the request traverses enough intermediate hops to find Bob, who responds 
with the desired information. The Freenet routing protocol works similarly, covering some fraction of 
the surrounding network over the course of the search. 

These examples highlight a design quite common in peer-to-peer systems, especially for systems 
focusing on anonymity (by distributing trust) or searching (by distributing content). That is, endpoint 
peers are not the only ones involved in an operation; Alice and Bob are joined by any number of 
intermediate peers. So how should we handle micropayments? What are the entities involved in a 
transaction? Four possible strategies are illustrated in Figure 16.3: 
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Figure 16.3. Ways micropayments could be used in a peer-to-peer communication path 

 
 
End-to-end model  

The simplest approach is to make Alice send Bob some form of payment and not worry about 
what happens to any intermediaries. This model works fine for operations that do not make 
use of intermediate nodes. But if intermediate peers are involved, they lack any protection 
from attack. Bob might even be fictitious. Alice can attack any number of intermediate peers 
by routing her queries through them, using up their bandwidth or wiping out the data in 
Freenet-style data caches. This problem is precisely our motivation for using micropayments! 

Pairwise model  

Recognizing the problems of the end-to-end model, we can take a step upward in complexity 
and blindly throw micropayments into every transaction between every pair of peers. One 
long route can be modeled as a number of pairwise transactions. This model might appear to 
protect each recipient of payments, but it is also fundamentally flawed. 

Using fungible micropayments, each peer earns one unit from its predecessor and then 
spends one unit on its successor. Assuming equal costs throughout the network, Alice is the 
only net debtor and Bob the only net creditor. But if a single malicious operator is in charge of 
both Alice and Bob, these two peers have managed to extract work from the intermediate 
nodes without paying - a more subtle DoS or flooding attack! 

Using nonfungible micropayments, Alice remains a net debtor, but so are all intermediate 
peers. Alice can make use of greater computational resources (centralized or distributed) to 
flood intermediate peers with POWs. Being properly-behaving nodes, these peers attempt to 
make good on the micropayment exchange, and start churning out POWs for the next hop in 
the protocol... and churning... and churning. Eventually Alice can exhaust the resources of a 
whole set of smaller, honest peers. 

Amortized pairwise model  

Taking what we learned about the risks of the pairwise model, we can design a more 
sophisticated one that amortizes Alice's cost throughout the network route by iteratively 
decreasing the cost of transactions as they move through the system. Say Alice pays X with 
four units of micropayment, X pays Y with three units, Y pays Z with two units, and Z finally 
pays Bob only one unit. 
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In the case of nonfungible POWs, we still lose. First of all, Alice can still make use of greater 
wealth, economies of scale, distributed computing, etc., in order to attack intermediate nodes. 
While the load decreases as it moves though the system, peers X, Y, and Z still need to devote 
some of their own resources; they may be unable to afford that load. 

For fungible payments, this model appears more promising. Intermediate nodes end up as net 
creditors: their resources are paid for by the cut they take from Alice's initial lump-sum 
payment. 

But this model has another weakness from a security point of view: we leak information 
regarding the route length. We mentioned the Mixmaster mix net at the beginning of this 
section; the system allows a sender to specify the number and identity of intermediate 
remailers. This number of hops and their corresponding identities are unknown to all other 
parties.[37] But if we use amortized payments, each peer in the chain has to know the amount it 
is given and the function used to decrease payments, so intermediate peers can extrapolate 
how many hops are in the route as well as their relative positions in the chain. 

[37] We ignore the possibility of traffic analysis here and assume that the user chooses more than one 
hop. 

Furthermore, Alice may not know the route length. If a system uses Gnutella- or Freenet-type 
searching, Alice has no idea how many hops are necessary before the query reaches Bob. 

As Alice's query branches out through the network, payments could become prohibitively 
expensive. For example, in Gnutella, we can estimate the number of nodes that a query 
traverses by treating the network as a binary tree rooted at the originating node, where the 
query traverses the first k levels (k is the query's time-to-live (TTL)). This gives a total of 2k+1-
1 nodes visited by the query - and all of these nodes want to be paid. Thus the amount of 
nodes to pay is exponential in the TTL. Indeed, in reality the branching factor for the tree will 
be much greater than 2, leading to even more nodes that need payment. Freenet searching 
may be much more efficient; for more details, see Chapter 14. 

All points model  

These previous problems lead us to settle on an all points model. Alice pays each peer engaged 
in the protocol, intermediate and endpoint alike. Of course, we immediately run into the same 
problem we had in the previous model, where Alice may not know which peers are involved, 
especially during a search. But let's assume for this discussion that she knows which nodes 
she'll be using. 

This solution is ideal for such fully identified systems. The cost of resource use falls solely 
upon its instigating requestor. 

Anonymous systems add a few difficulties to using this model. First of all, we lose some of our 
capacity to use interactive payment models. For the forward-only Mixmaster mix net, 
intermediate nodes cannot tell Alice what client puzzle she should solve for them because only 
the first hop knows Alice's identity. Therefore, payments must be of a noninteractive variety. 

To stop double-spending, the scheme must use either a centralized bank server model (such 
as Chaumian e-cash) or have recipient-specific information encoded in the payment (such as 
hash cash). This recipient-specific information should further be hidden from view, so as to 
protect an eavesdropper from being able to piece together the route by looking at the 
micropayments. Recipient-hiding cryptosystems[38] help ensure that the act of encrypting the 
micropayment does not itself leak information about to whom the data is encrypted. 

[38] David Hopwood, "Recipient-Hiding Blinded Public-Key Encryption," draft manuscript. 

In short, the all points payment model - while offering advantages over the prior three models 
- presents its own difficulties. 

Micropayment schemes can help ensure accountability and resource allocation in peer-to-peer 
systems. But the solution requires careful design and a consideration of all security problems: there 
are no simple, off-the-shelf solutions. 
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16.5.1.2 Micropayments in the Free Haven context 

Most Free Haven communication is done by broadcast. Every document request or reputation referral 
is sent to every other Free Haven server. Even if we can solve the micropayments issue for mix nets as 
described above, we still need to ease the burden of multiple payments incurred by each server each 
time it sends even a single Free Haven broadcast. 

The first step is to remember that our communications channel already has significant latency. 
Nobody will care if we introduce a little bit more. We can queue the broadcasts and send a batch of 
them out every so often - perhaps once an hour. This approach makes the problem of direct flooding 
less of a problem, because no matter how many broadcasts we do in the system, our overall use of the 
mix net by the n Free Haven servers is limited to n2 messages per hour. We assume that the size of the 
message does not dramatically increase as we add more broadcasts to the batch; given that each Free 
Haven communication is very small, and given the padding already present in the mix net protocol, 
this seems like a reasonable assumption. 

However, batching helps the situation only a little. For several reasons - the lack of a widely deployed 
electronic cash system, our desire to provide more frictionless access regardless of wealth, and the 
complex, central-server model used by most fungible payment systems to issue coins - nonfungible 
POW micropayments are better suited for Free Haven. Likewise, nonfungible payments work best 
with the expensive all-points payment scheme. We still have the problem, therefore, that every server 
must pay each intermediate node used to contact every other server each hour. 

It is conceivable that spreading the waste of time for each message over the hour would produce a 
light enough load. Servers could simply do the computation with idle cycles and send out a batch of 
broadcasts whenever enough calculations have been performed. 

We can solve this more directly by thinking of the server Alice as a mailing list that uses pay-per-send 
email as described earlier in this chapter, in Section 16.3.2. In this case, users attach special tickets to 
messages sent to Alice, so they don't have to perform a timewasting computation. Similarly, we might 
be able to introduce into the mix net protocol a "one free message per hour" exception. But making 
this exception introduces a difficult new problem - our primary purpose is to maintain the anonymity 
of the senders and recipients through the mix net, but at the same time we want to limit each server to 
sending only one message per recipient in each hour. Thus, it seems that we need to track the 
endpoints of each message in order to keep count of who sent what. 

Having Alice distribute blinded tickets as an end-to-end solution doesn't work easily either, as these 
tickets are used with the intermediate mix net nodes. The tickets would need to assure the nodes of 
both Alice's identity as a Free Haven server and her certification of the user's right to mail her, while 
still maintaining the pseudonymity of both parties. 

The alternative is to have node-specific tickets for our all points model. More precisely, each mix net 
node issues a limited number of blinded tickets for each hour and user. This design also adds the 
functionality of a prepaid payment system, if we want one. Project Anon, an anonymous 
communications project, suggests such a technique.[39] It's important to note that most blind signature 
techniques use interactive protocols, which are less suitable for our type of application. 

[39] Oliver Berthold, Hannes Federrath, and Marit Köhntopp (2000), "Anonymity and Unobservability in the 
Internet," Workshop on Freedom and Privacy by Design/Conference on Computers, Freedom and Privacy 2000, 
Toronto, Canada, April 4-7. 

Introducing a free message every hour to the mix net protocol also allows for smooth integration of 
another Free Haven feature: we want to allow anonymous users to proxy a document retrieve request 
through certain (public) Free Haven servers. Specifically, a user generates a one-time mix net reply 
block and a one-time key pair and passes these to a Free Haven node along with a handle to the 
document being requested. This Free Haven node broadcasts the query to all other servers, just as in a 
normal retrieve operation. Because bundling extra broadcasts into each hourly message is virtually 
free, we can allow these extra anonymous requests without much extra cost. Of course, a concerted 
flood of document requests onto a server could cause its hourly message to be very large; public Free 
Haven servers may have to drop document requests after a certain threshold or find some other 
mechanism for limiting this threat of flooding. 



Peer to Peer: Harnessing the Power of Disruptive Technologies 

 page 210

Overall, providing bandwidth accountability along with anonymity is a tough problem. What we 
describe above does not provide any clear solution for an environment in which we want to maintain 
strong anonymity. This discussion may help to explain why current mix net implementations don't use 
micropayments to address accountability. Further research is certainly necessary. 

16.5.2 Reputation systems 

The Free Haven reputation solution has two parts: first, we need to notice servers that drop data early, 
and second, we need to develop a process for "punishing" these servers. 

It's very difficult to notice if a server drops data early, and we still haven't solved the problem 
completely. The buddy system laid out in Chapter 12 is our current approach, and it may well be good 
enough. After all, we simply have to provide a system that is difficult to reliably fool - it doesn't have 
to catch every single instance of misbehavior. 

As for punishing misbehaving servers, that's where our reputation scheme comes in. The first step in 
developing a solution that uses reputation systems is to examine the situation more thoroughly and 
try to understand our goals and limitations. Every situation contains features that make it hard to 
develop a reputation solution and features that make it easier. 

We expect the Free Haven domain to include a number of generous individuals who will take some 
risks with their reputations and resources. Since disk space is very cheap and getting cheaper, and 
there's no significant loss if a single trade goes bad, the Free Haven environment is relatively lenient. 

Ratings in the reputation system are tied to transactions and include digitally signed receipts. So we 
can be pretty certain that either a given transaction actually did happen, or the two parties are 
conspiring. At regular intervals, each Free Haven server broadcasts a " reputation referral," a package 
of ratings of other servers. Nodes should broadcast reputation referrals in several circumstances: 

• When they log the honest completion of a trade 

• When they check to see if a buddy to a share they hold is still available and find that it is 
missing 

• When there's a substantial change in the reputation or credibility of a given server, compared 
to the last reputation referral about that server 

How often to broadcast a referral can be a choice made by each server. Sending referrals more often 
allows that server to more easily distribute its current information and opinions to other servers in the 
network. On the other hand, frequent broadcasts use more bandwidth, and other servers may ignore 
servers that talk too much. 

Servers get most of their information from their own transactions and trades. After all, those are the 
data points that they are most certain they can trust. Each server keeps its own separate database of 
information that it knows, based on information it has observed locally and information that has come 
to it. Thus every server can have a different view of the universe and a different impression of which 
servers are reputable and which aren't. Indeed, these local decisions introduce a lot of flexibility into 
the design: Each server operator can choose her own thresholds for trust, broadcast frequency, which 
trades are accepted or offered, etc. These decisions can be made to suit her particular situation, based, 
for instance, on available bandwidth and storage or the expected amount of time that she'll be running 
a Free Haven server. 

Since each server is collecting referrals from other servers (and some of those servers may be trying to 
discredit good servers or disrupt the system in other ways), we need a robust algorithm for combining 
the referrals. Each server operator can use an entirely separate algorithm, but realistically speaking, 
most of them will use a default configuration recommended by the Free Haven designers. 

Some ways of choosing a good algorithm are described earlier in this chapter, in Section 16.4.2. In 
Free Haven, we don't expect to have to focus on very many parameters in order to get a reasonable 
score. Our basic approach to developing a score for a given server is to iterate through each rating 
available on that server and weight each rating based on how important and relevant it appears to be.  
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Parameters that we might want to examine while weighting a score include the following: 

How recent is this rating?  

Newer ratings should get more weight. 

How similar (in terms of size and expiration date) is this rating to the transaction I'm currently 
considering?  

Similar ratings should get more weight. 

In my experience, has this server accurately predicted the behavior that I have observed?  

This deals with the credibility of the rater. 

How often does the server send referrals?  

If a server is verbose, we might choose to assign a lower weight to each rating. On the other 
hand, if this is the first referral we've ever gotten from this server, we might regard it with 
skepticism. 

How long has the rating server been a Free Haven server?  

We will probably have greater confidence in servers that have been part of the system for a 
long time. 

As explained in Chapter 12, each server needs to keep two values to describe each other server it 
knows about: reputation and credibility. Reputation signifies a belief that the server in question will 
obey the Free Haven Protocol. Credibility represents a belief that the referrals from that server are 
valuable information. For each of these two values, each server also needs to maintain a confidence 
rating. This indicates how firmly the server believes in these values, and indicates how much a value 
might move when a new rating comes in. 

When new servers want to join the system, they must contact certain servers that are acting as 
introducers . These introducers are servers that are willing to advertise their existence in order to 
introduce new servers to the rest of the servnet. Introducing consists simply of broadcasting a 
reputation referral with some initial reputation values. Each introducer can of course choose her own 
initial values, but considering the discussion in Section 16.1.5.1 earlier in this chapter, it seems most 
reasonable to broadcast an initial referral value of zero for both reputation and credibility. 

At first glance, it seems that we do not need to worry about information leaks from the compiled 
scores - after all, the entire goal of the system is to communicate as much information as possible 
about the behavior history of each pseudonym (server). But a closer examination indicates that a large 
group of ratings might reveal some interesting attributes about a given server. For instance, by looking 
at the frequency and quantity of transactions, we might be able to learn that a given server has a 
relatively large hard drive. We currently believe that leaking this type of information is acceptable. 

16.5.3 Other considerations from the case study 

Alice has paid for some resource. But did she get what she paid for? This question deals with the 
problem of trust, discussed more fully in Chapter 15. But given our discussion so far, we should note a 
few issues that apply to various distributed systems. 

In the case of data storage, at a later date, Alice can query Bob for her document and verify its 
checksum in order to be sure Bob has properly stored her document. She cannot be sure Bob has 
answered all requests for that document, but she may be more convinced if Bob can't determine that 
she's the one doing the query. 

A distributed computation system can check the accuracy of the results returned by each end user. As 
we saw earlier in this chapter, some problems take a lot longer to solve than a checker takes to verify 
the answer. In other situations, we can use special algorithms to check the validity of aggregate data 
much faster than performing each calculation individually.  
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For example, there are special batch verification methods for verifying many digital signatures at once 
that run much faster than checking each signature individually.[40] On the other hand, sometimes these 
schemes leave themselves open to attack.[41] 

[40] Mihir Bellare, Juan A. Garay, and Tal Rabin (1998), "Fast Batch Verification for Modular Exponentiation 
and Digital Signatures," EUROCRYPT '98, pp. 236-250. 

[41] Colin Boyd and Chris Pavlovski (2000), "Attacking and Repairing Batch Verification Schemes," ASIACRYPT 
2000. 

The methods we've described take advantage of particular properties of the problem at hand. Not all 
problems are known to have these properties. For example, the SETI@home project would benefit 
from some quick method of checking correctness of its clients. This is because malicious clients have 
tried to disrupt the SETI@home project in the past. Unfortunately, no quick, practical methods for 
checking SETI@home computations are currently known.[42] 

[42] David Molnar (September 2000), "The SETI@home Problem," ACM Crossroads, 
http://www.acm.org/crossroads/columns/onpatrol/september2000.html. 

Verifying bandwidth allocation can be a trickier issue. Bandwidth often goes hand-in-hand with data 
storage. For instance, Bob might host a web page for Alice, but is he always responding to requests? A 
starting point for verification is to sample anonymously at random and gain some statistical assurance 
that Bob's server is up. Still, the Mixmaster problem returns to haunt us. David Chaum, who proposed 
mix nets in 1981,[43] suggested that mix nodes publish the outgoing batch of messages. Alternatively, 
they could publish some number per message, selected at random by Alice and known only to her. 
This suggestion works well for a theoretical mix net endowed with a public bulletin board, but in 
Internet systems, it is difficult to ensure that the mix node actually sends out these messages. Even a 
bulletin board could be tampered with. 

[43] D. Chaum, "Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms," op. cit. 

Above, we have described some approaches to addressing accountability in Free Haven. We can 
protect against bandwidth flooding through the use of micropayments in the mix net that Free Haven 
uses for communication, and against data flooding through the use of a reputation system. While the 
exact details of these proposed solutions are not described here, hopefully the techniques described to 
choose each accountability solution will be useful in the development of similar peer-to-peer 
publication or storage systems. 

16.6 Conclusion 

Now we've seen a range of responses to the accountability problem. How can we tell which ones are 
best? We can certainly start making some judgments, but how does one know when one technique is 
better suited than another? 

Peer-to-peer remains a fuzzy concept. A strict definition has yet to be accepted, and the term covers a 
wide array of systems that are only loosely related (such as the ones in this book). This makes hard 
and fast answers to these questions very difficult. When one describes operating systems or databases, 
there are accepted design criteria that all enterprise systems should fulfill, such as security and fault 
tolerance. In contrast, the criteria for peer-to-peer systems can differ widely for various distributed 
application architectures: file sharing, computation, instant messaging, intelligent searching, and so 
on. 

Still, we can describe some general themes. This chapter has covered the theme of accountability. Our 
classification has largely focused on two key issues: 

• Restricting access and protecting from attack 

• Selecting favored users 

Dealing with resource allocation and accountability problems is a fundamental part of designing any 
system that must serve many users. Systems that do not deal with these problems have found and will 
continue to find themselves in trouble, especially as adversaries find ways to make such problems 
glaringly apparent. 

http://www.acm.org/crossroads/columns/onpatrol/september2000.html


Peer to Peer: Harnessing the Power of Disruptive Technologies 

 page 213

With all the peer-to-peer hype over the past year - which will probably be spurred on by the 
publication of this book - we want to note a simple fact: peer-to-peer won't save you from dealing with 
resource allocation problems. 

Two examples of resource allocation problems are the Slashdot effect and distributed denial of service 
attacks. From these examples, it's tempting to think that somehow being peer-to-peer will save a 
system from thinking about such problems - after all, there's no longer any central point to attack or 
flood! 

That's why we began the chapter talking about Napster and Gnutella. Unfortunately, as can be seen in 
Gnutella's scaling problems, the massive amounts of Napster traffic, and flooding attacks on file 
storage services, being peer-to-peer doesn't make the problems go away. It just makes the problems 
different. Indeed, it often makes the problems harder to solve, because with peer-to-peer there might 
be no central command or central store of data. 

The history of cryptography provides a cautionary tale here. System designers have realized the limits 
of theoretical cryptography for providing practical security. Cryptography is not pixie dust to spread 
liberally and without regard over network protocols, hoping to magically achieve protection from 
adversaries. Buffer overflow attacks and unsalted dictionary passwords are only two examples of easy 
exploits. A system is only as secure as its weakest link. 

The same assertion holds for decentralized peer-to-peer systems. A range of techniques exists for 
solving accountability and resource allocation problems. Particularly powerful are reputation and 
micropayment techniques, which allow a system to collect and leverage local information about its 
users. Which techniques should be used depends on the system being designed. 
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Chapter 17. Reputation 
Richard Lethin, Reputation Technologies, Inc. 

Reputation is the memory and summary of behavior from past transactions. In real life, we use it to 
help us set our expectations when we consider future transactions. A buyer depends on the reputation 
of a seller when he considers buying. A student considers the reputation of a university when she 
considers applying for admission, and the university considers the student's reputation when it 
decides whether to admit her. In selecting a candidate, a voter considers the reputation of a politician 
for keeping his word. 

The possible effect on one's reputation also influences how one behaves: an individual might behave 
properly or fairly to ensure that her reputation is preserved or enhanced. In situations without 
reputation, where there is no prospect of memory after the transaction, behavior in the negotiation of 
the transaction can be zero-sum. This is the classic used car salesman situation in which the customer 
is sold a lemon at an unreasonable price, because once the customer drives off the lot, the salesman is 
never going to see her again. 

A trade with a prospective new partner is risky if we don't know how he behaved in the past. If we 
know something about how he's behaved in the past, and if our prospect puts his reputation on the 
line, we will be more willing to trade. So reputation makes exchange freer, smoother, and more liquid, 
removing barriers of risk aversion that interfere with trade's free flow. 

Reputation does all this without a central authority. Naturally, therefore, reputation turns up 
frequently in any discussion about distributed entities interacting peer-to-peer - a situation that 
occurs at many levels over the Internet. Some of these levels are close to real life, such as trade in the 
emerging e-marketplaces and private exchanges. Others are more esoteric, such as the interaction of 
anonymous storage servers in the Free Haven system described in Chapter 12. Chapter 16, includes a 
discussion of the value of reputation. 

The use of reputation as a distributed means of control over fairness is a topic of much interest in the 
research literature. Economists and game theorists have analyzed the way reputation motivates fair 
play in repeated games, as opposed to a single interaction, which often results in selfish behavior as 
the most rational choice. Researchers in distributed artificial intelligence look to reputation as a 
system to control the behavior of distributed agents that are supposed to contribute collectively to 
intelligence. Researchers in computer security look at deeper meanings of trust, one of which is 
reputation. 

In this chapter, I will present a commercial system called the Reputation Server™[1] that tries to bring 
everyday aspects of reputation and trust into online transactions. While not currently organized in a 
peer-to-peer fashion itself, the service has the potential to become more distributed and prove useful 
to peer-to-peer systems as well as traditional online businesses. 

[1] Reputation Server™ is a trademark of Reputation Technologies, Inc. 

The Reputation Server is a computer system available to entities engaging in a prospective transaction 
- a third party to a trade that can be used by any two parties who want reputation to serve as 
motivation for fair dealing. 

The server accepts feedback on the performance of the entities after each transaction is finished and 
stores the information for use by future entities. It also provides scores summarizing the history of 
transactions that an entity has engaged in. The Reputation Server, by holding onto the histories of 
transactions, acts as the memory that helps entities build reputations. 
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17.1 Examples of using the Reputation Server 

A North American buyer of textiles might be considering purchasing from a new supplier in China. 
The buyer can check the Reputation Server for scores based on feedback from other buyers who have 
used that supplier. If the scores are good enough to go forward, the buyer will probably still insist that 
the trade be recorded in a transaction context on the Reputation Server - that the seller be willing to 
let others see feedback about its performance - in order to make it costly for the seller to perform 
poorly in the transaction. Without the Reputation Server, the buyer has to rely solely on other means 
of reducing risk, such as costly product inspections or insurance.[2] 

[2] These other risk reduction techniques can also be used with the Reputation Server. 

But the motivation to use the Reputation Server is not exclusively on the buyer's side: A reliable seller 
may insist on using the Reputation Server so that the trade can reinforce his reputation. 

In some cases, the Reputation Server may be the only way to reduce risk. For example, two entities 
might want to trade in a securely pseudonymous manner, with payment by a nonrepudiable 
anonymous digital cash protocol. Product inspection might be unwanted because it reveals the entity 
behind the pseudonym. Once the digital cash is spent, there's no chance of getting a refund. 
Reputation helps ease some of the buyer's concern about the risk of this transaction: she can check the 
reputation of the pseudonym, and she has the recourse of lowering that reputation should the 
transaction go bad. Thus, the inventors of anonymous digital cash have long recognized the 
interdependence of pseudonymous commerce systems and reputations. Also, the topic gets attention 
in the Cypherpunks Cyphernomicon as an enabling factor in the adoption of anonymous payment 
technologies.[3] 

[3] Tim May (1994). The Cyphernomicon, Sections 15.2-4, archived in various places on the Net, e.g., 
http://swissnet.ai.mit.edu/6805/articles/crypto/cypherpunks/cyphernomicon/CP-FAQ1994. 

But more mundane risks can also make using the Reputation Server worthwhile. The example I 
started with in this section, of a buyer in North America purchasing textiles from China, has some 
aspects of functional anonymity: even though the buyer and seller aren't actively hiding from each 
other, they don't know each other because of the geographic, political, cultural, class, and language 
barriers that separate them. Reputation Servers can be the social network that is otherwise lacking 
and that enforces good behavior or allows the system to correct itself. As the Internet bridges the 
traditional barriers to create new relationships, the need for Reputation Servers grows. 

At first, the implementation of this system seems trivial: just a database, some messaging, and some 
statistics. However, the following architecture discussion will reveal that the issues are quite complex. 
With keen competition and high-value transactions, the stakes are high. This makes it important to 
consider the design carefully and take a principled approach. 

17.2 Reputation domains, entities, and multidimensional 
reputations 

To understand how the Reputation Server accomplishes its task, you have to start with the abstraction 
of a reputation domain, which is a context in which a sequence of trades will take place and in which 
reputations are formed and used. A domain is created, administered, and owned by one entity. For 
example, a consultant integrating the software components for a business-to- business, online e-
marketplace might create a reputation domain for that e-marketplace on the Reputation Server. 
Thousands of businesses that will trade in the e-marketplace can use the same domain. Or someone 
might create a smaller domain consisting of auto mechanics in Cambridge and the car owners that 
purchase repairs. Or someone might create a domain for the anonymous servers forming Free Haven. 

The domain owner can specify the domain's rules about which entities can join, the definition of 
reputation within that domain, which information is going to be collected, who can access the data, 
and what they can access. Reputations form within the domain according to the specified 
configuration. For the moment, we assume that there is no information transfer among domains: A 
reputation within one domain is meaningless in another domain.[4] 

[4] This constraint is relaxed later in the chapter. 

http://swissnet.ai.mit.edu/6805/articles/crypto/cypherpunks/cyphernomicon/CP-FAQ1994
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Entities in a Reputation Server correspond to the parties for whom reputations will be forming and 
the parties who will be providing feedback. Entities might correspond to people, companies, software 
agents, or Pretty Good Privacy (PGP) public keys. They exist outside the domains, so it is possible for 
an entity to be a participant in multiple domains. 

The domain has a great degree of latitude in how it defines reputation. This definition might be a 
simple scalar quantity representing an overall reputation, or a multidimensional quantity representing 
different aspects of an entity's performance in transactions. For example, one of the dimensions of a 
seller's reputation might be a metric measuring the quality of goods a seller ships; another might be 
the ability to ship on time. The scoring algorithms do not depend on what the individual dimensions 
"mean"; the dimensions are measures within a range, and the domain configuration simply names 
them and hooks them up to sources and readers. 

The notion of a domain is powerful, even for definitions that might be considered too small to be 
meaningful. For example, a domain with only one buyer seems solipsistic (self-absorbed) but can in 
fact be quite useful to an entity for privately monitoring its suppliers. The domain can provide a 
common area for the storage and processing of quality, docking, and exception information that might 
otherwise be used by only one small part of the buyer's organization or simply lost outright. 

Reputation information about a supplier might be kept internal to the buyer if the buyer thinks this is 
of strategic importance (that is, if knowing which supplier is good or bad in particular areas conveys a 
competitive advantage to the buyer). On the other hand, if the buyer is willing to share the reputation 
information he has taken the trouble to accumulate, it could be useful so that a seller can attract other 
buyers. For example, ACME computer company might allow its ratings of suppliers to be shared 
outside to help its suppliers win other buyers; this benefits ACME by allowing its suppliers to amortize 
fixed costs, and it might even be able to negotiate preferred terms from the supplier to realize this 
benefit. 

17.3 Identity as an element of reputation 

Before gaining a reputation, an entity needs to have an identity that is made known to the Reputation 
Server. The domain defines how identities are determined. 

Techniques for assuring an entity's identity are discussed in other areas of this book, notably Chapter 
15, and Chapter 18. An entity's identity, for instance, might be a certified public key or a simple 
username validated with password login on the Reputation Server. 

Some properties of identities can influence the scoring system. One of the most critical questions is 
whether an entity can participate under multiple identities. Multiple participation might be difficult to 
prevent, because entities might be trivially able to adopt a new identity in a marketplace. In this 
situation, with weak identities, we have to be careful how we distinguish a bad reputation from a new 
reputation. This is because we may create a moral hazard: the gain from cheating may exceed the loss 
to reputation if the identity can be trivially discarded and a new identity trivially constructed. Weak 
identities also have implications for credibility, because it becomes hard to distinguish true feedback 
from feedback provided by the entity itself. 

While it is possible to run a reputation domain for weak identities, it is easier to do so for strong 
identities. Reputation domains with weak identities require the system to obtain and process more 
data, while strong identities allow the system to "bootstrap" online reputations with some grounding 
in the real world. 

17.4 Interface to the marketplace 

We use the term marketplace loosely: generally it corresponds to an online e-marketplace, but a 
marketplace might also correspond to the distributed block trading that is taking place in Free Haven 
or the private purchasing activity of the single buyer who has set up a private reputation domain. 
While some marketplaces, such as eBay, include an embedded reputation system, our Reputation 
Server exists outside the marketplace so that it can serve many marketplaces of different types. 
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The separation of the Reputation Server from the marketplace creates relatively simple technical 
issues as well as more complex business issues. We discuss some of the business issues later in Section 
17.10. The main technical issue is that the marketplace and the Reputation Server need to 
communicate. This is easy to solve: The Internet supports many protocols for passing messages, such 
as email, HTTP, and MQ. The XML language is excellent for exchanging content-rich messages. 

One of the simple messages that the marketplace can send to the Reputation Server indicates the 
completion of a transaction. This message identifies the buyer and seller entities and gives a 
description of the type of transaction and the monetary value of the transaction. The description is 
important: A reputation for selling textiles might not reflect on the ability to sell industrial solvents. 

The transaction completion message permits the Reputation Server to accept feedback on the 
performance of entities in the transaction. For some domains, it also triggers the Reputation Server to 
send out a request for feedback on the transaction. In the most rudimentary case, the request for 
feedback and the results could be in electronic mail messages. Since a human being has to answer the 
email request for feedback, some messages may be discarded and only some transactions will get 
feedback. For this reason, obviously, it is preferable to automate the collection. So some businesses 
may interface the trader's Enterprise Resource Planning (ERP) systems into the Reputation Server. 
For automated peer-to-peer protocols like Free Haven, an automated exchange of feedback will be 
easier to generate. 

The marketplace and the Reputation Server will also exchange other, more complex messages. For 
example, the marketplace might send a message indicating the start of a potential transaction. Some 
transactions take a long time from start to finish, perhaps several weeks. Providing the Reputation 
Server with an early indication of the prospective transaction allows the Reputation Server to provide 
supplementary services, such as messages indicating changes in reputation of a prospective supplier 
before the transaction is consummated. 

17.5 Scoring system 

One of the most interesting aspects of the Reputation Server is the scoring system, the manner in 
which it computes reputations from all of the feedback that is has gathered. 

Why bother computing reputations at all? If, as asserted in the first sentence of this chapter, 
"Reputation is the memory and summary of behavior from past transactions," why not simply make 
the reputation be the complete summary of all feedback received, verbatim? Some online auctions do 
in fact implement this, so that a trader can view the entire chain of feedback for a prospective partner. 
This is okay when the trader has the facility to process the history as part of a decision whether to 
trade or not. 

But more often, there is good reason for the Reputation Server to add value by processing the chain 
into a simple reputation score for the trader. First, the feedback chain may be sensitive information, 
because it includes a description of previous pricing and the good traded. Scoring algorithms can 
mask details and protect the privacy of previous raters. This trade-off between hiding and revealing 
data is more subtle than encryption. Encryption seeks to transform data so that, to the unauthorized 
reader, it looks as much like noise as possible. With reputation, there is a need to simultaneously mask 
private aspects of the transaction history - even to the authorized reader - while allowing some portion 
of the history through so it can influence the reputation. Some of this is accomplished simply by 
compressing the multiple dimensionality of the history into a single point, perhaps discretizing or 
adding another noise source to the point to constrain its dimensionality. 

Furthermore, the Reputation Server has a more global view of the feedback data set than one can 
learn from viewing a simple history listing, and it can include other sources of information to give a 
better answer about reputation. Stated bluntly, the Reputation Server can process a whole bunch of 
data, including data outside the history. For example, the Reputation Server may have information 
about the credibility of feedback sources derived from the performance of those sources in other 
contexts. 
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17.6 Reputation metrics 

The Reputation Server is a platform for multiple scoring functions, and each domain can choose the 
kinds of scoring used and the functions that compute the scores. 

A number of reputation metrics have been proposed in the literature. Some simply provide ad hoc 
scales, dividing reputations into discrete steps or assigning boundaries and steps arbitrarily. While ad 
hoc definitions of reputation can seem reasonable at first, they can have undesirable properties.[5] For 
example, simply incrementing reputation by one for each good transaction and decrementing by one 
for each bad transaction allows a reputation to keep growing indefinitely if a seller cheats one buyer 
out of every four. If the seller does a lot of volume, she could have a higher reputation in this system 
than someone who trades perfectly but has less than three quarters the volume. Other reputation 
metrics can have high sensitivity to lies or losses of information. 

[5] Raph Levien and Alexander Aiken (1998), "Attack-Resistant Trust Metrics for Public Key Certification," 
Proceedings of the 7th USENIX Security Symposium, UNIX Assoc., Berkeley, CA, pp. 229-241. 

Other approaches to reputation are principled.[6] One of the approaches to reputation that I like is 
working from statistical models of behavior, in which reputation is an unbound model parameter to be 
determined from the feedback data, using Maximum Likelihood Estimation (MLE). MLE is a standard 
statistical technique: it chooses model parameters that maximize the likelihood of getting the sample 
data. 

[6] Michael K. Reiter and Stuart G. Stubblebine, "Authentication Metric Analysis and Design," ACM Transactions 
on Information Systems and Security, vol. 2, no. 2, pp. 138-158. 

The reputation calculation can also be performed with a Bayesian approach. In this approach, the 
Reputation Server makes explicit prior assumptions about a probability distribution for the reputation 
of entities, either the initial distribution that is assumed for every new entity or the distribution that 
has previously been calculated for entities. When new scores come in, this data is combined with the 
previous distribution to form a new posterior distribution that combines the new observations with 
the prior assumptions. 

Our reputation scores are multidimensional vectors of continuous quantities. An entity's reputation is 
an ideal to be estimated from the samples as measured by the different entities providing feedback 
points. An entity's reputation is accompanied by an expression of the confidence or lack of confidence 
in the estimate. 

Our reputation calculator is a platform that accepts different statistical models of how entities might 
behave during the transaction and in providing feedback. For example, one simple model might 
assume that an entity's performance rating follows a normal distribution (bell) curve with some 
average and standard deviation. To make things even simpler, one can assume that feedback is always 
given honestly and with no bias. In this case, the MLE is a linear least squares fit of the feedback data. 

This platform will accept more sophisticated reputation models as the amount of data grows. Some of 
the model enhancements our company is developing are described in the following list: 

• Allowing dynamic reputation. Without this, reputation is considered a static quantity with 
feedback data providing estimates. If an entity's reputation changes, the estimate of 
reputation changes only with the processing of more feedback data. When we incorporate 
drift explicitly, confidence in the reputation estimate diminishes without feedback data. 

• Incorporating source feedback models. With multiple ratings given by the same party, we can 
estimate statistically their bias in providing feedback. This might even permit the 
identification of sources that are not truthful. 

• Allowing performance in one context to project the entity's ability to perform in another 
context. For instance, the ability to sell shoes is some prediction of the ability to sell clothes. 

The rate of reputation drift, the related weight assigned to more recent feedback, biases, the estimate 
of the credibility of sources, and contextual correlation become additional free parameters to be 
chosen by the MLE solver. Getting good estimates of these parameters requires more data, obviously. 
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A property of this approach is that reputation does not continue increasing arbitrarily as time 
advances; it stays within the bounds established when the reputation domain was configured. 
Additional data increase the data points on which the extracted parameters are based, so as a trader 
earns more feedback, we usually offer greater confidence in her reputation. Confidence is not being 
confused with the estimate of reputation. 

It's interesting to think about how to incorporate the desire to punish poor performance quickly 
(making reputation "hard to build up, and easy to tear down") into the model-based approach. It 
seems reasonable to want to make the penalty for an entity's behaving in a dishonest way severe, to 
deter that dishonest behavior. With an ad hoc reputation-scoring function, positive interactions can be 
given fewer absolute reward points than absolute punishment points for negative behavior. But how is 
the ratio of positive to negative feedback chosen? There are a number of approaches that permit 
higher sensitivity to negative behavior. 

One approach is to increase the amount of history transmitted with the reputation so the client's 
decision function can incorporate it. If recent negative behavior is of great concern, the reputation 
model can include a drift component that results in more weight toward recent feedback. Another 
approach is to weight positive and negative credibility differently, giving more credence to warnings. 

The design choices (including ad hoc parameter choices) depend intimately on the goals of the client 
and the characteristics of the marketplace. Such changes could be addressed by adapting the model to 
each domain, by representing the assumptions as parameters that each domain can tune or that can 
be extracted mechanically, and perhaps even by customizing the reputation component in a particular 
client. 

How is MLE calculated? For simple models, MLE can be calculated analytically, by solving the 
statistical equations algebraically. Doing MLE algebraically has advantages: The answer is exact, 
updates can be computed quickly, and it is easier to break up the calculation in a distributed version of 
a Reputation Server. But an exact analytical solution may be hard to find, nonexistent, or 
computationally expensive to solve, depending on the underlying models. In that case, it may be 
necessary to use an approximation algorithm. However, some of these algorithms may be difficult to 
compute in a distributed manner, so here a centralized Reputation Server may be better than a 
distributed one. 

17.7 Credibility 

One of the largest problems for the Reputation Server is the credibility of its sources. How can a 
source of feedback be trusted? Where possible, cryptographic techniques such as timestamps and 
digital signatures are used to gain confidence that a message originates from the right party. Even if 
we establish that the message is truly from the correct feedback source, how do we know that the 
source is telling the truth? This is the issue of source credibility, and it's a hairy, hairy problem. 

We address this in our Reputation Server by maintaining credibility measures for sources. These 
credibility measures factor into the scoring algorithms that form reputations - both our estimated 
reputation and the confidence that our service has in the estimate. Credibility measures are initialized 
based on heuristic judgments, and then updated over time using the Bayesian/MLE framework 
previously described. Sources that prove reliable over time increase their credibility. Sources that do 
not prove reliable find their credibility diminished. 

This process can be automated through the MLE solver and folded into the scoring algorithm. 
Patterns of noncredible feedback are identified by the algorithm and given lower weights. Doing this, 
though, requires something more than the accumulated feedback from transactions; we should have 
an external reference or benchmark source of credible data. One way that we solve this is by allowing 
the domain configuration to designate benchmark sources. The Reputation Server assigns high 
credibility to those sources because the designation indicates that there is something special backing 
them up, such as a contractual arrangement, bonding of the result, or their offline reputation. In a 
sense, credibility flows from these benchmark sources to bootstrap the credibility of other sources. 
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17.8 Interdomain sharing 

Popular online marketplaces such as auctions have rudimentary reputation systems, providing 
transaction feedback for participants. These marketplaces strongly protect their control over the 
reputations that appear on their site, claiming they are proprietary to the marketplace company! The 
marketplaces fight cross-references from other auctions and complete copying of reputations with 
lawsuits, and they discourage users from referring to their reputations from other auctions. 

These practices raise the question: Who owns your reputation? The popular auction sites claim that 
they own your reputation: It is their proprietary information. It is easy to understand why this is the 
case. Portable reputations would be a threat to the auction sites, because they reduce a barrier to 
buyers and suppliers trading on competitor auctions. Portable reputations make it more difficult for 
auctions to get a return from their investment in technology development and marketing that helped 
build the reputation. 

The Reputation Server supports auction sites by isolating the reputation domains unless the owners of 
the domains permit sharing. In cases where the sharing can be economically beneficial, the scoring 
algorithms can permit joining the data of two domains to achieve higher confidence reputations. This 
is performed only with the permission of the domain owners. 

17.9 Bootstrapping 

One obstacle to the use of the Reputation Server is a bootstrapping or chicken-and-egg problem. 
While the server is of some use even when empty of transaction histories (because it serves as a place 
where entities can put their reputations on the line), it can be difficult to convince a marketplace to 
use it until some reputation information starts to appear. 

Consequently, our server offers features to bootstrap reputations similar to the way reputations might 
be bootstrapped in a real-world domain: through the use of references. A supplier entering the system 
can supply the names of trade references and contact information for those references. The server 
uses that contact information to gather the initial ratings. While the reference gathering process is 
obviously open to abuse, credibility metrics are applied to those initial references. To limit the risk of 
trusting the references from outside the reputation system, those credibility metrics can signal that 
the consequent reputation is usable only for small transactions. As time passes and transactions occur 
within the reputation system, the feedback from transactions replaces the reference-based 
information in the computation of the reputation. 

17.10 Long-term vision 

Business theorists have observed that the ability to communicate broadly and deeply through the 
Internet at low cost is driving a process whereby large businesses break up into a more competitive 
system of smaller component companies. They call this process "deconstruction."[7] This process is an 
example of Coase's Law, which states that other things being equal, the cost of transacting - 
negotiating, paying, dealing with errors or fraud - between firms determines the optimal size of the 
firm.[8] When business transactions between firms are expensive, it's more economical to have larger 
firms, even though larger firms are considered less efficient because they are slower to make 
decisions. When transactions are cheaper, smaller firms can replace the larger integrated entity. 

[7] Philip Evans and Thomas Wurster (2000). Blown to Bits: How the New Economics of Information 
Transforms Strategy. Harvard Business School Press. 

[8] Ronald Coase (1960). "The Problem of Social Cost," Journal of Law and Economics, vol. 3, pp. 1-44. 

As an example, Evans and Wurster point to the financial industry. Where previously a bank provided 
all services like investments and mortgages, there are now many companies on the Internet filling 
small niches of the former service. Aggregation sites find the best mortgage rate out of hundreds of 
banks, investment news services are dedicated solely to investment news feeds, and so on. Even 
complex processes like the manufacturing of automobiles - already spread over chains of multiple 
companies for manufacturing parts, chassis, subsystems - could be further deconstructed into smaller 
companies.[9] 

[9] Clayton M. Christenson (1997) The Innovator's Dilemma. Harvard Business School Press. 
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With more entities, there is an increased need for tracking reputations at the interaction points 
between them. At the extreme, a firm might completely deconstruct: One vision is that the substations 
that currently make up a factory can become independent entities, all transacting in real time and 
automatically to accomplish the manufacturing task that previously occurred in the single firm. The 
Reputation Server, as one of the components reducing the cost of transacting between firms, serves as 
a factor to assist in this deconstruction, which results in lower manufacturing costs. 

17.11 Central Reputation Server versus distributed Reputation 
Servers 

The first version of the Reputation Server is a centralized web server with a narrow messaging 
interface. One could well argue that it should be decentralized so that the architecture conforms to our 
ultimate goal: to provide fairness in a noncentralized manner for peer-to-peer networks. 

Can we design a network of distributed Reputation Servers? Yes, in some cases, such as when the 
reputation metric computation can be executed in a distributed fashion and can give meaningful 
results with partial information. Not all reputation metrics have these properties, however, so if the 
design goal of a distributed server is important, we should choose one that does. 

17.12 Summary 

Reputation is a subtle and important part of trade that motivates fair dealing. We have described 
technologies for translating the reputation concept into electronic trade, applicable to business 
transactions and peer-to-peer interaction. The Reputation Server provides these technologies. Scoring 
algorithms based on MLE and Bayesian techniques estimate reputations based on feedback received 
when trades occur. We describe enhancements for addressing the credibility of sources. Reputation 
domains, which are an abstraction mapped to the client marketplace, serve to store the configuration 
of rules about how reputations form for that marketplace, allowing the Reputation Server to be a 
platform for many different reputation systems. 
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Chapter 18. Security 
Jon Udell, BYTE.com, and Nimisha Asthagiri and Walter Tuvell, Groove Networks 

Security is hard enough in traditional networks that depend on central servers. It's harder still in peer-
to-peer networks, particularly when you want to authenticate your communication partners and 
exchange data only with people you trust. Earlier chapters stressed protection for users' anonymity. 
The need to assert identity is actually more common than the need to hide it, though the two are not 
mutually exclusive. As shown in Chapter 16, systems that assign pseudonyms to users need not 
absolve users of responsibility. This chapter touches on the interplay of identity and pseudonymity 
too, but will mainly focus on how to authenticate users and ensure they can communicate securely in a 
peer-to-peer system. 

At Groove Networks Inc., we've developed a system that provides a type of strong security consistent 
with Groove's vision of a peer-to-peer system. The details are described in this chapter. We hope that 
our work can serve not only as proof that traditional conservative security principles can coexist with a 
novel distributed system, but also as a guide to developers in other projects. Groove is a peer-to-peer 
groupware system. Before we focus on its security architecture, we should first explain its goals and 
the environment in which it operates. Using Groove, teams of collaborators form spontaneous shared 
spaces in which they collect the documents, messages, applications, and application-specific data 
related to group projects. The software (which is available for Windows now and for Linux soon) 
works identically for users on a LAN, behind corporate firewalls, behind DSL or cable-modem 
Network Address Translation (NAT), on dial-up connections with dynamic IP addresses, or in any 
combination of such circumstances. The key benefits of Groove shared spaces are: 

Spontaneity  

Groove needs no administrator. Nobody has to wait for IT to create the support system for a 
project. Users can do this for themselves, easily and right away. 

Security  

Shared spaces are, in effect, instant virtual private networks (VPNs). 

Context  

The shared space provides a context that helps users understand the nature, purpose, and 
history of all the messages and documents related to an activity. 

Synchronization  

Shared spaces synchronize automatically among all members' devices and among all Groove 
devices owned by each member. Users can work offline; changes automatically synchronize 
when they reconnect. 

Granularity  

Groove users don't typically exchange whole documents (though conventional file sharing is 
supported). Rather, they exchange incremental edits to documents. Groove-aware 
applications can even enable shared editing in real time. 

Groove is really a new kind of Internet-based platform that delivers basic support for collaboration - in 
particular, security and synchronization. Users automatically enjoy these services with no special 
effort. Developers can build on them without needing to reinvent the wheel. In terms of data 
synchronization, Groove arguably breaks new technical ground with its distributed, transactional, 
serverless XML object store. But in terms of security - the focus of this chapter - Groove relies on 
tried-and-true techniques. What's novel isn't the algorithms and protocols, but rather the context in 
which they are used. Groove enables spontaneous peer-to-peer computing while at the same time 
abolishing the human factors problems that bedevil real-world security. 

The environment in which Groove does all this is a hostile one. Firewall/NAT barriers often separate 
members of a group. Even within a group, people do not necessarily trust one another and do not 
typically share a common directory service or Public Key Infrastructure (PKI). People aren't always 
online, and when they are, they're not always using the same computer. People connect to the Net in 
different ways, using channels with very different bandwidths and latencies, so that, for example, an 
encrypted message may arrive before the message bearing its decryption key. Groups are dynamic; 
membership is fluid and constantly changing.  
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The unit of secured data - that is, data that is authenticated, encrypted, and guaranteed not to have 
been tampered with - is not typically a whole document, but rather an incremental change (or delta), 
possibly an individual keystroke. 

In the face of this hostile environment, Groove makes an impressive set of security guarantees to 
users. Here are some of them: 

• Strong security is always in force. No user or administrator can accidentally or intentionally 
turn it off. 

• All shared-space data is confidential. It's encrypted not only on the wire, where it's readable 
and writable by only group members, but also on disk, where it's readable and writable by 
only the owner of that copy of the data. 

• No group member can impersonate another group member or tamper with the contents of 
any group message. 

• A lost message can be recovered from any member, with assurance of the integrity of the 
recovered message and proof of its true originator. 

• No nonmember or former member who has been uninvited from the group can eavesdrop on 
or tamper with group communication. 

How Groove implements these security guarantees, thereby accomplishing its mission to deliver 
flexible and secure groupware in a hostile environment, is the subject of this chapter. We'll explore the 
implementation in detail, but first let's consider how and why Groove is like and unlike other 
groupware solutions. 

18.1 Groove versus email 

The world's dominant groupware application is email. Like Groove, email enables users to create 
primitive " shared spaces" that contain both messages and documents (i.e., attachments). Nobody 
needs to ask an administrator to create one of these shared spaces. We do it quite naturally by 
addressing messages to individuals and groups. Because firewalls are always permeable to email, we 
can easily form spaces that include people behind our own firewalls and people behind foreign 
firewalls. Email enables us to modify group membership on the fly by adjusting the To: and Cc: 
headers of our messages, adding or dropping members as needed. This is powerful stuff. It's no 
wonder we depend so heavily on it. 

To the extent that we exchange sensitive information in email, though, we incur serious risks. People 
worry about the efficacy of the SSL encryption that guards against theft of a credit card number during 
an online shopping transaction. Yet they're oddly unconcerned about sending completely unencrypted 
personal and business secrets around in email. Secrets stored on disk typically enjoy no more 
protection than do secrets sent over the wire, a fact deeply regretted by the Qualcomm executive 
whose notebook computer was recently stolen. 

Although it is convenient in many important ways, email is terribly inconvenient in others. The shared 
space of a group email exchange is a fragmentary construct. There is no definitive transcript that 
gathers all project-related messages and documents into a single container that's the same for all 
current (and future!) group members. Newsgroups, web forums, and web-accessible mail archives 
(such as Hypermail) or document archives (such as CVS) can make collaboration a more coherent and 
controlled exercise. But the IT support needed for these solutions is often missing within 
organizations, and especially across organizational boundaries. 

There is, to be sure, an emerging breed of hosted collaborative solutions that make shared spaces a do-
it-yourself proposition for end users. Anyone can go to eGroups (http://www.egroups.com/), for 
example, and create a project space for shared messages and documents. But eGroups provides only 
modest guarantees as to the privacy of such spaces, and none with respect to the integrity and 
authenticity of messages exchanged therein. What's more, services similar to eGroups fail the 
convenience test when users are connected poorly, or not at all. In these cases, users wind up 
manually replicating data to their local PCs - a procedure that is arduous, error-prone, and thus 
insecure. 

http://www.egroups.com/
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Security, as cryptographer and security consultant Bruce Schneier likes to observe, is a process. When 
that process is too complex - which is to say, when it requires just about any effort or thought - people 
will opt out, with predictably disastrous results. 

Collaboration places huge demands on any security architecture. It's a convenient fiction to believe 
that we are all safe behind our corporate firewalls, where we can form the groups in which we do our 
work, and create and exchange the documents that are the product of that work. But we never were 
safe behind the firewall, and the fiction grows less believable all the time as email worms burrow 
through firewalls and wreak havoc. 

Furthermore, in a company of any substantial size, the firewall-protected realm cannot usefully be 
regarded as an undifferentiated zone of trust. Real people doing real work will want to form 
spontaneous workgroups; these workgroups ought to be isolated from one another. When we rely only 
on the firewall, we create the kind of security architecture that hackers call "crunchy on the outside, 
soft and chewy on the inside." 

We need more granular security, distributed at the workgroup level rather than centralized in the 
firewall. Historically, people could form password-protected group spaces on departmental servers or 
even among their own peer-enabled PCs. But if the internal network is compromised, a sniffer 
anywhere on the LAN can scoop up all the unencrypted data that it can see. Likewise, if a server or 
desktop PC is compromised, the intruder (possibly a person with unauthorized physical access, 
possibly a virus) can scoop up all available unencrypted data. 

The LAN, in any case, is a construct that few companies have successfully exported beyond the firewall 
to the homes, hotel rooms, public spaces, and foreign corporate zones in which employees are often 
doing their collaborative work. In theory, virtual private networks extend the LAN to these realms. In 
practice, for many companies that doesn't yet happen. When it does, there is typically only protection 
on the wire, not complementary protection on the disk. 

So far, all these models assume that collaboration is an internal affair - that we work in groups under 
the umbrella of a single corporate security infrastructure. For many real-world collaborative projects, 
that assumption is plainly false. Consider the project that produced this chapter. Two of the authors 
(Nimisha Asthagiri and Walt Tuvell) are employees of Groove Networks, Inc. Another ( Jon Udell) is 
an independent contractor. Beyond this core team, there was the editor (Andy Oram, an employee of 
O'Reilly & Associates, Inc.), and a group of reviewers with various corporate and academic affiliations. 
Projects like this aren't exceptions. They're becoming the norm. 

To support our project, one of the authors created a Groove shared space. There, we used a suite of 
applications to collaborate on the writing of this chapter: persistent chat, a shared text editor, a 
discussion tool, and an archive of highly confidential Groove Networks security documents. As users 
of the shared space, we didn't have to make any conscious decisions or take any explicit actions to 
ensure the secure transmission and storage of our data. Under the covers, of course, were powerful 
security protocols that we'll explore in this chapter. 

18.2 Why secure email is a failure 

Before we dive into the details of Groove's security system, let's look again at the big picture. It's 
instructive to ask, "Why couldn't ordinary secure email support the kind of border-crossing 
collaboration we've been touting?" PGP, after all, has been widely available for years. Likewise 
S/MIME, which lies dormant within the popular mail clients. These are strong end-to-end solutions, 
delivering both on-the-wire and on-disk encryption. Why don't we routinely and easily use these tools 
to secure our shared email spaces? Because it's just too hard. In the case of PGP, users must acquire 
the software and integrate it with their email programs. Then they confront a daunting user interface 
which, according to a study called Why Johnny Can't Encrypt,[1] few are able to master.  

[1] http://www.cs.cmu.edu/~alma/johnny.pdf. 
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S/MIME, though built into common email programs (Netscape Messenger and Microsoft Outlook 
Express), requires users to acquire client certificates (VeriSign calls them " digital IDs") that unleash 
signing and encryption.[2] 

 [2] To the extent that we have any routine on-the-wire encryption at all on the Web, it's in the form of SSL-
protected shopping carts. This works because although servers have certificates that authenticate them to clients 
(and that enable the SSL handshake to occur), almost no clients have certificates that reciprocally authenticate 
them to servers. It's unfortunate that this is so. E-commerce ought to have much more robust client 
authentication than it does. But the Public Key Infrastructure (PKI) gymnastics that server administrators are 
required to perform go way beyond what normal people are willing to put up with. So we settle for one-way, 
server-only authentication on the secure Web. And the only reason we have at least this much security is that it 
was possible to make it a no-brainer, an out-of-the-box default for a web shopper. You click the link, you see the 
golden key, it's "secure" - at least in a limited sense of that term, notwithstanding the risk of a hostile takeover of 
your PC, spoofing of the server's identity (since nobody actually checks the certificate sent from the server), or 
capture of your credit card number after decryption on the server. 

The next weakness of email shared spaces is that they aren't as coherent as we need, or as functional. 
Email is a good way to exchange interpersonal messages but a poor medium for group discussion and 
document archiving. When we ask it to serve these functions - as we often do, lacking other 
convenient tools - the result is a mess. Documents and pieces of conversations end up scattered across 
a bunch of computers. People get confused and waste time because they can't find everything related 
to the collaboration in one place; there's no single, consistent view of the project's data. 

Finally, email can be a little too spontaneous for our own good. Information can leak out of an email 
shared space when anyone "ccs" someone else. That kind of spontaneity is a wonderful thing, and it's 
vital for effective collaboration. But it's not always a good idea to enable anybody in a shared space to 
include anybody else. People can leak information because of malice, poor judgment, or just operator 
error. The kinds of groups that form in email shared spaces are just too loosely defined. There's no 
way to balance the necessary freedom of spontaneous group formation with the equally necessary 
control of a centrally determined policy that governs modes of group formation. 

The authors of this article could have used the S/MIME capabilities of our respective mail readers 
instead of Groove. And, in fact, we tried that experiment. But even for the three of us, all well versed in 
crypto software, S/MIME presented daunting configuration and use challenges. In any case, S/MIME 
only governs the email domain. It doesn't empower users to form the coherent but replicated 
multiapplication workspace that makes Groove so effective. For us, the benefits of a secure shared 
space far outweighed the learning curve presented by Groove. The same will hold true for most typical 
Groove users. 

18.3 The solution: A Groove shared space 

Now we can start to put in place the foundations of a better data exchange system. A shared space is a 
copy of an XML object store. Incremental changes to objects are transmitted to all Groove devices 
participating in a shared space in the form of Groove delta messages. These messages may carry pieces 
of application data (a line of text in a chat, a stroke in a sketch) or pieces of administrative data (an 
invitation to join a shared space, a cryptographic key). The distributed communications engine 
ensures that delta messages are reliably delivered to and stored on each node. It adapts as needed 
(sometimes with the assistance of a central relay service) in order to reach nodes that are offline, that 
don't have fixed IP addresses, or that are behind firewalls and NATs. 

Users see none of this plumbing.[3] They just interact with a viewer/editor called the transceiver. 
Figure 18.1 is a picture of a Groove transceiver displaying the shared space that we used to collaborate 
on this chapter. 

[3] In its base version, Groove does not require nor support the notion of a shared-space administrator. However, 
Groove Networks expects to offer an enterprise version of Groove that gives IT personnel more control over 
shared-space policy. 



Peer to Peer: Harnessing the Power of Disruptive Technologies 

 page 226

Figure 18.1. Transceiver viewing and editing Groove shared space 

 
 
The shared space is defined by a set of members, a set of tools, and the data created by members using 
those tools. In our case, the primary tools used for the collaboration included a persistent chat session, 
several threaded discussions, several notepads, a calendar, and a file archive. The tools are Groove-
aware, which means that any change made in a notepad, discussion, or calendar propagates to all 
instances of the shared space. For an individual member, this synchronization may involve two or 
more devices (such as a desktop PC and a notebook PC). 

18.4 Security characteristics of a shared space 

In normal operation, a shared space has a fixed (steady state) population of members. Delta messages 
are being exchanged among the devices (one or more per user) that access the shared space. The kind 
of security that governs these messages may vary, for two different reasons. First, the Groove system 
can support different cryptographic algorithms (and key lengths) for each shared space. The default 
asymmetric algorithm for authentication and key exchange is ElGamal with a 1536-bit modulus. The 
default symmetric algorithm for bulk encryption on the wire is MARC4[4] with a 192-bit key.[5] But 
hooks exist to enable someone to use these algorithms in one shared space and other algorithms in a 
different shared space. These other algorithms might be stronger versions of ElGamal/MARC4 
(though the Groove defaults are already massively strong) or different algorithms altogether, such as 
RSA/Blowfish. A Groove user can choose different cryptographic algorithms to transact business with 
different organizations in parallel shared spaces. Imagine a consultant who works with the NSA on 
some projects and with a university on others. 

[4] Because the symbol RC4 is trademarked by RSA Data Security, Inc. (now RSA Security, Inc.), Groove uses the 
symbol MARC4, which stands for "Modified-Alleged-RC4." "Alleged" refers to a freely available algorithm that's 
plug-compatible with RSA Data Security, Inc.'s RC4. "Modified" means that the first 256 bytes of the keystream 
are discarded, to thwart a weak-key attack. 

[5] In symmetric encryption, a single key is used for both encryption and decryption; in asymmetric encryption, 
the decryptor keeps a private key and the encryptor uses a public key. Symmetric encryption is more efficient, 
hence it's used wherever possible, subject to security considerations. For more information, see Chapter 15. 
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Security for shared spaces can also vary in another way. The protocols that govern message encryption 
and authenticity/integrity can vary independently along these dimensions: 

Encryption/confidentiality  

Who can read delta messages exchanged within the shared space? In theory, encryption can 
be turned off, just as SSL can use a null cipher. In practice, it's not interesting or useful to do 
this, and Groove doesn't. 

Data-origin authenticity/integrity  

Is every delta message guaranteed to have come from its purported sender (and, perforce, not 
to have been tampered with)? Again, it's possible to turn off authenticity/integrity, although 
Groove doesn't. Messages are always authenticated and integrity-protected. There are, 
however, two flavors. A delta message may be guaranteed only to have come from some 
unspecified member of the group, or guaranteed to have come from a specific member. Each 
shared space, for its lifetime, uses one or another of these modes. The first, which we'll call 
"mutual trust," is the most common and least computationally expensive. The second, which 
we'll call "mutual suspicion," is less common and involves more overhead. 

18.5 Mutually-trusting shared spaces 

Let's assume a shared space in "mutual trust" mode - the most convenient and likely setup - and 
review the security model from that perspective. We'll also show why you might want to switch to 
"suspicious" mode. 

18.5.1 Anatomy of a mutually-trusting shared space 

Every Groove user maintains an account on one or more devices. An account is a container of 
identities. A user can project a single identity into all shared spaces but is not restricted to a single 
identity. Carol can be just "Carol" in spaces she shares with her friends, but "Carol Smith, Marketing 
Director" in spaces she shares with colleagues. Technically, a member of a shared space is an 
instantiation of an identity as a participant in that space; the same identity may be a member of many 
shared spaces. 

Each identity is defined by two public/private key pairs - one for signing and verification, one for 
encryption and decryption. The private half of each of these key pairs is stored in the account. The 
public half is stored in the shared space, accessible to all members, and also (optionally) in each user's 
Groove Contacts (an address book), to protect and authenticate Groove instant messages. These 
Groove instant messages are exchanged among Groove identities, but outside the context of a shared 
space. So they're encrypted with one-time symmetric keys that are exchanged via the identity keys. By 
contrast, the delta messages that carry the user and administrative data are exchanged within a shared 
space, so they're encrypted using a symmetric key that's stored in the shared space and thus is 
available to the group, as we'll see later. (If you're confused already about the various keys, you can 
refer regularly to the final section of this chapter, Section 18.13.) 

When members are joining or leaving a shared space, the identity's signing/ verification key pair is 
used to authenticate the messages that invite (or uninvite) members. The encryption/decryption key 
pair is used to encrypt/decrypt the symmetric key, which is in turn used to encrypt/decrypt the 
invitation messages. We'll explore the invitation protocol later. But for now, let's complete the 
description of the security model when the shared space is in normal use. 

When Bob types a line of text into his transceiver's chat window, the data flows in two directions - 
down to the disk, where it's written to the encrypted object store, and over the wire, in encrypted form, 
to the other members' transceivers and object stores. If Bob owns another Groove device, the data 
goes there too. The integrity of the message carrying Bob's chat line is protected by a Message 
Authentication Code (MAC).[6] 

[6] All Groove data that is encrypted is of course also integrity-protected. But to simplify the exposition, we 
sometimes abuse terminology and only explicitly mention the encryption aspect of data protection. 
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Why each Groove identity requires two 
public and private keys 

It's possible to combine the signature/verification and encryption/ decryption functions 
into a single key pair. Beyond the obvious divide-and- conquer rationale, here are some 
subtler reasons why Groove doesn't combine these functions: 

Plug-in cryptography  

Groove's security subsystem is templatized (fully parameterized) and can work with 
virtually any public-key algorithms. Because some algorithms can only digitally 
sign while others can only encrypt, it's necessary to distinguish between the two 
purposes. Further, algorithms differ in the required length and properties of their 
keys. 

External PKI policy  

Groove plans (tentatively) to import key pairs from PKI sources. Such key pairs 
sometimes come with policy (as opposed to technical) constraints - for instance, 
signing might be allowed, but no encryption or key agreement. In order to comply 
with such policies, Groove must keep these key usages separate. 

 
 
The encryption of each disk file is handled by a per-member, per-shared-space symmetric key. This 
key is in turn protected by a master symmetric key, stored in the account Bob created when he first 
installed Groove.[7] Why not just directly encrypt all on-disk shared spaces with the master key? The 
extra level of indirection isolates each shared-space file into its own security domain. 

[7] The account itself is protected by a key derived from the passphrase chosen by the user when the account was 
created. Just as the master key is used to decrypt each shared-space-storage key, this passphrase-derived key is 
used to decrypt the account's storage key - and that's the only thing the passphrase is used for. 

The encryption of Groove delta messages sent over the wire is handled by a symmetric key - which 
we'll call the group key - that's stored in the shared space and accessible to all members. In fact, there 
are two such keys - one MAC key, called LG, for data integrity and authentication (the symmetric-key 
analogue of signing and verification), and one cipher key, called KG, for encryption and decryption. 
Here, G denotes the set of group (shared space) members. 

The default algorithm used for the MAC is HMAC-SHA1. SHA1 (FIPS 180-1) is used to produce a hash 
of the header and body of the message. HMAC (RFC 2104) provides authentication and integrity 
protection of the resulting hash. 

18.5.2 The key to mutual trust 

Our term "mutual trust" concerns how closely you can trace messages to senders. Upon receiving a 
message within a shared space, a member of the shared space can prove it was not tampered with by 
recomputing the MAC using the LG key and comparing the resulting MAC with the transmitted MAC. 

The message's sender is authenticated by the same means. Since the group key, LG, was exchanged in 
an authenticated way (that is, via the invitation protocol or piggy-backed on a standard Groove delta 
message, as later described), only group members will have it. If the MACs match, the message must 
have been sent by a group member. But the exact member who sent the message cannot be verified, 
because LG is common to all members of the shared space. That's why we call this a mutually-trusting 
shared space. Members are not prevented from spoofing each others' messages; they merely agree to 
trust one another not to do so. 

To see why this mutual trust might not suffice, imagine a transcorporate shared space in which 
members engage in a high-stakes negotiation. It's not enough to know that a message came from an 
authenticated member of the group. It's crucial to know that a message came from an authenticated 
individual who's part of a particular negotiating team. In such cases, you'll need to form a mutually- 
suspicious shared space. 
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Why not always be suspicious? All things being equal, you'd rather bind message authenticity to 
individuals rather than just to the group. But all things aren't equal; it's more costly to authenticate 
individuals, as we'll see. And for many of the group activities that Groove can support, group-level 
authentication works just fine. When we were collaborating on this chapter, we cared about three 
things: 

Confidentiality  

We didn't want anybody else reading our stuff. 

Authenticity  

We didn't want anybody else impersonating a group member. 

Integrity  

We didn't want any data corrupted in transit. 

We got these assurances in a mutually-trusting shared space. And we got them just by installing and 
using Groove. When impersonation is a real risk, though, you'll want to create a mutually-suspicious 
shared space. Let's look at how that works.[8] 

[8] In the preview version of Groove available at the time this chapter was written, the ability to configure a 
shared space to run in trusting or suspicious mode was not exposed to the user. By default, shared spaces ran in 
trusting mode. 

18.6 Mutually-suspicious shared spaces 

It's time to introduce some more keys. Each member in each shared space has a Diffie-Hellman 
public/private key pair. These Diffie-Hellman keys (which are authenticated via the identity key pairs 
mentioned previously) are used to establish pairwise symmetric keys - that is, keys shared between 
each pair of members within a shared space. Through the magic of Diffie-Hellman, the pairwise keys 
aren't sent over the wire. Instead, they're independently computed by each pair of members. Bob 
computes a Bob/Carol pairwise key from his Diffie-Hellman private key and Carol's Diffie-Hellman 
public key. Carol computes the same pairwise key from her private key and Bob's public key. 

There are two kinds of pairwise keys between members Mi and Mj. A cipher pairwise key, Kij, encrypts 
the group keys (KG, LG) for distribution. A MAC pairwise key, Lij, assures the data origin 
authenticity/integrity of messages in a suspicious shared space. 

Recall that in the trusting case, a MAC is attached to each message. It's a MAC of the header and body 
of the message, protected in the group key: {X}LG. Rather than a group-level MAC, suspicious mode 
uses a set of individual MACs denoted as {X}Lij, one for each pair of members. Each of these uses 
HMAC-SHA1 to authenticate a message using the pairwise key shared between a pair of members. The 
resulting MACs are called authenticators (or multiauthenticators). These are symmetric-key analogues 
of public-key signatures. 

Figure 18.2 shows what the authenticator looks like for a message in the trusting case. The size is the 
same for groups of any number. For each message, there's just a header, a body encrypted in the group 
key KG, and an authenticator in the group key LG. In a suspicious group, however, as shown in Figure 
18.2, the multiauthenticator grows linearly with group number. For each message, there's a header, a 
body encrypted in the group key KG, and one MAC per member in the pairwise keys Lij. 

Groove could have used public-key signatures instead of multiauthenticators. The advantage is that 
the size of such signatures and the time required to compute them remain constant. But public-key 
signatures are big, and they are very slow. For the small groups that are the focus of the initial release 
of Groove, multiauthenticators work best. 

There are two different reasons to bundle authenticators into multiauthenticators: to support message 
fanout and to support the recovery of lost messages. 

 



Peer to Peer: Harnessing the Power of Disruptive Technologies 

 page 230

Figure 18.2. Authentication overhead: suspicious mode vs. trusting mode 

 

 
18.6.1 Message fanout 

The Groove system supports pure peer-to-peer communication. In the simplest case, two Groove-
equipped PCs connected by a null 10BaseT cable can communicate happily. But what if a member is 
firewalled, or offline, or connected by way of a very slow link? In these cases, the Groove software can 
use a relay server to enable or optimize peer communication.[9] 

[9] Other companies may also offer relay services to support the Groove software. 

A relay server is a system that understands Groove communication protocols and can route messages 
accordingly. The relay doesn't know anything about members, only about shared spaces and devices. 
Suppose Bob is on a modem link and sends a message to Carol and Alice. Rather than send two 
messages over that slow link, he'd like to send just one message to the relay and have the message fan 
out to everybody on its fast link. (The relay can also store and forward the message to someone who is 
offline.) The single multiauthenticator enables the sender to create a single delta message and push it 
to the relay server. 

Consider the alternative: multiple deltas, each equipped with a single-authenticator. In that case, the 
sender would have to transmit n times the data through the pipe. Or the relay would have to interpret 
application layer data and then tag on the appropriate authenticator for the appropriate member, 
rather than just blindly relaying application data without parsing or interpreting it. 

A complete description of Groove's communication protocols is beyond the scope of this chapter. 
Briefly, the Device Presence Protocol (DPP) solves the naming and awareness issues for devices. The 
Simple Symmetric Transport Protocol (SSTP) connects clients to clients, clients to relays, and relays to 
relays. It's SSTP that propagates information about a delta message, including its target endpoint. 

For each target endpoint, there are three possible routes, listed here in order of preference: 

1. Send directly (peer-to-peer) to the endpoint. This is impossible if target or sender is offline. 

2. Send to the endpoint's preferred relay (currently hardcoded, but eventually user-
customizable). This is impossible if either the relay or sender is offline. 

3. Store it on the sender until it can be sent to the target or relay. This is always possible, as a last 
resort. 
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The preferred choice depends not only on who's online, but also on a heuristic calculation - by the 
sender - of the relative efficiency of the three choices. The sender considers line speed and message 
size to determine whether multicast (1) or fanout (2) would be better. The sender also needs to 
consider the firewall situation. Once the target's IP address is resolved through DPP, the source client 
will try to communicate directly to the target client. A direct peer-to-peer connection is always 
preferred over a relayed connection. However, sometimes it's necessary to use the relay as an 
intermediary even if both clients are online. Table 18.1 summarizes the possibilities. 
 

Table 18.1, Relaying vs. direct connection 

Source/client A Target/client B Connection 

Public[10] Public Direct 

Firewall/ NAT/Proxy W/ 2492[11] Public Direct 

Firewall/NAT/Proxy NO 2492[12] Public Via relay 

Firewall/NAT/Proxy Firewall/NAT/Proxy Via relay 

Public Firewall/NAT/Proxy NO 2492 Via relay 

Public Firewall/NAT/Proxy W/ 2492 Initially via relay[13] 

 

[10] Public: A device with a public IP address to which a direct connection is possible. This includes devices with 
DHCP-assigned public addresses. 

[11] W/ 2492: A configuration where port 2492 (the network port used by Groove's proprietary SSTP protocol) is 
allowed inbound (if it appears in the "source" column) or outbound (if it appears in the "target" column). 

[12] NO 2492: A configuration where Groove is forced (since other paths have failed) to use a path (such as an 
HTTP proxy) that blocks port 2492 inbound (if it appears in the "source" column) or outbound (if it appears in 
the "target" column). In this case, Groove must encapsulate all SSTP messages within HTTP messages and send 
them through port 80 (the HTTP port). This configuration also implies that the connection must go through the 
relay server since a Groove client cannot accept inbound connections on port 80 at this time. Groove does not 
want to conflict with other applications (such as a web server) that may be running on the client. 

[13] The connection is initially established via the relay server. However, it is possible that the connection can 
transition into a direct connection if client B decides to change roles and become not only a listener from client A, 
but also a sender to client A. If so, client B creates a new connection to A that takes the properties of the second 
scenario (in the second row above), a direct connection. Since Groove favors direct connections over relayed 
connections, the original relayed connection from A to B terminates and is replaced by the direct connection 
from B to A . 

18.6.2 Fetching lost messages 

Suppose Alice never receives Bob's message. Because messages are sequenced, Alice's Groove software 
will discover that the message is missing and try to fetch it. Ideally, she'll fetch it from Bob. But what if 
Bob has, meanwhile, gone offline? In this case, Alice will try to fetch the lost message from Carol. 
Carol then encrypts the message in her Carol/Alice encryption key but attaches the Bob/Alice MAC 
(which Carol memorized earlier for this purpose) so Alice can correctly authenticate the message as 
one from Bob. 
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18.7 Shared space formation and trusted authentication 

The person who sends an invitation to join a shared space is called the "chair" - in the sense of 
"chairperson of a meeting." If all of the members of a would-be shared space are already running 
Groove, the invitation protocol can begin with a Groove instant message from the chair to the invitees. 
Alternatively, this invitation can travel as email. The email alternative is especially important because 
it's a bootstrapping mechanism that brings non-Groove users into the Groove realm. In this case, the 
message's subject says "Please join our shared space." Its body describes the purpose of the shared 
space and offers a link to download and install the Groove software in case the recipient isn't already 
running it. Finally, the email message attaches the first in the sequence of Groove messages that 
comprise the Groove invitation protocol. Once the Groove software is installed, double-clicking that 
attachment "injects" the message into Groove and kicks off the invitation protocol. 

Note that in this scenario, Groove uses email only as an unsecured carrier. This raises the specter of 
end-entity authentication: how do the chair and the invitee convince themselves that they're talking to 
the "right" person, i.e., that the invitation protocol hasn't been hijacked by an imposter? It's possible, 
though unlikely, that the sender and recipient will use S/MIME or PGP to authenticate and/or encrypt 
the invitation message. 

In the case of S/MIME, trust resides in a PKI-based system. If an S/MIME signature were attached to 
the chair's invitation message, the invitee could examine the certificate bound to that message. The 
certificate would in turn be signed by a certification authority (CA). The CA assures the invitee that the 
chair's certificate - on the invitation - binds to a specified real-world identity. 

In the case of PGP, trust resides in a more decentralized web of trust system. Rather than depending 
on a PKI hierarchy, PGP models trust in a more collegial way. Certificates are signed, not by 
specialized CAs, but by other people. PGP users sometimes expand their webs of trust by holding 
"signing parties" where people can meet face-to-face and cross-certify their keyrings. 

It's plainly evident that neither the hierarchical nor the web of trust approach has taken the world by 
storm. For most people, PGP and S/MIME implementations are far too complex and hard to use. The 
result is that the percentage of signed and/or encrypted email on today's Internet is vanishingly small. 

Groove aligns itself more closely with PGP than with S/MIME. And it's influenced by recent initiatives 
to simplify PKI: Simple Public Key Infrastructure (SPKI, RFC 2692), and Simple Distributed Security 
Infrastructure (SDSI, http://theory.lcs.mit.edu/~rivest). These initiatives, now merged, aim to make 
direct user-to-user cross-certification easy enough so that users can actually do it for themselves, in a 
natural way. Central to this approach is SDSI's notion that identities need not be represented by 
globally unique names, nor characterized by a fixed set of attributes. SDSI stresses that it is human 
judgment that must decide, given a set of attributes, whether to accept a claimed identity as valid. To 
that end, it should be easy to create and read certificates containing attributes that are meaningful to 
people: Phone numbers, photos, and free-form text. Groove, though not an implementation of SDSI, 
subscribes to these ideas. 

In Groove, the public persona of an identity is called a contact. It contains a self-chosen free-form 
name,[14] and the public halves of the identity's two self-chosen key pairs.[15] In an enterprise version of 
Groove, it might also contain a student ID or an X.500 name (such as O="Big Corporation 
Ltd"/OU="Finance"/CN="John Doe"). 

[14] The self-asserted name will typically be the user's real-world name, but it could also be an email name, or 
indeed any display name or alias the user chooses. 

[15] The key pairs are currently "self-chosen" in the sense that Groove automatically generates them (locally, on 
the user's machine) and assigns them to the identity when it is created (there is a different set of generated key 
pairs for each identity). There is no central "identity authority." In the future, Groove will almost certainly allow 
users to import their key pairs from external sources, such as PKI certificates. 

http://theory.lcs.mit.edu/~rivest
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When Bob creates his identity, he may decide to add more information to the contact - for example, 
his phone number. Here's how Alice can use that information to authenticate Bob's invitation 
message. The message is signed by Bob. It comes with the public key that is purportedly Bob's.[16] 
Alice's Groove software first verifies the signature using the transported public key (thereby 
guaranteeing that the message was really signed by the private key corresponding to the transported 
public key) and then locally computes the fingerprint (hash of the public key, a string of hex digits). 
She can then phone Bob and ask Bob to report his genuine fingerprint to her. If the fingerprints 
match, the message could only have come from (i.e., been signed by) Bob - assuming that the private 
key for Bob's Groove identity, protected by Bob's passphrase, remains uncompromised under Bob's 
control. 

[16] To simplify the narrative, we sometimes pretend the two Groove key pairs are just one key pair, used for 
signature/verification and encryption/decryption/key establishment. 

Alice knows Bob, along with his phone number and his voice, through trusted, out-of-band, real-world 
channels. For example, Bob might have printed his fingerprint on his business card and given the card 
to Alice in a face-to-face meeting. Later, recalling that meeting, Alice matches the fingerprint on the 
business card to the fingerprint computed from a message claiming to come from Bob. Authentication 
doesn't depend on third-party certification of Bob's public key. Groove depends on relationships that 
are rooted in real-world collaboration, and it extends those relationships into the realm of shared 
spaces. 

Admittedly, this scheme places the burden of establishing trust on the user. But the truth is that the 
burden always rests with the user. Technologies such as S/MIME and SSL purport to take matters out 
of users' hands. But they, too, ultimately rely on fingerprints that people should in theory check before 
investing trust, but in practice almost never do. From the user's perspective, what sets Groove apart 
from other systems is its all-crypto, all-the-time approach. You never have to worry about whether 
messages are confidential, because they always are. Messages are likewise always authentic - to 
precisely the degree that you care about authenticity. In a shared space that supports casual 
discussion, you may not care about the risk of impersonation. What's more, some spaces may be 
explicitly pseudonymous, with no use of real-world identities. In these cases, you may not bother to 
check fingerprints. In a shared space that supports highly confidential business activities, however, 
you should worry about impersonation, and you should check fingerprints. 

Note that while Groove does not implement or require PKI, neither is it incompatible with PKI. Recall 
that Groove is flexible about the kinds of information stored in an identity's contact. If an enterprise 
has assigned X.500 names to employees, these names can be included in Groove identities. In this way 
Groove can ride on preexisting directory and naming structures. Further, its authentication protocols 
can be extended to handle PKI-style certificate validation. When an enterprise runs its own CA, for 
example, an enterprise version of Groove might be configured to trust that CA, just as browsers today 
accept SSL and S/MIME certificates signed by VeriSign, Entrust, and others. Look for PKI integration 
in post-preview editions of Groove. 

18.8 Inviting people into shared spaces 

When Bob invites Alice into a shared space that already includes Bob and Carol, the following things 
will have to happen: 

• Bob and Alice must complete the invitation protocol. 

• New pairwise keys (Alice/Bob, Alice/Carol) will need to be established. 

• The group key will need to be given to Alice. 

Note that the first step of the invitation may not be confidential. Alice isn't a member yet, and the key 
that will be used by the new group doesn't exist. What's more, Alice may not even be a Groove user 
yet, in which case she has no Groove account, identity, or public key that Bob can use to encrypt the 
first invitation message. In this case, the invitation is not confidential - unless Bob and Alice have 
established confidentiality in another way, for example, using S/MIME to encrypt an email version of 
the invitation message. But the invitation is always digitally signed by the Groove software with Bob's 
signature private key, regardless of the channel used to send it. 
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Alternatively, Bob and Alice may already be Groove users who have communicated before. In this 
case, the invitation - if sent as a Groove instant message - is confidential. 

Either way, the invitation includes all the information needed to bring the new member into the 
shared space: 

• A cryptographic context, which defines the algorithms to be used in that shared space. It 
includes, among other things, the Diffie-Hellman parameters used within the shared space. 
Alice's Groove software will use this information to generate her Diffie-Hellman key pair. 
Once Bob's Groove software has distributed Alice's Diffie-Hellman public key to everyone, she 
will be able to use the key to compute pairwise keys with other members. 

• The public keys for Bob's identity. 

On receiving the message, Alice can verify that it's intended for her (by checking the name on the 
invitation), authenticate Bob's contact (by calling the phone number listed there and checking the 
fingerprint), and consider what kind of shared space she's been asked to join. In practice, when the 
two parties have previously communicated in Groove, the authenticity of the message is not in 
question. It's only a question of whether to join for the stated purpose (for instance, to collaborate on a 
project), given the stated mode (for instance, trusting vs. suspicious). 

To accept the invitation, Alice will have to install Groove if she hasn't already done so. If Alice then 
agrees to join the group, her Groove software sends Bob's software a message containing the following 
information: 

• A one-time key encrypted in Bob's public key. 

• Alice's Diffie-Hellman public key for the shared space, signed by the private half of the 
identity key in her account so that each member can verify its authenticity. 

On receiving Alice's acceptance, Bob's Groove software decrypts the one-time key, decrypts Alice's 
reply with the one-time key, and verifies the validity of Alice's acceptance. Bob himself, after a 
fingerprint authentication of Alice, can then manually confirm (by clicking an OK button) that Alice 
should be added to the group. That confirmation triggers the following events: 

• A New-Member-Added message is sent to the group. 

• Alice receives a copy of the shared-space data, which includes the group keys, KG and LG. The 
shared-space data is encrypted in a one-time key which is, in turn, encrypted in Alice's public 
key. 

18.9 The New-Member-Added delta message 

The message that tells everybody a new member has joined is called, appropriately, the New-Member-
Added delta. This message, sent from Bob to the preexisting members (in this case, only Carol), 
announces that Alice has joined the group. It includes Alice's Diffie-Hellman public key, which Carol 
stores in her member list and uses to establish her pairwise key with Alice. 

Arguably, the New-Member-Added message should also trigger the establishment of a new group key. 
It doesn't. Only when a member is uninvited is a new group key established. When Alice is invited, she 
gets the same group key that Bob and Carol were already using. Therefore, she can read all previous 
messages stored in the shared space. The policy might instead be that Alice is not necessarily privy to 
the prior activities of the group. Resetting the group key on invitation would prevent her from reading 
messages (had she recorded them) that were exchanged among preexisting members before she 
joined. An early implementation of Groove in fact worked just this way. But this model conflicted with 
the way most people want to use Groove. When you join a shared space, you don't typically want to 
receive only future messages exchanged within it. You want to see the whole history of the shared 
space. Access to that prior transcript is, in many cases, the prime motivation to join. So when Alice 
joins the group, her shared space synchronizes fully with the group's. 
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Groove's security subsystem retains latent support for reestablishing the group key on invitation, and 
this feature may be reenabled, at least as an option, in post-preview editions of Groove. Of course, 
users can themselves achieve a similar effect. If Bob and Carol had been collaborating in a shared 
space and then wanted to invite Alice without giving away the contents of that shared space, they 
could simply create a new shared space and invite Alice into it. 

If Carol uninvites someone, her Groove software sends a rekey delta message, which includes the 
changed group membership information plus " piggy-backed" rekey information. A rekey delta can 
include any combination of group rekeys. In the case of a simple member removal, it's used to 
establish a new group key. The new group key is transmitted by separately encrypting a copy of it, per 
member, in the pairwise key (Kij) shared with that member. This applies in both modes: trusting and 
suspicious. 

Groove adds rekey information onto the delta message for two reasons: 

• So security metadata (including the rekey information and MACs) can be transparent to the 
higher-level application. It can MAC the delta without knowing that rekey information was 
added to it. On the receiving end, the security layer strips off the rekeys before handing the 
delta back to the application layer. 

• So the new key sent in the piggy-back rekey information can be immediately used to encrypt 
the delta that it is being piggy-backed onto. If the rekey information were embedded inside 
the payload of the delta, then on the receiving side, the delta would first need to be decrypted 
in a previous key. Because the rekey information is piggy-backed outside the encrypted delta 
payload, that delta itself can be encrypted in the new key. 

The uninvitation protocol cannot, as yet, be controlled administratively using credentials and 
permissions. Currently, any member can kick another member out of a shared space. An authorization 
architecture, for controlling access to this and other actions, is planned for a near-future release. In 
the meantime, tool writers can use the authentication machinery to implement tool-specific 
authorization rules, though we recommend waiting (if you can) for explicit authorization support in 
Groove. 

18.10 Key versioning and key dependencies 

Groove messages may arrive in any order. In particular, Carol might receive a message from Alice 
encrypted in the new group key, K2, before she receives the message from Bob that bears that new key. 
This can happen, for example, if her link to Alice is faster than her link to Bob. 

The solution is for Alice's message to state its dependence on a version of the group key. The message 
says, in effect, "I depend on a key-bearing message from Bob," and it includes the sequence number of 
that message. If Carol's Groove software hasn't yet seen the message bearing K2, it will defer handling 
of Alice's K2-encrypted message until the key arrives. Fortunately for Groove's security system, 
message sequencing is a fundamental property of the underlying communication layer. 

In fact, things are a bit more complex. It's not just that Carol is waiting for a message from Bob in 
order to be able to decrypt a message from Alice. More accurately, Carol at her desktop PC is waiting 
for a message from Bob at his notebook PC in order to decrypt a message from Alice at her desktop 
PC. Sequence numbers are, in short, device-specific. Bob himself may have sent K2 from his notebook 
PC but not yet received it at his desktop PC at work. Like all Groove messages, a rekey message has to 
propagate to all endpoints. 

At some point, Carol's Groove software will want to delete the old group key, K1. Can it do this once it 
knows that everyone has received K2? No. It must also know that every message depending on K1 has 
been received by all user/device pairs. To disseminate this knowledge, all Groove endpoints 
periodically broadcast their current state to the shared space members, and describe their latest 
dependency sequences. 

The old and new keys, K1 and K2, represent major versions of the group key. There's also a need to 
further differentiate keys using minor versions. Here's why. Consider two companies, C1 and C2, 
participating in a shared space by way of their respective Internet connections, using group key K3. 
Figure 18.3 shows the configuration of members in the shared space. 
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Figure 18.3. Shared space before disruption 

 
 
Now C1's T1 line goes down temporarily, isolating the C1 members from the C2 members. During this 
period of separation, M1 (in C2) uninvites M2, and M4 (in C1) uninvites M5. Figure 18.4 shows the 
result. 

Figure 18.4. Shared space after disruption 

 
 
Each uninvitation independently produces a new group key, K4. Now the T1 line comes back up. How 
does the system distinguish between the two K4s? To handle this case, the major version of a key is 
qualified by a minor version, which is actually the sequence number of the message that transmitted 
the key. 

18.11 Central control and local autonomy 

Assuring that Groove would work in a fully decentralized, peer-to-peer mode was a major challenge. 
"It wasn't just for amusement that we undertook to do this," says Ray Ozzie, founder and CEO of 
Groove Networks, and before that the creator of Lotus Notes. He notes that the current trend toward 
hosting critical business software at ASP (application service provider) sites introduces worrisome 
points of failure. Groove de-emphasizes (but does not abolish) centralization. If a relay service 
provided by Groove Networks (or another provider) fails, Groove users can in general continue to 
communicate, and even execute such complex protocols as concurrent uninvitations involving 
disconnected subgroups. 

At the same time, there are crucial aspects of security that should be at least logically centralized. For 
enterprise IT, a hybrid approach is better than a pure peer model. You want to centrally determine a 
policy for your network of peers and then distribute that policy to the individual desktops. Such a 
policy might control the following: 

• The required length, complexity, and change frequency of the account passphrase 

• Whether a user's PC can memorize the account passphrase 

• Whether users are required to authenticate one another, and if so, how 

• Whether everyone, or only designated shared-space administrators, can invite and uninvite 
members 

• Who, outside of the enterprise, can join a group, and on what terms 
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The Groove product was designed to be as easy to use as a PalmPilot, because Ozzie's prior experience 
with Notes showed that the vast majority of security leaks were caused by human (that is, user and 
administrative) error. The goal was therefore to create a product that delivers high-grade security by 
default, requiring as little of the user (or administrator) as possible. Users, in particular, see no 
security-relevant configuration choices, and as a result their secure use of the system is as failsafe as 
possible. Administrators, likewise, will be constrained to a minimal set of security choices. 

One such choice deserves special note. A user can ask the Groove software to memorize the account 
passphrase, so that it need not be retyped once per session. If the user must first authenticate to the 
operating system (Windows NT, 2000), this won't be a problem so long as there is a passphrase. (It's 
possible, but inadvisable, to create an account with no passphrase at all. In that case, nothing is 
securely protected on disk.) But if the user doesn't authenticate to the operating system (as Windows 
95 and 98 allow), the machine boots up automatically into Groove and only physical security governs 
the Groove data. Because the goal is for the Groove software to become as ubiquitous as the browser, 
it was decided to allow this feature.[17] Clearly this is the kind of policy that you might want to reverse 
in an enterprise deployment of Groove, in order to ensure that users do the right thing. 

[17] There's more to the story. Memorized passphrases are, locally, the moral equivalent of null passphrases. But 
remotely they are superior. That's true because Groove accounts are mobile. A user can transfer an account 
from one device to an Internet-based service, and thence to another device. Memorized passphrases encourage 
long/strong passphrases, so are accounts stored on the Internet strongly protected. 

There's another important sense in which Groove's central services help people do the right thing with 
respect to security - or, rather, discourage them from doing the wrong thing. The Groove relay server 
will proxy connections between peers when one or both are behind firewalls or NATs. Although 
Groove prefers direct connections between endpoints, it will always work out of the box for users who 
cannot establish such connections. That means people need not try to make complex, and thus error-
prone, modifications to their perimeter security. 

18.12 Practical security for real-world collaboration 

At the end of the day, all software is rife with vulnerabilities. No one pretends that Groove is immune 
to this law. Although Groove encrypts to hard disk, it can't encrypt the virtual memory pages swapped 
out by the operating system. It can't save you from rogue software components that you trustingly 
install and use or Trojan horse programs that install themselves without your knowledge. It can't hide 
the data on your screen from a microcamera hovering over your shoulder or from a Van Eck device 
down the street. 

Security is never wholly attainable, for a long and depressing list of reasons. But you should still take 
every reasonable precaution. Today, few people bother. And in truth, the popular decision to shun 
existing ways to secure our routine collaboration is not an irrational one. It's hard to take reasonable 
precautions. Doing so interferes with the spontaneity we require. The procedures are complex and 
therefore error-prone. Even when we try to secure our communications, we often fail to do so. 

Groove aims to make reasonable precautions automatic and failsafe. It envisions a world in which 
peer-enabled groupware is as easy and spontaneous as email, yet as secure as anything transpiring on 
the Net today. 

18.13 Taxonomy of Groove keys 

The cryptographic keys used in Groove are described in the following list: 

One passphrase per account  

Not shared with anybody else. Stored in the user's brain (unless the user requests Groove to 
memorize it on a machine, which is convenient but discouraged). The Unicode passphrase can 
have any length and take any form. It can be changed wherever you want, but if you have 
multiple copies of an account on multiple machines, you have to change the passphrase 
yourself on each machine. 

One asymmetric key pair per identity for signature/verification  

The default algorithm is ElGamal. This key pair is used for several signature/verification 
purposes: to authenticate invitations, instant messages, and Diffie-Hellman public keys. It's 
stored in the account and cannot be changed (except by creating a new identity). The public 
half of the key pair is also stored in the identity's contact, which is shared with other users. 
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One symmetric key per account  

This key protects the account itself (actually, the storage key for the account file, described 
later in this list). By default, it is a MARC4 key generated from the user's passphrase using the 
PBKDF2 algorithm, with a salt and an iteration count. In this case, MARC4 uses 256-byte 
keys, rather than the Groove default 24-byte keys. The length of the salt is 20 bytes, and the 
iteration count is currently set at 256 (i.e., approximately one-tenth of a second on current 
typical CPUs). These unusual precautions ensure that the passphrase itself, not the 
cryptography surrounding it, is the weakest link - as it should be. 

Another asymmetric key pair per identity for encrypting/decrypting symmetric keys  

The default algorithm is ElGamal. This key pair is used to encrypt/decrypt the symmetric (by 
default, MARC4) keys that in turn protect the invitation protocol and instant messages. It's 
also stored in the account and cannot be changed (except by creating a new identity). The 
public half of the key pair is also stored in the identity's contact, which is shared with other 
users.[18] 

[18] As noted previously, this key pair and the preceding one are sometimes conflated in informal 
discussion. When we say "the key pair of the identity," we mean both the signature and the encryption 
key pairs. 

One digital fingerprint per identity  

This is a hash of the public halves of the above two identity key pairs, as verifiably calculated 
by Groove on a per-use basis. It enables Groove users to authenticate one another. 

One Diffie-Hellman key pair per member, per shared space  

It's deterministically generated from the private halves of the previous two identity key pairs 
and the GUID (24-byte random globally unique ID) of the shared space. This key is constant 
for the duration of the member's participation in the shared space and is used to establish 
pairwise keys with other members of that shared space. 

One pairwise key (Kij ), per pair of members, per shared space, used for key distribution  

The algorithm for this symmetric key is, by default, MARC4. The key is computed for each 
pair of members from the Diffie-Hellman key pairs, by means of the classical (authenticated) 
Diffie-Hellman key agreement algorithm. It's cached in each member's copy of the shared 
space and used to distribute the group key when it changes. 

Another pairwise key (Lij ), per pair of members, per shared space, for message authentication  

The associated algorithm is, by default, HMAC-SHA1. The key is again computed for each pair 
of members from the Diffie-Hellman key pairs, and it's used to assure message authenticity 
and integrity in mutually-suspicious mode. 

One group key per shared space (KG ), for confidentiality  

This key (by default, MARC4) is used for shared space confidentiality. It's stored in the shared 
space and is reestablished whenever a member leaves the shared space. 

Another group key per shared space (LG ), for message integrity  

This key (by default, HMAC-SHA1) is used for shared-space integrity in trusting mode. It's 
stored in the shared space, and is reestablished whenever a member leaves the shared space. 

Master key  

One per account, stored in the account (and hence protected by the passphrase). This key 
(MARC4 by default) is used to protect storage keys (next item). 

Storage keys  

One per shared-space file, including the account file. These keys encrypt/decrypt on-disk 
data. The storage keys for (non-account) shared spaces are protected by the master key and 
stored with the shared-space files. The storage key for the account is protected by the 
account's passphrase and stored with the account file. 
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Chapter 19. Interoperability Through Gateways 
Brandon Wiley, Freenet 

In my travails as a Freenet developer, I often hear a vision of a file-sharing Utopia. They say, "Let's 
combine all of the best features of Freenet, Gnutella, Free Haven, Mojo Nation, Publius, Jabber, 
Blocks, Jungle Monkey, IRC, FTP, HTTP, and POP3. We can use XML and create an ÜberNetwork 
which will do everything. Then we can IPO and rule the world." 

When I hear this vision, I shake my head sadly and walk slowly away. I have a different vision for 
solving the world's file-sharing problems. I envision a heterogeneous mish-mash of existing peer-to-
peer applications creating one network with a thousand faces - what you might call an OmniNetwork. 

19.1 Why unification? 

Every network has its flaws. As a Freenet developer, I never miss an opportunity to give Gnutella's 
scalability and anonymity a good-natured ribbing. At the same time, Freenet is constantly criticized 
because (unlike with Gnutella) you have to donate your personal hard drive space to a bunch of 
strangers that may very well use it to host content that you disapprove of. 

The obvious solution is to use only the network that best suits your needs. If you want anonymity, 
Freenet is a good choice. If you also want to be absolutely sure that you are not assisting the forces of 
evil (can you ever really be absolutely sure?) use Gnutella. 

Ah, but what if you want Freenet's "smart routing" and yet you also want Gnutella's fast integration of 
new nodes into the network? 

The answer is obvious: build an ÜberNetwork with anonymity and smart routing and fast node 
integration and a micropayment system and artist compensation and scalability to a large number of 
nodes and anti-spam safeguards and instant messaging capability, etc. It is ideas such as this that 
make me want to cast off the life of a peer-to-peer network developer in exchange for the gentle ways 
of a Shao-lin monk. 

19.1.1 Why not an ÜberNetwork? 

The problem with an ÜberNetwork is simple: it's impossible. The differences in file-sharing networks 
are not merely which combinations of features are included in each particular one. While many file-
sharing networks differ only in choice of features, there are also distinct and mutually exclusive 
categories of systems. Several optimization decisions are made during the design of a network that 
cause it to fall into one of these categories. You can't optimize for everything simultaneously. An 
ÜberNetwork can't exist because there are always trade-offs. 

19.1.2 Why not an ÜberClient? 

The idea of an ÜberClient is similar to that of an ÜberNetwork: To create a single application that 
does everything. An example of such an application in the client/server world is the ubiquitous web 
browser. These days, web browsers can be used for much more than just browsing the Web. They are 
integrated web, news, email, and FTP clients. The majority of your client/server needs can be serviced 
by a single application. Unlike the ÜberNetwork, the ÜberClient need not force everyone to convert to 
a new system. An ÜberClient would be compatible with all of the current systems, allowing you to pick 
which networks you wanted to retrieve information from. 

The problem with the ÜberClient is that it is a client, and clients belong in the client/server world, not 
the world of peer-to-peer. Furthermore, the ÜberClient that already exists - the web browser - can 
serve as a kind of gateway to peer-to-peer applications. Many file-sharing networks either act as 
miniature web servers or are developing browser plugins. Someday you will probably be able to access 
all of the file-sharing networks from your web browser. 

However, there is a catch: you will have to be running a node on each file-sharing network that you 
want to access. To do otherwise would not be peer-to-peer, but client/server. Also, the advantages of 
files crossing over between networks are lost. Files on Free Haven will still take a long time to load and 
unpopular files on Freenet will still disappear. 



Peer to Peer: Harnessing the Power of Disruptive Technologies 

 page 240

19.1.3 Why not just use XML? 

The next most popular solution after the creation of an ÜberClient is to link all of the existing 
networks together using an interoperable protocol, such as something based on XML, like XML-RPC 
or SOAP. The problem with this approach is that is doesn't solve the right problem. The beauty of 
XML is that it's a single syntax that can be used for many different purposes. It's a step in the right 
direction for cross-platform, language-independent object serialization and a universal syntax for 
configuration files. However, the problem of interoperability between file-sharing networks is not the 
lack of a shared syntax. The syntax parsers for all existing file-sharing networks are minor 
components of the code base. A message parser for any existing system could be written in a weekend 
if a clear specification was available. 

The problem of interoperability is one of semantics. The protocols are not interoperable because they 
carry different information. You wouldn't expect Eliza to be a very good chess player or Deep Blue to 
be a good conversationalist even if they both used an XML-based protocol for communicating with 
you. Similarly, you should not expect a free system such as Gnutella to understand a micropayment 
transaction or an anonymous system such as Freenet to understand user trust ratings. 

19.2 One network with a thousand faces 

The solution to the problem, then, is not an ÜberNetwork, but the integration of all the different types 
of networks into a single, interoperable OmniNetwork. This has some advantages over the current 
state of many non-interoperable networks. Each person could use his or her network of choice and 
still get content from all of the other networks. This means that everyone gets to choose in what way 
they want to participate, but the data itself reflects the cumulative benefits of all systems. 

To clarify this statement, I will describe how a gateway might work between Freenet and Free Haven. 
What are the advantages of a gateway? They pertain to the relative strengths and weaknesses of the 
systems. Data on Freenet can be retrieved quickly, whereas speed is recognized as a problem on Free 
Haven. However, data can disappear at unpredictable times on Freenet, whereas the person who 
publishes data on Free Haven specifies when it expires. Combine the two systems and you have 
readily available, potentially permanent data. 

Suppose a user can insert information into either Free Haven or Freenet, depending on her 
preference. Then a second user can request the same information from either Free Haven or Freenet, 
depending on his preference. If the users are on the same network, the normal protocols are used for 
that network. What we're interested in here are the two possibilities left: either the information is on 
Free Haven and the requester is on Freenet, or the information is on Freenet and the requester is on 
Free Haven. In either case, the information should still be retrievable: 

When Free Haven data is requested through Freenet  

Requesting data through Freenet guarantees the anonymity of the requester even if he 
distrusts the Free Haven node. Additionally, every request of the file through Freenet causes 
the information to migrate to Freenet, lending the caching ability of Freenet to future 
requests. While the first request has to go all the way to Free Haven to fetch the information, 
subsequent requests need only traverse Freenet and will therefore be faster. If the information 
expires from Freenet, a copy still exists in Free Haven. 

When Freenet data is requested through Free Haven  

In this case, the information is retrieved from Freenet and cached in Free Haven. Since the 
information was fetched from a Freenet node, the anonymity of the requester is guaranteed 
even if he mistrusts the Freenet node. Additionally, requesting the data from Free Haven will 
cause it to be cached in Free Haven, so a copy with a guaranteed lifetime will now exist. If it 
should expire from Freenet, a copy still exists in Free Haven. 

This is just one example of the ways that the synergy of systems with opposing designs can create a 
richer whole. Each of the major types of file-sharing systems adds its own benefits to the network and 
has its own deficiencies that are compensated for. We'll look at some details in the next section. 



Peer to Peer: Harnessing the Power of Disruptive Technologies 

 page 241

19.3 Well-known networks and their roles 

In this section I'll list the characteristics that distinguish each of five popular networks - Freenet, 
Gnutella, Mojo Nation, Free Haven, and Publius - so we can evaluate the strengths each would offer to 
an all-encompassing OmniNetwork. 

While the world of peer-to-peer is already large at quite a young age, I've chosen to focus here just on 
file storage and distribution systems. That's because they already have related goals, so comparisons 
are easy. There are also several such systems that have matured far enough to be good subjects for 
examination. 

19.3.1 Freenet 

Freenet adds several things to the OmniNetwork. Its niche is in the efficient and anonymous 
distribution of files. It is designed to find a file in the minimum number of node-to-node transactions. 
Additionally, it is designed to protect the privacy of the publisher of the information, the requester of 
the information, and all intervening nodes through which the information passes. 

However, because of these design goals, Freenet is deficient in some other aspects. Since it is designed 
for file distribution and not fixed storage, it has no way to ensure the availability of a file. If the file is 
requested, it will stay in the network. If it is not requested, it will be eliminated to make room for other 
files. Freenet, then, is not an ideal place to store your important data for the rest of eternity. 

Second, Freenet does not yet have a search system, because designing a search system which is 
sufficiently efficient and anonymous is very difficult. That particular part of the system just hasn't 
been implemented yet. 

A final problem with Freenet is that in order to assure that the node operators cannot be held 
accountable for what is passing through their nodes, the system makes it very difficult for a node 
operator to determine what is being stored on his hard drive. For some this is fine, but some people 
want to know exactly what is being stored on their computers at all times. 

19.3.2 Gnutella 

Gnutella offers an interesting counterpoint to Freenet. It is also designed for file distribution. 
However, each node holds only what the node operator desires it to hold. Everything being served by a 
Gnutella node was either put there by the node operator or else has been requested from the network 
by the node operator. The node operator has complete control over what she serves to the network. 

Additionally, this provides for a form of permanent storage. The Gnutella request propagation model 
allows that if a single node wants to act as a permanent storage facility for some data, it need do 
nothing more than keep the files it is serving. Requests with a high enough time-to-live (TTL) will 
eventually search the entire network, finding the information that they are looking for. Also, Gnutella 
provides searching and updating of files. 

However, the Gnutella design, too, has some deficiencies. For instance, it does not provide support for 
any sort of verification of information to avoid tampering, spamming, squatting, or general 
maliciousness from evil nodes and users. It also does not have optimized routing or caching to correct 
load imbalances. In short, it does not scale as well as Freenet. Nor does it provide much anonymity or 
deniability for publishers, requesters, or node operators. By linking Freenet and Gnutella, those who 
wish to remain anonymous and those who wish to retain control over their computers can share 
information. 

19.3.3 Mojo Nation 

What Mojo Nation adds to the peer-to-peer file-sharing world is a micropayment system, and a rich 
and complex one at that. A micropayment system adds the following advantages to the OmniNetwork: 
Reciprocity of contribution of resources, compensation for the producer of content, and monetary 
commerce. 
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Reciprocity of contribution simply means that somebody has to give something in order to get 
something. Both Freenet and Gnutella must deal with a lack of reciprocity, an instance of the 
archetypal problem called the tragedy of the commons. Actually, this has been a problem for file-
sharing systems throughout the ages, including BBSs, anonymous FTP sites, and Hotline servers. 
Now, in the peer-to-peer age, there is no centralized administrator to kick out the leeches. In an 
anonymous system, it's impossible even to tell who the leeches are (unless the providers of content 
want to voluntarily give up their anonymity, which they generally don't). 

Micropayments solve the reciprocity of contribution problem by enforcing a general karmic balance. 
You might not give me a file for every file you get from me (after all, I might not want your files), but 
all in all you will have to upload a byte to someone for every byte you download. Otherwise, you will 
run out of electronic currency. This is indeed a boon for those who fear the network will be overrun by 
leeches and collapse under its own weight.[1] 

[1] See the Jargon File "Imminent Death of the Net Predicted!", 
http://www.tuxedo.org/~esr/jargon/jargon.html. 

Solving reciprocity is particularly important for controlling spam and denial of service attacks. For 
every piece of junk someone asks you to serve to the network, you receive some currency. If you are 
flooded with requests from a single host, you receive currency for each request. The attacker may be 
able to monopolize all of your time, effectively rendering your node inoperable to the rest of the 
network, but he will have to pay a high price in order to do so. With micropayments, you are, in effect, 
being paid to be attacked. Also, the attackers must have some way of generating the currency for the 
attack, which limits the attackers to those with enough motivation and resources. 

There are other uses for micropayments besides reciprocity, particularly the ability to engage in actual 
commerce through a file-sharing network. If you want to trade other people's content for them in 
order to gain some currency, the handy tip button, a feature of the Mojo Nation interface, allows 
people to send some currency to the producers of content as well as the servers. 

Also, the system could someday perhaps be used to exchange electronic currency for not just 
information, but things like food and rent. I can already see the kids dreaming of supporting 
themselves through savvy day trading of the latest underground indie tunes (the artists being 
supported by the tip button). Hipness can metamorphose from something that gets you ops on an IRC 
channel to a way to make mad cash. 

However, not everyone wants to exchange currency for information. Even exchanges are certainly one 
mode of interaction, but it is very different from the Freenet/Gnutella philosophy of sharing 
information with everyone. Freenet and Gnutella serve a useful role in the Mojo Nation framework 
when a single node does not have the resources to make a transaction. If you don't have any resources 
(you have a slow machine, slow connection, and small hard drive) it is hard to get currency, since you 
get currency by contributing resources. Without currency you can't request anything. However, if a lot 
of low-resource nodes decided to get together and act as a single, pooled node, they would have 
significant resources. This is exactly how Freenet and Gnutella work. One node is the same as a whole 
network as far as your node is concerned. Thus, low-resource Mojo Nation nodes can form 
"syndicates" so that they will not be excluded from having a presence on the Mojo Nation network. 

By combining the two types of networks, the free and communal networks of Freenet and Gnutella 
with the commercial network of Mojo Nation, people can choose whether to share freely or charge for 
resources as they see fit. Different people will choose differently on the matter, but they can still share 
content with each other. 

19.3.4 Free Haven and Publius 

Free Haven and Publius are in an entirely different category from other file- sharing networks. While 
the other networks concentrate on the distribution of content people want ( reader-centric systems), 
these systems concentrate on anonymously preserving information ( publisher-centric systems). The 
flaw people point out most often in Freenet is that data disappears if no one requests it for a long 
enough time. Luckily, Free Haven and Publius are optimized to provide for just that eventuality. They 
are conceptually derived from the mythical " Eternity Service" in which once you add a file it will be 
there forever. While it may be possible to delete a file from a Free Haven or Publius node, these 
networks are specifically designed to be resistant to the removal of content. 

http://www.tuxedo.org/~esr/jargon/jargon.html
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File storage networks have problems when viewed as file distribution networks. They are generally 
much slower to retrieve content from (because they are optimized for storage and not distribution). 
Additionally, they do not deal well with nodes fluttering on and off the network rapidly. To lose a node 
in a file storage network is problematic. To lose a node in a good file distribution network is 
unnoticeable. 

There are great possibilities with the combination of reader-centric distribution networks with 
publisher-centric storage networks. It would be ideal to know that your information will always be 
available to everyone using a file-sharing network anywhere. People can choose to share, trade, buy, 
and sell your information, anonymously or non-anonymously, with all the benefits of distributed 
caching and a locationless namespace, and with no maintenance or popularity required to survive. 
Once the information is inserted in the network, it will live on without the publisher needing to 
provide a server to store it. Unfortunately, making gateways between networks actually work is 
somewhat problematic. 

19.4 Problems creating gateways 

The problem with creating gateways is finding a path. Each piece of information is inserted into a 
single network. From there it must either find its way into every connected network, or else a request 
originating in another network must find its way to the information. Both of these are very difficult. In 
short, the problem is that an insert or request must find its way to a node that serves as a gateway to 
the separate network where the information is stored. 

19.4.1 Problems with inserts 

The problem with finding a path to another network during an insert is that the paths of inserts are 
generally very short and directed. Each network routes its inserts using a different method: 

• Freenet takes the "best" path to the "epicenter" for a given key. The length of the path is 
specified by the user. A longer path means that there is a greater chance for an insert to 
happen upon a gateway. However, longer paths also mean that you have to wait longer for the 
insert to complete. 

• Gnutella doesn't have inserts. 

• Mojo Nation splits a file into multiple parts and inserts each part into a node. The nodes are 
chosen by comparing the file part's hash to the range of hash values that a node advertises as 
serving. 

• Free Haven splits up the file using k-of-n file splitting and inserts each part to a node. The 
nodes are chosen by asking trusted nodes if they want to trade their own data for that 
particular file part. 

• Publius sends a file to a static lists of nodes and gives each node part of the key. 

Some of these techniques could be extended to put material on a gateway node (for instance, Free 
Haven and Publius choose which nodes to use), but techniques that depend on randomizing the use of 
nodes are inimical to using gateways. 

19.4.2 Problems with requests 

The problem with finding a path on a request is that the networks do not take into account the 
presence of gateways when routing a request message. Therefore, it is unlikely that a request message 
will randomly happen upon a gateway. The easy solution, of course, is to have everyone running a 
node on any network also run a gateway to all of the other networks. It's an ideal solution, but 
probably infeasible. 

The following sections describe the routing techniques used by each of the systems we're looking at. 
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19.4.2.1 Freenet 

Freenet requests are routed just like inserts, using the "best" path to the "epicenter." The length of the 
path is set by the user if the information is in Freenet (and if it is, we don't need a gateway), but longer 
paths take longer to fail if the key is not in the network. You could, of course, find a gateway by 
searching all of Freenet, assuming that the number of nodes in the network is less than or equal to the 
maximum path length. That would almost certainly take longer than you would care to wait. Freenet is 
designed so that if the file is in the network, the path to the file is usually short. Consequently, Freenet 
is not optimized for long paths. Long paths are therefore very slow. 

19.4.2.2 Gnutella 

Gnutella messages are broadcast to all nodes within a certain time-to-live, so choosing a path is not an 
issue. You can't choose a path even if you want to. The issue with Gnutella is that a gateway has to be 
within the maximum path radius, which is usually seven hops away. Fortunately, Gnutella is generally 
a very shallow network in which your node knows of a whole lot of other nodes. Generally, a gateway 
out of Gnutella to another system would have a high probability of being reached, since every request 
will potentially search a large percentage of the network. If there is a gateway node anywhere in the 
reachable network, it will be found. This is good if you want to access the whole world through 
Gnutella. Of course, it doesn't help at all if you want to gateway into Gnutella from another system. 

19.4.2.3 Mojo Nation 

Mojo Nation requests are somewhat complicated. First, you must find the content you want on a 
content tracker that keeps a list of content and who has a copy of it. From the content tracker, you 
retrieve the address of a node that has a copy of the file part that you want. Then, you request the file 
part from the node. You do this until you have all of the parts needed to reconstruct the file. 

This process actually lends itself quite well to gatewaying. As long as the gateways know what files are 
in Freenet, they can advertise for those keys. Unfortunately, gateways can't know what files are in 
Freenet. A gateway can only know what files have passed through it, which is only a fraction of the 
total content of the network. 

However, if gateways also act as content trackers, they can translate requests for unknown keys into 
Freenet requests and place any keys found into the Mojo Nation content tracker index. In this way, 
you can access content from Freenet as long as you are willing to use a content tracker that is also a 
Freenet gateway. While it would be nice just to ask the network in general for a key and have it be 
found in Freenet (if appropriate), that is not how Mojo Nation works. In Mojo Nation, you ask a 
particular content tracker for content. 

One way to integrate gatewayed and non-gatewayed content trackers in Mojo Nation would be to have 
a proxy node that acts as a Freenet gateway. Using that, any content tracker that functions as a 
gateway and a proxy could be used. The content tracker would be searched first, and if it failed, the 
gateway could be searched. 

19.4.2.4 Publius 

Gatewaying Publius is an interesting problem. Each file is split into a number of parts, each of which is 
sent to a different server. In order to reconstruct the file, you need a certain number of parts. It is 
therefore necessary for at least that number of parts to make it into gateways. 

The length of the path for each part of the file is only 1 because the file goes directly to a single node 
and then stops. That means that if you need k parts of the file, k of the nodes contacted must be 
gateways in order for the file to be able to be reconstructed in the other network. The only solution, 
therefore, is to make most Publius nodes gateways. 

19.4.2.5 Free Haven 

Making a gateway out of Free Haven is not quite as difficult as making one out of Publius, because 
parts of files get routinely traded between nodes. Every time a trade is made, the file part could 
potentially find a gateway, thus reaching the other network. However, when and how often files are 
traded is unknown and unpredictable. Thus, file trading cannot be counted on to propagate files, 
although it certainly will increase the probability of propagation by a nontrivial amount. 
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19.5 Gateway implementation 

There is much theoretical work to be done in the area of making actual, working gateways between the 
different networks. However, even once that has been worked out, there is still the issue of 
implementation specifics. 

There are a couple of ways that this could be approached. The first is to make each gateway between 
networks X and Y a hybrid X-Y node, speaking the protocols of both networks. This is undesirable 
because it leads to a combinatorial explosion of customized nodes, each of which has to be updated if 
the protocol changes for one of the networks. 

A preferable solution would be to define a simple and universal interface that one node can use to 
query another for a file. Then, a gateway would consist merely of a cluster of nodes running on 
different networks and speaking different protocols, but talking to each other via a common interface 
mechanism. Using a common interface mechanism, gateway nodes would not even have to know what 
foreign networks they were talking to. 

There are different possible interface mechanisms: CORBA,[2] RMI,[3] XML-RPC,[4] SOAP,[5] etc. The 
mechanism that I would recommend is HTTP. It is a standard protocol for requesting a file from a 
particular location (in this case a particular node, which represents a particular network). Also, some 
file-sharing networks already have support for HTTP. Freenet and Gnutella support interfacing 
through HTTP, for instance. 

[2] http://www.corba.org/ 

[3] http://java.sun.com/docs/books/tutorial/rmi 

[4] http://www.xmlrpc.com/ 

[5] http://www.w3.org/TR/SOAP 

Modification of the code base for each system to make a normal node into a gateway would be minor. 
The node need merely keep a list of gateways and, upon the failure of the network to find a requested 
file, query the gateways. If a file is found on a gateway, it is transferred by HTTP to the local node and 
then treated exactly as if it was found in the node's local data storage. 

19.6 Existing projects 

Despite the desire for interoperability among networks, little has been done to facilitate this. Network 
designers are largely consumed by the difficult implementation details of their individual networks. 

The only gatewaying project currently underway, to my knowledge, is the World Free Web (WFW) 
project, which aims to combine Freenet and the World Wide Web. While the Web may not at first 
seem like a file-sharing network as much as a publication medium, now that we find web sites offering 
remote hosting of vacation photographs and business documents, the two uses are merging into one. 

Freenet and the Web complement each other nicely. Freenet is adaptive, temporary, and locationless, 
whereas the Web is static, semipermanent, and location-based. The point of the WFW project is to 
ease the load of popular content on web servers by integrating Freenet into web browsers. A WFW-
enabled web browser will first check Freenet for the requested file. If the browser can't find the file, it 
will fetch the file from the Web and insert it into Freenet. The net effect is that popular web sites will 
load faster and the web servers will not crash under the load. This project, like many open source 
projects existing today, really needs only developers. The concepts are sound and merely call for 
experts on the various browsers to integrate them. 

http://www.corba.org/
http://java.sun.com/docs/books/tutorial/rmi
http://www.xmlrpc.com/
http://www.w3.org/TR/SOAP
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19.7 Conclusion 

The peer-to-peer file-sharing developer community is not large. While the peer-to-peer world is 
expected to explode in popularity, those who have code in the here and now are few. There has been 
much discussion of interoperability among the various projects, so it may well happen. The technical 
challenges of routing requests to gateways are difficult ones, but certainly no more difficult than the 
challenges involved in anonymity, scalability, performance, and security that network designers have 
already had to face. 
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Chapter 20. Afterword 
Andy Oram, O’Reilly & Associates, Inc. 

Like many new ideas with substantial “disruptive” potential (that is, ideas whose impacts can 
fundamentally change the roles and relationships of people and institutions), peer-to-peer has been 
surrounded by a good amount of fear. In particular, it has been closely associated in the public mind 
with the legal difficulties faced by Napster over claims that the company engaged in copyright 
infringement. The association is ironic, because Napster depends heavily on a central server where 
users register information. It is precisely the existence of the central server that makes it technically 
possible for a court to shut down the service.  

However, Napster does demonstrate important peer-to-peer aspects. Files are stored on users’ 
individual systems, and each download creates a peer-to-peer Internet connection between the source 
and destination systems. Furthermore, each system must furnish metadata information about the title 
and artist of the song. The legal questions Napster raises naturally attach themselves to some of the 
other peer-to-peer technologies, notably Gnutella and Freenet.  

20.1 Precedents and parries 

The Napster case in itself may not be dangerous to other peer-to-peer technologies. Its particular 
business model, its dependence on the preexisting popularity of exchanging MP3 files that are 
unauthorized copies of copyrighted material, and the many precedents for the concepts invoked by 
both sides (fair use, vicarious and contributory copyright infringement, substantial non-infringing 
uses) make the case unique.  

But there are several indications that large copyright holders wield their legal weapons too widely for 
the comfort of technological innovators. For instance, during the Napster case, the band Metallica 
conducted a search for Metallica MP3s and created a list of 335,000 Napster users that it forced 
Napster to ban temporarily from the system. This raises the possibility that a determined plaintiff 
could try to prosecute all the individuals that form an entire community of peer-to-peer systems, such 
as Gnutella, Freenet, or Publius.  

Users of those systems could then face the dilemma of being condemned for providing computer 
resources to a system that has social value, simply because one user of that system (perhaps a 
malicious user) provided material that raised the ire of a powerful commercial or political force. It 
would be interesting to see whether users would then try to invoke a kind of “ISP exemption,” where 
they claim they are simply providing communications channels and have no control over content.  

This legal status for ISPs is pretty well established in some countries. In the United States, numerous 
courts have refused to prosecute ISPs for Internet content. Still, a section of the enormous Digital 
Millennium Copyright Act, passed by the U.S. Congress in 1998, requires sites hosting content to take 
it down at the request of a copyright holder. Canada also protects ISPs from liability.  

The status of ISPs and hosting sites is much shakier in other countries. In Britain, an ISP was 
successfully sued over defamatory content posted by an outsider to a newsgroup. The German 
parliament has shrouded the issue in ambiguity, stating that ISPs are responsible for blocking illegal 
content when it would be “technically feasible” to do so. Of course, some countries such as China and 
Saudi Arabia monitor all ISP traffic and severely restrict it.  

France exempts ISPs from liability for content, but they have to remove access to illegal content when 
ordered to by a court, and maintain data that can be used to identify content providers in case of a 
court request. The latter clause would seem to make a system like Freenet, Publius, or Free Haven 
automatically illegal. The November 2000 French decision forcing Yahoo! to block the display of Nazi 
memorabilia auction sites sets a precedent that peer-to-peer users cannot ignore. It has already been 
echoed by a ruling in Germany’s high court declaring that German laws apply to web sites outside the 
country. The trend will undoubtedly lead to a flood of specialized legal injunctions in other countries 
that try to control whether particular domain names and IP addresses can reach other domain names 
and IP addresses.  
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Further threats to technological development are represented by companies’ invocation of copyrights 
and trade secrets to punish people who crack controls on software content filters or video playback 
devices. The latter happened in the much publicized DeCCS case, where the court went so far as to 
force web sites unrelated to the defendants to delete source code. In 1998, Congress acceded to the 
wishes of large content vendors and put clauses in the extensive Digital Millennium Copyright Act that 
criminalize technological development, like some types of encryption cracking and reverse 
engineering.  

It would be irresponsible of me to suggest that copyright is obsolete (after all, this book is under 
copyright, as are most O’Reilly publications), but it is perfectly reasonable to suggest that new 
movements in society and technology should make governments reexamine previous guidelines and 
compromises. Copyright is just such a compromise, where government is trying to balance incentives 
to creative artists with benefits to the public.  

Napster showed above all that there is now a new social context for music listening, as well as new 
technological possibilities. The courts, perhaps, cannot redefine fair use or other concepts invoked by 
both sides in the Napster case, but the U.S. Congress and the governing bodies of other countries can 
ask what balance is appropriate for this era.  

20.2 Who gets to innovate? 

Peer-to-peer, like all technologies, embodies certain assumptions about people and future directions 
for technology. It so happens that peer-to-peer is moving the compass of information use in a 
direction that directly contradicts the carefully mapped-out plans drawn by some large corporate and 
government players.  

The question now posed is between two views of how to use technology and information. One 
common view gives consumers and users the maximum amount of control over the application of 
technology and information. One example will suffice to show how powerful this principle can be.  

Despite Tim Berners-Lee’s hope that the World Wide Web would be a two-way (or even multiperson 
to multiperson) medium, early browsers were pretty much glorified file transfer programs with some 
minimal GUI elements for displaying text and graphics together. The addition of CGI and forms 
allowed users to talk back, but did not in itself change the notion of the Web as an information 
transfer service. What caused the Web to take on new roles was the crazy idea invented by some 
visionary folks to use the available web tools for selling things. An innovative use of existing 
technology resulted in an economic and social upheaval.  

Putting tools in the hands of users has an impact on business models, though. People might no longer 
buy a technical manual from O’Reilly & Associates; they might download it from a peer instead - or 
more creatively, extract and combine pieces of it along with other material from many peers. And 
peer-to-peer, of course, is just a recent option that joins many other trends currently weakening 
copyright.  

When a revenue stream that information providers have counted on for over 2000 years threatens to 
dry up, powerful reactions emerge. Copyright holders have joined with a wide range of other 
companies to introduce legal changes that revolve around a single (often unstated) notion: that the 
entity providing information or technology should control all uses of it. The manufacturer of a disk 
decides what devices can display it. A compiler of information decides how much a person can use at 
any one time, and for how long. The owner of a famous name controls where that name can appear.  

Trying to plug serious holes in the traditional web of information control - copyrights, trade secrets, 
patents, trademarks - information owners are extending that control into areas where they have 
previously been excluded. In their view, new ideas like selling over the Web would have to come from 
the company who provides the media or the service, not from people using the service.  

So where do we look for the future uses of information and technology? The two answers to this 
question - users versus corporate owners - are likely to struggle for some time before either a winner 
or a workable compromise appears. But the thrust of peer-to-peer implicitly throws its weight behind 
the first answer: trust the users. The technological innovations of peer-to-peer assume that users have 
something to offer, and some peer-to-peer projects (notably Jabber in its community-building, and 
Gnutella in its search model) actually encourage or even provoke users to contribute something new 
and different.  
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20.3 A clean sweep? 

Some people ask whether peer-to-peer will replace the client/server model entirely. Don’t worry, it 
emphatically will not. Client/server remains extremely useful for many purposes, particularly where 
one site is recognized as the authoritative source for information and wants to maintain some control 
over that information.  

Client/server is also a much simpler model than peer-to-peer, and we should never abandon 
simplicity for complexity without a clear benefit. Client/server rarely presents administrative 
problems except where the amount of traffic exceeds the server’s capacity.  

Peer-to-peer is useful where the goods you’re trying to get at lie at many endpoints; in other words, 
where the value of the information lies in the contributions of many users rather than the authority of 
one. Peer-to-peer systems can also be a possible solution to bandwidth problems, when designed 
carefully. (Of course, they can also cause bandwidth problems, either because their design adds too 
much overhead or because people just want a lot of stuff without paying for the bandwidth that can 
accommodate it.)  

In short, peer-to-peer and client/server will coexist. Many systems will partake of both models. In fact, 
I have avoided using the phrase “peer-to-peer model” in this book because such a variety of systems 
exist and so few can be considered pure peer-to-peer. The ones that are completely decentralized - 
Gnutella, Freenet, and Free Haven - are extremely valuable for research purposes in addition to the 
direct goals they were designed to meet. Whether or not other systems move in their direction, the 
viability of the most decentralized systems will help us judge the viability of peer-to-peer technology 
as a whole.  
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Appendix A. Directory of Peer-to-Peer Projects 
This is a partial list of interesting projects, companies, and standards that could reasonably be 
considered examples of peer-to-peer technology. It is not meant to be exhaustive, and we apologize for 
any worthy projects that were not included. The field, of course, expands constantly. 

 
Agents as Peers  

Infobot  
Sandia National Laboratories  
WebV2  

 
Collaboration  

Engenia Software, Inc.  
eZ  
Interbind  

 
Development Frameworks  

Mithral Communications & Design, Inc.  
WorldOS Corporation  

 
Devices as Peers  

Bluetooth  
Brazil Project  
dHTTP (Distributed HTTP)  
Endeavors Technology, Inc.  
Jini  

 
Distributed Computation  

2AM  
Applied MetaComputing  
Centrata  
Datasynapse  
Distributed.net  
DistributedScience  
Entropia  
Parabon Computation  
Popular Power  
Porivo Technologies, Inc.  
SETI@home: The Search for Extraterrestrial Intelligence  
Ubero  
United Devices, Inc.: Individuals Accelerating Science  

 
Distributed Search Engines  

gonesilent.com (aka InfraSearch)  
OpenCOLA  
Plebio  
WebV2  



Peer to Peer: Harnessing the Power of Disruptive Technologies 

 page 251

File Sharing  
CuteMX.Com (GlobalScape, Inc.)  
File Navigator  
Free Haven  
Freenet  
Gnutella  
Hotline Communications, Ltd.  
Jungle Monkey  
Mojo Nation  
Napster  
Ohaha  
OnSystems, Inc.  
OpenNap  
Pointera  
Publius  
Spinfrenzy.com  

 
Gaming  

2AM  
CenterSpan  

 
Internet Operating System  

Applied MetaComputing  
Globus  
ROKU  
Static  

 
Licensed Media Distribution  

eMikolo  
Flycode  
Kalepa Networks, Inc.  

 
Messaging Frameworks  

AIMster  
BXXP  
CenterSpan  
IMXP  
Jabber  

 
Metadata  

RDF  
RSS  
XNS (eXtensible Name Service)  

 
Servers/Services as Peers  

.NET  
BXXP  
Meerkat: An Open Wire Service  
Simple Object Access Protocol (SOAP)  
Universal Description, Discovery and Integration (UDDI)  
XML-RPC  

 
Superdistribution  

2AM  
3Path  
Freenet  
vTrails  
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The Writable Web  
Amaya Web Editor/Browser  
Blogger  
Brazil Project  
Endeavors Technology, Inc.  
Manila  
Radio Userland  
WebDAV  
Wiki Wiki Web  
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Appendix B. Contributors 
Nelson Minar,  

CTO and cofounder of distributed computing leader Popular Power, has an extensive history 
researching Internet systems. While at the MIT Media Lab, he built a mobile agent based peer-to-peer 
computing platform called Hive, and previously studied agent-based modeling at the Sante Fe 
Institute. Minar sees the Internet as a place, a world with its own rules and behaviors.  

Marc Hedlund 

is the chief executive officer and cofounder of Popular Power, the first distributed computing company 
to launch commercial software. He previously served as the founder and director of Lucasfilm Ltd.’s 
Internet division and director of engineering at Organic Online. His Internet experience dates to early 
1994, when he worked on several IETF committees and built early e-commerce applications while 
CTO of a Web start-up.  

Clay Shirky 

is a Partner for Technology and Product Strategy at The Accelerator Group, which invests active 
strategic capital in digital businesses. Prior to joining the Accelerator Group, he was Professor of New 
Media at Hunter College, and CTO of Site Specific. Mr. Shirky writes extensively about the social and 
economic effects of the internet. His essays appear regularly in the O’Reilly Network, Business 2.0, 
and FEED, as well as the New York Times, the Wall Street Journal, and the Harvard Business Review. 
His writings are archived at http://www.shirky.com/.  

Tim O’Reilly 

is founder and president of O’Reilly & Associates, Inc. Tim’s goal is to enable change by capturing and 
transmitting the knowledge of innovators and innovative communities via books, conferences, and 
web sites.  

Daniel Bricklin,  

a software designer, is best known as the cocreator of VisiCalc, the first electronic spreadsheet. In 
addition to the spreadsheet, he helped develop one of the first word processing systems in the mid-
1970’s, programmed the most popular prototyping tool of the MSDOS world, and helped introduce the 
world to the capabilities of electronic ink on pen computers. Mr. Bricklin has served on the boards of 
the Software Publishers Association and the Boston Computer Society and has received many honors 
for his contributions to the computer industry, including the IEEE Computer Society’s Computer 
Entrepreneur Award and Lifetime Achievement Award from the SPA. Most recently he is the founder 
and CTO of Trellix Corporation which creates web site building systems.  

David P. Anderson 

is the director of the SETI@home project. He co-founded Tunes.com and is currently CTO of United 
Devices. From 1985 to 1991 he was on the faculty of the U.C. Berkeley Computer Science Department.  

Jeremie Miller 

has been developing Internet-related and Open Source projects since 1993, having been involved with 
the early Web standards and projects such as Apache and Linux. In 1997 he started following the 
DHTML and XML standards very closely, and in 1998 founded Jabber, an Open Source movement 
designed to create a new, standard, distributed XML-based platform for instant messaging and 
presence applications. Today he continues developing Jabber, helping to advance the new XML 
infrastructure available on the Internet.  

Adam Langley 

is student in England and a free software programmer in his free time. Interests range from software 
to politics/freedom, typesetting, and theater. His current project is an implementation of Freenet in 
C++, with which he could really do with some help.  

http://www.shirky.com/
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Gene Kan 

was among the first to produce an open source version (under the GNU General Public License) of 
Gnutella software after Gnutella was released by Justin Frankel and Tom Pepper of Gnullsoft. Soon, 
Mr. Kan became one of Gnutella's key spokesmen. Previously an SGML/XML consultant and kernel 
network engineer at Check Point Software, Mr. Kan is now CEO of InfraSearch. In his spare moments 
he enjoys racing his cars, LTLENDN and BIGENDN.  

Alan Brown 

is currently the assistant director of a human rights organization. He has served on the executive 
committee of an ACLU state affiliate and taught mathematical logic at several midwest universities. 
He will launch a new cyber-rights organization in Russia this year and is engaged to the most beautiful 
woman in Russia.  

Marc Waldman 

is a Ph.D. candidate in Computer Science at New York University. He is one of the co-developers of the 
Publius censorship-resistant publishing system. His research interests include privacy-enhancing 
technologies and computer security. Marc received a BA and MS in Computer Science from New York 
University.  

Dr. Lorrie Faith Cranor 

is a Senior Technical Staff Member in the Secure Systems Research Department at AT&T Labs-
Research. She is also chair of the Platform for Privacy Preferences Project (P3P)Specification Working 
Group at the World Wide Web Consortium. Her research has focused on a variety of areas where 
technology and policy issues interact, including online privacy, electronic voting, and spam. She is 
frequently invited to speak about online privacy, and in1998 Internet Magazine named her an unsung 
hero of the Internet for her work on P3P.  

Dr. Aviel Rubin 

is a Principal Researcher at AT&T Labs-Research and a member of the board of directors of USENIX, 
the Advanced Computing Systems Association. He also has an appointment as an adjunct professor in 
the Computer Science department at NYU, and he serves as Associate Editor of the Electronic 
Commerce Research Journal.  

Roger Dingledine 

graduated from MIT in May 2000 (B.Sc. computer science, B.Sc. mathematics, M.Eng. computer 
science and electrical engineering), where his Master's research in anonymous distributed publishing 
systems was supervised by Ronald Rivest. He is project leader for both the Simple End-User Linux 
project (seul.org) and the Free Haven project (freehaven.net). Currently he works as the Security 
Philosopher for Reputation Technologies, Inc. (reputation.com).  

Michael J. Freedman 

is a graduate student in computer science at MIT. His research interests focus on cryptography and 
computer/network security, especially in the realm of distributed systems. He is a principal researcher 
of the Free Haven project, and has worked at Zero-Knowledge Systems implementing an electronic 
cash architecture.In his spare time, Michael enjoys climbing, mountaineering, and other outdoor 
pursuits, much to the concern of family and friends.  

David Molnar 

began using PGP in 1993. He became interested (obsessed?) with figuring out “why it worked” and has 
been studying cryptography ever since. Now an undergraduate at Harvard University, he keeps up 
with security issues by attending courses, reading newsgroups, mailing lists, and conference papers, 
and attending DEF CON in his home city of Las Vegas. David is an ACM Student Member and a 
member of the International Association for Cryptologic Research.  
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Rael Dornfest 

is a maven at the O’Reilly Network. He is the developer of Meerkat: An Open Wire Service and one of 
the architects of RSS 1.0.  

Dan Brickley 

is a longstanding RDF advocate and chair of the W3C RDF Interest Group.  

Theodore Hong, 

Freenet developer, is a graduate student in computer science at Imperial College, London. He holds an 
A.B. from Harvard University and is a 1995 Marshall scholar.  

Richard Lethin 

is a founder of Reputation.com, a provider of tools and services for the formation and use of online 
reputations in electronic commerce, president of Reservoir.com, a computer systems research and 
development firm, and Adjunct Professor in Electrical Engineering at Yale College. Richard is also one 
of the founders of the Digital Commerce Society of Boston. He received his Ph.D. from the MIT, 
wherein his research he developed analytical models of large scale message-passing systems.  

Jon Udell 

was BYTE Magazine's executive editor for new media, the architect of the original 
http://www.byte.com/, and author of BYTE’s Web Project column. He's now an independent 
Web/Internet consultant. His first book, Practical Internet Groupware, was published by O’Reilly 
and Associates in 1999.  

Nimisha Asthagiri, 

at Groove Networks, is a Senior Security Architect and the Security “Czar” (a title they give for 
someone who is “ultimately responsible for continuity and execution within certain specific technical 
areas that span across the product”). She has been with Groove since September 1998 (employee #17). 
Prior to Groove, she was at OSF Research Institute (later called The Open Group Research Institute) 
for one year, where she worked on security-related projects and proposals in the areas of intrusion 
detection systems and authorization. She graduated from MIT in 1997 with a Bachelors and Masters 
in Computer Science and Engineering. She did her Masters thesis on a history-based authorization 
framework for Java applets.  

Walter Tuvell 

has badge #11 at Groove Networks and is the senior security guru there. Before that he spent six years 
at Bell Labs, working on AT&T’s Unix kernel and networking, and then became the security architect 
for DCE at the Open Software Foundation (now the Open Group). He went to MIT for his B.S., and to 
the University of Chicago for his M.S. and Ph.D., all in mathematics.  

Brandon Wiley 

cofounded the free software initiative to implement the Freenet architecture. When not coding for 
freedom, he is a freelance consultant, playwright, and filmmaker. He specializes in online 
communities and postmodern romantic comedies.  

http://www.byte.com/
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Interview with Andy Oram 
The term "peer-to-peer" has come to be applied to networks that expect end users to contribute their 
own files, computing time, or other resources to some shared project. Even more interesting than the 
systems' technical underpinnings are their socially disruptive potential: in various ways they return 
content, choice, and control to ordinary users. Andy Oram, editor of O'Reilly's recently released Peer-
to-Peer: Harnessing the Power of Disruptive Technologies talks with oreilly.com's Tara McGoldrick 
about his experience working on this cutting-edge book, how the book developed, and the current 
backlash against P2P. 

McGoldrick: This is O'Reilly's first book on peer-to-peer (P2P) and, indeed, the first book on P2P by 
any publisher. How did you approach such a new and revolutionary topic? 

Oram: With a topic that's so fast-moving and--no way to deny it--poorly defined, I wanted to get a lot 
of opinions from a lot of knowledgeable and thoughtful people. They came through with flying colors. 
I also was determined to cover the field on many different levels: the kinds of problems P2P could 
solve, the kinds of problems P2P raises, its impacts on users and businesses, and so on. I really had to 
jump on the topic and let it carry me where it wanted; not try to capture it and cage it and wrap it up 
with a pretty bow to deliver it. 

One critical goal stayed uppermost in my mind. I knew the field was loaded with hype. I also knew 
there was something significant going on behind the hype, and that O'Reilly was the best publisher to 
show the public that significant core. While I wanted to talk a bit about collaborative networking's 
social meaning and its potential impact on people, I knew that was good for only a few dozen pages 
worth of text. The rest had to be solid technical issues and solutions. 

McGoldrick: P2P gets a lot of criticism as well as hype. In fact, just last week the P2P concept got 
slammed twice on the same day by major writers and publications: Lee Gomes in the Wall Street 
Journal (reprinted on ZDNet and on MSNBC) and Jon Katz on Slashdot: 

http://www.zdnet.com/zdnn/stories/news/0,4586,2704598,00.html 
http://www.msnbc.com/news/554433.asp 
http://slashdot.org/article.pl?sid=01/03/27/1820213 

Oram: I guess we should get used to Internet time, and be thankful at O'Reilly that the book had five 
weeks to circulate in a relatively positive medium before the sharks converged. Of course, neither 
article criticizes the book. Gomes doesn't mention it at all. Katz actually writes that "Peer-to-Peer: 
Harnessing the Power of Disruptive Technologies does a great job of explaining how P2P works." He 
questions not the book's quality, but its relevance. I respect what both these writers have said, and I 
do have comments that put their questioning in perspective. Clay Shirky also offers a valuable and 
balanced response, Backlash!, on O'Reilly's openp2p.com Web site. 

 http://openp2p.com/pub/a/p2p/2001/04/05/shirky.html 

The Wall Street Journal is responsible for letting its readers know where to invest and what the 
prospects are for success in a given industry. Gomes must feel acutely the risks his key readership is 
facing, from venture capitalists through pension fund managers. He has to let them know that P2P is 
no "exception to the dot-com downturn." Definitely a valid concern, but it's only one aspect of a 
complex field. 

I have to admit that I'm not a regular WSJ reader, but I trust it will also tell another side of the story: 
not just whether businesses can succeed at creating P2P applications, but about the benefits and 
drawbacks of businesses using P2P applications. There's a lot of intriguing potential in P2P, along 
with organizational and funding issues that businesses should start considering. 

And while I wouldn't tussle with Gomes's assessment of investor prospects, I have talked to lots of 
business people creating P2P applications. They have strong stories to tell. You can read about them 
by visiting my P2P Profiles on openp2p.com. I haven't invested a dime in any of these companies, and 
I don't consider myself an investment expert. But if you come to the site every week or so and see who 
we're interviewing, you'll have a chance to judge whether the idea of P2P is fertile. 

 http://www.oreillynet.com/pub/ct/36 

http://www.zdnet.com/zdnn/stories/news/0,4586,2704598,00.html
http://www.msnbc.com/news/554433.asp
http://slashdot.org/article.pl?sid=01/03/27/1820213
http://openp2p.com/pub/a/p2p/2001/04/05/shirky.html
http://www.oreillynet.com/pub/ct/36
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On to Jon Katz. He has some of the same "show me" attitude as Gomes--a healthy attitude--but he 
also stakes out the strange claim that not many readers will use P2P. To declare that an idea has no 
practical application is the most dangerous kind of technology prediction--all the more so when, as 
Katz accurately points out, the major pieces of robust P2P infrastructure haven't fallen into place yet. 

We have to remember (as some of the respondents on Slashdot remembered) that lots of great 
computing ideas have entered everyday use under thick layers of simplifying technology. How about 
the complicated mathematical graphical functions that are used to paint our monitors (and the 
psychological theories of researchers such as Ben Shneiderman, which informed the GUI revolution)? 
How about structured programming, which harks back to Edsger Dijkstra's "Go To Statement 
Considered Harmful" letter in 1968 and was generally ignored by programmers, but now underlies 
point-and-click component technologies used by thousands of Visual Basic users every day? [Editor's 
Note: A reprint of Dijkstra's letter is available online.] 

http://www.cs.umd.edu/users/ben/ 
http://www.cs.utexas.edu/users/UTCS/report/1997/dijkstra.html 
http://www.acm.org/classics/oct95/ 

By the way, Katz's claim that "In most of the world, inventors identify a need and wear themselves out 
creating innovations to meet it" is directly refuted by the famous book Guns, Germs, and Steel (by 
Jared Diamond, 1999). Diamond states that most inventions start as tinkering and take a long time to 
become useful. I think P2P is one of those slowly unfolding advances that will have repercussions on 
how people work and interract. 

 http://www.wwnorton.com/catalog/fall96/germs.htm 

McGoldrick: Back to the book itself, why did you decide to publish an anthology as opposed to, say, 
a Definitive Guide to P2P or P2P in a Nutshell? 

Oram: The field of peer-to-peer, which is at such a formative stage, requires a different approach. 
First, there's no single path to developing or deploying a P2P application. You don't just follow the 
pull-down menus or even write programs following a strict sequence of API calls. There are multiple 
applications, multiple APIs, multiple levels to work at. So, instead of trying to fashion a step-by-step 
guide for a field that's not ready for one, we offer three kinds of information in the book: 

• Part 1: Historical and social context. 

• Part 2: Descriptions of real-life projects. 

• Part 3: Technical lessons drawn from those projects in such areas as performance, security, 
and accountability.  

There's material in there to let people develop new P2P projects, to evaluate the value or risk of 
existing ones, and to judge the viability of the whole endeavor. 

Because the P2P terrain is wide open and multifaceted, it's worth hearing the different viewpoints of 
many productive people who have explored that terrain. I have wanted to let as many of them speak as 
possible.  

Some people dismiss peer-to-peer as just a buzzword or too vague a concept. But what united all the 
projects in the book was the problems the project's leaders faced. Each one had to accomplish certain 
tasks to get their project off the ground. Let me tell you that every person I approached to contribute 
to the book (including the ones who declined because they were too busy) recognized the relevance of 
the topic to their work and the value of coming together to do this book. Some of them protested that 
their applications weren't true peer-to-peer (the Publius team, for example--a team that contributed 
two fascinating and fundamental chapters), but they all could still see how their research fit the book. 

 http://publius.cdt.org/publius.html 

http://www.cs.umd.edu/users/ben/
http://www.cs.utexas.edu/users/UTCS/report/1997/dijkstra.html
http://www.acm.org/classics/oct95/
http://www.wwnorton.com/catalog/fall96/germs.htm
http://publius.cdt.org/publius.html
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Luckily, O'Reilly had a precedent for an anthology about an emerging field: our Open Sources: Voices 
from the Open Source Revolution. That book, like Peer-to-Peer, contains far-ranging essays by a wide 
range of leaders (some of them quite well known) doing various work in a big space. In both books, the 
authors all worked together to define their spaces well. 

 http://www.oreilly.com/catalog/opensources/ 

McGoldrick: Why do you think this will be an important book? 

Oram: I'm glad we're publishing this interview now, in the shadow of the media storm clouds 
concerning peer-to-peer, because now it would be silly for me to answer, "The book's important 
because of the hype around P2P." Instead, the book rests firmly on its solid analysis of an important 
technological movement. 

I mentioned earlier that I've talked to a lot of people running companies that are trying to develop P2P 
products. Invariably they tell me they're reading this book. 

The book tells people key information they can't get anywhere else about computing projects that are 
widely regarded as important models for other developers: Jabber, Groove, Gnutella, SETI@home, 
and so on. Some projects will stand and some will fall, but the technologies they're using and the 
things they're trying to accomplish will provide important lessons for the future. 

http://www.jabber.com/index.shtml 
http://www.groove.net/ 
http://gnutella.wego.com/ 
http://setiathome.ssl.berkeley.edu/ 

The largest part of the book (Part 3), therefore, comprises technical topics, but the smaller social 
analysis section (Part 1) is valuable, too. For P2P to spread, there has to be a lot of changes in thinking 
and practice among businesses, IT staff, and users. 

McGoldrick: The subtitle of this book is "Harnessing the Power of Disruptive Technologies." What 
do you mean by 'Disruptive'? 

Oram: That's well worth an explanation. I did not choose this subtitle. It was chosen by marketing. In 
fact, I balked for a while at the subtitle, and a number of the authors protested the use of the word 
"disruptive." They were afraid that it would further swell the bad image that the legal controversy over 
Napster was casting on their own work. Still, calling P2P a set of disruptive technologies is extremely 
apt, and I'll be glad if that subtitle causes some less technically-minded readers in business or the 
general public to take a closer look at the book. 

 http://www.napster.com/ 

Clayton Christensen popularized the term "disruptive technology" in his book The Innovator's 
Dilemma. These are technologies that change how people and organizations do what they're doing day 
to day. To quote from my own text (in the "Afterword" to Peer-to-Peer), their "impacts can 
fundamentally change the roles and relationships of people and institutions." I expect that many P2P 
applications that are beginning to hit the market will fit that description. 

http://www.hbsp.harvard.edu/hbsp/prod_detail.asp?5851 

Instead of people pushing documents to each other (often over email in a dozen evolving versions), 
they may sit at their PCs and see a relevant document come to them automatically. Instead of 
depending on some programmer at a central site to envision and code up a service, users may create it 
themselves using their own data. Groups may be able to form and regroup more spontaneously and 
efficiently, crossing organizational boundaries. There's a lot of potential forms of interaction ahead 
that can excite people willing to try something new--and scare people who depend on old ways of 
controlling the flow of information. 

McGoldrick: How did you choose the contributors to this book? 

Oram: O'Reilly tries to find and stay friendly with all kinds of people doing new and promising 
projects. So when we decided we should write this book, we drew on our contacts in the computing 
field, both academic and commercial. 

http://www.oreilly.com/catalog/opensources/
http://www.jabber.com/index.shtml
http://www.groove.net/
http://gnutella.wego.com/
http://setiathome.ssl.berkeley.edu/
http://www.napster.com/
http://www.hbsp.harvard.edu/hbsp/prod_detail.asp?5851
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Personally, I had contacts with Freenet creator Ian Clarke (who was too busy to write, so three other 
members of that team contributed chapters instead) and with Gene Kan of Gnutella fame. These 
contacts grew out of two popular articles I wrote last July, Gnutella and Freenet Represent True 
Technological Innovation and The Value of Gnutella and Freenet. 

http://freenet.sourceforge.net/ 
http://www.oreillynet.com/pub/a/network/2000/05/12/magazine/gnutella.html 
http://www.webreview.com/pi/2000/05_12_00.shtml 

People we knew suggested others whose work they respected, and we gradually built up an impressive 
roster that includes writer Clay Shirky, product designer Dan Bricklin, privacy researcher Lorrie Faith 
Cranor, consultant and O'Reilly author Jon Udell, and W3C researcher Dan Brickley. 

http://www.shirky.com/bio.html 
http://www.bricklin.com/ 
http://www.research.att.com/~lorrie/ 
http://udell.roninhouse.com/ 
http://ilrt.org/people/danbri/ 

I don't want to suggest that the chapters by famous people are the most important ones. I like every 
chapter, and in fact some stunning contributions were turned in by people who were pretty unknown 
before the book was published. 

Like most communities working together, we see each other all over the place. I started recruiting 
authors in August 2000; a lot of them were invited to the O'Reilly Peer-to-Peer Summit that took 
place in September 2000. We saw each other again at the first-ever O'Reilly Peer-to-Peer Conference 
and I've been in touch with many of them regarding other projects. 

http://www.oreillynet.com/pub/a/linux/2000/09/22/p2psummit.html 
http://conferences.oreilly.com/p2p/ 

McGoldrick: Did you define topics for chapters and assign them to the writers or did you solicit 
writers and let them define their topics? 

Oram: This was the most difficult and most inspiring stage in the development of the book. It was a 
very rich collaborative process--I have to break down and call it a peer process--because I knew 
certain topics were important but wanted to choose the right topic to excite each writer. I spent days 
and days talking to some of the authors in order to hone each idea into a topic that would be 
engrossing for readers, stimulating to the authors, and focused enough to fit in a single chapter. We 
also wanted to avoid overlap, so the writers talked to each other to establish boundaries between their 
chapters. A few reviewed each others' drafts. 

McGoldrick: How did the finished book compare to what you had envisioned? 

Oram: It astonished me. I gave the authors--all busy people with demanding projects to develop--just 
a month to write chapters and a couple more weeks to incorporate reviewer comments. But when the 
drafts arrived, I was taken aback by their depth, their comprehensive understanding of background 
research, their philosophical and historical richness--and often, the cleverness of their writing style. 
(Some authors required substantial rewriting, but the clarity and relevance of their vision was never in 
question.) This book is more than a snapshot of current work; it is a weighty statement about a field in 
rapid motion. Weight plus motion lends the book substantial kinetic energy. 

McGoldrick: Because there is so much disagreement about what P2P is, was there a lot of passionate 
discussion about the content in the essays? 

Oram: Certainly. As I said earlier, some contributors didn't really consider their technologies peer-to-
peer, although their work was still highly relevant because the projects all tended to face the same 
problems. Many of the authors in Part 1 of the book grappled with "What is peer-to-peer?" And 
perhaps even more interesting, with: "What is the part of peer-to-peer that's worthwhile?" Authors 
didn't always agree. Clay Shirky has been evolving and refining his own answer to the question "What 
is peer-to-peer?" for almost a year. 

http://freenet.sourceforge.net/
http://www.oreillynet.com/pub/a/network/2000/05/12/magazine/gnutella.html
http://www.webreview.com/pi/2000/05_12_00.shtml
http://www.shirky.com/bio.html
http://www.bricklin.com/
http://www.research.att.com/~lorrie/
http://udell.roninhouse.com/
http://ilrt.org/people/danbri/
http://www.oreillynet.com/pub/a/linux/2000/09/22/p2psummit.html
http://conferences.oreilly.com/p2p/
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Authors disagreed about minor technical points as well; their polite but candid review of each other's 
work definitely improved the book. By no means did we resolve all differences. To illustrate how 
diverse the viewpoints are, I'll reveal that Lucas Gonze, moderator of the Decentralization mailing list, 
tried near the end to pull together a glossary for our book. But the authors realized they were using the 
same terms in slightly different ways, so that for this edition at least, a glossary would be confusing 
rather than illuminating. Luckily, Gonze could publish his list of terms, which he calls a MemeBag, on 
O'Reilly's openp2p.com Web site. 

http://groups.yahoo.com/group/decentralization 
http://openp2p.com/pub/a/p2p/glossary/memebag.html 

McGoldrick: You recently returned from O'Reilly's first Peer-to-Peer Conference. Did you hear 
about any new developments at the conference that you wish you could have included in this edition? 

Oram: Of course, I heard about lots of juicy projects that, in some ways, were going beyond what the 
projects in the book had achieved. Many of the authors who wrote in the book about the projects they 
were working on in October or November of 2000 are currently starting new projects. Most 
fundamentally, I realized that the field of P2P is moving beyond the heroic early-experimentor stage 
and is giving rise to hard-nosed, secure, scalable products. 

McGoldrick: The Peer-to-Peer book hit bookstore shelves in March, but a small print run was made 
available at the Peer-to-Peer Conference. How was it received? 

Oram: People were very glad to have it, naturally, and the book required only a few hours to sell off. 
(We put out part of the stock on the first day of the conference, and the rest on the second.) We wish 
we had more books, of course, but the print schedule was so tight we were lucky to have the 200 that 
we got. At any rate, we didn't expect to get 1,000 people at the conference! (Not counting the ones we 
had to turn away.) 

It was quite a trip sitting at a row of tables with about a dozen of the authors, watching conference 
participants troop by to collect signatures from each in turn. And the authors were even more excited 
than the other attendees--excited to see the book and excited to be able to meet each other in the flesh. 

http://groups.yahoo.com/group/decentralization
http://openp2p.com/pub/a/p2p/glossary/memebag.html
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