

Peer to Peer: Harnessing the Power of

Disruptive Technologies

Andy Oram (editor)

First Edition March 2001
ISBN: 0-596-00110-X, 448 pages

This book presents the goals that drive the developers of the best-known
peer-to-peer systems, the problems they've faced, and the technical

solutions they've found.

The contributors are leading developers of well-known peer-to-peer
systems, such as Gnutella, Freenet, Jabber, Popular Power,

SETI@Home, Red Rover, Publius, Free Haven, Groove Networks, and
Reputation Technologies.

Topics include metadata, performance, trust, resource allocation,
reputation, security, and gateways between systems.

Table of Contents

Preface 1
 Andy Oram

Part I. Context and Overview

1. A Network of Peers: Models Through the History of the Internet 8
 Nelson Minar and Marc Hedlund

2. Listening to Napster 19
 Clay Shirky

3. Remaking the Peer-to-Peer Meme 29
 Tim O'Reilly

4. The Cornucopia of the Commons 41
 Dan Bricklin

Part II. Projects

5. SETI@home 45
 David Anderson

6. Jabber: Conversational Technologies 51
 Jeremie Miller

7. Mixmaster Remailers 59
 Adam Langley

8. Gnutella 62
 Gene Kan

9. Freenet 80
 Adam Langley

10. Red Rover 86
 Alan Brown

11. Publius 93
 Marc Waldman, Lorrie Faith Cranor, and Avi Rubin

12. Free Haven 102
 Roger Dingledine, Michael J. Freedman, and David Molnar

Table of Contents (cont...)

Part III. Technical Topics

13. Metadata 121
 Rael Dornfest and Dan Brickley

14. Performance 128
 Theodore Hong

15. Trust 153
 Marc Waldman, Lorrie Faith Cranor, and Avi Rubin

16. Accountability 171
 Roger Dingledine, Michael J. Freedman, and David Molnar

17. Reputation 214
 Richard Lethin

18. Security 222
 Jon Udell, Nimisha Asthagiri, and Walter Tuvell

19. Interoperability Through Gateways 239
 Brandon Wiley

Afterword 247
 Andy Oram

Appendices

Appendix A: Directory of Peer-to-Peer Projects 250

Appendix B: Contributors 253

Interview with Andy Oram 256

Description
The term "peer-to-peer" has come to be applied to networks that expect end users to contribute their
own files, computing time, or other resources to some shared project. Even more interesting than the
systems' technical underpinnings are their socially disruptive potential: in various ways they return
content, choice, and control to ordinary users.

While this book is mostly about the technical promise of peer-to-peer, we also talk about its exciting
social promise. Communities have been forming on the Internet for a long time, but they have been
limited by the flat interactive qualities of email and Network newsgroups. People can exchange
recommendations and ideas over these media, but have great difficulty commenting on each other's
postings, structuring information, performing searches, or creating summaries. If tools provided ways
to organize information intelligently, and if each person could serve up his or her own data and
retrieve others' data, the possibilities for collaboration would take off. Peer-to-peer technologies along
with metadata could enhance almost any group of people who share an interest--technical, cultural,
political, medical, you name it.

This book presents the goals that drive the developers of the best-known peer-to-peer systems, the
problems they've faced, and the technical solutions they've found. Learn here the essentials of peer-to-
peer from leaders of the field:

• Nelson Minar and Marc Hedlund of Popular Power, on a history of peer-to-peer

• Clay Shirky of acceleratorgroup, on where peer-to-peer is likely to be headed

• Tim O'Reilly of O'Reilly & Associates, on redefining the public's perceptions

• Dan Bricklin, cocreator of Visicalc, on harvesting information from end-users

• David Anderson of SETI@home, on how SETI@Home created the world's largest
computer

• Jeremie Miller of Jabber, on the Internet as a collection of conversations

• Gene Kan of Gnutella and GoneSilent.com, on lessons from Gnutella for peer-to-peer
technologies

• Adam Langley of Freenet, on Freenet's present and upcoming architecture

• Alan Brown of Red Rover, on a deliberately low-tech content distribution system

• Marc Waldman, Lorrie Cranor, and Avi Rubin of AT&T Labs, on the Publius project
and trust in distributed systems

• Roger Dingledine, Michael J. Freedman, and David Molnar of Free Haven, on
resource allocation and accountability in distributed systems

• Rael Dornfest of O'Reilly Network and Dan Brickley of ILRT/RDF Web, on metadata

• Theodore Hong of Freenet, on performance

• Richard Lethin of Reputation Technologies, on how reputation can be built online

• Jon Udell of BYTE and Nimisha Asthagiri and Walter Tuvell of Groove Networks,
on security

• Brandon Wiley of Freenet, on gateways between peer-to-peer systems

You'll find information on the latest and greatest systems as well as upcoming efforts in this book.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 1

Preface
Andy Oram, O'Reilly & Associates, Inc.

The term peer-to-peer rudely shoved its way to front and center stage of the computing field around
the middle of the year 2000. Just as the early 20th-century advocates of psychoanalysis saw sex
everywhere, industry analysts and marketing managers are starting to call everything they like in
computers and telecommunications "peer-to-peer." At the same time, technologists report that fear
and mistrust still hang around this concept, sometimes making it hard for them to get a fair hearing
from venture capitalists and policy makers.

Yes, a new energy is erupting in the computing field, and a new cuisine is brewing. Leaving sexiness
aside, this preface tries to show that the term peer-to-peer is a useful way to understand a number of
current trends that are exemplified by projects and research in this book. Seemingly small
technological innovations in peer-to-peer can radically alter the day-to-day use of computer systems,
as well as the way ordinary people interact using computer systems.

But to really understand what makes peer-to-peer tick, where it is viable, and what it can do for you,
you have to proceed to the later chapters of the book. Each is written by technology leaders who are
working 'round the clock to create the new technologies that form the subject of this book. By
following their thoughts and research, you can learn the state of the field today and where it might go
in the future.

Some context and a definition

I mentioned at the beginning of this preface that the idea of peer-to-peer was the new eyebrow-raiser
for the summer of 2000. At that point in history, it looked like the Internet had fallen into predictable
patterns. Retail outlets had turned the Web into the newest mail order channel, while entertainment
firms used it to rally fans of pop culture. Portals and search engines presented a small slice of Internet
offerings in the desperate struggle to win eyes for banner ads. The average user, stuck behind a
firewall at work or burdened with usage restrictions on a home connection, settled down to sending
email and passive viewing.

In a word, boredom. Nothing much for creative souls to look forward to. An Olympic sports ceremony
that would go on forever.

At that moment the computer field was awakened by a number of shocks. The technologies were not
precisely new, but people realized for the first time that they were having a wide social impact:

Napster

This famous and immensely popular music exchange system caused quite a ruckus, first over
its demands on campus bandwidth, and later for its famous legal problems. The technology is
similar to earlier systems that got less attention, and even today is rather limited (since it was
designed for pop songs, though similar systems have been developed for other types of data).
But Napster had a revolutionary impact because of a basic design choice: after the initial
search for material, clients connect to each other and exchange data directly from one
system's disk to the other.

SETI@home

This project attracted the fascination of millions of people long before the Napster
phenomenon, and it brought to public attention the promising technique of distributing a
computation across numerous personal computers. This technique, which exploited the
enormous amounts of idle time going to waste on PCs, had been used before in projects to
crack encryption challenges, but after SETI@home began, a number of companies started up
with the goal of making the technique commercially viable.

Freenet

Several years before the peer-to-peer mania, University of Edinburgh researcher Ian Clarke
started to create an elegantly simple and symmetric file exchange system that has proven to be
among the purest of current models for peer-to-peer systems. Client and server are the same
thing in this system; there is absolutely no centralization.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 2

Gnutella

This experimental system almost disappeared before being discovered and championed by
open source developers. It is another file exchange system that, like Freenet, stresses
decentralization. Its potential for enhanced searches is currently being explored.

Jabber

This open source project combines instant messaging (supporting many popular systems)
with XML. The emergence of Jabber proclaimed that XML was more than a tool for business-
to-business (B2B) transaction processing, and in fact could be used to create spontaneous
communities of ordinary users by structuring the information of interest to them.

.NET

This is the most far-reaching initiative Microsoft has released for many years, and they've
announced that they're betting the house on it. .NET makes Microsoft's earlier component
technology easier to use and brings it to more places, so that web servers and even web
browsers can divide jobs among themselves. XML and SOAP (a protocol for doing object-
oriented programming over the Web) are a part of .NET.

Analysts trying to find the source of inspiration for these developments have also noted a new world of
sporadically connected Internet nodes emerging in laptops, handhelds, and cell phones, with more
such nodes promised for the future in the form of household devices.

What thread winds itself around all these developments? In various ways they return content, choice,
and control to ordinary users. Tiny endpoints on the Internet, sometimes without even knowing each
other, exchange information and form communities. There are no more clients and servers - or at
least, the servers retract themselves discreetly. Instead, the significant communication takes place
between cooperating peers. That is why, diverse as these developments are, it is appropriate to lump
them together under the rubric peer-to-peer.

While the technologies just listed are so new we cannot yet tell where their impact will be, peer-to-
peer is also the oldest architecture in the world of communications. Telephones are peer-to-peer, as is
the original UUCP implementation of Usenet. IP routing, the basis of the Internet, is peer-to-peer,
even now when the largest access points raise themselves above the rest. Endpoints have also
historically been peers, because until the past decade every Internet- connected system hosted both
servers and clients. Aside from dial-up users, the second-class status of today's PC browser crowd
didn't exist. Thus, as some of the authors in this book point out, peer-to-peer technologies return the
Internet to its original vision, in which everyone creates as well as consumes.

Many early peer-to-peer projects have an overtly political mission: routing around censorship. Peer-
to-peer techniques developed in deliberate evasion of mainstream networking turned out to be very
useful within mainstream networking. There is nothing surprising about this move from a specialized
and somewhat ostracized group of experimenters to the center of commercial activity; similar trends
can be found in the history of many technologies. After all, organizations that are used to working
within the dominant paradigm don't normally try to change that paradigm; change is more likely to
come from those pushing a new cause. Many of the anti-censorship projects and their leaders are
featured in this book, because they have worked for a long time on the relevant peer-to-peer issues
and have a lot of experience to offer.

Peer-to-peer can be seen as the continuation of a theme that has always characterized Internet
evolution: loosening the virtual from the physical. DNS decoupled names from physical systems, while
URNs were meant to let users retrieve documents without knowing the domain names of their hosts.
Virtual hosting and replicated servers changed the one-to-one relationship of names to systems.
Perhaps it is time for another major conceptual leap, where we let go of the notion of location.
Welcome to the Heisenberg Principle as applied to the Internet.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 3

The two-way Internet also has a social impact, and while this book is mostly about the technical
promise of peer-to-peer, authors also talk about its exciting social promise. Communities have been
forming on the Internet for a long time, but they have been limited by the flat interactive qualities of
email and network newsgroups. People can exchange recommendations and ideas over these media,
but they have great difficulty commenting on each other's postings, structuring information,
performing searches, or creating summaries. If tools provided ways to organize information
intelligently, and if each person could serve up his or her own data and retrieve others' data, the
possibilities for collaboration would take off. Peer-to-peer technologies could enhance almost any
group of people who share an interest - technical, cultural, political, medical, you name it.

How this book came into being

The feat of compiling original material from the wide range of experts who contributed to this book is
a story all in itself.

Long before the buzz about peer-to-peer erupted in the summer of 2000, several people at O'Reilly &
Associates had been talking to leaders of interesting technologies who later found themselves
identified as part of the peer-to-peer movement. At that time, for instance, we were finishing a book
on SETI@home (Beyond Contact, by Brian McConnell) and just starting a book on Jabber. Tim
O'Reilly knew Ray Ozzie of Groove Networks (the creator of Lotus Notes), Marc Hedlund and Nelson
Minar of Popular Power, and a number of other technologists working on technologies like those in
this book.

As for me, I became aware of the technologies through my interest in Internet and computing policy.
When the first alarmist news reports were published about Freenet and Gnutella, calling them
mechanisms for evading copyright controls and censorship, I figured that anything with enough power
to frighten major forces must be based on interesting and useful technologies. My hunch was borne
out more readily than I could have imagined; the articles I published in defense of the technologies
proved to be very popular, and Tim O'Reilly asked me to edit a book on the topic.

As a result, contributors came from many sources. Some were already known to O'Reilly & Associates,
some were found through a grapevine of interested technologists, and some approached us when word
got out that we were writing about peer-to-peer. We solicited chapters from several people who could
have made valuable contributions but had to decline for lack of time or other reasons. I am fully
willing to admit we missed some valuable contributors simply because we did not know about them,
but perhaps that can be rectified in a future edition.

In addition to choosing authors, I spent a lot of effort making sure their topics accurately represented
the field. I asked each author to find a topic that he or she found compelling, and I weighed each topic
to make sure it was general enough to be of interest to a wide range of readers.

I was partial to topics that answered the immediate questions knowledgeable computer people ask
when they hear about peer-to-peer, such as "Will performance become terrible as it scales?" or "How
can you trust people?" Naturally, I admonished authors to be completely honest and to cover
weaknesses as well as strengths.

We did our best, in the short time we had, to cover everything of importance while avoiding overlap.
Some valuable topics could not be covered. For instance, no one among the authors we found felt
comfortable writing about search techniques, which are clearly important to making peer-to-peer
systems useful. I believe the reason we didn't get to search techniques is that it represents a relatively
high level of system design and system use - a level the field has not yet achieved. Experiments are
being conducted (such as InfraSearch, a system built on Gnutella), but the requisite body of
knowledge is not in place for a chapter in this book. All the topics in the following pages - trust,
accountability, metadata - have to be in place before searching is viable. Sometime in the future, when
the problems in these areas are ironed out, we will be ready to discuss search techniques.

Thanks to Steve Burbeck, Ian Clarke, Scott Miller, and Terry Steichen, whose technical reviews were
critical to assuring accurate information and sharpening the arguments in this book. Thanks also to
the many authors who generously and gently reviewed each other's work, and to those people whose
aid is listed in particular chapters.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 4

Thanks also to the following O'Reilly staff: Darren Kelly, production editor; Leanne Soylemez, who
was the copyeditor; Rachel Wheeler, who was the proofreader; Matthew Hutchinson, Jane Ellin,
Sarah Jane Shangraw, and Claire Cloutier, who provided quality control; Judy Hoer, who wrote the
index; Lucy Muellner and Linley Dolby, who did interior composition; Edie Freedman, who designed
the cover of this book; Emma Colby, who produced the cover layout; Melanie Wang and David Futato,
who designed the interior layout; Mike Sierra, who implemented the design; and Robert Romano and
Jessamyn Reed, who produced the illustrations.

Contents of this book

It's fun to find a common thread in a variety of projects, but simply noting philosophical parallels is
not enough to make the term peer-to-peer useful. Rather, it is valuable only if it helps us develop and
deploy the various technologies. In other words, if putting two technologies under the peer-to-peer
umbrella shows that they share a set of problems, and that the solution found for one technology can
perhaps be applied to another, we benefit from the buzzword. This book, then, spends most of its time
on general topics rather than the details of particular existing projects.

Part I contains the observations of several thinkers in the computer industry about the movements
that have come to be called peer-to-peer. These authors discuss what can be included in the term,
where it is innovative or not so innovative, and where its future may lie.

Chapter 1 - describes where peer-to-peer systems might offer benefits, and the problems of fitting such
systems into the current Internet. It includes a history of early antecedents. The chapter is written by
Nelson Minar and Marc Hedlund, the chief officers of Popular Power.

Chapter 2 - tries to tie down what peer-to-peer means and what we can learn from the factors that
made Napster so popular. The chapter is written by investment advisor and essayist Clay Shirky.

Chapter 3 - contrasts the way the public often views a buzzword such as peer-to-peer with more
constructive approaches. It is written by Tim O'Reilly, founder and CEO of O'Reilly & Associates, Inc.

Chapter 4 - reveals the importance of maximizing the value that normal, selfish use adds to a service.
It is written by Dan Bricklin, cocreator of Visicalc, the first computer spreadsheet.

Some aspects of peer-to-peer can be understood only by looking at real systems. Part II contains
chapters of varying length about some important systems that are currently in operation or under
development.

Chapter 5 - presents one of the most famous of the early crop of peer-to-peer technologies. Project
Director David Anderson explains why the team chose to crunch astronomical data on millions of
scattered systems and how they pulled it off.

Chapter 6 - presents the wonderful possibilities inherent in using the Internet to form communities of
people as well as automated agents contacting each other freely. It is written by Jeremie Miller, leader
of the Jabber project.

Chapter 7 - covers a classic system for allowing anonymous email. Other systems described in this
book depend on Mixmaster to protect end-user privacy, and it represents an important and long-
standing example of peer-to-peer in itself. It is written by Adam Langley, a Freenet developer.

Chapter 8 - offers not only an introduction to one of the most important of current projects, but also
an entertaining discussion of the value of using peer-to-peer techniques. The chapter is written by
Gene Kan, one of the developers most strongly associated with Gnutella.

Chapter 9 - describes an important project that should be examined by anyone interested in peer-to-
peer. The chapter explains how the system passes around requests and how various cryptographic
keys permit searches and the retrieval of documents. It is written by Adam Langley.

Chapter 10 - describes a fascinating system for avoiding censorship and recrimination for the
distribution of files using electronic mail. It is written by Alan Brown, the developer of Red Rover.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 5

Chapter 11 - describes a system that distributes material through a collection of servers in order to
prevent censorship. Although Publius is not a pure peer-to-peer system, its design offers insight and
unique solutions to many of the problems faced by peer-to-peer designers and users. The chapter is
written by Marc Waldman, Lorrie Faith Cranor, and Avi Rubin, the members of the Publius team.

Chapter 12 - introduces another set of distributed storage services that promotes anonymity with the
addition of some new techniques in improving accountability in the face of this anonymity. It is
written by Roger Dingledine, Michael Freedman, and David Molnar, leaders of the Free Haven team.

In Part III, project leaders choose various key topics and explore the problems, purposes, and
promises of the technology.

Chapter 13 - shows how to turn raw data into useful information and how that information can
support information seekers and communities. Metadata can be created through XML, RDF, and
other standard formats. The chapter is written by Rael Dornfest, an O'Reilly Network developer, and
Dan Brickley, a longstanding RDF advocate and chair of the World Wide Web Consortium's RDF
Interest Group.

Chapter 14 - covers a topic that has been much in the news recently and comes to mind immediately
when people consider peer-to-peer for real-life systems. This chapter examines how well a peer-to-
peer project can scale, using simulation to provide projections for Freenet and Gnutella. It is written
by Theodore Hong of the Freenet project.

Chapter 15 - begins a series of chapters on the intertwined issues of privacy, authentication,
anonymity, and reliability. This chapter covers the basic elements of security, some of which will be
well known to most readers, but some of which are fairly novel. It is written by the members of the
Publius team.

Chapter 16 - covers ways to avoid the "tragedy of the commons" in shared systems - in other words,
the temptation for many users to freeload off the resources contributed by a few. This problem is
endemic to many peer-to-peer systems, and has led to several suggestions for micropayment systems
(like Mojo Nation) and reputation systems. The chapter is written by leaders of the Free Haven team.

Chapter 17 - discusses ways to automate the collection and processing of information from previous
transactions to help users decide whether they can trust a server with a new transaction. The chapter
is written by Richard Lethin, founder of Reputation Technologies, Inc.

Chapter 18 - offers the assurance that it is technically possible for people in a peer-to-peer system to
authenticate each other and ensure the integrity and secrecy of their communications. The chapter
accomplishes this by describing the industrial-strength security system used in Groove, a new
commercial groupware system for small collections of people. It is written by Jon Udell, an
independent author/consultant, and Nimisha Asthagiri and Walter Tuvell, staff of Groove Networks.

Chapter 19 - discusses how the best of all worlds could be achieved by connecting one system to
another. It includes an encapsulated comparison of several peer-to-peer systems and the advantages
each one offers. It is written by Brandon Wiley, a developer of the Freenet project.

Appendix A - lists some interesting projects, companies, and standards that could reasonably be
considered examples of peer-to-peer technology.

Peer-to-peer web site

O'Reilly has created the web site http://openp2p.com/ to cover peer-to-peer (P2P) technology for
developers and technical managers. The site covers these technologies from inside the communities
producing them and tries to profile the leading technologists, thinkers, and programmers in the P2P
space by providing a deep technical perspective.

http://openp2p.com/

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 6

We'd like to hear from you

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.
101 Morris Street Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, or any additional information. You
can access this page at:

http://www.oreilly.com/catalog/peertopeer

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, software, Resource Centers, and the O'Reilly
Network, see our web site at:

http://www.oreilly.com/

http://www.oreilly.com/catalog/peertopeer
http://www.oreilly.com/

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 7

Part I: Context and Overview

This part of the book offers some high-level views, defining the term "peer-to-peer"
and placing current projects in a social and technological context.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 8

Chapter 1. A Network of Peers: Peer-to-Peer
Models Through the History of the Internet
Nelson Minar and Marc Hedlund, Popular Power

The Internet is a shared resource, a cooperative network built out of millions of hosts all over the
world. Today there are more applications than ever that want to use the network, consume bandwidth,
and send packets far and wide. Since 1994, the general public has been racing to join the community
of computers on the Internet, placing strain on the most basic of resources: network bandwidth. And
the increasing reliance on the Internet for critical applications has brought with it new security
requirements, resulting in firewalls that strongly partition the Net into pieces. Through rain and snow
and congested Network Access Providers (NAPs), the email goes through, and the system has scaled
vastly beyond its original design.

In the year 2000, though, something has changed - or, perhaps, reverted. The network model that
survived the enormous growth of the previous five years has been turned on its head. What was down
has become up; what was passive is now active. Through the music-sharing application called Napster,
and the larger movement dubbed "peer-to-peer," the millions of users connecting to the Internet have
started using their ever more powerful home computers for more than just browsing the Web and
trading email. Instead, machines in the home and on the desktop are connecting to each other
directly, forming groups and collaborating to become user-created search engines, virtual
supercomputers, and filesystems.

Not everyone thinks this is such a great idea. Some objections (dealt with elsewhere in this volume)
cite legal or moral concerns. Other problems are technical. Many network providers, having set up
their systems with the idea that users would spend most of their time downloading data from central
servers, have economic objections to peer-to-peer models. Some have begun to cut off access to peer-
to-peer services on the basis that they violate user agreements and consume too much bandwidth (for
illicit purposes, at that). As reported by the online News.com site, a third of U.S. colleges surveyed
have banned Napster because students using it have sometimes saturated campus networks.

In our own company, Popular Power, we have encountered many of these problems as we create a
peer-to-peer distributed computing resource out of millions of computers all over the Internet. We
have identified many specific problems where the Internet architecture has been strained; we have
also found work-arounds for many of these problems and have come to understand what true
solutions would be like. Surprisingly, we often find ourselves looking back to the Internet of 10 or 15
years ago to consider how best to solve a problem.

The original Internet was fundamentally designed as a peer-to-peer system. Over time it has become
increasingly client/server, with millions of consumer clients communicating with a relatively
privileged set of servers. The current crop of peer-to-peer applications is using the Internet much as it
was originally designed: as a medium for communication for machines that share resources with each
other as equals. Because this network model is more revolutionary for its scale and its particular
implementations than for its concept, a good number of past Internet applications can provide lessons
to architects of new peer-to-peer applications. In some cases, designers of current applications can
learn from distributed Internet systems like Usenet and the Domain Name System (DNS); in others,
the changes that the Internet has undergone during its commercialization may need to be reversed or
modified to accommodate new peer-to-peer applications. In either case, the lessons these systems
provide are instructive, and may help us, as application designers, avoid causing the death of the
Internet.[1]

[1] The authors wish to thank Debbie Pfeifer for invaluable help in editing this chapter.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 9

1.1 A revisionist history of peer-to-peer (1969-1995)

The Internet as originally conceived in the late 1960s was a peer-to-peer system. The goal of the
original ARPANET was to share computing resources around the U.S. The challenge for this effort was
to integrate different kinds of existing networks as well as future technologies with one common
network architecture that would allow every host to be an equal player. The first few hosts on the
ARPANET - UCLA, SRI, UCSB, and the University of Utah - were already independent computing
sites with equal status. The ARPANET connected them together not in a master/slave or client/server
relationship, but rather as equal computing peers.

The early Internet was also much more open and free than today's network. Firewalls were unknown
until the late 1980s. Generally, any two machines on the Internet could send packets to each other.
The Net was the playground of cooperative researchers who generally did not need protection from
each other. The protocols and systems were obscure and specialized enough that security break-ins
were rare and generally harmless. As we shall see later, the modern Internet is much more
partitioned.

The early "killer apps" of the Internet, FTP and Telnet, were themselves client/server applications. A
Telnet client logged into a compute server, and an FTP client sent and received files from a file server.
But while a single application was client/server, the usage patterns as a whole were symmetric. Every
host on the Net could FTP or Telnet to any other host, and in the early days of minicomputers and
mainframes, the servers usually acted as clients as well.

This fundamental symmetry is what made the Internet so radical. In turn, it enabled a variety of more
complex systems such as Usenet and DNS that used peer-to-peer communication patterns in an
interesting fashion. In subsequent years, the Internet has become more and more restricted to
client/server-type applications. But as peer-to-peer applications become common again, we believe
the Internet must revert to its initial design.

Let's look at two long-established fixtures of computer networking that include important peer-to-
peer components: Usenet and DNS.

1.1.1 Usenet

Usenet news implements a decentralized model of control that in some ways is the grandfather of
today's new peer-to-peer applications such as Gnutella and Freenet. Fundamentally, Usenet is a
system that, using no central control, copies files between computers. Since Usenet has been around
since 1979, it offers a number of lessons and is worth considering for contemporary file-sharing
applications.

The Usenet system was originally based on a facility called the Unix-to-Unix-copy protocol, or UUCP.
UUCP was a mechanism by which one Unix machine would automatically dial another, exchange files
with it, and disconnect. This mechanism allowed Unix sites to exchange email, files, system patches,
or other messages. The Usenet used UUCP to exchange messages within a set of topics, so that
students at the University of North Carolina and Duke University could each "post" messages to a
topic, read messages from others on the same topic, and trade messages between the two schools. The
Usenet grew from these original two hosts to hundreds of thousands of sites. As the network grew, so
did the number and structure of the topics in which a message could be posted. Usenet today uses a
TCP/IP-based protocol known as the Network News Transport Protocol (NNTP), which allows two
machines on the Usenet network to discover new newsgroups efficiently and exchange new messages
in each group.

The basic model of Usenet provides a great deal of local control and relatively simple administration.
A Usenet site joins the rest of the world by setting up a news exchange connection with at least one
other news server on the Usenet network. Today, exchange is typically provided by a company's ISP.
The administrator tells the company's news server to get in touch with the ISP's news server and
exchange messages on a regular schedule. Company employees contact the company's local news
server, and transact with it to read and post news messages. When a user in the company posts a new
message in a newsgroup, the next time the company news server contacts the ISP's server it will notify
the ISP's server that it has a new article and then transmit that article. At the same time, the ISP's
server sends its new articles to the company's server.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 10

Today, the volume of Usenet traffic is enormous, and not every server will want to carry the full
complement of newsgroups or messages. The company administrator can control the size of the news
installation by specifying which newsgroups the server will carry. In addition, the administrator can
specify an expiration time by group or hierarchy, so that articles in a newsgroup will be retained for
that time period but no longer. These controls allow each organization to voluntarily join the network
on its own terms. Many organizations decide not to carry newsgroups that transmit sexually oriented
or illegal material. This is a distinct difference from, say, Freenet, which (as a design choice) does not
let a user know what material he or she has received.

Usenet has evolved some of the best examples of decentralized control structures on the Net. There is
no central authority that controls the news system. The addition of new newsgroups to the main topic
hierarchy is controlled by a rigorous democratic process, using the Usenet group news.admin to
propose and discuss the creation of new groups. After a new group is proposed and discussed for a set
period of time, anyone with an email address may submit an email vote for or against the proposal. If
a newsgroup vote passes, a new group message is sent and propagated through the Usenet network.

There is even an institutionalized form of anarchy, the alt.* hierarchy, that subverts the news.admin
process in a codified way. An alt newsgroup can be added at any time by anybody, but sites that don't
want to deal with the resulting absurdity can avoid the whole hierarchy. The beauty of Usenet is that
each of the participating hosts can set their own local policies, but the network as a whole functions
through the cooperation and good will of the community. Many of the peer-to-peer systems currently
emerging have not yet effectively addressed decentralized control as a goal. Others, such as Freenet,
deliberately avoid giving local administrators control over the content of their machines because this
control would weaken the political aims of the system. In each case, the interesting question is: how
much control can or should the local administrator have?

NNTP as a protocol contains a number of optimizations that modern peer-to-peer systems would do
well to copy. For instance, news messages maintain a "Path" header that traces their transmission
from one news server to another. If news server A receives a request from server B, and A's copy of a
message lists B in the Path header, A will not try to retransmit that message to B. Since the purpose of
NNTP transmission is to make sure every news server on Usenet can receive an article (if it wants to),
the Path header avoids a flood of repeated messages. Gnutella, as an example, does not use a similar
system when transmitting search requests, so as a result a single Gnutella node can receive the same
request repeatedly.

The open, decentralized nature of Usenet can be harmful as well as beneficial. Usenet has been
enormously successful as a system in the sense that it has survived since 1979 and continues to be
home to thriving communities of experts. It has swelled far beyond its modest beginnings. But in
many ways the trusting, decentralized nature of the protocol has reduced its utility and made it an
extremely noisy communication channel. Particularly, as we will discuss later, Usenet fell victim to
spam early in the rise of the commercial Internet. Still, Usenet's systems for decentralized control, its
methods of avoiding a network flood, and other characteristics make it an excellent object lesson for
designers of peer-to- peer systems.

1.1.2 DNS

The Domain Name System (DNS) is an example of a system that blends peer-to-peer networking with
a hierarchical model of information ownership. The remarkable thing about DNS is how well it has
scaled, from the few thousand hosts it was originally designed to support in 1983 to the hundreds of
millions of hosts currently on the Internet. The lessons from DNS are directly applicable to
contemporary peer-to-peer data sharing applications.

DNS was established as a solution to a file-sharing problem. In the early days of the Internet, the way
to map a human-friendly name like bbn to an IP address like 4.2.49.2 was through a single flat file,
hosts.txt, which was copied around the Internet periodically. As the Net grew to thousands of hosts
and managing that file became impossible, DNS was developed as a way to distribute the data sharing
across the peer-to-peer Internet.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 11

The namespace of DNS names is naturally hierarchical. For example, O'Reilly & Associates, Inc. owns
the namespace oreilly.com: they are the sole authority for all names in their domain, such as
http://www.oreilly.com/. This built-in hierarchy yields a simple, natural way to delegate
responsibility for serving part of the DNS database. Each domain has an authority, the name server of
record for hosts in that domain. When a host on the Internet wants to know the address of a given
name, it queries its nearest name server to ask for the address. If that server does not know the name,
it delegates the query to the authority for that namespace. That query, in turn, may be delegated to a
higher authority, all the way up to the root name servers for the Internet as a whole. As the answer
propagates back down to the requestor, the result is cached along the way to the name servers so the
next fetch can be more efficient. Name servers operate both as clients and as servers.

DNS as a whole works amazingly well, having scaled to 10,000 times its original size. There are several
key design elements in DNS that are replicated in many distributed systems today. One element is that
hosts can operate both as clients and as servers, propagating requests when need be. These hosts help
make the network scale well by caching replies. The second element is a natural method of
propagating data requests across the network. Any DNS server can query any other, but in normal
operation there is a standard path up the chain of authority. The load is naturally distributed across
the DNS network, so that any individual name server needs to serve only the needs of its clients and
the namespace it individually manages.

So from its earliest stages, the Internet was built out of peer-to-peer communication patterns. One
advantage of this history is that we have experience to draw from in how to design new peer-to-peer
systems. The problems faced today by new peer-to-peer applications systems such as file sharing are
quite similar to the problems that Usenet and DNS addressed 10 or 15 years ago.

1.2 The network model of the Internet explosion (1995-1999)

The explosion of the Internet in 1994 radically changed the shape of the Internet, turning it from a
quiet geek utopia into a bustling mass medium. Millions of new people flocked to the Net. This wave
represented a new kind of people - ordinary folks who were interested in the Internet as a way to send
email, view web pages, and buy things, not computer scientists interested in the details of complex
computer networks. The change of the Internet to a mass cultural phenomenon has had a far-reaching
impact on the network architecture, an impact that directly affects our ability to create peer-to-peer
applications in today's Internet. These changes are seen in the way we use the network, the breakdown
of cooperation on the Net, the increasing deployment of firewalls on the Net, and the growth of
asymmetric network links such as ADSL and cable modems.

1.2.1 The switch to client/server

The network model of user applications - not just their consumption of bandwidth, but also their
methods of addressing and communicating with other machines - changed significantly with the rise
of the commercial Internet and the advent of millions of home users in the 1990s. Modem connection
protocols such as SLIP and PPP became more common, typical applications targeted slow-speed
analog modems, and corporations began to manage their networks with firewalls and Network
Address Translation (NAT). Many of these changes were built around the usage patterns common at
the time, most of which involved downloading data, not publishing or uploading information.

The web browser, and many of the other applications that sprung up during the early
commercialization of the Internet, were based around a simple client/server protocol: the client
initiates a connection to a well-known server, downloads some data, and disconnects. When the user
is finished with the data retrieved, the process is repeated. The model is simple and straightforward. It
works for everything from browsing the Web to watching streaming video, and developers cram
shopping carts, stock transactions, interactive games, and a host of other things into it. The machine
running a web client doesn't need to have a permanent or well-known address. It doesn't need a
continuous connection to the Internet. It doesn't need to accommodate multiple users. It just needs to
know how to ask a question and listen for a response.

http://www.oreilly.com/

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 12

Not all of the applications used at home fit this model. Email, for instance, requires much more two-
way communication between an email client and server. In these cases, though, the client is often
talking to a server on the local network (either the ISP's mail server or a corporate one). Chat systems
that achieved widespread usage, such as AOL's Instant Messenger, have similar "local" properties, and
Usenet systems do as well. As a result, the typical ISP configuration instructions give detailed (and
often misunderstood) instructions for email, news, and sometimes chat. These were the exceptions
that were worth some manual configuration on the user's part. The "download" model is simpler and
works without much configuration; the "two-way" model is used less frequently but perhaps to greater
effect.

While early visions of the Web always called it a great equalizer of communications - a system that
allowed every user to publish their viewpoints rather than simply consume media - the commercial
explosion on the Internet quickly fit the majority of traffic into the downstream paradigm already used
by television and newspapers. Architects of the systems that enabled the commercial expansion of the
Net often took this model into account, assuming that it was here to stay. Peer-to-peer applications
may require these systems to change.

1.2.2 The breakdown of cooperation

The early Internet was designed on principles of cooperation and good engineering. Everyone working
on Internet design had the same goal: build a reliable, efficient, powerful network. As the Internet
entered its current commercial phase, the incentive structures changed, resulting in a series of stresses
that have highlighted the Internet's susceptibility to the tragedy of the commons. This phenomenon
has shown itself in many ways, particularly the rise of spam on the Internet and the challenges of
building efficient network protocols that correctly manage the common resource.

1.2.2.1 Spam: Uncooperative people

Spam, or unsolicited commercial messages, is now an everyday occurrence on the Internet. Back in
the pre-commercial network, however, unsolicited advertisements were met with surprise and
outrage. The end of innocence occurred on April 12, 1994, the day the infamous Canter and Seigel
"green card spam" appeared on the Usenet. Their offense was an advertisement posted individually to
every Usenet newsgroup, blanketing the whole world with a message advertising their services. At the
time, this kind of action was unprecedented and engendered strong disapproval. Not only were most
of the audience uninterested in the service, but many people felt that Canter and Seigel had stolen the
Usenet's resources. The advertisers did not pay for the transmission of the advertisement; instead the
costs were borne by the Usenet as a whole.

In the contemporary Internet, spam does not seem surprising; Usenet has largely been given over to
it, and ISPs now provide spam filtering services for their users' email both to help their users and in
self-defense. Email and Usenet relied on individuals' cooperation to not flood the commons with junk
mail, and that cooperation broke down. Today the Internet generally lacks effective technology to
prevent spam.

The problem is the lack of accountability in the Internet architecture. Because any host can connect to
any other host, and because connections are nearly anonymous, people can insert spam into the
network at any point. There has been an arms race of trying to hold people accountable - closing down
open sendmail relays, tracking sources of spam on Usenet, retaliation against spammers - but the
battle has been lost, and today we have all learned to live with spam.

The lesson for peer-to-peer designers is that without accountability in a network, it is difficult to
enforce rules of social responsibility. Just like Usenet and email, today's peer-to-peer systems run the
risk of being overrun by unsolicited advertisements. It is difficult to design a system where socially
inappropriate use is prevented. Technologies for accountability, such as cryptographic identification
or reputation systems, can be valuable tools to help manage a peer-to-peer network. There have been
proposals to retrofit these capabilities into Usenet and email, but none today are widespread; it is
important to build these capabilities into the system from the beginning. Chapter 16, discusses some
techniques for controlling spam, but these are still arcane.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 13

1.2.2.2 The TCP rate equation: Cooperative protocols

A fundamental design principle of the Internet is best effort packet delivery. "Best effort" means the
Internet does not guarantee that a packet will get through, simply that the Net will do its best to get
the packet to the destination. Higher-level protocols such as TCP create reliable connections by
detecting when a packet gets lost and resending it. A major reason packets do not get delivered on the
Internet is congestion: if a router in the network is overwhelmed, it will start dropping packets at
random. TCP accounts for this by throttling the speed at which it sends data. When the network is
congested, each individual TCP connection independently slows down, seeking to find the optimal rate
while not losing too many packets. But not only do individual TCP connections optimize their
bandwidth usage, TCP is also designed to make the Internet as a whole operate efficiently. The
collective behavior of many individual TCP connections backing off independently results in a
lessening of the congestion at the router, in a way that is exquisitely tuned to use the router's capacity
efficiently. In essence, the TCP backoff algorithm is a way for individual peers to manage a shared
resource without a central coordinator.

The problem is that the efficiency of TCP on the Internet scale fundamentally requires cooperation:
each network user has to play by the same rules. The performance of an individual TCP connection is
inversely proportional to the square root of the packet loss rate - part of the "TCP rate equation," a
fundamental governing law of the Internet. Protocols that follow this law are known as "TCP-friendly
protocols." It is possible to design other protocols that do not follow the TCP rate equation, ones that
rudely try to consume more bandwidth than they should. Such protocols can wreak havoc on the Net,
not only using more than their fair share but actually spoiling the common resource for all. This
abstract networking problem is a classic example of a tragedy of the commons, and the Internet today
is quite vulnerable to it.

The problem is not only theoretical, it is also quite practical. As protocols have been built in the past
few years by companies with commercial demands, there has been growing concern that unfriendly
protocols will begin to hurt the Internet.

An early example was a feature added by Netscape to their browser - the ability to download several
files at the same time. The Netscape engineers discovered that if you downloaded embedded images in
parallel, rather than one at a time, the whole page would load faster and users would be happier. But
there was a question: was this usage of bandwidth fair? Not only does it tax the server to have to send
out more images simultaneously, but it creates more TCP channels and sidesteps TCP's congestion
algorithms. There was some controversy about this feature when Netscape first introduced it, a debate
quelled only after Netscape released the client and people discovered in practice that the parallel
download strategy did not unduly harm the Internet. Today this technique is standard in all browsers
and goes unquestioned. The questions have reemerged at the new frontier of " download accelerator"
programs that download different chunks of the same file simultaneously, again threatening to upset
the delicate management of Internet congestion.

A more troubling concern about congestion management is the growth of bandwidth-hungry
streaming broadband media. Typical streaming media applications do not use TCP, instead favoring
custom UDP-based protocols with their own congestion control and failure handling strategies. Many
of these protocols are proprietary; network engineers do not even have access to their
implementations to examine if they are TCP-friendly. So far there has been no major problem. The
streaming media vendors seem to be playing by the rules, and all is well. But fundamentally the
system is brittle, and either through a mistake or through greed the Internet's current delicate
cooperation could be toppled.

What do spam and the TCP rate algorithm have in common? They both demonstrate that the proper
operation of the Internet is fragile and requires the cooperation of everyone involved. In the case of
TCP, the system has mostly worked and the network has been preserved. In the case of spam,
however, the battle has been lost and unsocial behavior is with us forever. The lesson for peer-to-peer
system designers is to consider the issue of polite behavior up front. Either we must design systems
that do not require cooperation to function correctly, or we must create incentives for cooperation by
rewarding proper behavior or auditing usage so that misbehavior can be punished.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 14

1.2.3 Firewalls, dynamic IP, NAT: The end of the open network

At the same time that the cooperative nature of the Internet was being threatened, network
administrators implemented a variety of management measures that resulted in the Internet being a
much less open network. In the early days of the Internet, all hosts were equal participants. The
network was symmetric - if a host could reach the Net, everyone on the Net could reach that host.
Every computer could equally be a client and a server. This capability began to erode in the mid-1990s
with the deployment of firewalls, the rise of dynamic IP addresses, and the popularity of Network
Address Translation (NAT).

As the Internet matured there came a need to secure the network, to protect individual hosts from
unlimited access. By default, any host that can access the Internet can also be accessed on the
Internet. Since average users could not handle the security risks that resulted from a symmetric
design, network managers turned to firewalls as a tool to control access to their machines.

Firewalls stand at the gateway between the internal network and the Internet outside. They filter
packets, choosing which traffic to let through and which to deny. A firewall changes the fundamental
Internet model: some parts of the network cannot fully talk to other parts. Firewalls are a very useful
security tool, but they pose a serious obstacle to peer-to-peer communication models.

A typical firewall works by allowing anyone inside the internal network to initiate a connection to
anyone on the Internet, but it prevents random hosts on the Internet from initiating connections to
hosts in the internal network. This kind of firewall is like a one-way gate: you can go out, but you
cannot come in. A host protected in this way cannot easily function as a server; it can only be a client.
In addition, outgoing connections may be restricted to certain applications like FTP and the Web by
blocking traffic to certain ports at the firewall.

Allowing an Internet host to be only a client, not a server, is a theme that runs through a lot of the
changes in the Internet after the consumer explosion. With the rise of modem users connecting to the
Internet, the old practice of giving every Internet host a fixed IP address became impractical, because
there were not enough IP addresses to go around. Dynamic IP address assignment is now the norm for
many hosts on the Internet, where an individual computer's address may change every single day.
Broadband providers are even finding dynamic IP useful for their "always on" services. The end result
is that many hosts on the Internet are not easily reachable, because they keep moving around. Peer-to-
peer applications such as instant messaging or file sharing have to work hard to circumvent this
problem, building dynamic directories of hosts. In the early Internet, where hosts remained static, it
was much simpler.

A final trend is to not even give a host a valid public Internet address at all, but instead to use NAT to
hide the address of a host behind a firewall. NAT combines the problems of firewalls and dynamic IP
addresses: not only is the host's true address unstable, it is not even reachable! All communication has
to go through a fairly simple pattern that the NAT router can understand, resulting in a great loss of
flexibility in applications communications. For example, many cooperative Internet games have
trouble with NAT: every player in the game wants to be able to contact every other player, but the
packets cannot get through the NAT router. The result is that a central server on the Internet has to
act as an application-level message router, emulating the function that TCP/IP itself used to serve.

Firewalls, dynamic IP, and NAT grew out of a clear need in Internet architecture to make scalable,
secure systems. They solved the problem of bringing millions of client computers onto the Internet
quickly and manageably. But these same technologies have weakened the Internet infrastructure as a
whole, relegating most computers to second-class status as clients only. New peer-to-peer applications
challenge this architecture, demanding that participants serve resources as well as use them. As peer-
to-peer applications become more common, there will be a need for common technical solutions to
these problems.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 15

1.2.4 Asymmetric bandwidth

A final Internet trend of the late 1990s that presents a challenge to peer-to-peer applications is the rise
in asymmetric network connections such as ADSL and cable modems. In order to get the most
efficiency out of available wiring, current broadband providers have chosen to provide asymmetric
bandwidth. A typical ADSL or cable modem installation offers three to eight times more bandwidth
when getting data from the Internet than when sending data to it, favoring client over server usage.

The reason this has been tolerated by most users is clear: the Web is the killer app for the Internet,
and most users are only clients of the Web, not servers. Even users who publish their own web pages
typically do not do so from a home broadband connection, but instead use third-party dedicated
servers provided by companies like GeoCities or Exodus. In the early days of the Web it was not clear
how this was going to work: could each user have a personal web server? But in the end most Web use
is itself asymmetric - many clients, few servers - and most users are well served by asymmetric
bandwidth.

The problem today is that peer-to-peer applications are changing the assumption that end users only
want to download from the Internet, never upload to it. File-sharing applications such as Napster or
Gnutella can reverse the bandwidth usage, making a machine serve many more files than it
downloads. The upstream pipe cannot meet demand. Even worse, because of the details of TCP's rate
control, if the upstream path is clogged, the downstream performance suffers as well. So if a computer
is serving files on the slow side of a link, it cannot easily download simultaneously on the fast side.

ADSL and cable modems assume asymmetric bandwidth for an individual user. This assumption takes
hold even more strongly inside ISP networks, which are engineered for bits to flow to the users, not
from them. The end result is a network infrastructure that is optimized for computers that are only
clients, not servers. But peer-to-peer technology generally makes every host act both as a client and a
server; the asymmetric assumption is incorrect. There is not much an individual peer-to-peer
application can do to work around asymmetric bandwidth; as peer-to-peer applications become more
widespread, the network architecture is going to have to change to better handle the new traffic
patterns.

1.3 Observations on the current crop of peer-to-peer applications
(2000)

While the new breed of peer-to-peer applications can take lessons from earlier models, these
applications also introduce new characteristics or features that are novel. Peer-to-peer allows us to
separate the concepts of authoring information and publishing that same information. Peer-to-peer
allows for decentralized application design, something that is both an opportunity and a challenge.
And peer-to-peer applications place unique strains on firewalls, something well demonstrated by the
current trend to use the HTTP port for operations other than web transactions.

1.3.1 Authoring is not the same as publishing

One of the promises of the Internet is that people are able to be their own publishers, for example, by
using personal web sites to make their views and interests known. Self-publishing has certainly
become more common with the commercialization of the Internet. More often, however, users spend
most of their time reading (downloading) information and less time publishing, and as discussed
previously, commercial providers of Internet access have structured their offering around this
asymmetry.

The example of Napster creates an interesting middle ground between the ideal of "everyone
publishes" and the seeming reality of "everyone consumes." Napster particularly (and famously)
makes it very easy to publish data you did not author. In effect, your machine is being used as a
repeater to retransmit data once it reaches you. A network designer, assuming that there are only so
many authors in the world and therefore that asymmetric broadband is the perfect optimization, is
confounded by this development. This is why many networks such as college campuses have banned
Napster from use.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 16

Napster changes the flow of data. The assumptions that servers would be owned by publishers and
that publishers and authors would combine into a single network location have proven untrue. The
same observation also applies to Gnutella, Freenet, and others. Users don't need to create content in
order to want to publish it - in fact, the benefits of publication by the "reader" have been demonstrated
by the scale some of these systems have been able to reach.

1.3.2 Decentralization

Peer-to-peer systems seem to go hand-in-hand with decentralized systems. In a fully decentralized
system, not only is every host an equal participant, but there are no hosts with special facilitating or
administrative roles. In practice, building fully decentralized systems can be difficult, and many peer-
to-peer applications take hybrid approaches to solving problems. As we have already seen, DNS is
peer-to-peer in protocol design but with a built-in sense of hierarchy. There are many other examples
of systems that are peer-to-peer at the core and yet have some semi-centralized organization in
application, such as Usenet, instant messaging, and Napster.

Usenet is an instructive example of the evolution of a decentralized system. Usenet propagation is
symmetric: hosts share traffic. But because of the high cost of keeping a full news feed, in practice
there is a backbone of hosts that carry all of the traffic and serve it to a large number of "leaf nodes"
whose role is mostly to receive articles. Within Usenet, there was a natural trend toward making traffic
propagation hierarchical, even though the underlying protocols do not demand it. This form of "soft
centralization" may prove to be economic for many peer-to-peer systems with high-cost data
transmission.

Many other current peer-to-peer applications present a decentralized face while relying on a central
facilitator to coordinate operations. To a user of an instant messaging system, the application appears
peer-to-peer, sending data directly to the friend being messaged. But all major instant messaging
systems have some sort of server on the back end that facilitates nodes talking to each other. The
server maintains an association between the user's name and his or her current IP address, buffers
messages in case the user is offline, and routes messages to users behind firewalls. Some systems
(such as ICQ) allow direct client-to-client communication when possible but have a server as a
fallback. A fully decentralized approach to instant messaging would not work on today's Internet, but
there are scaling advantages to allowing client-to-client communication when possible.

Napster is another example of a hybrid system. Napster's file sharing is decentralized: one Napster
client downloads a file directly from another Napster client's machine. But the directory of files is
centralized, with the Napster servers answering search queries and brokering client connections. This
hybrid approach seems to scale well: the directory can be made efficient and uses low bandwidth, and
the file sharing can happen on the edges of the network.

In practice, some applications might work better with a fully centralized design, not using any peer-to-
peer technology at all. One example is a search on a large, relatively static database. Current web
search engines are able to serve up to one billion pages all from a single place. Search algorithms have
been highly optimized for centralized operation; there appears to be little benefit to spreading the
search operation out on a peer-to-peer network (database generation, however, is another matter).

Also, applications that require centralized information sharing for accountability or correctness are
hard to spread out on a decentralized network. For example, an auction site needs to guarantee that
the best price wins; that can be difficult if the bidding process has been spread across many locations.
Decentralization engenders a whole new area of network-related failures: unreliability, incorrect data
synchronization, etc. Peer-to-peer designers need to balance the power of peer-to-peer models against
the complications and limitations of decentralized systems.

1.3.3 Abusing port 80

One of the stranger phenomena in the current Internet is the abuse of port 80, the port that HTTP
traffic uses when people browse the Web. Firewalls typically filter traffic based on the direction of
traffic (incoming or outgoing) and the destination port of the traffic. Because the Web is a primary
application of many Internet users, almost all firewalls allow outgoing connections on port 80 even if
the firewall policy is otherwise very restrictive.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 17

In the early days of the Internet, the port number usually indicated which application was using the
network; the firewall could count on port 80 being only for Web traffic. But precisely because many
firewalls allow connections to port 80, other application authors started routing traffic through that
port. Streaming audio, instant messaging, remote method invocations, even whole mobile agents are
being sent through port 80. Most current peer-to-peer applications have some way to use port 80 as
well in order to circumvent network security policies. Naive firewalls are none the wiser; they are
unaware that they are passing the exact sorts of traffic the network administrator intended to block.

The problem is twofold. First, there is no good way for a firewall to identify what applications are
running through it. The port number has already been circumvented. Fancier firewalls can analyze the
actual traffic going through the firewall and see if it is a legitimate HTTP stream, but that just
encourages application designers to masquerade as HTTP, leading to an escalating arms race that
benefits no one.

The second problem is that even if an application has a legitimate reason to go through the firewall,
there is no simple way for the application to request permission. The firewall, as a network security
measure, is outmoded. As long as a firewall allows some sort of traffic through, peer-to-peer
applications will find a way to slip through that opening.

1.4 Peer-to-peer prescriptions (2001-?)

The story is clear: The Internet was designed with peer-to-peer applications in mind, but as it has
grown the network has become more asymmetric. What can we do to permit new peer-to-peer
applications to flourish while respecting the pressures that have shaped the Internet to date?

1.4.1 Technical solutions: Return to the old Internet

As we have seen, the explosion of the Internet into the consumer space brought with it changes that
have made it difficult to do peer-to-peer networking. Firewalls make it hard to contact hosts; dynamic
IP and NAT make it nearly impossible. Asymmetric bandwidth is holding users back from efficiently
serving files on their systems. Current peer-to-peer applications generally would benefit from an
Internet more like the original network, where these restrictions were not in place. How can we enable
peer-to-peer applications to work better with the current technological situation?

Firewalls serve an important need: they allow administrators to express and enforce policies about the
use of their networks. That need will not change with peer-to-peer applications. Neither application
designers nor network security administrators are benefiting from the current state of affairs. The
solution lies in making firewalls smarter so that peer-to-peer applications can cooperate with the
firewall to allow traffic the administrator wants. Firewalls must become more sophisticated, allowing
systems behind the firewall to ask permission to run a particular peer-to-peer application. Peer-to-
peer designers must contribute to this design discussion, then enable their applications to use these
mechanisms. There is a good start to this solution in the SOCKS protocol, but it needs to be expanded
to be more flexible and more tied toward applications rather than simple port numbers.

The problems engendered by dynamic IP and NAT already have a technical solution: IPv6. This new
version of IP, the next generation Internet protocol architecture, has a 128-bit address space - enough
for every host on the Internet to have a permanent address. Eliminating address scarcity means that
every host has a home and, in theory, can be reached. The main thing holding up the deployment of
IPv6 is the complexity of the changeover. At this stage, it remains to be seen when or even if IPv6 will
be commonly deployed, but without it peer-to-peer applications will continue to need to build
alternate address spaces to work around the limitations set by NAT and dynamic IP.

Peer-to-peer applications stress the bandwidth usage of the current Internet. First, they break the
assumption of asymmetry upon which today's ADSL and cable modem providers rely. There is no
simple way that peer-to-peer applications can work around this problem; we simply must encourage
broadband connections to catch up.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 18

However, peer-to-peer applications can do several things to use the existing bandwidth more
efficiently. First, data caching is a natural optimization for any peer-to-peer application that is
transmitting bulk data; it would be a significant advance to make sure that a program does not have to
retransmit or resend data to another host. Caching is a well understood technology: distributed caches
like Squid have worked out many of the consistency and load sharing issues that peer-to-peer
applications face.

Second, a peer-to-peer application must have effective means for allowing users to control the
bandwidth the application uses. If I run a Gnutella node at home, I want to specify that it can use only
50% of my bandwidth. Current operating systems and programming libraries do not provide good
tools for this kind of limitation, but as peer-to-peer applications start demanding more network
resources from hosts, users will need tools to control that resource usage.

1.4.2 Social solutions: Engineer polite behavior

Technical measures can help create better peer-to-peer applications, but good system design can also
yield social stability. A key challenge in creating peer-to-peer systems is to have a mechanism of
accountability and the enforcement of community standards. Usenet breaks down because it is
impossible to hold people accountable for their actions. If a system has a way to identify individuals
(even pseudonymously, to preserve privacy), that system can be made more secure against antisocial
behavior. Reputation tracking mechanisms, discussed in Chapter 16, and in Chapter 17, are valuable
tools here as well, to give the user community a collective memory about the behavior of individuals.

Peer-to-peer systems also present the challenge of integrating local administrative control with global
system correctness. Usenet was successful at this goal. The local news administrator sets policy for his
or her own site, allowing the application to be customized to each user group's needs. The shared
communication channel of news.admin allows a community governance procedure for the entire
Usenet community. These mechanisms of local and global control were built into Usenet from the
beginning, setting the rules of correct behavior. New breed peer-to-peer applications should follow
this lead, building in their own social expectations.

1.5 Conclusions

The Internet started out as a fully symmetric, peer-to-peer network of cooperating users. As the Net
has grown to accommodate the millions of people flocking online, technologies have been put in place
that have split the Net up into a system with relatively few servers and many clients. At the same time,
some of the basic expectations of cooperation are showing the risk of breaking down, threatening the
structure of the Net.

These phenomena pose challenges and obstacles to peer-to-peer applications: both the network and
the applications have to be designed together to work in tandem. Application authors must design
robust applications that can function in the complex Internet environment, and network designers
must build in capabilities to handle new peer-to-peer applications. Fortunately, many of these issues
are familiar from the experience of the early Internet; the lessons learned there can be brought
forward to design tomorrow's systems.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 19

Chapter 2. Listening to Napster
Clay Shirky, The Accelerator Group

Premature definition is a danger for any movement. Once a definitive label is applied to a new
phenomenon, it invariably begins shaping - and possibly distorting - people's views. So it is with the
present movement toward decentralized applications. After a year or so of attempting to describe the
revolution in file sharing and related technologies, we have finally settled on peer-to-peer as a label
for what's happening.[1]

[1] Thanks to Business 2.0, where many of these ideas first appeared, and to Dan Gillmor of the San Jose Mercury
News, for first pointing out the important relationship between P2P and the Domain Name System.

Somehow, though, this label hasn't clarified things. Instead, it's distracted us from the phenomena
that first excited us. Taken literally, servers talking to one another are peer-to-peer. The game Doom is
peer-to-peer. There are even people applying the label to email and telephones. Meanwhile, Napster,
which jump-started the conversation, is not peer-to-peer in the strictest sense, because it uses a
centralized server to store pointers and resolve addresses.

If we treat peer-to-peer as a literal definition of what's happening, we end up with a phrase that
describes Doom but not Napster and suggests that Alexander Graham Bell is a peer-to-peer engineer
but Shawn Fanning is not. Eliminating Napster from the canon now that we have a definition we can
apply literally is like saying, "Sure, it may work in practice, but it will never fly in theory."

This literal approach to peer-to-peer is plainly not helping us understand what makes it important.
Merely having computers act as peers on the Internet is hardly novel. From the early days of PDP-11s
and Vaxes to the Sun SPARCs and Windows 2000 systems of today, computers on the Internet have
been peering with each other. So peer-to-peer architecture itself can't be the explanation for the recent
changes in Internet use.

What have changed are the nodes that make up these peer-to-peer systems - Internet-connected PCs,
which formerly were relegated to being nothing but clients - and where these nodes are: at the edges
of the Internet, cut off from the DNS (Domain Name System) because they have no fixed IP addresses.

2.1 Resource-centric addressing for unstable environments

Peer-to-peer is a class of applications that takes advantage of resources - storage, cycles, content,
human presence - available at the edges of the Internet. Because accessing these decentralized
resources means operating in an environment of unstable connectivity and unpredictable IP
addresses, peer-to-peer nodes must operate outside the DNS and have significant or total autonomy
from central servers.

That's it. That's what makes peer-to-peer distinctive.

Note that this isn't what makes peer-to-peer important. It's not the problem designers of peer-to-peer
systems set out to solve, like aggregating CPU cycles, sharing files, or chatting. But it's a problem they
all had to solve to get where they wanted to go.

What makes Napster and Popular Power and Freenet and AIMster and Groove similar is that they are
all leveraging previously unused resources, by tolerating and even working with variable connectivity.
This lets them make new, powerful use of the hundreds of millions of devices that have been
connected to the edges of the Internet in the last few years.

One could argue that the need for peer-to-peer designers to solve connectivity problems is little more
than an accident of history. But improving the way computers connect to one another was the
rationale behind the 1984 design of the Internet Protocol (IP), and before that DNS, and before that
the Transmission Control Protocol (TCP), and before that the Net itself. The Internet is made of such
frozen accidents.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 20

So if you're looking for a litmus test for peer-to-peer, this is it:

1. Does it allow for variable connectivity and temporary network addresses?

2. Does it give the nodes at the edges of the network significant autonomy?

If the answer to both of those questions is yes, the application is peer-to-peer. If the answer to either
question is no, it's not peer-to-peer.

Another way to examine this distinction is to think about ownership. Instead of asking, "Can the nodes
speak to one another?" ask, "Who owns the hardware that the service runs on?" The huge
preponderance of the hardware that makes Yahoo! work is owned by Yahoo! and managed in Santa
Clara. The huge preponderance of the hardware that makes Napster work is owned by Napster users
and managed on tens of millions of individual desktops. Peer-to-peer is a way of decentralizing not
just features, but costs and administration as well.

2.1.1 Peer-to-peer is as peer-to-peer does

Up until 1994, the Internet had one basic model of connectivity. Machines were assumed to be always
on, always connected, and assigned permanent IP addresses. DNS was designed for this environment,
in which a change in IP address was assumed to be abnormal and rare, and could take days to
propagate through the system.

With the invention of Mosaic, another model began to spread. To run a web browser, a PC needed to
be connected to the Internet over a modem, with its own IP address. This created a second class of
connectivity, because PCs entered and left the network cloud frequently and unpredictably.

Furthermore, because there were not enough IP addresses available to handle the sudden demand
caused by Mosaic, ISPs began to assign IP addresses dynamically. They gave each PC a different,
possibly masked, IP address with each new session. This instability prevented PCs from having DNS
entries, and therefore prevented PC users from hosting any data or applications that accepted
connections from the Net.

For a few years, treating PCs as dumb but expensive clients worked well. PCs had never been designed
to be part of the fabric of the Internet, and in the early days of the Web, the toy hardware and
operating systems of the average PC made it an adequate life-support system for a browser but good
for little else.

Over time, though, as hardware and software improved, the unused resources that existed behind this
veil of second-class connectivity started to look like something worth getting at. At a conservative
estimate - assuming only 100 million PCs among the Net's 300 million users, and only a 100 MHz
chip and 100 MB drive on the average Net-connected PC - the world's Net-connected PCs presently
host an aggregate 10 billion megahertz of processing power and 10 thousand terabytes of storage.

2.1.2 The veil is pierced

The launch of ICQ, the first PC-based chat system, in 1996 marked the first time those intermittently
connected PCs became directly addressable by average users. Faced with the challenge of establishing
portable presence, ICQ bypassed DNS in favor of creating its own directory of protocol-specific
addresses that could update IP addresses in real time, a trick followed by Groove, Napster, and
NetMeeting as well. (Not all peer-to-peer systems use this trick. Gnutella and Freenet, for example,
bypass DNS the old-fashioned way, by relying on numeric IP addresses. United Devices and
SETI@home bypass it by giving the nodes scheduled times to contact fixed addresses, at which times
they deliver their current IP addresses.)

A run of whois counts 23 million domain names, built up in the 16 years since the inception of IP
addresses in 1984. Napster alone has created more than 23 million non-DNS addresses in 16 months,
and when you add in all the non-DNS instant messaging addresses, the number of peer-to-peer
addresses designed to reach dynamic IP addresses tops 200 million. Even if you assume that the
average DNS host has 10 additional addresses of the form foo.host.com, the total number of peer-to-
peer addresses now, after only 4 years, is of the same order of magnitude as the total number of DNS
addresses, and is growing faster than the DNS universe today.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 21

As new kinds of Net-connected devices like wireless PDAs and digital video recorders such as TiVo
and Replay proliferate, they will doubtless become an important part of the Internet as well. But for
now, PCs make up the enormous majority of these untapped resources. PCs are the dark matter of the
Internet, and their underused resources are fueling peer-to-peer.

2.1.3 Real solutions to real problems

Why do we have unpredictable IP addresses in the first place? Because there weren't enough to go
around when the Web happened. It's tempting to think that when enough new IP addresses are
created, the old "One Device/One Address" regime will be restored, and the Net will return to its pre-
peer-to-peer architecture.

This won't happen, though, because no matter how many new IP addresses there are, peer-to-peer
systems often create addresses for things that aren't machines. Freenet and Mojo Nation create
addresses for content intentionally spread across multiple computers. AOL Instant Messenger (AIM)
and ICQ create names that refer to human beings and not machines. Peer-to-peer is designed to
handle unpredictability, and nothing is more unpredictable than the humans who use the network. As
the Net becomes more human-centered, the need for addressing schemes that tolerate and even
expect temporary and unstable patterns of use will grow.

2.1.4 Who's in and who's out?

Napster is peer-to-peer because the addresses of Napster nodes bypass DNS, and because once the
Napster server resolves the IP addresses of the PCs hosting a particular song, it shifts control of the
file transfers to the nodes. Furthermore, the ability of the Napster nodes to host the songs without
central intervention lets Napster users get access to several terabytes of storage and bandwidth at no
additional cost.

However, Intel's "server peer-to-peer" is not peer-to-peer, because servers have always been peers.
Their fixed IP addresses and permanent connections present no new problems, and calling what they
already do "peer-to-peer" presents no new solutions.

ICQ and Jabber are peer-to-peer, because they not only devolve connection management to the
individual nodes after resolving the addresses, but they also violate the machine-centric worldview
encoded in DNS. Your address has nothing to do with the DNS hierarchy, or even with a particular
machine, except temporarily; your chat address travels with you. Furthermore, by mapping "presence"
- whether you are at your computer at any given moment in time - chat turns the old idea of
permanent connectivity and IP addresses on its head. Transient connectivity is not an annoying
hurdle in the case of chat but an important contribution of the technology.

Email, which treats variable connectivity as the norm, nevertheless fails the peer-to-peer definition
test because your address is machine-dependent. If you drop AOL in favor of another ISP, your AOL
email address disappears as well, because it hangs off DNS. Interestingly, in the early days of the
Internet, there was a suggestion to make the part of the email address before the @ globally unique,
linking email to a person rather than to a person@machine. That would have been peer-to-peer in the
current sense, but it was rejected in favor of a machine-centric view of the Internet.

Popular Power is peer-to-peer, because the distributed clients that contact the server need no fixed IP
address and have a high degree of autonomy in performing and reporting their calculations. They can
even be offline for long stretches while still doing work for the Popular Power network.

Dynamic DNS is not peer-to-peer, because it tries to retrofit PCs into traditional DNS.

And so on. This list of resources that current peer-to-peer systems take advantage of - storage, cycles,
content, presence - is not necessarily complete. If there were some application that needed 30,000
separate video cards, or microphones, or speakers, a peer-to-peer system could be designed that used
those resources as well.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 22

2.1.5 Peer-to-peer is a horseless carriage

As with the "horseless" carriage or the "compact" disc, new technologies are often labeled according to
some simple difference between them and what came before (horse-drawn carriages, non-compact
records).

Calling this new class of applications peer-to-peer emphasizes their difference from the dominant
client/server model. However, like the horselessness of the carriage or the compactness of the disc,
the "peeriness" of peer-to-peer is more a label than a definition.

As we've learned from the history of the Internet, adoption is a better predictor of software longevity
than elegant design. Users will not adopt peer-to-peer applications that embrace decentralization for
decentralization's sake. Instead, they will adopt those applications that use just enough
decentralization, in just the right way, to create novel functions or improve existing ones.

2.2 Follow the users

It seems obvious but bears repeating: Definitions are useful only as tools for sharpening one's
perception of reality and improving one's ability to predict the future. Whatever one thinks of
Napster's probable longevity, Napster is the killer app for this revolution.

If the Internet has taught technology watchers anything, it's that predictions of the future success of a
particular software method or paradigm are of tenuous accuracy at best. Consider the history of
"multimedia." If you had read almost any computer trade magazine or followed any technology
analyst's predictions for the rise of multimedia in the early '90s, the future they predicted was one of
top-down design, and this multimedia future was to be made up of professionally produced CD-ROMs
and "walled garden" online services such as CompuServe and Delphi. And then the Web came along
and let absolute amateurs build pages in HTML, a language that was laughably simple compared to
the tools being developed for other multimedia services.

2.2.1 Users reward simplicity

HTML's simplicity, which let amateurs create content for little cost and little invested time, turned out
to be HTML's long suit. Between 1993 and 1995, HTML went from an unknown protocol to the
preeminent tool for designing electronic interfaces, decisively displacing almost all challengers and
upstaging CD-ROMs, as well as online services and a dozen expensive and abortive experiments with
interactive TV - and it did this while having no coordinated authority, no central R&D effort, and no
discernible financial incentive for the majority of its initial participants.

What caught the tech watchers in the industry by surprise was that HTML was made a success not by
corporations but by users. The obvious limitations of the Web for professional designers blinded many
to HTML's ability to allow average users to create multimedia content.

HTML spread because it allowed ordinary users to build their own web pages, without requiring that
they be software developers or even particularly savvy software users. All the confident predictions
about the CD-ROM-driven multimedia future turned out to be meaningless in the face of user
preference. This in turn led to network effects on adoption: once a certain number of users had
adopted it, there were more people committed to making the Web better than there were people
committed to making CD-ROM authoring easier for amateurs.

The lesson of HTML's astonishing rise for anyone trying to make sense of the social aspects of
technology is simple: follow the users. Understand the theory, study the engineering, but most
importantly, follow the adoption rate. The cleanest theory and the best engineering in the world mean
nothing if the users don't use them, and understanding why some solution will never work in theory
means nothing if users adopt it all the same.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 23

2.2.2 Listen to Napster

In the present circumstance, the message that comes from paying attention to the users is simple:
Listen to Napster.

Listen to what the rise of Napster is saying about peer-to-peer, because as important as Groove or
Freenet or OpenCOLA may become, Napster is already a mainstream phenomenon. Napster has had
over 40 million client downloads at the time of this writing. Its adoption rate has outstripped NCSA
Mosaic, Hotmail, and even ICQ, the pioneer of P2P addressing. Because Napster is what the users are
actually spending their time using, the lessons we can take from Napster are still our best guide to the
kind of things that are becoming possible with the rise of peer-to-peer architecture.

2.2.2.1 It's the applications, stupid

The first lesson Napster holds is that it was written to solve a problem - limitations on file copying -
and the technological solutions it adopted were derived from the needs of the application, not vice
versa.

The fact that the limitations on file copying are legal ones matters little to the technological lessons to
be learned from Napster, because technology is often brought to bear to solve nontechnological
problems. In this case, the problem Shawn Fanning, Napster's creator, set out to solve was a gap
between what was possible with digital songs (endless copying at a vanishingly small cost) and what
was legal. The willingness of the major labels to destroy any file copying system they could reach made
the classic Web model of central storage of data impractical, meaning Napster had to find a non-Web-
like solution.

2.2.2.2 Decentralization is a tool, not a goal

The primary fault of much of the current thinking about peer-to-peer lies in an "if we build it, they will
come" mentality, where interesting technological challenges of decentralizing applications are
assumed to be the only criterion that a peer-to-peer system needs to address in order to succeed. The
enthusiasm for peer-to-peer has led to a lot of incautious statements about the superiority of peer-to-
peer for many, and possibly most, classes of networked applications.

In fact, peer-to-peer is distinctly bad for many classes of networked applications. Most search engines
work best when they can search a central database rather than launch a meta-search of peers.
Electronic marketplaces need to aggregate supply and demand in a single place at a single time in
order to arrive at a single, transparent price. Any system that requires real-time group access or rapid
searches through large sets of unique data will benefit from centralization in ways that will be difficult
to duplicate in peer-to-peer systems.

The genius of Napster is that it understands and works within these limitations.

Napster mixes centralization and decentralization beautifully. As a search engine, it builds and
maintains a master song list, adding and removing songs as individual users connect and disconnect
their PCs. And because the search space for Napster - popular music - is well understood by all its
users, and because there is massive redundancy in the millions of collections it indexes, the chances
that any given popular song can be found are very high, even if the chances that any given user is
online are low.

Like ants building an anthill, the contribution of any given individual to the system at any given
moment is trivial, but the overlapping work of the group is remarkably powerful. By centralizing
pointers and decentralizing content, Napster couples the strengths of a central database with the
power of distributed storage. Napster has become the fastest-growing application in the Net's history
in large part because it isn't pure peer-to-peer. Chapter 4, explores this theme farther.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 24

2.3 Where's the content?

Napster's success in pursuing this strategy is difficult to overstate. At any given moment, Napster
servers keep track of thousands of PCs holding millions of songs comprising several terabytes of data.
This is a complete violation of the Web's data model, "Content at the Center," and Napster's success in
violating it could be labeled "Content at the Edges."

The content-at-the-center model has one significant flaw: most Internet content is created on the PCs
at the edges, but for it to become universally accessible, it must be pushed to the center, to always-on,
always-up web servers. As anyone who has ever spent time trying to upload material to a web site
knows, the Web has made downloading trivially easy, but uploading is still needlessly hard. Napster
dispenses with uploading and leaves the files on the PCs, merely brokering requests from one PC to
another - the MP3 files do not have to travel through any central Napster server. Instead of trying to
store these files in a central database, Napster took advantage of the largest pool of latent storage
space in the world - the disks of the Napster users. And thus, Napster became the prime example of a
new principle for Internet applications: Peer-to-peer services come into being by leveraging the
untapped power of the millions of PCs that have been connected to the Internet in the last five years.

2.3.1 PCs are the dark matter of the Internet

Napster's popularity made it the proof-of-concept application for a new networking architecture based
on the recognition that bandwidth to the desktop had become fast enough to allow PCs to serve data
as well as request it, and that PCs are becoming powerful enough to fulfill this new role. Just as the
application service provider (ASP) model is taking off, Napster's success represents the revenge of the
PC. By removing the need to upload data (the single biggest bottleneck to the ASP model), Napster
points the way to a reinvention of the desktop as the center of a user's data - only this time the user
will no longer need physical access to the PC.

The latent capabilities of PC hardware made newly accessible represent a huge, untapped resource
and form the fuel powering the current revolution in Internet use. No matter how it gets labeled, the
thing that a file-sharing system like Gnutella and a distributed computing network like Data Synapse
have in common is an ability to harness this dark matter, the otherwise underused hardware at the
edges of the Net.

2.3.2 Promiscuous computers

While some press reports call the current trend the "Return of the PC," it's more than that. In these
new models, PCs aren't just tools for personal use - they're promiscuous computers, hosting data the
rest of the world has access to, and sometimes even hosting calculations that are of no use to the PC's
owner at all, like Popular Power's influenza virus simulations.

Furthermore, the PCs themselves are being disaggregated: Popular Power will take as much CPU time
as it can get but needs practically no storage, while Gnutella needs vast amounts of disk space but
almost no CPU time. And neither kind of business particularly needs the operating system - since the
important connection is often with the network rather than the local user, Intel and Seagate matter
more to the peer-to-peer companies than do Microsoft or Apple.

It's too soon to understand how all these new services relate to one another, and the danger of the
peer-to-peer label is that it may actually obscure the real engineering changes afoot. With
improvements in hardware, connectivity, and sheer numbers still mounting rapidly, anyone who can
figure out how to light up the Internet's dark matter gains access to a large and growing pool of
computing resources, even if some of the functions are centralized.

It's also too soon to see who the major players will be, but don't place any bets on people or companies
that reflexively use the peer-to-peer label. Bet instead on the people figuring out how to leverage the
underused PC hardware, because the actual engineering challenges in taking advantage of the
underused resources at the edges of the Net matter more - and will create more value - than merely
taking on the theoretical challenges of peer-to-peer architecture.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 25

2.4 Nothing succeeds like address, or, DNS isn't the only game in
town

The early peer-to-peer designers, realizing that interesting services could be run off of PCs if only they
had real addresses, simply ignored DNS and replaced the machine-centric model with a protocol-
centric one. Protocol-centric addressing creates a parallel namespace for each piece of software. AIM
and Napster usernames are mapped to temporary IP addresses not by the Net's DNS servers, but by
privately owned servers dedicated to each protocol: the AIM server matches AIM names to the users'
current IP addresses, and so on.

In Napster's case, protocol-centric addressing turns Napster into merely a customized FTP for music
files. The real action in new addressing schemes lies in software like AIM, where the address points to
a person, not a machine. When you log into AIM, the address points to you, no matter what machine
you're sitting at, and no matter what IP address is presently assigned to that machine. This completely
decouples what humans care about - Can I find my friends and talk with them online? - from how the
machines go about it - Route packet A to IP address X.

This is analogous to the change in telephony brought about by mobile phones. In the same way that a
phone number is no longer tied to a particular physical location but is dynamically mapped to the
location of the phone's owner, an AIM address is mapped to you, not to a machine, no matter where
you are.

2.4.1 An explosion of protocols

This does not mean that DNS is going away, any more than landlines went away with the invention of
mobile telephony. It does mean that DNS is no longer the only game in town. The rush is now on, with
instant messaging protocols, single sign-on and wallet applications, and the explosion in peer-to-peer
businesses, to create and manage protocol-centric addresses that can be instantly updated.

Nor is this change in the direction of easier peer-to-peer addressing entirely to the good. While it is
always refreshing to see people innovate their way around a bottleneck, sometimes bottlenecks are
valuable. While AIM and Napster came to their addressing schemes honestly, any number of people
have noticed how valuable it is to own a namespace, and many business plans making the rounds are
just me-too copies of Napster or AIM. Eventually, the already growing list of kinds of addresses -
phone, fax, email, URL, AIM, ad nauseam - could explode into meaninglessness.

Protocol-centric namespaces will also force the browser into lesser importance, as users return to the
days when they managed multiple pieces of Internet software. Or it will mean that addresses like
aim://12345678 or napster://green_day_ fan will have to be added to the browsers' repertoire of
recognized URLs. Expect also the rise of " meta-address" servers, which offer to manage a user's
addresses for all of these competing protocols, and even to translate from one kind of address to
another. (These meta-address servers will, of course, need their own addresses as well.) Chapter 19,
looks at some of the issues involved .

It's not clear what is going to happen to Internet addressing, but it is clear that it's going to get a lot
more complicated before it gets simpler. Fortunately, both the underlying IP addressing system and
the design of URLs can handle this explosion of new protocols and addresses. But that familiar DNS
bit in the middle (which really put the dot in dot-com) will never recover the central position it has
occupied for the last two decades, and that means that a critical piece of Internet infrastructure is now
up for grabs.

aim://12345678
napster://green_day_

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 26

2.5 An economic rather than legal challenge

Much has been made of the use of Napster for what the music industry would like to define as
"piracy." Even though the dictionary definition of piracy is quite broad, this is something of a
misnomer, because pirates are ordinarily in business to sell what they copy. Not only do Napster users
not profit from making copies available, but Napster works precisely because the copies are free. (Its
recent business decision to charge a monthly fee for access doesn't translate into profits for the
putative "pirates" at the edges.)

What Napster does is more than just evade the law, it also upends the economics of the music
industry. By extension, peer-to-peer systems are changing the economics of storing and transmitting
intellectual property in general.

The resources Napster is brokering between users have one of two characteristics: they are either
replicable or replenishable.

Replicable resources include the MP3 files themselves. "Taking" an MP3 from another user involves
no loss (if I "take" an MP3 from you, it is not removed from your hard drive) - better yet, it actually
adds resources to the Napster universe by allowing me to host an alternate copy. Even if I am a
freeloader and don't let anyone else copy the MP3 from me, my act of taking an MP3 has still not
caused any net loss of MP3s.

Other important resources, such as bandwidth and CPU cycles (as in the case of systems like
SETI@home), are not replicable, but they are replenishable. The resources can be neither depleted
nor conserved. Bandwidth and CPU cycles expire if they are not used, but they are immediately
replenished. Thus they cannot be conserved in the present and saved for the future, but they can't be
"used up" in any long-term sense either.

Because of these two economic characteristics, the exploitation of otherwise unused bandwidth to
copy MP3s across the network means that additional music can be created at almost zero marginal
cost to the user. It employs resources - storage, cycles, bandwidth - that the users have already paid for
but are not fully using.

2.5.1 All you can eat

Economists call these kinds of valuable side effects " positive externalities." The canonical example of
a positive externality is a shade tree. If you buy a tree large enough to shade your lawn, there is a good
chance that for at least part of the day it will shade your neighbor's lawn as well. This free shade for
your neighbor is a positive externality, a benefit to her that costs you nothing more than what you
were willing to spend to shade your own lawn anyway.

Napster's signal economic genius is to coordinate such effects. Other than the central database of
songs and user addresses, every resource within the Napster network is a positive externality.
Furthermore, Napster coordinates these externalities in a way that encourages altruism. As long as
Napster users are able to find the songs they want, they will continue to participate in the system, even
if the people who download songs from them are not the same people they download songs from. And
as long as even a small portion of the users accept this bargain, the system will grow, bringing in more
users, who bring in more songs.

Thus Napster not only takes advantage of low marginal costs, it couldn't work without them. Imagine
how few people would use Napster if it cost them even a penny every time someone else copied a song
from them. As with other digital resources that used to be priced per unit but became too cheap to
meter, such as connect time or per-email charges, the economic logic of infinitely copyable resources
or non-conservable and non-depletable resources eventually leads to "all you can eat" business
models.

Thus the shift from analog to digital data, in the form of CDs and then MP3s, is turning the music
industry into a smorgasbord. Many companies in the traditional music business are not going quietly,
however, but are trying to prevent these "all you can eat" models from spreading. Because they can't
keep music entirely off the Internet, they are currently opting for the next best thing, which is trying to
force digital data to behave like objects.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 27

2.5.2 Yesterday's technology at tomorrow's prices, two days late

The music industry's set of schemes, called Digital Rights Management (DRM), is an attempt to force
music files to behave less like ones and zeros and more like albums and tapes. The main DRM effort is
the Secure Digital Music Initiative (SDMI), which aims to create a music file format that cannot be
easily copied or transferred between devices - to bring the inconvenience of the physical world to the
Internet, in other words.

This in turn has led the industry to make the argument that the music-loving public should be willing
to pay the same price for a song whether delivered on CD or downloaded, because it is costing the
industry so much money to make the downloaded file as inconvenient as the CD. When faced with the
unsurprising hostility this argument engendered, the industry has suggested that matters will go their
way once users are sufficiently "educated."

Unfortunately for the music industry, the issue here is not education. In the analog world, it costs
money to make a copy of something. In the digital world, it costs money to prevent copies from being
made. Napster has demonstrated that systems that work with the economic logic of the Internet rather
than against it can have astonishing growth characteristics, and no amount of user education will
reverse that.

2.5.3 30 million Britney fans does not a revolution make

Within this economic inevitability, however, lies the industry's salvation, because despite the rants of
a few artists and techno-anarchists who believed that Napster users were willing to go to the ramparts
for the cause, large-scale civil disobedience against things like Prohibition or the 55 MPH speed limit
has usually been about relaxing restrictions, not repealing them.

Despite the fact that it is still possible to make gin in your bathtub, no one does it anymore, because
after Prohibition ended high-quality gin became legally available at a price and with restrictions
people could live with. Legal and commercial controls did not collapse, but were merely altered.

To take a more recent example, the civil disobedience against the 55 MPH speed limit did not mean
that drivers were committed to having no speed limit whatsoever; they simply wanted a higher one.

So it will be with the music industry. The present civil disobedience is against a refusal by the music
industry to adapt to Internet economics. But the refusal of users to countenance per-unit prices does
not mean they will never pay for music at all, merely that the economic logic of digital data - its
replicability and replenishability - must be respected. Once the industry adopts economic models that
do, whether through advertising or sponsorship or subscription pricing, the civil disobedience will
largely subside, and we will be on the way to a new speed limit.

In other words, the music industry as we know it is not finished. On the contrary, all of their functions
other than the direct production of the CDs themselves will become more important in a world where
Napster economics prevail. Music labels don't just produce CDs; they find, bankroll, and publicize the
musicians themselves. Once they accept that Napster has destroyed the bottleneck of distribution,
there will be more music to produce and promote, not less.

2.6 Peer-to-peer architecture and second-class status

With this change in addressing schemes and the renewed importance of the PC chassis, peer-to-peer is
not merely erasing the distinction between client and server. It's erasing the distinction between
consumer and provider as well. You can see the threat to the established order in a recent legal action:
a San Diego cable ISP, Cox@Home, ordered several hundred customers to stop running Napster not
because they were violating copyright laws, but because Napster leads Cox subscribers to use too
much of its cable network bandwidth.

Cox built its service on the current web architecture, where producers serve content from always-
connected servers at the Internet's center and consumers consume from intermittently connected
client PCs at the edges. Napster, on the other hand, inaugurated a model where PCs are always on and
always connected, where content is increasingly stored and served from the edges of the network, and
where the distinction between client and server is erased. Cox v. Napster isn't just a legal fight; it's a
fight between a vision of helpless, passive consumers and a vision where people at the network's edges
can both consume and produce.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 28

2.6.1 Users as consumers, users as providers

The question of the day is, "Can Cox (or any media business) force its users to retain their second-class
status as mere consumers of information?" To judge by Napster's growth, the answer is "No."

The split between consumers and providers of information has its roots in the Internet's addressing
scheme. Cox assumed that the model ushered in by the Web - in which users never have a fixed IP
address, so they can consume data stored elsewhere but never provide anything from their own PCs -
was a permanent feature of the landscape. This division wasn't part of the Internet's original
architecture, and the proposed fix (the next generation of IP, called IPv6) has been coming Real Soon
Now for a long time. In the meantime, services like Cox have been built with the expectation that this
consumer/provider split would remain in effect for the foreseeable future.

How short the foreseeable future sometimes is. When Napster turned the Domain Name System
inside out, it became trivially easy to host content on a home PC, which destroys the asymmetry where
end users consume but can't provide. If your computer is online, it can be reached even without a
permanent IP address, and any material you decide to host on your PC can become globally accessible.
Napster-style architecture erases the people-based distinction between provider and consumer just as
surely as it erases the computer-based distinction between server and client.

There could not be worse news for any ISP that wants to limit upstream bandwidth on the expectation
that edges of the network host nothing but passive consumers. The limitations of cable ISPs (and
Asymmetric Digital Subscriber Line, or ADSL) become apparent only if its users actually want to do
something useful with their upstream bandwidth. The technical design of the cable network that
hamstrings its upstream speed (upstream speed is less than a tenth of Cox's downstream) just makes
the cable networks the canary in the coal mine.

2.6.2 New winners and losers

Any media business that relies on a neat division between information consumer and provider will be
affected by roving, peer-to-peer applications. Sites like GeoCities, which made their money providing
fixed addresses for end user content, may find that users are perfectly content to use their PCs as that
fixed address. Copyright holders who have assumed up until now that only a handful of relatively
identifiable and central locations were capable of large-scale serving of material are suddenly going to
find that the Net has sprung another million leaks.

Meanwhile, the rise of the end user as information provider will be good news for other businesses.
DSL companies (using relatively symmetric technologies) will have a huge advantage in the race to
provide fast upstream bandwidth; Apple may find that the ability to stream home movies over the Net
from a PC at home drives adoption of Mac hardware and software; and of course companies that
provide the Napster-style service of matching dynamic IP addresses with fixed names will have just
the sort of sticky relationship with their users that venture capitalists slaver over.

Real technological revolutions are human revolutions as well. The architecture of the Internet has
effected the largest transfer of power from organizations to individuals the world has ever seen, and it
is only getting started. Napster's destruction of the serving limitations on end users shows how
temporary such bottlenecks can be. Power is gradually shifting to the individual for things like stock
brokering and buying airline tickets. Media businesses that have assumed such shifts wouldn't affect
them are going to be taken by surprise when millions of passive consumers are replaced by millions of
one-person media channels.

This is not to say that all content is going to the edges of the Net, or that every user is going to be an
enthusiastic media outlet. But enough consumers will become providers as well to blur present
distinctions between producer and consumer. This social shift will make the next generation of the
Internet, currently being assembled, a place with greater space for individual contributions than
people accustomed to the current split between client and server, and therefore provider and
consumer, had ever imagined.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 29

Chapter 3. Remaking the Peer-to-Peer Meme
Tim O'Reilly, O'Reilly & Associates

On September 18, 2000, I organized a so-called " peer-to-peer summit" to explore the bounds of peer-
to-peer networking. In my invitation to the attendees, I set out three goals:

1. To make a statement, by their very coming together, about the nature of peer-to-peer and
what kinds of technologies people should think of when they hear the term.

2. To make some introductions among people whom I like and respect and who are working on
different aspects of what could be seen as the same problem - peer-to-peer solutions to big
problems - in order to create some additional connections between technical communities
that ought to be talking to and learning from each other.

3. To do some brainstorming about the issues each of us are uncovering, so we can keep projects
from reinventing the wheel and foster cooperation to accelerate mutual growth.

In organizing the summit, I was thinking of the free software (open source) summit I held a few years
back. Like free software at that time, peer-to-peer currently has image problems and a difficulty
developing synergy. The people I was talking to all knew that peer-to-peer is more than just swapping
music files, but the wider world was still focusing largely on the threats to copyright. Even people
working in the field of peer-to-peer have trouble seeing how far its innovations can extend; it would
benefit them to learn how many different types of technologies share the same potential and the same
problems.

This is exactly what we did with the open source summit. By bringing together people from a whole lot
of projects, we were able to get the world to recognize that free software was more than GNU and
Linux; we introduced a lot of people, many of whom, remarkably, had never met; we talked shop; and
ultimately, we crafted a new "meme" that completely reshaped the way people thought about the
space.

The people I invited to the peer-to-peer summit tell part of the story. Gene Kan from Gnutella
(http://gnutella.wego.com/) and Ian Clarke from Freenet (http://freenet.sourceforge.net/) were
obvious choices. They matched the current industry buzz about peer-to-peer file sharing. Similarly,
Marc Hedlund and Nelson Minar from Popular Power (http://www.popularpower.com/) made sense,
because there was already a sense of some kind of connection between distributed computation and
file sharing.

But why did I invite Jeremie Miller of Jabber and Ray Ozzie of Groove, Ken Arnold from Sun's Jini
project and Michael Tiemann of Red Hat, Marshall Rose (author of BXXP and IMXP), Rael Dornfest
of meerkat and RSS 1.0, Dave Stutz of Microsoft, Andy Hertzfeld of Eazel, Don Box (one of the authors
of SOAP) and Steve Burbeck (one of the authors of UDDI)? (Note that not all of these people made it
to the summit; Ian Clarke sent Scott Miller in his stead, and Ken Arnold and Don Box had to cancel at
the last minute.) As I said in my invitation:

[I've invited] a group of people who collectively bracket what I consider a new
paradigm, which could perhaps best be summarized by Sun's slogan, "The Network
is the Computer." They're all working on parts of what I consider the next-
generation Net story.

This chapter reports on some of the ideas discussed at the summit. It continues the job of trying to
reshape the way people think about that "next-generation Net story" and the role of peer-to-peer in
telling that story. It also shows one of the tools I used at the meeting - something I'll call a " meme
map" - and presents the results of the meeting in that form.

The concepts we bear in our minds are, at bottom, maps of reality. Bad maps lead to bad decisions. If
we believe peer-to-peer is about illegal sharing of copyrighted material, we'll continue to see rhetoric
about copyright and censorship at the heart of the debate, and may push for ill-advised legal
restrictions on the use of the technology. If we believe it's about a wider class of decentralized
networking applications, we'll focus instead on understanding what those applications are good for
and on advancing the state of the art.

http://gnutella.wego.com/
http://freenet.sourceforge.net/
http://www.popularpower.com/

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 30

The meme map we developed at the peer-to-peer summit has two main benefits. First, the peer-to-
peer community can use it to organize itself - to understand who is doing related work and identify
areas where developers can learn from each other. Second, the meme map helps the community
influence outsiders. It can create excitement where there previously was indifference and turn
negative impressions into positive ones. Tangentially, the map is also useful in understanding the
thinking behind the O'Reilly Network's P2P directory, a recent version of which is republished in this
book as an appendix.

First, though, a bit of background.

3.1 From business models to meme maps

Recently, I started working with Dan and Meredith Beam of Beam, Inc., a strategy consulting firm.
Dan and Meredith help companies build their "business models" - one page pictures that describe
"how all the elements of a business work together to build marketplace advantage and company
value." It's easy to conclude that two companies selling similar products and services are in the same
business, but the Beams think otherwise.

For example, O'Reilly and IDG compete in the computer book publishing business, but we have
completely different business models. Their strategic positioning is to appeal to the "dummy" who
needs to learn about computers but doesn't really want to. Ours is to appeal to the people who love
computers and want to go as deep as possible. Their marketing strategy is to build a widely recognized
consumer brand, and then dominate retail outlets and "big box" stores in hopes of putting product in
front of consumers who might happen to walk by in search of any book on a given subject. Our
marketing strategy is to build awareness of our brand and products in the core developer and user
communities, who then buy directly or drive traffic to retail outlets. The former strategy pushes
product into distribution channels in an aggressive bid to reach unknown consumers; the latter pulls
products into distribution channels as they are requested by consumers who are already looking for
the product. Both companies are extremely successful, but our different business models require
different competencies. I won't say more lest this chapter turn into a lesson for O'Reilly competitors,
but hopefully I have said enough to get the idea across.

Boiling all the elements of your business down into a one-page picture is a really useful exercise. But
what is even more useful is that Dan and Meredith have you run the exercise twice, once to describe
your present business, and once to describe it as you want it to be.

At any rate, fresh from the strategic planning process at O'Reilly, it struck me that an adaptation of
this idea would be useful preparation for the summit. We weren't modeling a single business but a
technology space - the key projects, concepts, and messages associated with it.

I call these pictures "meme maps" rather than "business models" in honor of Richard Dawkins'
wonderful contribution to cultural studies. He formulated the idea of "memes" as ideas that spread
and reproduce themselves, passed on from mind to mind. Just as gene engineering allows us to
artificially shape genes, meme engineering lets us organize and shape ideas so that they can be
transmitted more effectively, and have the desired effect once they are transmitted. That's what I
hoped to touch off at the summit, using a single picture that shows how a set of technologies fit
together and demonstrates a few central themes.

3.1.1 A success story: From free software to open source

In order to illustrate the idea of a meme map to the attendees at the peer-to-peer summit, I drew some
maps of free software versus open source. I presented these images at the summit as a way of
kickstarting the discussion. Let's look at those here as well, since it's a lot easier to demonstrate the
concept than it is to explain it in the abstract.

I built the free software map in Figure 3.1 by picking out key messages from the Free Software
Foundation (FSF) web site, http://www.fsf.org/. I also added a few things (the darker ovals in the
lower right quadrant of the picture) to show common misconceptions that were typically applied to
free software. This figure, and the others in this chapter are slightly edited versions of slides used at
the summit.

http://www.fsf.org/

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 31

Figure 3.1. Map of the old free software meme

Please note that this diagram should not be taken as a complete representation of the beliefs of the
Free Software Foundation. I simply summarized my interpretation of the attitudes and positioning I
found on their web site. No one from the Free Software Foundation has reviewed this figure, and they
might well highlight very different points if given the chance to do so.

There are a couple of things to note about the diagram. The ovals at the top represent the outward face
of the movement - the projects or activities that the movement considers canonical in defining itself.
In the case of the Free Software Foundation, these are programs like gcc (the GNU C Compiler), GNU
Emacs, GhostScript (a free PostScript display tool), and the GNU General Public License, or GPL .

The box in the center lists the strategic positioning, the key perceived user benefit, and the core
competencies. The strategic goal I chose came right up front on the Free Software Foundation web
site: to build a complete free replacement for the Unix operating system. The user benefit is sold as
one of standing up for what's right, even if there would be practical benefits in compromising. The web
site shows little sense of what the core competencies of the free software movement might be, other
than that they have right on their side, along with the goodwill of talented programmers.

In the Beam models, the ovals at the bottom of the picture represent internal activities of the business;
for my purposes, I used them to represent guiding principles and key messages. I used dark ovals to
represent undesirable messages that others might be creating and applying to the subject of the meme
map.

As you can see, the primary messages of the free software movement, thought-provoking and well
articulated as they are, don't address the negative public perceptions that are spread by opponents of
the movement.

Now take a look at the diagram I drew for open source - the alternative term for free software that was
invented shortly before we held our open source summit in April 1998. The content of this diagram,
shown in Figure 3.2, was taken partly from the Open Source Initiative web site
http://www.opensource.org/, but also from the discussions at the summit and from my own thinking
and speaking about open source in the years since. Take the time to read the diagram carefully; it
should be fairly self-explanatory, but I'll offer some insights into a few subtleties. The figure
demonstrates what a well-formed strategic meme map ought to look like.

http://www.opensource.org/

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 32

Figure 3.2. Map of the new open source meme

As you can see by comparing the two diagrams, they put a completely different spin on what formerly
might have been considered the same space. We did more than just change the name that we used to
describe a collection of projects from "free software" to "open source." In addition:

• We changed the canonical list of projects that we wanted to hold up as exemplars of the
movement. (Even though BIND and sendmail and Apache and Perl are "free software" by the
Free Software Foundation's definition, they aren't central to its free software "meme map" in
the way that we made them for open source; even today, they are not touted on the Free
Software Foundation web site.) What's more, I've included a tag line that explains why each
project is significant. For example, BIND isn't just another free software program; it's the
heart of the Domain Name System and the single most mission-critical program on the
Internet. Apache is the dominant web server on the market, sendmail routes most Internet
email and Linux is more reliable than Windows. The Free Software Foundation's GNU tools
are still in the picture, but they are no longer at its heart.

• The strategic positioning is much clearer. Open source is not about creating a free
replacement for Unix. It's about making better software through sharing source code and
using the Internet for collaboration. The user positioning (the benefit to the user) was best
articulated by Bob Young of Red Hat, who insisted that what Red Hat Linux offers to its
customers is control over their own destiny.

• The list of core competencies is much more focused and actionable. The most successful open
source communities do in fact understand something about distributed software development
in the age of the Internet, organizing developer communities, using free distribution to gain
market share, commoditizing markets to undercut dominant players, and creating powerful
brands for their software. Any aspiring open source player needs to be good at all of these
things.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 33

• We've replaced the negative messages used against free software with directly competing
messages that counter them. For instance, where free software was mischaracterized as
unreliable, we set out very explicitly to demonstrate that everyone counts on open source
programs, and that the peer review process actually improves reliability and support.

• We've identified a set of guiding principles that can be used by open source projects and
companies to see if they're hitting all the key points, or that can be used to explain why some
projects have failed to gain as much traction as expected. For example, Mozilla's initial lack of
modular code, weak documentation, and long release cycles hampered its quick uptake as an
open source project. (That being said, key portions of Mozilla code are finally starting to
appear in a variety of other open source projects, such as ActiveState's Komodo development
environment and Eazel's Nautilus file manager.)

• We made connections between open source and related concepts that help to place it in
context. For example, the concept from The ClueTrain Manifesto of open interaction with
customers, and the idea of " disruptive technologies" from Clayton Christenson's book The
Innovator's Dilemma, link open source to trends in business management.

While some further discussion of the open source meme map might be worthwhile in another context,
I present it here mainly to clarify the use of meme maps to create a single unifying vision of a set of
related technologies.

3.1.2 The current peer-to-peer meme map

The meme map for peer-to-peer is still very unformed, and consists largely of ideas applied by the
media and other outsiders.

Figure 3.3 is the slide I showed to the group at the summit. Things have evolved somewhat since that
time, partly as a result of efforts such as ours to correct common misconceptions, but this picture still
represents the view being bandied about by industries that feel threatened by peer-to-peer
technologies.

Figure 3.3. Map of currently circulating peer-to-peer meme

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 34

Not a pretty picture. The canonical projects all feed the idea that peer-to-peer is about the subversion
of intellectual property. The chief benefit presented to users is that of free music (or other copyrighted
material). The core competencies of peer-to-peer projects are assumed to be superdistribution, the
lack of any central control point, and anonymity as a tool to protect the system from attempts at
control.

Clearly, these are characteristics of the systems that put the peer-to-peer buzzword onto everyone's
radar. But are they really the key points? Will they help peer-to-peer developers work together,
identify problems, develop new technologies, and win the public over to those technologies?

A map is useful only to the extent that it reflects underlying reality. A bad map gets you lost; a good
one helps you find your way through unfamiliar territory. Therefore, one major goal for the summit
was to develop a better map for the uncharted peer-to-peer space.

3.1.3 The new peer-to-peer meme map

In a space as vaguely defined as peer-to-peer, we need to consider many angles at once in order to
come up with an accurate picture of what the technology is and what is possible. Our summit looked at
many projects from different sources, often apparently unrelated. We spent a few hours brainstorming
about important applications of peer-to-peer technology, key principles, and so on. I've tried to
capture the results of that brainstorming session in the same form that I used to spark the discussion,
as the meme map in Figure 3.4. Note that this is what I took away personally from the meeting. The
actual map below wasn't fully developed or approved there.

Figure 3.4. Map of peer-to-peer meme as it is starting to be understood

A quick walkthrough of the various projects and how they fit together leads us to a new understanding
of the strategic positioning and core competencies for peer-to-peer projects. In the course of this
walkthrough, I'll also talk about some of the guiding principles that we can derive from studying each
project, which are captured in the ovals at the top of the diagram. This discussion is necessarily quite
superficial, but suggests directions for further study.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 35

3.1.3.1 File sharing: Napster and successors

One of the most obvious things about the map I've drawn of the peer-to-peer space is that file-sharing
applications such as Napster, Gnutella, and Freenet are only a small part of the picture, even though
they have received the lion's share of the attention to date. Nonetheless, Napster
(http://www.napster.com/), as the application whose rapid uptake and enormous impact on the
music industry sparked the furor over peer-to-peer, deserves some significant discussion.

One of the most interesting things about Napster is that it's not a pure peer-to-peer system in the
same way that radically decentralized systems like Gnutella and Freenet are. While the Napster data is
distributed across millions of hard disks, finding that data depends on a central server. In some ways,
the difference between MP3.com and Napster is smaller than it appears: one centralizes the files,
while the other centralizes the addresses of the files.

The real genius of Napster is the way it makes participation automatic. By default, any consumer is
also a producer of files for the network. Once you download a file, your machine is available to pass
along the file to other users. Automatic "pass along" participation decentralizes file storage and
network bandwidth, but most importantly, it also distributes the job of building the Napster song
database.

Dan Bricklin has written an excellent essay on this subject, which we've printed in this book as
Chapter 4. In this wonderful reversal of Hardin's tragedy of the commons, Bricklin explains why
Napster demonstrates the power of collectively assembled databases in which "increasing the value of
the database by adding more information is a natural by-product of using the tool for your own
benefit."

This feature is also captured by an insightful comment by innovative software developer Dave Winer:
"The P in P2P is People."

Dave's comment highlights why the connection to the open source movement is significant. Open
source projects are self-organizing, decentralized workgroups enabled by peer-to-peer Internet
technologies. If the P in P2P is people, the technologies that allow people to create self-organizing
communities and the frameworks developed for managing those communities provide important
lessons for those who want to work in the P2P space.

Open source isn't driven just by a set of licenses for software distribution, but more deeply by a set of
techniques for collaborative, wide-area software development. Open source and peer-to-peer come
full circle here. One of the key drivers of the early open source community was the peer-to-peer
Usenet, which I'll discuss later in the chapter. Both open source and peer-to-peer are technologies that
allow people to associate freely, end-to-end, and thus are great levelers and great hotbeds promoting
innovation.

Napster also illustrates another guiding principle: tolerance for redundancy and unreliability. I was
talking recently with Eric Schmidt, CEO of Novell, about lessons from peer-to-peer. He remarked on a
conversation he'd had with his 13-year-old daughter. "Does it bother you," he asked, "that sometimes
songs are there, and sometimes they aren't? Does it bother you that there are lots of copies of the same
song, and that they aren't all the same?" Her answer - that neither of these things bothered her in the
slightest - seemed to him to illustrate the gulf between the traditional computer scientist's concern for
reliability and orthogonality and the user's indifference for these issues.

Another important lesson from Napster is that free riders, "super peers" providing more or better
resources, and other variations in peer participation will ultimately decrease the system's
decentralization. Experience is already showing that a hierarchy is starting to emerge. Some users turn
off file sharing. Even among those who don't, some have more files, and some have better bandwidth.
As in Orwell's Animal Farm, all animals are equal, but some are more equal than others. While this
idea is anathema to those wedded to the theory of radical decentralization, in practice, it is this very
feature that gives rise to many of the business opportunities in the peer-to-peer space. It should give
great relief to those who fear that peer-to-peer will lead to the leveling of all hierarchy and the end of
industries that depend on it. The most effective way for the music industry to fight what they fear from
Napster is to join the trend, and provide sites that become the best source for high-quality music
downloads.

http://www.napster.com/

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 36

Even on Gnutella, the concept of super peers is starting to emerge. The service DSS (Distributed
Search Solutions) from Clip2.com, Inc. (http://dss.clip2.com/) has developed a program that they call
a Gnutella " Reflector." This is a proxy and index server designed to make Gnutella more scalable.
According to Kelly Truelove of Clip2, "Multiple users connect to such a Reflector as they might
connect to a Napster central server, yet, unlike such a central server, the Reflector itself can function
as a peer, making outgoing connections to other peers on the network."

3.1.3.2 Mixing centralization and decentralization: Usenet, email, and IP routing

Not coincidentally, this evolution from a pure peer-to-peer network to one in which peer-to-peer and
centralized architectures overlap echoes the evolution of Usenet. This history also shows that peer-to-
peer and client/server (which can also be called decentralization and centralization) are not mutually
exclusive.

Usenet was originally carried over the informal, peer-to-peer, dial-up network known as UUCPnet.
Sites agreed to phone each other, and passed mail and news from site to site in a store-and-forward
network. Over time, though, it became clear that some sites were better connected than others; they
came to form a kind of de facto "Usenet backbone." One of the chief sites, seismo, a computer at the
U.S. Geological Society, was run by Rick Adams. By 1987, the load on seismo had become so great that
Rick formed a separate company, called UUnet (http://www.uu.net/), to provide connectivity services
for a monthly fee.

As the UUCPnet was replaced by the newly commercialized Internet, UUnet added TCP/IP services
and became the first commercial Internet service provider. ISPs create a layer of hierarchy and
centralization even though the IP routing infrastructure of the Internet is still peer-to-peer. Internet
routers act as peers in finding the best route from one point on the Net to another, but users don't find
each other directly any more. They get their Internet connectivity from ISPs, who in turn connect to
each other in asymmetric hierarchies that are hidden from the end user. Yet beneath the surface, each
of those ISPs still depends on the same peer-to-peer architecture.

Similarly, email is routed by a network of peered mail servers, and while it appears peer-to-peer from
the user point of view, those users are in fact aggregated into clusters by the servers that route their
mail and the organizations that operate those servers.

Centralization and decentralization are never so clearly separable as anyone fixated on buzzwords
might like.

3.1.3.3 Maximizing use of far-flung resources: Distributed computation

Some of the earliest projects that excited the public about the potential for coordinating peers were
distributed computation programs like SETI@home. This project is described by one of its founders in
Chapter 5. Served from the Space Sciences Lab at U.C. Berkeley, SETI@home runs as a screensaver
that uses the "spare cycles" from more than 1 million PCs to process radio telescope data in search of
signs of extraterrestrial intelligence.

Viewed from one angle, distributed computation programs are not at all peer-to-peer. After all, they
use an old-style, asymmetric, client/server architecture, in which the million independent
computational clients download their data sets and upload their computed results to the central
repository at the Space Sciences Lab. The clients don't peer with each other in any way.

But look a little deeper, and something else emerges: the clients are active participants, not just
passive "browsers." What's more, the project uses the massive redundancy of computing resources to
work around problems such as reliability and network availability of any one resource.

But even more importantly, look further down the development timeline when startups such as
United Devices, Popular Power, Parabon, and others have their services in the market. At that point,
the "ecology" of distributed computation is going to be much more complex. There will be thousands
(and ultimately, perhaps millions) of compute-intensive tasks looking for spare cycles. At what point
does it make sense to design a specialized architecture that facilitates a two-way flow of tasks and
compute cycles?

Further, many of the key principles of Napster are also at play in distributed computation. Both
Napster and SETI@home need to create and manage metadata about a large community of
distributed participants. Both need to make it incredibly simple to participate.

http://dss.clip2.com/
http://www.uu.net/

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 37

Finally, both Napster and SETI@Home have tried to exploit what Clay Shirky (who contributed
Chapter 2, to this book) memorably called "the dark matter of the Internet" - the hundreds of millions
of interconnected PCs that have hitherto been largely passive participants in the network.

Already, startups like Mojo Nation (http://www.mojonation.net/) are making a link between file
sharing and distributed computation. In the end, both distributed file sharing and distributed
computation are aspects of a new world where individual computer systems take on their most
important role as part of a network - where the whole is much greater than the sum of its parts.

3.1.3.4 Immediate information sharing: The new instant messaging services

Napster could be characterized as a "brokered peer-to-peer system," in which a central addressing
authority connects end points, and then gets out of the way.

Once you realize this, it becomes clear just how similar the Napster model is to instant messaging. In
each case, a central authority manages an addressing system and a namespace that allows the unique
identification of each user. These are employed by the system to connect end users. In some ways,
Napster can be thought of as an instant messaging system in which the question isn't, "Are you online
and do you want to chat?" but, "Are you online and do you have this song?"

Not surprisingly, a project like AIMster (http://www.aimster.com/) makes explicit use of this insight
to build a file-sharing network that uses the AOL Instant Messenger (AIM) protocol. This brings IM
features such as buddy lists into the file- sharing arena.

The Jabber instant messaging platform (http://www.jabbercentral.com/) takes things even further.
An open source project, Jabber started out as a switching system between incompatible instant
messaging protocols; it is evolving into a general XML routing system and a basis for applications that
allow users and their computers to ask each other even more interesting questions.

Ray Ozzie's Groove Networks (http://www.groove.net/) is an even more mature expression of the
same insight. It provides a kind of groupware dial tone or "LAN on demand" for ad hoc groups of
peers. Like Jabber, it provides an XML routing infrastructure that allows for the formation of ad hoc
peer groups. These can share not only files and chat, but a wide variety of applications. Replication,
security, and so on are taken care of automatically by the underlying Groove system.

If systems like AIMster, Jabber, and Groove deliver what they promise, we can see peer-to-peer as a
solution to the IT bottleneck, allowing users to interact more directly with each other in networks that
can span organizational boundaries. Beyond the potential efficiency of such networks, peer-to-peer
systems can help people share ideas and viewpoints more easily, ultimately helping the formation of
online communities.

3.1.3.5 The writable Web

The Web started out as a participatory groupware system. It was originally designed by Tim Berners-
Lee as a way for high-energy physicists to share their research data and conclusions. Only later was it
recast into a publishing medium, in which sites seek to produce content that attracts millions of
passive consumers.

To this day, there is a strong peer-to-peer element at the very heart of the Web's architecture: the
hyperlink. A web hyperlink can point to any other site on the network, without any central
intervention, and without the permission of the site being pointed to. What's more, hyperlinks can
point to a variety of resources, not just web pages. Part of the Web's explosive growth, as compared to
other early Internet information services, was that the web browser became a kind of universal client
that was able to link to any kind of Internet resource. Initially, these resources were competing
services such as FTP, Gopher, and WAIS. But eventually, through CGI, the Web became an interface
to virtually any information resource that anyone wanted to make available. Mailto and news links
even provide gateways to mail and Usenet.

There's still a fundamental flaw in the Web as it has been deployed, though. Tim Berners-Lee created
both a web server and a web browser, but he didn't join them at the hip the way Napster did. And as
the Buddhist Dhammapadda says, "If the gap between heaven and earth is as wide as a barleycorn, it
is as wide as all heaven and earth." Before long, the asymmetry between clients and servers had grown
wide enough to drive a truck through.

http://www.mojonation.net/
http://www.aimster.com/
http://www.jabbercentral.com/
http://www.groove.net/

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 38

Browsers were made freely available to anyone who wanted to download one, but servers were seen as
a high-priced revenue opportunity, and were far less widely deployed. There were free Unix servers
available (including the NCSA server, which eventually morphed into Apache), but by 1995, 95% of
Web users were on Windows, and there was no web server at all available to them! In 1995, in an
attempt to turn the tide, O'Reilly introduced Website. The first web server for Windows, it tried to
push the market forward with the slogan "Everyone who has a web browser ought to have a web
server." But by then, the market was fixated on the idea of the web server as a centralized publishing
tool. Microsoft eventually offered PWS, or Personal Web Server, bundled with Windows, but it was
clearly a low-powered, second-class offering.

Perhaps even more importantly, as several authors in this book point out, the rise of dynamic IP
addressing made it increasingly difficult for individuals to publish to the Web from their desktops. As
a result, the original "Two-Way Web" became something closer to television, a medium in which most
of the participants are consumers, and only a relatively small number are producers.

Web site hosting services and participatory sites like GeoCities made it somewhat easier to participate,
but these services were outside the mainstream of web development, with a consumer positioning and
nonstandard tools.

Recently, there's been a new emphasis on the "writable Web," with projects like Dave Winer's
EditThisPage.Com (http://www.editthispage.com/), Dan Bricklin's Trellix (http://www.trellix.com/),
and Pyra's Blogger (http://www.blogger.com/) making it easy for anyone to host their own site and
discussion area. Wiki (http://c2.com/cgi/wiki?WikiWikiWeb) is an even more extreme innovation,
creating web sites that are writable by anyone in an area set aside for public comment on a given topic.
Wiki has actually been around for about six or seven years, but has suddenly started to catch on.

The writable Web is only one way that the Web is recapturing its peer-to-peer roots. Content
syndication with Rich Site Summary (RSS), which I'll describe in the following section, and web
services built with protocols like XML-RPC and SOAP allow sites to reference each other more fully
than is possible with a hyperlink alone.

3.1.3.6 Web services and content syndication

I asked above, "At what point does it make sense to have an architecture that allows a two-way flow of
tasks and compute cycles?" That's actually a pretty good description of SOAP and other web services
architectures.

The contribution of SOAP is to formalize something that sophisticated programmers have been doing
for years. It's been relatively easy, using Perl and a library like libwww-perl, to build interfaces to web
sites that do "screen scraping" and then reformulate and reuse the data in ways that the original web
developers didn't intend. Jon Udell (co-author of Chapter 18) demonstrated that one could even take
data from one web site and pass it to another for further processing, in a web equivalent to the Unix
pipeline.

SOAP makes this process more explicit, turning web sites into peers that can provide more complex
services than simple CGI forms to their users. The next generation of web applications won't consist of
single-point conversations between a single server and a single browser, but a multipoint conversation
between cooperating programs.

One of the key issues that comes up, once you start thinking about more complex interactions between
sites on the Net, is that metadata management is critical. In order for web clients and servers to use
others as resources, they need a standard way to discover each other, the way Java-enabled devices
discover each other through Jini. An initiative called Universal Description, Discovery, and
Integration, or UDDI (http://www.uddi.org/) represents a first step in this direction.

Similarly, content syndication formats like RSS allow web sites to cooperate in delivering content. By
publishing RSS feeds, sites enable other sites to automatically pick up data about their stories. For
instance, the O'Reilly Network home page is updated automatically out of a set of RSS news feeds
from a web of cooperating sites.

Right now, RSS provides only the simplest of metadata about web pages, useful for simple syndication
applications like creating news digest pages. But the RSS 1.0 proposal (www.xml.com/pub/r/810) will
allow for more complex applications based on distributed data.

http://www.editthispage.com/
http://www.trellix.com/
http://www.blogger.com/
http://c2.com/cgi/wiki?WikiWikiWeb
http://www.uddi.org/

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 39

3.1.3.7 Peer-to-peer and devices

We've all heard popular descriptions of technologies such as BlueTooth and Jini. I walk into a room
with my wireless laptop, and it queries other devices: "Hey, are there any printers here that can print a
PostScript file?"

If this isn't peer-to-peer, what is? As we have billions of computing devices, some fixed, some mobile,
some embedded in a variety of appliances (even in our clothing), we'll need technologies that allow the
formation of ad hoc peer groups between devices.

As you look at these technologies, you see a great deal of overlap between the kinds of problems that
need to be solved for peer-to-peer devices and for peer-to-peer network applications ranging from web
services to file sharing. Key technologies include resource discovery, reliability through redundancy,
synchronization, and replication.

3.1.4 Strategic positioning and core competencies

The whirlwind tour of canonical projects we've just been through weaves a story about peer-to-peer
that's very different from the one we started with. Not only is peer-to-peer fundamental to the
architecture of the existing Internet, but it is showing us important directions in the future evolution
of the Net. In some ways, you can argue that the Net is reaching a kind of critical mass, in which the
network itself is the platform, more important than the operating system running on the individual
nodes.

Sun first articulated this vision many years ago with the slogan "The Network is the Computer," but
that slogan is only now coming true. And if the network is the computer, the projects under the peer-
to-peer umbrella are collectively involved in defining the operating system for that emergent global
computer.

That positioning guides technology developers. But there is a story for users too: you and your
computer are more powerful than you think. In the peer-to-peer vision of the global network, a PC and
its users aren't just passive consumers of data created at other central sites.

Since the most promising peer-to-peer applications of the near future are only beginning to be
developed, it's crucial to provide a vision of the core competencies that peer-to-peer projects will need
to bring to the table.

High on the list is metadata management, which is the subject of Chapter 13. Whether you're dealing
with networked devices, file sharing, distributed computation, or web services, users need to find each
other and what they offer. While we don't have a clear winner in the resource discovery area, XML has
emerged as an important component in the puzzle.

What do we mean by metadata? In the case of Napster, metadata means the combination of artist and
song names that users search for. It also includes additional data managed by the central Napster
server, such as the names and Internet addresses of users, the size of the music files, and the reported
amount of bandwidth of the user's Internet link. (You can think of this information as the Napster
"namespace," a privately-managed metadata directory that gives Napster the ability to link users and
their files with each other.)

In considering Napster, it's worth noting that it chose an easy information domain because the
"namespace" of popular music is simple and well-known. The Napster model breaks down in cases
where more complex metadata is required to find a given piece of data. For example, in the case of
classical music, an artist/song combination is often insufficient, since the same piece may be
performed by various combinations of artists.

A related observation, which Darren New of Invisible Worlds (http://www.invisible.net/) made at the
summit, is that Napster depends on the music industry itself to "market its namespace." Without
preexisting knowledge of song titles and artists, there is nothing for the Napster user to search for.
This will lead to additional centralization layers as unknown artists try to provide additional
information to help users find their work. This is much the same thing that happened on the Web, as a
class of portals such as Yahoo! grew up to categorize and market information about the peer-to-peer
world of hyperlinked web pages.

http://www.invisible.net/

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 40

It's easy to see, then, how understanding and managing namespaces and other forms of metadata
becomes central to peer-to-peer applications. What's more, it is also the key to many peer-to-peer
business models. Controlling namespaces and resource discovery has turned out to be one of the key
battlegrounds of the Web. From Network Solutions (which largely controls DNS registration) to
Yahoo! and search engines, identifying and capitalizing on the ways that centralization impacts even
radically decentralized systems has turned out to be one key to financial success.

Instant messaging turns out to tell a similar story. The namespace of an instant messaging system,
and the mapping of identity onto user addresses, is the key to those systems. You have only to witness
the efforts of AOL to keep other instant messaging vendors from reaching its customers to understand
just how important this is.

Note, however, that in the end, an open namespace with multiple providers will create a more
powerful network than a closed one, just as the open Web trumped closed information services like
AOL and MSN. AOL now succeeds for its customers as a "first among equals" rather than as a
completely closed system.

In the case of a distributed computation application, metadata might mean some identifier that allows
the distributed data elements to be reassembled, and the address of the user who is working on a
particular segment. SETI@home tracks user identity as a way of providing a game-like environment in
which users and companies compete to contribute the most cycles. Startups aiming to compensate
users for their spare compute cycles will need to track how much is contributed. Depending on the
type of problem to be computed, they might want to know more about the resources being offered,
such as the speed of the computer, the amount of available memory, and the bandwidth of the
connection. Some of the technical means used to track and reward users are explored in Chapter 16.

We can see, then, that some of the key battlegrounds for peer-to-peer as a business proposition will be
the standards for metadata, the protocols for describing and discovering network-based resources and
services, and ownership of the namespaces that are used to identify those resources.

Returning to Napster, though, it's also clear that the core competencies required of successful peer-to-
peer projects will include seamless communication and connectivity, facilities that support self-
organizing systems, and the management of trust and expectations.

Ultimately, peer-to-peer is about overcoming the barriers to the formation of ad hoc communities,
whether of people, of programs, of devices, or of distributed resources. It's about decoupling people,
data, and services from specific machines, using redundancy to replace reliability of connections as
the key to consistency. If we get it right, peer-to-peer can help to break the IT bottleneck that comes
with centralized services. Decentralization and user empowerment enable greater productivity. Edge
services allow more effective use of Internet resources.

We're just at the beginning of a process of discovery. To get this right, we'll need a lot of
experimentation. But if we can learn lessons from Internet history, we also need to remember to focus
on the interoperability of many systems, rather than treating this as a winner-takes-all game in which
a single vendor can establish the standard for the network platform.

The peer-to-peer landscape is changing daily. New companies, applications, and projects appear faster
than they can be catalogued. Especially with all the hype around peer-to-peer, the connections
between these projects can be fairly tenuous. Is it marketing buzz or substance, when everyone tries to
join the parade?

While there's a danger in casting the net too widely, there's also a danger in limiting it. I believe that
the story I've told here gives us a good starting point in understanding an emergent phenomenon: the
kind of computing that results when networking is pervasive, resources are abundant (and
redundant), and the barriers are low to equal participation by any individual network node.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 41

Chapter 4. The Cornucopia of the Commons
Dan Bricklin, Cocreator of Visicalc

Let's get to the bottom of the Napster phenomenon - why is this music trading service so popular? One
could say, trivially, that Napster is successful because you can find what you want (a particular song)
and get it easily. It's also pretty obvious that songs are easy to find because so many of them are
available through Napster. If Napster let me get only a few popular songs, once I downloaded those I'd
lose interest fast.

But what's the root cause? Why are so many songs available? Hint: It has nothing to do with peer-to-
peer. Peer-to-peer is plumbing, and most people don't care about plumbing. While the "look into other
people's computers and copy directly" method has some psychological benefit to people who
understand what's going on (as indicated by thinkers such as Tom Matrullo and Dave Winer), I think
the peer-to-peer aspects actually get in the way of Napster.

Let's be blunt: Napster would operate much better if, when you logged in, it uploaded all the songs
from your disk that weren't already in the Napster database. If the songs were copied to a master
server, rather than just the names of the songs and who was currently logged in, the same songs would
be available for download provided by the same people, but at all times (not just when the "owner"
happened to be connected to the Internet), and probably through more reliable and higher-speed
connections to the Internet. (Akamai provides the kind of redundancy and efficiency that Napster
currently relies on its worldwide network of users to provide.) Napster could at least maintain the list
of who has what songs better than they do now.

Napster doesn't work this way partly because peer-to-peer may be more legal (or so they argue) and
harder to litigate against. But other applications may not have Napster's legal problems and would
therefore benefit from more centralized servers. While I'm a strong proponent for peer-to-peer for
some things, I don't think architecture is the main issue driving new services.

The issue is whether you get what you want from the application: "Is the data I want in the database?"
What's interesting about Napster is where its data ultimately comes from - the users - not when or
how it's transferred. So in this chapter, I'm going to examine how a service can fill a database with lots
of whatever people want.

4.1 Ways to fill shared databases

There are three common ways to fill a shared database: organized manual, organized mechanical,
and volunteer manual.

The classic case of an organized manual database is the original Yahoo! directory. This database was
filled by organizing an army of people to put in data manually. Another example is the old legal
databases where armies of typists were paid to retype printed material into computers.

The original AltaVista is an example of an organized mechanical database. A program running on
powerful computers followed links and domain names and spidered the Web, saving the information
as it went. Many databases on the Web today are mechanically created by getting access to somebody
else's data, sometimes for a fee. Examples include databases of street maps and the status of airline
flights. Some of those databases are by-products of automated processes.

Finally, Usenet newsgroups and threaded discussions like Slashdot are examples of volunteer
databases, where interested individuals provide the data because they feel passionate enough about
doing so. Amazon.com's well-known reviews are created through a mixture of organized manual and
volunteer manual techniques: the company recruits some reviews and readers spontaneously put up
others.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 42

4.1.1 CDDB: A case study in how to get a manually created database

The most interesting databases (for the purposes of this chapter) are the ones that involve manual
creation. When we look closely at some of them, we find some very clever techniques for getting data
that are very specific to the subjects they cover and the users they serve. Let's focus on one service that
employs a very unusual technique to aggregate its data: the CDDB service offered by Gracenote to
organize information about music CDs (http://www.cddb.com/).

The CDDB database has information that allows your computer to identify a particular music CD in
the CD drive and list its album title and track titles. Their service is used by RealJukebox,
MusicMatch, Winamp, and others. What's interesting is how they accumulate this information that so
many users rely on without even thinking about it.

Most CDs do not store title information. The only information on the CD, aside from the audio tracks
themselves, is the number of tracks (songs) and the length of each one. This is the information your
CD player displays. What CDDB does is let the software on your PC take that track information, send a
CD signature to CDDB through Internet protocols (if you're connected), and get back the titles.

CDDB works because songs are of relatively random length. The chances are good almost all albums
are unique. To understand this point, figure there are about 10 songs on an album, and that they each
run from about a minute and a half to about three and a half minutes in length. The times for each
song therefore vary by 100 seconds. There are 100 × 100 × ... × 100 = 10010 = 1011 = 100 billion = an
awful lot of possible combinations. So an album is identified by a signature that is a special arithmetic
combination of the times of all the tracks.

You'd figure that CDDB just bought a standard database with all the times and titles. Well, there
wasn't one. What they did was accept postings over the Internet that contained track timing
information and titles typed in by volunteers. Software for playing music CDs on personal computers
was developed that let people type in that information if CDDB didn't have it. As people noticed that
their albums failed to come up with titles when they played them on their PCs, many cared enough to
type in the information. They benefited personally from typing the information because they could
then more easily make their own playlists, but in the process they happened also to update the shared
database. The database could be built even if only one person was willing to do this for each album
(even an obscure album).

If you loved your CD collection, you'd want all the albums represented - or at least some people did.
Some people are the type who like to be organized and label everything. Not everybody needed to be
this type, just enough people to fill the database. Also, the CDDB site needed this volunteer (user)
labor only until the database got big enough that it was valuable enough for other companies to pay
for access.

CDDB is not run on a peer-to-peer architecture. Their database is on dedicated servers that they
control. Their web site says:

CDDB is now a totally secure and reliable service which is provided to users
worldwide via a network of high availability, mirrored servers which each have
multiple, high bandwidth connections to the Internet... boasting a database of
nearly 620,000 album titles and over 7.5 million tracks.

So CDDB succeeded not through peer-to-peer networking - it succeeded by harnessing the energy of
its users.

4.1.2 Napster: Harnessing the power of personal selfishness

Napster is a manually created database built on work by volunteers. It gets bigger when one of its
users buys (or borrows) a copy of a CD, converts it to MP3, and stores it in his or her shared music
directory. It can also be enlarged when somebody creates an MP3 of their own performance that they
want to share. But Napster cleverly provides a short-circuit around the process of manually creating
data: In both cases, storing the copy in the shared music directory can be a natural by-product of the
user's normal work with the songs. It can be done as part of downloading songs to a portable music
player or burning a personal mix CD. Whenever the users are connected to the Internet and to the
Napster server, songs in the shared directory are then available to the world.

http://www.cddb.com/

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 43

Of course, the user may not be connected to the Napster server all the time, so the song is not fully
available to all who want it (a perennial problem with peer-to-peer systems). However, Napster
overcomes this problem too, by exploiting the everyday activities of its users. Whenever someone
downloads a song using Napster and leaves the file in his or her shared music directory, that person is
increasing the number of Napster users who have that song, increasing the chances you will find
someone with the song logged in to Napster when you want your copy. So again, the value of the
database increases through normal use. (The same kind of replication is achieved in a more formal
way by Freenet through its unique protocol, but Napster gets the same effect more simply - its
protocol is just the decision of a user to do a download.)

The genius of Napster is that increasing the value of the database by adding more information is a
natural by-product of each person using the tool for his or her own benefit. No altruistic sharing
motives need be present, especially since sharing is the default. It isn't even like the old song about
"leaving a cup with water by the pump to let the next person have something to prime it with." (I'll
have to use Napster to find that song....) In other words, nobody has to think of being nice to the next
guy or put in even a tiny bit of extra effort.

As Internet analyst Kevin Werbach wrote in Release 1.0, a monthly report on technology trends:

What made Napster a threat to the record labels was its remarkable growth. That
growth resulted from two things: Napster's user experience and its focus on music...
What makes Napster different is that it's drop-dead simple to use. Its interface isn't
pretty, but it achieves that magic resonance with user expectations that marks the
most revolutionary software developments.

I would add that, in using that simple, desirable user interface, you also are adding to the value of the
database without doing any extra work. I'd like to suggest that one can predict the success of a
particular system for building a shared database by how much the database is aided through normal,
selfish use.

4.1.3 The commons

We've heard plenty about the tragedy of the commons - in fact, it pops up in several other chapters of
this book. In the 1968 essay that popularized the concept, "The Tragedy of the Commons," Garrett
Hardin wrote:

Therein is the tragedy. Each man is locked into a system that compels him to
increase his herd without limit - in a world that is limited. Ruin is the destination
toward which all men rush, each pursuing his own best interest in a society that
believes in the freedom of the commons. Freedom in a commons brings ruin to all.

In the case of certain ingeniously planned services, we find a contrasting cornucopia of the commons:
use brings overflowing abundance. Peer-to-peer architectures and technologies may have their
benefits, but I think the historical lesson is clear: concentrate on what you can get from users, and use
whatever protocol can maximize their voluntary contributions. That seems to be where the greatest
promise lies for the new kinds of collaborative environments.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 44

Part II: Projects

This part of the book offers a look at several current systems, giving a sense of what
actual peer-to-peer systems look like and how they behave.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 45

Chapter 5. SETI@home
David Anderson, SETI@home

It was January 1986, and I was sitting in a cafe on Berkeley, California's Telegraph Avenue. Looking
up, I recognized a student in the graduate course I was teaching that semester at the university. We
talked. His name was David Gedye, and he had just arrived from Australia. Our conversation revealed
many common interests, both within and outside of computer science. This chance meeting led,
twelve years later, to a project that may revolutionize computing and science: SETI@home.

Gedye and I became running partners. Our long forays into the hills above the Berkeley campus
occasioned many far-ranging discussions about the universe and our imperfect understanding of it. I
enjoyed these times. But all good things must end, and in 1989 Gedye left Berkeley with a master's
degree. He worked in Silicon Valley for a few years, then moved to Seattle and started a family. I also
left academia, but remained in the Bay Area.

In 1995 Gedye visited me in Berkeley, and we returned to the hills, this time for a leisurely walk. He
was bursting with excitement about a new idea. It sounded crazy at first: He proposed using the
computing power of home PCs to search for radio signals from extraterrestrial civilizations. But Gedye
was serious. He had contacted Woody Sullivan, an astronomy professor at the University of
Washington and an expert in the theory behind SETI, the Search for Extraterrestrial Intelligence.
Woody had steered him to Dan Werthimer, a SETI researcher at UC Berkeley.

The four of us - Gedye, Werthimer, Sullivan, and I - met several times over the next year, trying to
assess the viability of Gedye's idea. We decided that existing technology was sufficient, though just
barely, for recording radio data and distributing it over the Internet. And if we managed to get
100,000 people to participate, the aggregate computing power would let us search for fainter signals,
and more types of signals, than had ever been done before. But could we get that many people
interested? We decided to try it and find out.

5.1 Radio SETI

SETI is a scientific research area whose goal is to detect intelligent life outside the Earth. In 1959, Phil
Morrison and Giuseppe Cocconi proposed listening for signals with narrow frequency bandwidth, like
our own television and radar emissions, but unlike the noise emanating from stars and other natural
sources. Such signals would be evidence of technology, and therefore of life.

The first radio SETI experiment was conducted in 1960 by Frank Drake, who pointed an 85-foot radio
telescope in West Virginia at two nearby stars. Drake didn't detect an extraterrestrial signal, but he
and other researchers have continued to listen. Since 1960 there have been tremendous advances in
technology, especially in the digital technology at the heart of radio SETI. The systems that analyze
radio signals use the Fast Fourier Transform (FFT), an algorithm that divides signals into their
component frequencies. Most SETI projects have built special-purpose FFT supercomputers, but are
limited to fairly simple types of analysis.

There are also larger and more sensitive radio telescopes. The largest is Arecibo, a 1,000-foot
aluminum dish set into a natural hollow in the hills of northern Puerto Rico. A movable antenna
platform is suspended 700 feet above the center of the dish. By moving the antenna, one can
effectively point the telescope anywhere in a band of sky from the celestial equator to 38 degrees
north. The telescope doesn't form an image like optical telescopes. It's more like a highly directional
microphone. It sees a fuzzy disk (a beam) about 1/10 of a degree in diameter, or about 1/5 the
diameter of the moon.

Arecibo's size and excellent electronics let it hear very faint signals. The telescope is used for many
scientific purposes: looking for pulsars, imaging asteroids and planets by bouncing radio waves off
them, and studying the upper atmosphere. Observation time on Arecibo is a precious commodity.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 46

In 1992, Dan Werthimer devised a way for his SETI project, SERENDIP, to use Arecibo all the time -
even while other projects are using it. He mounted a secondary antenna at the opposite end of the
platform from the main antenna. While the main antenna tracks a fixed point in the sky (as it
normally does) this secondary antenna moves slowly in an arc about 6 degrees away. SERENDIP
observers have no control over where the scope points, but over long periods of time their beam covers
the entire band of sky visible from Arecibo. SERENDIP is thus a sky survey: It covers lots of stars but
doesn't spend much time on each star. Other radio SETI projects use targeted search: they look at
specific stars for longer periods, which gives them more sensitivity. No one knows which approach is
better, or even if radio signals are the right thing to look for. The best bet, SETI experts agree, is to try
everything.

5.2 How SETI@home works

We decided that SETI@home would use SERENDIP's antenna. Like all previous radio SETI projects,
SERENDIP analyzes its signal using a dedicated supercomputer at the telescope; it doesn't record the
signal. For SETI@home, we needed to digitally record the signal and transport it to our computers at
Berkeley. The network connection from Arecibo to the mainland is too slow. Instead, we record the
data on digital tapes and mail them to Berkeley. The largest-capacity digital tape available in 1998 was
the 35-GB digital linear tape (DLT).

We had to decide what frequency range to record. Covering a wide range is good from a scientific
point of view, but it means more tapes and more network bandwidth. We decided to record a 2.5 MHz
frequency band. Using 1-bit samples, this gives a data rate of 5 Mbps, meaning that a tape fills up in
about 16 hours. Like most radio SETI projects, we centered our band at the hydrogen line, 1.42 GHz.
This is the resonant frequency of the hydrogen molecules that fill interstellar space. Since hydrogen is
the most abundant element in the universe, we hope that if aliens are sending an intentional signal,
they will use this frequency. Our 2.5 MHz band is wide enough to contain Doppler shifts (frequency
shifts due to relative motion) corresponding to any likely velocity of a transmitter in our galaxy.

SETI@home and SERENDIP are complementary: SETI@home looks at a narrower frequency range
than SERENDIP (2.5 MHz versus 140 MHz) but does better signal analysis. SETI@home will record
data for two years, during which time we'll cover Arecibo's visible band about four times.

Every week about ten newly-recorded tapes arrive from Arecibo. These tapes are catalogued and
stored. Next, the data is divided into work units, the pieces that are sent to clients. The data is divided
along two dimensions: time and frequency. We decided that work units should be about 0.3 MB -
large enough to keep a computer busy for a while, but small enough so that, even over a 28.8- Kbps
modem, the transmission time is only a few minutes. We wanted each work unit to cover several times
the beam period (the time it takes for the beam to move across a point in the sky, typically about 20
seconds). To accomplish this, we divide the data into 256 frequency bands, each about 10 KHz wide.
We then slice each band into pieces 256,000 samples long - about 107 seconds of recording time.
Work units in a given band are overlapped in time by 20 seconds, ensuring that each beam period is
contained entirely in at least one work unit.

The task of splitting data tapes into work units is itself computationally intensive - enough so that we
considered making it a distributed task unto itself. In the end we assembled a group of six
workstations, each equipped with a DLT tape drive, running the splitter program full-time.

Work units are stored on a computer with about 300 GB of disk space. Ideally, each work unit should
remain in storage until a result for it has been returned. However, with 50 GB of data pouring in from
Arecibo every day, and with some slow computers taking a week or more to complete a work unit, this
can lead to a situation where we run out of space for new work units. Our current policy is to delete
work units even if no result has been returned yet.

A relational database keeps track of everything: tapes, work units, results, users, and so on. This
database has grown to several hundred gigabytes, and we place a tremendous load on it. Although we
have spread it across two large server machines, it is frequently a performance bottleneck.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 47

The most visible component of SETI@home is the client program. For Windows and Macintosh users,
this program is a screensaver: it only does its work when the computer isn't being used. The client sets
up an Internet connection to the SETI@home data distribution server, obtains a work unit, and closes
the connection. It then processes the data; this may take anywhere from an hour to several days,
depending on the speed of the computer. When it's finished, the client reconnects to the server, sends
back the results, and gets a new work unit. Every few minutes the program writes a "checkpoint" file
to disk, so that it can pick up where it left off in case the user turns off the computer.

The SETI@home data distribution server accepts connections from clients, collects their results, and
sends them new data. The data server may send either new work units or previously sent work units
that are still on disk. Many connections may arrive each second, and it may take several minutes (e.g.,
over a modem connection) to handle a request. So the server uses a large number of processes; in
many respects it is like a web server such as Apache. The server system also uses several other
programs, such as a "garbage collector" that removes work units for which results have been received.

If a transmitter and/or receiver is accelerated (e.g., because of planetary rotation or orbit), a signal
sent at a constant frequency will be heard as drifting in frequency. SETI@home uses a technique
called "coherent integration" for detecting drifting signals. SETI@home examines about 50,000 drift
rates, ranging from -50 to +50 Hz/sec. For each drift rate, the client program transforms the data to
remove the drift and then looks for signals at constant frequency. This gives about 10 times better
sensitivity than looking for drifting signals directly.

For a given drift rate, the program uses 15 different FFT lengths, or frequency resolutions. A
mathematical theorem called the Heisenberg Uncertainty Principle says that you can examine a signal
with high frequency resolution or high time resolution, but not both. Since we don't know what
characteristics an alien signal might have, we explore the full range of this trade-off.

For a given drift rate and FFT length, the program computes the time-varying power spectrum of the
signal. This produces an array whose dimensions are time and frequency, and whose value is the
power (the SETI@home graphics show a 3-D color graph of this array). The power array is analyzed,
looking for several types of signals:

Spikes

Power values much higher than the local average.

Gaussians

Ridges in the data, along the time axis, whose shape matches the bell-shaped curve (called a
"Gaussian") of the telescope beam.

Pulses

Signals at a constant frequency that cycle on and off, with a Gaussian envelope. The pulse rate,
phase, and duty cycle are not known in advance. We use an algorithm called Fast Folding,
originally developed for finding pulsars, that efficiently covers a wide range of possibilities.

Triplets

Groups of three evenly spaced spikes at the same frequency.

Signals that exceed predefined thresholds are returned to the server and added to the database. The
client doesn't have a flashing light that goes off when an ET signal is found; this isn't possible. Man-
made " radio frequency interference" (RFI), coming from TV stations, cell phones, and car ignitions,
leaks into the radio telescope and is often indistinguishable from an ET signal. RFI rejection is a hard
problem for radio SETI. Our approach is to check our database of candidate signals for two or more
signals at the same frequency and sky position, but at different times. Man-made interference changes
from one month to the next, but (hopefully) alien signals will remain unchanged.

So SETI@home's detection of an extraterrestrial signal, if it happens, will show up first on a computer
screen at Berkeley, sometime towards the end of the project. But our database will have a complete
record of the users whose PCs contributed to the detection, and they'll share in the credit.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 48

SETI@home's web site (http://setiathome.berkeley.edu/) plays an important role in the project. At
the site, people can download the client program, learn about SETI@home and radio SETI, and create
and join teams. The web site also shows current statistics and "leader boards:" lists of users and
teams, ordered by number of work units completed. These pages are generated by programs that
obtain the latest information from the database.

5.3 Trials and tribulations

SETI@home has faced many difficulties and challenges. Server performance, for example, has been a
major problem. As more and more people downloaded and ran the client, the stream of client requests
grew from a trickle to a torrent. At first, our server system consisted of three pieces: an Informix
database server, the data distribution server, and an Apache web server. These ran on three Sun
workstations, which also served as our personal computers.

In the first week the server system quickly was overwhelmed. Client connections were being turned
away, resulting in irritating error messages being displayed to users, and hence a torrent of email.

We scrambled to fix these problems by modifying the software. For example, we realized that much of
the load on the database server was due to updating lots of accounting records (for countries, CPU
types, teams, etc.) for each result received. We hastily revised the system to update the accounting
records off-line, combining thousands of database writes into a single write. This offline system
quickly fell behind, producing yet another wave of irate email, but at least the data distribution server
now kept up.

It quickly became clear that we needed more powerful server hardware. Sun Microsystems came to
our rescue, and over the next year they donated several of their high-performance server machines.
Even with these improvements, server performance continues to be an issue. Resources in general,
especially funding and manpower, have been a problem. We've received funds from a variety of
private donors and a grant from the University of California. This money has been enough to hire
about three full-time employees. A project of similar magnitude in the private sector would probably
employ 20 or 30 people. We've had to cut corners in many areas (for example, there is no customer
support), and some tasks have fallen far behind schedule.

Another problem area involved processor-specific optimizations. The SETI@home client is written in
C++, and we compile it using standard compilers such as Microsoft VC++ and Gnu's gcc.
Performance-conscious users disassembled the inner loops of the program and figured out that it was
doing FFTs and that the code was non-optimal on many processors. For example, several variants of
the x86 architecture, such as AMD's 3DNow, have instructions that can do FFTs faster. This led to
demands from 3DNow enthusiasts that we release a version optimized for 3DNow. Similar requests
came from Altivec, MIPS, and Alpha owners.

We didn't have the manpower to maintain lots of processor-specific versions of the code. However,
several people figured out how to replace the FFT routine at the heart of SETI@home with a faster
routine. Some of them did this incorrectly, producing clients that returned incorrect results.

Doctored versions of the program were just one of many security challenges. Most of the problems
involved "credit cheating" by, for example, returning the same result file over and over. People also
doctored their result files, making it appear that their computers had found a strong signal. It's not
clear what motivated these activities - after all, there are no financial rewards for work done. We
invested a large amount of effort in making a more secure version of the client, which uses
cryptographic checksumming to detect tampering with result files and with the program itself.

Some people feel that SETI@home should be an "open source" project, that we should distribute the
source code and solicit the help of volunteer programmers to fix bugs and make enhancements.
Indeed, we tried this for a short period and (perhaps due to our inexperience managing open source
projects) were quickly inundated with code that, for various reasons, was unusable. We were also
concerned that someone might substitute their own signal detection algorithm, announce a signal
discovery, and destroy our project's credibility. When we launched the project as non-open source, a
vocal group of critics created a web site calling for a boycott of SETI@home and attacking us for not
being "free software." (Many people have interpreted this as meaning that we charge money for the
client software, which is not the case.)

http://setiathome.berkeley.edu/

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 49

5.4 Human factors

Early in 1998, we launched a SETI@home web site describing the idea and letting people sign up. It
was a good time to start a project like SETI@home. Public interest in SETI had been stirred by the
movie Contact, which was released in July 1997. This movie, based on a novel by Carl Sagan, describes
radio SETI in reasonably accurate terms, and parts of it were filmed at Arecibo.

It became clear that there would be no shortage of participants - over 400,000 people signed up at the
web site. After a long period of development and testing, we released the client software on May 17,
1999. In the first week after the launch, over 200,000 people downloaded and ran the client. This
number has grown to 2,400,000 as of October 2000. People in 226 countries around the world run
SETI@home. 50% of them are outside the U.S.; there are even 73 in Antarctica.

People have helped SETI@home in every way imaginable. People upgrade their computers, or buy
new computers, just to run SETI@home faster. In Europe, people run SETI@home in spite of
expensive Internet connection setup charges. Volunteers translated the web site into about 30 foreign
languages. A number of people have written programs that track their work in elaborate detail.
Graphic artists sent us dozens of banner and link graphics; one of these was so attractive that it
replaced Gedye's original planet-and-wave image (which he threw together in PowerPoint) as our
logo.

When it became clear that SETI@home was being widely embraced by the public, several questions
arose. How was the word about SETI@home being spread? Why were people running SETI@home?
Were they leaving their computers on longer, or buying faster computers, because of SETI@home?

We've heard the following "viral marketing" scenario from many sources: one person in an office
starts running SETI@home; people see the screensaver graphics, ask about it, hear the explanation of
the project, and try it themselves. Soon the entire office is running it.

In search of more quantitative information, we ran a poll on our web site, with questions involving
demographics and attitudes about SETI and distributed computing. Some of the results were
surprising; for example, only 7% of the respondents are female. We learned that our users are sober in
their expectations: Only 10% think that a signal will be detected within the two-year duration of the
project.

5.5 The world's most powerful computer

Scientific computations are often measured in units of floating-point operations - additions and
multiplications of numbers with fractional parts, like 42.0 or 3.14159. A common unit of
supercomputer speed is trillions of floating-point operations per second, or TFLOPS.

The 1.0 TFLOPS barrier has been broken only in the last year or so. The fastest supercomputer is
currently the ASCI White, built by IBM for the U.S. Department of Energy. It costs $110 million,
weighs 106 tons, and has a peak performance of 12.3 TFLOPS.

SETI@home is faster than ASCI White, at less than 1% of the cost. The FFT computations for each
SETI@home work unit require 3.1 trillion floating-point operations. In a typical day, SETI@home
clients process about 700,000 work units. This works out to over 20 TFLOPS. It has cost about
$500,000, plus another $200,000 or so in donated hardware, to develop SETI@home and operate it
for a year. Of course, the cost of the one million PCs running SETI@home greatly exceeds that of ASCI
White - but these PCs were bought and paid for before SETI@home and would exist even without it.

As of October 2000, SETI@home has received 200 million results, for a total of 4 × 1020 floating-point
operations. We believe that this is the largest computation ever performed. And in terms of the
potential of the Internet for scientific computing, SETI@home is the tip of the iceberg. There are
projected to be one billion Internet-connected computers by 2003. If 10% of them participate in
distributed computing projects, there will be enough computing power for 100 projects the size of
SETI@home.

To what range of problems is this power applicable? Certainly not all problems. It must be possible to
factor the problem into a large number of pieces that can be handled in parallel, with few or no
interdependencies between the pieces. The ratio between communication and computation must be
fairly low: for example, it mustn't take an hour to transfer the data for one second of computing.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 50

Surprisingly many problems meet these criteria. Some of them, such as mathematical problems, are of
academic interest; others are in areas of commercial importance, such as genetic analysis. The range
of feasible problems will increase along with communication speed and capacity; for example, it may
soon be feasible to do computer graphics rendering for movies.

5.6 The peer-to-peer paradigm

In the brief history of computer technology, there have been several stages in the way computer
systems are structured. The dominant paradigm today is called client/server: Information is
concentrated in centrally located server computers and distributed through networks to client
computers that act primarily as user interface devices. Client/server is a successor to the earlier
desktop computing and mainframe paradigms.

Today's typical personal computer has a very fast processor, lots of unused disk space, and the ability
to send data on the Internet - the same capabilities required of server computers. The sheer quantity
of Internet-connected computers suggests a new paradigm in which tasks currently handled by central
servers (such as supercomputing and data serving) are spread across large numbers of personal
computers. In effect, the personal computer acts as both client and server. This new paradigm has
been dubbed peer-to-peer (P2P). SETI@home and Napster (a program, released about the same time
as SETI@home, that allows people to share sound files over the Internet) are often cited as the first
major examples of P2P systems.

The huge number of computers participating in a P2P system can overcome the fact that individual
computers may be only sporadically available (i.e., their owners may turn them off or disconnect them
from the Internet). Software techniques such as data replication can combine a large number of slow,
unreliable components into a fast, highly reliable system.

The P2P paradigm has a human as well as a technical side - it shifts power, and therefore control,
away from organizations and toward individuals. This might lead, for example, to a music distribution
system that efficiently matches musicians and listeners, eliminating the dilution and homogenization
of mass marketing. For scientific computing, it could contribute to a democratization of science: a
research project that needs massive supercomputing will have to explain its research to the public and
argue the merit of the research. This, I believe, is a worthwhile goal and will be a significant
accomplishment for SETI@home even if no extraterrestrial signal is found.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 51

Chapter 6. Jabber: Conversational Technologies
Jeremie Miller, Jabber

Conversations are an important part of our daily lives. For most people, in fact, they are the most
important way to acquire and spread knowledge during a normal working day.

Conversations provide a comfortable medium in which knowledge flows in both directions, and where
contributors share an inherent context through their subjects and relationships. In addition to old
forms of conversations - direct interaction and communication over the phone and in person -
conversations are becoming an increasingly important part of the networked world. Witness the
popularity of email, chat, and instant messaging, which enable users to increase the range and scope
of their conversations to reach those that they may not have before.

Still, little attention has been paid in recent years to the popular Internet channels that most naturally
support conversations. Instead, most people see the Web as the driving force, and they view it as a
content delivery platform rather than as a place for exchanges among equals. The dominance of the
Web has come about because it has succeeded in becoming a fundamentally unifying technology that
provides access to content in all forms and formats. However, it tends toward being a traditional one-
way broadcast medium, with the largest base of users being passive recipients of content.

Conversations have a stubborn way of reemerging in any human activity, however. Recently, much of
the excitement and buzz around the Web have centered on sites that use it as a conversational
medium. These conversations take place within a particular web site (Slashdot, eBay, Amazon.com) or
an application (Napster, AIM/ICQ, Netshow).

And repeating the history of the pre-Web Internet, the new conversations sprout up in a disjointed,
chaotic variety where the left hand doesn't know what the right hand is doing. The Web was a godsend
for lowering the barrier to access information; it increased the value of all content by unifying the
technologies that described and delivered that content. In the same way, Internet conversations stand
to benefit significantly by the introduction of a common platform designed to support the rich
dynamic and flexible nature of a conversation.

Jabber could well become this platform. It's not a single application (although Jabber clients can be
downloaded and used right now) nor even a protocol. Instead, using XML, Jabber serves as a glue that
can tie together an unlimited range of applications that tie together people and services. Thus, it will
support and encourage the growth of diverse conversational systems - and this moment in Internet
history is a ripe one for such innovations.

6.1 Conversations and peers

So what really is a conversation? A quick search using Dictionary.com reveals the following:

con·ver·sa·tion (kän-ver-'s -sh n) n. 1. A spoken exchange of thoughts, opinions, and
feelings; a talk. 2. An informal discussion of a matter by representatives of
governments, institutions, or organizations. 3. Computer Science. A real-time
interaction with a computer.

Essentially, a conversation is the rapid transfer of information between two or more parties. A
conversation is usually characterized by three simple traits: it happens spontaneously, it is transient
(lasting a short time), and it occurs among peers - that is, all sides are equal contributors.

Let's turn then to the last trait. The term "peer" is defined by Dictionary.com:

peer (pîr) n. 1. A person who has equal standing with another or others, as in rank,
class, or age; children who are easily influenced by their peers.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 52

The Internet expands this definition to include both people (P) and applications (A). Inherently, when
peers exchange information, it is a conversation, since both sides are equal and are transiently
exchanging information with each other. Person-to-person conversations (P-P) include email, chat,
and message boards. But crucial conversations also include application-to-application (A-A) ones such
as web services, IP routing, and UUCP. Least common, but most intriguing for future possibilities, are
person-to-application (P-A) conversations such as smart agents and bots.

It's interesting to take a step back and look at the existing conversations happening on the Internet
today. How well does each technology map to the kind of natural conversational style we know from
real life? Let's identify a few important metrics to help evaluate these traditional forms of Internet
communication as conversational channels:

Time

The more rapidly messages can be created and delivered, and the more rapidly the recipient
can respond, the more productive the conversation is for both participants.

P-A

A technology provides greater potential for future innovation if it inherently supports
applications as well as people.

Peers

Participants in a conversation should be equal and the conversation bidirectional.

Distributed

Conversations may be constrained if there is a central form of control or authority.

We can now evaluate a few technologies along some of the metrics just defined.

Email comes to mind first as the most popular form of conversation now happening on the Internet. It
is relatively fast, each message taking typically between 30 seconds and a few days to deliver, but
certainly not real-time. It is predominantly P-P, with some P-A applications, but it is not a very
natural use for A-A, because it provides no structure for content. Usenet is similar to email but is
focused on group discussions. Both are innately distributed, and participants are peers.

Internet Relay Chat (IRC) is a very popular conversational medium, primarily supporting real-time
group discussions. As with email, it's primarily P-P with some P-A and very little A-A. Participants are
peers. IRC is a distributed application within a network of groups, but it is restricted to that particular
network - it does not extend beyond a single collection of groups.

The traditional Web is real-time, but in a strict sense it does not support conversations, because the
participants are not peers. The content may be produced by a person, but it has a natural flow in only
one direction. Applications that support conversations can be built and made available on the Web,
but they are pretty rigid - each conversation is specific and centralized to that application.

The next-generation Web - also called the Two-Way Web by visionary developer Dave Winer - is
represented by Microsoft's .NET; and it tries to solve the shortcomings in the evolution of the Web. It
involves personal/fractional-horsepower (specialized) HTTP and DAV servers. These systems more
naturally support peers and conversations than the traditional Web, but the conversations between
these peers are still predominantly one-way (consumer or producer) and are often centralized based
on the application or content.

Traditional instant messaging services, such as AOL Instant Messenger, ICQ, Yahoo! Messenger, and
MSN Messenger, come the closest to a real-world conversation yet, and that is the reason for their
soaring popularity. They unfortunately focus primarily on P-P. The most significant drawback is that
they are commercial and completely centralized around a single closed service. You must be part of
the service to communicate with others on it.

None of these existing technologies provides a common platform for Internet conversations as the
Web does for content. Each is either limited in some important dimension or is specific to one
application.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 53

What could people do with an ideal, standardized conversational platform open to applications that
can cross boundaries and access end user content? Here are some fanciful future possibilities:

• I could ask a coworker's word processor or source editor what documents they are editing and
discuss revisions.

• My spell checker could ask the entire department to check the validity of unknown acronyms
and project or employee names.

• Instead of trying to combine the details of everybody's lives in a central address book or
schedule, each application that needs to discover this information could ask other peers for it.
Different conversations could be with different communities I define, such as my department,
my family (for holiday card or birthday lists), or my friends (for event invitations).

• My television set or video recorder could ask my friends what programs they are watching and
use their recorders' extra space to save the programs in case I want to watch them too. With
broadband, the television sets could have a conversation exchanging the actual video.

• My games could exchange scores and playing levels with my friends' games and schedule
times to play collaboratively (possibly invoking some of the other peers above to schedule
conversations). I could also ask another game to deliver an important message or to join a
game.

• Businesses could reproduce some of the warmth and responsiveness of a phone conversation
online, replacing the cold, faceless e-commerce store or customer support site that serves to
drive us to our phones. The new sites could combine a rich context and content with the kind
of conversational medium we all like to have.

6.2 Evolving toward the ideal

A look back at a bit of the World Wide Web's brief history proves quite interesting and enlightening.
Back in its pioneering days, the Web was idealized as a revolutionary peer platform that would enable
anyone on the Internet to become a publisher and editor. It empowered individuals to publish their
unique collections of knowledge so that they were accessible by anyone. The vision was of a worldwide
conversation where everyone could be both a voice and a resource. Here are a few quotes from Tim
Berners-Lee to pique your interest:

The World Wide Web was designed originally as an interactive world of shared
information through which people could communicate with each other and with
machines (http://www.w3.org/People/Berners-Lee/1996/ppf.html).

I had (and still have) a dream that the web could be less of a television channel and
more of an interactive sea of shared knowledge. I imagine it immersing us as a
warm, friendly environment made of the things we and our friends have seen,
heard, believe or have figured out. I would like it to bring our friends and colleagues
closer, in that by working on this knowledge together we can come to better
understandings (http://www.w3.org/Talks/9510_Bush/Talk.html).

Although the Web fulfills this vision for many people, it has quickly evolved into a traditional
consumer/producer relationship. If it had instead evolved as intended, we might be in a different
world today. Instead of passively receiving content, we might be empowered individuals collectively
producing content, publishing parts of ourselves online to our family and friends, and collectively
editing the shared knowledge within our communities.

So where did it go wrong in this respect? It could be argued that the problem was technological, in that
the available tools were browsing-centric, and it wasn't easy to become an editor or publisher. A more
thought-provoking answer might be that the problem was social, in that there was little demand for
those empowering tools. Perhaps only a few people were ready to become individual publishers, and
the rest of society wasn't ready to take that step.

http://www.w3.org/People/Berners-Lee/1996/ppf.html
http://www.w3.org/Talks/9510_Bush/Talk.html

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 54

The Web did not stagnate, however. It continued to evolve from a content distribution medium to an
application distribution medium. Few users are publishing content, but a huge number of companies,
groups, and talented individuals are building dynamic applications with new characteristics that reach
beyond the original design of the Web. The most exciting of these exhibit characteristics of a peer
medium and empower individuals to become producers as well as consumers. Examples include eBay,
Slashdot, IMDB, and MP3.com. Although the applications provide a new medium for conversations
between P-P peers, the mechanisms for doing so are application-specific. These new web-driven peer
applications also have the drawbacks of being centralized, of not being real-time in the sense of a
conversation, and of requiring their own form of internal addressing.

So instead of the Web being used primarily as a peer publishing medium, it has become a client/server
application medium upon which a breed of peer applications are being built.

Elsewhere in the computer field we can find still other examples of systems that are incorporating
greater interactivity. Existing desktop applications are evolving in that direction. They are becoming
Internet-aware as they face competition from web sites, so that they can take advantage of the Internet
in order to remain competitive and provide utility to the user. Thus, they are evolving from static,
standalone, self-contained applications into dynamic, networked, componentized services.

Microsoft, recognizing the importance of staying competitive with online services, is pushing the
evolution of desktop applications with their .NET endeavor. By turning applications into networked
services, .NET blurs the lines even further between the desktop and the Internet.

The evolution of the Web and the desktop shows a definite trend towards applications becoming peers
and having conversations with other applications, services, and people. The common language of
conversations in both mediums is XML. As a way of providing a hierarchical structure and a
meaningful context for data, XML is being adopted worldwide as the de facto language for moving this
data between disparate applications. As Tim Bray puts it, "XML is the ASCII of the future."

6.3 Jabber is created

To fully realize the potential for unifying the conversations ranging throughout the Internet today, and
enabling applications and services to run on top of a common platform, a community of developers
worldwide has developed a set of technologies collectively known as Jabber (http://jabber.org/).
Jabber was designed from the get-go for peer conversations, both P-P and particularly A-A, and for
real-time as well as asynchronous/offline conversations. Jabber is fully distributed, while allowing a
corporation or service to manage its own namespace. Its design is a response to the popularity of the
closed IM services. We are trying to create a simple and manageable platform that offers the
conversational traits described earlier in this chapter, traits that none of the existing systems come
close to providing in full.

Jabber began in early 1998 out of a desire to create a truly open, distributed platform for instant
messaging and to break free from the centralized, commercial IM services. The design began with
XML, which we exploited for its extensibility and for its ability to encapsulate data, which lowers the
barrier to accessing it. The use of XML is pervasive across Jabber, allowing new protocols to be
transparently implemented on top of a deployed network of servers and applications. XML is used for
the native protocol, translated to other formats as necessary in order to communicate between Jabber
applications and other messaging protocols.

The Jabber project emerged from that early open collaboration of numerous individuals and
companies worldwide. The name Jabber symbolizes its existence as numerous independent projects
sharing common goals, each building a part of the overall architecture. These projects include:

• A modular open source server written in C

• Numerous open source and commercial clients for nearly every platform

• Gateways to most existing IM services and Internet messaging protocols

• Libraries for nearly every programming language

• Specialized agents and services such as RSS and language translations

http://jabber.org/

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 55

Jabber is simply a set of common technologies that all of these projects agree on collaboratively when
building tools for peer-to-peer systems. One important focus of Jabber is to empower conversations
between both people and applications.

The Jabber team hopes to create an open medium in which the user has choice and flexibility in the
software used to manage conversations, instead of being hindered by the features provided by a
closed, commercial service. We hope to accelerate the development of peer applications built on an
open foundation, by enabling them to have intelligent conversations with other people and
applications, and by providing a common underlying foundation that facilitates conversations and the
accessibility of dynamic data from different services.

6.3.1 The centrality of XML

Fundamentally, Jabber enables software to have conversations in XML. When people use Jabber-
based software as a messaging platform to have conversations with other people, data exchanges use
XML under the surface. Applications use Jabber as an XML storage and exchange service on behalf of
their users.

XML is not only the core format for encoding data in Jabber; it is also the protocol, the transport layer
between peers, the storage format, and the internal data model within most applications. XML
permeates every conversation.

The Jabber architecture is also aware of XML namespaces, which permit different groups of people to
define different sets of XML tags to represent data. Thus, using a namespace, one group (Dublin Core)
has developed a set of tags for talking about the titles, authors, and other elements of a document.
Another group might define a namespace for describing music. An instant messaging community
using Jabber could combine the two namespaces to exchange information on books about music.
Chapter 13, looks at the promise of Dublin Core and other namespaces for peer-to-peer applications.

Here is a simple message using Jabber's XML format:

<message to="hamlet@denmark" from="horatio@denmark" type="chat">
 <body>Here, sweet lord, at your service.</body>
</message>

And here's a hypothetical message with additional data in a namespace included:

<message to="horatio@denmark" from="hamlet@denmark">
 <body>Angels and Ministers of Grace, defend us!</body>
 <prayer xmlns="http://www.grace.org">
 <verse>...</verse>
 </prayer>
</message>

By supporting namespaces, Jabber enables the inclusion of any XML data in any namespace anywhere
within the conversation. This allows applications and services to include, intercept, and modify their
own XML data at any point. Jabber is thus reduced to serving as a conduit between peers. Ironically,
this lowly status provides the power that Jabber offers to Internet conversations.

6.3.2 Pieces of the infrastructure

While the goal of Jabber is to support other naming conventions and protocols, rather than to create
brand-new ones, it depends on certain new concepts that require new types of syntax and binding
technologies. These help create a common architecture.

6.3.2.1 Identity

Naming is at the heart of any system - each resource must have a unique identity. In Jabber, each
resource is identified by a three-part name consisting of a user, a server, and a resource.

The user is often an individual, and the server is a system that runs a Jabber-based application. In a
name, the user and server are formatted just like email, user@server. This provides a general way to
pass identification between people that is already well understood and socially accepted. Since the
server resolves the username, the format also allows a user's identity to be managed by a service or
corporation the way America Online and Napster manage their usernames.

http://www.grace.org

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 56

This is an important point for Internet services that are providing a public utility to consumers or
companies, and especially for corporations that want to or are required to manage their identities very
carefully. This also allows any user to use a third party, such as Dynamic DNS Network Services
(http://dyndns.org/), for transient access to a permanent hostname so as not to be forced to rely on
someone else's identity.

The server component of the identity could also provide a community aspect to naming, as it may be
shared between a small group of friends, a family, or a special interest group. The name then stands
out and identifies the user's relationship as part of that community.

The third part of the identity is the resource. As in a Unix filename or URL, the resource follows the
server and is delimited by a slash, as in user@server/resource. Outside Jabber, the name is formatted
like a combination of an email address and a web URL: jabber://user@server/resource/data.

This third aspect of the identity, the resource, allows any Jabber application to provide public access
to any data within itself, analogous to a web server providing access to any file it can serve. It also
serves to identify different applications that might be operating for a single user. For example, my
Jabber ID is jer@jabber.org, and when I'm online at home my client application might be identified as
jer@jabber.org/desktop.

6.3.2.2 Presence

Presence is a concept fundamental to conversations, because it supports the arbitrary coming and
going of participants. Technically, presence is simply a state that a user or application is in.
Traditional states in instant messaging include online, offline, and somewhere in between (away, do
not disturb, sleeping, etc.). The Jabber architecture automatically manages presence information for
users and applications, distributing the information as needed while strictly protecting privacy. It is
often this single characteristic that adds the most value to the peers in a conversation: just knowing
that the other peer is available to have a conversation.

Presence can go beyond simple online/offline state information. XML could be used to convey
location, activity, and contextual (work/project) or application-specific data. Presence information
itself provides an inherent context for P-P conversations, as well as status and location context for A-A
conversations.

Here is a simple presence example in XML:

<presence from="hamlet@denmark">
 <show>away</show>
 <status>Gone to England</status>
</presence>

6.3.2.3 Roster

Another powerful feature of a traditional instant messaging service is the buddy list or roster. The
importance of this list is often underestimated. It is a valuable part of the user's reality that they've
stored and made available to their applications.

In social terms, each user's roster is his or her community. It defines the participants in this
community or relationships to larger communities. A roster is an actualization of personal trust and
relationships with peers. Applications should use this list intelligently to share their functionality and
filter conversations.

The circle of trust in which a user has chosen to include his or her computer is a starting point for
applications to locate other devices the user utilizes. It should also be used for choosing to collaborate
with the resources available from trusted peers. This single, simple feature begins to open the door to
the future possibilities mentioned near the beginning of this chapter, and it forms a step toward the
warm, friendly environment envisioned by Tim Berners-Lee for the World Wide Web.

http://dyndns.org/
jabber://user@server/resource/data

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 57

6.3.3 Architecture

The Jabber architecture closely resembles email. Peers are connected and route data in a chain until it
reaches the desired recipient. A client is connected to its server only, and its server is responsible for
negotiating the delivery and receipt of that client's data with other servers or networks using whatever
protocol is available. All data within the architecture is processed immediately and passed on to the
next peer, or stored offline for immediate delivery once that peer is available again.

Peers can play traditional client and server roles within the Jabber architecture. Every server acts as a
peer with respect to another server, using SRV DNS records to locate the actual server. Servers also
use hostname dialback, independently contacting the sending server to validate incoming data. This
prevents spoofing and helps ensure an overall more reliable and secure trust system.

All clients are peers with respect to other clients, and, after establishing a conversation with their
servers, are able to establish real-time conversations in XML with any other client. Clients can also
include or embed a server internally so that they can operate in any role and provide additional
flexibility and security.

6.3.3.1 Protocols

Along with support for all major instant messaging services (AIM, ICQ, MSN, Yahoo!), Jabber is also
protocol agnostic. It uses a variety of applications between the endpoints of the conversations to
transparently translate the XML data to and from another protocol. In its immediate applications,
Jabber's translation capabilities let it support P-P relationships across traditional instant messaging
services, IRC, and email. But the same flexibility also allows the construction of A-A bridges, such as
transparent access to SIP, IMXP, and PAM applications, as well as access to Jabber's native presence
and messaging functionality from those protocols.

Finally, the protocol-agnostic design of Jabber allows it to participate in the exciting evolution of the
Web mentioned earlier in Section 6.2: An evolution including such technologies as WebDAV, the use
of XML over HTTP in the SOAP protocol, the RSS service that broadcasts information about available
content, and other web services. We hope to set up revolving door access so that HTTP applications
can access native Jabber functionality and so that Jabber applications can transparently access
conversations happening over HTTP.

6.3.3.2 Browsing

A recent addition to Jabber is browsing, which is similar to the feature of the same name in the
Network Neighborhood on Microsoft systems. Browsing lets users retrieve lists of peers from other
peers and establish relationships between peers. It can be used to see what services might be available
from a server, as well as what applications and paths of communication a user has made available to
other users and their applications.

Peers that a user might make available could include their normal instant messaging client (home,
work, laptop, etc.), a pager transport, an offline inbox, a cell phone, a PDA, a TV, a scheduling
application, a 3-D game, or a word processor. Additionally, XML information can be made browsable
by a user or application, so that a user's vCard (verification information), public key, personal recipes,
music list, bookmarks, or other XML information could be read by both people and applications.
Browsing also allows people and applications to locate public peers, such as other messaging gateways
mentioned earlier, web services, group chats, and agents (searching, translation, fortune,
announcements, Eliza).

6.3.3.3 Conversation management

By centralizing and coordinating all of your conversations via a central identity, the software
managing that identity for you may be empowered to act upon incoming conversations and
intelligently filter them. This feature can be used to modify the content of a transmission or, even
more often, to make decisions about what to do with a conversation when you're not available (store it
offline, copy it to a pager, forward it to another account, etc.).

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 58

The same feature is also useful to manage the conversations between applications. For instance, if you
maintain a personal peer and a work-scheduling peer, conversation management software can
redirect incoming conversations to the correct agent based on the relationship to the sender stored in
the roster. When you have all of your conversations managed by a common identity, they can be
managed directly from one single point, enabling you to have more control over your conversations.

6.4 Conclusion

For more information about Jabber, or to become involved in the project (we openly welcome anyone
interested), visit http://jabber.org/ or contact the core team at team@jabber.org. The 1.0 server was
released in May of 2000 and rapidly evolved into a 1.2 release in October, due to popularity and
demand. The development focus is now on helping the architecture mature and further developing
many of the ideas mentioned here. The development team is collaborating to quickly realize the future
possibilities described in this paper, so that they're not so "future" after all.

http://jabber.org/

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 59

Chapter 7. Mixmaster Remailers
Adam Langley, Freenet

Remailers are one of the older peer-to-peer technologies, but they have stood the test of time. Work
done on them has helped or motivated much of the current work in the P2P field. Furthermore, they
can be valuable to users who want to access many of the systems described in other chapters of this
book by providing a reasonable degree of anonymity during this access, as explained in Chapter 15.

Anonymous remailers allow people to send mail or post to newsgroups while hiding their identities.
There are many reasons why people might want to act anonymously. Maybe they fear for their safety if
they are linked to what they post (a concern of the authors of the Federalist Papers), maybe they think
people will prejudge what they have to say, or maybe they just prefer to keep their public lives separate
from their private lives. Whatever the reason, anonymous posting is quite difficult on the Internet.
Every email has, in its headers, a list of every computer it passed through. Armed with that knowledge,
an attacker could backtrack an email to you. If, however, you use a good remailer network, you make
that task orders of magnitude harder.

Mixmasters (also known as Type 2 remailers) are the most common type of remailer. The Type 1
remailers are technically inferior and no longer used, though Mixmasters provide backward
compatibility with them. The first stable, public release of Mixmaster was on May 3, 1995, by Lance
Cottrell. The current version is 2.0.3, released on July 4, 1996. Don't be put off by the old release date;
Mixmasters are still the best remailers.

7.1 A simple example of remailers

In order to demonstrate the basics of remailers, I'll start with the Type 1 system. The Type 2 system
builds on it, adding some extra assurances that messages cannot be traced.

If you wanted to mail something anonymously to alice@world.net, you could send the following
message to a Mixmaster remailer:

::
Anon-To: alice@world.net
Latent-Time: +1:30

I have some important information for you. I hope you understand
why I've taken the precautions I have to keep my identity a secret.

The remailer would hold this message for one and a half hours - to throw off track anyone who might
be sniffing traffic and trying to match your incoming message to the remailer's outgoing message - and
then strip all the headers except the subject and forward the mail to Alice. Alice would see that the
mail had come from the remailer and would have no idea who actually sent it.

However, this system does have problems. First, the remailer knows the destination and source of the
message and could be compromised. Second, while your message is in transit to the remailer, anyone
with privileged access to your local area network or an intervening mail hub can see that you are
sending anonymous messages to Alice. Finally, Alice has no easy way to reply to you.

In order to hide the fact that you are sending anonymous messages to Alice, you can encrypt the
message to the remailer. This assumes that you know the public key of the remailer, and while these
public keys are widely known, key management is always a weak spot.

Encryption stops anyone who views the message in transit to the remailer from seeing the message
and destination. (It should be noted that this doesn't hide the fact that you are sending anonymous
messages, and even that snippet of information could land you in trouble in some places.)

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 60

To anyone who saw it, the message would look like this:

::
Encrypted: PGP

-----BEGIN PGP MESSAGE-----
Version: 5
Comment: The following is encrypted data

mQGiBDmG74kRBACzWRoHjjbTrgGxp7275Caldaol72oWkPgj6xxHl2KNnDyvSyNi
D+PDQUk0W86EXTr9fR8mi8V8yDzSuUQCthoD8UPf7Kk/HtR//lCGWRhoN81ynrsm
FLVhGSR5n4lgf6oNUeIObKYYOWmXzjtKCkgAUtbsImOd8/5hm7zKCQl/LwCgveTW
3bcbQ+A02SMlrxUZcx4qCfUD/1RRuZsdsJFsX9N/tBDLclqtepGQbtwJG02QSCMa
ut8ls+WEytb+l/jqBP/qN9Rry3YUtuRXmjjiYFQ8l3JWA5kd4VxzKP6nBTZfggEW
6BrGB8wDuhqTVL7SqivqrDdgB7S3WQIuZz17Vs1A1wzc37vDmHkw50wshTuvT0Pw
-----END PGP MESSAGE-----

This also solves the third problem of Alice needing to reply. You can give Alice a block, encrypted to
the remailer, which contains your email address. If Alice then puts the encrypted block at the top of
her reply and sends it to the same remailer, the remailer can decrypt it and forward it back to you.
Alice can send messages to you without any way of knowing where they actually go. Thus, she has no
way of tracing you.

That leaves the second problem, namely that the remailer is the weak link. If Alice, or anyone else, can
compromise it, the whole project falls apart. The solution is a simple extension of the basic idea.
Instead of the remailer sending the message to Alice, it sends it to another remailer. That remailer
then sends it to another, and so on, until the last remailer in the chain sends it to Alice. Thus, no
remailer in the chain knows both the source and the destination of the message.

7.2 Onion routing

If any remailer reads the contents of your message, it will know who is receiving it at the end. The
solution to this involves a series of encryptions that hide the information from remailers in the middle.

Thus, when you send your message, you add an instruction to send it to alice@world.net, but you
encrypt this recipient information using a key from the last remailer in the chain. So only this last
remailer can determine her address. You then add instructions to send the mail to the last remailer
and encrypt that information so that only the second-to-last remailer can read it, and so on. You thus
form an "onion" of messages. Each remailer can remove a skin (one layer of encryption) and send the
message to the next remailer, and no remailer knows anything more than what is under the skin they
can remove. The layers are illustrated in Figure 7.1.

Figure 7.1. An onion of encrypted messages

You construct a reply block for Alice in the same fashion, an onion of encrypted messages. Alice, or
anyone else, would then need to compromise every remailer in the chain in order to remove every skin
of the onion and trace you.

7.3 How Type 2 remailers differ from Type 1 remailers

Type 2 remailers were designed to fix some of the problems with the Type 1 system above. Even
though the Type 1 system seems very good, there are a number of weaknesses that a powerful attacker
could use. Most of these weaknesses come from being able to do traffic analysis.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 61

Traffic analysis means capturing the bits that cross a communications channel so as to see every
packet that passes around a network - where it came from and where it's going. It is not necessary for
the snooper to be able to read the contents of every packet; a lot of useful information can be gathered
just from TCP and IP headers sent in the clear, or, as you will see, just from incidental characteristics
such as the length of a message.

In order to hide the connection between your incoming message and the Mixmaster's outgoing
message, each message must appear to the attacker exactly the same as every other message in the
system. The most basic difference between messages is their length. (Remember that the message is
multiply encrypted, so the contents don't count.) If an attacker can see a certain sized message going
into a remailer and then see a message of a very similar size going out again, he or she can follow the
message. Even though the message changes size at each remailer because a skin is peeled off, this
doesn't provide much protection. The change in size as the skins are removed is small and easily
calculated.

In order to make all messages the same size and frustrate traffic analysis, every Mixmaster message is
the same length. This is done by breaking the message into pieces and adding padding to the last part
to make it the same size. Each part is sent separately and has enough information for the last remailer
in the chain to reassemble them. Only the last remailer in the chain knows what messages go together,
because the information is only on the last skin. To every other remailer, each part looks like a
different message.

The next identifying mark that needs to be removed is the time. If a message enters a remailer and
another leaves immediately after, an attacker knows where the message is going and can trace it. This
is a more difficult problem to solve than it seems at first. Simply reordering messages, or delaying
them for a time, doesn't work. If the number of other messages is low, or if the attacker can stop other
messages from reaching the remailer, your message will still stand out.

Mixmasters try to solve this problem by sending out a random selection of messages periodically,
while always keeping a certain sized pool of messages. This makes it very difficult to match up
outgoing messages with incoming ones, but still not impossible. However, if the traffic on the
Mixmaster network is high enough, tracing the message over the whole chain of remailers becomes a
massive challenge for an attacker.

Finally, an attacker can capture your message and attempt to replay it through a remailer. Since your
message has the encrypted address of the next remailer, by sending many copies of it an attacker can
watch for an unusually large number of outgoing messages to a certain address. That address is likely
to be the next remailer in the chain (or the final destination). The attacker can then repeat this for
each remailer in the chain.

To stop this, every skin has a random ID number. A remailer will not forward a message with the same
ID number twice, so all the cloned messages will be dropped and no extra traffic will come out. An
attacker cannot change the ID number of a message because it is encrypted along with everything else.

7.4 General discussion

Mixmasters have taken remailing to a fine art and are very good at it. They are an interesting study in
peer-to-peer networks in which security is the absolute priority. Unlike many peer-to-peer networks,
the Mixmaster user must have knowledge of the network in order to build the onion. This means that
Mixmaster nodes are publicly known. It is possible to have a private remailer by simply not telling
anyone about it, but this would leave the traffic level very low and thus reduce security.

Unfortunately, Mixmasters themselves are often the target of attacks by people who, for one reason or
another, disagree that people have a right to anonymity. It has been known for people to send death
threats to themselves to try to get remailers shut down. The public nature of remailers makes such
attacks easier.

Life can be very hard for a Mixmaster administrator, because he has to explain to angry people why he
can't give them the email address of someone who has used his remailer. This goes some way to
explaining why there are only about 20-30 active Mixmasters and serves as a warning to other peer-
to-peer projects that provide anonymity.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 62

Chapter 8. Gnutella
Gene Kan, Gnutella and GoneSilent.com

When forced to assume [self-government], we were novices in its science. Its
principles and forms had entered little into our former education. We established,
however, some, although not all its important principles.

- Thomas Jefferson, 1824

Liberty means responsibility. That is why most men dread it.

- George Bernard Shaw

Gnutella is among the first of many decentralized technologies that will reshape the Internet and
reshape the way we think about network applications. The traditional knee-jerk reaction to create a
hierarchical client/server system for any kind of networked application is being rethought.
Decentralized technologies harbor many desirable qualities, and Gnutella is a point of proof that such
technologies, while young, are viable.

It is possible that Gnutella has walked the Earth before. Certainly many of the concepts it uses - even
the unconventional ones - were pioneered long ago. It's tricky to determine what's brand-new and
what's not, but this is for certain: Gnutella is the successful combination of many technologies and
concepts at the right time.

8.1 Gnutella in a gnutshell

Gnutella is a citizen of two different worlds. In the popular consciousness, Gnutella is a peer-to-peer,
techno-chic alternative to Napster, the popular Internet music swapping service. To those who look
past the Napster association, Gnutella is a landscape-altering technology in and of itself. Gnutella
turned every academically correct notion of computer science on its head and became the first large-
scale, fully decentralized system running on the wild and untamed public Internet.

Roughly, Gnutella is an Internet potluck party. The virtual world's equivalents of biscuits and cheese
are CPU power, network capacity, and disk space. Add a few MP3s and MPEGs, and the potluck
becomes a kegger.

On the technical side, Gnutella brings together a strange mix of CDMA, TCP/IP, and lossy message
routing over a reliable connection. It's a really strange concept.

Contrary to popular belief, Gnutella is not branded software. It's not like Microsoft Word. In fact,
Gnutella is a language of communication, a protocol. Any software that speaks the language is
Gnutella-compatible software. There are dozens of flavors of Gnutella compatibles these days, each
catering to different users. Some run on Windows, others on Unix, and others are multi- platform
Java or Perl. And as Gnutella's name implies, many of the authors of these Gnutella compatibles have
contributed to the open source effort by making the source code of their projects freely available.

8.2 A brief history

Besides its impact on the future of intellectual property and network software technology, Gnutella
has an interesting story, and it's worth spending a little time understanding how something this big
happens with nobody writing any checks.

8.2.1 Gnutella's first breath

Gnutella was born sometime in early March 2000. Justin Frankel and Tom Pepper, working under the
dot-com pen name of Gnullsoft, are Gnutella's inventors. Their last life-changing product, Winamp,
was the beginning of a company called Nullsoft, which was purchased by America Online (AOL) in
1999. Winamp was developed primarily to play digital music files. According to Tom Pepper, Gnutella
was developed primarily to share recipes.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 63

Gnutella was developed in just fourteen days by two guys without college degrees. It was released as
an experiment. Unfortunately, executives at AOL were not amenable to improving the state of recipe
sharing and squashed the nascent Gnutella just hours after its birth. What was supposed to be a GNU
General Public License product when it matured to Version 1.0 was never allowed to grow beyond
Version 0.56. Certainly if Gnutella were allowed to develop further under the hands of Frankel and
Pepper, this chapter would look a lot different.

At least Gnutella was born with a name. The neologism comes from ramming GNU and Nutella
together at high speed. GNU is short for GNU's Not Unix, the geekish rallying cry of a new generation
of software developers who enjoy giving free access to the source code of their products. Nutella is the
hazelnut and chocolate spread produced by Italian confectioner Ferrero. It is typically used on dessert
crepes and the like. I think it's great, and chocolate is my nemesis.

Anyway, Gnutella was declared an "unauthorized freelance project" and put out to pasture like a car
that goes a hundred miles on a gallon of gas. Or maybe like a technology that could eliminate the need
for a physical music distribution network. Cast out like a technology that could close the books on a lot
of old-world business models? Well, something like that, anyway.

8.2.2 Open source to the rescue

It was then, in Gnutella's darkest hour, that open source developers intervened. Open source
developers did for Gnutella what the strange masked nomads did for George Clooney and friends in
Three Kings. Bryan Mayland, with some divine intervention, reverse engineered Gnutella's
communication language (also known as "Gnutella protocol") and posted his findings on Gnutella's
hideout on the Web: gnutella.nerdherd.net. Ian Hall-Beyer and Nathan Moinvaziri created a sort of
virtual water cooler for interested developers to gather around. Besides the protocol documentation,
probably the most important bit of information on the Nerdherd web site was the link to Gnutella's
Internet Relay Chat (IRC) channel, #gnutella. #gnutella had a major impact on Gnutella
development, particularly when rapid response among developers was required.

8.3 What makes Gnutella different?

Gnutella has that simple elegance and minimalism that marks all great things. Like Maxwell's
equations, Gnutella has no extraneous fluff. The large amount of Gnutella-compatible software
available is testimony to that: Gnutella is small, easy, and accessible to even first-time programmers.

Unlike the Internet that we are all familiar with, with all its at signs, dots, and slashes, Gnutella does
not give meaningful and persistent identification to its nodes. In fact, the underlying structure of the
Internet on which Gnutella lives is almost entirely hidden from the end user. In newer Gnutella
software (Gnotella, Furi, and Toadnode, for example), the underlying Internet is completely hidden
from view. It simply isn't necessary to type in a complex address to access information on the Gnutella
system. Just type in a keyword and wait for the list of matching files to trickle in.

Also unlike standard Internet applications such as email, Web, and FTP, which ride on the bare metal
of the Internet, Gnutella creates an application-level network in which the infrastructure itself is
constantly changing. Sure, the wires stay in the ground and the routers don't move from place to
place, but which wires and which routers participate in the Gnutella network changes by the second.
The Gnutella network comprises a dynamic virtual infrastructure built on a fixed physical
infrastructure.

What makes Gnutella different from a scientific perspective is that Gnutella does not rely on any
central authority to organize the network or to broker transactions. With Gnutella, you need only
connect to one arbitrary host. Any host. In the early days, discovery of an initial host was done by
word of mouth. Now it is done automatically by a handful of "host caches." In any case, once you
connect with one host, you're in. Your Gnutella node mingles with other Gnutella nodes, and pretty
soon you're in the thick of things.

Contrast that to Napster. Napster software is programmed to connect to http://www.napster.com/. At
http://www.napster.com/ is a farm of large servers that broker your every search and mouse click.
This is the traditional client/server model of computing. Don't get me wrong: client/server is great for
many things. Among its positive qualities are easy-to-understand scalability and management. The
downside is that by being the well-understood mainstay of network application science, client/server
is boring, inflexible, and monolithic. Those are bad words in the Internet lexicon.

http://www.napster.com/
http://www.napster.com/

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 64

8.3.1 Gnutella works like the real world

So far, we know that Gnutella is an Internet potluck. We know it's impossible to stop. But how does it
actually work all this magic?

In its communication, it's like finding the sushi tray at a cocktail party. The following is a loose
description of the interaction on the Gnutella network.

8.3.1.1 A Gnutella cocktail party

The concepts introduced in this example, primarily the idea that a request is repeated by a host to
every other host known by that host, is critical to understanding how Gnutella operates. In any case,
you can see that Gnutella's communication concepts closely reflect those of the real world:

Cocktail party Gnutella

You enter at the foyer and say hello to the
closest person.

You connect to a Gnutella host and issue a PING
message.

Shortly, your friends see you and come to
say hello.

Your PING message is broadcast to the Gnutella hosts in
your immediate vicinity. When they receive your PING,
they respond with a PONG, essentially saying, "Hello,

pleased to meet you."

You would like to find the tray of sushi, so
you ask your nearby friends.

You would like to find the recipe for strawberry rhubarb
pie, so you ask the Gnutella nodes you've encountered.

None of your drunken friends seem to
know where the sushi is, but they ask the
people standing nearby. Those people in

turn ask the people near them, and so on,
until the request makes its way around the

room.

One of the Gnutella nodes you're connected to has a
recipe for strawberry rhubarb pie and lets you know.

Just in case others have a better recipe, your request is
passed on to other hosts, which repeat the question to all

hosts known to them. Eventually the entire network is
canvassed.

A handful of partygoers a few meters away
have the tray. They pass back the

knowledge of its location by word of
mouth.

You get several replies, or "hits," routed back to you.

You walk over to the keepers of the tray
and partake of their sushi.

There are dozens of recipes to choose from. You double-
click on one and a request is issued to download the

recipe from the Gnutella node that has it.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 65

8.3.1.2 A client/server cocktail party

In contrast, centralized systems don't make much sense in the real world. Napster is a good example
of a client/server system, so let's look at how things would be if there were a real-life cocktail party
that mimicked Napster's system:

Cocktail party Napster

You enter at the foyer and the host
of the party greets you. Around

him are clustered thirty-five
million of his closest friends.

You connect to Napster and upload a list of files that you are
sharing. The file list is indexed and stored in the memory of the

party host: the central server.

Your only friend at this party is the
host.

The Napster server says, "File list successfully received."

You would like to find the tray of
sushi, so you find your way back to

the foyer and ask the host where
exactly the tray has gone.

You would like to find the recipe for strawberry rhubarb pie. So
you type "rhubarb" into the search box, and the request is

delivered to the central server.

The host says, "Oh, yes. It's over
there."

You get several replies, or "hits," from the Napster server that
match your request.

You hold the tray and choose your
favorite sushi.

You decide which MP3 file you want to download and double-
click. A request is issued to the Napster server for the file. The

Napster server determines which file you desire and whose
computer it is on, and brokers a download for you. Soon the

download begins.

As you can see, the idea of a central authority brokering all interaction is very foreign to us. When I
look at what computer science has espoused for decades in terms of real-world interactions, I wonder
how we got so far off track. Computer science has defined a feudal system of servers and slaves, but
technologies like Gnutella are turning that around at long last.

8.3.2 Client/server means control, and control means responsibility

As it relates to Napster, the server is at once a place to plant a business model and the mail slot for a
summons. If Napster threw the switch for Napster subscriptions, they could force everyone to pay to
use their service. And if the RIAA (Recording Industry Association of America) wins its lawsuit,
Napster just might have to throw the switch the other way, stranding thirty-five million music
swappers. We'll see how that suit goes, but whether or not Napster wins in United States Federal
Court, it will still face suits in countless municipalities and overseas. It's the Internet equivalent of
tobacco: the lawsuits will follow Napster like so many cartoon rain clouds.

Gnutella, on the other hand, is largely free of these burdens. In a decentralized world, it's tough to
point fingers. No one entity is responsible for the operation of the Gnutella network. Any number of
warrants, writs, and summons can be executed, and Gnutella will still be around to help you find
recipes for strawberry rhubarb pie and "Oops, I Did It Again" MP3s.

Thomas Hale, CEO of WiredPlanet, said, "The only way to stop Gnutella is to turn off the Internet."
Well, maybe it's not the only way, but it's really hard to think of a way to eliminate every single cell of
Gnutella users, which is truly the only way to wipe Gnutella off the planet.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 66

8.3.3 The client is the server is the network

Standard network applications comprise three discrete modules. There is the server, which is where
you deposit all the intelligence - the equivalent of the television studio. There is the client, which
typically renders the result of some action on the server for viewing by the user - the equivalent of the
television. And there is the network, which is the conduit that connects the client and the server - the
equivalent of the airwaves.

Gnutella blends all that into one. The client is the server is the network. The client and server are one,
of course. That's mainly a function of simplification. There could be two processes, one to serve files
and another to download files. But it's just easier to make those two applications one; easier for users
and no more difficult for developers.

The interesting thing is that the network itself is embedded in each Gnutella node. Gnutella is an
internet built on top of the Internet, entirely in software. The Gnutella network expands as more
nodes connect to the network, and, likewise, it does not exist if no users run Gnutella nodes. This is
effectively a software-based network infrastructure that comes and goes with its users. Instead of
having specialized routers and switches and hubs that enable communication, Gnutella marries all
those things into the node itself, ensuring that the communication facilities increase with demand.
Gnutella makes the network's users the network's operators.

8.3.4 Distributed intelligence

The underlying notion that sets Gnutella apart from all other systems is that it is a system of
distributed intelligence. The queries that are issued on the network are requests for a response, any
kind of response.

Suppose you query the Gnutella network for "strawberry rhubarb pie." You expect a few results that let
you download a recipe. That's what we expect from today's Gnutella system, but it actually doesn't
capture the unique properties Gnutella offers. Remember, Gnutella is a distributed, real-time
information retrieval system wherein your query is disseminated across the network in its raw form.
That means that every node that receives your query can interpret your query however it wants and
respond however it wants, in free form. In fact, Gnutella file-sharing software does just that.

Each flavor of Gnutella software interprets the search queries differently. Some Gnutella software
looks inside the files you are sharing. Others look only at the filename. Others look at the names of the
parent directories in which the file is contained. Some Gnutella software interprets multiword queries
as conjunctions, while others look at multiword queries as disjunctions. Even the results returned by
Gnutella file-sharing software are wildly different. Some return the full path of the shared file. Others
return only the name of the file. Yet others return a short description extracted from the file.
Advertisers and spammers took advantage of this by returning URLs to web sites completely unrelated
to the search. Creative and annoying, yet demonstrative of Gnutella's power to aggregate a collective
intelligence from distributed sources.

To prove the point once and for all that Gnutella could be used to all kinds of unimagined benefit,
Yaroslav Faybishenko, Spencer Kimball, Tracy Scott, and I developed a prototype search engine
powered by Gnutella that we called InfraSearch. The idea was that we could demonstrate Gnutella's
broad power by building a search engine that accessed data in a nontraditional way while using
nothing but pure Gnutella protocol. At the time, InfraSearch was conceived solely to give meat to what
many Gnutella insiders were unable to successfully convey to journalists interested in Gnutella: that
Gnutella reached beyond simple file swapping. To illustrate, I'll use the examples we used in our
prototype.

InfraSearch was accessed through the World Wide Web using a standard web browser. Its interface
was familiar to anyone who had used a traditional web search engine. What happened with the query
was all Gnutella. When you typed a search query into InfraSearch, however, the query was not
answered by looking in a database of keywords and HTML files. Instead, the query was broadcast on a
private Gnutella network comprising a few nodes. The nodes themselves were a hodgepodge of
variegated data sources. A short list of the notables: Online Photo Lab's image database, a calculator, a
proxy for Yahoo! Finance, and an archive of MoreOver.com's news headlines.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 67

When you typed in "MSFT" the query would be broadcast to all the nodes. Each node would evaluate
the query in relation to its knowledge base and respond only if the node had relevant information to
share. Typically, that would mean that the Yahoo! Finance node would return a result stating
Microsoft's current stock price and the MoreOver.com node would return a list of news stories
mentioning Microsoft. The results were just arbitrary snippets of HTML. The HTML fragments would
be stitched together by a Gnutella node, which also doubled as a web server, and forwarded on to the
web browser. Figure 8.1 shows the results of a search for "rose."

Figure 8.1. Results displayed from Gnutella search

The real power of this paradigm showed itself when one entered an algebraic expression into the
search box, say, "1+1*3" for instance. The query would be disseminated and most nodes would realize
that they had nothing intelligent to say about such a strange question. All except the calculator node.
The calculator was a GNU bc calculator hacked to make it speak Gnutella protocol. Every time the
calculator received a query, it parsed the text to see if it was a valid algebraic expression. If it was not,
then the calculator remained silent. If the query was an algebraic expression, however, the calculator
evaluated the expression and returned the result. In this case, "1+1*3 = 4" would be the result.[1]

[1] Some creative users would search on ridiculously complex algebraic expressions, causing the calculator node
to become overburdened. Gnutella would then simply discard further traffic to the calculator node until it
recovered from figuring out what "987912837419847197987971234*1234183743748845765" was. The other
nodes continued on unaffected.

One potential application of this is to solve the dynamic page problem on the World Wide Web.
Instead of trying to spider those pages as web search crawlers currently do, it would be possible to
access the information databases directly and construct a response based upon data available at the
time the query was issued. Possibilities that reach even further are within sight. The query could
become structured or parameterized, making a huge body of data available through what effectively
becomes a unified query interface. The possibilities for something like that in the enterprise are
enormous. When peer-to-peer systems take off, accessing data across heterogeneous information
stores will become a problem that Gnutella has already demonstrated it can solve.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 68

What we realized is that this aggregation of intelligence maps very closely to the real world. When you
ask a question of two different people, you expect two different answers. Asking a question about cars
of a mechanic and a toy shop clerk would expectedly yield two very different answers. Yet both are
valid, and each reflects a different sort of intelligence in relation to the topic. Traditional search
technologies, however, apply only one intelligence to the body of data they search. Distributed search
technologies such as Gnutella allow the personality of each information provider and software
developer to show through undiluted.

8.3.5 Different from Freenet

Oftentimes Gnutella and Freenet are lumped together as decentralized alternatives to Napster. True,
Gnutella and Freenet are decentralized. And it's true that one can share MP3 files using either
Gnutella or Freenet. The technical similarities extend further in various ways, but the philosophical
division between Gnutella and Freenet picks up right about here.

Freenet can really be described as a bandwidth- and disk space-sharing concept with the goal of
promoting free speech. Gnutella is a searching and discovery network that promotes free
interpretation and response to queries. With Freenet, one allocates a certain amount of one's hard
drive to the task of carrying files which are in the Freenet. One shares bandwidth with others to
facilitate the transport of files to their optimal localities in the Freenet. In a sense, Freenet creates a
very large and geographically distributed hard drive with anonymous access. The network is optimized
for computerized access to those files rather than human interaction. Each file is assigned a complex
unique identification that is obscure in its interpretation. The only way to search for files is by
searching via that unique identification code.

In contrast, Gnutella is a distributed searching system with obvious applications for humans and less
obvious applications for automatons. Each Gnutella node is free to interpret the query as it wants,
allowing Gnutella nodes to give hits in the form of filenames, advertising messages, URLs, graphics,
and other arbitrary content. There is no such flexibility in the Freenet system. The Japanese Gnutella
project, http://jnutella.org, is deploying Gnutella on i-Mode mobile phones, where the results of a
search are tailored to mobile phone interfaces. Freenet's highly regimented system of file location
based upon unique identification is about cooperative distribution of files. There is nothing wrong
with this. It's just a different approach with different effects which I'll leave to Freenet's authors to
explain.

8.4 Gnutella's communication system

With the basic understanding that Gnutella works the way real-world interpersonal communication
works, let's take a look at the concepts that make it all possible in the virtual world. Many of these
concepts are borrowed from other technologies, but their combination into one system makes for
interesting results and traffic jams.

8.4.1 Message-based, application-level routing

Traditional application-level networks are circuit-based, while Gnutella is message-based. There is no
idea of a persistent "connection," or circuit, between any two arbitrary hosts on the Gnutella network.
They are both on the network but not directly connected to each other, and not even indirectly
connected to each other in any predictable or stable fashion. Instead of forcing the determinism
provided by circuit-based routing networks, messages are relayed by a computerized bucket-brigade
which forms the Gnutella network. Each bucket is a message, and each brigadier is a host. The
messages are handed from host to host willy-nilly, giving the network a unique interconnected and
redundant topology.

8.4.2 TCP broadcast

Another unconventional approach that Gnutella uses is a broadcast communication model over
unicast TCP. Contrast this to a traditional system such as Napster, where communication is carefully
regulated to minimize traffic to its absolute lowest levels, and even then to only one or two concerned
parties. Traditional networking models are highly regimented and about as natural as formal gardens.

http://jnutella.org

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 69

The broadcast mechanism is extremely interesting, because it maps very closely to our everyday lives.
Suppose you are standing at a bus stop and you ask a fellow when the next bus is to arrive: "Oi, mate!
When's the next bus?" He may not know, but someone nearby who has heard you will hopefully chime
in with the desired information. That is the strength behind Gnutella: it works like the real world.

One of the first questions I asked upon learning of Gnutella's TCP-based broadcast was, "Why not
UDP?" The simple answer is that UDP is a pain. It doesn't play nicely with most firewall
configurations and is tricky to code. Broadcasting on TCP is simple, and developers don't ask
questions about how to assess "connection" status. Let's not even start on IP multicast.

8.4.3 Message broadcasting

Combining the two concepts of message-based routing and broadcast gives us what I'll term message
broadcasting. Message broadcasting is perfect for situations where more than one network participant
can provide a valid response to a request. This same sort of thing happens all the time. Auctions, for
example, are an example of message broadcasting. The auctioneer asks for bids, and one person's bid
is just as good as another's.

Gnutella's broadcasting mechanism elegantly avoids continuous echoing. Messages are assigned
unique identifiers (128-bit unique identifiers, or UUIDs, as specified by Leach and Salz's 1997 UUIDs
and GUIDs Informational Draft to the IETF). With millions of Gnutella nodes running around, it is
probably worth answering the question, "How unique is a UUID?" Leach and Salz assert uniqueness
until 3400 A.D. using their algorithm. Anyway, it's close enough that even if there were one or two
duplicated UUIDs along the way nobody would notice.

Every time a message is delivered or originated, the UUID of the message is memorized by the host it
passes through. If there are loops in the network then it is possible that a host could receive the same
message twice. Normally, the host would be obligated to rebroadcast the message just like any other
that it received. However, if the same message is received again at a later time (it will have the same
UUID), it is not retransmitted. This explicitly prevents wasting network resources by sending a query
to hosts that have already seen it.

Another interesting idea Gnutella implements is the idea of decay. Each message has with it a TTL[2]
number, or time-to-live. Typically, a query starts life with a TTL of 7. When it passes from host to host,
the TTL is decremented. When the TTL reaches 0, the request has lived long enough and is not
retransmitted again. The effect of this is to make a Gnutella request fan out from its originating source
like ripples on a pond. Eventually the ripples die out.

[2] TTL is not unique to Gnutella. It is present in IP, where it is used in a similar manner.

8.4.4 Dynamic routing

Message broadcasting is useful for the query, but for the response, it makes more sense to route rather
than to broadcast. Gnutella's broadcast mechanism allows a query to reach a large number of potential
respondents. Along the way, the UUIDs that identify a message are memorized by the hosts it passes
through. When Host A responds to a query, it looks in its memory and determines which host sent the
query (Host B). It then responds with a reply message containing the same UUID as the request
message. Host B receives the reply and looks in its memory to see which host sent the original request
(Host C). And on down the line until we reach Host X, which remembers that it actually originated the
query. The buck stops there, and Host X does something intelligent with the reply, like display it on
the screen for the user to click on (see Figure 8.2).

The idea to create an ephemeral route as the result of a broadcast for discovery is not necessarily
novel, but it is interesting. Remember, a message is identified only by its UUID. It is not associated
with its originator's IP address or anything of the sort, so without the UUID-based routes, there is no
way for a reply to be delivered to the node that made the request.

This sort of dynamic routing is among the things that make Gnutella the intriguing technology that it
is. Without it, there would need to be some kind of fixed Gnutella infrastructure. With dynamic
routing, the infrastructure comes along with the nodes that join the network, in real time. A node
brings with it some network capacity, which is instantly integrated into the routing fabric of the
network at large.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 70

Figure 8.2. Results displayed from a Gnutella query

 When a node leaves the network, it does not leave the network at large in shambles, as is typical for
the Internet. The nodes connected to the departing node simply clean up their memories to forget the
departed node, and things continue without so much as a hiccup. Over time, the network adapts its
shape to long-lived nodes, but even if the longest-lived, highest-capacity node were to disappear, there
would be no lasting adverse effects.

8.4.5 Lossy transmission over reliable TCP

A further unconventional notion that is core to Gnutella's communication mechanisms is that the TCP
connections that underlie the Gnutella network are not to be viewed as the totally reliable transports
they are typically seen as. With Gnutella, when traffic rises beyond the capacity that a particular
connection can cope with, the excess traffic is simply forgotten. It is not carefully buffered and
preserved for future transmission as is typically done. Traffic isn't coddled on Gnutella. It's treated as
the network baggage that it is.

The notion of using a reliable transport to unreliably deliver data is notable. In this case, it helps to
preserve the near-real-time nature of the Gnutella network by preventing an overlong traffic backlog.
It also creates an interesting problem wherein low-speed Gnutella nodes are at a significant
disadvantage when they connect to high-speed Gnutella nodes. When that happens, it's like drinking
from a fire hose, and much of the data is lost before it is delivered.

On the positive side, loss rates provide a simple metric for relative capacity. If the loss rate is
consistently high, then it's a clear signal to find a different hose to drink from.

8.5 Organizing Gnutella

One of the ways Gnutella software copes with constantly changing infrastructure is by creating an ad
hoc backbone. There is a large disparity in the speeds of Internet connections. Some users have 56-
Kbps modems, and others have, say, T3 lines. The goal is that, over time, the T3-connected nodes
migrate toward the center of the network and carry the bulk of the traffic, while the 56-Kbps nodes
simultaneously move out toward the fringes of the network, where they will not carry as much of the
traffic.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 71

In network terms, the placement of a node on the network (in the middle or on the fringes) isn't
determined geographically. It's determined in relation to the topology of the connections the node
makes. So a high-speed node would end up being connected to potentially hundreds of other high-
speed Gnutella nodes, acting as a huge hub, while a low-speed node would hopefully be connected to
only a few other low-capacity nodes.

Over time this would lead the Gnutella network to have a high concentration of high-speed nodes in
the middle of the network, surrounded by rings of nodes with progressively decreasing capacities.

8.5.1 Placing nodes on the network

When a Gnutella node connects to the network, it just sort of parachutes in blindly. It lands where it
lands. How quickly it is able to become a productive member of Gnutella society is determined by the
efficacy of its network analysis algorithms. In the same way that at a cocktail party you want to
participate in conversations that interest you, that aren't too dull and aren't too deep, a Gnutella node
wants to quickly determine which nodes to disconnect from and which nodes to maintain connections
to, so that it isn't overwhelmed and isn't too bored.

It is unclear how much of this logic has been implemented in today's popular Gnutella client software
(Gnotella, Furi, Toadnode, and Gnutella 0.56), but this is something that Gnutella developers have
slowly educated themselves about over time. Early Gnutella software would obstinately maintain
connections to nodes in spite of huge disparities in carrying capacity. The effect was that modem
nodes acted as black holes into which packets were sent but from which nothing ever emerged.

One of the key things that we[3] did to serve the surges of users and new client software was to run
high-speed nodes that were very aggressive in disconnecting nodes which were obviously bandwidth
disadvantaged. After a short time, the only active connections were to nodes running on acceptably
high-speed links. This kind of feedback system created an effective backbone that was captured in
numerous early network maps. A portion of one is shown in Figure 8.3.

[3] Bob Schmidt, Ian Hall-Beyer, Nathan Moinvaziri, Tom Camarda, and countless others came to the rescue by
running software which made the network work in its times of need. This software ranged from standard
Gnutella software to host caches to so-called Mr. Clean nodes, which aggressively removed binary detritus from
the network.

Figure 8.3. Snapshot of effective Gnutella network structure

8.6 Gnutella's analogues

The first thing that technologists say when they think about how Gnutella works is, "It can't possibly
scale." But that is simply not the case. Gnutella is an unconventional system and as such requires
unconventional metrics. Millions of users may be using Gnutella simultaneously, but they will not all
be visible to one another. That is the basic nature of a public, purely peer-to-peer network. Because
there is no way to guarantee the quality of service throughout the network, it is impossible to
guarantee that every node on the network can be reached by every other node on the network. In spite
of that, Gnutella has many existing analogues.

Of all the analogues that exist, the most interesting two are cellular telephony and Ethernet.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 72

8.6.1 The Gnutella horizon

In Gnutella, there is a concept of a horizon. This is simply a restatement of the effect the TTL has on
how far a packet can go before it dies, the attenuation of ripples on a pond. Gnutella's standard
horizon is seven hops. That means that from where you stand, you can see out seven hops. How far is
that? Typically, a seven-hop radius combined with network conditions means about ten thousand
nodes are within sight.

When Gnutella was younger, and the pond analogy hadn't yet crossed my mind, I explained this effect
as a horizon, because it was just like what happens when you are at the beach and the world seems to
disappear after some distance (approximately five kilometers if you're two meters tall). Of course, that
is due to the curvature of the earth, but it seemed like a pretty good analogy.

A slightly better one is what happens in a mob. Think first day of school at UC Berkeley, or the annual
Love Parade in Germany. You stand there in the middle of the mob, and you can only see for a short
distance around you. It's obvious that there are countless more people outside your immediate vision,
but you can't tell how many. You don't even really know where you are in relation to the crowd, but
you're certainly in the thick of it. That's Gnutella.

Each node can "see" a certain distance in all directions, and beyond that is a great unknown. Each
node is situated slightly differently in the network and as a result sees a slightly different network.
Over time, as nodes come and go and the network shifts and morphs, your node gets to see many
different nodes as the network undulates around it. If you've used Gnutella, you've seen this happen.
Initially, the host count increases very rapidly, but after a minute or two, it stabilizes and increases
much more slowly than it did at the outset. That is because in the beginning your node discovers the
network immediately surrounding it: the network it can see. Once that is done, your node discovers
only the nodes that migrate through its field of view.

8.6.2 Cellular telephony and the Gnutella network

In the technological world, this concept is mirrored exactly by cellular telephony cell sites (cellular
telephony towers). Each site has a predetermined effective radius. When a caller is outside that radius,
his telephone cannot reach the site and must use another if a nearer one is available. And once the
caller is outside the operating radius, the site cannot see the caller's telephone either. The effect is the
irksome but familiar "no coverage" message on your phone.

Cellular network operators situate cell sites carefully to ensure that cell sites overlap one another to
prevent no-coverage zones and dropped calls. A real coverage map looks like a Venn diagram gone
mad. This is, in fact, a very close analogue of the Gnutella network. Each node is like a cell site in the
sense that it has a limited coverage radius, and each node's coverage area overlaps with that of the
nodes adjacent to it. The key to making cellular telephony systems scale is having enough cells and
enough infrastructure to connect the cells. It's a similar story with Gnutella.

Cell sites are not all that one needs to build a successful cellular network. Behind all those cell towers
is a complex high-bandwidth packet switching system, also much like Gnutella. In the cellular world,
this network is very carefully thought out and is a piece of physical infrastructure. As with everything
else, the infrastructure comes and goes in the Gnutella network, and things are constantly changing
shape.

So then the goal is to find a way to create cells that are joined by a high-speed backbone. This is
entirely what would happen in the early Gnutella network. Gnutella nodes would gather around a local
hub, forming a cluster. There were numerous clusters interconnected by high-speed lines. All this
happened in an unplanned and dynamic way.

8.6.3 Ethernet

Gnutella is also similar in function to Ethernet. In fact, Ethernet is a broadcast network where each
message has a unique identifier. Like Gnutella, its scalability metrics are unconventional. The
question most people ask about Gnutella is, "How many users are on Gnutella?" The answer is
complicated.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 73

Millions of users have Gnutella on their computers. One node can only see about ten thousand others
from where it stands in the network. So what is the answer? Ten thousand, or several million?

We could ask the same question about Ethernet, and we'd get the same duality in answer. Hundreds of
millions of computers have Ethernet, yet only a few dozen can share an Ethernet "segment" before
causing network gridlock. The solution for Ethernet was to develop specialized hardware in the form
of Ethernet bridges, switches, and routers. With that hardware, it became possible to squeeze all those
millions of computers onto the same network: the Internet.

8.6.4 Cultivating the Gnutella network

Similar development is underway for Gnutella. Fundamentally, each Gnutella node can contain
enough logic to make the Gnutella network grow immensely. Broadening the size of a Gnutella cell, or
segment, is only a matter of reducing the network traffic. A minor reduction by each node can
translate into a huge reduction in traffic over all nodes. That is what happens with distributed
systems: a minor change can have a huge effect, once multiplied over the number of nodes.

There is at least one effort underway to create a specialized Gnutella node which outwardly mimics a
standard Gnutella node but inwardly operates in a dramatically different manner. It is known as
Reflector and is being developed by a company called Clip2. The Reflector is effectively a miniature
Napster server. It maintains an index of the files stored on nodes to which it is connected. When a
query is issued, the Reflector does not retransmit it. Rather, it answers the query from its own
memory. That causes a huge reduction in network use.[4]

[4] Depending on your view, the benefit, or unfortunate downside, of Reflector is that it makes Gnutella usable
only in ways that Reflector explicitly enables. To date, Reflector is chiefly optimizing the network for file sharing,
and because it removes the ability for hosts to respond free-form and in real time, it sacrifices one of the key
ideas behind Gnutella.

Anyone can run a Reflector, making it an ideal way to increase the size of a Gnutella cluster.
Connecting Reflectors together to create a super high-capacity backbone is the obvious next step.
Gnutella is essentially an application-level Internet, and with the development of the Gnutella
equivalent of Cisco 12000s, Gnutella will really become what it has been likened to so many times: an
internet on the Internet.

8.7 Gnutella's traffic problems

One place where the analogy drawn between Gnutella and cellular telephony and Ethernet holds true
down to its last bits is how Gnutella suffers in cases of high traffic. We know this because the public
Gnutella network at the time of this writing has a traffic problem that is systemic, rather than the
standard transient attack. Cellular telephones show a weakness when the cell is too busy with active
calls. Sometimes there is crosstalk; at other times calls are scratchy and low quality. Ethernet similarly
reaches a point of saturation when there is too much traffic on the network, and, instead of coping
gracefully, performance just degrades in a downward spiral. Gnutella is similar in almost every way.

In terms of solutions, the bottom line is that when too many conversations take place in one cell or
segment the only way to stop the madness is to break up the cell.

On the Gnutella network, things started out pretty peacefully. First a few hundred users, then a few
thousand, then a few hundred thousand. No big deal. The network just soldiered along. The real
problem came along when host caches came into wide use.

8.7.1 Host caches

In the early days of Gnutella, the way you found your way onto the network was by word of mouth.
You got onto IRC and asked for a host address to connect to. Or you checked one of the handful of web
pages which maintained lists of hosts to connect to. You entered the hosts into your Gnutella software
one by one until one worked. The the software took care of the rest. It was tedious, but it worked for a
long while.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 74

Before host caches, it was fairly random what part of the network you connected to. Ask two different
people, and they would direct you to connect to hosts on opposite sides of the Gnutella network. Look
at two different host lists, and it was difficult to find any hosts in common. Host lists encouraged
sparseness and small clusters. It was difficult for too many new hosts to be concentrated into one cell.
The cells were sparsely connected with one another, and there wasn't too much crosstalk. That created
a nearly optimal network structure, where the Gnutella network looked like a land dotted by small
cities and townships interconnected by only a few roads.

Users eventually became frustrated by the difficulties of getting onto Gnutella. Enter Bob Schmidt and
Josh Pieper. Bob Schmidt is the author of GnuCache, a host caching program. Josh Pieper also
included host caching logic in his popular Gnut software for Unix. Host caches provide a jumping off
spot for Gnutella users, a host that's always up and running, that gives a place for your Gnutella
software to connect to and find the rest of the Gnutella network.[5] The host cache greets your node by
handing off a list of other hosts your node should connect to. This removes the uncertainty from
connecting to Gnutella and provides a more friendly user experience. We were all very thankful for
Schmidt and Pieper's efforts until host caches became a smashing success.

[5] Actually, Gnutella was born with a ready host cache located at findshit.gnutella.org. Unfortunately, the same
people who took away Gnutella also took away findshit.gnutella.org, leaving us with a host-cacheless world
until GnuCache and Pieper's Gnut software came along.

An unexpected consequence evidenced itself when waves of new Gnutella users logged on in the wake
of the Napster injunction on July 26, 2000. Everyone started relying on host caches as their only
means of getting onto the Gnutella network. Host caches were only telling new hosts about hosts they
saw recently. By doing that, host caches caused Gnutella nodes to be closely clustered into the same
little patch of turf on the Gnutella network. There was effectively only one tightly clustered and highly
interconnected cell, because the host caches were doling out the same list of hosts to every new host
that connected. What resulted was overcrowding of the Gnutella airwaves and a downward spiral of
traffic.

Oh well. That's life in the rough-and-tumble world of technology innovation.

To draw an analogy, the Gnutella network became like a crowded room with lots of conversations.
Sure, you can still have a conversation, but maybe only with one or two of your closest friends. And
that is what has become frustrating for Gnutella users. Whereas the network used to have a huge
breadth and countless well-performing cells of approximately ten thousand nodes each, the current
network has one big cell in which there is so much noise that queries only make it one or two hops
before drowning in overcrowded network connections.

Effectively, a crowded network means that cells are only a few dozen hosts in size. That makes the
network a bear to use and gives a disappointing user experience.

8.7.2 Returning the network to its natural state

Host caches were essentially an unnatural addition to the Gnutella network, and the law of
unintended consequences showed that it could apply to high technology, too. Improving the situation
requires a restoration of the network to its original state, where it grew organically and, at first glance,
inefficiently. Sometimes, minor inefficiency is good, and this is one of those cases.

Host lists, by enforcing a sparse network, made it so that the communities of Gnutella nodes that did
exist were not overcrowded. Host caches created a tightly clustered network, which, while appearing
more efficient, in fact led to a major degradation in overall performance. For host caches to improve
the situation, they need only to encourage the sparseness that we know works well.

Sort of. An added complication is that each Gnutella host maintains a local host catcher, in which a
long list of known hosts (all hosts encountered in the node's travels) is deposited for future reference.
The first time one logs into the Gnutella network, a host list or a host cache must be used. For all
future logins, Gnutella softwares refer to their host catcher to connect into the Gnutella network. This
creates a permanent instability in the network as nodes log on and connect to hosts they remember,
irrespective of the fact that those hosts are often poor choices in terms of capacity and topology. The
problem is compounded by the reluctance of most Gnutella software to "forget" hosts that are
unsuitable.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 75

Turning the network around is technically easy. Host caches can listen to the levels of traffic on each
cell they want to serve and distribute new hosts among those cells until the traffic levels become high
enough to warrant establishment of new cells. By purposely separating nodes into distinct cells, traffic
in each cell can be reduced to a manageable level. With those well-planted seeds and periodic resets of
the collective memories of host catchers to allow smart host caches to work their magic, the network
can be optimized for performance. The trouble with host catchers, though, is that they are seldom
reset, because that requires manual intervention as well as some understanding of the reset
mechanism.

8.7.3 Private Gnutella networks

One feature that some Gnutella client software implements is the notion of private Gnutella networks.
To join a private network, one needs to know the secret handshake or password. That enforces
manageably-sized networks with a predetermined community membership, and it is a pretty good way
to ensure a high quality of service no matter what is happening out in the wilds of the public Gnutella
network.

8.7.4 Reducing broadcasts makes a significant impact

Broadcasts are simultaneously the most powerful and the most dangerous feature of the Gnutella
protocol. Optimally, there are two broadcast packet types: PING and QUERY. PING packets are issued
when a node greets the network and wants to learn what other nodes are available to connect to.
QUERY packets are issued when a search is conducted. Some Gnutella developers also implemented
the PUSH REQUEST packet as a broadcast packet type. PUSH REQUEST packets are used to request
files from hosts which are protected by firewalls. The concept is one of the unsung heroes of Gnutella,
making it work in all but the most adverse of Internet environments (the double firewall, arch enemy
of productivity).

Unfortunately, the PUSH REQUEST packet should be implemented as a routed packet rather than a
broadcast packet. At times, PUSH REQUEST packets comprised 50% of all Gnutella network traffic.
Simply routing those packets rather than broadcasting them would reduce the overall network traffic
dramatically.

Reductions can also be made in the number of queries that are broadcast to large expanses of the
network by intelligently caching results from similar searches. Clip2's Reflector software is an example
of such a product. Portions of Reflector can be integrated into each Gnutella client, leading to a small
increase in the software's internal complexity (the user need not concern herself with this behind-the-
scenes activity) in exchange for a massive improvement in network performance.

The final broadcast packet that was the carrier of some early abuses is the PING packet. In early
Gnutella software, PING packets could have a payload, even though it was not clear what that payload
might contain. It was subsequently abused by script kiddies to debilitate the Gnutella network.
Gnutella developers responded immediately by altering their software to discard PING packets with
payloads, causing a several thousand-fold traffic reduction on the Gnutella network and
simultaneously foiling what amounted to a denial of service attack.

What developers have been debating ever since is how to reduce the level of traffic usurped by PING
packets. Suggestions have ranged from eliminating PING packets to reducing the allowed number of
retransmissions of a PING packet. Personally, I favor something in the middle, where every host on
the network behaves as a miniature host cache for its locality, returning proxied greetings for a few
nearby hosts in response to a PING and only occasionally retransmitting the PING. That would allow
the PING to continue to serve its valuable duty in shaping the network's structure and connectivity,
while reducing the network's traffic levels dramatically. Figure a thousand-fold reduction in traffic.

One thing to consider in distributed applications is that, no matter how difficult the code is to write
and how much it bloats the code (within reason), it's worth the trouble, because the savings in
network utilization pay dividends on every packet. As an example, just consider that if a PUSH
REQUEST packet is broadcast, it may reach 1,000 hosts. If it is routed, it may reach four or five. That
is a 200-fold reduction in traffic in exchange for a dozen lines of code.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 76

The analogy that Gnutella is like an Internet potluck rings true. Everyone brings a dish when they join
the Gnutella network. At a minimum, the one dish that everyone brings is network capacity. So then
there is definitely enough bandwidth to go around. The only matter is to organize the combined
capacity and manage the traffic to make sure the network operates within its limits.

We just covered what is probably Gnutella's biggest problem, so if this was a corporate memorandum,
this would be the perfect point at which to introduce the engineering organization. This isn't a memo,
but let's do it anyway. Keep in mind the Thomas Jefferson quotation at the beginning of the chapter:
none of us knew what we were doing, but we got our hands dirty and took responsibility for what we
did.

8.8 The policy debates

Napster and Gnutella have really been at the center of the policy debate surrounding the new breed of
peer-to-peer technologies. For the moment, let's forget about the debate that's burning in the
technology community about what is truly peer-to-peer. We'll get back to that later and tie all these
policy questions back to the technology.

8.8.1 Napster wars

There is only one thing that gets people more riled up than religion, and that is money. In this case,
the squabble is over money that may or may not be lost to online music swaps facilitated by services
such as Napster and systems like the Gnutella network. This war is being fought by Napster and the
RIAA, and what results could change the lives of everyone, at least in the United States.

Well, sort of. The idea that lawsuit or legislature can stop a service that everyone enjoys is certainly a
false one. Prohibition was the last real effort (in the U.S.) by the few against the many, and it was a
dismal failure that gave rise to real criminal activity and the law's eventual embarrassing repeal. We
have an opportunity to see all that happen again, or the recording industry could look at what's
coming down the road and figure out a way to cooperate with Napster before the industry gets run
down by next-generation peer-to-peer technologies.

Napster, at least, provides a single place where file swappers can be taxed. With Gnutella and Freenet,
there is no place to tax, no person to talk to about instituting a tax, and no kinds of controls. The
recording industry may hope that Gnutella and Freenet will "just go away," but that hope will probably
not materialize into reality.

8.8.2 Anonymity and peer-to-peer

One of the big ideas behind peer-to-peer systems is their potential to provide a cloak under which
users can conduct information exchanges without revealing their identities or even the information
they are exchanging. The possibility of anonymity in nearly every case stems from the distribution of
information across the entire network, as well as the difficulty in tracking activities on the network as
a whole.

Gnutella provides some degree of anonymity by enabling an essentially anonymous searching
mechanism. It stops there, though. Gnutella reveals the IP address of a downloading host to the
uploading host, and vice versa.

8.8.2.1 Gnutella pseudoanonymity

Gnutella is a prime example of peer-to-peer technology. It was, after all, the first successful, fully
decentralized, peer-to-peer system. But in the policy debate, that's not a huge matter. What does
matter is that Gnutella's message-based routing system affords its users a degree of anonymity by
making request and response packets part of a crowd of similar packets issued by other participants in
the network.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 77

In most messages that are passed from node to node, there is no mention of anything that might tie a
particular message to a particular user. On the Internet, identity is established using two points of
data: An IP address and the time at which the packet containing the IP address was seen. Most
Gnutella messages do not contain an IP address, so most messages are not useful in identifying
Gnutella users. Also, Gnutella's routing system is not outwardly accessible. The routing tables are
dynamic and stored in the memory of the countless Gnutella nodes for only a short time. It is
therefore nearly impossible to learn which host originated a packet and which host is destined to
receive it.

Furthermore, Gnutella's distributed nature means that there is no one place where an enforcement
agency can plant a network monitor to spy on the system's communications. Gnutella is spread
throughout the Internet, and the only way to monitor what is happening on the Gnutella network is to
monitor what is happening on the entire Internet. Many are suspicious that such monitoring is
possible, or even being done already. But given the vastness of today's Internet and its growing traffic,
it's pretty unlikely.

What Gnutella does subject itself to, however, are things such as Zeropaid.com's Wall of Shame. The
Wall of Shame, a Gnutella Trojan Horse, was an early attempt to nab alleged child pornography
traffickers on the Gnutella network. This is how it worked: a few files with very suggestive filenames
were shared by a special host. When someone attempted to download any of the files, the host would
log the IP address of the downloader to a web page on the Wall of Shame. The host obtained the IP
address of the downloader from its connection information.

That's where Gnutella's pseudoanonymity system breaks down. When you attempt to download, or
when a host returns a result, identifying information is given out. Any host can be a decoy, logging
that information. There are systems that are more interested in the anonymity aspects of peer-to-peer
networking, and take steps such as proxied downloads to better protect the identities of the two
endpoints. Those systems should be used if anonymity is a real concern.

The Wall of Shame met a rapid demise in a rather curious and very Internet way. Once news of its
existence circulated on IRC, Gnutella users with disruptive senses of humor flooded the network with
suggestive searches in their attempts to get their IP addresses on the Wall of Shame.

8.8.2.2 Downloads, now in the privacy of your own direct connection

So Gnutella's message-based routing system and its decentralization both give some anonymity to its
users and make it difficult to track what exactly is happening. But what really confounds any attempt
to learn who is actually sharing files is that downloads are a private transaction between only two
hosts: the uploader and the downloader.

Instead of brokering a download through a central authority, Gnutella has sufficient information to
reach out to the host that is sharing the desired file and grab it directly. With Napster, it's possible not
only to learn what files are available on the host machines but what transactions are actually
completed. All that can be done easily, within the warm confines of Napster's machine room.

With Gnutella, every router and cable on the Internet would need to be tapped to learn about
transactions between Gnutella hosts or peers. When you double-click on a file, your Gnutella software
establishes an HTTP connection directly to the host that holds the desired file. There is no brokering,
even through the Gnutella network. In fact, the download itself has nothing to do with Gnutella: it's
HTTP.

By being truly peer-to-peer, Gnutella gives no place to put the microscope. Gnutella doesn't have a
mailing address, and, in fact, there isn't even anyone to whom to address the summons. But because
of the breakdown in anonymity when a download is transacted, Gnutella could not be used as a system
for publishing information anonymously. Not in its current form, anyway. So the argument that
Gnutella provides anonymity from search through response through download is impossible to make.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 78

8.8.2.3 Anonymous Gnutella chat

But then, Gnutella is not exclusively a file-sharing system. When there were fewer users on Gnutella, it
was possible to use Gnutella's search monitor to chat with other Gnutella users. Since everyone could
see the text of every search that was being issued on the network, users would type in searches that
weren't searches at all: they were messages to other Gnutella users (see Figure 8.4).

Figure 8.4. Gnutella search monitor

It was impossible to tell who was saying what, but conversations were taking place. If you weren't a
part of the particular thread of discussion, the messages going by were meaningless to you. This is an
excellent real-world example of the ideas behind Rivest's "Chaffing and Winnowing."[6] Just another
message in a sea of messages. Keeping in mind that Gnutella gives total anonymity in searching, this
search-based chat was in effect a totally anonymous chat! And we all thought we were just using
Gnutella for small talk.

[6] Ronald L Rivest (1998), "Chaffing and Winnowing: Confidentiality without Encryption,"
http://www.toc.lcs.mit.edu/~rivest/chaffing.txt.

8.8.3 Next-generation peer-to-peer file-sharing technologies

No discussion about Gnutella, Napster, and Freenet is complete without at least a brief mention of the
arms race and war of words between technologists and holders of intellectual property. What the
recording industry is doing is sensitizing software developers and technologists to the legal
ramifications of their inventions. Napster looked like a pretty good idea a year ago, but today Gnutella
and Freenet look like much better ideas, technologically and politically. For anyone who isn't
motivated by a business model, true peer-to-peer file-sharing technologies are the way to go.

It's easy to see where to put the toll booths in the Napster service, but taxing Gnutella is trickier. Not
impossible, just trickier. Whatever tax system is successfully imposed on Gnutella, if any, will be
voluntary and organic - in harmony with Gnutella, basically. The same will be true for next-generation
peer-to-peer file-sharing systems, because they will surely be decentralized.

Predicting the future is impossible, but there are a few things that are set in concrete. If there is a
successor to Gnutella, it will certainly learn from the lessons taught to Napster. It will learn from the
problems that Gnutella has overcome and those that frustrate it today. For example, instead of the
pseudoanonymity that Gnutella provides, next generation technologies may provide true anonymity
through proxying and encryption. In the end, we can say with certainty that technology will outrun
policy. It always has. The question is what impact that will have.

http://www.toc.lcs.mit.edu/~rivest/chaffing.txt

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 79

8.9 Gnutella's effects

Gnutella started the decentralized peer-to-peer revolution.[7] Before it, systems were centralized and
boring. Innovation in software came mainly in the form of a novel business plan. But now, people are
seriously thinking about how to turn the Internet upside down and see what benefits fall out.

[7] The earliest example of a peer-to-peer application that I can come up with is Zephyr chat, which resulted from
MIT's Athena project in the early 1990s. Zephyr was succeeded by systems such as ICQ, which provided a
commercialized, graphical, Windows-based instant messaging system along the lines of Zephyr. Next was
Napster. And that is the last notable client/server-based, peer-to-peer system. Gnutella and Freenet were next,
and they led the way in decentralized peer-to-peer systems.

Already, the effects of the peer-to-peer revolution are being felt. Peer-to-peer has captured the
imagination of technologists, corporate strategists, and venture capitalists alike. Peer-to-peer is even
getting its own book. This isn't just a passing fad.

Certain aspects of peer-to-peer are mundane. Certain other aspects of it are so interesting as to get
notables including George Colony, Andy Grove, and Marc Andreessen excited. That doesn't happen
often. The power of peer-to-peer and its real innovation lies not just in its file-sharing applications and
how well those applications can fly in the face of copyright holders while flying under the radar of legal
responsibility. Its power also comes from its ability to do what makes plain sense and what has been
overlooked for so long.

The basic premise underlying all peer-to-peer technologies is that individuals have something
valuable to share. The gems may be computing power, network capacity, or information tucked away
in files, databases, or other information repositories, but they are gems all the same. Successful peer-
to-peer applications unlock those gems and share them with others in a way that makes sense in
relation to the particular applications.

Tomorrow's Internet will look quite different than it does today. The World Wide Web is but a little
blip on the timeline of technology development. It's only been a reality for the last six years! Think of
the Web as the Internet equivalent of the telegraph: it's very useful and has taught us a lot, but it's
pretty crude. Peer-to-peer technologies and the experience gained from Gnutella, Freenet, Napster,
and instant messaging will reshape the Internet dramatically.

Unlike what many are saying today, I will posit the following: today's peer-to-peer applications are
quite crude, but tomorrow's applications will not be strictly peer-to-peer or strictly client/server, or
strictly anything for that matter. Today's peer-to-peer applications are necessarily overtly peer-to-peer
(often to the users' chagrin) because they must provide application and infrastructure simultaneously
due to the lack of preexisting peer-to-peer infrastructure. Such infrastructure will be put into place
sooner than we think. Tomorrow's applications will take this infrastructure for granted and leverage it
to provide more powerful software and a better user experience in much the same way modern
Internet infrastructure has.

In the short term, decentralized peer-to-peer may spell the end of censorship and copyright. Looking
out, peer-to-peer will enable crucial applications that are so useful and pervasive that we will take
them for granted.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 80

Chapter 9. Freenet
Adam Langley, Freenet

Freenet is a decentralized system for distributing files that demonstrates a particularly strong form of
peer-to-peer. It combines many of the benefits associated with other peer-to-peer models, including
robustness, scalability, efficiency, and privacy.

In the case of Freenet, decentralization is pivotal to its goals, which are the following:

• Prevent censorship of documents

• Provide anonymity for users

• Remove any single point of failure or control

• Efficiently store and distribute documents

• Provide plausible deniability for node operators

Freenet grew out of work done by Ian Clarke when he was at the University of Edinburgh, Scotland,
but it is now maintained by volunteers on several continents.

Some of the goals of Freenet are very difficult to bring together in one system. For example, efficient
distribution of files has generally been done by a centralized system, and doing it with a decentralized
system is hard.

However, decentralized networks have many advantages over centralized ones. The Web as it is today
has many problems that can be traced to its client/server model. The Slashdot effect, whereby popular
data becomes less accessible because of the load of the requests on a central server, is an obvious
example.

Centralized client/server systems are also vulnerable to censorship and technical failure because they
rely on a small number of very large servers.

Finally, privacy is a casualty of the structure of today's Web. Servers can tell who is accessing or
posting a document because of the direct link to the reader/poster. By cross-linking the records of
many servers, a large amount of information can be gathered about a user. For example, DoubleClick,
Inc., is already doing this. By using direct marketing databases and information obtained through
sites that display their advertisements, DoubleClick can gather very detailed and extensive
information. In the United States there are essentially no laws protecting privacy online or requiring
companies to handle information about people responsibly. Therefore, these companies are more or
less free to do what they wish with the data.

We hope Freenet will solve some of these problems.

Freenet consists of nodes that pass messages to each other. A node is simply a computer that is
running the Freenet software, and all nodes are treated as equals by the network. This removes any
single point of failure or control. By following the Freenet protocol, many such nodes spontaneously
organize themselves into an efficient network.

9.1 Requests

In order to make use of Freenet's distributed resources, a user must initiate a request. Requests are
messages that can be forwarded through many different nodes. Initially the user forwards the request
to a node that he or she knows about and trusts (usually one running on his or her own computer). If a
node doesn't have the document that the requestor is looking for, it forwards the request to another
node that, according to its information, is more likely to have the document. The messages form a
chain as each node forwards the request to the next node. Messages time out after passing through a
certain number of nodes, so that huge chains don't form. (The mechanism for dropping requests,
called the hops-to-live count, is a simple system similar to that used for Internet routing.) The chain
ends when the message times out or when a node replies with the data.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 81

The reply is passed back though each node that forwarded the request, back to the original node that
started the chain. Each node in the chain may cache the reply locally, so that it can reply immediately
to any further requests for that particular document. This means that commonly requested documents
are cached on more nodes, and thus there is no Slashdot effect whereby one node becomes
overloaded.

The reply contains an address of one of the nodes that it came through, so that nodes can learn about
other nodes over time. This means that Freenet becomes increasingly connected. Thus, you may end
up getting data from a node you didn't even know about. In fact, you still might not know that that
node exists after you get the answer to the request - each node knows only the ones it communicates
with directly and possibly one other node in the chain.

Because no node can tell where a request came from beyond the node that forwarded the request to it,
it is very difficult to find the person who started the request. This provides anonymity to the users who
use Freenet.

Freenet doesn't provide perfect anonymity (like the Mixmaster network discussed in Chapter 7)
because it balances paranoia against efficiency and usability. If someone wants to find out exactly
what you are doing, then given the resources, they will. Freenet does, however, seek to stop mass,
indiscriminate surveillance of people.

A powerful attacker that can perform traffic analysis of the whole network could see who started a
request, and if they controlled a significant number of nodes so that they could be confident that the
request would pass through one of their nodes, they could also see what was being requested.
However, the resources needed to do that would be incredible, and such an attacker could find better
ways to snoop on users.

An attacker who simply controlled a few nodes, even large ones, couldn't find who was requesting
documents and couldn't generate false documents (see "Key Types," later in this chapter). They
couldn't gather information about people and they couldn't censor documents. It is these attackers
that Freenet seeks to stop.

9.1.1 Detail of requests

Each request is given a unique ID number by the node that initiates it, and this serves to identify all
messages generated by that request. If a node receives a message with the same unique ID as one it
has already processed, it won't process it again. This keeps loops from forming in the network, which
would congest the network and reduce overall system performance.

The two main types of requests are the InsertRequest and the DataRequest . The DataRequest simply
asks that the data linked with a specified key is returned; these form the bulk of the requests on
Freenet. InsertRequests act exactly like DataRequests except that an InsertReply, not a TimedOut
message, is returned if the request times out.

This means that if an attacker tries to insert data which already exists on Freenet, the existing data will
be returned (because it acts like a DataRequest), and the attacker will only succeed in spreading the
existing data as nodes cache the reply.

If the data doesn't exist, an InsertReply is sent back, and the client can then send a DataInsert to
actually insert the new document. The insert isn't routed like a normal message but follows the same
route as the InsertRequest did. Intermediate nodes cache the new data. After a DataInsert, future
DataRequests will return the document.

9.1.2 The data store

The major tasks each node must perform - deciding where to route requests, remembering where to
return answers to requests, and choosing how long to store documents - revolve around a stack model.
Figure 9.1 shows what a stack could contain.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 82

Figure 9.1. Stack used by a Freenet node

Each key in the data store is associated with the data itself and an address to the node where the data
came from. Below a certain point the node no longer stores the data related to a key, only the address.
Thus the most often requested data is kept locally. Documents that are requested more often are
moved up in the stack, displacing the less requested ones. The distance that documents are moved is
linked to the size, so that bigger documents are at a disadvantage. This gives people an incentive not to
waste space on Freenet and so compress documents before inserting.

When a node receives a request for a key (or rather the document that is indexed by that key), it first
looks to see if it has the data locally. If it does, the request is answered immediately. If not, the node
searches the data store to find the key closest to the requested key (as I'll explain in a moment). The
node referenced by the closest key is the one that the request is forwarded to. Thus nodes will forward
to the node that has data closest to the requested key.

The exact closeness function used is complex and linked to details of the data store that are beyond
this chapter. However, imagine the key being treated as a number, so that the closest key is defined as
the one where the absolute difference between two keys is a minimum.

The closeness operation is the cornerstone of Freenet's routing, because it allows nodes to become
biased toward a certain part of the keyspace. Through routine node interactions, certain nodes
spontaneously emerge as the most often referenced nodes for data close to a certain key. Because
those nodes will then frequently receive requests for a certain area of the keyspace, they will cache
those documents. And then, because they are caching certain documents, other nodes will add more
references to them for those documents, and so on, forming a positive feedback.

A node cannot decide what area of the keyspace it will specialize in because that depends on the
references held by other nodes. If a node could decide what area of the keyspace it would be asked for,
it could position itself as the preferred source for a certain document and then seek to deny access to
it, thus censoring it.

For a more detailed discussion of the routing system, see Chapter 14. The routing of requests is the key
to Freenet's scalability and efficiency. It also allows data to "move." If a document from North America
is often requested in Europe, it is more likely to soon be on European servers, thus reducing expensive
transatlantic traffic. (But neighboring nodes can be anywhere on the Internet. While it makes sense
for performance reasons to connect to nodes that are geographically close, that is definitely not
required.)

Because each node tries to forward the request closer and closer to the data, the search is many times
more powerful than a linear search and much more efficient than a broadcast. It's like looking for a
small village in medieval times. You would ask at each village you passed through for directions. Each
time you passed through a village you would be sent closer and closer to your destination. This
method (akin to Freenet's routing closer to data) is much quicker than the linear method of going to
every village in turn until you found the right one. It also means that Freenet scales well as more
nodes and data are added. It is also better than the Gnutella-like system of sending thousands of
messengers to all the villages in the hope of finding the right one.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 83

The stack model also provides the answer to the problem of culling data. Any storage system must
remove documents when it is full, or reject all new data. Freenet nodes stop storing the data in a
document when the document is pushed too far down the stack. The key and address are kept,
however. This means that future requests for the document will be routed to the node that is most
likely to have it.

This data-culling method allows Freenet to remove the least requested data, not the least agreeable
data. If the most unpopular data was removed, this could be used to censor documents. The Freenet
design is very careful not to allow this.

The distinction between unpopular and unwanted is important here. Unpopular data is disliked by a
lot of people, and Freenet doesn't try to remove that because that would lead to a tyranny of the
majority. Unwanted data is simply data that is not requested. It may be liked, it may not, but nobody
is interested in it.

Every culling method has problems, and on balance this method has been selected as the best. We
hope that the pressure for disk space won't be so high that documents are culled quickly. Storage
capacity is increasing at an exponential rate, so Freenet's capacity should also. If an author wants to
keep a document in Freenet, all he or she has to do is request or reinsert it every so often.

It should be noted that the culling is done individually by each node. If a document (say, a paper at a
university) is of little interest globally, it can still be in local demand so that local nodes (say, the
university's node) will keep it.

9.2 Keys

As has already been noted, every document is indexed by a key. But Freenet has more than one type of
key - each with certain advantages and disadvantages.

Since individual nodes on Freenet are inherently untrusted, nodes must not be allowed to return false
documents. Otherwise, those false documents will be cached and the false data will spread like a
cancer. The main job of the key types is to prevent this cancer. Each node in a chain checks that the
document is valid before forwarding it back toward the requester. If it finds that the document is
invalid, it stops accepting traffic from the bad node and restarts the request.

Every key can be treated as an array of bytes, no matter which type it is. This is important because the
closeness function, and thus the routing, treats them as equivalent. These functions are thus
independent of key type.

9.2.1 Key types

Freenet defines a general Uniform Resource Indicator (URI) in the form:

freenet:keytype@data

where binary data is encoded using a slightly changed Base64 scheme. Each key type has its own
interpretation of the data part of the URI, which is explained with the key type.

Documents can contain metadata that redirects clients to another key. In this way, keys can be
chained to provide the advantages of more than one key type. The rest of this section describes the
various types of keys.

9.2.1.1 Content Hash Keys (CHKs)

A CHK is formed from a hash of the data. A hash function takes any input and produces a fixed-length
output, where finding two inputs that give the same output is computationally impossible. For further
information on the purpose of hashes, see Section 15.2.1 in Chapter 15.

Since a document is returned in response to a request that includes its CHK, a node can check the
integrity of the returned document by running the same hash function on it and comparing the
resulting hash to the CHK provided. If the hashes match, it is the correct document. CHKs provide a
unique and tamperproof key, and so the bulk of the data on Freenet is stored under CHKs. CHKs also
reduce the redundancy of data, since the same data will have the same CHK and will collide on
insertion. However, CHKs do not allow updating, nor are they memorable.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 84

A CHK URI looks like the following example:

freenet:CHK@ DtqiMnTj8YbhScLp1BQoW9In9C4DAQ,2jmj7l5rSw0yVb-vlWAYkA

9.2.1.2 Keyword Signed Keys (KSKs)

KSKs appear as text strings to the user (for example, "text/books/1984.html"), and so are easy to
remember. A common misunderstanding about Freenet, arising from the directory-like format of
KSKs, is that there is a hierarchy. There isn't. It is only by convention that KSKs look like directory
structures; they are actually freeform strings.

KSKs are transformed by clients into a binary key type. The transformation process makes it
impractical to recover the string from the binary key. KSKs are based on a public key system where, in
order to generate a valid KSK document, you need to know the original string. Thus, a node that sees
only the binary form of the KSK does not know the string and cannot generate a cancerous reply that
the requestor would accept.

KSKs are the weakest of the key types in this respect, as it is possible that a node could try many
common human strings (such as "Democratic" and "China" in many different sentences) to find out
what string produced a given KSK and then generate false replies.

KSKs can also clash as different people insert different data while trying to use the same string. For
example, there are many versions of the Bible. Hopefully the Freenet caching system should cause the
most requested version to become dominant. Tweaks to aid this solution are still under discussion.

A KSK URI looks like this:

freenet:KSK@text/books/1984.html

9.2.1.3 Signature Verification Keys (SVKs)

SVKs are based on the same public key system as KSKs but are purely binary. When an SVK is
generated, the client calculates a private key to go with it. The point of SVKs is to provide something
that can be updated by the owner of the private key but by no one else.

SVKs also allow people to make a subspace, which is a way of controlling a set of keys. This allows
people to establish pseudonyms on Freenet. When people trust the owner of a subspace, documents in
that subspace are also trusted while the owner's anonymity remains protected. Systems like Gnutella
and Napster that don't have an anonymous trust capability are already finding that attackers flood the
network with false documents.

Named SVKs can be inserted "under" another SVK, if one has its private key. This means you can
generate an SVK and announce that it is yours (possibly under a pseudonym), and then insert
documents under that subspace. People trust that the document was inserted by you, because only you
know the private key and so only you can insert in that subspace. Since the documents have names,
they are easy to remember (given that the user already has the base SVK, which is binary), and no one
can insert a document with the same key before you, as they can with a KSK.

An SVK URI looks like this:

freenet:SVK@ XChKB7aBZAMIMK2cBArQRo7v05ECAQ,7SThKCDy~QCuODt8xP=KzHA

or for an SVK with a document name:

freenet:SSK@ U7MyLl0mHrjm6443k1svLUcLWFUQAgE/text/books/1984.html

9.2.2 Keys and redirects

Redirects use the best aspects of each kind of key. For example, if you wanted to insert the text of
George Orwell's 1984 into Freenet, you would insert it as a CHK and then insert a KSK like
"Orwell/1984" that redirects to that CHK. Recent Freenet clients will do this automatically for you. By
doing this you have a unique key for the document that you can use in links (where people don't need
to remember the key), and a memorable key that is valuable when people are either guessing the key
or can't get the CHK.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 85

All documents in Freenet are encrypted before insertion. The key is either random and distributed by
the requestor along with the URI, or based on data that a node cannot know (like the string of a KSK).
Either way, a node cannot tell what data is contained in a document. This has two effects. First, node
operators cannot stop their nodes from caching or forwarding content that they object to, because they
have no way of telling what the content of a document is. For example, a node operator cannot stop
his or her node from carrying pro-Nazi propaganda, no matter how anti-Nazi he or she may be. It also
means that a node operator cannot be responsible for what is on his or her node.

However, if a certain document became notorious, node operators could purge that document from
their data stores and refuse to process requests for that key. If enough operators did this, the
document could be effectively removed from Freenet. All it takes to bypass explicit censorship,
though, is for an anonymous person to change one byte of the document and reinsert it. Since the
document has been changed, it will have a different key. If an SVK is used, they needn't even change it
at all because the key is random. So trying to remove documents from Freenet is futile.

Because a node that does not have a requested document will get the document from somewhere else
(if it can), an attacker can never find which nodes store a document without spreading it. It is
currently possible to send a request with a hops-to-live count of 1 to a node to bypass this protection,
because the message goes to only one node and is not forwarded. Successful retrieval can tell the
requestor that the document must be on that node.

Future releases will treat the hops-to-live as a probabilistic system to overcome this. In this system,
there will be a certain probability that the hops-to-live count will be decremented, so an attacker can't
know whether or not the message was forwarded.

9.3 Conclusions

In simulations, Freenet works well. The average number of hops for requests of random keys is about
10 and seems largely independent of network size. The simulated network is also resilient to node
failure, as the number of hops remains below 20 even after 10% of nodes have failed. This suggests
that Freenet will scale very well. More research on scaling is presented in Chapter 14.

At the time of writing, Freenet is still very much in development, and a number of central issues are
yet to be decided. Because of Freenet's design, it is very difficult to know how many nodes are
currently participating. But it seems to be working well at the moment.

Searching and updating are the major areas that need work right now. During searches, some method
must be found whereby requests are routed closer and closer to the answer in order to maintain the
efficiency of the network. But search requests are fuzzy, so the idea of routing by key breaks down
here. It seems at this early stage that searching will be based on a different concept. Searching also
calls for node-readable metadata in documents, so node operators would know what is on their nodes
and could then be required to control it. Any searching system must counter this breach as best it can.

Even at this early stage, however, Freenet is solving many of the problems seen in centralized
networks. Popular data, far from being less available as requests increase (the Slashdot effect),
becomes more available as nodes cache it. This is, of course, the correct reaction of a network storage
system to popular data. Freenet also removes the single point of attack for censors, the single point of
technical failure, and the ability for people to gather large amounts of personal information about a
reader.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 86

Chapter 10. Red Rover
Alan Brown, Red Rover

The success of Internet-based distributed computing will certainly cause headaches for censors. Peer-
to-peer technology can boast populations in the tens of millions, and the home user now has access to
the world's most advanced cryptography. It's wonderful to see those who turned technology against
free expression for so long now scrambling to catch up with those setting information free. But it's far
too early to celebrate: What makes many of these systems so attractive in countries where the Internet
is not heavily regulated is precisely what makes them the wrong tool for much of the world.

Red Rover was invented in recognition of the irony that the very people who would seem to benefit the
most from these systems are in fact the least likely to be able to use them. A partial list of the reasons
this is so includes the following:

The delivery of the client itself can be blocked

The perfect stealth device does no good if you can't obtain it. Yet, in exactly those countries
where user secrecy would be the most valuable, access to the client application is the most
guarded. Once the state recognized the potential of the application, it would not hesitate to
block web sites and FTP sites from which the application could be downloaded and, based on
the application's various compressed and encrypted sizes, filter email that might be carrying it
in.

Possession of the client is easily criminalized

If a country is serious enough about curbing outside influence to block web sites, it will have
no hesitation about criminalizing possession of any application that could challenge this
control. This would fall under the ubiquitous legal category "threat to state security." It's a
wonderful advance for technology that some peer-to-peer applications can pass messages
even the CIA can't read. But in some countries, being caught with a clever peer-to-peer
application may mean you never see your family again. This is no exaggeration: in Burma, the
possession of a modem - even a broken one - could land you in court.

Information trust requires knowing the origin of the information

Information on most peer-to-peer systems permits the dissemination of poisoned information
as easily as it does reliable information. Some systems succeed in controlling disreputable
transmissions. On most, though, there's an information free-for-all. With the difference
between freedom and jail hinging on the reliability of information you receive, would you
really trust a Wrapster file that could have originated with any one of 20 million peer clients?

Non-Web encryption is more suspicious

Encrypted information can be recognized because of its unnatural entropy values (that is, the
frequencies with which characters appear are not what is normally expected in the user's
language). It is generally tolerated when it comes from web sites, probably because no country
is eager to hinder online financial transactions. But especially when more and more states are
charging ISPs with legal responsibility for their customers' online activities, encrypted code
from a non-Web source will attract suspicion. Encryption may keep someone from reading
what's passing through a server, but it never stops him from logging it and confronting the
end user with its existence. In a country with relative Internet freedom, this isn't much of a
problem. In one without it, the cracking of your key is not the only thing to fear.

I emphasize these concerns because current peer-to-peer systems show marked signs of having been
created in relatively free countries. They are not designed with particular sensitivity to users in
countries where stealth activities are easily turned into charges of subverting the state. States where
privacy is the most threatened are the very states where, for your own safety, you must not take on the
government: if they want to block a web site, you need to let them do so for your own safety.

Many extant peer-to-peer approaches offer other ways to get at a site's information (web proxies, for
example), but the information they provide tends to be untrustworthy and the method for obtaining it
difficult or dangerous.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 87

Red Rover offers the benefits of peer-to-peer technology while offering a clientless alternative to those
taking the risk behind the firewall. The Red Rover anti-censorship strategy does not require the
information seeker to download any software, place any incriminating programs on her hard drive, or
create any two-way electronic trails with information providers. The benefactor of Red Rover needs
only to know how to count and how to operate a web browser to access a web-based email account.

Red Rover is technologically very "open" and will hopefully succeed at traversing censorship barriers
not by electronic stealth but by simple brute force. The Red Rover distributed clients create a
population of contraband providers which is far too large, changing, and growing for any nation's
web-blocking software to keep up with.

10.1 Architecture

Red Rover is designed to keep a channel of information open to those behind censorship walls by
exploiting some now mundane features of the Internet, such as dynamic IP addresses and the
unbalanced ratio of Red Rover clients to censors. Operating out in the open at a low-tech level helps
keep Red Rover's benefactors from appearing suspicious. In fact, Red Rover makes use of aspects of
the current Internet that other projects consider liabilities, such as the impermanent connections of
ordinary Internet users and the widespread use of free, web-based email services. The benefactors,
those behind the censorship barrier (hereafter, "subscribers"), never even need to see a Red Rover
client application: users of the client are in other countries.

The following description of the Red Rover strategy will be functional (i.e., top-down) because that is
the best way to see the rationale behind decisions that make Red Rover unique among peer-to-peer
projects. It will be clear that the Red Rover strategy openly and necessarily embraces human
protocols, rather than performing all of its functions at the algorithmic level. The description is
simplified in the interest of saving space.

The Red Rover application is not a proxy server, not a site mirror, and not a gate allowing someone to
surf the Web through the client. The key elements of the system are hosts on ordinary dial-up
connections run by Internet users who volunteer to download data that the Red Rover administrator
wants to provide. Lists of these hosts and the content they offer, changing rapidly as the hosts come
and go over the course of a day, are distributed by the Red Rover hub to the subscribers. The
distribution mechanism is done in a way that minimizes the risk of attracting attention.

It should be clear, too, that Red Rover is a strategy, not just the software application that bears the
name. Again, those who benefit the most from Red Rover will never see the program. The strategy is
tripartite and can be summarized as follows. (The following sentence is deliberately awkward, for
reasons explained in the next section.)

3 simple layers: the hub, the client, & sub scriber.

10.1.1 The hub

The hub is the server from which all information originates. It publishes two types of information.

First, the hub creates packages of HTML files containing the information the hub administrator wants
to pass through the censorship barrier. These packages will go to the clients at a particular time.
Second, the hub creates a plain text, email notification that explains what material is available at a
particular time and which clients (listing their IP addresses) have the material. The information may
be encoded in a nontraditional way that avoids attracting attention from software sniffers, as
described later in this chapter.

The accuracy of these text messages is time-limited, because clients go on- and offline. A typical
message will list perhaps 10 IP addresses of active clients, selected randomly from the hub's list of
active clients for a particular time.

The hub distributes the HTML packages to the clients, which can be done in a straightforward
manner. The next step is to get the text messages to the subscribers, which is much trickier because it
has to be done in such a way as to avoid drawing the attention of authorities that might be checking all
traffic.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 88

The hub would never send a message directly to any subscriber, because the hub's IP address and
domain name are presumed to be known to authorities engaged in censorship. Instead, the hub sends
text messages to clients and asks them to forward them to the subscribers. Furthermore, the client
that forwards this email would never be listed in its own outgoing email as a source for an HTML
package. Instead, each client sends mail listing the IP addresses of other clients. The reason for this is
that if a client sent out its own IP address and the subscriber were then to visit it, the authorities could
detect evidence of two-way communication. It would be much safer if the notification letter and the
subscriber's decision to surf took different routes.

The IP addresses on these lists are "encrypted" at the hub in some nonstandard manner that doesn't
use hashing algorithms, so that they don't set off either entropy or pattern detectors. For example, that
ungrammatical "3 simple layers" sentence at the end of the last section would reveal the IP address
166.33.36.137 to anyone who knew the convention for decoding it. The convention is that each digit in
an IP address is represented by the number of letters in a word, and octets are separated by
punctuation marks. Thus, since there is 1 letter in "3," 6 in "simple," and 6 in "layers," the phrase "3
simple layers" yields the octet 166 to someone who understands the convention.

Sending a list of 10 unencoded IP addresses to someone could easily be detected by a script. But by
current standards, high-speed extraction of any email containing a sentence with bad grammar would
result in an overwhelming flood of false positives. The "encryption" method, then, is invisible in its
overtness. Practical detection would require a great expenditure of human effort, and for this reason,
this method should succeed by its pure brute force. The IP addresses will get through.

The hub also keeps track of the following information about the subscriber:

• Her web-based email address, allowing her the option of proxy access to email and frequent
address changes without overhead to the hub.

• The dates and times that she wishes to receive information (which she could revise during
each Red Rover client visit, perhaps via SSL, in order to avoid identifiable patterns of online
behavior).

• Her secret key, in case she prefers to take her chances with encrypted list notifications (an
option Red Rover would offer).

10.1.2 The clients

The clients are free software applications that are run on computers around the world by ordinary,
dial-up Internet users who volunteer to devote a bit of their system usage to Red Rover. Clients run in
the background and act as both personal web servers and email notification relays. When the user on
the client system logs on, the client sends its IP address to the hub, which registers it as active. For
most dial-up accounts, this means that, statistically, the IP will differ from the one the client had for
its last session. This simple fact plays an important role in client longevity, as discussed below.

Once the client is registered, the hub sends it two things. The first is an HTML package, which the
client automatically posts for anyone accessing the IP address through a browser. (URL encryption
would be a nice feature to offer here, but not an essential one.)

The second message from the hub is an email containing the IP list, plus some filler to make sure the
size of the message is random. This email will be forwarded automatically from the receiving Red
Rover client to a subscriber's web-based email account. These emails will be generated in random
sizes as an added frustration to automated censors which hunt for packet sizes.

The email list, with its unhashed encryption of the IP addresses, is itself fully encrypted at the hub and
decrypted by a client-specific key by the client just before mailing it to the subscriber. This way, the
client user doesn't know anything about who she's sending mail to. The client will also forward the
email with a spoofed originating IP address so that if the email is undelivered, it will not be returned
to the sender. If it did return, it would be possible for a malicious user of the client (censors and
police, for example) to determine the subscriber's email address simply by reading it off of the route-
tracing information revealed by any of a variety of publicly available products. Together with the use
of web-based accounts for subscriber email, rather than ISP accounts, subscriber privacy will benefit
from these precautions.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 89

10.1.3 The subscribers

The subscriber's role requires a good deal of caution, and anyone taking it on must understand how to
make the safest use of Red Rover as well as the legal consequences of getting caught. The subscriber's
actions should be assumed, after all, to be entirely logged by the state or its agents from start to finish.

The first task of the subscriber is to use a side channel (a friend visiting outside the country, for
instance, or a phone call or postal letter) to give the hub the information needed to maintain contact.
She also needs to open a free web-based email account in a country outside the area being censored.
Then, after she puts in place any other optional precautions she feels will help keep her under the
authorities' digital radar (and perhaps real-life radar), she can receive messages and download
controversial material. Figure 10.1 shows how information travels between the hub, clients, and
servers.

Figure 10.1. The flow of information between the hub, clients, and servers

In particular, it is wise for subscribers to change their notification times frequently. This decreases the
possibility of the authorities sending false information or attempting to entrap a subscriber by sending
a forged IP notification email (containing only police IPs) at a time they suspect the subscriber expects
notification. If the subscriber is diligent and creates new email addresses frequently, it is far less likely
that a trap will succeed. The subscriber is also advised to ignore any notification sent even one second
different from her requested subscription time. Safe subscription and subscription-changing protocols
involve many interesting options, but these will not be detailed here.

When the client is closed or the computer disconnected, the change is registered by the hub, and that
IP address is no longer included on outgoing notifications. Those subscribers who had already
received an email with that IP address on it would find it did not serve Red Rover information, if
indeed it worked at all from the browser. The subscribers would then try the other IP addresses on the
list. The information posted by the hub is identical on all clients, and the odds that the subscriber
would find one that worked before all the clients on the list disconnect are quite high.

10.2 Client life cycle

Every peer-to-peer system has to deal with the possibility that clients will disappear unexpectedly, but
senescence is actually assumed for Red Rover clients. Use it long enough and, just as with tax
cheating, they'll probably catch up with you. In other words, the client's available IPs will eventually
all be blocked by the authorities.

The predominant way nations block web sites is by IP address. This generally means all four octets are
blocked, since C-class blocking (blocking any of the possibilities in the fourth octet of the IP address)
could punish unrelated web sites. Detection has so far tended to result not in prosecution of the web
visitor, but only in the blocking of the site. In China, for example, it will generally take several days,
and often two weeks, for a "subversive" site to be blocked.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 90

The nice thing about a personal web server is that when a user logs on to a dial-up account, the user
will most likely be assigned a fourth octet different from the one she had in previous sessions. With
most ISPs, odds are good of getting a different third octet as well. This means that a client can sustain
a great number of blocks before becoming useless, and, depending on the government's methods (and
human workload), many events are likely to evade any notice whatsoever. But whenever the adversary
is successful in completely blocking a Red Rover client's accessible IP addresses, that's the end of that
client's usefulness - at least until the user switches ISPs. (Hopefully she'll choose a new ISP that hasn't
been blocked due to detection of another Red Rover client.) Some users can make their clients more
mobile, and therefore harder to detect, by subscribing to a variety of free dial-up services.

A fact in our favor is that it is considered extremely unlikely that countries will ever massively block
the largest ISPs. A great deal of damage to both commerce and communication would result from a
country blocking a huge provider like, for example, America Online, which controls nearly a quarter of
the American dial-up market. This means that even after many years of blocking Red Rovers, there
will still always be virgin IPs for them. Or so we hope.

The Red Rover strategy depends upon a dynamic population. On one level, each user can stay active if
she has access to abundant, constantly changing IP addresses. And at another level, Red Rover clients,
after they become useless or discontinued, are refreshed by new users, compounding the frustration of
would-be blockers.

The client will be distributed freely at software archives and partner web sites after its release, and will
operate without user maintenance. A web site (see Section 10.4) is already live to provide updates and
news about the strategy, as well as a downloadable client.

10.3 Putting low-tech "weaknesses" into perspective

Red Rover creates a high-tech relationship between the hub and the client (using SL and strong
encryption) and a low-tech relationship between the client and the subscriber. Accordingly, this latter
relationship is inherently vulnerable to security-related difficulties. Since we receive many questions
challenging the viability of Red Rover, we present below in dialogue form our responses to some of
these questions in the hope of putting these security "weaknesses" into perspective.

Skeptic:

I understand that the subscriber could change subscription times and addresses during a Red
Rover visit. But how would anyone initially subscribe? If subscription is done online or to an
email site, nothing would prevent those sites from being blocked. The prospective subscriber
may even be at risk for trying to subscribe.

Red Rover:

True, the low-tech relationship between Red Rover and the client means that Red Rover must
leave many of the steps of the strategy to the subscriber. As we've said above, another channel
such as a letter or phone call (not web or email communication) will eventually be necessary
to initiate contact since the Red Rover site and sites which mirror it will inevitably be victims
of blocking. But this requirement is no different than other modern security systems. SSL
depends on the user downloading a browser from a trusted location; digital signatures require
out-of-band techniques for a certificate authority to verify the person requesting the digital
signature.

This is not a weakness; it is a strength. By permitting a diversity of solutions on the part of the
subscribers, we make it much harder for a government to stop subscription traffic. It also lets
the user determine the solution ingredients she believes are safest for her, whether public key
cryptography (legal, for now, in many blocking countries), intercession by friends who are
living in or visiting countries where subscribing would not be risky, proxy-served requests to
forward email to organizations likely to cooperate, etc.

We are confident that word of mouth and other means will spread the news of the availability
of Red Rover. It is up to the subscriber, though, to first offer her invitation to crash the
censorship barrier. For many, subscribing may not be worth the risk. But for every subscriber
who gets information from Red Rover, word of mouth can also help hundreds to learn of the
content.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 91

If this response is not as systematic as desired, remember that prospective subscribers face
vastly different risks based on their country, profession, technical background, criminal
history, dependents, and other factors. Where a problem is not recursively enumerable, the
best solution to it will rarely be an algorithm. A variety of subscription opportunities,
combined with non-patterned choices by each subscriber, leads to the same kind of protection
that encryption offers in computing: Both benefit from increased entropy.

Skeptic:

What is to stop a government from cracking the client and cloning their own application to
entrap subscribers or send altered information?

Red Rover:

Red Rover has to address this problem at both the high-tech and low-tech levels. I can't cover
all strategies available to combat counterfeiting, but I can lay out what we've accomplished in
our design.

At the high-tech level, we have to make sure the hub can't be spoofed, that the client knows if
some other source is sending data and pretending to be the hub. This is a problem any secure
distributed system must address, and a number of successful peer-to-peer systems have
already led the way in solving this problem. Red Rover can adopt one of these solutions for the
relationship between the hub and clients. This aspect of Red Rover does not need to be novel.

Addressing this question for the low-tech relationship is far more interesting. An alert
subscriber will know, to the second, what time she is to receive email notifications. This
information is sent and recorded using an SSL-like solution, so if that time (and perhaps other
clues) isn't present on the email, the subscriber will know to ignore any IP addresses encoded
in it.

Skeptic:

Ah, but what stops the government from intercepting the IP list, altering it to reflect different
IP addresses, and then forwarding it to the subscriber? After all, you don't use standard
encryption and digest techniques to secure the list.

Red Rover:

First, we have taken many precautions to make it hard for surveillance personnel to actually
notice or suspect the email containing the IP list. Second, remember that we told the
subscribers to choose web-based email accounts outside the boundaries of the censoring
country. If the email is waiting at a web-based site in the United States, the censoring
government would have to intercept a message during the subscriber's download, determine
that it contained a Red Rover IP address (which we've encoded in a low-tech manner to make
it hard to recognize), substitute their own encoded IP address, and finish delivering the
message to the subscriber. All this would have to be done in the amount of time it takes for
mail to download, so as not to make the subscriber suspicious. It would be statistically
incredible to expect such an event to occur.

Skeptic:

But the government could hack the web-based mail site and change the email content without
the subscriber knowing. So there wouldn't be any delay.

Red Rover:

Even if this happened, the government wouldn't know when to expect the email to arrive,
since this information was passed from the subscriber to the client via SSL. And if the
government examined and counterfeited every unread email waiting for the subscriber, the
subscriber would know from our instructions that any email which is not received
"immediately" (in some sense based on experience) should be distrusted. It is in the
subscriber's interest to be prompt in retrieving the web pages from the clients anyway, since
the longer the delay, the greater the chance that the client's IP address will become inactive.
Still, stagnant IP lists are far more likely to be useless than dangerous.

Skeptic:

A social engineering question, then. Why would anyone want to run this client? They don't get
free music, and it doesn't phone E.T. Aren't you counting a little too much on people's good
will to assume they'll sacrifice their valuable RAM for advancing human rights?

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 92

Red Rover:

This has been under some debate. Options always include adding file server functions or IRC
capability to entice users into spending a lot of time at the sponsor's site. Another thought was
letting users add their own, client- specific customized page to the HTML offering, one which
would appear last so as not to interfere with the often slow downloading of the primary
content by subscribers in countries with stiff Internet and phone rates and slow modems. This
customized page could be pictures of their dog, editorials, or, sadly but perhaps crucially,
advertising. Companies could even pay Red Rover users to post their ads, an obvious
incentive. But many team members are rightfully concerned that if Red Rover becomes
viewed as a mercantile tool, it would repel both subscribers and client users. These
discussions continue.

Skeptic:

Where does the name " Red Rover" come from?

Red Rover:

Red Rover is a playground game analogous to the strategy we adopted for our anti-censorship
system. Children form two equal lines, facing each other. One side invites an attacker from the
other, yelling to the opposing line: "Red Rover, Red Rover, send Lena right over." Lena then
runs at full speed at the line of children who issued the challenge, and her goal is to break
through the barrier of joined arms and cut the line. If Lena breaks through, she takes a child
back with her to her line; if she fails, she joins that line. The two sides alternate challenges
until one of the lines is completely absorbed by the other.

It is a game, ultimately, with no losers. Except, of course, the kid who stayed too rigid when
Lena rammed him and ended up with a dislocated shoulder.

We hope Red Rover leads to similar results.

10.4 Acknowledgments

The author is grateful to the following individuals for discussions and feedback on Red Rover: Erich
Moechel, Gus Hosein, Richard Long, Sergei Smirnov, Andrey Kuvshinov, Lance Cottrell, Otmar Lendl,
Roger Dingledine, David Molnar, and two anonymous reviewers. All errors are the author's.

Red Rover was unveiled in April 2000 at Outlook on Freedom, Moscow, sponsored by the Human
Rights Organization (Russia) and the National Press Institute, in a talk entitled "A Functional Strategy
for an Online Anti-Blocking Remedy," delivered by the author. Red Rover's current partners include
Anonymizer, Free Haven, Quintessenz, and VIP Reference. Updates about production progress and
contact information about Red Rover will be posted at http://redrover.org/.

http://redrover.org/

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 93

Chapter 11. Publius
Marc Waldman, Lorrie Faith Cranor, and Avi Rubin, AT&T Labs-Research

Publius is a web-based publishing system that resists censorship and tampering. A file published with
Publius is replicated across many servers, making it very hard for any individual or organized group to
destroy the document. Distributing the document also provides resistance to so-called distributed
denial of service (DDoS) attacks, which have been used in highly publicized incidents to make a
resource unavailable. Another key feature of Publius is that it allows an individual to publish a
document without providing information that links the document to any particular computer.
Therefore, the publisher of a document can remain anonymous.

Publius has been designed with ease of access for end users in mind. HTML pages, images, or any
other type of file can be published with the system. Documents published with Publius can be read
with a standard web browser in combination with an HTTP proxy that can run locally or remotely.
Files published with Publius are assigned a URL that can be entered into a web browser or embedded
in a hyperlink.

The current architecture of the World Wide Web does not lend itself easily to censorship-resistant,
anonymous publication. Published documents have a URL that can be traced back to a specific
Internet host and usually a specific file owner. However, there are many reasons why someone might
wish to publish something anonymously. Among the nobler of these reasons is political dissent or
"whistleblowing." It is for these reasons that we designed Publius. Chapter 12 covers Free Haven, a
project with some similarities, and provides more background on anonymity.

Anonymous publishing played an important role in the early history of the United States. James
Madison, Alexander Hamilton, and John Jay collectively wrote the Federalist Papers under the pen
name Publius. This collection of 85 articles, published pseudonymously in New York State newspapers
from October 1787 through May 1788, was influential in convincing New York voters to ratify the
proposed United States Constitution. It is from these distinguished authors that our system gets its
name.

Like many of the other systems in this book, Publius is seen from the outside as a unified system that
works as a monolithic service, not as a set of individual Internet hosts. However, Publius consists of a
set of servers that host content. These servers are collectively referred to as Publius Servers. The
Publius Servers are independently owned and operated by volunteers located throughout the world.
The system resists attack because Publius as a whole is robust enough to continue serving files even
when many of the hosts go offline.

Publius uses two main pieces of software. The first is the server software, which runs on every Publius
server. The second piece of software is the client software. This software consists of a special HTTP
proxy that interfaces with a web browser and allows an individual to publish and retrieve files. In this
chapter we use the terms proxy and client software interchangeably, as they both refer to the HTTP
proxy. In order to use Publius an individual runs the proxy on their computer or connects to a proxy
running on someone else's computer.

11.1 Why censorship-resistant anonymous publishing?

The publication of written words has long been a tool for spreading new (and sometimes
controversial) ideas, often with the goal of bringing about social change. Thus the printing press, and
more recently, the World Wide Web, are powerful revolutionary tools. But those who seek to suppress
revolutions possess powerful tools of their own. These tools give them the ability to stop publication,
destroy published materials, or prevent the distribution of publications. And even if they cannot
successfully censor the publication, they may intimidate and physically or financially harm the author
or publisher in order to send a message to other would-be revolutionaries that they would be well
advised to consider an alternative occupation. Even without a threat of personal harm, authors may
wish to publish their works anonymously or pseudonymously because they believe they will be more
readily accepted if not associated with a person of their gender, race, ethnic background, or other
characteristics.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 94

11.1.1 Publius and other systems in this book

The focus of this book is peer-to-peer systems. While Publius is not a pure peer-to-peer system, it does
share many characteristics with such systems. In addition, Publius provides unique and useful
solutions to many of the problems faced by users and designers of such systems.

Distributed publishing tools and peer-to-peer file-sharing tools are still in their infancy. Many of these
systems are changing very rapidly - each system continually gains new features or improves on old
ones. This complicates any sort of direct comparison. However, in certain areas Publius does have
some advantages over other file-sharing systems described in this book, such as Gnutella and Freenet.
This is not to say that Publius is necessarily better than other systems. Indeed, in certain areas other
systems offer marked advantages over Publius. Each system has its strengths and weaknesses.

One of Publius' strengths is that it allows a publisher (and only the publisher) to update previously
published material in such a way that anyone retrieving the old version is automatically redirected to
the newly updated document. Publius also allows a publisher to delete a published document from all
of the servers it is stored on. Safeguards are in place to prevent anyone but the publisher from deleting
or updating the published document. A tamper-check mechanism is built into the Publius URL. This
allows the Publius client to verify that a retrieved document has not been tampered with.

Publius is one of a handful of file-sharing and publishing systems that are entirely implemented on
top of the standard HTTP protocol. This makes Publius portable and simplifies installation as it easily
interfaces with a standard web browser. By portable we mean that Publius can run on a variety of
different operating systems with little or no modification. Of course, as with everything in life, there is
a trade-off. Implementing Publius over HTTP means that Publius is not as fast as it could be. There is
a slight overhead in using HTTP as opposed to implementing the communication between server and
browser directly.

11.2 System architecture

The Publius system consists of a collection of web servers called Publius Servers. The list of web
servers, called the Publius Server List, is known to all Publius clients. An individual can publish a
document using the client software.

The first part of the publication process involves using the Publius client software to encrypt the
document with a key. This key is split into many pieces, called shares, such that only a small number
of shares are required to form the key. For example, the key can be split into 30 shares such that any 3
of these shares can be used to form the key. But anyone combining fewer than 3 shares has no hint as
to the value of the key. The choice of 3 shares is arbitrary, as is the choice of 30. The only constraint is
that the number of shares required to form the key must be less than or equal to the total number of
shares.

The client software then chooses a large subset of the servers listed in the Publius Server List and
uploads the document to each one. It places the complete encrypted document and a single share on
each server; each server has a different share of the key. The encrypted file and a share are typically
stored on at least 20 servers. Three shares from any of these servers are enough to form the key.

A special URL called the Publius URL is created for each published document. The Publius URL is
needed to retrieve the document from the various servers. This URL tells the client software where to
look for the encrypted document and associated shares.

Upon receiving a Publius URL, the client software randomly retrieves three shares from the servers
indicated by the URL. The shares are then combined to form the key. The client software also retrieves
one copy of the encrypted file from one of the servers. The key is used to decrypt the file and a tamper
check is then performed. If the document successfully passes the tamper check, it is displayed in the
browser; otherwise, a new set of shares and a new encrypted document are retrieved from another set
of servers.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 95

The encryption prevents Publius server administrators from reading the documents stored on their
servers. It is assumed that if server administrators don't know what is stored on their servers they are
less likely to censor them. Only the publisher knows the Publius URL - it is formed by the client
software and displayed in the publisher's web browser. Publishers can do what they wish with their
URLs. They can post them to Usenet news, send them to reporters, or simply place them in a safe
deposit box. To protect their identities, publishers may wish to use anonymous remailers when
communicating these URLs.

The Publius client software is implemented as an HTTP proxy. Most web browsers can be configured
to send web requests to an HTTP proxy, which retrieves the requested document (usually performing
some extra service, such as caching, in the process) and returns it to the web browser. The HTTP
proxy may be located on the user's computer or on some other computer on the Internet. In the case
of Publius, the HTTP proxy is able to interpret Publius URLs, fetch the necessary shares and
encrypted documents, and return a decrypted document to the user's web browser.

11.3 Cryptography fundamentals

Before describing the Publius operations, we briefly introduce some cryptographic topics that are
essential to all Publius operations. For more information about these cryptographic topics see an
introductory cryptography text.[1]

[1] See, for example, Bruce Schneier (1996), Applied Cryptography Protocols, Algorithms, and Source Code in C,
2nd Edition, John Wiley & Sons.

11.3.1 Encryption and decryption

Encryption is the process of hiding a message's true content. An unencrypted message is called a
plaintext , while a message in encrypted form is called a ciphertext .

A cipher is a function that converts plaintext to ciphertext or ciphertext back to plaintext. Rijndael, the
Advanced Encryption Standard, is an example of a well-known cipher. Decryption is the process of
converting ciphertext back to plaintext. The encryption and decryption processes require a key. Trying
to decrypt a message with the wrong key results in gibberish, but when the correct key is used, the
original plaintext is revealed. Therefore it is important to keep the key secret and to make sure it is
virtually impossible for an adversary to guess.

Ciphers that use the same key to encrypt and decrypt messages are called symmetric ciphers . These
are the type of ciphers used in Publius.

11.3.2 Secret sharing

A message can be divided into a number of pieces in such a way that combining only a fraction of
those pieces results in the original message. Any combination of pieces is sufficient, so long as you
have the minimum number required.

An algorithm that divides data in such a manner is called a secret sharing algorithm. The secret
sharing algorithm takes three parameters: the message to divide, the number of pieces to divide the
message into, and the number of pieces needed to reconstruct the message. The individual pieces are
called shares. Publius uses Shamir's secret sharing algorithm. Other secret sharing algorithms also
exist.

11.3.3 Hash functions

A hash function takes a variable-length input and returns a fixed-length output. Publius uses the
cryptographically strong hash functions MD5 and SHA-1. Cryptographically strong hash functions
possess two properties. First, the hash function is hard to invert - that is, if someone is told the hash
value, it is hard to find a message that produces that hash value. Second, it is hard to find two
messages that produce the same hash value. By hard we mean that it is not feasible, even using
massive amounts of computing power, to accomplish the specified task.

The slightest change to a file completely changes the value of the hash produced. This characteristic
makes hash functions ideal for checking whether the content of a message has been changed. The
MD5 hash function produces a 128-bit output and SHA-1 produces a 160-bit output.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 96

11.4 Publius operations

Given the previous description of Publius-related cryptographic functions, we now describe the
Publius operations Publish, Retrieve, Update, and Delete.

11.4.1 Publish operation

Suppose that we wish to publish the file homepage.html with Publius. The accompanying sidebar
outlines the steps the Publius proxy follows to publish a file. First, a key is created from the MD5 and
SHA-1 hash of the contents of the file homepage.html. This key is then used to encrypt the file,
producing a new file we will call homepage.enc. Using Shamir's secret sharing algorithm, the key is
split into 30 shares such that any 3 of these shares can be used to reconstruct the key. The first share
is named Share_1, the second Share_2, and so on. The MD5 hash of the contents of homepage.html
and Share_1 is calculated. This MD5 hash results in a 128-bit number. An operation is performed on
this number to determine an index into the Publius Server List. The Publius Server List is essentially
just a numbered table of web servers, each running the Publius server software. The index is used to
locate a particular server. For instance, the index value 5 corresponds to the 5th entry in the Publius
Server List. You will recall that all Publius client software has the same list, and therefore the 5th server
is the same for everyone.

For the sake of argument let's assume that our index number is 5 and that the 5th server is named
www.nyu.edu. The proxy now attempts to store the file homepage.enc and Share_1 on
www.nyu.edu. The files are stored in a directory derived from the previously calculated MD5 hash of
homepage.html and Share_1. The file homepage.enc is stored in a file named file and Share_1 is
stored in a file named share. These same two names are used for every piece of content published with
Publius, regardless of the type of the file. One of the reasons for storing homepage.enc as file rather
than as homepage.enc is that we don't want to give anyone even a hint as to the type of file being
stored. The neutrality of the name, along with the use of encryption so that no one can read the file
without the key, allows Publius server administrators to plausibly deny any knowledge of the content
of the files being hosted on the Publius server. While each server possesses a part of the encryption
key, it is of no value by itself for decrypting the file. We thus expect that server administrators have
little motive to delete, and thereby censor, files stored on their servers.

The whole process of performing the MD5 hash and storing the files on a Publius server is repeated for
each of the 30 shares. A file is stored on a particular server only once - if Publius generates the same
index number more than once, the corresponding share is discarded.

Each time a file and share are stored on a Publius server, the file and share's corresponding MD5 hash
(calculated in line 5 of Process for publishing the file homepage.html in Publius) is used in the
formation of the Publius URL. A Publius URL has the following form:

http://!publius!/options MD5_hash MD5_hash MD5_hash...MD5_hash

where each MD5_hash is the hash defined in line 5 of the sidebar. Each MD5_hash is Base64-
encoded to generate an ASCII representation of the hash value. Here is an example of a Publius URL:

http://!publius!/010310023/
VYimRS+9ajc=B20wYdxGsPk=kMCiu9dzSHg=xPTuzOyUnNk=/
O5uFb3KaC8I=MONUMmecuCE=P5WY8LS8HGY=KLQGrFwTcuE=/
kJyiXge4S7g=6I7LBrYWAV0=

The options part of the Publius URL is made up of several flags that specify how the proxy should
interpret the URL. The options section includes a "do not update" flag, the number of shares needed
to form the key, and the version number of the Publius client that published the URL.

The version number allows us to add new features to future versions of Publius while at the same time
retaining backward compatibility.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 97

Process for publishing the file
homepage.html in Publius

1. Generate a key.

2. Using the key, encrypt file homepage.html to produce homepage.enc.

3. Perform Shamir's secret sharing algorithm on the key. This produces Share_1,
Share_2...Share_30. Any three shares can be used to form the key.

4. Set share to Share_1.

5. Set h as the MD5 hash of share appended to content of file homepage.html.

6. Set index to h mod (the number of entries in the Publius Server List).

7. Set server to the Publius server at the location specified by index.

8. On server : Create a directory derived from h. In this directory store the contents of
homepage.enc into a file named file and share into a file named share.

Repeat steps 4 through 8 once for each of the remaining shares (Share_2...Share_30),
setting the variable share appropriately before each repetition.

The update flag determines whether the update operation can be performed on the Publius content
represented by the URL. If the update flag is 1, the retrieval of updated content may be performed
when update URLs are discovered. If the update flag is 0, however, the client ignores update URLs
sent by Publius servers in response to share and encrypted file requests.

The options part of the Publius URL also includes a number that indicates the size of the Publius
Server List at the time the file was published. The Publius Server List is not static - it can grow over
time. Servers can be added without affecting previously published files. The index calculation
performed on line 6 of the Publius Publish algorithm (see the sidebar Process for publishing the file
homepage.html in Publius) depends on the size of the Publius Server List. Changes to this value
change the computed index location. Therefore it is necessary to store this value in the URL. When
interpreting a given Publius URL, the proxy essentially ignores all entries in the server list with index
greater than the one stored in the Publius URL. This ensures that the proxy will calculate the correct
index value for every server hosting the shares and encrypted file.

11.4.2 Retrieve operation

Upon receiving a request to retrieve a Publius URL, the proxy first breaks the URL into its MD5 hash
components. As the size of each MD5 hash is exactly 128 bits, this is an easy task. As you may recall,
each of these hash values determines which servers in the Publius Server List are storing the
encrypted file and a share. In order to retrieve the encrypted file and share, the proxy randomly selects
one of the hash values and performs the same operation performed by the Publish operation (line 6 in
the sidebar). The value returned is used as an index into the Publius Server List, revealing the name of
the server. The proxy retrieves the encrypted file and share file from the server. Recall that the file
named file contains the encrypted version of the published file and the file named share contains a
single share. In order to form the key, the proxy needs to find two additional shares. Thus, the client
selects two other MD5 hash values randomly from the Publius URL and performs the same operation
as before on each. This reveals two other servers that in turn lead to two more shares. The 3 shares can
now be combined to form the key used to encrypt the file.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 98

During the Publish operation, the key was broken into 30 shares. Assume that after testing each of
these shares, the proxy ends up storing the encrypted file and a corresponding share on 20 servers.
This means that 20 MD5 hashes appear in the Publius URL. During the retrieval process only 3 of
these 20 shares are needed. Publius derives its fault-tolerant and censorship-resistant properties from
the storage of these additional shares and encrypted files. By fault tolerant we mean that if for some
reason several servers are unavailable, the proxy can still successfully retrieve the Publius document.
In fact, if the file is stored on 20 servers, even if 17 servers are unavailable we can successfully retrieve
the Publius document. However, if 18 Publius servers are unavailable, the Publius document cannot
be retrieved because 2 shares are not enough to form the key needed to decrypt the content.

The additional copies also provide censorship resistance - if several Publius server administrators
decide to delete the encrypted files and shares corresponding to a particular Publius file, the file can
still be retrieved if at least three servers still contain the shares and encrypted file. With Publius
servers located throughout the world, it becomes increasingly difficult to force Publius server
administrators to delete files corresponding to a particular Publius URL, by legal or other means.

Many of the other systems in this book also have fault-tolerant features. However, most of these
systems focus on maintaining a network of nodes with variable connectivity and temporary network
addresses. Publius does not address the use of servers with temporary network addresses.

Once the key has been reconstructed from the shares, it can be used to decrypt the file. The decrypted
file can now be displayed in the web browser. However, just before the file is displayed in the web
browser, a tamper check is initiated. The tamper check verifies that the file has not changed since the
time it was initially published. The MD5 hashes stored in the URL are used to perform the tamper
check. The hash was formed from the unencrypted file and a share - both of which are now available.
Therefore, the client recalculates the MD5 hash of the unencrypted file and of each share (as in line 5
in the sidebar). If the calculated hashes do not match the corresponding hashes stored in the URL, the
file has been tampered with or corrupted. In this case, the proxy simply throws away the encrypted file
and shares and tries another set of encrypted files and shares. If a tamper check is successfully
performed, the file is sent to the web browser. If the proxy runs out of share and encrypted file
combinations, a message appears in the browser stating that the file could not be retrieved.

11.4.3 Update operation

Files, especially web pages, change over time. An individual may find a particular web document
interesting and add it to his collection of bookmarks or link to it from a web page. The problem with
linking to a Publius URL is that if anyone changes the document and tries to republish it, a new
Publius URL is generated for the document. Therefore, anyone linking to the old document may never
learn that the document has been updated because the link or bookmark still points to the older
Publius document.

To remedy this situation, Publius supports an Update operation. The operation allows the publisher of
a document to replace an older version of the Publius document with a newer one while still retaining
the old URL. This is accomplished by allowing a Publius URL to be stored in a file called update in the
same directory where the old version of the file resided.

For example, let's say that one encrypted file and share are stored on http://www.nyu.edu/ in
directory pubdir. Upon receiving the update command, the proxy contacts the server
http://www.nyu.edu/, deletes the files named file and share from the directory pubdir, and places the
new Publius URL in a file named update. Of course, the Update command is issued to all servers
holding copies of the file to be updated.

Now, whenever http://www.nyu.edu/ receives a request for the encrypted file or share in the directory
pubdir, the server sends the new Publius URL found in the update file. If several of the queried
Publius servers also respond with this same Publius URL, the proxy retrieves the document referenced
by the new Publius URL. Therefore, whenever a proxy requests the old file it is automatically
redirected to the updated version of the file.

http://www.nyu.edu/
http://www.nyu.edu/
http://www.nyu.edu/

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 99

Of course, we want only the publisher of the document to be able to perform the Update command. In
order to enforce this, the Publish operation allows a password to be specified. This password is stored
in the file password and is checked by the server during an Update operation. In order for this scheme
to work, the password must be stored on each server so that the server can check that the password
sent with the Update command matches the stored password. However, simply storing the password
on the server would be dangerous, because it would permit Publius server administrators to update
the document on all servers if they discover the corresponding URL. This is essentially a form of
censorship, as the original file would no longer be accessible. So instead of simply storing the
password, we store the MD5 hash of the password appended to the domain name of the particular
server. The server stores this value in the password file associated with the particular document. The
hash by itself provides no clues as to the actual value of the password, so it cannot be used to update
the document on all of the servers.

11.4.4 Delete operation

There are circumstances in which a publisher may wish to delete a document from Publius. Publius
therefore supports the Delete operation. Only the publisher may delete the document. The same
password that controls the Update operation also ensures that only the publisher can perform the
Delete operation.

The ability to delete Publius documents gives an adversary the option of trying to force the publisher
of a Publius document to delete it. In order to prevent this scenario, Publius provides a "do not delete"
option during the Publish operation. This option allows someone to publish a document in such a way
that Publius servers deny requests to delete the document.

Of course, nothing stops a Publius server administrator from deleting the document from her own
server, but the safeguards in this section do prevent a single person from deleting the Publius file from
all the servers at once.

Both the Delete and Update commands attempt to make the required changes on all of the relevant
servers. For example, the Update command tries to update every server storing a particular document.
However, this may not always be possible due to a server being down or otherwise unavailable. This
could lead to an inconsistent state in which some servers are updated and others are not. Although
Publius does not currently deal with the problem of an inconsistent state, it does report the names of
the servers on which the operation failed. At a later time, the Update command can be executed again
in an attempt to contact the servers that failed to get updated. The same is true for the Delete
command.

11.5 Publius implementation

Publius is a working system that has been in operation since August 2000. In the following sections,
we describe several important aspects of the implementation. As you will recall, Publius consists of
both client and server software. All Publius servers run the server software. The client software
consists of a special HTTP proxy that interfaces with any standard web browser. This special proxy
handles all Publius commands and therefore interacts with the Publius servers. Upon connecting to
the proxy, the web browser displays the Publius User Interface. This user interface is essentially an
HTML form that allows an individual to select a Publius operation (Delete, Publish, or Update). This
form is not required for the Retrieve operation as it is the default operation.

11.5.1 User interface

The web browser interface, as shown in Figure 11.1, allows someone to select the Publius operation
(Delete, Publish, or Update) and enter the operation's required parameters such as the URL and
password. Each Publius operation is bound to a special !publius! URL that is recognized by the proxy.
For example, the Publish URL is http://!publius!PUBLISH. The operation's parameters are sent in
the body of the HTTP POST request to the corresponding !publius! URL. The proxy parses the
parameters and executes the corresponding Publius operation. An HTML message indicating the
success or failure of the operation is returned. If the Retrieve operation is requested and is successful,
the requested document is displayed in a new web browser window.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 100

Figure 11.1. User interface for publishing a Publius document

11.5.1.1 Server software

To participate as a Publius server, one needs to install the Publius CGI script on a system running an
HTTP server. The client software communicates with the server by executing an HTTP POST
operation on the URL corresponding to the server's CGI script. The requested operation (Retrieve,
Update, Publish, or Delete), the filename, the password, and any other required information is passed
to the server in the body of the POST request.

11.5.1.2 Client software

The client software consists of the special HTTP proxy. The proxy transparently sends non-Publius
URLs to the appropriate servers and passes the returned content back to the browser. Upon receiving
a request for a Publius URL, the proxy retrieves the encrypted document and shares, as described in
Section 11.4.2 earlier. The proxy also handles the Delete, Publish, and Update commands.

11.6 Publius MIME type

The filename extension of a particular file usually determines the way in which a web browser or other
software interprets the file's content. For example, a file that has a name ending with the extension
.html usually contains HTML. Similarly, a file that has a name ending with the extension .jpg usually
contains a JPEG image. The Publius URL does not retain the file extension of the file it represents. So
the Publius URL gives no hint to the browser, or anyone else for that matter, as to the type of file it
points to. However, in order for the browser to correctly interpret the byte stream sent to it by the
proxy, the proxy must properly identify the type of data it is sending. Therefore, before publishing a
file, Publius prepends the first three-letters of the file's name extension to the file. The file is then
published as described earlier, in Section 11.4.1. When the proxy is ready to send the requested file
back to the browser, the three-letter extension is removed from the file and checked to determine an
appropriate MIME type for the document. The MIME type is sent in an HTTP Content-type header. If
the three-letter extension is not helpful in determining the MIME type, a default type of text/plain is
sent for text files. The default MIME type for binary files is octet/stream.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 101

11.7 Publius in a nutshell
Documents are published in a censorship-resistant manner

This is partially achieved by storing the encrypted document and a share on a large number of
servers.

Retrieved documents can be tamper-checked

The Publius URL is made up of MD5 hashes that allow the document to be checked for
changes since publication.

Published documents can be updated

Any requests for the previous document are redirected to the new document.

Published documents can be securely deleted

A password mechanism is utilized for the Delete and Update commands.

A document can be anonymously published

Once the document is published there is no way to directly link the document to the publisher.
However, indirect mechanisms of identification may exist, so one may wish to use an
anonymizing proxy or publish the file in a cyber café or library.

The stored document is resistant to distributed denial of service attacks

The published file can still be retrieved even if a large number of servers are unavailable.

The Publius web site is http://www.cs.nyu.edu/waldman/publius. The source code, a technical paper
describing Publius, and instructions for using Publius are available at this site.

http://www.cs.nyu.edu/waldman/publius

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 102

Chapter 12. Free Haven
Roger Dingledine, Reputation Technologies, Inc., Michael J. Freedman, MIT, and David Molnar,
Harvard University

The Free Haven Project is dedicated to designing a system of anonymous storage that resists the
attempts of powerful adversaries to find or destroy any stored data. Our goals include the following:

Anonymity

We try to meet this goal for all parties: the publishers that insert documents, the readers that
retrieve documents, and the servers that store documents.

Persistence

The publisher of a document - not the servers holding the document - determines its lifetime.

Flexibility

The system functions smoothly as servers are added or remove themselves.

Accountability

We apply a reputation system to servers that attempts to limit the damage done by those that
misbehave.

In this chapter, we'll show how Free Haven tries to meet these goals. We spend a particularly large
amount of time on anonymity. It is not adequate to speak of "anonymity" as a monolithic concept. In
Section 12.2, we'll enumerate the many different kinds of anonymity that are important to protect
participants in the system.

Free Haven differs from the other projects in this book in the wide range of difficult goals we have
taken on. We try to assure anonymity, server accountability, and persistent storage for data
independent of its popularity, all at the same time. Here are some comparisons to other projects:

Gnutella

The strength of Gnutella is its extremely flexible network design. But when a search is
performed, servers respond with an external IP address or URL where the user can download
the document. Since this actual retrieval is done without any privacy protection, using
Gnutella is not a good choice if publishers or readers want anonymity. Further, documents in
the Gnutella network last only as long as their host servers; when a user logs out for the night,
all of his files leave with him.

Freenet and Mojo Nation

These systems make files highly accessible and offer some level of anonymity. But since the
choice to drop a file is a purely local decision, and since files that aren't requested for some
time tend to disappear automatically, these systems don't guarantee a specified lifetime for a
document. Indeed, we expect that Freenet will provide a very convenient service for porn and
popular audio files, but anything less popular will be driven off the system.

Publius

This project is closest to ours, because it addresses file storage rather than easy accessibility.
But Publius provides no smooth decentralized support for adding new servers and excising
dead or malicious servers. More importantly, Publius provides no accountability - there is no
way to prevent publishers from entirely filling the system with garbage data.

Currently, Free Haven sacrifices efficiency and convenience to achieve its design requirements. Free
Haven is designed more for anonymity and persistence of documents than for frequent querying. We
expect that interesting material will be retrieved from the system and published in a more accessible
fashion (such as in Freenet or normal web pages). Then the document in Free Haven will only need to
be accessed if the other sources are shut down or the reader requires stronger anonymity. For more
discussion of such "gatewaying" issues, refer to Chapter 19.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 103

12.1 Privacy in data-sharing systems

Privacy is a term with positive connotations that every person can appreciate. One key way to achieve
privacy, however - anonymity - is widely misunderstood both in daily life and in computer networking.
The media and politicians stress socially disapproved activities (such as the exchange of unauthorized
music files or erotic pictures involving children) and ignore the important contributions that
anonymity provides. Anonymity is used on an everyday basis in forums ranging from radio shows to
Usenet newsgroups, by people who suffer from child abuse, drug dependency, or other social
problems.

Anonymous publication and storage services allow individuals to speak freely without fear of
persecution. Political dissidents must publish their views in order to reach enough people for their
criticisms of a regime to be effective, yet they and their readers require anonymity at the same time.
Less extreme examples involve cases in which a large and powerful private organization attempts to
silence its critics by attacking either the critics themselves or those who make the criticism publicly
available.

Developers and potential users of other peer-to-peer systems should be interested in the techniques
we are developing to preserve anonymity in Free Haven, because they may prove useful in protecting
the privacy of users in other systems as well. Many people would like to participate in communities
and share information without revealing who they are. Their reasons may range from the trivial - such
as avoiding spam - to deep social concerns. It is time to face these concerns directly so solutions can be
designed fundamentally into peer-to-peer systems.

Peer-to-peer systems that attempt to address anonymity are just starting to be deployed, and the exact
requirements and design choices are not yet clear. Recent events have highlighted some shortcomings
of current systems. For instance, the limitations of Gnutella were dramatized by the Gnutella Wall of
Shame, where someone lured readers to a web site by claiming to offer child pornography and then
published each visitor's IP address. While Napster allowed people with MP3 files to find each other, it
also made it easy for the band Metallica to find people who were offering unauthorized copies of
Metallica songs and force them off the system.

These shortcomings cause people to look toward a new generation of anonymous publication services
that address anonymity. In developing Free Haven, we hope to clarify some of the requirements for
such systems and highlight the design choices.

12.1.1 Reliability with anonymity

In the physical world, people use safety deposit boxes to protect valuable items. Everything from
passports to house titles to krugerrands - if it's important, it goes in the box, which is kept at the local
bank. The bank has armed guards, smiling tellers, and a history going back to the Knights Templar.
Now suppose someone suggested to you that instead of going to the bank, it would be a better idea to
hand your gold bars to the next guy on the street and ask him to "just hold these for a bit." You'd look
at a person with such notions as though he had three heads... yet in some sense, this is exactly what
distributed peer-to-peer file- sharing systems like Free Haven ask you to do.

The critical point is that for a safety deposit box, the only thing that really matters is reliability and
availability: can you get your items when you want them? The rest is irrelevant. If the guy on the street
could guarantee that you'll get your gold back and follow through, he would be "just as good" as the
bank. In fact, if you're interested in protecting your privacy, the guy on the street may be better - he
doesn't know or care who you really are. Of course, in the physical world, it's still a bad idea to give
gold bars to random people on the street. Online, however, cryptography allows things to work out
differently.

Many systems in addition to Free Haven need reliability, particularly peer-to-peer systems that ask
people to share resources. When offering and retrieving resources, users want to preserve their
privacy. When evaluating whether to transfer custody of their resources to another party on the
system, users want to know whether that party can be trusted.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 104

Initially these goals seem mutually exclusive, but the solution is to allow users to have pseudonyms ,
and to assign a reputation to each pseudonym. Free Haven differs from other systems in that the
servers in the Free Haven system are known only by their pseudonyms, and we provide an automated
system to track reputations (honesty and performance) for each server. A server's reputation
influences how much data it can store in Free Haven and provides an incentive to act correctly.
Reputation can be a complex matter - just think of all the reader reviews and "People also bought..."
ratings on the Amazon.com retail site - so we'll leave its discussion to Chapter 16, and Chapter 17.
Establishing trust through the use of pseudonyms is covered in Chapter 15.

What lets a malicious adversary find a person in real life? One way is to know his or her true name , a
term first used in a short story by fiction author Vernor Vinge[1] and popularized by Tim May.[2] The
true name is the legal identity of an individual and can be used to find an address or other real-life
connection. Obviously, a pseudonym should not be traceable to a true name.

[1] Vernor Vinge (1987), True Names... and Other Dangers, Baen.

[2] Tim May, Cyphernomicon, http://www-swiss.ai.mit.edu/6805/articles/crypto/cypherpunks/cyphernomicon.

As an author can use a pseudonym to protect his or her true name, in a computerized storage system a
user can employ a pseudonym to protect another form of identity called location . This is an IP
address or some other aspect of the person's physical connection to the computer system. In a
successful system, a pseudonym always reflects the activities of one particular entity - but no one can
learn the true name or location of the entity. The ability to link many different activities to a
pseudonym is the key to supporting reputations.

12.2 Anonymity for anonymous storage

The word " anonymous" can mean many different things. Indeed, some systems claim "anonymity"
without specifying a precise definition. This introduces a great deal of confusion when users are trying
to evaluate and compare publishing systems to understand what protections they can expect from
each system.

A publishing situation creates many types of anonymity - many requirements that a system has to
meet in order to protect the privacy of both content providers and users. Here, we'll define the author
of a document as whoever initially created it. The author may be the same as or different from the
publisher, who places the document into Free Haven or another storage system. Documents may have
readers, who retrieve the document from the system. And many systems, including Free Haven, have
servers, who provide the resources for the system, such as disk space and bandwidth.

Free Haven tries to make sure that no one can trace a document back to any of these people - or trace
any of them forward to a document. In addition, we want to prevent adversaries who are watching
both a user and a document from learning anything that might convince them that the user is
connected to that document. Learning some information that might imply a connection allows
"linking" the user to that action or document. Thus, we define the following types of anonymity:

Author-anonymity

A system is author-anonymous if an adversary cannot link an author to a document.

Publisher-anonymity

A system is publisher-anonymous if it prevents an adversary from linking a publisher to a
document.

Reader-anonymity

To say that a system has reader-anonymity means that a document cannot be linked with its
readers. Reader-anonymity protects the privacy of a system's users.

Server-anonymity

Server-anonymity means no server can be linked to a document. Here, the adversary always
picks the document first. That is, given a document's name or other identifier, an adversary is
no closer to knowing which server or servers on the network currently possess this document.

http://www-swiss.ai.mit.edu/6805/articles/crypto/cypherpunks/cyphernomicon

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 105

Document-anonymity

Document-anonymity means that a server does not know which documents it is storing.
Document-anonymity is crucial if mere possession of some file is cause for action against the
server, because it provides protection to a server operator even after his or her machine has
been seized by an adversary. This notion is sometimes also known as "plausible deniability,"
but see below under query-anonymity. There are two types of document-anonymity: isolated-
server and connected-server.

Passive-server document-anonymity means that if the server is allowed to look only at the
data that it is storing, it is unable to figure out the contents of the document. This can be
achieved via some sort of secret sharing mechanism. That is, multiple servers split up either
the document or an encryption key that recreates the document (or both). An alternative
approach is to encrypt the document before publishing, using some key which is external to
the server - Freenet takes this approach. Mojo Nation takes a different approach to get the
same end: it uses a "two-layer" publishing system, in which documents are split up into
shares, and then a separate "share map" is similarly split and distributed to participants called
content trackers . In this way, servers holding shares of a document cannot easily locate the
share map for that document, so they cannot determine which document it is.

Active-server document-anonymity refers to the situation in which the server is allowed to
communicate and compare data with all other servers. Since an active server may act as a
reader and do document requests itself, active-server document-anonymity seems difficult to
achieve without some trusted party that can distinguish server requests from "ordinary"
reader requests.

Query-anonymity

Query-anonymity means that the server cannot determine which document it is serving when
satisfying a reader's request. A weaker form of query-anonymity is server deniability - the
server knows the identity of the requested document, but no third party can be sure of its
identity. Query-anonymity can provide another aspect of plausible deniability.

12.2.1 Partial anonymity

Often an adversary can gain some partial information about the users of a system, such as the fact that
they have high-bandwidth connections or all live in California. Preventing an adversary from
obtaining any such information may be impossible. Instead of asking "Is the system anonymous?" the
question shifts to "Is it anonymous enough?"

We might say that a system is partially anonymous if an adversary can only narrow down a search for
a user to one of a "set of suspects." If the set is large enough, it is impractical for an adversary to act as
if any single suspect were guilty. On the other hand, when the set of suspects is small, mere suspicion
may cause an adversary to take action against all of them.

12.3 The design of Free Haven

Free Haven offers a community of servers called the servnet. Despite the name, all servers count the
same, and within the servnet Free Haven is a peer-to-peer system. There are no "clients" in the old
client/server sense; the closest approximation are users looking for files and potential publishers.
Users query the entire servnet at once, not any single server in particular. Potential publishers do
convince a single server to publish a document, but the actual publishing of a document is done by a
server itself in a peer-to-peer fashion.

All of these entities - server, reader, and publisher - make up the Free Haven players. Thanks to
pseudonymity, nobody knows where any server is located - including the one they use as their entry
point to the system. Users query the system via broadcast.

Servers don't have to accept just any document that publishers upload to them. That would permit
selfish or malicious people to fill up the available disk space. Instead, servers form contracts to store
each other's material for a certain period of time.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 106

Successfully fulfilling a contract increases a server's reputation and thus its ability to store some of its
own data on other servers. This gives an incentive for each server to behave well, as long as cheating
servers can be identified. We illustrate a technique for identifying cheating servers in Section 12.3.9.
In Section 12.3.11, we discuss the system that keeps track of trust in each server.

Some of these contracts are formed when a user inserts new data into the servnet through a server she
operates. Most of them, however, are formed when two servers swap parts of documents (shares) by
trading. Trading allows the servnet to be dynamic in the sense that servers can join and leave easily
and without special treatment. To join, a server starts building up a reputation by storing shares for
others - we provide a system where certain servers can act as introducers in order to smoothly add
new servers. To leave, a server trades away all of its shares for short-lived shares, and then waits for
them to expire. The benefits and mechanisms of trading are described later in Section 12.3.7.

The following sections explain how the design of Free Haven allows it to accomplish its goals. Section
12.3.1 describes the design of the Free Haven system and the operations that it supports, including the
insertion and retrieval of documents. We describe some potential attacks in Section 12.4 and show
how well the design does (or does not) resist each attack. We then compare our design to other
systems aimed at anonymous storage and publication using the kinds of anonymity described in
Section 12.5, allowing us to distinguish systems that at first glance look very similar. We conclude with
a list of challenges for anonymous publication and storage systems, each of which reflects a limitation
in the current Free Haven design.

12.3.1 Elements of the system

This chapter focuses on Free Haven's publication system, which is responsible for storing and serving
documents. Free Haven also has a communications channel, which is responsible for providing
confidential and anonymous communications between parties. Since this communications channel is
implemented using preexisting systems that are fairly well known in the privacy community, we won't
discuss it here. On the other hand, the currently available systems are largely insufficient for our
accountability requirements; see Chapter 16.

The agents in our publication system are the author, publisher, server, and reader. As we stated in
Section 12.2, authors are agents that produce documents and wish to store them in the service,
publishers place the documents in the storage system, servers are computers that store data for
authors, and readers are people who retrieve documents from the service.

These agents know each other only by their pseudonyms and communicate only using the secure
communications channel. Currently, the pseudonyms are provided by the Cypherpunks remailer
network,[3] and the communications channel consists of remailer reply blocks provided by that
network. Each server has a public key and one or more reply blocks, which together can be used to
provide secure, authenticated, pseudonymous communication with that server. Every machine in the
servnet has a database that contains the public keys and reply blocks of other servers in the servnet.

[3] David Mazieres and M. Frans Kaashoek (1998), "The Design and Operation of an E-mail Pseudonym Server,"
5th ACM Conference on Computer and Communications Security.

As we said in Section 12.3, documents are split into pieces and stored on different servers; each piece
of a document is called a share. Unlike Publius or Freenet, servers in Free Haven give up something
(disk space) and get other servers' disk space in return. In other words, you earn the right to store your
data on the rest of the servnet after you offer to store data provided by the rest of the servnet.

The servnet is dynamic: shares move from one server to another every so often, based on each server's
trust of the others. The only way to introduce a new file into the system is for a server to use (and thus
provide) more space on its local system. This new file will migrate to other servers by the process of
trading.

Publishers assign an expiration date to documents when they are published; servers make a promise
to keep their shares of a given document until its expiration date is reached. To encourage honest
behavior, some servers check whether other servers "drop" data early and decrease their trust of such
servers. This trust is monitored and updated by use of a reputation system. Each server maintains a
database containing its perceived reputation of the other servers.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 107

12.3.2 Storage

When an author (call her Alice) wishes to store a new document in Free Haven, she must first identify
a Free Haven server that's willing to store the document for her. Alice might do this by running a
server herself. Alternatively, some servers might have public interfaces or publicly available reply
blocks and be willing to publish data for others.

12.3.3 Publication

To introduce a file f into the servnet, the publishing server first splits it into shares. Like the Publius
algorithm described in Chapter 11, we use an algorithm that creates a large number (n) of shares but
allows the complete document to be recreated using a smaller number (k) of those shares. We use
Rabin's information dispersal algorithm (IDA)[4] to break the file into shares f1...fn. (For any integer i,
the notation fi indicates share i of document f.)

[4] Michael O. Rabin (1989), "Efficient Dispersal of Information for Security, Load Balancing, and Fault
Tolerance," Journal of the ACM, vol. 36, no. 2, pp. 335-348.

The server then generates a key pair (PKdoc,SKdoc), constructs and signs a data segment for each
share, and inserts these shares into its local server space. Attributes in each share include a
timestamp, expiration information, hash(PKdoc) (a message digest or hash of the public key from the
key pair[5]), information about share numbering, and the signature itself.

[5] Chapter 15 describes the purpose of message digests. Briefly, the digest of any data item can be used to prove
that the data item has not been modified. However, no one can regenerate the data item from the digest, so the
data item itself remains private to its owner.

The robustness parameter k should be chosen based on some compromise between the importance of
the file and the size and available space. A large value of k relative to n makes the file more brittle,
because it will be unrecoverable after a few shares are lost. On the other hand, a smaller value of k
implies a larger share size, since more data is stored in each share.

We maintain a content-neutral policy toward documents in the Free Haven system. That is, each
server agrees to store data for the other servers without regard for the legal or moral issues for that
data in any given jurisdiction. For more discussion of the significant moral and legal issues that
anonymous systems raise, see the first author's master's degree thesis.[6]

[6] Roger Dingledine (2000), The Free Haven Project, MIT master's degree thesis,
http://freehaven.net/papers.html.

12.3.4 Retrieval

Documents in Free Haven are indexed by the public key PKdoc from the key pair that was used to sign
the shares of the document. Readers must locate (or be running) a server that performs the document
request. The reader generates a key pair (PKclient,SKclient) for this transaction, as well as a one-time
remailer reply block. The servnet server broadcasts a request containing a message digest or hash of
the document's public key, hash(PKdoc), along with the client's public key, PKclient, and the reply
block. This request goes to all the other servers that the initial server knows about. These broadcasts
can be queued and then sent out in bulk to conserve bandwidth.

Each server that receives the query checks to see if it has any shares with the requested hash of PKdoc.
If it does, it encrypts each share using the public key PKclient enclosed in the request and then sends
the encrypted share through the remailer to the enclosed address. These shares will magically arrive
out of the ether at their destination; once enough shares arrive (k or more), the client recreates the file
and is done.

12.3.5 Share expiration

Each share includes an expiration date chosen at share creation time. This is an absolute (as opposed
to relative) timestamp indicating the time after which the hosting server may delete the share with no
ill consequences. Expiration dates should be chosen based on how long the publisher wants the data to
last; the publisher has to consider the file size and likelihood of finding a server willing to make the
trade.

http://freehaven.net/papers.html

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 108

By allowing the publisher of the document to set its expiration time, Free Haven distinguishes itself
from related works such as Freenet and Mojo Nation that favor frequently requested documents. We
think this is the most useful approach to a persistent, anonymous data storage service. For example,
Yugoslav phone books are currently being collected "to document residency for the close to one
million people forced to evacuate Kosovo";[7] those phone books might not have survived a popularity
contest. The Free Haven system is designed to provide privacy for its users. Rather than being a
publication system aimed at convenience like Freenet, it is designed to be a private, low-profile
storage system.

[7] University of Michigan News and Information Services, "Yugoslav Phone Books: Perhaps the Last Record of a
People," http://www.umich.edu/~newsinfo/Releases/2000/Jan00/r012000e.html.

12.3.6 Document revocation

Some publishing systems, notably Publius, allow for documents to be "unpublished" or revoked.
Revocation has some benefits. It allows the implementation of a read/write filesystem, and published
documents can be updated as newer versions became available.

Revocation could be implemented by allowing the author to come up with a random private value x
and then publishing a hash of it inside each share. To revoke the document, the author could
broadcast his original value x to all servers as a signal to delete the document.

On the other hand, revocation allows new attacks on the system. Firstly, it complicates accountability.
Revocation requests may not reach all shares of a file, due either to a poor communication channel or
to a malicious adversary who sends unpublishing requests only to some members of the servnet.
Secondly, authors might use the same hash for new shares and thus "link" documents. Adversaries
might do the same to make it appear that the same author published two unrelated documents.
Thirdly, the presence of the hash in a share assigns "ownership" to a share that is not present
otherwise. An author who remembers his x has evidence that he was associated with that share, thus
leaving open the possibility that such evidence could be discovered and used against him later.

One of the most serious arguments against revocation was raised by Ross Anderson.[8] If the capability
to revoke exists, an adversary has incentive to find who controls this capability and threaten or torture
him until he revokes the document.

[8] Ross Anderson, "The Eternity Service," http://www.cl.cam.ac.uk/users/rja14/eternity/eternity.html.

We could address this problem by making revocation optional: the share itself could make it clear
whether that share can be unpublished. If no unpublishing tag is present, there would be no reason to
track down the author. (This solution is used in Publius.) But this too is subject to attack: If an
adversary wishes to create a pretext to hunt down the publisher of a document, he can republish the
document with a revocation tag and use that as "reasonable cause" to target the suspected publisher.

Because the ability to revoke shares may put the original publisher in increased physical danger, as
well as allow new attacks on the system, we chose to leave revocation out of the current design.

12.3.7 Trading

In the Free Haven design, servers periodically trade shares with each other. There are a number of
reasons why servers trade:

To provide a cover for publishing

If trades are common, there is no reason to assume that somebody offering a trade is the
publisher of a share. Publisher-anonymity is enhanced.

To let servers join and leave

Trading allows servers to exit the servnet gracefully by trading for short-lived shares and then
waiting for them to expire. This support for a dynamic network is crucial, since many of the
participants in Free Haven will be well-behaved but transient relative to the duration of the
longer-lived shares.

To permit longer expiration dates

Long-lasting shares would be rare if trading them involved finding a server that promised to
be available for the next several years.

http://www.umich.edu/~newsinfo/Releases/2000/Jan00/r012000e.html
http://www.cl.cam.ac.uk/users/rja14/eternity/eternity.html

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 109

To accommodate ethical concerns of server operators

Frequent trading makes it easy and unsuspicious for server operators to trade away a
particular piece of data with which they do not wish to be associated. If the Catholic Church
distributes a list of discouraged documents, server operators can use the hash of the public
key in each share to determine if that document is in the list and then trade away the share
without compromising either their reputation as a server or the availability of the document.
In a non-dynamic environment, the server would suffer a reputation hit if it chose not to keep
the document. While we do not currently offer this functionality, trading allows this flexibility
if we need it down the road. In particular, the idea of servers getting an "ISP exemption" for
documents they hold currently seems very dubious.

To provide a moving target

Encouraging shares to move from server to server through the servnet means that there is
never any specific, static target to attack.

The frequency of trading should be a parameter set by the server operator. When server Alice wants to
make a trade, it chooses another server, Bob from its list of known servers (based on reputation) and
offers a share x and a request for size or duration of a return share. If Bob is interested, it responds
with a share y of its own.

Trades are considered "fair" based on the two-dimensional currency of size × duration. That is, the
bigger the size and the longer the document is to be held, the more expensive the trade becomes. The
price is adjusted based on the preferences of the servers involved in the trade.

The negotiation is finalized by each server sending an acknowledgment of the trade (including a
receipt, as described in Section 12.3.8) to the other. In addition, each server sends a receipt to both the
buddy of the share it is sending and the buddy of the share it is receiving; buddies and the
accountability they provide are described later in Section 12.3.9. Thus, the entire trading handshake
takes four rounds: the first two to exchange the shares themselves, and the next two to exchange
receipts while at the same time sending receipts to the buddies.

By providing the receipt on the third round of the trading handshake, Alice makes a commitment to
store the share y. Similarly, the receipt that Bob generates on the fourth round represents a
commitment to store the share x. Bob could cheat Alice by failing to continue the protocol after the
third step; in this case, Alice has committed to keeping the share from Bob, but Bob has not
committed to anything. At this point, Alice's only recourse is to broadcast a complaint against Bob and
hope that the reputation system causes others to recognize that Bob has misbehaved. The alternative
is to use a fair exchange protocol, which is unreasonably communications-intensive without a trusted
third party.

When Alice trades a share to server Bob, Alice should keep a copy of the share around for a while, just
in case Bob proves untrustworthy. This will increase the amount of overhead in the system by a factor
of two or so (depending on duration), but provides greatly increased robustness. In this case, when a
query is done for a share, the system responding should include a flag for whether it believes itself to
be the "primary provider" of the data or just happens to have a copy still lying around. The optimum
amount of time requires further study.

A diagram describing a trade is given in Figure 12.1. In this diagram, server Alice starts out in
possession of share Gitaw - that is, share w of document Gita - and server Bob starts out in possession
of document Tuney. In this case, server Charlie has share x of document Gita, and server David has
share z of document Tune. w and x are buddies, and y and z are buddies.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 110

Figure 12.1. Trade handshake

12.3.8 Receipts

A receipt contains a hash of the public keys for the source server and the destination server,
information about the share traded away, information about the share received, and a timestamp. For
each share, it includes a hash of that document's key, which share number it was, its expiration date,
and its size.

This entire set of information about the transaction is signed by server A. If B (or any other server) has
to broadcast a complaint about the way A handled the transaction, furnishing this receipt along with
the complaint will provide some rudimentary level of "proof" that B is not fabricating its complaint.
Note that the expiration date of both shares is included within the receipt, and the signature makes
this value immutable. Thus, other servers observing a receipt can easily tell whether the receipt is still
"valid" - that is, they can check to see whether the share is still supposed to be kept on A. The size of
each share is also included, so other servers can make an informed decision about how influential this
transaction should be on their perceived reputation of the two servers involved in the trade.

We really aren't treating the receipt as proof of a transaction, but rather as proof of half of a
transaction - an indication of a commitment to keep a given share safe. This is because the trading
protocol is not bulletproof: The fact that Alice has a receipt from Bob could mean that they performed
a transaction, or it could mean that they performed 3 out of the 4 steps of the transaction, and then
Alice cheated Bob and never gave him a receipt. Thus, the most a given server can do when it detects a
misbehaving server is broadcast a complaint and hope the reputation system handles it correctly.

12.3.9 Accountability and the buddy system

Malicious servers can accept document shares and then fail to store them. If enough shares are lost,
the document is unrecoverable. Malicious servers can continue their malicious behavior unless there
are mechanisms in place for identifying and excising them.

We've designed a buddy system that creates an association between two shares within a given
document. Each share is responsible for maintaining information about the location of the other
share, or buddy. When a share moves, it notifies its buddy,[9] as described earlier in Section 12.3.7.

[9] More precisely, it notifies both the server it's moving from and the server it's moving to.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 111

Periodically, a server holding a given share should query for its buddy, to make sure its buddy is still
alive. Should the server that is supposed to contain its buddy stop responding, the server with the
share making the query is responsible for reporting an anomaly. This server announces which server
had responsibility for the missing share when it disappeared. The results of this announcement are
described later in this chapter Section 12.3.11.

We considered allowing abandoned shares to optionally spawn a new share if their buddies disappear,
but we discarded this notion. Buddy spawning would make the service much more robust, since lost
shares could be regenerated. However, such spawning could cause an exponential population
explosion of shares for the wrong reasons. If two servers are out of touch for a little while but are not
misbehaving or dead, both shares will end up spawning new copies of themselves. This is a strong
argument for not letting shares replicate.

When a share x moves to a new machine, there are two " buddy notifications" sent to its buddy x'. But
since the communications channel we have chosen currently has significant latency, a notification to x'
might arrive after x' has already been traded to a new server. The old server is then responsible for
forwarding these buddy notifications to the new server that it believes currently holds x'. Since the old
server keeps a receipt as a record of the transaction, it can use this information to remember the new
location of x'. The receipt, and thus the forwarding address, is kept by the old server until the share's
expiration date has passed.

When a buddy notification comes in, the forwarder is checked and the notification is forwarded if
appropriate. This forwarding is not done in the case of a document request, since this document
request has presumably been broadcast to all servers in the servnet.

We have attempted to distinguish between the design goals of robustness and accountability. The
system is quite robust, because a document cannot be lost until a high threshold of its shares has been
lost. Accountability, in turn, is provided by the buddy checking and notification system among shares,
which protects against malicious or otherwise ill-behaving servers. Designers can choose the desired
levels of robustness and accountability independently.

12.3.10 Communications channel

The Free Haven design requires a means of anonymously passing information between agents. One
such means is the remailer network, including the Mixmaster remailers first designed by Lance
Cottrell. This system is described in fairly nontechnical terminology in Chapter 7.

Other examples of anonymous communication channels are Onion Routing[10] and Zero-Knowledge
Systems' Freedom.[11] David Martin's doctoral thesis offers a comprehensive overview of anonymous
channels in theory and practice.[12]

[10] P.F. Syverson, D.M. Goldschlag, and M.G. Reed (1997), "Anonymous Connections and Onion Routing,"
Proceedings of the 1997 IEEE Symposium on Security and Privacy.

[11] Ian Goldberg and Adam Shostack (1999), Freedom Network 1.0 Architecture.

[12] David Michael Martin (2000), "Network Anonymity," Boston University Ph.D. thesis,
http://www.cs.du.edu/~dm/anon.html.

The first implementation of the Free Haven design will use the Cypherpunks and Mixmaster remailers
as its anonymous channel.

12.3.11 Reputation system

The reputation system in Free Haven is responsible for creating accountability. Accountability in a
system so committed to anonymity is a difficult task. There are many opportunities to try to take
advantage of other servers, such as neglecting to send a receipt after a trade or wrongly accusing
another server of losing a share. Some of the attacks are quite insidious and complex. The history and
issues to consider when developing a reputation system can be found in much more detail in Chapter
16.

http://www.cs.du.edu/~dm/anon.html

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 112

Careful trust management should enable each server to keep track of which servers it trusts. Given the
large number of shares into which documents are divided - and the relatively few shares required to
reconstitute a document - no document should be irretrievably lost unless an astoundingly large
number of the servers prove evil.

Each server needs to keep two values that describe each other server it knows about: reputation and
credibility. Reputation signifies a belief that the server in question will obey the Free Haven Protocol.
Credibility represents a belief that the utterances of that server are valuable information. For each of
these two values, each server also needs to maintain a confidence rating. This represents the
"stiffness" of the reputation and credibility values.

Servers should broadcast referrals in several circumstances, such as when they log the honest
completion of a trade, when they suspect that a buddy of a share they hold has been lost, and when the
reputation or credibility values for a server change substantially.

12.3.12 Introducers

Document request operations are done via broadcast. Each server wants to store its documents on a
lot of servers, and if it finds a misbehaving server it wants to complain to as many as possible. But how
do Free Haven servers discover each other?

The reputation system provides an easy method of adding new servers and removing inactive ones.
Servers that have already established a good reputation act as introducers. New servers can contact
these introducers via the anonymous communication channel; the introducers will then broadcast
referrals of this new server. This broadcast by itself does not imply an endorsement of the new server's
honesty or performance; it is simply an indication that the new server is interested in performing
some trades to increase its reputation. Likewise, a server may mark another as "dormant" given some
threshold of unanswered requests. Dormant servers are not included in broadcasts or trade requests.
If a dormant server starts initiating requests again, the other servers conclude it is not actually
dormant and resume sending broadcasts and offering trades to this server.

12.3.13 Implementation status

The Free Haven Project is still in its design stages. Although we have a basic proof-of-concept
implementation, we still wish to firm up our design, primarily in the areas of accountability and
bandwidth overhead. Before deploying any implementation, we want to convince ourselves that the
Free Haven system offers better anonymity than current systems. Still, the design is sufficiently simple
and modular, allowing both a straightforward basic implementation and easy extensibility.

12.4 Attacks on Free Haven

Anonymous publishing and storage systems will have adversaries. The attacks and pressures that
these adversaries employ might be technical, legal, political, or social in nature. The system's design
and the nature of anonymity it provides also affect the success of nontechnical attacks.

We now consider possible attacks on the Free Haven system based on their respective targets: the
availability of documents and servnet operation, the accountability offered by the reputation system,
and the various aspects of anonymity relevant to anonymous storage and publication, as described
earlier in Section 12.2. For a more in-depth consideration of attacks, we refer to Dingledine's thesis.[13]

[13] Dingledine, op. cit.

This list of attacks is not complete. In particular, we do not have a systematic discussion of what kinds
of adversaries we expect. Such a discussion would begin with the most powerful adversaries possible,
asking questions like, "What if the adversary controls all but one of the servers in the servnet?" and
scaling back from there. In analyzing systems like Free Haven, it is not enough to look at the everyday,
plausible scenarios - every effort must be made to provide security against adversaries more powerful
than the designers ever expect, because in real life, adversaries have a way of being more powerful
than anyone ever expects.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 113

12.4.1 Attacks on documents or the servnet

We've considered a wide variety of ways for adversaries to stop Free Haven or make it less effective,
and some ways that we might prevent such attacks:

Physical attack

Destroy a server.

Prevention: Because we are breaking documents into shares, and only k of n shares are
required to reconstruct the document, an adversary must find and destroy many servers
before availability is compromised.

Legal action

Find a physical server and prosecute the owner based on its contents.

Prevention: Because of the passive-server document-anonymity property that the Free Haven
design provides, the servnet operator may be able to plausibly deny knowledge of the data
stored on his computer. This depends on the laws of the country in question.

Social pressure

Bring various forms of social pressure against server administrators. Claim that the design is
patented or otherwise illegal. Sue the Free Haven Project and any known server
administrators. Conspire to make a cause "unpopular," convincing administrators that they
should manually prune their data. Allege that they "aid child pornographers" and other
socially unacceptable activities.

Prevention: We rely on the notion of jurisdictional arbitrage. Information illegal in one place
is frequently legal in others. Free Haven's content-neutral policies mean that there is no
reason to expect that the server operator has looked at the data she holds, which might make
it more difficult to prosecute. We further rely on having enough servers in enough different
jurisdictions that organizations cannot conspire to bully a sufficient fraction of servers to
make Free Haven unusable.

Denial of service

Attack the servnet by continued flooding of queries for data or requests to join the servnet.
These queries may use up all available bandwidth and processing power for a server.

Prevention: We must assume that our communications channel has adequate protection and
buffering against this attack, such as the use of client puzzles or other protections described in
Chapter 16. Most communications channels we are likely to choose will not protect against
this attack. This is a real problem.

Data flooding

Attempt to flood the servnet with shares, to use up available resources.

Prevention: The trading protocol implicitly protects against this type of denial of service
attack against storage resources. The ability to insert shares, whether "false" or valid, is
restricted to trading: that server must find another that trusts its ability to provide space for
the share it would receive in return.

Similarly, the design provides protection against the corrupting of shares. Altering (or
"spoofing") a share cannot be done, because the share contains a particular public key and is
signed by the corresponding private key. Without knowledge of the original key that was used
to create a set of shares, an adversary cannot forge new shares for a given document.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 114

Share hoarding

Trade until a sufficient fraction of an objectionable document is controlled by a group of
collaborating servers, and then destroy this document. Likewise, a sufficiently wealthy
adversary could purchase a series of servers with very large drives and join the servnet,
trading away garbage for "valuable data." He can trade away enough garbage to have a
significant portion of all the data in the servnet on his drives, subject to deletion.

Prevention: We rely on the overall size of the servnet to make it unlikely or prohibitively
expensive for any given server or group of collaborating servers to obtain a sufficient fraction
of the shares of any given document. The failure of this assumption would leave us with no
real defense.

12.4.2 Attacks on the reputation system

While attacks against the reputation system[14] are related to attacks directly against servers, their goal
is not to directly affect document availability or servnet operation. Rather, these attacks seek to
compromise the means by which we provide accountability for malicious or otherwise misbehaving
servers.

[14] Parts of this section were originally written by Brian T. Sniffen in "Trust Economies in the Free Haven
Project," May 2000, http://theory.lcs.mit.edu/~cis/cis-theses.html.

Some of these attacks, such as temporary denials of service, have negative repercussions on the
reputation of a server. These repercussions might be qualified as "unfair," but are best considered in
the following light: if a server is vulnerable to these attacks, it may not be capable of meeting the
specifications of the Free Haven Protocol. Such a server is not worthy of trust to meet those
specifications. The reputation system does not judge intent, merely actions. Following are some
possible attacks on the reputation system, and ways that we might prevent such attacks:

Simple betrayal

An adversary may become part of the servnet, act correctly long enough to gain a good
reputation, and then betray this trust by deleting files before their expiration dates.

Prevention: The reputation economy is designed to make this unprofitable. In order to obtain
enough "currency" to store data, a server must reliably store data for others. Because a corrupt
server must store at least as much data for others as the amount of data it deletes, such an
adversary at worst does no overall harm to the system and may even help.

A server that engages in this behavior should be caught by the buddy system when it deletes
each share.

Buddy coopting

If a corrupt server (or group of colluding servers) can gain control of both a share and its
buddy, it can delete both of them without repercussions.

Prevention: We assume a large quantity of shares in the servnet, making buddy capture more
difficult. Servers also can modify reputation ratings if precise trading parameters, or constant
trading, suggests an attempt to capture buddies. More concretely, a possible work-around
involves separating the reply-block addresses for trading and for buddy checking, preventing
corrupt servers from acquiring the buddies of the shares they already have. Such an approach
adds complexity and possibly opens other avenues for attack.

False referrals

An adversary can broadcast false referrals, or even send them only to selected servers.

Prevention: The confidence rating of credibility can provide a guard against false referrals,
combined with a single-reporting policy (i.e., at most one referral per target per source is used
for reputation calculations).

http://theory.lcs.mit.edu/~cis/cis-theses.html

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 115

Trading receipt games

While we believe that the signed timestamps attest to who did what and when, receipt-based
accountability may be vulnerable to some attacks. Most likely, these will involve multiserver
adversaries engaging in coordinated bait-and-switch games with target servers.

Entrapment

There are several ways in which an adversary can appear to violate the protocols. When
another server points them out, the adversary can present receipts that show her wrong and
can accuse her of sending false referrals. A more thorough system of attestations and protests
is necessary to defend against and account for this type of attack.

12.4.3 Attacks on anonymity

There are a number of attacks that might be used to determine more information about the identity of
some entity in the system:

Attacks on reader-anonymity

An adversary might develop and publish on Free Haven a customized virus that automatically
contacts a given host upon execution. A special case of this attack would be to include mime-
encoded URLs in a document to exploit reader software that automatically loads URLs.
Another approach might be to become a server on both the servnet and the mix net and
attempt an end-to-end attack, such as correlating message timing with document requests.
Indeed, servers could claim to have a document and see who requests it, or simply monitor
queries and record the source of each query. Sophisticated servers might attempt to correlate
readers based on the material they download and then try to build statistical profiles and
match them to people (outside Free Haven) based on activity and preferences. We prevent
this attack by using each reply block for only one transaction.

Attacks on server-anonymity

Adversaries might create unusually large shares and try to reduce the set of known servers
that might have the capacity to store such shares. This attacks the partial anonymity of these
servers. An adversary could become a server and then collect routine status and participation
information (such as server lists) from other servers. This information might be combined
with extensive knowledge of the bandwidth characteristics and limitations of the Internet to
map servnet topology. By joining the mix net, an adversary might correlate message timing
with trade requests or reputation broadcasts. An alternate approach is simply to spread a
Trojan Horse or worm that looks for Free Haven servers and reports which shares they are
currently storing.

Attacks on publisher-anonymity

An adversary could become a server and log publishing acts, and then attempt to correlate
source or timing. Alternatively, he might look at servers that recently have published a
document and try to determine who has been communicating with them recently.

There are also entirely social attacks that can be very successful, such as offering a large sum of money
for information leading to the current location of a given document, server, reader, etc.

We avoid or reduce the threat of many of these attacks by using an anonymous channel that supports
pseudonyms for our communications. This prevents most or all adversaries from being able to
determine the source or destination of a given message or establish linkability between each endpoint
of a set of messages. Even if server administrators are subpoenaed or otherwise pressured to release
information about these entities, they can openly disclaim any knowledge.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 116

12.5 An analysis of anonymity

We describe the protections offered for each of the broad categories of anonymity. In Table 12.1, we
provide an overview of Free Haven and the different publishing systems that we examined. We
consider the level of privacy provided - computational (C) and perfect-forward (P-F) anonymity - by
the various systems.

Table 12.1, Anonymity properties of publishing systems

Project Publisher Publisher Reader Reader Server Server Document Query

 C P-F C P-F C P-F C C

Gnutella

Eternity
Usenet ?

Freenet ?

Mojo Nation ? ?

Publius

Free Haven

Computational anonymity means that an adversary with "reasonable" computing resources and
knowledge is unable to break the anonymity involved. The adversary may do anything it likes to try to
break the system but is limited in how much power it has; for example, it may not be able to break the
cryptography involved in building a system or be able to break into the computers of every single
machine running the system.

Perfect-forward anonymity is analogous to perfect-forward secrecy: A system is perfect-forward
anonymous if no information remains after a transaction is completed that could later identify the
participants if one side or the other is compromised. This notion is a little bit trickier - think of it from
the perspective of an adversary watching the system over a long period of time. Is there anything that
the adversary can discover from watching several transactions that he can't discover from watching a
single transaction?

Free Haven provides computational and perfect-forward author-anonymity, because authors
communicate with publishers via an anonymous channel. Servers trade with other servers via
pseudonyms, providing computational but not perfect-forward anonymity, as the pseudonyms can be
broken later. Because trading is constant, however, Free Haven achieves publisher-anonymity for
publishers trying to trade away all shares of the same document. The use of IDA to split documents
provides passive-server document-anonymity, but the public key embedded in each share (which we
require for authenticating buddy messages) makes it trivial for active servers to discover what they are
storing. Because requests are broadcast via an anonymous channel, Free Haven provides
computational reader-anonymity, and different reply blocks used and then destroyed after each
request provide perfect-forward reader-anonymity.

Gnutella fails to provide publisher-anonymity, reader-anonymity, or server-anonymity because of the
direct connections for actual file transfer. Because Gnutella servers start out knowing the intended
contents of each document they are offering, they also fail to provide document-anonymity.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 117

Eternity Usenet provides publisher-anonymity via the use of one-way anonymous remailers. Server-
anonymity is not provided, because every Usenet server that carries the Eternity newsgroup is a
server. Anonymity expert Adam Back, designer of the Eternity Usenet service, has pointed out that
passive-server document-anonymity can be provided by encrypting files with a key derived from the
URL; active servers might find the key and attempt to decrypt stored documents. Reader-anonymity is
not provided by open public proxies unless the reader uses an anonymous channel, because the proxy
can see what a user queries or downloads, and at what time. For local proxies, which connect to a
separate news server, however, the situation is better because the news server knows only what the
user downloads. Even so, this is not quite satisfactory, because the user can be tied by the server to the
contents of the Eternity newsgroup at a certain time.

Freenet achieves passive-server document-anonymity because servers are unable to reverse the hash
of the document name to determine the key with which to decrypt the document. For active-server
document-anonymity, the servers can check whether they are carrying a particular key but cannot
easily match a stored document to a key due to the hash function. Server-anonymity is not provided
because, given a document key, it is very easy to locate a server that is carrying that document -
querying any server at all will result in that server carrying the document! Because of the TTL and
Hops fields for both reading and publishing, it is also not clear that Freenet achieves publisher- or
reader-anonymity, although it is much better in these regards than Gnutella. We note that the most
recent Freenet design introduces randomized TTL and Hops fields in each request, and plans are in
the works to allow a Publish or Retrieve operation to traverse a mix net chain before entering the
Freenet system. These protections will make attacks based on tracking queries much more difficult.

Mojo Nation achieves document-anonymity, as described earlier, because the server holding a share
doesn't know how to reconstruct that document. The Mojo Nation design is amenable to integrating
publisher-anonymity down the road - a publisher can increase her anonymity by paying more Mojo
and chaining requests through participants that act as "relays." The specifics of prepaying the path
through the relays are not currently being designed. It seems possible that this technique could be
used to ensure reader-anonymity as well, but the payment issues are even more complex. Indeed, the
supplied digital cash model is not even anonymous currently; users need to uncomment a few lines in
the source, and this action breaks Chaum's patents.

Publius achieves document-anonymity because the key is split between n servers, and without
sufficient shares of the key, a server is unable to decrypt the document that it stores. The secret
sharing algorithm provides a stronger form of this anonymity (albeit in a storage-intensive manner),
since a passive server really can learn nothing at all about the contents of a document that it is helping
to store. Because documents are published to Publius through a one-way anonymous remailer, it
provides publisher-anonymity. Publius provides no support for protecting readers by itself, however,
and the servers containing a given file are clearly marked in the URL used for retrieving that file.
Readers can use a system such as ZKS Freedom or Onion Routing to protect themselves, but servers
may still be liable for storing "bad" data.

We see that systems can often provide publisher-anonymity via one-way communication channels,
effectively removing any linkability; removing the need for a reply pseudonym on the anonymous
channel means that there is "nothing to crack." The idea of employing a common mix net as a
communication channel for each of these publication systems is very appealing. We could leave most
of the anonymity concerns to the communication channel itself and provide a simple backend
filesystem or equivalent service to transfer documents between agents. Thus the design of the backend
system could be based primarily on addressing other issues such as availability of documents,
protections against flooding and denial of service attacks, and accountability in the face of this
anonymity.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 118

12.6 Future work

Our experience designing Free Haven revealed several problems that have no simple solutions; further
research is surely required. We state some of these problems here and refer to Dingledine's thesis[15]
for in-depth consideration:

[15] Dingledine, op. cit.

Deployed free low-latency pseudonymous channel

Free Haven requires pseudonyms in order to create server reputations. The only current
widely deployed channels that support pseudonyms seem to be the Cypherpunk remailer
network and ZKS Freedom mail. The Cypherpunk and ZKS Version 1 networks run over
SMTP and consequently have high latency. This high latency complicates protocol design. The
recently announced Version 2 of ZKS Freedom mail runs over POP and may offer more
opportunity for the kind of channel we desire.

Modelling and metrics

When designing Free Haven, we made some choices, such as the choice to include trading,
based on only our intuition of what would make a robust, anonymous system. A mathematical
model of anonymous storage would allow us to test this intuition and run simulations. We
also need metrics: Specific quantities that can be measured and compared to determine which
designs are better. For example, we might ask, "How many servers must be compromised by
an adversary for how long before any document's availability is compromised? Before a
specific targeted document's availability is compromised?" or, "How many servers must be
compromised by an adversary for how long before the adversary can link a document and a
publisher?" This modelling could draw from a wide variety of previous work.

Formal definition of anonymity

Closely related to the last point is the need to formalize the kinds of anonymity presented in
Section 12.2. By formally defining anonymity, we can move closer to providing meaningful
proofs that a particular system provides the anonymity we desire. We might leverage our
experience with cryptographic definitions of semantic security and nonmalleability to produce
similar definitions and proofs.[16] A first step in this direction might be to carefully explore the
connection remarked upon by Simon and Rackoff between secure multiparty computation
and anonymous protocols.[17]

[16] Oded Goldreich (1999). Modern Cryptography, Probabilistic Proofs, and Pseudo-Randomness.
Springer-Verlag.

[17] Simon and Rackoff (1993), "Cryptographic Defense Against Traffic Analysis," STOC 1993, pp. 672-
681.

Usability requirements and interface

We stated in the introduction that we began the Free Haven Project out of concern for the
rights of political dissidents. Unfortunately, at this stage of the project, we have contacted few
political dissidents and, as a consequence, do not have a clear idea of the usability and
interface requirements for an anonymous storage system. Our concern is heightened by a
recent paper which points out serious deficiencies in PGP's user interface.[18]

[18] Alma Whitten and J.D. Tygar (1999), "Why Johnny Can't Encrypt," USENIX Security 1999,
http://www.usenix.org/publications/library/proceedings/sec99/whitten.html.

Efficiency

It seems like nearly everyone is doing a peer-to-peer system or WWW replacement these days.
Which one will win? Adam Back pointed out that in many cases, the efficiency and perceived
benefit of the system is more important to an end user than its anonymity properties. This is a
major problem with the current Free Haven design: we emphasize a quality relatively few
potential users care about at the expense of something nearly everyone cares about. Is there a
way to create an anonymous system with a tolerable loss of perceived efficiency compared to
its non-anonymous counterpart? And what does "tolerable" mean, exactly?

We consider the above to be "challenge problems" for anonymous publication and storage systems.

http://www.usenix.org/publications/library/proceedings/sec99/whitten.html

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 119

12.7 Conclusion

Free Haven aims to solve a problem that no other system currently addresses - creating a
decentralized storage service that at the same time protects the anonymity of publishers, readers, and
servers, provides a dynamic network, and ensures the availability of each document for a publisher-
specified lifetime. We have made progress in identifying the requirements for each of these goals and
designing solutions that meet them.

The current Free Haven design is unfortunately unsuitable for wide deployment, because of several
remaining problems. The primary problem is efficiency - unless we can provide a sufficiently friendly
and efficient interface to the documents stored in the system, we will find ourselves with very few
servers. Indeed, since we need systems that are relatively reliable, we can't make as good use of typical
end-user machines as a system like Freenet can. This small number of servers will in turn decrease the
amount of robustness that our system offers.

Free Haven uses inefficient broadcasts for communication. A large step to address this problem is
coupling Free Haven with a widely deployed efficient file-sharing service such as Freenet or Mojo
Nation. Popular files will be highly accessible from within the faster service; Free Haven will answer
queries for less popular documents that have expired in this service.

Free Haven sets out to accomplish several goals not considered en masse by other peer-to-peer
publishing/storage systems: Flexibility, anonymity for all parties, content-neutral persistence of data,
and accountability. These ambitious goals are the root cause of existing design difficulties. Without
the requirement of long-term persistent storage, strong accountability measures are not as necessary.
Without these measures, computational overhead can be greatly lowered, making unnecessary many
communications that are used to manage reputation metrics. And without the requirement for such
anonymity and the resulting latency from the communications channel, readers could enjoy much
faster document retrieval. Yet, the study and emphasis of these ambitious goals are Free Haven's
contribution and importance in a rapidly evolving peer-to-peer digital world.

12.8 Acknowledgments

Professor Ronald Rivest provided invaluable assistance reviewing Roger's master's thesis and as
Michael's bachelor's thesis advisor and caused us to think hard about our design decisions. Professor
Michael Mitzenmacher made possible David's involvement in this project and provided insightful
comments on information dispersal and trading. Beyond many suggestions for overall design details,
Brian Sniffen provided the background for the reputation system (which we followed up with the
discussion of reputation systems in Chapter 16), and Joseph Sokol-Margolis was helpful in
considering attacks on the system. Andy Oram, our editor, was instrumental in turning this from an
academic paper into something that is actually readable. Adam Back and Theodore Hong commented
on our assessment of their systems and made our related work section much better. Furthermore, we
thank Susan Born, Nathan Mahn, Jean-François Raymond, Anna Lysyanskaya, Adam Smith, and
Brett Woolsridge for further insight and feedback.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 120

Part III: Technical Topics

In this part, project leaders choose various key topics in order to focus on the
problems, purposes, and promises of peer-to-peer technologies.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 121

Chapter 13. Metadata
Rael Dornfest, O'Reilly Network, and Dan Brickley, ILRT and RDFWeb

Today's Web is a great, big, glorious mess. Spiders, robots, screen-scraping, and plaintext searches are
standard practices that indicate a desperate attempt to draw arbitrary distinctions between needles
and hay. And they go only so far as the data we've taken the trouble to make available online.

Now peer-to-peer promises to turn your desktop, laptop, palmtop, and fridge into peers, chattering
away with one another and making swaths of their data stores available online. Of course, if every
single device on the network exposes even a small percentage of the resources it manages, it will
exacerbate the problem by piling on more hay and needles in heaps. How will we cope with the sudden
logarithmic influx of disparate data sources?

The new protocols being developed at breakneck speed for peer-to-peer applications also add to the
mess by disconnecting data from the fairly bounded arena of the Web and the ubiquitous port 80.
Loosening the hyperlinks that bind all these various resources together threatens to scatter hay and
needles to the winds. Where previously we had application user interfaces for each and every
information system, the Web gave us a single user interface - the browser - along with an organizing
principle - the hyperlink - that allowed us to reach all the material, at least in theory. Peer-to-peer
might undo all this good and throw us back into the dark ages of one application for each application
type or application service. We already have Napster for MP3s and work has begun on Docster for
documents - can JPEGster and Palmster be very far off?

And how shall we search these disparate, transitory clumps of data, winking in and out of existence as
our devices go on and offline, to say nothing of finding the clumps in the first place? Napster is held up
as a reassurance that everything can work out on its own. The inherent ubiquity of any one MP3 track
gets around the problem of resource transience. However, isn't this abundance simply the direct result
of its rather constrained problem space? MP3 files are popular, and MP3 rippers make it easy for huge
numbers of people to create decent-quality files. As industry attention turns to peer-to-peer
technologies, and as the content within these systems becomes more heterogeneous, the technology
will have to accommodate content that is harder to accumulate and less popular; the critical mass of
replicated files will not be attained. Familiar problems associated with finding a particular item may
reemerge, this time in a decentralized environment rather than around the familiar Web hub.

Whether or not peer-to-peer fares any better than the Web, it certainly presents a new challenge for
people concerned with describing and classifying information resources. Peer-to-peer provides a rich
environment and a promising early stage for putting in place all we've learned about metadata over
the past decade.

So, before we go much further, what exactly is metadata?

13.1 Data about data

Metadata is the stuff of card catalogues, television guides, Rolodexes, taxonomies, tables of contents -
to borrow a Zen concept, the finger pointing at the moon. It is labels like "title," "author," "type,"
"height," and "language" used to describe a book, person, television program, species, etc. Metadata is,
quite simply, data about data.

There are communities of specialists who have spent years working on - and indeed solving some of -
the hard problems of categorizing, cataloguing, and making it possible to find things. Even in the early
days of the Web, developers enlisted the help of these information scientists and architects, realizing
that otherwise we'd be in for quite a mess. The Dublin Core Metadata Initiative (DMCI)[1] is just such
an effort. An interdisciplinary, international group founded in 1994, the DCMI's charter is to use a
minimal set of metadata constructs to make it easier to find things on the Web. We'll take a closer look
at Dublin Core in a moment.

[1] Dublin Core Metadata Initiative, http://www.dublincore.org/; "Metadata With a Mission: Dublin Core",
http://www.xml.com/pub/; Dublin Core Metadata Element Set, Version 1.1, http://purl.org/dc/elements/1.1.

http://www.dublincore.org/
http://www.xml.com/pub/
http://purl.org/dc/elements/1.1

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 122

Yet, while well-understood systems exist for cataloguing and classifying some classic types of
information, such as books (e.g., MARC records and the Dewey Decimal System), equivalent facilities
were late to arrive on the Web - some would say far too late. They are emerging, however, just in time
for peer-to-peer.

13.2 Metadata lessons from the Web

Peer-to-peer's power lies in its willingness to rethink old assumptions and reinvent the way we do
things. This can be quite constructive, even revolutionary, but it also risks being hugely destructive in
that we can throw out lessons previously learned from the web experience. In particular, we know that
the Web suffered because metadata infrastructure was added relatively late (1997+), an add-on
situation that had an impact on various levels.

The Web burst onto the scene before we managed to agree on common descriptive practices - ways of
describing "stuff." Consequently, the vast majority of web-related tools lack any common
infrastructure for specifying or using the properties of web content. WYSIWYG HTML editors don't go
out of their way to make their metadata support (if any) visible, nor do they request metadata for a
document when authors press the "Save" button. Search engines provide little room for registering
metadata along with their associated sites. Robots and spiders often discard any metadata in the form
of HTML <meta> tags they might find. This has resulted in an enormous hodgepodge of a data set with
little rhyme or reason. The Web is hardly the intricately organized masterpiece represented by its
namesake in nature.

Early peer-to-peer applications come from relatively limited spheres (MP3 file-sharing, messaging,
Weblogs, groupware, etc.) with pretty well understood semantics and implicit metadata - we know it's
an MP3 because it's in Napster. These communities have the opportunity, before heterogeneity and
ubiquity muddy the waters, to describe and codify their semantics to allow for better organization,
extraction, and search functionality down the road. Yet even at this early stage, we're already seeing
the same mistakes creeping in.

13.2.1 Resource description

Until recently, the means available to content providers for describing the resources they make
available on the Web have been inconsistent at best. About the only consistent metadata in an HTML
document is the <title> element, which provides only a hint at best as to the content of the page.
HTML's <meta> element is supposed to provide a method for embedding arbitrary metadata - but that
creates more of a problem than a solution, because applications, books, articles, tutorials, and
standards bodies alike express little guidance as to what good metadata should look like and how best
to express it.

The work of the aforementioned Dublin Core offers a wonderful start. The Dublin Core Metadata
Element Set is a set of 15 elements (title, description, creator, date, publisher, etc.) that are useful in
describing almost any web resource. Rather than attempt to define semantics for specific instances
and situations, the DCMI focused on the commonalities found in resources of various shapes and
flavors. The Dublin Core may just as easily be used to describe "a journal article in PDF format," "an
MPEG encoding of an episode of Buffy the Vampire Slayer recorded on a hacked TiVO," or "a
healthcare speech given by the U.S. President on March 2, 2000."

Example 13.1 shows a typical appearance of Dublin Core metadata in a fragment of HTML. Each
<meta> tag contains an element of metadata defined by Dublin Core.

While useful up to a point, the original HTML mechanism for embedding metadata has proven
limited. There is no built-in convention to control the names given to the various embedded metadata
fields. As a consequence, HTML <meta> tags can be ambiguous: we don't know which sense of "title"
or "date" is being used.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 123

Example 13.1. Dublin Core metadata in an HTML document

<html>
 <head>
 <title>Distributed Metadata</title>
 <meta name="description" content="This article addresses...">
 <meta name="subject" content="metadata, rdf, peer-to-peer">
 <meta name="creator" content="Dan Brickley and Rael Dornfest">
 <meta name="publisher" content="O'Reilly & Associates">
 <meta name="date" content="2000-10-29T00:34:00+00:00">
 <meta name="type" content="article">
 <meta name="language" content="en-us">
 <meta name="rights" content="Copyright 2000, O'Reilly & Associates, Inc.">
 ...
 </head>
 ...

XML represents another evolution in web architecture, and along with XML come namespaces.
Example 13.2 illustrates some namespaces in use. Like peer-to-peer, namespaces exemplify
decentralization. We can now mix descriptive elements defined by independent communities, without
fear of naming clashes, since each piece of data is tied a URI that provides a context and definition for
it.

Example 13.2. Dublin Core metadata in an XML document

<?xml version="1.0" encoding="iso-8859-1"?>

<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns="http://purl.org/rss/1.0/"
>
...
 <item rdf:about="http://www.oreillynet.com/.../metadata.html">
 <title>Distributed Metadata</title>
 <link>http://www.oreillynet.com/.../metadata.html </link>
 <dc:description>This article addresses...</dc:description>
 <dc:subject>metadata, rdf, peer-to-peer </dc:subject>
 <dc:creator>Dan Brickley and Rael Dornfest </dc:creator>
 <dc:publisher>O'Reilly & Associates</dc:publisher>
 <dc:date>2000-10-29T00:34:00+00:00</dc:date>
 <dc:type>article</dc:type>
 <dc:language>en-us</dc:language>
 <dc:format>text/html</dc:format>
 <dc:rights>Copyright 2000, O'Reilly & Associates, Inc.</dc:rights>
 ...
 </item>
 ...

In the example above, Dublin Core elements are prepended by the namespace name "dc:". The name
is associated with the URI http://purl.org/dc/elements/1.1 by the "xmlns:dc" construct at the
beginning of the document. "dc:subject" is therefore understood to mean "the subject element in the
dc namespace as defined at http://purl.org/dc/elements/1.1."

Namespaces let each author weave additional semantics required by particular types of resources or
appropriate to a specific realm with the more general resource description such as that provided by
the Dublin Core. In the book world, an additional definition might be the ISBN or Library of Congress
number, while in the music world, it might be some form of compact disc identifier.

Now, we're not insisting that each and every document be described using all 15 Dublin Core elements
and along various other lines as well. Something to keep in mind, however, is that every bit of
metadata provides a logarithmic increase in available semantics, making resources less ambiguous
and easier to find. Peer-to-peer application developers may then use the descriptions provided by a
resource rather than having to resort to guesswork or such extremes as sequestering resources of a
certain type to their own network.

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://purl.org/dc/elements/1.1/
http://purl.org/rss/1.0/
http://www.oreillynet.com/.../metadata.html
http://www.oreillynet.com/.../metadata.html
http://purl.org/dc/elements/1.1
http://purl.org/dc/elements/1.1

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 124

13.2.2 Searching

Searching is the bane of the Web's existence, despite the plethora of search tools - Yahoo currently
lists 193 registered web search engines.[2] Search engines typically suffer from a lack of semantics on
both the gathering and querying ends. On the gathering side, search engines typically utilize one of
two methods:

[2] Yahoo!'s "Search Engines" category,
http://dir.yahoo.com/computers_and_internet/internet/world_wide_web/searching_the_web/

1. Internet directories typically ask content providers to register their web sites through an
online form. Unfortunately, such forms don't provide slots for metadata such as publisher,
author, subject keywords, etc.

2. Search engines scour the Web with armies of agents/spiders, scraping pages and following
links for hints at semantics. Sadly, even if a site does embed metadata (such as HTML's
<meta> tags) in its documents, this information is often ignored.

On the querying end, while some sites do make an attempt to narrow the context for particular word
searches (using such categories as "all the words," "any of the words," or "in the title"), successful
searching still comes down to keywords and best guess. It's virtually impossible to disambiguate
between concepts like "by" and "about" - "find me all articles written by Andy Oram" versus "find me
anything about Andy Oram." Queries like "find me anything on Perl written by the person whose
email address is larry@wall.org" are out of the question.

While the needs of users clearly call for semantically rich queries, some peer-to-peer applications and
systems are doing little to provide even the simplest of keyword searches. The categories "artist" and
"title," which may be enough within Napster, will fold up and collapse in more heterogeneous peer-to-
peer environments populated by MP3s, documents, images, and the various other data types found on
the Web today. While Freenet does provide the boon of an optional accompanying metadata file to
accompany any resource added to the cloud, this is currently of minimal use for a couple of reasons: a)
No guidance exists on what this metadata file should contain, and b) There is currently no search
functionality. Gnutella's InfraSearch allows for a wonderfully diverse interpretation and subsequent
processing of search terms: While a dictionary node sees "country" as a term to be looked up, an MP3
node may see it as a music genre. Unfortunately, however, the InfraSearch user interface still provides
only a simple text entry field and little chance for the user to be an active participant in defining the
parameters of his or her search.

Hopefully we'll see peer-to-peer applications emerging that empower both the content provider and
end user by providing semantically rich environments for the description and subsequent retrieval of
content. This should be reflected both in the user interface and in the engine itself.

13.3 Resources and relationships: A historical overview

So where does this all leave us? How do we infuse our peer-to-peer applications with the metadata
lessons learned from the Web?

The core of the World Wide Web Consortium's (W3C) metadata vision is a concept known as the
Semantic Web . This is not a separate Web from the one we currently weave and wander, but a layer of
metadata providing richer relationships between the ostensibly disparate resources we visit with our
mouse clicks. While HTML's hyperlinks are simple linear paths lacking any obvious meaning, such
semantics do exist and need only a means of expression.

Enter the Resource Description Framework (RDF),[3] a data model and XML serialization syntax for
describing resources both on and off the Web. RDF turns those flat hyperlinks into arcs, allowing us to
label not only the endpoints, but the arc itself - in other words, ascribe meaning to the relationship
between the two resources at hand. A simple link between Andy Oram's home page and an article on
the O'Reilly Network provides little insight into the relationship between the two. RDF disambiguates
the relationship: "Andy wrote this particular article" versus "this is an article about Andy" versus
"Andy found this article rather interesting."

[3] Resource Description Framework, http://www.w3.org/RDF.

http://dir.yahoo.com/computers_and_internet/internet/world_wide_web/searching_the_web/
http://www.w3.org/RDF

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 125

RDF's history itself shows how emerging peer-to-peer applications can benefit from a generalized and
consistent metadata framework. RDF has roots in an earlier effort, the Platform for Internet Content
Selection , or PICS. One of the original goals for PICS was to facilitate a wide range of rating and
filtering services, particularly in the areas of child protection and filtering of pornographic content. It
defined a simple metadata "label" format that could encode a variety of classification and rating
vocabularies (e.g., RSACi, MedPICS[4]). It included the goal of allowing diverse communities to create
their own content rating languages and networked metadata services for distributing these descriptive
labels. While originally it defined a pretty comprehensive set of tools for rating and filtering systems,
PICS as initially defined did not play well with other metadata applications. The protocols, data
formats, and accompanying infrastructure were too tightly coupled to one narrow application - it
wasn't general enough to be useful for everyone.

[4] Links to PICS vocabularies and W3C specifications, http://www.w3.org/PICS; "Metadata, PICS and Quality"
(1997), http://www.ariadne.ac.uk/issue9/pics.

One critical piece PICS lacked was a namespaces mechanism that would allow a single PICS label to
draw upon multiple, independently managed vocabularies. The designers of PICS eventually realized
that all the work they had put into a well-designed query protocol, a digital signatures system,
vocabularies, and so forth risked being reinvented for various other, non-PICS-specific metadata
applications.

The threat of such duplication led to the invention of RDF. Unlike PICS, RDF has a highly general
information model designed from the ground up to allow diverse applications to create data that can
be easily intermingled. However diverse, RDF applications all share a common strategy: they talk
about unambiguously named properties of unambiguously named resources. To eliminate ambiguous
interpretations of properties such as "type" or "format," RDF rests on unique identifiers.

13.3.1 Foundations of resource description: Unique identifiers

Unique identification is the critical empowering technology for metadata. We benefit from having
unique identifiers for both the things we describe (resources), and the ways we describe them
(properties). In RDF, we call the things we're describing resources regardless of whether they're
people, places, documents, movies, images, databases, etc. All RDF applications adopt a common
convention for identifying these things (regardless of what else they disagree about!).

We identify the things we're describing with Uniform Resource Identifiers, or URIs.[5] You're most
probably familiar with one subset of URIs, the Uniform Resource Locator, or URL. While URLs are
concerned with the location and retrieval of resources, URIs more generally are unique identifiers for
things that may not necessarily be retrievable.

[5] URI defines a simple text syntax for URLs, URNs and similar controlled names for use on the Internet,
http://www.w3.org/Addressing.

We also need clarity concerning properties, which are how we describe our resources. To say that
something is of a particular type, or has a certain relationship to another resource, or has some
specified attribute, we need to uniquely identify our descriptive concepts. RDF uses URIs for these
too. Different communities can invent new descriptive properties (such as person, employee, price,
and classification) and assign URIs to these properties.

Since the assignment of URIs is decentralized, we can be sure that uniquely named descriptive
properties don't get mixed up when we integrate metadata from multiple sources. An auto-maker's
concept of "type" is different from that of a cheese-maker's. The use of URIs such as
http://webuildcars.org/descriptions/types and http://weagecheese.org/descriptions/type serves to
uniquely identify the particular "type" we're using to describe a resource.

One critical lesson we can take away from the PICS story is that, when it comes to metadata, it is very
hard to partition the problem space. The things we want to describe, the things we want to say about
them, and the things we want to do with this data are all deeply entangled. RDF is an attempt to
provide a generalized framework for all types of metadata. By providing a consistent abstraction layer
that goes below surface differences, we gain an elegant core architecture on which to build.

http://www.w3.org/PICS
http://www.ariadne.ac.uk/issue9/pics
http://www.w3.org/Addressing
http://webuildcars.org/descriptions/types
http://weagecheese.org/descriptions/type

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 126

There is no limit to the material or applications RDF supports: through different URIs and
namespaces, different groups can extend the common RDF model to describe the needs of the peer-to-
peer application at hand. No standards committee or centralized initiative gets to decide how we
describe things. Applications can draw upon multiple descriptive vocabularies in a consistent,
principled manner. The combination of these two attributes - consistent framework and decentralized
descriptive concepts - is a powerful architecture for the peer-to-peer applications being built today.

When it comes to metadata, the network becomes a poorer information resource whenever we create
artificial boundaries between metadata applications. The Web's own metadata system, RDF, was built
in acknowledgment of this. There is little reason to suppose peer-to-peer content is different in this
regard since we're talking about pretty much the same kind of content, albeit in a radically new
environment.

13.3.2 A contrasting evolution: MP3 and the metadata marketplace

The alternatives to erecting a rigorous metadata architecture like RDF can be illustrated by the most
popular decentralized activity on the Internet today: MP3 file exchange.

How do people find out the names of songs on the CDs they're playing on their networked PCs? One
immediate problem is that there is nothing resembling a URI scheme for naming CDs; this makes it
difficult to agree on a protocol for querying metadata servers about the properties of those CDs. While
one might imagine taking one of the various CDDB-like algorithms and proposing a URI scheme for
universal adoption (for instance, cd:894120720878192091), in practice this would be time-consuming
and somewhat politicized. Meanwhile, peer-to-peer developers just want to build killer apps; they
don't want to spend 18 months on a standards committee specifying the identifiers for compact discs
(or people or films...). Most of us can't afford the time to create metadata tags, and if we could, we'd
doubtless think of more interesting ways of using that time.

What to do? Having just stressed the importance of unique names when describing content, can we
get by without them? Actually, it appears so.

Every day thousands of MP3 users work around the unique identification problem without realizing it.
Their CD rippers inspect the CD, compute one of several identifying properties for the CD they're
digitizing, and use this uniquely identifying property to consult a networked metadata service. This is
metadata in action on a massive scale. But it also smacks of the PICS problem. MP3 listeners have
settled on an application-specific piece of infrastructure rather than a more useful, generalized
approach.

These metadata services exist and operate very successfully today, despite the lack of any canonical
"standard" identifier syntax for compact discs. The technique they use to work around the standards
bottleneck is simple, being much the same as saying things like "the person whose personal mailbox
is..." or "the company whose corporate homepage is...". Being simple, it can (and should) be applied in
other contexts where peer-to-peer and web applications want to query networked services for
metadata. There's no reason to use a different protocol when asking for a CD track list and when
asking for metadata describing any other kind of thing.

The basic protocol being used in CD metadata query is both simple and general: "tell me what you
know about the resource whose CD checksum is some-huge-number" - a protocol reminiscent of the
PICS label bureau protocol. The MP3 community could build enormously useful services on top of
this, even without adopting a more general framework such as that provided by RDF, but they have
stopped short of the next step.

On the contrary, while MP3 CD rippers currently embed lots of descriptive information (track listings)
right into the encoding, they omit the most crucial piece of data from a fan's point of view: the CD and
track identifiers. The simple unique identifier for a song on a CD, while only a tiny fragment of data,
could allow both peer-to-peer and web applications to hook into a marketplace of descriptive services.
How could MP3 services use this information?

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 127

One application is to update the metadata inside MP3 files, either to correct errors or to add
additional information. If we don't know which CD an MP3 file was derived from, it becomes hard to
know which MP3 files to update when we learn more about that CD. MP3s of collected works (i.e.,
compilations) typically have very poor embedded metadata. Artist names often appear inside the track
name, for example. This makes for difficulties in finding information: If I want to generate a
browsable listing organized alphabetically by artist, I don't want half the songs filed away under
"Various Artists," nor do I want to find dozens of artist names in the "By Track Title" listings.
Embedding unique identifiers in MP3s would allow this mess to be fixed at a later date.

Another example can be found in the practice of sharing playlists: Given some convention for
identifying songs and tracks, we can describe virtual, personalized compilation albums that another
listener can recreate on his personal system by asking a peer-to-peer network for files representing
those tracks. Unique identification strategies would provide the architectural glue that would allow us
to reconnect fragmented information resources. Were someone to put a unique identification service
in place, we could soon expect all kinds of new applications built on top:

• Collaborative filtering ("Who likes songs that I like?")

• E-commerce ("Where can I can I buy this T-shirt, CD, or book?" or "Is there a compilation
album containing these tracks?")

• Discovery ("What are the words to this song?" or "Where can I find other offerings by this
artist?")

The lesson for peer-to-peer metadata architecture is simple. Unique identifiers create markets. If you
want to build interesting peer-to-peer applications that hook into a wide range of additional services,
adopt the same strategy for uniquely identifying things that others are using.

13.4 Conclusion

Metadata applied at a fundamental level, early in the game, will provide rich semantics upon which
innovators can build peer-to-peer applications that will amaze us with their flexibility. While the
symmetry of peer-to-peer brings about a host of new and interesting ways of interacting, there's no
substitute for taking the opportunity to rethink our assumptions and learn from the mistakes made on
the Web. Let's not continue the screen-scraping modus operandi; rather, let's replace extrapolation
with forethought and rich assertions.

To summarize with a call to action for peer-to-peer architects, project leaders, developers, and end
users:

• Use a single, coherent metadata framework such as that provided by RDF. When it comes to
metadata, the network becomes a poorer information resource whenever we create artificial
boundaries between metadata applications.

• Work on the commonalities between seemingly disparate data sources and formats. Work in
your community to agree on some sort of common descriptive concepts. If such concepts
already exist, borrow them.

• Describe your resources well, in a standard way, getting involved in this standardization
process itself where necessary. Be sure to make as much of this description as possible
available to peer applications and end users through clear semantics and simple APIs.

• Design ways of searching for (and finding) resources on the Net that take full advantage of any
exposed metadata.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 128

Chapter 14. Performance
Theodore Hong, Imperial College of Science, Technology, and Medicine

We live in the era of speed. Practically as a matter of course, we expect each day to bring faster disks,
faster networks, and above all, faster processors. Recently, a research group at the University of
Arizona even published a tongue-in-cheek article arguing that large calculations could be done more
quickly by slacking off for a few months first, then buying a faster computer:

[B]y fine tuning your slacktitude you can actually accomplish more than either the
lazy bum at the beach for two years or the hard working sucker who got started
immediately. Indeed with a little bit of algebra we convince ourselves that there
exists an optimal slack time s .[1]

[1] C. Gottbrath, J. Bailin, C. Meakin, T. Thompson, and J.J. Charfman (1999), "The Effects
of Moore's Law and Slacking on Large Computations," arXiv:astro-ph/9912202.

In a world like this, one might well wonder whether performance is worth paying attention to
anymore. For peer-to-peer file-sharing systems, the answer is a definite yes, for reasons I will explain
in the next section.

Let me first emphasize that by performance, I don't mean abstract numerical benchmarks such as,
"How many milliseconds will it take to render this many millions of polygons?" Rather, I want to
know the answers to questions such as, "How long will it take to retrieve this file?" or "How much
bandwidth will this query consume?" These answers will have a direct impact on the success and
usability of a system.

Fault tolerance is another significant concern. Peer-to-peer operates in an inherently unreliable
environment, since it depends on the personal resources of ordinary individual users. These resources
may become unexpectedly unavailable at any time, for a variety of reasons ranging from users
disconnecting from the network or powering off a machine to users simply deciding not to participate
any longer. In addition to these essentially random failures, personal machines tend to be more
vulnerable than dedicated servers to directed hacking attacks or even legal action against their
operators. Therefore, peer-to-peer systems need to anticipate failures as ordinary, rather than
extraordinary, occurrences, and must be designed in a way that promotes redundancy and graceful
degradation of performance.

Scaling is a third important consideration. The massive user bases of Napster and of the Web have
clearly shown how huge the demand on a successful information-sharing system can potentially be. A
designer of a new peer-to-peer system must think optimistically and plan for how it might scale under
strains orders of magnitude larger in the future. If local indices of data are kept, will they overflow? If
broadcasts are used, will they saturate the network? Scalability will also be influenced by
performance: some design inefficiencies may pass unnoticed with ten thousand users, but what
happens when the user base hits ten million or more? A recent report from Gnutella analysts Clip2,
indicating that Gnutella may already be encountering a scaling barrier, should serve to sound a note of
warning.

14.1 A note on terminology

We can classify peer-to-peer systems into three main categories, broadly speaking: centrally
coordinated, hierarchical, and decentralized.

In a centrally coordinated system, coordination between peers is controlled and mediated by a central
server, although peers may later act on information received from the central server to contact one
another directly. Napster and SETI@home fall into this category.

A hierarchical peer-to-peer system devolves some or all of the coordination responsibility down from
the center to a tree of coordinators. In this arrangement, peers are organized into hierarchies of
groups, where communication between peers in the same group is mediated by a local coordinator,
but communication between peers in different groups is passed upwards to a higher-level coordinator.
Some examples are the Domain Name System (DNS) and the Squid web proxy cache.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 129

Finally, completely decentralized peer-to-peer systems have no notion of global coordination at all.
Communication is handled entirely by peers operating at a local level. This usually implies some type
of forwarding mechanism in which peers forward messages on behalf of other peers. Freenet and
Gnutella are examples in this last category.

In this chapter, when I refer to peer-to-peer systems, I will be talking only about decentralized peer-
to-peer. Since the performance issues of centralized systems have been discussed so much, it will be
interesting to look at the issues of a fully decentralized system.

14.2 Why performance matters

Several factors combine to make decentralized peer-to-peer systems more sensitive to performance
issues than other types of software. First, the essential characteristic of such systems is
communication - a characteristic that makes them fundamentally dependent on the network. In
network communication, as every dial-up user knows, connection speed dominates processor and I/O
speed as the bottleneck. Since this situation will most likely persist into the foreseeable future,
Moore's Law (so helpful elsewhere) provides little comfort. The problem is compounded by the highly
parallel nature of peer-to-peer: A connection fast enough to talk to one remote peer quickly becomes
much less so for ten trying to connect simultaneously. Thus, traffic minimization and load balancing
become important considerations.

Second, decentralized systems like Freenet and Gnutella need to use messages that are forwarded over
many hops from one peer to the next. Since there is no central server to maintain a master index, it
necessarily takes more effort to search through the system to find out where data is. Each hop not only
adds to the total bandwidth load but also increases the time needed to perform a query, since it takes a
nontrivial amount of time to set up a connection to the next peer or to discover that it is down. As
mentioned previously, the latter occurrence can be extremely common in peer-to-peer environments.
If a peer is unreachable, TCP/IP can take up to several minutes to time out the connection. Multiply
that by several times for retries to other peers and add the time needed to actually send the message
over a possibly slow dial-up connection, and the elapsed time per hop can get quite high. It is
therefore important to cut down on the number of hops that messages travel.

Third, the balance between resource providers and consumers must be considered. Like their
counterparts in the real world, peer-to-peer communities depend on the presence of a sufficient base
of communal participation and cooperation in order to function successfully.

However, there will always be those who consume resources without giving any back. Recent analysis
by Eytan Adar and Bernardo Huberman at Xerox PARC[2] indicates that as many as 70% of current
Gnutella users may be sharing no files at all.

[2] E. Adar and B.A. Huberman (2000), "Free Riding on Gnutella," First Monday 5(10),
http://firstmonday.org/issues/issue5_10/adar/index.html.

If a high enough proportion of users are free riders, performance degrades for those who do
contribute. A substantial decline in performance may impel some contributors to pull out of the
system altogether. Their withdrawal worsens the situation further for the remainder, who will have
even less incentive to stay, leading to a downward spiral (the well-known " tragedy of the commons").

To avoid this outcome, system designers must take into account the impact of free riding on
performance and devise strategies to encourage higher rates of community participation. Some such
strategies are discussed in Chapter 16.

14.3 Bandwidth barriers

There has been some progress on the network speed front, of course. Today's 56-Kbps dial-up lines
are a huge improvement on the 300-baud modems of yore. Still, true broadband has been slow to
arrive.

Clip2's analysis of Gnutella is instructive in showing how bandwidth limitations can affect system
capabilities. Based on a series of measurements over a period of a month, Clip2 noted an apparent
scalability barrier of substantial performance degradation when query rates went above 10 queries per
second. To explain this, they proposed the following model.

http://firstmonday.org/issues/issue5_10/adar/index.html

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 130

A typical Gnutella query message is about 560 bits long, including TCP/IP headers. Clip2 observed
that queries made up approximately a quarter of all message traffic, with another half being pings and
the remainder miscellaneous messages. At any given time, Gnutella peers were seen to have an
average of three remote peers actively connected simultaneously. Taking these numbers together, we
get the following average burden on a user's link:
 10 queries per second
 × 560 bits per query
 × 4 to account for the other three-quarters of message traffic
 × 3 simultaneous connections

 67,200 bits per second

That's more than enough to saturate a 56-Kbps link. This calculation suggests that 10 queries per
second is the maximum rate the system can handle in the presence of a significant population of dial-
up users.

Even when broadband finally becomes widespread, it is unlikely to eliminate the importance of
conserving bandwidth and usher in a new era of plenty. Just as building more highways failed to
decrease traffic congestion because people drove more, adding more bandwidth just causes people to
send larger files. Today's kilobit audio swapping becomes tomorrow's megabit video swapping. Hence,
bandwidth conservation is likely to remain important for quite some time in the foreseeable future.

14.4 It's a small, small world

In 1967, Harvard professor Stanley Milgram mailed 160 letters to a set of randomly chosen people
living in Omaha, Nebraska. He asked them to participate in an unusual social experiment in which
they were to try to pass these letters to a given target person, a stockbroker working in Boston,
Massachusetts, using only intermediaries known to one another on a first-name basis. That is, each
person would pass her letter to a friend whom she thought might bring the letter closest to the target;
the friend would then pass it on to another friend, and so on until the letter reached someone who
knew the target personally and could give it to him. For example, an engineer in Omaha, on receiving
the letter, passed it to a transplanted New Englander living in Bellevue, Nebraska, who passed it to a
math teacher in Littleton, Massachusetts, who passed it to a school principal in a Boston suburb, who
passed it to a local storekeeper, who gave it to a surprised stockbroker.

In all, 42 letters made it through, via a median number of just 5.5 intermediaries. Such a surprisingly
low number, compared to the then-U.S. population of 200 million, demonstrated concretely for the
first time what has become popularly known as the small-world effect . This phenomenon is familiar
to anyone who has exclaimed "Small world, isn't it!" upon discovering a mutual acquaintance shared
with a stranger.

Milgram's experiment was designed to explore the properties of social networks : the interconnecting
bonds of friendship among individuals in a society. One way we can think about social networks is to
use the mathematical discipline of graph theory. Formally, a graph is defined as a collection of points
(called vertices) that are connected in pairs by lines (called edges).[3] Figure 14.1 shows an example of a
graph.

[3] By the way, these graphs have nothing to do with the familiar graphs of equations used in algebra.

Figure 14.1. An example of a graph

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 131

How are graphs related to social networks? We can represent a social network as a graph by creating a
vertex for each individual in the group and adding an edge between two vertices whenever the
corresponding individuals know one another. Each vertex will have a different number of edges
connected to it going to different places, depending on how wide that person's circle of acquaintances
is. The resulting structure is likely to be extremely complex; for example, a graph for the United States
would contain over 280 million vertices connected by a finely tangled web of edges.

Computer networks bear a strong resemblance to social networks and can be represented by graphs in
a similar way. In fact, you've probably seen such a graph already if you've ever looked at a connectivity
map for a LAN or WAN, although you might not have thought of it that way. In these maps, points
representing individual computers or routers are equivalent to graph vertices, and lines representing
physical links between machines are edges.

Another electronic analogue to a social network is the World Wide Web. The Web can be viewed as a
graph in which web pages are vertices and hyperlinks are edges. Just as friendship links in a social
network tend to connect members of the same social circle, hyperlinks frequently connect web pages
that share a common theme or topic.

There is a slight complication because (unlike friendships) hyperlinks are one-way; that is, you can
follow a hyperlink from a source page to a target page but not the reverse. For Web links, properly
speaking, we need to use a directed graph , which is a graph in which edges point from a source vertex
to a target vertex, rather than connecting vertices symmetrically. Directed graphs are usually
represented by drawing their edges as arrows rather than lines, as shown in Figure 14.2.

Figure 14.2. A directed graph

Most importantly for our purposes, peer-to-peer networks can be regarded as graphs as well. We can
create a Freenet graph, for example, by creating a vertex for each computer running a Freenet node
and linking each node by a directed edge to every node referenced in its data store. Similarly, a
Gnutella graph would have a vertex for each computer running a Gnutella "servent" and edges linking
servents that are connected to each other. These graphs form a useful abstract representation of the
underlying networks. By analyzing them mathematically, we ought to be able to gain some insight into
the functioning of the corresponding systems.

14.4.1 An excursion into graph theory

There are a number of interesting questions you can ask about graphs. One immediate question to ask
is whether or not it is connected. That is, is it always possible to get from any vertex (or individual) to
any other via some chain of intermediaries? Or are there some groups which are completely isolated
from one another, and never the twain shall meet?

An important property to note in connection with this question is that paths in a graph are transitive .
This means that if there is a path from point A to point B, and also a path from point B to point C, then
there must be a path from A to C. This fact might seem too obvious to need stating, but it has broader
consequences. Suppose there are two separate groups of vertices forming two subgraphs, each
connected within itself but disconnected from the other. Then adding just one edge from any vertex V
in one group to any vertex W in the other, as in Figure 14.3, will make the graph as a whole connected.
This follows from transitivity: by assumption there is a path from every vertex in the first group to V,
and a path from W to every vertex in the second group, so adding an edge between V and W will
complete a path from every vertex in the first group to every vertex in the second (and vice versa).
Conversely, deleting one critical edge may cause a graph to become disconnected, a topic we will
return to later in the context of network robustness.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 132

Figure 14.3. Adding an edge between V and W connects the two subgraphs

If it is possible to get from any vertex to any other by some path, a natural follow-up question to ask is
how long these paths are. One useful measure to consider is the following: for each pair of vertices in
the graph, find the length of the shortest path between them; then, take the average over all pairs. This
number, which we'll call the characteristic pathlength of the graph, gives a sense of how far apart
points are in the network.

In the networking context, the relevance of these two questions is immediately apparent. For example,
performing a traceroute from one machine to another is equivalent to finding a path between two
vertices in the corresponding graph. Finding out whether a route exists, and how many hops it takes,
are basic questions in network analysis and troubleshooting.

For decentralized peer-to-peer networks, these two questions have a similar significance. The first
tells us which peers can communicate with one another (via some message-forwarding route); the
second, how much effort is involved in doing so. To see how we can get a handle on these questions,
let's return to the letter-passing experiment in more depth. Then we'll see if we can apply any insights
to the peer-to-peer situation.

14.4.2 The small-world model

The success of Milgram's volunteers in moving letters between the seemingly disparate worlds of rural
heartland and urban metropolis suggests that the social network of the United States is indeed
connected. Its characteristic pathlength corresponds to the median number of intermediaries needed
to complete a chain, measured to be about six.

Intuitively, it seems that the pathlength of such a large network ought to be much higher. Most
people's social circles are highly cliquish or clustered; that is, most of the people whom you know also
know each other. Equivalently, many of the friends of your friends are people whom you know
already. So taking additional hops may not increase the number of people within reach by much. It
seems that a large number of hops would be necessary to break out of one social circle, travel across
the country, and reach another, particularly given the size of the U.S. How then can we explain
Milgram's measurement?

The key to understanding the result lies in the distribution of links within social networks. In any
social grouping, some acquaintances will be relatively isolated and contribute few new contacts,
whereas others will have more wide-ranging connections and be able to serve as bridges between far-
flung social clusters. These bridging vertices play a critical role in bringing the network closer
together. In the Milgram experiment, for example, a quarter of all the chains reaching the target
person passed through a single person, a local storekeeper. Half the chains were mediated by just
three people, who collectively acted as gateways between the target and the wider world.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 133

It turns out that the presence of even a small number of bridges can dramatically reduce the lengths of
paths in a graph, as shown by a recent paper by Duncan Watts and Steven Strogatz in the journal
Nature.[4] They began by considering a simple type of graph called a regular graph , which consists of
a ring of n vertices, each of which is connected to its nearest k neighbors. For example, if k is 4, each
vertex is connected to its nearest two neighbors on each side (four in total), giving a graph such as the
one shown in Figure 14.4.

[4] D.J. Watts and S.H. Strogatz (1998), "Collective Dynamics of `Small-World' Networks," Nature 393, p.440.

Figure 14.4. A regular graph

If we look at large regular graphs in which n is much larger than k, which in turn is much larger than 1,
the pathlength can be shown to be approximately n/2k. For example, if n is 4,096 and k is 8, then
n/2k is 256 - a very large number of hops to take to get where you're going! (Informally, we can justify
the formula n/2k by noticing that it equals half the number of hops it takes to get to the opposite side
of the ring. We say only half because we are averaging over all pairs, some of which will be close
neighbors and some of which will be on opposite sides.)

Another property of regular graphs is that they are highly clustered, since all of their links are
contained within local neighborhoods. To make this notion more precise, we can define a measure of
clustering as follows. For the k neighbors of a given vertex, the total number of possible connections
among them is k × (k-1)/2. Let's define the clustering coefficient of a vertex as the proportion
(between and 1) of these possible links that are actually present in the graph. For example, in the
regular graph of Figure 14.4, each vertex has four neighbors. There are a total of (4 × 3)/2 = 6 possible
connections among the four neighbors (not counting the original vertex itself), of which 3 are present
in the graph. Therefore the clustering coefficient of each vertex is 3/6 = 0.5.

In social terms, this coefficient can be thought of as counting the number of connections among a
person's friends - a measure of the cliquishness of a group. If we do the math, it can be shown that as
the number of vertices in the graph increases, the clustering coefficient approaches a constant value of
0.75 (very cliquish).

More generally, in a non-regular graph, different vertices will have different coefficients. So we define
the clustering coefficient of a whole graph as the average of all the clustering coefficients of the
individual vertices.

The opposite of the completely ordered regular graph is the random graph . This is just a graph whose
vertices are connected to each other at random. Random graphs can be categorized by the number of
vertices n and the average number of edges per vertex k. Notice that a random graph and a regular
graph having the same values for n and k will be comparable in the sense that both will have the same
total number of vertices and edges. For example, the random graph shown in Figure 14.5 has the same
number of vertices (12) and edges (24) as the regular graph in Figure 14.4. It turns out that for large
random graphs, the pathlength is approximately log n/log k, while the clustering coefficient is
approximately k/n. So using our previous example, where n was 4,096 and k was 8, the pathlength
would be log 4,096/log 8 = 4 - much better than the 256 hops for the regular graph!

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 134

Figure 14.5. A random graph

On the other hand, the clustering coefficient would be 8/4,096 0.002 - much less than the regular
graph's 0.75. In fact, as n gets larger, the clustering coefficient becomes practically 0.

If we compare these two extremes, we can see that the regular graph has high clustering and a high
pathlength, whereas the random graph has very low clustering and a comparatively low pathlength.
(To be more precise, the pathlength of the regular graph grows linearly as n gets larger, but the
pathlength of the random graph grows only logarithmically.)

What about intermediate cases? Most real-world networks, whether social networks or peer-to-peer
networks, lie somewhere in between - neither completely regular nor completely random. How will
they behave in terms of clustering and pathlength?

Watts and Strogatz used a clever trick to explore the in-between region. Starting with a 1000-node
regular graph with k equal to 10, they "rewired" it by taking each edge in turn and, with probability p,
moving it to connect to a different, randomly chosen vertex. When p is 0, the regular graph remains
unchanged; when p is 1, a random graph results. The region we are interested in is the region where p
is between and 1. Figure 14.6 shows one possible rewiring of Figure 14.4 with p set to 0.5.

Figure 14.6. A rewiring of a regular graph

Surprisingly, what they found was that with larger p, clustering remains high but pathlength drops
precipitously, as shown in Figure 14.7. Rewiring with p as low as 0.001 (that is, rewiring only about
0.1% of the edges) cuts the pathlength in half while leaving clustering virtually unchanged. At a p
value of 0.01, the graph has taken on hybrid characteristics. Locally, its clustering coefficient still looks
essentially like that of the regular graph. Globally, however, its pathlength has nearly dropped to the
random-graph level. Watts and Strogatz dubbed graphs with this combination of high local clustering
and short global pathlengths small-world graphs.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 135

Figure 14.7. Evolution of pathlength and clustering under rewiring, relative to initial
values

Two important implications can be seen. First, only a small amount of rewiring is needed to promote
the small-world transition. Second, the transition is barely noticeable at the local level. Hence it is
difficult to tell whether or not your world is a small world, although it won't take much effort to turn it
into one if it isn't.

These results can explain the small-world characteristics of the U.S. social network. Even if local
groups are highly clustered, as long as a small fraction (1% or even fewer) of individuals have long-
range connections outside the group, pathlengths will be low. This happens because transitivity causes
such individuals to act as shortcuts linking entire communities together. A shortcut doesn't benefit
just a single individual, but also everyone linked to her, and everyone linked to those who are linked to
her, and so on. All can take advantage of the shortcut, greatly shortening the characteristic pathlength.
On the other hand, changing one local connection to a long-range one has only a small effect on the
clustering coefficient.

Let's now look at how we can apply some of the concepts of the small-world model to peer-to-peer by
considering a pair of case studies.

14.5 Case study 1: Freenet

The small-world effect is fundamental to Freenet's operation. As with Milgram's letters, Freenet
queries are forwarded from one peer to the next according to local decisions about which potential
recipient might make the most progress towards the target. Unlike Milgram's letters, however, Freenet
messages are not targeted to a specific named peer but toward any peer having a desired file in its data
store.

To take a concrete example, suppose I were trying to obtain a copy of Peer-to-Peer. Using Milgram's
method, I could do this by trying to get a letter to Tim O'Reilly asking for a copy of the book. I might
begin by passing it to my friend Dan (who lives in Boston), who might pass it to his friend James (who
works in computers), who might pass it to his friend Andy (who works for Tim), who could pass it to
Tim himself. Using Freenet's algorithm, I don't try to contact a particular person. Instead, I might ask
my friend Alison (who I know has other O'Reilly books) if she has a copy. If she didn't, she might
similarly ask her friend Helena, and so on. Freenet's routing is based on evaluating peers' bookshelves
rather than their contacts - any peer owning a copy can reply, not just Tim O'Reilly specifically.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 136

For the Freenet algorithm to work, we need two properties to hold. First, the Freenet graph must be
connected, so that it is possible for any request to eventually reach some peer where the data is stored.
(This assumes, of course, that the data does exist on Freenet somewhere.) Second, despite the large
size of the network, short routes must exist between any two arbitrary peers, making it possible to
pass messages between them in a reasonable number of hops. In other words, we want Freenet to be a
small world.

The first property is easy. Connectedness can be achieved by growing the network incrementally from
some initial core. If each new node starts off by linking itself to one or more introductory nodes
already known to be reachable from the core, transitivity will assure a single network rather than
several disconnected ones. There is a potential problem, however: If the introductory node fails or
drops out, the new node and later nodes connected to it might become stranded.

Freenet's request and insert mechanisms combat this problem by adding additional redundant links
to the network over time. Even if a new node starts with only a single reference to an introductory
node, each successful request will cause it to gain more references to other nodes. These references
will provide more links into the network, alleviating the dependence on the introductory node.
Conversely, performing inserts creates links in the opposite direction, as nodes deeper in the network
gain references to the inserting node. Nonetheless, the effect of node failures needs to be examined
more closely. We will return to this subject later.

The second property presents more of a challenge. As we saw earlier, it is difficult to tell from local
examination alone whether or not the global network is a small world, and Freenet's anonymity
properties deliberately prevent us from measuring the global network directly. For example, it is
impossible to even find out how many nodes there are. Nor do we know precisely which files are
stored in the network or where, so it is hard to infer much from local request outcomes. We therefore
turn to simulation.

14.5.1 Initial experiments

Fortunately, simulation indicates that Freenet networks do evolve small-world characteristics.
Following Watts and Strogatz, we can initialize a simulated Freenet network with a regular topology
and see how it behaves over time. Suppose we create a network of 1,000 identical nodes having
initially empty data stores with a capacity of 50 data items and 200 additional references each. To
minimally bootstrap the network's connectivity, let's number the nodes and give each node references
to 2 nodes immediately before and after it numerically (modulo 1,000). For example, node would be
connected to nodes 998, 999, 1, and 2. We have to associate keys with these references, so for
convenience we'll use a hash of the referenced node number as the key. Using a hash has the
advantage of yielding a key that is both random and consistent across the network (that is, every node
having a reference to node will assign the same key to the reference, namely hash(0)). Figure 14.8
shows some of the resulting data stores. Topologically, this network is equivalent to a directed regular
graph in which n is 1,000 and k is 4.

Figure 14.8. Initial data stores for a simulated network

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 137

What are the initial characteristics of this network? Well, from the earlier discussion of regular graphs,
we know that its pathlength is n/2k, or 1,000/8 = 125. Each node has four neighbors - for example,
node 2 is connected to nodes 0, 1, 3, and 4. Of the 12 possible directed edges among these neighbors, 6
are present (from to 1, 1 to 3, and 3 to 4, and from 1 to 0, 3 to 1, and 4 to 3), so the clustering
coefficient is 6/12 = 0.5.

A comparable random graph, on the other hand, would have a pathlength of log 1,000/log 4 5 and a
clustering coefficient of 4/1,000 = 0.004.

Now let's simulate a simple network usage model. At each time step, pick a node at random and flip a
coin to decide whether to perform a request or an insert from that node. If requesting, randomly
choose a key to request from those known to be present in the network; if inserting, randomly choose
a key to insert from the set of all possible keys. Somewhat arbitrarily, let's set the hops-to-live to 20 on
both insert and request.

Every 100 time steps, measure the state of the network. We can directly calculate its clustering
coefficient and characteristic pathlength by examining the data stores of each node to determine
which other nodes it is connected to and then performing a breadth-first search on the resulting
graph.

Figure 14.9 shows the results of simulating this model. Ten trials were taken, each lasting 5,000 time
steps, and the results were averaged over all trials.

Figure 14.9. Evolution of pathlength and clustering over time in a Freenet network

As we can see, the pathlength rapidly decreases by a factor of 20 within the first 500 time steps or so
before leveling off. On the other hand, the clustering coefficient decreases only slowly over the entire
simulation period. The final pathlength hovers slightly above 2, while the final clustering is about
0.22. If we compare these figures to the values calculated earlier for the corresponding regular graph
(125 pathlength and 0.5 clustering) and random graph (5 pathlength and 0.004 clustering), we can see
the small-world effect: Freenet's pathlength approximates the random graph's pathlength while its
clustering coefficient is of the same order of magnitude as the regular graph.

Does the small-world effect translate into real performance, however? To answer this question, let's
look at the request performance of the network over time. Every 100 time steps, we probe the network
by simulating 300 requests from randomly chosen nodes in the network. During this probe period, the
network is frozen so that no data is cached and no links are altered. The keys requested are chosen
randomly from those known to be stored in the network and the hops-to-live is set to 500. By looking
at the number of hops actually taken, we can measure the distance that a request needs to travel
before finding data. For our purposes, a request that fails will be treated as taking 500 hops. At each
snapshot, we'll plot the median pathlength of all requests (that is, the top 50% fastest requests).

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 138

These measurements are plotted in Figure 14.10 and Figure 14.11. Reassuringly, the results indicate
that Freenet does actually work. The median pathlength for requests drops from 500 at the outset to
about 6 as the network converges to a stable state. That is, half of all requests in the mature network
succeed within six hops. A quarter of requests succeed within just three hops or fewer.

Figure 14.10. Median request pathlength over time (linear scale)

Figure 14.11. Median request pathlength over time (logarithmic scale)

Note that the median request pathlength of 6 is somewhat higher than the characteristic pathlength of
2. This occurs because the characteristic pathlength measures the distance along the optimal path
between any pair of nodes. Freenet's local routing cannot always choose the globally optimal route, of
course, but it manages to get close most of the time.

On the other hand, if we look at the complete distribution of final pathlengths, as shown in Figure
14.12, there are some requests that take a disproportionately long time. That is, Freenet has good
average performance but poor worst-case performance, because a few bad routing choices can throw a
request completely off the track.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 139

Figure 14.12. Distribution of all request pathlengths at the end of the simulation

Indeed, local routing decisions are extremely important. Although the small-world effect tells us that
short routes exist between any pair of vertices in a small-world network, the tricky part is actually
finding these short routes.

To illustrate this point, consider a Freenet-like system in which nodes forward query messages to
some peer randomly chosen from the data store, rather than the peer associated with the closest key to
the query. Performing the same simulation on this system gives the measurements shown in Figure
14.13.

Figure 14.13. Median request pathlength under random routing

We see that the median request pathlength required now is nearly 50, although analysis of the
network shows the characteristic pathlength to still be about 2. This request pathlength is too high to
be of much use, as 50 hops would take forever to complete. So although short paths exist in this
network, we are unable to make effective use of them.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 140

These observations make sense if we think about our intuitive experience with another small-world
domain, the Web. The process of navigating on the Web from some starting point to a desired
destination by following hyperlinks is quite similar to the process of forwarding a request in Freenet.
A recent paper in Nature by Réka Albert, Hawoong Jeong, and Albert-László Barabási[5] reported that
the Web is a small-world network with a characteristic pathlength of 19. That is, from any given web
page, it is possible to surf to any other one of the nearly 800 million reachable pages in existence with
an average of 19 clicks.

[5] R. Albert, H. Jeong, and A. Barabási (1999), "Diameter of the World-Wide Web," Nature 401, p.130.

However, such a path can be constructed only by an intelligent agent able to make accurate decisions
about which link to follow next. Even humans often fail in this task, getting "lost in the Web." An
unintelligent robot choosing links at random would clearly get nowhere. The only hope for such a
robot is to apply brute-force indexing, and the force required is brute indeed: Albert et al. estimated
that a robot attempting to locate a web page at a distance of 19 hops would need to index at least a full
10% of the Web, or some 80 million pages.

14.5.2 Simulating growth

Having taken a preliminary look at the evolution of a fixed Freenet network, let's now look at what
happens in a network that grows over time. When a new node wants to join Freenet, it must first find
(through out-of-band means) an initial introductory node that is already in the network. The new
node then sends an announcement message to the introductory node, which forwards it into Freenet.
Each node contacted adds a reference to the new node to its data store and sends back a reply
containing its own address, before forwarding the announcement on to another node chosen
randomly from its data store. In turn, the new node adds all of these replies to its data store. The net
result is that a set of two-way links are established between the new node and some number of
existing nodes, as shown in Figure 14.14.

Figure 14.14. Adding a new node to Freenet (arrows show the path of the announcement
message; dotted lines show the new links established)

We can simulate this evolution by the following procedure. Initialize the network with 20 nodes
connected in a regular topology as before, so that we can continue to use a hops-to-live of 20 from the
outset. Add a new node every 5 time steps until the network reaches a size of 1,000. When adding a
new node, choose an introductory node at random and send an announcement message with hops-to-
live 10. Meanwhile, inserts and requests continue on every time step as before, and probes every 100
time steps.

It might seem at first that this simulation won't realistically model the rate of growth of the network,
since nodes are simply added linearly every five steps. However, simulation time need not correspond
directly to real time. The effect of the model is essentially to interpose five requests between node
additions, regardless of the rate of addition. In real time, we can expect that the number of requests
per unit time will be proportional to the size of the network. If we assume that the rate at which new
nodes join is also proportional to the size of the network, the linear ratio between request rate and
joining rate is justified.

Figure 14.15 shows the results of simulating this model. As before, 10 trials were run and the results
averaged over all trials.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 141

Figure 14.15. Median request pathlength in a growing network

The results are extremely promising. The request pathlength starts off low, unsurprisingly, since the
network is so small initially that even random routing should find the data quickly. However, as the
network grows, the request pathlength remains low.

By the end of the simulation, the network is performing even better than the fixed-size simulation
having the same number of nodes. Now 50% of all requests succeed within just 5 hops or fewer, while
84% succeed within 20. Meanwhile, the characteristic pathlength and the clustering coefficient are not
appreciably different from the fixed case - about 2.2 for the pathlength and about 0.25 for the
clustering coefficient.

14.5.3 Simulating fault tolerance

Let's turn to some aspects of robustness. As mentioned earlier, an important challenge in designing a
peer-to-peer system is coping with the unreliability of peers. Since peers tend to be personal machines
rather than dedicated servers, they are often turned off or disconnected from the network at random.
Another consideration for systems that may host content disapproved of by some group is the
possibility of a deliberate attempt to bring the network down through technical or legal attacks.

Taking as a starting point the network grown in the second simulation, we can examine the effects of
two node failure scenarios. One scenario is random failure, in which nodes are simply removed at
random from the network. The other scenario is targeted attack, in which the most important nodes
are targeted for removal. Here we follow the approach of another paper by Albert, Jeong, and Barabási
on the fault tolerance of the Internet.[6]

[6] R. Albert, H. Jeong, and A. Barabási (2000), "Error and Attack Tolerance of Complex Networks," Nature 406,
p.378.

We can model the random failure scenario by progressively removing more and more nodes selected
at random from the network and watching how the system's performance holds up. Figure 14.16
shows the request pathlength plotted against the percentage of nodes failing. The network remains
surprisingly usable, with the median request pathlength remaining below 20 even when up to 30% of
nodes fail.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 142

Figure 14.16. Change in request pathlength under random failure

An explanation can be offered by looking at the distribution of links within the network. If we draw a
histogram of the proportion of nodes having different numbers of links, as shown in Figure 14.17, we
can see that the distribution is highly skewed. Most nodes have only a few outgoing links, but a small
number of nodes toward the right side of the graph are very well-connected. (The unusually large
column at 250 links is an artifact of the limited data store size of 250 - when larger data stores are
used, this column spreads out farther to the right.)

Figure 14.17. Histogram showing the proportion of nodes vs. the number of links

When nodes are randomly removed from the network, most of them will probably be nodes with few
links, and thus their loss will not hurt the routing in the network much. The highly connected nodes in
the right-hand tail will be able to keep the network connected. These nodes correspond to the
shortcuts needed to make the small-world effect happen.

The attack scenario, on the other hand, is more dangerous. In this scenario, the most-connected nodes
are preferentially removed first. Figure 14.18 shows the trend in the request pathlength as nodes are
attacked. Now the network becomes unusable much more quickly, with the median request pathlength
passing 20 at the 18% failure level. This demonstrates just how important those nodes in the tail are.
When they are removed, the network starts to fall apart into disconnected fragments.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 143

Figure 14.18. Change in request pathlength under targeted attack

Figure 14.19 shows the contrast between the two failure modes in more detail, using a semi-log scale.

Figure 14.19. Comparison of the effects of attack and failure on median request
pathlength

14.5.4 Link distribution in Freenet

Where do the highly connected nodes come from? We can get some hints by trying to fit a function to
the observed distribution of links. If we redraw the histogram as a log-log plot, as shown in Figure
14.20, we can see that the distribution of link numbers roughly follows a straight line (except for the
anomalous point at 250). Since the equation for a downward-sloping line is:

y = -kx + b

where k and b are constants, this means that the proportion of nodes p having a given number of links
L satisfies the equation:

log p = -k log L + b

By exponentiating both sides, we can express this relationship in a more normal-looking way as:

p = A × L -k

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 144

This is called a scale-free relationship, since the total number of nodes doesn't appear in the equation.
Therefore it holds regardless of the size of the network, big or small. In fact, scale-free link
distributions are another characteristic often used to identify small-world networks.

Figure 14.20. Log-log scatter plot of the proportion of nodes vs. the number of links

It turns out that this type of relationship arises naturally from the interaction of two processes:
Growth and preferential attachment. Growth just means that new nodes are added over time.
Preferential attachment means that new nodes tend to add links to nodes that have a lot of links
already. This makes sense because nodes that are well known (i.e., have lots of links) will tend to see
more requests and hence will tend to become even better connected.

14.5.5 The impact of free riding

In addition to being robust against node failures, peer-to-peer systems must be able to cope with free
riders. Just as in any other social system, there are always those who take from the system without
contributing anything back. In the peer-to-peer context, this might mean downloading files but not
sharing any for upload, or initiating queries without forwarding or answering queries from others. At
best, such behavior just means increased load for everyone else; at worst, it can significantly harm the
functioning of the system.

Freenet deals with free riders by simply ignoring them. If a node never provides any files, no other
nodes will gain references to it. To the rest of the network, it might as well not exist, so it won't have
any effect on the pathlengths of others' requests. However, its own requests will contribute to the total
bandwidth load on the network while providing no additional capacity. Similarly, if a node refuses to
accept incoming connections, other nodes will treat it as though it were down and try elsewhere. Only
if a node drops messages without responding will untoward things start to happen, although in that
case it is behaving more like a malicious node than a free riding one.

14.5.6 Scalability

Finally, let's consider Freenet's scaling properties. In small-world graphs, the characteristic
pathlength scales logarithmically with the size of the network, since it follows the random-graph
pathlength of log n/log k. That is, a geometric increase in the number of vertices results in only a
linear increase in the characteristic pathlength. This means that for example, if k is 3, increasing the
size of the network by 10 times would increase the pathlength by just 2. If Freenet's routing continues
to work in large networks, the request pathlength should scale similarly. (Remember that the
correlation between the request pathlength and the characteristic pathlength depends on the accuracy
of the routing.)

Figure 14.21 shows the results of extending our earlier growth simulation up to 200,000 nodes. As
hoped, the request pathlength does appear to scale logarithmically.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 145

Figure 14.21. Median request pathlength vs. network size (linear scale)

We can see the scaling more clearly on the semi-log plot shown in Figure 14.22. On this plot, the data
follow approximately straight lines, showing that pathlength is indeed roughly proportional to
log(size). The median line has a "knee" where it changes slope at 50,000 nodes. This probably results
from data stores becoming filled and could be corrected by creating larger data stores. Note that our
data stores were limited to 250 links by the memory requirements of the simulation, whereas real
Freenet nodes can easily hold thousands of references. In fact, if we recall the connectivity distribution
shown in Figure 14.17, only a small number of high-capacity nodes should be necessary. Even with
small data stores, the trend shows that Freenet scales very well: Doubling the network size brings a
pathlength increase of only 4 hops.

Figure 14.22. Median request pathlength vs. network size (logarithmic scale)

The number of messages that must be transmitted per request is proportional to the request
pathlength, since the latter indicates the number of times a request is forwarded. In turn, the
bandwidth used is proportional to the number of messages sent. Thus, the bandwidth requirements of
requests should also scale logarithmically in relation to the size of the network. Considering that, in
general, the effort required to search for an item in a list grows logarithmically in relation to the size of
the list, this is probably the best scaling that can be expected from a decentralized peer-to-peer
system.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 146

14.6 Case study 2: Gnutella

Gnutella uses a simple broadcast model to conduct queries, which does not invoke the small-world
effect. Nonetheless, many of the concepts presented in this chapter can be taken as a useful framework
for thinking about Gnutella's performance, which has been in the trade press so much recently.

In Gnutella, each peer tries to maintain a small minimum number (typically around three) of active
simultaneous connections to other peers. These peers are selected from a locally maintained host
catcher list containing the addresses of the other peers that this peer knows about. Peers can be
discovered through a wide variety of mechanisms, such as watching for PING and PONG messages,
noting the addresses of peers initiating queries, receiving incoming connections from previously
unknown peers, or using out-of-band channels such as IRC and the Web. However, not all peers so
discovered may accept new connections, since they may already have enough connections or be picky
about the peers they will talk to. Establishing a good set of connections can in general be a somewhat
haphazard process. Further, peers leaving the network will cause additional shuffling as the remaining
peers try to replace lost connections.

It therefore seems reasonable to model a Gnutella network by a random graph with a k of 3. Note that
such a graph does not necessarily have exactly three edges per vertex. Rather, there will be some
distribution in which the probability of finding a vertex having a given number of edges peaks around
3 and decreases exponentially with increasing numbers of edges. We will have more to say about this
later.

Gnutella queries propagate through the network as follows. Upon receiving a new query, a peer
broadcasts it to every peer that it is currently connected to, each of which in turn will broadcast the
query to the peers it is connected to, and so on, in the manner of a chain letter. If a peer has a file that
matches the query, it sends an answer back to the originating peer, but still forwards the query
anyway. This process continues up to a maximum depth (or "search horizon") specified by the time-
to-live field in the query. Essentially, Gnutella queries perform breadth-first searches on the network
graph, in which searches broaden out and progressively cover the vertices closest to the starting point
first. (By contrast, Freenet's style is closer to depth-first search, in which searches are directed deeper
into the graph first.)

As before, it is necessary for the network graph to be connected, so that it is possible for any query to
eventually reach some peer having the desired data. Achieving complete connectivity is somewhat
more difficult than in Freenet because of the random nature of Gnutella connectivity. We can imagine
that a random assignment of connections might leave some subset of peers cut off from the rest.
However, in practice connectedness appears to hold.

Second, there must again be short routes between arbitrary peers, so that queries will be able to reach
their targets before exceeding their depth limits. We turn to simulation to explore these properties.

14.6.1 Initial experiments

Suppose we create a network of 1,000 identical nodes initially sharing no files. To model its
connectivity, let's add 1,500 edges by picking random nodes to be connected, two at a time, and
creating edges between them. Topologically, the resulting network will be equivalent to a random
graph in which n is 1,000 and k is 3.

Now let's add data to fill the network, since Gnutella does not have an explicit "insert" or "publish"
mechanism. To make this simulation broadly comparable to the Freenet simulation, we'll randomly
generate data items to be stored on 20 nodes each (the equivalent of a Freenet insert with hops-to-live
20). This can be imagined as 20 users independently choosing to share the same file, perhaps a
particular MP3. We set the number of different data items added to be the same as the number
inserted over the course of the Freenet simulation - that is, about 2,500.

As before, we simulate a simple network usage model. Since a Gnutella network does not evolve
organically over time the way a Freenet network does, a single set of probe measurements should
suffice. Following our previous method, we perform 300 queries from randomly chosen nodes in the
network. The keys requested are chosen randomly from those known to be stored in the network, and
the time-to-live is set to infinity, so these queries will always succeed eventually.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 147

To gauge the distance a query must travel before finding data, we stop the query as soon as a hit is
found and note the number of hops taken to that point. (In the real Gnutella, queries proceed in
parallel on a large number of nodes, so it is not practicable to halt them after finding a match on one
node.) Figure 14.23 shows the resulting distribution of query pathlengths.

Figure 14.23. Distribution of query pathlengths in Gnutella

We see that Gnutella queries are satisfied extremely quickly, under both average-case and worst-case
conditions. Indeed, the breadth-first search guarantees that the optimal shortest path to the data will
always be found, making the query pathlength equal to the characteristic pathlength. However, this is
not a true measure of the effort expended by the network as a whole, since queries are broadcast to so
many nodes. A better measure is to consider the number of nodes contacted in the course of a query,
as shown in Figure 14.24.

Figure 14.24. Distribution of the number of nodes contacted per query

A significant number of queries require the participation of 50 nodes, and many even call for 100 or
more. It is apparent that the price paid for a quick result is a large expenditure of effort to exhaustively
search a significant proportion of the network. Vis-à-vis Freenet, Gnutella makes a trade-off of much
greater search effort in return for optimal paths and better worst-case performance.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 148

14.6.2 Fault tolerance and link distribution in Gnutella

What are Gnutella's fault-tolerance characteristics? As before, we can consider its behavior under two
node failure scenarios: random failure and targeted attack. The distribution of links in Freenet was an
important factor in its robustness, so let's look at Gnutella's corresponding distribution, shown in
Figure 14.25.

Figure 14.25. Histogram showing the distribution of links in Gnutella

Mathematically, this is a "Poisson" distribution peaked around the average connectivity of 3. Its tail
drops off exponentially, rather than according to a power law as Freenet's does. This can be seen more
clearly in the log-log plot of Figure 14.26.

Figure 14.26. Log-log scatter plot of the distribution of links in Gnutella

Comparing this plot to Figure 14.20, we can see that Figure 14.26 drops off much more sharply at high
link numbers. As a result, highly connected nodes are much less of a factor in Gnutella than they are in
Freenet.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 149

Let's see how Gnutella behaves under the targeted attack scenario, in which the most-connected nodes
are removed first. Figure 14.27 shows the number of nodes contacted per query (as a percentage of the
surviving nodes) versus the percentage of nodes attacked. (A request that fails is treated as a value of
100%.) If we compare this plot to Figure 14.18, we can see that Gnutella resists targeted attack better
than Freenet does, since the highly connected nodes play less of a role.

Figure 14.27. Change in number of nodes contacted per query, under targeted attack

On the other hand, the random failure scenario is the opposite. Figure 14.28 shows the number of
nodes contacted versus the percentage of nodes failing. If we compare this to Figure 14.16, Freenet
does better.

Figure 14.28. Change in number of nodes contacted per query, under random failure

In fact, this occurs because Gnutella performs about the same under both random failure and targeted
attack, as can be seen more clearly in Figure 14.29. Here again is a trade-off: Gnutella responds
equally to failure and attack, since all of its nodes are roughly equivalent. Freenet's highly connected
nodes enable it to better cope with random failure, but these then become points of vulnerability for
targeted attack.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 150

Figure 14.29. Comparison of the effects of attack and failure

This is brought out in more detail by Figure 14.30, which plots the four scenarios together using an
arbitrary scale. We can see that the Freenet failure curve grows much more slowly than the Gnutella
curves, while the Freenet attack curve shoots up sooner.

Figure 14.30. Comparison of attack and failure nodes in Freenet and Gnutella

14.6.3 The impact of free riding

Free riding in Gnutella is of more than merely theoretical interest, as indicated by the Xerox PARC
paper mentioned earlier. Gnutella is vulnerable to free riders because its peers do not maintain any
state information about other peers, so they cannot distinguish free riding from non-free riding peers.
In particular, free riding peers will still have queries sent to them even if they never answer any. The
presence of free riders will thus "dilute" the network, making queries travel farther before finding
data. This can cause queries to fail if the desired data is pushed beyond the search horizon.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 151

Ironically, it may be better for the network if free riding peers drop queries altogether instead of
forwarding them, since queries will then simply flow around the free riders (unless portions of the
network are completely cut off, of course). This is the opposite of the Freenet situation: Freenet free
riders that drop queries are harmful since they kill off those queries, but those that forward queries
unanswered actually help the network to route around them later on by propagating information
about downstream peers.

14.6.4 Scalability

Finally, let's consider Gnutella's scalability. As a random graph, its characteristic pathlength scales
logarithmically with the size of the network. Since its breadth-first search finds optimal paths, the
request pathlength always equals the characteristic pathlength and also scales logarithmically. We
have already seen that these pathlengths are quite low, so the amount of time taken by queries should
be manageable up to very large network sizes. This does not accurately reflect their bandwidth usage,
however.

The bandwidth used by a query is proportional to the number of messages sent, which in turn is
proportional to the number of nodes that must be contacted before finding data. Actually, this is an
underestimate, since many nodes will be sent the same query more than once and queries continue
after finding data. Figure 14.31 shows the median number of nodes contacted per query versus
network size, up to 200,000 nodes.

Figure 14.31. Median number of nodes contacted per query, vs. network size

We can see that the number of nodes that must be contacted scales essentially linearly, meaning that
every doubling of network size will also double the bandwidth needed per query. An alternate way of
looking at this is to see that if bandwidth usage is kept lower by limiting search depths, success rates
will drop since queries will not be able to reach the data. This may pose a serious scalability problem.

One solution already being explored is to modify Gnutella from a pure decentralized peer-to-peer
model to a partly hierarchical model by using super peers . These are special peers that act as
aggregators for other peers located "behind" them in the manner of a firewall. Super peers maintain
indices of all the files their subordinate peers are sharing, and appear to the rest of the network as
though they were sharing those files themselves. When queried for a file, a super peer can route the
query directly to the relevant peer without a broadcast. In addition, if one of its subordinates requests
a file held by another subordinate, it can satisfy the request immediately without involving the wider
network. Super peers thus reduce the effective size of the network by replacing a group of ordinary
peers with a single super peer.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 152

From there, it is a short step to imagine "super-super peers" that aggregate queries for super peers,
"super-super-super peers," and so on. Taken to the extreme, this could yield a completely hierarchical
search tree like DNS. Such an arrangement would place each peer in successively larger aggregate
groups, ultimately ending in a root peer managing the entire network. Searches in such a tree would
scale logarithmically; however, it implies a considerable loss of the autonomy promised by peer-to-
peer.

14.7 Conclusions

Performance is likely to remain an important issue in peer-to-peer systems design well into the
foreseeable future. Within the peer-to-peer model, a number of trade-offs can be used to tailor
different sets of performance outcomes. Freenet, for example, emphasizes high scalability and
efficient searches under average conditions while sacrificing worse-case performance. At the other end
of the spectrum, Gnutella sacrifices efficiency for faster searches and better worst-case guarantees.
Ideas drawn from graph theory and the small-world model can help to quantify these trade-offs and to
analyze systems in concrete terms.

Fault tolerance and free riding are additional challenges to deal with, and here again we can see
different approaches. Systems like Freenet that develop specialized nodes can improve their
robustness under random failure, but more uniform systems like Gnutella can better cope with
targeted attacks. Free riding, a different type of failure mode, needs to be addressed in terms of
routing around or otherwise neutralizing uncooperative nodes.

Last but not least, scalability is a crucial concern for systems that hope to make the leap from
conceptual demonstration to world-wide usage. For systems that do not inherently scale well, a
further set of trade-offs can allow better scalability through a move toward a hierarchical peer-to-peer
model, though at the expense of local autonomy.

The peer-to-peer model encompasses a diverse set of approaches. By recognizing the wide range of
possibilities available, inventing new ideas and new combinations, and using analytical methods to
evaluate their behaviors, system designers will be well-equipped to exploit the power of peer-to-peer.

14.8 Acknowledgments

I would like to thank Catherine Reive and the Marshall Aid Commemoration Commission for their
help and support. Many thanks also to Ian Clarke for creating Freenet, to Need to Know for bringing it
to my attention, to David Molnar for prompting a submission to the ICSI Workshop on Design Issues
in Anonymity and Unobservability, and to Sammy Klein, Matt Bruce, and others for reviewing early
drafts. Jon Kleinberg's influence in serendipitously publishing an article on navigation in small-world
networks the very week I started writing this was invaluable. Thanks to my thesis advisor, Professor
Keith Clark, for putting up with my extracurricular activities. Finally, big thanks go to Andy Oram for
putting the whole thing together.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 153

Chapter 15. Trust
Marc Waldman, Lorrie Faith Cranor, and Avi Rubin, AT&T Labs-Research

Trust plays a central role in many aspects of computing, especially those related to network use.
Whether downloading and installing software, buying a product from a web site, or just surfing the
Web, an individual is faced with trust issues. Does this piece of software really do what it says it does?
Will the company I make purchases from sell my private information to other companies? Is my ISP
logging all of my network traffic? All of these questions are central to the trust issue. In this chapter
we discuss the areas of trust related to distributed systems - computers that communicate over a
network and share information.

Trust in peer-to-peer, collaborative, or distributed systems presents its own challenges. Some systems,
like Publius, deliberately disguise the source of data; all of the systems use computations or files
provided by far-flung individuals who would be difficult to contact if something goes wrong - much
less to hold responsible for any damage done.

15.1 Trust in real life, and its lessons for computer networks

In the physical world, when we talk about how much we trust someone, we often consider that
person's reputation. We usually are willing to put great trust in someone whom we have personally
observed to be highly capable and have a high level of integrity. In the absence of personal
observation, the recommendation of a trusted friend can lead one to trust someone. When looking for
someone to provide a service for us in which trust is an issue - whether a doctor, baby-sitter, or barber
- we often ask our friends for recommendations or check with a trusted authority such as a childcare
referral service. In real life, trust is often increased by establishing positive reputations and networks
for conveying these reputations. This is true for computer networks as well. More will be said about
this in Chapter 16, and Chapter 17. Once reputations are established, digital certificates and networks
like the PGP web of trust (described later in this chapter) can be used to convey reputation
information in a trustworthy way.

Information conveyed by a trusted person is itself seen to be trustworthy, especially if it is based on a
personal observation by that person. Information conveyed via a long chain of people, trustworthy or
not, is generally viewed to be less trustworthy - even if the entire chain is trustworthy, the fact that it
was conveyed via a long chain introduces the possibility that somewhere along the way the facts may
have been confused. So we may trust all of the people in the chain to be honest, but we may not trust
all of them to accurately remember and convey every detail of a story told by someone else. If it is
important to us to have confidence in the veracity of a piece of information, we may try to follow the
chain back to its source. Essentially, we are able to increase trust by reducing the number of people
that must be trusted. This applies to real life situations as well as computer networks.

We can also look at trust from a risk assessment perspective. We tend to be more willing to place trust
in people when the risk of adverse consequences should our trust be misplaced is small. Likewise,
even if there is high risk, if the potential consequences are not that bad, we may still be willing to trust.
Thus, we can also increase trust by reducing risk. Just as in real life we may reduce risk by removing
valuable items from a car before leaving it with a parking lot attendant, in a networked environment
we may reduce risk by creating protected "sandboxes" where we can execute untrusted code without
exposing critical systems to danger.

Sometimes we interact with people whose reputations are unknown to us, but they somehow seem
worthy of our trust. We may talk about people who seem to have an honest face or a trustworthy
demeanor. In the online world, a web site that looks very professional may also appear to be
trustworthy, even if we do not know anything else about it. Clearly there are ways of changing
perceptions about trust when our later experiences conflict with our first impressions. Indeed, many
companies spend a lot of effort honing a marketing message or corporate image in an effort to convey
more of an image of trustworthiness to consumers.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 154

In this chapter, we are concerned less about perceptions of trustworthiness than we are about
designing systems that rely as little as possible on trust. Ultimately, we would like to design systems
that do not require anyone to trust any aspect of the system, because there is no uncertainty about
how the system will behave. In this context, the ideal trusted system is one that everyone has
confidence in because they do not have to trust it. Where that is impossible, we use techniques such as
reputation building and risk reduction to build trust.

We first examine the issue of downloaded software. For the most part, the software described in this
book can be downloaded from the Web. This simple act of downloading software and running it on
your computer involves many trust-related issues. We then examine anonymous publishing systems.
This discussion uses Publius as an example, but many of these issues apply to other systems as well.
The last part of the chapter examines the trust issues involved in file sharing and search engines.

15.2 Trusting downloaded software

Trust issues exist even before an individual connects her computer to any network. Installing software
supplied with your computer or that perhaps was bought in a retail store implies a level of trust - you
trust that the software will work in the manner described and that it won't do anything malicious. By
purchasing it from a "reputable" company, you believe that you know who wrote the software and
what kind of reputation is associated with their software products. In addition, you may be able to
take legal action if something goes horribly wrong.

The advent of the Internet changes this model. Now software can be downloaded directly onto your
computer. You may not know who the author is and whether the software has been maliciously
modified or really does what it claims. We have all heard stories of an individual receiving an
attachment via email that, when executed, deleted files on the victim's hard drive.

Ideally, when downloading software from the Internet, we would like to have the same assurances that
we have when we purchase the software directly from a store. One might think that simply
downloading software from companies that one is already familiar with raises no trust issues.
However, you can see from the sampling of potential problems in Table 15.1 this is really not true. The
software you are downloading may have been modified by a malicious party before you even begin
downloading it. Even if it begins its journey unmodified, it has to travel to you over an untrusted
network - the Internet. The software, while it is traveling on the network, can be intercepted,
modified, and then forwarded to you - all without your knowledge. Even if this doesn't happen, your
Internet service provider (ISP) or another party could be logging the fact that you are downloading a
particular piece of software or visiting a particular web site. This information can, for example, be
used to target specific advertising at you. At the very least, this logging is an invasion of privacy. As we
shall see there are ways of overcoming each of these problems.[1]

[1] For a more comprehensive discussion of this topic, see Bruce Schneier (1999), Secrets and Lies: Digital Security
in a Networked World, John Wiley & Sons.

Table 15.1, Trust issues when downloading software

Risk Solution Trust principle

Software doesn't behave as
advertised, and may even

damage your computer
system.

Only download software from companies or
individuals who have established a good

reputation, or those you know where to find
should a problem occur.

Look for positive
reputations.

Software is modified (on
server or in transit).

Check for digital signature on message digest
and verify signature against author's certificate.

Use tools that
accurately convey

reputations.

Your downloads (and other
online behavior) are logged
by your ISP or other parties.

Use an anonymity tool so other parties do not
get access to information that might link you to

a particular download.
Reduce risk.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 155

15.2.1 Message digest functions

Almost all of the software described in this book is given away for free. The only way to acquire it is to
download it - you can't walk into your local computer store and purchase it. We would like some way
to verify that the downloaded files have not been tampered with in any way. This can be accomplished
through the use of a message digest function , which is also known as a cryptographically secure hash
function. A message digest function takes a variable-length input message and produces a fixed-length
output. The same message will always produce the same output. If the input message is changed in
any way, the digest function produces a different output value. This feature makes digest functions
ideal for detecting file tampering.

Now that we have message digest functions, it looks like all of our tamper problems are solved - the
author of a piece of software just places the value of the file's hash on the same web page that contains
the file download link. After the user downloads the file, a separate program finds the digest of the file.
This digest is then compared with the one on the web page. If the digests don't match the file has been
tampered with; otherwise it is unchanged. Unfortunately things are not that simple. How do we know
that the digest given on the web page is correct? Perhaps the server administrator or some malicious
hacker changed the software and placed the digest of the modified file on the web page. If someone
downloaded the altered file and checked the replaced digest everything would look fine. The problem
is that we do not have a mechanism to guarantee that the author of the file was the one who generated
the particular digest. What we need is some way for the author to state the digest value so that
someone else cannot change it.

15.2.2 Digital signatures

Public key cryptography and digital signatures can be used to help identify the author of a file.
Although the mathematics behind public key cryptography are beyond the scope of this book, suffice it
to say that a pair of keys can be generated in such a way that if one key is used to sign some piece of
data, the other key can be used to verify the signed data. Keys are essentially large numbers that are
needed for the signature and verification operations. One of these keys is kept secret and is therefore
called the private key. The other key is made available to everyone and is called the public key.
Someone can send you an authenticated message simply by signing the message with his private key.
You can then use his public key to verify the signature on the message.

So it looks like our problem is almost solved. The author of the software generates a public and private
key. The author then computes the digest of the software package. This digest is then signed using a
private key. A file containing the signed digest is placed on the same web page as the file to be
downloaded (the software package). After downloading the software an individual finds its digest. The
signed digest file is downloaded from the web site and verified using the author's public key.

15.2.3 Digital certificates

The problem with the scheme is that we have no way of verifying the author's public key. How do we
know that someone didn't just generate a public/private key pair, modify the file, and sign its digest
with the private key just generated? The public key on the web site cannot necessarily be trusted. We
need a way to certify that a particular public key does indeed belong to the author of the software.
Digital certificates are meant to provide this binding of public keys to individuals or organizations.

Digital certificates are issued by companies called certifying authorities (CAs). These are organizations
that mint digital certificates for a fee; they are often called trusted third parties because both you and
your correspondent trust them. An individual or corporation requesting a certificate must supply the
CA with the proper credentials. Once these credentials have been verified, the CA mints a new
certificate in the name of the individual or corporation. The CA signs the certificate with its private key
and this signature becomes part of the certificate. The CA signature guarantees its authenticity.

The certificate creation process just described is a simplification of the actual process. Different
classes of certificates exist corresponding to the type of credentials presented when applying for the
certificate. The more convincing the credentials, the more verification work is created for the CA, and
therefore it assesses a higher annual fee on the individual or corporation applying for the certificate.
Therefore, certain types of certificates are more trustworthy than others.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 156

15.2.4 Signature verification

Now all the pieces are in place. The author of some software applies to a CA for a certificate. This
certificate binds her to a public key - only she knows the associated private key. She signs her software
using the method described above. The signed digest and a link to the software are placed on the
author's web page. In addition, a link to the author's certificate is added to the web page. At some later
time, an individual downloads the software and author's certificate. The digest function is performed
on the file. The author's certificate is verified using the CA's public key, which is available on the CA's
web page. Once verified, the author's public key is used to verify the signature on the digest. This
digest is compared to the one just performed on the file. If the digests match, the file has not been
tampered with. See Figure 15.1 for an illustration of the process.

Figure 15.1. Digital signatures and how they are verified

This verification process provides assurance that the downloaded software is signed by someone who
has a private key that was issued to a software author with a particular name. Of course, there is no
guarantee that the software author did not let someone else use her key, or that the key was not stolen
without her knowledge. Furthermore, if we don't know anything about the reputation of this particular
software author, knowing her name may not give us any confidence in her software (although if we
have confidence in the CA, we may at least believe that it might be possible to track her down later
should her software prove destructive).

The previously described verification process is not performed by hand. A number of software
products are available that automate the task.

Pretty Good Privacy (PGP) is a well-known tool for encrypting files and email. It also allows
individuals to sign and verify files. Rather than having to trust a third party, the CA, PGP allows
individuals to create their own certificates. These certificates by themselves are not very helpful when
trying to verify someone's identity; however, other people can sign the certificates. People that know
you can sign your certificate, and you in turn can sign their certificates. If you receive a certificate from
someone you don't trust, you can check the signatures on the certificate and see if you trust any of
them. Based on this information you can decide if you wish to trust the certificate. This is a trust
system based on intermediaries, and it forms what is called the " web of trust." The web of trust can be
thought of as a peer-to-peer certification system. No centralized certifying authority is needed. A free
version of PGP is available for download at http://web.mit.edu/network/pgp.html.

Unfortunately, digital certificates and signatures don't solve all of our problems. Not all software
packages are signed. An author's private key can become compromised, allowing others to sign any
piece of software with the compromised key. Just because software is signed doesn't mean that it
doesn't have malicious intent. So one must still be vigilant when it comes to downloaded software.

http://web.mit.edu/network/pgp.html

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 157

15.2.5 Open source software

Much of the software available for download is available as source code, which needs to be compiled
or interpreted in order to run on a specific computer. This means that one can examine the source
code for any malicious intent. However, this is really practical only for rather small programs. This
naturally leads to the question of whether it is possible to write a program that examines the source
code of another program to determine if that program really does what it claims to do. Unfortunately,
computer scientists have shown that, in general, it is impossible to determine if a program does what
it claims to do.[2] However, we can build programs to monitor or constrain the behavior of other
programs.

[2] Proving certain properties of programs can be reduced to proving the " Halting Problem." See, for example,
Michael Sipser (1997). Introduction to the Theory of Computation. PWS Publishing Company.

15.2.6 Sandboxing and wrappers

Programs that place limits on the behavior of other programs existed before the Internet. The most
obvious example of this type of program is an operating system such as Unix or Windows NT. Such an
operating system, for example, won't allow you to delete a file owned by someone else or read a file
owned by another user unless that user has granted you permission. Today, programs exist that can
constrain the behavior of programs you download while surfing the Web. When a web page contains a
Java applet, that applet is downloaded and interpreted by another program running on your
computer. This interpreter prevents the applet from performing operations that could possibly
damage your computer, such as deleting files. The term used to describe the process of limiting the
type of operations a program can perform is called sandboxing. The applet or other suspicious
program is allowed to execute only in a small sandbox. Thus the risk of damage is reduced
substantially. Programs called wrappers allow the behavior of CGI scripts to be constrained in a
similar manner.

15.3 Trust in censorship-resistant publishing systems

We now examine trust issues specific to distributed file-sharing and publishing programs. We use
Publius as an example; however, the problems and solutions discussed are applicable to many of the
other programs discussed in this book.

Publius is a web-based publishing system that allows people to publish documents in such a way that
they are resistant to censorship. For a full description of Publius, see Chapter 11.

Publius derives its censorship resistance in part from a collection of independently owned web
servers. Each server donates a few hundred megabytes of disk space and runs a CGI script that allows
it to store and retrieve Publius files. Since each server is independently owned, the server
administrator has free rein over the server. This means the administrator can arbitrarily read, delete
or modify any files on the server including the Publius files. Because the Publius files are encrypted,
reading a file does not reveal anything interesting about the file (unless the server administrator
knows the special Publius URL).

15.3.1 Publius in a nutshell

Before describing the trust issues involved in Publius, we briefly review the Publius publication
process. When an individual publishes a file, the Publius client software generates a key that is used to
encrypt the file. This key is split into a number of pieces called shares. Only a small number of these
shares are required to reconstruct the key. For example, the key can be split into 30 shares such that
any 3 shares are needed to reconstruct the document.

A large number of Publius servers - let's say 20 - then store the file, each server taking one share of the
key along with a complete copy of the encrypted file. Each server stores a different share, and no
server holds more than one share. A special Publius URL is generated that encodes the location of the
encrypted file and shares on the 20 servers. In order to read the document, the client software parses
the special URL, randomly picks 3 of these 20 servers, and downloads the share stored on each of
them. In addition, the client software downloads one copy of the encrypted file from one of the
servers.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 158

The client now combines the shares to form the key and uses the key to decrypt the file. A tamper
check is performed to see if the file was changed in any way. If the file was changed, a new set of three
shares and a new encrypted document are retrieved and tested. This continues until a file passes the
tamper check or the system runs out of different encrypted file and share combinations.

15.3.2 Risks involved in web server logging

Most web servers keep a log of all files that have been requested from the server. These logs usually
include the date, time, and the name of the file that was requested. In addition, these logs usually hold
the IP address of the computer that made the request. This IP address can be considered a form of
identification. While it may be difficult to directly link an individual to a particular IP address, it is not
impossible.

Even if your IP address doesn't directly identify you, it certainly gives some information about you.
For example, an IP address owned by an ISP appearing in some web server log indicates that an
individual who uses that ISP visited the web site on a certain date and time. The ISP itself may keep
logs as to who was using a particular IP address during a particular date and time. So while it may not
be possible to directly link an individual to a web site visit, an indirect route may exist.

Web servers almost always log traffic for benign reasons. The company or individual who owns the
server simply wishes to get an idea how many requests the web server is receiving. The logs may
answer questions central to the company's business. However, as previously stated, these logs can also
be used to identify someone. This is a problem faced by Publius and many of the other systems
described in this book.

Why would someone want to be anonymous on the Internet? Well, suppose that you are working for a
company that is polluting the environment by dumping toxic waste in a local river. You are outraged
but know that if you say anything you will be fired from your job. Therefore you secretly create a web
page documenting the abuses of the corporation. You then decide you want to publish this page with
Publius. Publishing this page from your home computer could unwittingly identify you. Perhaps one
or more of the Publius servers are run by friends of the very corporation that you are going to expose
for its misdeeds. Those servers are logging IP addresses of all computers that store or read Publius
documents. In order to avoid this possibility you can walk into a local cyber café or perhaps the local
library and use their Internet connection to publish the web page with Publius. Now the IP address of
the library or cyber café will be stored in the logs of the Publius servers. Therefore there is no longer a
connection to your computer. This level of anonymity is still not as great as we would like. If you are
one of a very few employees of the company living in a small town, the company may be able to figure
out you leaked the information just by tracing the web page to a location in that town.

Going to a cyber café or library is one option to protect your privacy. Anonymizing software is another.
Depending on your trust of the anonymity provided by the cyber café or library versus your trust of the
anonymity provided by software, you may reach different conclusions about which technique provides
a higher level of anonymity in your particular situation. Whether surfing the Web or publishing a
document with Publius, anonymizing software can help you protect your privacy by making it difficult,
if not impossible, to identify you on the Internet. Different types of anonymizing software offer
varying degrees of anonymity and privacy protection. We now describe several anonymizing and
privacy-protection systems.

15.3.3 Anonymizing proxies

The simplest type of anonymizing software is an anonymizing proxy. Several such anonymizing
proxies are available today for individuals who wish to surf the Web with some degree of anonymity.
Two such anonymizing proxies are Anonymizer.com and Rewebber.de. These anonymizing proxies
work by acting as the intermediary between you and the web site you wish to visit. For example,
suppose you wish to anonymously view the web page with the URL http://www.oreilly.com/. Instead
of entering this address into the browser, you first visit the anonymizing proxy site (e.g.,
http://www.anonymizer.com/). This site displays a form that asks you to enter the URL of the site you
wish to visit. You enter http://www.oreilly.com/, and the anonymizing proxy retrieves the web page
corresponding to this URL and displays it in your browser. In addition, the anonymizing proxy
rewrites all the hyperlinks on the retrieved page so that when you click on any of these hyperlinks the
request is routed through the anonymizing proxy. Any logs being kept by the server
http://www.oreilly.com/ will only record the anonymizing proxy's IP address, as this is the computer
that actually made the request for the web page. The process is illustrated in Figure 15.2.

http://www.oreilly.com/
http://www.anonymizer.com/
http://www.oreilly.com/
http://www.oreilly.com/

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 159

Figure 15.2. How requests and responses pass through an anonymizing proxy

The anonymizing proxy solves the problem of logging by the Publius servers but has introduced the
problem of logging by the anonymizing proxy. In other words, if the people running the proxy are
dishonest, they may try to use it to snare you.

In addition to concern over logging, one must also trust that the proxy properly transmits the request
to the destination web server and that the correct document is being returned. For example, suppose
you are using an anonymizing proxy and you decide to shop for a new computer. You enter the URL of
your favorite computer company into the anonymizing proxy. The company running the anonymizing
proxy examines the URL and notices that it is for a computer company. Instead of contacting the
requested web site, the proxy contacts a competitor's web site and sends the content of the
competitor's web page to your browser. If you are not very familiar with the company whose site you
are visiting, you may not even realize this has happened. In general, if you use a proxy you must just
resolve to trust it, so try to pick a proxy with a good reputation.

15.3.4 Censorship in Publius

Now that we have a possible solution to the logging problem, let's look at the censorship problem.
Suppose that a Publius server administrator named Eve wishes to censor a particular Publius
document. Eve happened to learn the Publius URL of the document and by coincidence her server is
storing a copy of the encrypted document and a corresponding share. Eve can try a number of things
to censor the document.

Upon inspecting the Publius URL for the document she wishes to censor, Eve learns that the
encrypted document is stored on 20 servers and that 3 shares are needed to form the key that decrypts
the document. After a bit of calculation Eve learns the names of the 19 other servers storing the
encrypted document. Recall that Eve's server also holds a copy of the encrypted document and a
corresponding share. If Eve simply deletes the encrypted document on her server she cannot censor
the document, as it still exists on 19 other servers. Only one copy of the encrypted document and three
shares are needed to read the document. If Eve can convince at least 17 other server administrators to
delete the shares corresponding to the document then she can censor the document, as not enough
shares will be available to form the key. (This possibility means that it is very difficult, but not
impossible, to censor Publius documents. The small possibility of censorship can be viewed as a
limitation of Publius. However, it can also be viewed as a "safety" feature that would allow a document
to be censored if enough of the server operators agreed that it was objectionable.)

15.3.4.1 Using the Update mechanism to censor

Eve and her accomplices have not been able to censor the document by deleting it; however, they
realize that they might have a chance to censor the document if they place an update file in the
directory where the encrypted file and share once resided. The update file contains the Publius URL of
a file published by Eve.

Using the Update file method described in Chapter 11, Eve and her accomplices have a chance, albeit a
very slim one, of occasionally censoring the document. When the Publius client software is given a
Publius URL it breaks up the URL to discover which servers are storing the encrypted document and
shares. The client then randomly chooses three of these servers from which to retrieve the shares. The
client also retrieves the encrypted document from one of these servers. If all three requests for the
share return with the same update URL, instead of the share, the client follows the update URL and
retrieves the corresponding document.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 160

How successful can a spoofed update be? There are 1,140 ways to choose 3 servers from a set of 20.
Only 1 of these 1,140 combinations leads to Eve's document. Therefore Eve and her cohorts have only
a 1 in 1,140 chance of censoring the document each time someone tries to retrieve it. Of course, Eve's
probability of success grows as she enlists more Publius server administrators to participate in her
scheme. Furthermore, if large numbers of people are trying to retrieve a document of some social
significance, and they discover any discrepancies by comparing documents, Eve could succeed in
casting doubt on the whole process of retrieval.

A publisher worried about this sort of update attack has the option of specifying that the file is not
updateable. This option sets a flag in the Publius URL that tells the Publius client software to ignore
update URLs sent from any Publius server. Any time the Publius client receives an update URL, it
simply treats it as an invalid response from the server and attempts to acquire the needed information
from another server. In addition to the "do not update" option, a "do not delete" option is available to
the publisher of a Publius document. While this cannot stop Eve or any other server administrator
from deleting files, it does protect the publisher from someone trying to repeatedly guess the correct
password to the delete the file. This is accomplished by not storing a password with the encrypted file.
Because no password is stored on the server, the Publius server software program refuses to perform
the Delete command.

As previously stated, the Publius URL also encodes the number of shares required to form the key.
This is the same as the number of update URLs that must match before the Publius client retrieves an
update URL. Therefore, another way to make the update attack more difficult is to raise the number of
shares needed to reconstruct the key. The default is three, but it can be set to any number during the
Publish operation. However, raising this value increases the amount of time it takes to retrieve a
Publius document because more shares need to be retrieved in order to form the key.

On the other hand, requiring a large number of shares to reconstruct the document can make it easier
for an adversary to censor it. Previously we discussed the possibility of Eve censoring the document if
she and two friends delete the encrypted document and its associated shares. We mentioned that such
an attack would be unsuccessful because 17 other shares and encrypted documents exist. If the
document was published in such a way that 18 shares were required to form the key, Eve would have
succeeded in censoring the document because only 17 of the required 18 shares would be available.
Therefore, some care must be taken when choosing the required number of shares.

Alternatively, even if we do not increase the number of shares necessary to reconstruct a Publius
document, we could develop software for retrieving Publius documents that retrieves more than the
minimum number of required shares when an update file is discovered. While this slows down the
process of retrieving updated documents, it can also provide additional assurance that a document has
not been tampered with (or help the client find an unaltered version of a document that has been
tampered with).

The attacks in this censorship section illustrate the problems that can occur when one blindly trusts a
response from a server or peer. Responses can be carefully crafted to mislead the receiving party. In
systems such as Publius, which lack any sort of trust or reputation mechanism, one of the few ways to
try to overcome such problems is to utilize randomization and replication. By replication we mean
that important information should be replicated widely so that the failure of one or a small number of
components will not render the service inoperable (or, in the case of Publius, easy to censor).
Randomization helps because it can make attacks on distributed systems more difficult. For example,
if Publius always retrieved the first three shares from the first three servers in the Publius URL, then
the previously described update attack would always succeed if Eve managed to add an update file to
these three servers. By randomizing share retrieval the success of such an attack decreases from 100%
to less than 1%.

15.3.5 Publius proxy volunteers

In order to perform any Publius operation one must use the Publius client software. The client
software consists of an HTTP proxy that intercepts Publius commands and transparently handles non-
Publius URLs as well. This HTTP proxy was designed so that many people could use it at once - just
like a web server. This means that the proxy can be run on one computer on the Internet and others
can connect to it. Individuals who run the proxy with the express purpose of allowing others to
connect to it are called Publius proxy volunteers.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 161

Why would someone elect to use a remote proxy rather than a local one? The current Publius proxy
requires the computer language Perl and a cryptographic library package called Crypto++. Some
individuals may have problems installing these software packages, and therefore the remote proxy
provides an attractive alternative.

The problem with remote proxies is that the individual running the remote proxy must be trusted, as
we stated in Section 15.3.3 earlier in this chapter. That individual has complete access to all data sent
to the proxy. As a result, the remote proxy can log everything it is asked to publish, retrieve, update, or
delete. Therefore, users may wish to use an anonymizing tool to access the Publius proxy.

The remote proxy, if altered by a malicious administrator, can also perform any sort of transformation
on retrieved documents and can decide how to treat any Publius commands it receives. The solutions
to this problem are limited. Short of running your own proxy, probably the best thing you can do is
use a second remote proxy to verify the actions of the first.

15.4 Third-party trust issues in Publius

Besides trusting the operators of the Publius servers and proxies, users of Publius may have to place
trust in other parties. Fortunately some tools exist that reduce the amount of trust that must be placed
in these parties.

15.4.1 Other anonymity tools

While not perfect, anonymizing proxies can hide your IP address from a Publius server or a particular
web site. As previously stated, the anonymizing proxy itself could be keeping logs.

In addition, your Internet service provider (ISP) can monitor all messages you send over the Internet.
An anonymizing proxy doesn't help us with this problem. Instead, we need some way of hiding all
communication from the ISP. Cryptography helps us here. All traffic (messages) between you and
another computer can be encrypted. Now the ISP sees only encrypted traffic, which looks like
gibberish. The most popular method of encrypting web traffic is the Secure Sockets Layer (SSL)
Protocol.

15.4.1.1 SSL

SSL allows two parties to create a private channel over the Internet. In our case this private channel
can be between a Publius client and a server. All traffic to and from the Publius client and server can
be encrypted. This hides everything from the ISP except the fact that you are talking to a Publius
server. The ISP can see the encrypted channel setup messages between the Publius client and server.
Is there a way to hide this piece of information too? It turns out there is.

15.4.1.2 Mix networks

Mix networks are systems for hiding both the content and destination of a particular message on the
Internet.[3] One of the best-known mix networks is discussed in Chapter 7.

[3] Mix networks were first introduced by David Chaum. See David Chaum (1981), "Untraceable Electronic Mail,
Return Addresses, and Digital Pseudonyms," Communications of the ACM, vol. 24, no. 2, pp. 84-88.

A mix network consists of a collection of computers called routers that use a special layered encryption
method to hide the content and true destination of a message. To send a message, the sender first
decides on a path through a subset of the mixes. Each mix has an associated public and private key
pair. All users of the mix network know all the public keys. The message is repeatedly encrypted using
the public keys of the routers on the chosen path. First the message is encrypted with the public key of
the last router in the chosen path. This encrypted message is then encrypted once again using the
public key of the next-to-last router. This is repeated until the message is finally encrypted with the
public key of the first router in the chosen path. As the encrypted message is received at each router,
the outer layer of encryption is removed by decrypting it with the router's private key. This reveals
only the next router in the mix network to receive the encrypted message. Each router can only
decrypt the outer layer of encryption with its private key. Only the last router in the chosen path
knows the ultimate destination of the message; however, it doesn't know where the message
originated. The layers of encryption are represented in Figure 15.3.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 162

Figure 15.3. A mix network adds and strips off layers of encryption

Mix networks are also used to try to thwart traffic analysis. Traffic analysis is a method of correlating
messages emanating from and arriving at various computers or routers. For instance, if a message
leaves one node and is received by another shortly thereafter, and if the pattern is immediately
repeated in the other direction, a monitor can guess that the two systems are engaged in a request and
acknowledgment protocol. Even when a mix network is in use, this type of analysis is feasible if all or a
large percentage of the mix network can be monitored by an adversary (perhaps a large government).
In an effort to combat this type of analysis, mix networks usually pad messages to a fixed length,
buffer messages for later transmission, and generate fake traffic on the network, called covering
traffic. All of these help to complicate or defeat traffic analysis.

Researchers at the U.S. Department of Defense developed an implementation of mix networks called
Onion Routing (http://www.onion-router.net/) and deployed a prototype network. The network was
taken offline in January 2000. Zero-Knowledge Systems developed a commercial implementation of
mix networks in a product called Freedom - see http://www.freedom.net/ for more information.

15.4.1.3 Crowds

Crowds is a system whose goals are similar to that of mix networks but whose implementation is quite
different. Crowds is based on the idea that people can be anonymous when they blend into a crowd. As
with mix networks, Crowds users need not trust a single third party in order to maintain their
anonymity. A crowd consists of a group of web surfers all running the Crowds software. When one
crowd member makes a URL request, the Crowds software on the corresponding computer randomly
chooses between retrieving the requested document or forwarding the request to a randomly selected
member of the crowd. The receiving crowd member can also retrieve the requested document or
forward the request to a randomly selected member of the crowd, and so on. Eventually, the web
document corresponding to the URL is retrieved by some member of the crowd and sent back to the
crowd member that initiated the request.

Suppose that computers A, B, C, D, E, and F are all members of a crowd. Computer B wants to
anonymously retrieve the web page at the URL http://www.oreilly.com/. The Crowds software on
computer B sends this URL to a random member of the crowd, say computer F. Computer F decides to
send it to computer C. Computer C decides to retrieve the URL. Computer C sends the web page back
to computer F. Computer F then sends the web page back to computer B. Notice that the document is
sent back over the path of forwarding computers and not directly from C to B. All communication
between crowd members is encrypted using symmetric ciphers. Only the actual request from
computer C to http://www.oreilly.com remains unencrypted (because the software has to assume
that http://www.oreilly.com is uninterested in going along with the crowd). The structure of the
system is shown in Figure 15.4.

http://www.onion-router.net/
http://www.freedom.net/
http://www.oreilly.com/
http://www.oreilly.com
http://www.oreilly.com

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 163

Figure 15.4. Crowds hides the origin of a request to a web server

Notice that each computer in the crowd is equally likely to make the request for the specific web page.
Even though computer C's IP address will appear in the log of the server http://www.oreilly.com, the
individual using computer C can plausibly deny visiting the server. Computer C is a member of the
crowd and therefore could have been retrieving the page for another member of the crowd. Notice that
each crowd member cannot tell which other member of the crowd requested the particular URL. In
the previous example, computer B sends the URL to computer F. Crowd member F cannot tell if the
URL request originated with B or if B was simply an intermediary forwarding the request from
another crowd member. This is the reason that the retrieved web page has to be passed back over the
list of crowd members that forwarded the URL.

Crowds is itself an example of a peer-to-peer system.

15.4.2 Denial of service attacks

Publius relies on server volunteers to donate disk space so others can publish files in a censorship-
resistant manner. Disk space, like all computer resources, is finite. Once all the disks on all the Publius
servers are full, no more files can be published until others are deleted. Therefore an obvious attack on
Publius is to fill up all the disks on the servers. Publius clients know the locations of all the servers, so
identifying the servers to attack is a simple matter. Attacks with the intention of making resources
unavailable are called denial of service attacks.

Systems that blindly trust users to conserve precious resources are extremely vulnerable to this kind of
attack. Therefore, non-trust based mechanisms are needed to thwart such attacks.

Can systems be designed to prevent denial of service attacks? The initial version of Publius tried to do
so by limiting the size of any file published with Publius to 100K. While this certainly won't prevent
someone from trying to fill up the hard drives, it does make this kind of attack more time consuming.
Other methods such as CPU payment schemes, anonymous e-cash payment schemes, or quota
systems based on IP address may be incorporated into future versions of Publius. While these
methods can help deter denial of service attacks, they cannot prevent them completely.

15.4.2.1 Quota systems

Quota systems based on IP address could work as follows. Each Publius server keeps track of the IP
address of each computer that makes a Publish request. If a Publius client has made more than ten
Publish requests to a particular server in the last 24 hours, subsequent Publish requests will be denied
by that server. Only after a 24-hour time period has elapsed will the server once again honor Publish
requests from that Publius client's IP address.

The problem with this scheme is that it is not foolproof. An attacker can easily fake IP addresses. In
addition, the 10-file limit may unfairly limit individuals whose IP addresses are dynamically assigned.
For example, suppose someone with an IP address from AOL publishes ten files on some server. If
later in the day someone else is assigned that same IP address, the individual will be unfairly excluded
from publishing on that particular server.

http://www.oreilly.com

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 164

15.4.2.2 CPU-based payment schemes

CPU-based payment schemes are used to help prevent denial of service attacks by making it
expensive, in terms of time, to carry out such an attack. In Publius, for example, before the server
agrees to publish a file, it could ask the publishing client to solve some sort of puzzle. The client
spends some time solving the puzzle and then sends the answer to the server. The server agrees to
publish the file only if the answer is correct. Each time the particular client asks to publish a file the
server can make the puzzle a bit harder - requiring the client to expend more CPU time to find the
puzzle answer.

While this scheme makes denial of service attacks more expensive, it clearly does not prevent them. A
small Publius system created by civic-minded individuals could be overwhelmed by a large company
or government willing to expend the computing resources to do the necessary calculations.

By design, Publius and many other publishing systems have no way of authenticating individuals who
wish to publish documents. This commitment to anonymous publishing makes it almost impossible to
stop denial of service attacks of this sort.

15.4.2.3 Anonymous e-cash payment schemes

Another way of preventing denial of service attacks is to require publishers to pay money in order to
publish their documents with Publius. An anonymous e-cash system could allow publishers to pay
while still remaining anonymous. Even if a well-funded attacker could afford to pay to fill up all
available Publius servers, the fees collected from that attacker could be used to buy more disks. This
could, of course, result in an arms race if the attacker had enough money to spend on defeating
Publius. Chapter 16 discusses CPU- and anonymous e-cash-based payment schemes in more detail.

15.4.3 Legal and physical attacks

All of the methods of censorship described so far involve using a computer. However, another method
of trying to censor a document is to use the legal system. Attackers may try to use intellectual property
law, obscenity laws, hate speech laws, or other laws to try to force server operators to remove Publius
documents from their servers or to shut their servers down completely. However, as mentioned
previously, in order for this attack to work, a document would have to be removed from a sufficient
number of servers. If the Publius servers in question are all located in the same legal jurisdiction, a
single court order could effectively shut down all of the servers. By placing Publius servers in many
different jurisdictions, such attacks can be prevented to some extent.

Another way to censor Publius documents is to learn the identity of the publishers and force them to
remove their documents from the Publius servers. By making threats of physical harm or job loss,
attackers may "convince" publishers to remove their documents. For this reason, it may be especially
important for some publishers to take precautions to hide their identities when publishing Publius
documents. Furthermore, publishers can indicate at the time of publication that their documents
should never be deleted. In this case, no password exists that will allow the publishers to delete their
documents - only the server operators can delete the documents.

15.5 Trust in other systems

We now examine issues of trust in some popular file-sharing and anonymous publishing systems.

15.5.1 Mojo Nation and Free Haven

Many of the publishing systems described in this book rely on a collection of independently owned
servers that volunteer disk space. As disk space is a limited resource, it is important to protect it from
abuse. CPU-based payment schemes and quotas, both of which we mentioned previously, are possible
deterrents to denial of service attacks, but other methods exist.

Mojo Nation uses a digital currency system called Mojo that must be paid before one can publish a file
on a server. In order to publish or retrieve files in the Mojo Nation network, one must pay a certain
amount of Mojo.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 165

Mojo is obtained by performing a useful function in the Mojo Nation network. For example, you can
earn Mojo by volunteering to host Mojo content on your server. Another way of earning Mojo is to run
a search engine on your server that allows others to search for files on the Mojo Nation network.

The Free Haven project utilizes a trust network. Servers agree to store a document based on the trust
relationship that exists between the publisher and the particular server. Trust relationships are
developed over time and violations of trust are broadcast to other servers in the Free Haven network.
Free Haven is described in Chapter 12.

15.5.2 The Eternity Service

Publius, Free Haven, and Mojo Nation all rely on volunteer disk space to store documents. All of these
systems have their roots in a theoretical publishing system called the Eternity Service.[4] In 1996, Ross
Anderson of Cambridge University first proposed the Eternity Service as a server-based storage
medium that is resistant to denial of service attacks.

[4] See Ross Anderson (1996), "The Eternity Service," PragoCrypt'96.

An individual wishing to anonymously publish a document simply submits it to the Eternity Service
with an appropriate fee. The Eternity Service then copies the document onto a random subset of
servers participating in the service. Once submitted, a document cannot be removed from the service.
Therefore, an author cannot be forced, even under threat, to delete a document published on the
Eternity Service.

Anderson envisioned a system in which servers were spread all over the world, making the system
resistant to legal attacks as well as natural disasters. The distributed nature of the Eternity Service
would allow it to withstand the loss of a majority of the servers and still function properly.

Anderson outlined the design of this ambitious system, but did not provide the crucial details of how
one would construct such a service. Over the years, a few individuals have described in detail and
actually implemented scaled-down versions of the Eternity Service. Publius, Free Haven, and the
other distributed publishing systems described in this book fit into this category.

15.5.2.1 Eternity Usenet

An early implementation of a scaled-down version of the Eternity Service was proposed and
implemented by Adam Back. Unlike the previously described publishing systems, this system didn't
rely on volunteers to donate disk space. Instead, the publishing system was built on top of the Usenet
news system. For this reason the system was called Eternity Usenet.

The Usenet news system propagates messages to servers all over the world and therefore qualifies as a
distributed storage medium. However, Usenet is far from an ideal long-term storage mechanism.
Messages posted to a Usenet newsgroup can take days to propagate to all Usenet servers. Not all
Usenet news servers subscribe to all Usenet newsgroups. In fact, any system administrator can locally
censor documents by not subscribing to a particular newsgroup. Usenet news posts can also become
the victims of cancel or supercede messages. They are relatively easy to fake and therefore attractive to
individuals who wish to censor a particular Usenet post.

The great volume of Usenet traffic necessitates the removal of old Usenet articles in favor of newer
ones. This means that something posted to Usenet today may not be available two weeks from now, or
even a few days from now. There are a few servers that archive Usenet articles for many years, but
because there are not many of these servers, they present an easy target for those who wish to censor
an archived document.

Finally, there is no way to tell if a Usenet message has been modified. Eternity Usenet addresses this
by allowing an individual to digitally sign the message.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 166

15.5.3 File-sharing systems

Up until now we have been discussing only systems that allow an individual to publish material on
servers owned by others. However, Napster, a program that allows individuals to share files residing
on their own hard drives, has been said to have started the whole peer-to-peer revolution. Napster
allows individuals to share MP3 files over the Internet. The big debate concerning Napster is whether
this file sharing is legal. Many of the shared MP3 files are actually copied from one computer to
another without any sort of royalty being paid to the artist that created the file. We will not discuss
this particular issue any further as it is beyond the scope of this chapter. We are interested in the file-
sharing mechanism and the trust issues involved.

15.5.3.1 Napster

Let's say Alice has a collection of MP3 files on her computer's hard drive. Alice wishes to share these
files with others. She downloads the Napster client software and installs it on her computer. She is
now ready to share the MP3 files. The list of MP3 files and associated descriptions is sent to the
Napster server by the client software. This server adds the list to its index of MP3 files. In addition to
storing the name and description of the MP3 files, the server also stores Alice's IP address. Alice's IP
address is necessary, as the Napster server does not actually store the MP3 files themselves, but rather
just pointers to them.

Alice can also use the Napster client software to search for MP3 files. She submits a query to the
Napster server and a list of matching MP3 files is returned. Using the information obtained from the
Napster server, Alice's client can connect to any of the computers storing these MP3 files and initiate a
file transfer. Once again the issue of logging becomes important. Not only does Alice have to worry
about logging on the part of the Napster server, but she also has to worry about logging done by the
computer that she is copying files from. It is this form of logging that allowed the band Metallica to
identify individuals who downloaded their music.

The natural question to ask is whether one of our previously described anonymizing tools could be
used to combat this form of logging. Unfortunately the current answer is no. The reason for this is that
the Napster server and client software speak a protocol that is not recognized by any of our current
anonymizing tools. A protocol is essentially a set of messages recognized by both programs involved in
a conversation - in this case the Napster client and server. This does not mean that such an
anonymizing tool is impossible to build, only that current tools won't fit the bill.

15.5.3.2 Gnutella

Gnutella, described in Chapter 8, is a pure peer-to-peer file-sharing system. Computers running the
Gnutella software connect to some preexisting network and become part of this network. We call
computers running the Gnutella software Gnutella clients. Once part of this network, the Gnutella
client can respond to queries sent by other members of the network, generate queries itself, and
participate in file sharing. Queries are passed from client to client and responses are passed back over
the same set of clients that the requests originated from. This prevents meaningful logging of IP
addresses and queries, because the client attempting to log the request has no way of knowing which
client made the original request. Each client is essentially just forwarding the request made by another
member of the network. Queries therefore remain for the most part anonymous. The individual that
made the query is hidden among the other members of the peer-to-peer network, as with the Crowds
system.

File transfer in Gnutella is done directly instead of via intermediaries. This is done for performance
reasons; however, it also means that file transfer is not anonymous. The individual copying the file is
no longer hidden among the other network members. The IP address of the client copying the file can
now be logged.

Let's say that client A wishes to copy a file that resides on client B. Gnutella client A contacts client B
and a file transfer is initiated. Client B can now log A's IP address and the fact that A copied a
particular file. Although this sort of logging may seem trivial and harmless, it led to the creation of the
web site called the Gnutella Wall of Shame. This web site lists the IP addresses and domain names of
computers that allegedly downloaded a file that was advertised as containing child pornography. The
file did not actually contain child pornography, but just the fact that a client downloaded the file was
enough to get it placed on the list. Of course, any web site claiming to offer specific content could
perform the same violation of privacy.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 167

15.5.3.3 Freenet

Freenet, described in Chapter 9, is a pure peer-to-peer anonymous publishing system. Files are stored
on a set of volunteer file servers. This set of file servers is dynamic - servers can join and leave the
system at any time. A published file is copied to a subset of servers in a store-and-forward manner.
Each time the file is forwarded to the next server, the origin address field associated with the file can
be changed to some random value. This means that this field is essentially useless in trying to
determine where the file originated. Therefore, files can be published anonymously.

Queries are handled in exactly the same way - the query is handed from one server to another and the
resulting file (if any) is passed back through the same set of servers. As the file is passed back, each
server can cache it locally and serve it in response to future requests for that file. It is from this local
caching that Freenet derives its resistance to censorship. This method of file transfer also prevents
meaningful logging, as each server doesn't know the ultimate destination of the file.

15.5.4 Content certification

Now that we have downloaded a file using one of the previously described systems, how do we know it
is the genuine article? This is exactly the same question we asked at the beginning of this chapter.
However, for certain files we may not really care that we have been duped into downloading the wrong
file. A good example of this is MP3 files. While we may have wasted time downloading the file, no real
harm was done to our computer. In fact, several artists have made bogus copies of their work available
on such file-sharing programs as Napster. This is an attempt to prevent individuals from obtaining the
legitimate version of the MP3 file.

The "problem" with many of the publishing systems described in this book is that we don't know who
published the file. Indeed this is actually a feature required of anonymous publishing systems.
Anonymously published files are not going to be accompanied by a digital certificate and signature
(unless the signature is associated with a pseudonym). Some systems, such as Publius, provide a
tamper-check mechanism. However, just because a file passes a tamper check does not mean that the
file is virus-free and has actually been uploaded by the person believed by the recipient to have
uploaded it.

15.6 Trust and search engines

File-sharing and anonymous publishing programs provide for distributed, and in some cases fault
tolerant, file storage. But for most of these systems, the ability to store files is necessary but not
sufficient to achieve their goals. Most of these systems have been built with the hope of enabling
people to make their files available to others. For example, Publius was designed to allow people to
publish documents so that they are resistant to censorship. But publishing a document that will never
be read is of limited use. As with the proverbial tree falling in the forest that nobody was around to
hear, an unread document makes no sound - it cannot inform, motivate, offend, or entertain.
Therefore, indexes and search engines are important companions to file-sharing and anonymous
publishing systems.

As previously stated, all of these file-sharing and anonymous publishing programs are still in their
infancy. Continuing this analogy, we can say that searching technologies for these systems are in the
embryonic stage. Unlike the Web, which now has mature search engines such as Google and Yahoo!,
the world of peer-to-peer search engines consists of ad hoc methods, none of which work well in all
situations. Web search engines such as Google catalogue millions of web pages by having web crawlers
(special computer programs) read web pages and catalogue them. This method will not work with
many of the systems described in this book. Publius, for example, encrypts its content and only
someone possessing the URL can read the encrypted file. It makes no sense for a web crawler to visit
each of the Publius servers and read all the files stored on them. The encrypted files will look like
gibberish to the web crawler.

The obvious solution is to somehow send a list of known Publius URLs to a special web crawler that
knows how to interpret them. Of course, submitting the Publius URL to the web crawler would be
optional, as one may not wish to widely publicize a particular document.

Creating a Publius web crawler and search engine would be fairly straightforward. Unfortunately this
introduces a new way to censor Publius documents. The company or individual operating the Publius
web crawler can censor a document by simply removing its Publius URL from the crawler's list.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 168

The owners of the search engine can not only log your query but can also control exactly what results
are returned from the search engine.

Let us illustrate this with a trivial example. You go to the Publius search engine and enter the phrase
"Windows 95." The search engine examines the query and decides to send you pages that only
mention Linux. Although this may seem like a silly example, one can easily see how this could lead to
something much more serious. Of course, this is not a problem unique to Publius search engines - this
problem can occur with the popular web search engines as well. Indeed, many of the popular search
engines sell advertisements that are triggered by particular search queries, and reorder search results
so that advertisers' pages are listed at the top.

15.6.1 Distributed search engines

The problem with a centralized search engine, even if it is completely honest, is that it has a single
point of failure. It presents an enticing target to anyone who wishes to censor the system. This type of
attack has already been used to temporarily shut down Napster. Because all searches for MP3 files are
conducted via the Napster server, just shut down the server and the system becomes useless.

This dramatically illustrates the need for a distributed index, the type of index that we find in Freenet.
Each Freenet server keeps an index of local files as well as an index of some files stored in some
neighboring servers. When a Freenet server receives a query it first checks to see if the query can be
satisfied locally. If it cannot, it uses the local index to decide which server to forward the request to.
The index on each server is not static and changes as files move through the system.

One might characterize Gnutella as having a distributed index. However, each client in the network is
concerned only with the files it has stored locally. If a query can be satisfied locally, the client sends a
response. If not, it doesn't respond at all. In either case the previous client forwards its query to other
members of the network. Therefore, one query can generate many responses. The query is essentially
broadcast to all computers on the Gnutella network.

Each Gnutella client can interpret the query however it sees fit. Indeed, the Gnutella client can return
a response that has nothing at all to do with the query. Therefore, the query results must be viewed
with some suspicion. Again it boils down to the issue of trust.

In theory, an index of Publius documents generated by a web crawler that accepts submissions of
Publius URLs could itself be published using Publius. This would prevent the index from being
censored. Of course, the URL submission system and the forms for submitting queries to the index
could be targeted for censorship.

Note that in many cases, indexes and search engines for the systems described in this book can be
developed as companion systems without changing the underlying distributed system. It was not
necessary for Tim Berners-Lee (the inventor of the World Wide Web) to build the many web search
engines and indexes that have developed. The architecture of the Web was such that these services
could be built on top of the underlying infrastructure.

15.6.2 Deniability

The ability to locate Publius documents can actually be a double-edged sword. On the one hand, being
able to find a document is essential for that document to be read. On the other hand, the first step in
censoring a document is locating it.

One of the features of Publius is that server administrators cannot read the content stored on their
servers because the files are encrypted. A search engine could, in some sense, jeopardize this feature.
Armed with a search engine, Publius administrators could conceivably learn that their servers are
hosting something they find objectionable. They could then go ahead and delete the file from their
servers. Therefore, a search engine could paradoxically lead to greater censorship in such anonymous
publishing systems.

Furthermore, even if server administrators do not wish to censor documents, once presented with a
Publius URL that indicates an objectionable document resides on their servers, they may have little
choice under local laws. Once the server operators know what documents are on their servers, they
lose the ability to deny knowledge of the kinds of content published with Publius.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 169

Some Publius server operators may wish to help promote free speech but may not wish to specifically
promote or endorse specific speech that they find objectionable. While they may be willing to host a
server that may be used to publish content that they would find objectionable, they may draw the line
at publicizing that content. In effect, they may be willing to provide a platform for free speech, but not
to provide advertising for the speakers who use the platform.

Table 15.2 summarizes the problems with censorship-resistant and file sharing systems we have
discussed in this chapter.

Table 15.2, Trust issues in censorship-resistant publishing systems

Risk Solution Trust principle

Servers, proxies, ISPs, or
other "nodes" you interact

with may log your
requests (making it

possible for your actions
to be traced).

Use a secure channel and/or an anonymity tool so
other parties do not get access to information that

might link you to a particular action.

Reduce risk, and
reduce the number

of people that
must be trusted.

Proxies and search
engines may alter content
they return to you in ways

they don't disclose.

Try multiple proxies (and compare results before
trusting any of them) or run your own proxy.

Reduce risk, and
reduce the number

of people that
must be trusted.

Multiple parties may
collaborate to censor your

document.

Publish your document in a way that requires a large
number of parties to collaborate before they can

censor successfully. (Only a small subset of parties
needs to be trusted not to collaborate, and any

subset of that size will do.)

Reduce the
number of people

that must be
trusted.

Parties may censor your
document by making it

appear as if you updated
your document when you

did not.

Publish your document in a way that it cannot be
updated, or publish your document in a way that
requires a large number of parties to collaborate
before they can make it appear that you updated
your document. (Only a small subset of parties
needs to be trusted not to collaborate, and any

subset of that size will do.)

Reduce the
number of people

that must be
trusted.

Publishers may flood disks
with bogus content as part

of a denial of service
attack.

Impose limits or quotas on publishers; require
publishers to pay for space with money,

computation, space donations; establish a
reputation system for publishers.

Reduce risk; look
for positive
reputations.

Censors may use laws to
try to force documents to

be deleted.

Publish your document in a way that requires a large
number of parties to collaborate before they can

censor successfully. (Only a small subset of parties
needs to be trusted not to collaborate, and any

subset of that size will do.)

Reduce the
number of people

that must be
trusted.

Censors may threaten
publishers to get them to

delete their own
documents.

Publish your document in a way that even the
publisher cannot delete it.

Reduce risk, and
reduce the number

of people that
must be trusted.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 170

15.7 Conclusions

In this chapter we have presented an overview of the areas where trust plays a role in distributed file-
sharing systems, and we have described some of the methods that can be used to increase trust in
these systems. By signing software they make available for download, authors can provide some
assurance that their code hasn't been tampered with and facilitate the building of a reputation
associated with their name and key. Anonymity tools and tools for establishing secure channels can
reduce the need to trust ISPs and other intermediaries not to record or alter information sent over the
Internet. Quota systems, CPU payment systems, and e-cash payment systems can reduce the risk of
denial of service attacks. Search engines can help facilitate dissemination of files but can introduce
additional trust issues.

There are several open issues. The first is the lack of existence of a global Public Key Infrastructure
(PKI). Many people believe that such a PKI is not ever going to be possible. This has ramifications for
trust, because it implies that people may never be able to trust signed code unless they have a direct
relationship with the signer. While the problem of trusting strangers exists on the Net, strangely, it is
also very difficult to truly be anonymous on the Internet. There are so many ways to trace people and
correlate their online activity that the sense of anonymity that most people feel online is misplaced.
Thus, there are two extremes of identity: both complete assurance of identity and total anonymity are
very difficult to achieve. More research is needed to see how far from the middle we can push in both
directions, because each extreme offers possibilities for increased trust in cyberspace.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 171

Chapter 16. Accountability
Roger Dingledine, Reputation Technologies, Inc., Michael J. Freedman, MIT, and David Molnar,
Harvard University

One year after its meteoric rise to fame, Napster faces a host of problems. The best known of these
problems is the lawsuit filed by the Recording Industry Association of America against Napster, Inc.
Close behind is the decision by several major universities, including Yale, the University of Southern
California, and Indiana University, to ban Napster traffic on their systems, thus depriving the Napster
network of some of its highest-bandwidth music servers. The most popular perception is that
universities are blocking Napster access out of fear of lawsuit. But there is another reason.

Napster users eat up large and unbounded amounts of bandwidth. By default, when a Napster client is
installed, it configures the host computer to serve MP3s to as many other Napster clients as possible.
University users, who tend to have faster connections than most others, are particularly effective
servers. In the process, however, they can generate enough traffic to saturate a network. It was this
reason that Harvard University cited when deciding to allow Napster, yet limit its bandwidth use.

Gnutella, the distributed replacement for Napster, is even worse: not only do downloads require large
amounts of bandwidth, but searches require broadcasting to a set of neighboring Gnutella nodes,
which in turn forward the request to other nodes. While the broadcast does not send the request to the
entire Gnutella network, it still requires bandwidth for each of the many computers queried.

As universities limit Napster bandwidth or shut it off entirely due to bandwidth usage, the utility of
the Napster network degrades. As the Gnutella network grows, searching and retrieving items
becomes more cumbersome. Each service threatens to dig its own grave - and for reasons independent
of the legality of trading MP3s. Instead, the problem is resource allocation .

Problems in resource allocation come up constantly in offering computer services. Traditionally they
have been solved by making users accountable for their use of resources. Such accountability in
distributed or peer-to-peer systems requires planning and discipline.

Traditional filesystems and communication mediums use accountability to maintain centralized
control over their respective resources - in fact, the resources allocated to users are commonly
managed by "user accounts." Filesystems use quotas to restrict the amount of data that users may
store on the systems. ISPs measure the bandwidth their clients are using - such as the traffic
generated from a hosted web site - and charge some monetary fee proportional to this amount.

Without these controls, each user has an incentive to squeeze all the value out of the resource in order
to maximize personal gain. If one user has this incentive, so do all the users.

Biologist Garrett Hardin labeled this economic plight the " tragedy of the commons."[1] The
"commons" (originally a grazing area in the middle of a village) is any resource shared by a group of
people: it includes the air we breathe, the water we drink, land for farming and grazing, and fish from
the sea. The tragedy of the commons is that a commonly owned resource will be overused until it is
degraded, as all agents pursue self-interest first. Freedom in a commons brings ruin to all; in the end,
the resource is exhausted.

[1] Garrett Hardin (1968), "The Tragedy of the Commons," Science 162, pp. 1243-1248.

We can describe the problem by further borrowing from economics and political science. Mancur
Olson explained the problem of collective actions and public goods as follows:

"[U]nless the number of individuals in a group is quite small, or unless there is
coercion or some other special device to make individuals act in their common
interest, rational, self-interested individuals will not act to achieve their common or
group interests.[2]

[2] Mancur Olson (1982), "The Logic of Collective Action." In Brian Barry and Russell
Hardin, eds., Rational Man and Irrational Society. Beverly Hills, CA: Sage, p. 44.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 172

The usual solution for commons problems is to assign ownership to the resource. This ownership
allows a party to profit from the resource, thus providing the incentive to care for it. Most real-world
systems take this approach with a fee-for-service business model.

Decentralized peer-to-peer systems have similar resource allocation and protection requirements. The
total storage or bandwidth provided by the sum of all peers is still finite. Systems need to protect
against two main areas of attack:

Denial of service (DoS) attacks

Overload a system's bandwidth or processing ability, causing the loss of service of a particular
network service or all network connectivity. For example, a web site accessed millions of times
may show "503" unavailability messages or temporarily refuse connections.

Storage flooding attacks

Exploit a system by storing a disproportionally large amount of data so that no more space is
available for other users.

As the Napster and Gnutella examples show, attacks need not be malicious. System administrators
must be prepared for normal peaks in activity, accidental misuse, and the intentional exploitation of
weaknesses by adversaries. Most computers that offer services on a network share these kinds of
threats.

Without a way to protect against the tragedy of the commons, collaborative networking rests on shaky
ground. Peers can abuse the protocol and rules of the system in any number of ways, such as the
following:

• Providing corrupted or low-quality information

• Reneging on promises to store data

• Going down during periods when they are needed

• Claiming falsely that other peers have abused the system in these ways

These problems must be addressed before peer-to-peer systems can achieve lasting success. Through
the use of various accountability measures, peer-to-peer systems - including systems that offer
protection for anonymity - may continue to expand as overlay networks through the existing Internet.

This chapter focuses on types of accountability that collaborative systems can use to protect against
resource allocation attacks. The problem of accountability is usually broken into two parts:

Restricting access

Each computer system tries to limit its users to a certain number of connections, a certain
quantity of data that can be uploaded or downloaded, and so on. We will describe the
technologies for doing this that are commonly called micropayments , a useful term even
though at first it can be misleading. (They don't necessarily have to involve an exchange of
money, or even of computer resources.)

Selecting favored users

This is normally done through maintaining a reputation for each user the system
communicates with. Users with low reputations are allowed fewer resources, or they are
mistrusted and find their transactions are rejected.

The two parts of the solution apply in different ways but work together to create accountability. In
other words, a computer system that is capable of restricting access can then use a reputation system
to grant favored access to users with good reputations.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 173

16.1 The difficulty of accountability

In simple distributed systems, rudimentary accountability measures are often sufficient. If the list of
peers is generally static and all are known to each other by hostname or address, misbehavior on
anyone's part leads to a permanent bad reputation. Furthermore, if the operators of a system are
known, preexisting mechanisms such as legal contracts help ensure that systems abide by protocol.

In the real world, these two social forces - reputation and law - have provided an impetus for fair trade
for centuries. Since the earliest days of commerce, buyers and merchants have known each others'
identities, at first through the immediacy of face-to-face contact, and later through postal mail and
telephone conversations. This knowledge has allowed them to research the past histories of their
trading partners and to seek legal reprisal when deals go bad. Much of today's e-commerce uses a
similar authentication model: clients (both consumers and businesses) purchase items and services
from known sources over the Internet and the World Wide Web. These sources are uniquely identified
by digital certificates, registered trademarks, and other addressing mechanisms.

Peer-to-peer technology removes central control of such resources as communication, file storage and
retrieval, and computation. Therefore, the traditional mechanisms for ensuring proper behavior can
no longer provide the same level of protection.

16.1.1 Special problems posed by peer-to-peer systems

Peer-to-peer systems have to treat identity in special ways for several reasons:

• The technology makes it harder to uniquely and permanently identify peers and their
operators. Connections and network maps might be transient. Peers might be able to join and
leave the system. Participants in the system might wish to hide personal identifying
information.

• Even if users have an identifying handle on the peer they're dealing with, they have no idea
who the peer is and no good way to assess its history or predict its performance.

• Individuals running peer-to-peer services are rarely bound by contracts, and the cost and time
delay of legal enforcement would generally outweigh their possible benefit.

We choose to deal with these problems - rather than give up and force everyone on to a centralized
system with strong user identification - to pursue two valuable goals on the Internet: privacy and
dynamic participation.

Privacy is a powerfully appealing goal in distributed systems, as discussed in Chapter 12. The design of
many such systems features privacy protection for people offering and retrieving files.

Privacy for people offering files requires a mechanism for inserting and retrieving documents either
anonymously or pseudonymously.[3] Privacy for people retrieving files requires a means to
communicate - via email, Telnet, FTP, IRC, a web client, etc. - while not divulging any information
that could link the user to his or her real-world persona.[4]

[3] A pseudonymous identity allows other participants to link together some or all the activities a person does on
the system, without being able to determine who the person is in real life. Pseudonymity is explored later in this
chapter and in Chapter 12.

[4] In retrospect, the Internet appears not to be an ideal medium for anonymous communication and publishing.
Internet services and protocols make both passive sniffing and active attack too easy. For instance, email
headers include the routing paths of email messages, including DNS hostnames and IP addresses. Web browsers
normally display user IP addresses; cookies on a client's browser may be used to store persistent user
information. Commonly used online chat applications such as ICQ and Instant Messenger also divulge IP
addresses. Network cards in promiscuous mode can read all data flowing through the local Ethernet. With all
these possibilities, telephony or dedicated lines might be better suited for this goal of privacy protection.
However, the ubiquitous nature of the Internet has made it the only practical consideration for digital
transactions across a wide area, like the applications discussed in this book.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 174

Dynamic participation has both philosophical and practical advantages. The Internet's loosely
connected structure and explosive growth suggest that any peer-to-peer system must be similarly
flexible and dynamic in order to be scalable and sustain long-term use. Similarly, the importance of ad
hoc networks will probably increase in the near future as wireless connections get cheaper and more
ubiquitous. A peer-to-peer system should therefore let peers join and leave smoothly, without
impacting functionality. This design also decreases the risk of systemwide compromise as more peers
join the system. (It helps if servers run a variety of operating systems and tools, so that a single exploit
cannot compromise most of the servers at once.)

16.1.2 Peer-to-peer models and their impacts on accountability

There are many different models for peer-to-peer systems. As the systems become more dynamic and
diverge from real-world notions of identity, it becomes more difficult to achieve accountability and
protect against attacks on resources.

The simplest type of peer-to-peer system has two main characteristics. First, it contains a fairly static
list of servers; additions and deletions are rare and may require manual intervention. Second, the
identities of the servers (and to some extent their human operators) are known, generally by DNS
hostname or static IP host address. Since the operators can be found, they may have a legal
responsibility or economic incentive - leveraged by the power of reputation - to fulfill the protocols
according to expectation.

An example of such a peer-to-peer system is the Mixmaster remailer. A summary of the system
appears in Chapter 7. The original Mixmaster client software was developed by Lance Cottrell and
released in 1995.[5] Currently, the software runs on about 30 remailer nodes, whose locations are
published to the newsgroup alt.privacy.anon-server and at web sites such as http://efga.org/.[6] The
software itself can be found at http://mixmaster.anonymizer.com/.

[5] Lance Cottrell (1995) "Mixmaster and Remailer Attacks," http://www.obscura.com/~loki/remailer/remailer-
essay.html.

[6] "Electronic Frontiers Georgia List of Public Mixmaster Remailers," http://anon.efga.org/Remailers.

Remailer nodes are known by hostname and remain generally fixed. While anybody can start running
a remailer, the operator needs to spread information about her new node to web pages that publicize
node statistics, using an out-of-band channel (meaning that something outside the Mixmaster system
must be used - most of the time, manually sent email). The location of the new node is then manually
added to each client's software configuration files. This process of manually adding new nodes leads to
a system that remains generally static. Indeed, that's why there are so few Mixmaster nodes.

A slightly more complicated type of peer-to-peer system still has identified operators but is dynamic in
terms of members . That is, the protocol itself has support for adding and removing participating
servers. One example of such a system is Gnutella. It has good support for new users (which are also
servers) joining and leaving the system, but at the same time, the identity and location of each of these
servers is generally known through the hosts list, which advertises existing hosts to new ones that wish
to join the network. These sorts of systems can be very effective, because they're generally easy to
deploy (there's no need to provide any real protection against people trying to learn the identity of
other participants), while at the same time they allow many users to freely join the system and donate
their resources.

Farther still along the scale of difficulty lie peer-to-peer systems that have dynamic participants and
pseudonymous servers. In these systems, the actual servers that store files or proxy communication
live within a digital fog that conceals their geographic locations and other identifying features. Thus,
the mapping of pseudonym to real-world identity is not known. A given pseudonym may be pegged
with negative attributes, but a user can just create a new pseudonym or manage several at once. Since
a given server can simply disappear at any time and reappear as a completely new entity, these sorts of
designs require a micropayment system or reputation system to provide accountability on the server
end. An example of a system in this category is the Free Haven design: each server can be contacted
via a remailer reply block and a public key, but no other identifying features are available.

http://efga.org/
http://mixmaster.anonymizer.com/
http://www.obscura.com/~loki/remailer/remaileressay.html
http://anon.efga.org/Remailers

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 175

The final peer-to-peer model on this scale is a dynamic system with fully anonymous operators. A
server that is fully anonymous lacks even the level of temporary identity provided by a pseudonymous
system like Free Haven. Since an anonymous peer's history is by definition unknown, all decisions in
an anonymous system must be based only on the information made available during each protocol
operation. In this case, peers cannot use a reputation system, since there is no real opportunity to
establish a profile on any server. This leaves a micropayment system as the only reasonable way to
establish accountability. On the other hand, because the servers themselves have no long-term
identities, this may limit the number of services or operations such a system could provide. For
instance, such a system would have difficulty offering long-term file storage and backup services.

16.1.3 Purposes of micropayments and reputation systems

The main goal of accountability is to maximize a server's utility to the overall system while minimizing
its potential threat. There are two ways to minimize the threat.

• One approach is to limit our risk (in bandwidth used, disk space lost, or whatever) to an
amount roughly equivalent to our benefit from the transaction. This suggests the fee-for-
service or micropayment model mentioned at the beginning of the chapter.

• The other approach is to make our risk proportional to our trust in the other parties. This calls
for a reputation system.

In the micropayment model, a server makes decisions based on fairly immediate information.
Payments and the value of services are generally kept small, so that a server only gambles some small
amount of lost resources for any single exchange. If both parties are satisfied with the result, they can
continue with successive exchanges. Therefore, parties require little prior information about each
other for this model, as the risk is small at any one time. As we will see later in this chapter, where we
discuss real or existing micropayment systems, the notion of payment might not involve any actual
currency or cash.

In the reputation model, for each exchange a server risks some amount of resources proportional to its
trust that the result will be satisfactory. As a server's reputation grows, other nodes become more
willing to make larger payments to it. The micropayment approach of small, successive exchanges is
no longer necessary.

Reputation systems require careful development, however, if the system allows impermanent and
pseudonymous identities. If an adversary can gain positive attributes too easily and establish a good
reputation, she can damage the system. Worse, she may be able to "pseudospoof," or establish many
seemingly distinct identities that all secretly collaborate with each other.

Conversely, if a well-intentioned server can incur negative points easily from short-lived operational
problems, it can lose reputation too quickly. (This is the attitude feared by every system administrator:
"Their web site happened to be down when I visited, so I'll never go there again.") The system would
lose the utility offered by these "good" servers.

As we will see later in this chapter, complicated protocols and calculations are required for both
micropayments and reputation systems. Several promising micropayment systems are in operation,
while research on reputation systems is relatively young. These fields need to develop ways of
checking the information being transferred, efficient tests for distributed computations, and, more
broadly, some general algorithms to verify behavior of decentralized systems.

There is a third way to handle the accountability problem: ignore the issue and engineer the system
simply to survive some faulty servers. Instead of spending time on ensuring that servers fulfill their
function, leverage the vast resources of the Internet for redundancy and mirroring. We might not
know, or have any way to find out, if a server is behaving according to protocol (i.e., whether that
server is storing files and responding to file queries, forwarding email or other communications upon
demand, and correctly computing values or analyzing data). Instead, if we replicate the file or
functionality through the system, we can ensure that the system works correctly with high probability,
despite misbehaving components. This is the model used by Napster, along with some of the systems
discussed in this book, such as Freenet and Gnutella.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 176

In general, the popular peer-to-peer systems take a wide variety of approaches to solving the
accountability problem. For instance, consider the following examples:

• Freenet dumps unpopular data on the floor, so people flooding the system with unpopular
data are ultimately ignored. Popular data is cached near the requester, so repeated requests
won't traverse long sections of the network.

• Gnutella doesn't "publish" documents anywhere except on the publisher's computer, so
there's no way to flood other systems. (This has a great impact on the level of anonymity
actually offered.)

• Publius limits the submission size to 100K. (It remains to be seen how successful this will be;
they recognize it as a problem.)

• Mojo Nation uses micropayments for all peer-to-peer exchanges.

• Free Haven requires publishers to provide reliable space of their own if they want to insert
documents into the system. This economy of reputation tries to ensure that people donate to
the system in proportion to how much space they use.

16.1.4 Junk mail as a resource allocation problem

The familiar problem of junk email (known more formally as unsolicited commercial email , and
popularly as spam) yields some subtle insights into resource allocation and accountability. Junk mail
abuses the unmetered nature of email and of Internet bandwidth in general. Even if junk email
achieves only an extremely small success rate, the sender is still successful because the cost of sending
each message is essentially zero.

Spam wastes both global and individual resources. On a broad scale, it congests the Internet, wasting
bandwidth and server CPU cycles. On a more personal level, filtering and deleting spam can waste an
individual's time (which, collectively, can represent significant person-hours). Users also may be faced
with metered connection charges, although recent years have seen a trend toward unmetered service
and always-on access.

Even though the motivations for junk email might be economic, not malicious, senders who engage in
such behavior play a destructive role in "hogging" resources. This is a clear example of the tragedy of
the commons.

Just as some environmental activists suggest curbing pollution by making consumers pay the "real
costs" of the manufacturing processes that cause pollution, some Internet developers are considering
ways of stopping junk email by placing a tiny burden on each email sent, thus forcing the sender to
balance the costs of bulk email against the benefits of responses. The burden need not be a direct
financial levy; it could simply require the originator of the email to use significant resources. The cost
of an email message should be so small that it wouldn't bother any individual trying to reach another;
it should be just high enough to make junk email unprofitable. We'll examine such micropayment
schemes later in this chapter.

We don't have to change the infrastructure of the Internet to see a benefit from email micropayments.
Individuals can adopt personal requirements as recipients. But realistically, individual, nonstandard
practices will merely reduce the usability of email. Although individuals adopting a micropayment
scheme may no longer be targeted, the scheme would make it hard for them to establish relationships
with other Internet users, while junk emailers would continue to fight over the commons.

16.1.5 Pseudonymity and its consequences

Many, if not most, of the services on the Internet today do not deal directly with legal identities.
Instead, web sites and chat rooms ask their users to create a handle or pseudonym by which they are
known while using that system. These systems should be distinguished from those that are fully
anonymous; in a fully anonymous system, there is no way to refer to the other members of the system.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 177

16.1.5.1 Problems with pseudospoofing and possible defenses

The most important difficulty caused by pseudonymity is pseudospoofing . A term first coined by L.
Detweiler on the Cypherpunks mailing list, pseudospoofing means that one person creates and
controls many phony identities at once. This is a particularly bad loophole in reputation systems that
blithely accept input from just any user, like current web auction sites. An untrustworthy person can
pseudospoof to return to the system after earning a bad reputation, and he can even create an entire
tribe of accounts that pat each other on the back. Pseudospoofing is a major problem inherent in
pseudonymous systems.

Lots of systems fail in the presence of pseudospoofing. Web polls are one example; even if a web site
requires registration, it's easy for someone to simply register and then vote 10, 15, or 1,500 times.
Another example is a free web hosting site, such as GeoCities, which must take care to avoid someone
registering under six or seven different names to obtain extra web space.

Pseudospoofing is hard in the real world, so most of us don't think about it. After all, in the real world,
changing one's appearance and obtaining new identities is relatively rare, spy movies to the contrary.
When we come online, we bring with us the assumptions built up over a lifetime of dealing with
people who can be counted on to be the "same person" next time we meet them. Pseudospoofing
works, and works so well, because these assumptions are completely unjustified online. As shown by
the research of psychologist Sherry Turkle and others, multiple identities are common in online
communities.

So what can we do about pseudospoofing? Several possibilities present themselves:

• Abandon pseudonymous systems entirely. Require participants in a peer-to-peer system to
prove conclusively who they are. This is the direction taken by most work on Public Key
Infrastructures (PKIs), which try to tie each online users to some legal identity. Indeed,
VeriSign used to refer to its digital certificates as "driver's licenses for the information
superhighway."

This approach has a strong appeal. After all, why should people be allowed to "hide" behind a
pseudonym? And how can we possibly have accountability without someone's real identity?

Unfortunately, this approach is unnecessary, unworkable, and in some cases undesirable. It's
unnecessary for at least three reasons:

o Identity does not imply accountability. For example, if a misbehaving user is in a
completely different jurisdiction, other users may know exactly who he or she is and
yet be unable to do anything about it. Even if they are in the same jurisdiction, the
behavior may be perfectly legal, just not very nice.

o Accountability is possible even in pseudonymous systems. This point will be
developed at length in the rest of this chapter.

o The problem with pseudospoofing is not that someone acts under a "fake" name, but
that someone acts under more than one name. If we could somehow build a system
that ensured that every pseudonym was controlled by a distinct person, a reputation
system could handle the problem.

Furthermore, absolute authentication is unworkable because it requires verifying the legal
identities of all participants. On today's Internet, this is a daunting proposition. VeriSign and
other PKI companies are making progress in issuing their "digital driver's licenses," but we
are a far cry from that end. In addition, one then has to trust that the legal identities have not
themselves been fabricated. Verification can be expensive and leaves a system that relies on it
open to attack if it fails.

Finally, this proposed solution is undesirable because it excludes users who either cannot or
will not participate. International users of a system may not have the same ways of verifying
legal identity. Other users may have privacy concerns.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 178

• Allow pseudonyms, but ensure that all participants are distinct entities. This is all that is
strictly necessary to prevent pseudospoofing. Unfortunately, it tends to be not much easier
than asking for everyone's legal identity.

• Monitor user behavior for evidence of pseudospoofing. Remove or "expose" accounts that
seem to be controlled by the same person. The effectiveness of this approach varies widely
with the application. It also raises privacy concerns for users.

• Make pseudospoofing unprofitable. Give new accounts in a system little or no resources until
they can prove themselves by doing something for the system. Make it so expensive for an
adversary to prove itself multiple times that it has no inclination to pseudospoof. This is the
approach taken by the Free Haven project, which deals with new servers by asking them to
donate resources to the good of the system as a whole.

All of these alternatives are just rules of thumb. Each of them might help us combat the problems of
pseudospoofing, but it's hard to reach a conclusive solution. We'll return to possible technical
solutions later in this chapter when we describe the Advogato system.

16.1.5.2 Reputation for sale - SOLD!

Pseudonymous systems are based on the assumption that each pseudonym is controlled by the same
entity for the duration of the system. That is, the adversary's pseudonyms stay controlled by the
adversary, and the good guys' pseudonyms stay controlled by the good guys.

What happens if the adversary takes control of someone who already has a huge amount of trust or
resources in the system? Allowing accounts to change hands can lead to some surprising situations.

The most prevalent example of this phenomenon comes in online multiplayer games. One of the best-
known such games is Ultima Online. Players gallivant around the world of Brittania, completing
quests, fighting foes, and traipsing around dungeons, in the process accumulating massive quantities
of loot. Over the course of many, many hours, a player can go from a nobody to the lord and master of
his own castle. Then he can sell it all to someone else.

Simply by giving up his username and password, an Ultima Online player can transfer ownership of
his account to someone else. The new owner obtains all the land and loot that belonged to the old
player. More importantly, she obtains the reputation built up by the old player. The transfer can be
carried out independently of the game; no one need ever know that it happened. As far as anyone else
knows, the game personality is the same person. Until the new owner does something "out of
character," or until the news spreads somehow, there is no way to tell that a transfer has occurred.

This has led to a sort of cottage industry in trading game identities for cash online. Ultima Online
game identities, or " avatars," can be found on auction at eBay. Other multiplayer online games admit
the occurrence of similar transactions. Game administrators can try to forbid selling avatars, but as
long as it's just a matter of giving up a username and password, it will be an uphill battle.

The point of this example is that reputations and identities do not bind as tightly to people online as
they do in the physical world. Reputations can be sold or stolen with a single password. While people
can be coerced or "turned" in the physical world, it's much harder. Once again, the assumptions
formed in the physical world turn out to be misleading online.

One way of dealing with this problem is to embed an important piece of information, such as a credit
card number, into the password for an account. Then revealing the password reveals the original
user's credit card number as well, creating a powerful incentive not to trade away the password. The
problem is that if the password is ever accidentally compromised, the user now loses not just the use
of his or her account, but the use of a credit card as well.

Another response is to make each password valid only for a certain number of logins; to get a new
password, the user must prove that he is the same person who applied for the previous password. This
does not stop trading passwords, however - it just means the "original" user must hang around to
renew the password each time it expires.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 179

16.2 Common methods for dealing with flooding and DoS attacks

We've seen some examples of resource allocation problems and denial of service attacks. These
problems have been around for a long while in various forms, and there are several widespread
strategies for dealing with them. We'll examine them in this section to show that even the most
common strategies are subject to attack - and such attacks can be particularly devastating to peer-to-
peer systems.

16.2.1 Caching and mirroring

One of the simplest ways to maintain data availability is to mirror it. Instead of hosting data on one
machine, host it on several. When one machine becomes congested or goes down, the rest are still
available. Popular software distributions like the Perl archive CPAN and the GNU system have a
network of mirror sites, often spread across the globe to be convenient to several different nations at
once.

Another common technique is caching: If certain data is requested very often, save it in a place that is
closer to the requester. Web browsers themselves cache recently visited pages.

Simple to understand and straightforward to implement, caching and mirroring are often enough to
withstand normal usage loads. Unfortunately, an adversary bent on a denial of service attack can
target mirrors one by one until all are dead.

16.2.2 Active caching and mirroring

Simple mirroring is easy to do, but it also has drawbacks. Users must know where mirror sites are and
decide for themselves which mirror to use. This is more hassle for users and inefficient to boot, as
users do not generally know their networks well enough to pick the fastest web site. In addition, users
have little idea of how loaded a particular mirror is; if many users suddenly decide to visit the same
mirror, they may all receive worse connections than if they had been evenly distributed across mirror
sites.

In 1999, Akamai Technologies became an overnight success with a service that could be called active
mirroring. Web sites redirect their users to use special "Akamaized" URLs. These URLs contain
information used by Akamai to dynamically direct the user to a farm of Akamai web servers that is
close to the user on the network. As the network load and server loads change, Akamai can switch
users to the best server farm of the moment.

For peer-to-peer systems, an example of active caching comes in the Freenet system for file retrieval.
In Freenet, file requests are directed to a particular server, but this server is in touch with several
other servers. If the initial server has the data, it simply returns the data. Otherwise, it forwards the
request to a neighboring server which it believes more capable of answering the request, and keeps a
record of the original requester's address. The neighboring server does the same thing, creating a
chain of servers. Eventually the request reaches a server that has the data, or it times out. If the
request reaches a server that has the data, the server sends the data back through the chain to the
original requester. Every server in the chain, in addition, caches a copy of the requested data. This
way, the next time the data is requested, the chance that the request will quickly hit a server with the
data is increased.

Active caching and mirroring offer more protection than ordinary caching and mirroring against the "
Slashdot effect" and flooding attacks. On the other hand, systems using these techniques then need to
consider how an adversary could take advantage of them. For instance, is it possible for an adversary
to fool Akamai into thinking a particular server farm is better- or worse-situated than it actually is?
Can particular farms be targeted for denial of service attacks? In Freenet, what happens if the
adversary spends all day long requesting copies of the complete movie Lawrence of Arabia and thus
loads up all the local servers to the point where they have no room for data wanted by other people?
These questions can be answered, but they require thought and attention.

For specific answers on a specific system, we might be able to answer these questions through a
performance and security analysis. For instance, Chapter 14, uses Freenet and Gnutella as models for
performance analysis. Here, we can note two general points about how active caching reacts to
adversaries.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 180

First, if the cache chooses to discard data according to which data was least recently used, the cache is
vulnerable to an active attack. An adversary can simply start shoving material into the cache until it
displaces anything already there. In particular, an adversary can simply request that random bits be
cached. Active caching systems whose availability is important to their users should have some way of
addressing this problem.

Next, guaranteeing service in an actively cached system with multiple users on the same cache is
tricky. Different usage patterns fragment the cache and cause it to be less useful to any particular set
of users. The situation becomes more difficult when adversaries enter the picture: by disrupting cache
coherency on many different caches, an adversary may potentially wreak more havoc than by
mounting a denial of service attack on a single server.

One method for addressing both these problems is to shunt users to caches based on their observed
behavior. This is a radical step forward from a simple least-recently-used heuristic. By using past
behavior to predict future results, a cache has the potential to work more efficiently. This past
behavior can be considered a special kind of reputation, a topic we'll cover in general later in this
chapter.

But systems can also handle resource allocation using simpler and relatively well tested methods
involving micropayments. In the next section, we'll examine some of them closely.

16.3 Micropayment schemes

Accountability measures based on micropayments require that each party offer something of value in
an exchange. Consider Alice and Bob, both servers in a peer-to-peer system that involves file sharing
or publishing. Alice may be inserting a document into the system and want Bob to store it for her.
Alternatively, Alice may want Bob to anonymously forward some email or real-time Internet protocol
message for her. In either case, Alice seeks some resource commodity - storage and bandwidth,
respectively - from Bob. In exchange, Bob asks for a micropayment from Alice to protect his resources
from overuse.

There are two main flavors of micropayments schemes. Schemes of the first type do not offer Bob any
real redeemable value; their goal is simply to slow Alice down when she requests resources from Bob.
She pays with a proof of work (POW), showing that she performed some computationally difficult
problem. These payments are called nonfungible , because Bob cannot turn around and use them to
pay someone else. With the second type of scheme, fungible micropayments, Bob receives a payment
that holds some intrinsic or redeemable value. The second type of payment is commonly known as
digital cash. Both of these schemes may be used to protect against resource allocation attacks.

POWs can prevent communication denial of service attacks. Bob may require someone who wishes to
connect to submit a POW before he allocates any non-trivial resources to communication. In a more
sophisticated system, he may start charging only if he detects a possible DoS attack. Likewise, if Bob
charges to store data, an attacker needs to pay some (prohibitively) large amount to flood Bob's disk
space. Still, POWs are not a perfect defense against an attacker with a lot of CPU capacity; such an
attacker could generate enough POWs to flood Bob with connection requests or data.

16.3.1 Varieties of micropayments or digital cash

The difference between micropayments and digital cash is a semantic one. The term "micropayment"
has generally been used to describe schemes using small-value individual payments. Usually, Alice
will send a micropayment for some small, incremental use of a resource instead of a single large
digital cash "macropayment" for, say, a month's worth of service. We'll continue to use the commonly
accepted phrase "micropayment" in this chapter without formally differentiating between the two
types, but we'll describe some common designs for each type.

Digital cash may be either anonymous or identified. Anonymous schemes do not reveal Alice's identity
to Bob or the bank providing the cash, while identified spending schemes expose her information.
Hybrid approaches can be taken: Alice might remain anonymous to Bob but not to the bank or
anonymous to everybody yet traceable. The latter system is a kind of pseudonymity; the bank or
recipient might be able to relate a sequence of purchases, but not link them to an identity.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 181

No matter the flavor of payment - nonfungible, fungible, anonymous, identified, large, or small - we
want to ensure that a malicious user can't commit forgery or spend the same coin more than once
without getting caught. A system of small micropayments might not worry about forgeries of
individual micropayments, but it would have to take steps to stop large-scale, multiple forgeries.

Schemes identifying the spender are the digital equivalent of debit or credit cards. Alice sends a
"promise of payment" that will be honored by her bank or financial institution. Forgery is not much of
a problem here because, as with a real debit card, the bank ensures that Alice has enough funds in her
account to complete the payment and transfers the specified amount to Bob. Unfortunately, though,
the bank has knowledge of all of Alice's transactions.

Anonymous schemes take a different approach and are the digital equivalent of real cash. The
electronic coin itself is worth some dollar amount. If Alice loses the coin, she's lost the money. If Alice
manages to pay both Bob and Charlie with the same coin and not get caught, she's successfully double-
spent the coin.

In the real world, government mints use special paper, microprinting, holograms, and other
technologies to prevent forgery. In a digital medium, duplication is easy: just copy the bits! We need to
find alternative methods to prevent this type of fraud. Often, this involves looking up the coin in a
database of spent coins. Bob might have a currency unique to him, so that the same coin couldn't be
used to pay Charlie. Or coins might be payee-independent, and Bob would need to verify with the
coin's issuing "mint" that it has not already been spent with Charlie.

With this description of micropayments and digital cash in mind, let's consider various schemes.

16.3.2 Nonfungible micropayments

Proofs of work were first advocated by Cynthia Dwork and Moni Naor[7] in 1992 as " pricing via
processing" to handle resource allocation requests.

[7] Cynthia Dwork and Moni Naor (1993), "Pricing via Processing or Combating Junk Mail," in Ernest F. Brickell,
ed., Advances in Cryptology - Crypto '92, vol. 740 of Lecture Notes in Computer Science, pp. 139-147. Springer-
Verlag,16-20 August 1992.

The premise is to make a user compute a moderately hard, but not intractable, computation problem
before gaining access to some resource. It takes a long time to solve the problem but only a short time
to verify that the user found the right solution. Therefore, Alice must perform a significantly greater
amount of computational work to solve the problem than Bob has to perform to verify that she did it.

Dwork and Naor offer their system specifically as a way to combat electronic junk mail. As such, it can
impose a kind of accountability within a distributed system.

To make this system work, a recipient refuses to receive email unless a POW is attached to each
message. The POW is calculated using the address of the recipient and must therefore be generated
specifically for the recipient by the sender. These POWs serve as a form of electronic postage stamp,
and the way the recipient's address is included makes it trivial for the recipient to determine whether
the POW is malformed. Also, a simple lookup in a local database can be used to check whether the
POW has been spent before.

The computational problem takes some amount of time proportional to the time needed to write the
email and small enough that its cost is negligible for an individual user or a mail distribution list. Only
unsolicited bulk mailings would spend a large amount of computation cycles to generate the necessary
POWs.

Recipients can also agree with individual users or mail distribution lists to use an access control list (
"frequent correspondent list") so that some messages do not require a POW. These techniques are
useful for social efficiency: if private correspondence instead costs some actual usage fee, users may be
less likely to send email that would otherwise be beneficial, and the high bandwidth of the electronic
medium may be underutilized.

Dwork and Naor additionally introduced the idea of a POW with a trap door: A function that is
moderately hard to compute without knowledge of some secret, but easy to compute given this secret.
Therefore, central authorities could easily generate postage to sell for prespecified destinations.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 182

16.3.2.1 Extended types of nonfungible micropayments

Hash cash, designed by Adam Back in late 1997,[8] is an alternative micropayment scheme that is also
based on POWs. Here, Bob calculates a hash or digest , a number that can be generated easily from a
secret input, but that cannot be used to guess the secret input. (See Chapter 15.) Bob then asks Alice to
guess the input through a brute-force calculation; he can set how much time Alice has to "pay" by
specifying how many bits she must guess. Typical hashes used for security are 128 bits or 160 bits in
size. Finding another input that will produce the entire hash (which is called a " collision") requires a
prohibitive amount of time.

[8] Adam Back, "Hash Cash: A Partial Hash Collision Based Postage Scheme,"
http://www.cypherspace.org/~adam/hashcash.

Instead, Bob requires Alice to produce a number for which some of the low-order bits match those of
the hash. If we call this number of bits k, Bob can set a very small k to require a small payment or a
larger k to require a larger payment. Formally, this kind of problem is called a "k -bit partial hash
collision."

For example, the probability of guessing a 17-bit collision is 2-17; this problem takes approximately
65,000 tries on average. To give a benchmark for how efficient hash operations are, in one test, our
Pentium-III 800 MHz machine performed approximately 312,000 hashes per second.

Hash cash protects against double-spending by using individual currencies. Bob generates his hash
from an ID or name known to him alone. So the hash cash coins given to Bob must be specific to Bob,
and he can immediately verify their validity against a local spent-coin database.

Another micropayment scheme based on partial hash collisions is client puzzles, suggested by
researchers Ari Juels and John Brainard of RSA Labs.[9] Client puzzles were introduced to provide a
cryptographic countermeasure against connection depletion attacks, whereby an attacker exhausts a
server's resources by making a large number of connection requests and leaving them unresolved.

[9] A. Juels and J. Brainard, "Client Puzzles: A Cryptographic Defense Against Connection Depletion Attacks,"
NDSS '99.

When client puzzles are used, a server accepts connection requests as usual. However, when it
suspects that it is under attack, marked by a significant rise in connection requests, it responds to
requests by issuing each requestor a puzzle: A hard cryptographic problem based on the current time
and on information specific to the server and client request.[10]

[10] "RSA Laboratories Unveils Innovative Countermeasure to Recent `Denial of Service' Hacker Attacks," press
release, http://www.rsasecurity.com/news/pr/000211.html.

Like hash cash, client puzzles require that the client find some k -bit partial hash collisions. To
decrease the chance that a client might just guess the puzzle, each puzzle could optionally be made up
of multiple subpuzzles that the client must solve individually. Mathematically, a puzzle is a hash for
which a client needs to find the corresponding input that would produce it.[11]

[11] For example, by breaking a puzzle into eight subpuzzles, you can increase the amount of average work
required to solve the puzzle by the same amount as if you left the puzzle whole but increased the size by three
bits. However, breaking up the puzzle is much better in terms of making it harder to guess. The chance of
correctly guessing the subpuzzle version is 2-8k, while the chance of guessing the larger single version is just 2-

(k+3), achieved by hashing randomly selected inputs to find a collision without performing a brute-force search.

16.3.2.2 Nonparallelizable work functions

Both of the hash collision POW systems in the previous section can easily be solved in parallel. In
other words, a group of n machines can solve each problem in 1/n the amount of time as a single
machine. Historically, this situation is like the encryption challenges that were solved relatively
quickly by dividing the work among thousands of users.

Parallel solutions may be acceptable from the point of view of accountability. After all, users still pay
with the same expected amount of burnt CPU cycles, whether a single machine burns m cycles, or n
machines burn m cycles collectively. But if the goal of nonfungible micropayments is to ensure public
access to Bob's resources, parallelizable schemes are weak because they can be overwhelmed by
distributed denial of service attacks.

http://www.cypherspace.org/~adam/hashcash
http://www.rsasecurity.com/news/pr/000211.html

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 183

Let's actually try to make Alice wait for a fixed period between two transactions, in order to better
protect Bob's resources. Consider a "proof of time": we desire a client to spend some amount of time,
as opposed to work, to solve a given problem. An example is MIT's LCS35 Time Capsule Crypto-
Puzzle. The time capsule, sealed in 1999, will be opened either after 35 years or when the supplied
cryptographic problem is solved, whichever comes first. The problem is designed to foil any benefit of
parallel or distributed computing. It can be solved only as quickly as the fastest single processor
available.

Time-lock puzzles, such as the LCS35 time capsule, were first presented by Ron Rivest, Adi Shamir,
and David Wagner.[12]

[12] Ronald L. Rivest, Adi Shamir, and David A. Wagner (1996), "Time-Lock Puzzles and Timed-Release Crypto."

These types of puzzles are designed to be "intrinsically" or "inherently" sequential in nature. The
problem LCS35 used to compute is:

where n is the product of two large primes p and q, and t can be arbitrarily chosen to set the difficulty
of the puzzle. This puzzle can be solved only by performing t successive squares modulo n. There is no
known way to speed up this calculation without knowing the factorization of n. The reason is the same
reason conventional computer encryption is hard to break: there is no existing method for finding two
primes when only their product is known.

It's worth noting in passing that the previous construction is not proven to be nonparallelizable.
Besides the product-of-two-primes problem, its security rests on no one knowing how to perform the
repeated modular squaring in parallel. This problem is tied up with the "P vs. NC" problem in
computational complexity theory and is outside the scope of this chapter. Similar to the better known
"P vs. NP" problem, which concerns the question, "Which problems are easy?" the P vs. NC problem
asks, "Which problems are parallelizable?"[13]

[13] Historical note: NC stands for Nick's Class, named after Nicholas Pippenger, one of the first researchers to
investigate such problems. For more information, see Raymond Greenlaw, H. James Hoover, and Walter L.
Ruzzo (1995), Limits to Parallel Computation: P-Completeness Theory. Oxford University Press.

16.3.3 Fungible micropayments

All of the micropayment schemes we have previously described are nonfungible. While Alice pays Bob
for resource use with some coin that represents a proof of work, he cannot redeem this token for
something of value to him. While this micropayment helps prevent DoS and flooding attacks, there's
no measure of "wealth" in the system. Bob has no economic incentive to engage in this exchange.

Nonfungible micropayments are better suited for ephemeral resources, like TCP connections, than
they are for long-term resources like data storage. Consider an attacker who wants to make a
distributed datastore unusable. If an attacker is trying to fill up a system's storage capacity and is
allowed to store data for a long time, the effects of DoS attacks can be cumulative. This is because the
attacker can buy more and more space on the system as time goes on.

If micropayments just use up CPU cycles and cannot be redeemed for something of value, an attacker
can slowly nibble at resources, requesting a megabyte now and then as it performs enough work to pay
for the space. This can continue, bit by bit, until the attacker controls a large percentage of the total.
Furthermore, the victim is unable to use these payments in exchange for other peers' resources, or
alternatively to purchase more resources.

Enter redeemable payments. This compensation motivates users to donate resources and fixes the
cost for resources in a more stable way.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 184

16.3.3.1 Freeloading

The history of the Internet records a number of users who have freely donated resources. The hacker
ethos and the free software movement can be relied on to provide resources to an extent. Johan
Helsingius ran the initial "anonymous" remailer - anon.penet.fi - for its own sake. The Cypherpunks
(Type I) and Mixmaster (Type II) remailers for anonymous email are run and maintained for free
from around the globe. Processing for SETI@home and Distributed.net is also performed without
compensation, other than the possibility of fame for finding an alien signature or cracking a key.

Unfortunately, not everybody donates equally. It is tempting for a user to "let somebody else pay for
it" and just reap the rewards.

Peer-to-peer systems may combat this effect by incorporating coercive measures into their design or
deployment, ensuring that users actually donate resources. This is not a trivial problem. Napster
provides a good example: users need to connect to Napster only when actually searching for MP3 files;
otherwise they can remain offline. Furthermore, users are not forced to publicly share files, although
downloaded files are placed in a public directory by default.

A fairly recent analysis of Gnutella traffic showed a lot of freeloading. One well-known study[14] found
that almost 70% of users share no files, and nearly 50% of all responses are returned by the top 1% of
sharing hosts.

[14] Eytan Adar and Bernardo A. Huberman, "Free Riding on Gnutella." Xerox Palo Alto Research Center,
http://www.parc.xerox.com/istl/groups/iea/papers/gnutella.

Free Haven tackles this problem by attempting to ensure that users donate resources in amounts
proportional to the resources they use. The system relies on accountability via reputation, which we
discuss later. Mojo Nation, on the other hand, pays users Mojo - the system's private digital currency -
for donated resources. Mojo has no meaning outside the system yet, but it can be leveraged for other
system resources.

16.3.3.2 Fungible payments for accountability

Fungible micropayments are not used solely, or even largely, for economic incentives. Instead, they
act as an accountability measure. Peers can't freeload in the system, as they can earn wealth only by
making their own resources available (or by purchasing resource tokens via some other means). This
is a more natural and more effective way to protect a system from flooding than proofs of work. In
order to tie up resources protected by fungible payments, an adversary needs to donate a proportional
amount of resources. The attempted denial of service becomes self-defeating.

If payments can actually be redeemed for real-world currencies, they provide yet another defense
against resource misuse. It may still be true that powerful organizations (as opposed to a script-kiddie
downloading DoS scripts from http://rootshell.com/) can afford to pay enough money to flood a
system. But now the victim can purchase additional physical disk space or bandwidth with the money
earned. Since the prices of these computer resources drop weekly, the cost of successfully attacking
the system increases with time.

Business arrangements, not technology, link digital cash to real-world currencies. Transactions can be
visualized as foreign currency exchanges, because users need to convert an amount of money to digital
cash before spending it. The Mark Twain Bank "issued" DigiCash eCash in the U.S. in the mid-1990s,
joined by other banks in Switzerland, Germany, Austria, Finland, Norway, Australia, and Japan.[15]
eCash can as easily be used for private currencies lacking real-world counterparts; indeed, Mojo is
based on eCash technology (although without, in default form, the blinding operations that provide
anonymity). The digital cash schemes we describe, therefore, can be used for both private and real-
world currencies.

[15] "DigiCash Loses U.S. Toehold," CNET news article, http://www.canada.cnet.com/news/0-1003-200-
332852.html.

http://www.parc.xerox.com/istl/groups/iea/papers/gnutella
http://rootshell.com/
http://www.canada.cnet.com/news/0-1003-200-

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 185

16.3.3.3 Micropayment digital cash schemes

Ronald Rivest and Adi Shamir introduced two simple micropayment schemes, PayWord and
MicroMint, in 1996.[16] PayWord is a credit-based scheme based on chains of paywords (hash values),
while MicroMint represents coins by k -way hash function collisions. Both of these schemes follow the
lightweight philosophy of micropayments: nickels and dimes don't matter. If a user loses a payment or
is able to forge a few payments, we can ignore such trivialities. The security mechanisms in these
schemes are not as strong nor expensive as the full macropayment digital cash schemes we will discuss
later. At a rough estimate, hashing is about 100 times faster than RSA signature verification and about
10,000 times faster than RSA signature generation.

[16] R. Rivest and A. Shamir (1997), "PayWord and MicroMint: Two Simple Micropayment Schemes," Lecture
Notes in Computer Science, vol. 1189, Proc. Security Protocols Workshop, Springer-Verlag, pp. 69-87.

PayWord is designed for applications in which users engage in many repetitive micropayment
transactions. Some examples are pay-per-use web sites and pay-per-minute online games or movies.
PayWord relies on a broker (better known as a "bank" in many digital cash schemes), mainly for
online verification, but seeks to minimize communication with the broker in order to make the system
as efficient as possible.

It works like this. Alice establishes an account with a broker and is issued a digital certificate. When
she communicates with vendor Bob for the first time each day, she computes and commits to a new
payword chain w1, w2, ..., wn. This chain is created by choosing some random wn and moving
backward to calculate each hash wi from the hash wi+1.

Alice starts her relationship with Bob by offering w0. With each micropayment she moves up the chain
from w0 toward wn. Just knowing w0, vendor Bob can't compute any paywords and therefore can't
make false claims to the broker. But Bob can easily verify the ith payment if he knows only wi-1. Bob
reports to the broker only once at the end of the day, offering the last (highest-indexed) micropayment
and the corresponding w0 received that day. The broker adjusts accounts accordingly.

As payword chains are both user- and vendor-specific, the vendor can immediately determine if the
user attempts to double-spend a payword. Unfortunately, however, PayWord does not provide any
transaction anonymity. As this is a credit-based system, the broker knows that Alice paid Bob.

MicroMint takes the different approach of providing less security, but doing so at a very low cost for
unrelated, low-value payments. Earlier, we described k-bit collisions, in which Alice found a value that
matched the lowest k bits in Bob's hash. MicroMint coins are represented instead by full collisions: all
the bits of the hashes have to be identical. A k-way collision is a set of distinct inputs (x1, x2, ..., xk) that
all map to the same digests. In other words, hash(x1) = hash(x2) = ... = hash(xk). These collisions are
hard to find, as the hash functions are specifically designed to be collision-free![17]

[17] Given a hash function with an n-bit output (e.g., for SHA-1, n=160), we must hash approximately 2n(k-1)/k
random strings in order to find a k-way collision. This follows from the "birthday paradox" as explained in
Rivest and Shamir, ibid.

The security in MicroMint rests in an economy of scale: minting individual coins is difficult, yet once
some threshold of calculations has been performed, coins can be minted with accelerated ease.
Therefore, the broker can mint coins cost-effectively, while small-scale forgers can produce coins only
at a cost exceeding their value.

As in PayWord, the MicroMint broker knows both Alice, to whom the coins are issued, and vendor
Bob. This system is therefore not anonymous, allowing the broker to catch Alice if she attempts to
double-spend a coin.

PayWord and MicroMint are just two representative examples of micropayment schemes. Many
others exist. The point to notice in both schemes is the extreme ease of verification and the small
space requirements for each coin. Not only are these schemes fast, but they remain fast even in
environments with severe resource constraints or at larger amounts of money.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 186

Micropayment schemes such as these make it possible to extend peer-to-peer applications beyond the
desktop and into embedded and mobile environments. Routers can use micropayments to retard
denial of service attacks with minimal extra computation and then store the proceeds. Music players
can act as mobile Napster or Gnutella servers, creating ad hoc local networks to exchange music
stored in their memories (and possibly make money in the process). These possibilities are just
beginning to be explored.

16.3.3.4 Making money off others' work

Proofs of work can be exchanged for other resources in a system, even without a systemwide digital
cash scheme. The key is to make a POW scheme in which Bob can take a POW submitted by Alice and
pass it on to Charlie without expending any significant calculation of his own.

This scheme was introduced by Markus Jakobsson and Ari Juels in 1999 as a bread pudding protocol
.[18] Bread pudding is a dish that originated with the purpose of reusing stale bread. In a similar spirit,
this protocol defines a POW that may be reused for a separate, useful, and verifiably correct
computation. This computation is not restricted to any specific problem, although the authors further
specify a simple bread pudding protocol for minting MicroMint coins.

[18] Markus Jakobsson and Ari Juels (1999), "Proofs and Work and Bread Pudding Protocols." In B. Preneel, ed.,
Communications and Multimedia Security. Kluwer Academic Publishers, pp. 258-272.

In this variant on MicroMint's original minting scheme, the broker no longer has to generate each
individual payment made by each user. Instead, a single, valid coin can be redistributed by users in
the system to satisfy each others' POWs. The fundamental idea is to make clients solve partial hash
collisions, similar to the concept of hash cash. This computation is useful only to the mint, which
holds some necessary secret. With enough of these POWs, the minter can offload the majority of
computations necessary to minting a coin.

Effectively, Bob is asking Alice to compute part of a MicroMint coin, but this partial coin is useful only
when combined with thousands or millions of other similar computations. Bob collects all of these
computations and combines them into MicroMint coins. Without requiring systemwide fungible
digital cash, Bob can reuse others' computation work for computations of value to him (and only to
him). The scheme is extensible and can potentially be used with many different types of payment
schemes, not just MicroMint.

16.3.3.5 Anonymous macropayment digital cash schemes

Up until now, we have described payments in which the value of each coin or token is fairly small.
These make forgery difficult because it's useful only if it can be performed on a large scale. Now we
will move to more complex schemes that allow large sums to be paid in a secure manner in a single
transaction. These schemes also offer multiparty security and some protection for user privacy.

The macropayment digital cash schemes we are about to discuss offer stronger security and
anonymity. However, these protections come at a cost. The computational and size requirements of
such digital cash are much greater. In cryptographic literature, micropayments are usually considered
extremely small (such as $0.01) and use very efficient primitives such as hash functions. In contrast,
macropayment digital cash schemes use public key operations, such as exponentiation, which are
much slower. The use of techniques from elliptic curve cryptography can alleviate this problem by
making it possible to securely use much shorter keys.

Other clever tricks, such as " probabilistic" checking - checking selected payments on the grounds that
large-scale forgery will be caught eventually - can help macropayment techniques compete with
micropayment schemes. This is an active research area and a source of continual innovation.
Macropayment schemes will prove useful when used with the reputation systems discussed later in
this chapter in Section 16.4, because reputation systems let us make large transactions without
assuming incommensurate risk.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 187

Pioneering work on the theoretical foundations of anonymous digital cash was carried out by David
Chaum in the early 1980s.[19] Chaum held patents on his electronic cash system, and founded DigiCash
in 1990 to implement his ideas, but he exclusively licensed his patents to Ecash Technologies in 1999.

[19] D. Chaum (1983), "Blind Signatures for Untraceable Payments," Advances in Cryptology - Crypto '82,
Springer-Verlag, pp. 199-203. D. Chaum (1985), "Security Without Identification: Transaction Systems to Make
Big Brother Obsolete," Communications of the ACM, vol. 28, no. 10, pp. 1030-1044. D. Chaum, A. Fiat, and M.
Naor (1988), "Untraceable Electronic Cash," Advances in Cryptology - Crypto '88, Lecture Notes in Computer
Science, no. 403, Springer-Verlag, pp. 319-327. D. Chaum (August 1992), "Achieving Electronic Privacy"
(invited), Scientific American, pp. 96-101, http://www.chaum.com/articles/Achieving_Electronic_Privacy.htm.

The electronic cash system he developed is based on an extension of digital signatures, called blind
signatures. A digital signature uses a PKI to authenticate that a particular message was sent by a
particular person. (See Chapter 15 for a greater description of signatures and PKI.) A blind signature
scheme allows a person to get a message signed by another party, while not revealing the message
contents to that party or allowing the party to recognize the message later.

In digital cash, Alice creates some number called a proto-coin and "blinds" it by multiplying by a
secret random number. She sends this blinded proto-coin to the bank, which cannot link it with the
original proto-coin. The bank checks that she has a positive balance and signs the proto-coin with the
assurance that "this is a valid coin," using a private key specific to the particular amount of money in
the coin. The bank returns this to Alice and subtracts the corresponding amount from Alice's bank
account. Alice then divides out the random number multiplier and finds herself with a properly
minted coin, carrying a valid signature from the bank. This is just one way to do digital cash, but it will
suffice for this discussion.

In real life, the digital cash transaction would be like Alice slipping a piece of paper into a carbon-lined
envelope, representing the blinded proto-coin. The bank just writes its signature across the envelope,
which imprints a carbon signature onto the inside paper. Alice removes the paper and is left with a
valid coin.

Alice can then spend this coin with Bob. Before accepting it, Bob needs to check with the issuing bank
that the coin hasn't already been spent, a process of online verification. Afterwards, Bob can deposit
the coin with the bank, which has no record of to whom that coin was issued. It saw only the blinded
proto-coin, not the underlying "serial" number.

This digital cash system is both anonymous and untraceable. Its disadvantage, however, is that coins
need to be verified online during the transaction to prevent double-spending. This slows down each
transaction.

Stefan Brands proposed an alternative digital cash scheme in 1993.[20] It forms the core of a system
implemented and tested by CAFE, a European project with both academic and commercial members.
His patents are currently held by the Montreal-based privacy company Zero-Knowledge Systems, Inc.

[20] Stefan Brands (1993), "Untraceable Off-Line Cash in Wallet with Observers," Advances in Cryptology -
Crypto '93, Lecture Notes in Computer Science, no. 773, Springer-Verlag, pp. 302-318. Stefan Brands (2000),
Rethinking Public Key Infrastructures and Digital Certificates: Building in Privacy. MIT Press. Stefan Brands,
online book chapter from Rethinking Public Key Infrastructures and Digital Certificates: Building in Privacy,
http://www.xs4all.nl/~brands/cash.html.

Brands's digital cash scheme allows offline checking of double-spending for fraud tracing, with
obvious performance benefits compared to online verification. It is also well suited for incorporation
into smart cards, and the underlying technology provides an entire framework for privacy-protecting
credential systems.

Brands's scheme uses a restrictive blind signature protocol rather than a normal blind signature
protocol as proposed by Chaum. In the digital cash context, this certificate is a valid coin, represented
as three values - secret key, public key, and digital signature - certified by the bank. A key aspect of
this protocol is that the bank knows - and encodes attributes into - part of Alice's secret key, but it has
no idea what the corresponding public key and certificate look like (except that they are consistent
with the known part of the secret key). At the end of the issuing protocol, Alice uses techniques
somewhat similar to Chaum's protocol to generate a valid coin.

http://www.chaum.com/articles/Achieving_Electronic_Privacy.htm
http://www.xs4all.nl/~brands/cash.html

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 188

Payment is very different in Brands's system. Alice's coin contains her secret key, so she doesn't
actually give her coin to the vendor Bob. Instead, she proves to Bob that she is the proper holder of
that coin (that is, that she knows the secret key associated with the public key), without actually
disclosing its contents. This type of payment, a signed proof of knowledge transcript, is a fundamental
shift from Chaum's e-cash model, in which the coin is merely an "immutable" bit string.

Privacy is maintained together with honesty by Brands's system in a very clever manner. If Alice only
spends the coin once, the bank can gain no information as to her identity. After all, during the issuing
protocol, the bank saw only part of Alice's secret key, not the public key used to verify Alice's payment
transcript signature. Nor did the bank see its own signature on that public key. Yet if Alice double-
spends the coin, the bank can use it to extract her identity!

We won't provide the math necessary to understand the security in this system, but you can
understand why it works by comparing it to a Cartesian x-y plane. The first random number challenge
used during payment provides one point (x0,y0) on this plane. An infinite number of lines can pass
through this one point. If Alice uses the same coin to pay Charlie, a different random number is used.
Now we know a second (x1,y1) point, and two points uniquely define a line. In the same way, Alice's
identity will be exposed if she spends the coin twice.

Brands's scheme - useful for both digital cash and credentials - can be used to encode other useful
information, such as negotiable attributes exposed during payment or high-value secrets that can
prevent lending. A "high-value secret" refers to the same strategy we discussed when trying to prevent
people from sharing their accounts - if a certificate to do X includes the user's credit card number, the
user will be less willing to loan the certificate to others.

The "negotiable attributes" are an extension of a powerful idea - that of "credentials without identity."
If you have a credential without identity, you have a way of proving that you belong to a certain class
of people without actually having to prove anything about who you are. For example, you may have a
credential which certifies that you are over 21 but doesn't include your name. The entity that
authorized your age wouldn't want you to be able to lend this certificate to someone else. Therefore,
we utilize these high-value secrets: the user needs to know the secret in order to use the over-21
certificate. Brands's scheme takes this farther and allows you to selectively reveal or hide various
certifications on the fly, thereby allowing you to negotiate your degree of privacy.

One final note: whether a peer-to-peer system uses micropayments or macropayments, system
designers must consider the possibility that these can be DoS targets in themselves. Perhaps an
attacker can flood a system with cheaply minted counterfeit coins, eating up computational resources
through verification-checking alone. The extent of this problem depends largely on the computational
complexity of coin verification. Many of the systems we describe - hash cash, client puzzles,
MicroMint, PayWord - can very quickly verify coins with only a single or a few hash operations. Public
key operations, such as modular exponentiation, can be significantly more expensive. Again, digital
cash schemes are an active area of cryptographic research; before specifying a scheme it is worth
checking out the proceedings of the Financial Cryptography, CRYPTO, and EUROCRYPT conferences.

16.3.4 The use and effectiveness of micropayments in peer-to-peer
systems

So far, we have spent quite a bit of time describing various micropayment and digital cash schemes.
Our discussion is not meant as exhaustive, yet it provides some examples of various cryptographic
primitives and technologies used for electronic cash: public key encryption, hash functions, digital
signatures, certificates, blinding functions, proofs of knowledge, and different one-way and trap door
problems based on complexity theory. The list reads like a cryptographic cookbook. Indeed, the
theoretical foundations of digital cash - and the design of systems - have been actively researched and
developed over the past two decades.

Only in the past few years, however, have we begun to see the real-world application of
micropayments and digital cash, spurred by the growth of the Internet into a ubiquitous platform for
connectivity, collaboration, and even commerce. Electronic cash surely has a place in future society.
But its place is not yet secured. We are not going to try to predict either how fast or how widespread its
adoption will be; that depends on too many economic, social, and institutional factors.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 189

Instead, we'll focus on how micropayments might be useful for peer-to-peer systems: what issues the
developers of peer-to-peer systems need to consider, when certain digital cash technologies are better
than others, how to tell whether the micropayments are working, and how to achieve stronger or
weaker protections as needed.

16.3.4.1 Identity-based payment policies

When designing a policy for accepting micropayments, a peer-to-peer system might wish to charge a
varying amount to peers based on identity. For instance, a particular peer might charge less to local
users, specified friends, users from academic or noncommercial subnets, or users within specified
jurisdictional areas.

Such policies, of course, depend on being able to securely identify peers in the system. This can be
hard to do both on the Internet as a whole (where domain names and IP addresses are routinely
spoofed) and, in particular, on systems that allow anonymity or pseudonymity. Chapter 15 discusses
this issue from several general angles, and Chapter 12 discusses how we try to solve the problem in
one particular pseudonymous system, Free Haven. Many other systems, like ICQ and other instant
messaging services, use their own naming schemes and ensure some security through passwords and
central servers. Finally, systems with many far-flung peers need a reputation system to give some
assurance that peers won't abuse their privileges.

16.3.4.2 General considerations in an economic analysis of micropayment design

Designers choosing a micropayment scheme for a peer-to-peer system should not consider merely the
technical and implementation issues of different micropayment schemes, but also the overall
economic impact of the entire system. Different micropayment schemes have different economic
implications.

A classic economic analysis of bridge tolls serves as a good analogy for a peer-to-peer system. In 1842,
the French engineer Jules Dupuit reached a major breakthrough in economic theory by arguing the
following: the economically efficient toll on an uncongested bridge is zero, because the extra cost from
one more person crossing the bridge is zero. Although bridge building and maintenance is not free - it
costs some money to the owner - it is socially inefficient to extract this money through a toll. Society as
a whole is worse off because some people choose not to cross due to this toll, even though their
crossing would cost the owner nothing, and they would not interfere with anyone else's crossing
(because the bridge is uncongested). Therefore, everyone should be allowed to cross the bridge for
free, and the society should compensate the bridge builder through a lump-sum payment.[21]

[21] Arsene Jules Etienne Dupuit (1842), "On Tolls and Transport Charges," Annales des Ponts et Chaussees,
trans. 1962, IEP.

This bridge example serves as a good analogy to a peer-to-peer system with micropayments. Tolls
should be extracted only in order to limit congestion and to regulate access to people who value
crossing the most. Given the same economic argument, resource allocation to limit congestion is the
only justifiable reason for micropayments in a peer-to-peer system. Indeed, excessive micropayments
can dissuade users from using the system, with negative consequences (known as " social
inefficiencies") for the whole society. Users might not access certain content, engage in e-commerce,
or anonymously publish information that exposes nefarious corporate behavior.

This analysis highlights the ability of micropayments to prevent attacks and adds the implied ability to
manage congestion. Congestion management is a large research area in networking. Micropayments
can play a useful role in peer-to-peer systems by helping peers prioritize their use of network
bandwidth or access to storage space. Users who really want access will pay accordingly. Of course,
such a system favors wealthy users, so it should be balanced against the goal of providing a system
with the broadest social benefits. Reputation can also play a role in prioritizing resource allocation.

Most economic research relevant for micropayments has focused on owner-side strategies for
maximizing profit. AT&T researchers compared flat-fee versus pay-per-use fee methods where the
owner is a monopolist and concluded that more revenues are generated with a flat-fee model.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 190

Similar research at MIT and NYU independently concluded that content bundling and fixed fees can
generate greater profits per good.[22]

[22] P. C. Fishburn and A. M. Odlyzko (1999), "Competitive Pricing of Information Goods: Subscription Pricing
Versus Pay-Per-Use," Economic Theory, vol. 13, pp. 447-470,
http://www.research.att.com/~amo/doc/competitive.pricing.ps. Y. Bakos and E. Brynjolfsson (December
1999), "Bundling Information Goods: Pricing, Profits, and Efficiency," Management Science,
http://www.stern.nyu.edu/~bakos/big.pdf.

We try to take a broader view. We have to consider the well-being of all economic agents participating
in and affected by the system. Three general groups come to mind in the case of a peer-to-peer system:
The owner of the system, the participants, and the rest of society.

How does a micropayment scheme impact these three agents? Participants face direct benefits and
costs. The owner can collect fees or commissions to cover the fixed cost of designing the system and
the variable costs of its operation. The rest of society can benefit indirectly by synergies made possible
by the system, knowledge spillovers, alternative common resources that it frees up, and so on.

To simplify our discussion, we assume that whatever benefits participants also benefits society.
Furthermore, we can realistically assume a competitive market, so that the owner is probably best off
serving the participants as well as possible. Therefore, we focus on the cost/benefit analysis for the
participant.

We believe that a focus on costs and benefits to participants is more suited to the peer-to-peer market
than the literature on information services, for several reasons. First, peer-to-peer system owners do
not enjoy the luxury of dictating exchange terms, thanks to competition. Second, nonfungible
micropayments do not generate revenues for the owner; it is not always worthwhile to even consider
the benefit to the owner. Third, we expect that a large amount of resources in peer-to-peer systems
will be donated by users: people donate otherwise unused CPU cycles to SETI@home calculations,
unused bandwidth to forward Mixmaster anonymous email, and unused storage for Free Haven data
shares. For these situations, the sole role of micropayments is to achieve optimal resource allocation
among participants. In other words, micropayments in a peer-to-peer system should be used only to
prevent congestion, where this concept covers both bandwidth and storage limitations.

16.3.4.3 Moderating security levels: An accountability slider

Poor protection of resources can hinder the use of a peer-to-peer system on one side; attempts to
guard resources by imposing prohibitive costs can harm it on the other. Providing a widely used,
highly available, stable peer-to-peer system requires a balance.

If a peer-to-peer system wishes only to prevent query-flooding (bandwidth) attacks, the congestion
management approach taken by client puzzles - and usable with any form of micropayment - answers
the problem. Query-flooding attacks are transient; once the adversary stops actively attacking the
system, the bandwidth is readily available to others.

As we have suggested, other forms of congestion are cumulative, such as those related to storage
space. Free Haven seeks "document permanence," whereby peers promise to store data for a given
time period (although the Free Haven trading protocol seeks to keep this system dynamic, as
discussed in Chapter 12). If we wait until the system is already full before charging micropayments,
we've already lost our chance to adequately protect against congestion.

This is the freeloading problem: we wish to prevent parasitic users from congesting the system
without offering something of value in return. Furthermore, an adversary can attempt to flood the
system early to fill up all available space. Therefore, for systems in which resource pressures accrue
cumulatively, micropayments should always be required. Free Haven's answer is to require that peers
offer storage space proportional to that which they take up. (Even though cash-based micropayments
are not used, the idea of payment by equivalent resources is similar.)

http://www.research.att.com/~amo/doc/competitive.pricing.ps
http://www.stern.nyu.edu/~bakos/big.pdf

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 191

The alternative to this design is the caching approach taken by systems such as Freenet. Old data is
dropped as newer and more "popular" data arrives. This approach does not remove the resource
allocation problem, however; it only changes the issue. First, flooding the system can flush desirable
data from nearby caches as well. System designers simply try to ensure that flooding will not congest
the resources of more distant peers. Second, freeloading is not as much of a concern, because peers
are not responsible for offering best-effort availability to documents. However, if many peers rely on a
few peers to store data, only the most popular data remains. Social inefficiencies develop if the system
loses data that could be desired in the long run because short-term storage is insufficient to handle the
requirements of freeloading peers. Furthermore, disk space is only one of several resources to
consider. Massive freeloading can also affect scalability through network congestion.

Always charging for resources can prevent both freeloading and attacks. On the other hand, excessive
charges are disadvantageous in their own right. So it would be useful to find a balance.

Consider an accountability slider: Peers negotiate how much payment is required for a resource
within a general model specified by the overall peer-to-peer system. Using only a micropayment
model, systems like Free Haven or Publius may not have much leeway. Others, like Freenet, Gnutella,
or Jabber, have notably more. When we later add the concept of reputation, this accounting process
becomes even more flexible.

Each of the micropayment schemes described earlier in this chapter can be adapted to provide a
sliding scale:

Hash cash

Partial hashes can be made arbitrarily expensive to compute by choosing the desired number
of bits of collision, denoted by k. No matter how big k gets, systems providing the resources
can verify the requests almost instantly.

Client puzzles

The work factor of these puzzles is also based on the number of bit collisions. The number of
subpuzzles can also be increased to limit the possibility of random guessing being successful;
this is especially important when k becomes smaller.

Time puzzles

The LCS35 time-lock includes a parameter t that sets the difficulty of the puzzle.

MicroMint

The "cost" of a coin is determined by its number of colliding hash values. The greater the k-
way collision, the harder the coin is to generate.

PayWord

In the simplest adaptation, a commitment within PayWord can be a promise of varying
amount. However, PayWord is designed for iterative payments. To be able to use the same
PayWord chain for successive transactions, we want to always pay with coins of the same
value. Therefore, to handle variable costs, we can just send several paywords for one
transaction. The very lightweight cost of creating and verifying paywords (a single hash per
payword) also makes this multiple-coin approach suitable for macropayment schemes.

Anonymous digital cash

Coins can have different denominations. In Chaum's design, the bank uses a different public
key to sign the coin for different denominations. In Brands's model, the denomination of the
coin is encoded within the coin's attributes; the bank's public key is unique to currency, not
denomination. Brands's digital cash system also allows negotiable attributes to be revealed or
kept secret during payment. This additional information can play a role in setting the
accountability slider.

By negotiating these various values, we can change the level of accountability and security offered by a
peer-to-peer system. Based on overall system requirements, this process can be fixed by the system
designers, changed by the administrators of individual peer machines, or even fluctuate between
acceptable levels at runtime!

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 192

While payment schemes can be used in a variety of peer-to-peer situations - ranging from systems in
which peers are fully identified to systems in which peers are fully anonymous - they do involve some
risk. Whenever Alice makes an electronic payment, she accepts some risk that Bob will not fulfill his
bargain. When identities are known, we can rely on existing legal or social mechanisms. In fully
anonymous systems, no such guarantee is made, so Alice attempts to minimize her risk at any given
time by making small, incremental micropayments. However, there is another possibility for
pseudonymous systems, or identified systems for which legal mechanisms should only be used as a
last resort: reputation schemes. In this next section, we consider the problem of reputation in greater
depth.

16.4 Reputations

While micropayments provide an excellent mechanism for anonymous exchange, a number of systems
call for more long-term pseudonymous or even public relationships. For instance, in the case of
transactions in which one party promises a service over a long period of time (such as storing a
document for three years), a simple one-time payment generally makes one party in the transaction
vulnerable to being cheated. A whistleblower or political dissident who publishes a document may not
wish to monitor the availability of this document and make a number of incremental micropayments
over the course of several years, since this requires periodic network access and since continued
micropayments might compromise anonymity. (While third-party escrow monitoring services or
third-party document sponsors might help to solve this issue, they introduce their own problems.) In
addition, some systems might want to base decisions on the observed behavior of entities - how well
they actually perform - rather than simply how many resources they can provide.

In the real world, we make use of information about users to help distribute resources and avoid poor
results. Back before the days of ubiquitous communication and fast travel, doing business over long
distances was a major problem. Massive amounts of risk were involved in, say, sending a ship from
Europe to Asia for trade. Reputations helped make this risk bearable; large banks could issue letters of
credit that could draw on the bank's good name both in Europe and Asia, and they could insure
expeditions against loss. As the bank successfully helped expeditions finance their voyages, the bank's
reputation grew, and its power along with it. Today's business relationships still follow the same path:
two parties make a decision to trust each other based on the reputations involved.

While the online world is different from the brick-and-mortar world, it too has benefited from
reputations - and can continue to benefit.

The main difference between reputation-based trust systems and micropayment-based trust systems
is that, in reputation-based trust systems, parties base their decisions in part on information provided
by third parties. Peers are motivated to remain honest by fear that news of misdealings will reach yet
other third parties.

Reputation systems are not useful in all situations. For instance, if there were thousands of buyers and
one or two vendors, being able to track vendor performance and reliability would not help buyers pick
a good vendor. On the other hand, tracking performance might provide feedback to the vendor itself
on areas in which it might need improvement. This in turn could result in better performance down
the road, but only if the vendor acted on this feedback.

Similarly, in fields in which a given buyer generally doesn't perform transactions frequently, the
benefits of a reputation system are more subtle. A buyer might benefit from a real estate reputation
system, since she expects to rent from different people over time. Even for a domain in which she
expects to do just one transaction over her whole lifetime (such as laser eye surgery), she would
probably contribute to a reputation site - first out of altruism, and second in order to give the surgeon
an incentive to do well.

This is the tragedy of the commons in reverse: when the cost of contributing to a system is low
enough, people will contribute to it for reasons not immediately beneficial to themselves.

Chapter 17, describes some of the practical uses for a reputation system and the difficulties of
developing such a system. That chapter focuses on the solution found at Reputation Technologies, Inc.
In this chapter we'll give some background on reputation and issues to consider when developing a
reputation system.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 193

16.4.1 Early reputation systems online

The online world carries over many kinds of reputation from the real world. The name "Dennis
Ritchie" is still recognizable, whether listed in a phone book or in a posting to comp.theory. Of course,
there is a problem online - how can you be sure that the person posting to comp.theory is the Dennis
Ritchie? And what happens when "Night Avenger" turns out to be Brian Kernighan posting under a
pseudonym? These problems of identity - covered earlier in this chapter - complicate the ways we
think about reputations, because some of our old assumptions no longer hold.

In addition, new ways of developing reputations evolve online. In the bulletin board systems of the
1980s and early 1990s, one of the more important pieces of data about a particular user was her
upload/download ratio. Users with particularly low ratios were derided as "leeches," because they
consumed scarce system resources (remember, when one user was on via a phone line, no one else
could log in) without giving anything in return. As we will see, making use of this data in an
automated fashion is a promising strategy for providing accountability in peer-to-peer systems.

16.4.1.1 Codifying reputation on a wide scale: The PGP web of trust

Human beings reason about reputations all the time. A large-scale peer-to-peer application, however,
cannot depend on human judgments for more than a negligible portion of its decisions if it has any
hope of scalability. Therefore, the next step in using reputations is to make their development and
consequences automatic.

We've already mentioned the value of knowing upload/download ratios in bulletin board systems. In
many systems, gathering this data was automatic. In some cases, the consequences were automatic as
well: drop below a certain level and your downloading privileges would be restricted or cut off entirely.
Unfortunately, these statistics did not carry over from one BBS to another - certainly not in any
organized way - so they provided for reputations only on a microscopic scale.

One of the first applications to handle reputations in an automated fashion on a genuinely large scale
was the " web of trust" system introduced in Phil Zimmermann's Pretty Good Privacy (PGP). This was
the first program to bring public key cryptography to the masses. In public key cryptography, there are
two keys per user. One is public and can be used only to encrypt messages. The other key is private
and can be used only to decrypt messages. A user publishes his public key and keeps the private key
safe. Then others can use the public key to send him messages that only he can read.

With public key cryptography comes the key certification problem, a type of reputation issue.
Reputations are necessary because there is no way to tell from the key alone which public key belongs
to which person.

For example, suppose Alice would like people to be able to send encrypted messages to her. She
creates a key and posts it with the name "Alice." Unbeknownst to her, Carol has also made up a key
with the name "Alice" and posted it in the same place. When Bob wants to send a message to Alice,
which key does he choose? This happens in real life; as an extreme example, the name "Bill Gates" is
currently associated with dozens of different PGP keys available from popular PGP key servers.

So the key certification problem in PGP (and other public key services) consists of verifying that a
particular public key really does belong to the entity to whom it "should" belong. PGP uses a system
called a web of trust to combat this problem. Alice's key may have one or more certifications that say
"Such and such person believes that this key belongs to Alice." These certifications exist because Alice
knows these people personally; they have established to their satisfaction that Alice really does own
this key. Carol's fake "Alice" key has no such certifications, because it was made up on the spot.

When Bob looks at the key, his copy of PGP will assign it a trust level based on how many of the
certifications are made by people he knows. The higher the trust level, the more confidence Bob can
have in using the key.

A perennial question about the web of trust, however, is whether or not it scales. Small groups of
people can create a web of trust easily, especially if they can meet each other in person. What happens
when we try to make the web of trust work for, say, a consumer and a merchant who have never met
before? The conventional wisdom is that the web of trust does not scale. After all, there is a limit to
how many people Alice and Bob can know.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 194

The most frequently cited alternative to the web of trust is a so-called Public Key Infrastructure. Some
trusted root party issues certificates for keys in the system, some of which go to parties that can issue
certificates in turn. The result is to create a certification tree. An example is the certificate system used
for SSL web browsers; here VeriSign is one of the trusted root certificate authorities responsible for
ensuring that every public key belongs to the "right" entity. A hierarchical system has its own
problems (not least the fact that compromise of the root key, as may recently have happened to Sun
Microsystems,[23] is catastrophic), but at least it scales, right?

[23] Sun Security Bulletin 198, "Revocation of Sun Microsystems Browser Certificates," "How to Detect or Remove
the Invalid Certificate," http://sunsolve5.sun.com/secbull/certificate_howto.html. Computer Emergency
Response Team Bulletin CA-2000-19, http://www.cert.org/advisories/CA-2000-19.html.

As it turns out, the web of trust may not be as unworkable as conventional wisdom suggests. A study
of publicly available PGP keys in 1997 showed that on average, only six certificates linked one key to
another.[24] This "six degrees of separation" or " small-world" effect (also discussed in Chapter 14)
means that for a merchant and a user who are both good web of trust citizens - meaning that they
certify others' keys and are in turn certified - the odds are good that they will have reason to trust each
others' keys. In current practice, however, most commercial sites elect to go with VeriSign. The one
major commercial exception is Thawte's Freemail Web of Trust system.[25]

[24] Neal McBurnett, "PGP Web of Trust Statistics," http://bcn.boulder.co.us/~neal/pgpstat.

[25] Thawte, "Personal Certificates for Web and Mail: The Web of Trust,"
http://www.thawte.com/certs/personal/wot/about.html.

A more serious problem with PGP's implementation of the web of trust, however, comes with key
revocation. How do you tell everyone that your key is no longer valid? How do you tell everyone that
your certificate on a key should be changed? For that matter, what exactly did Bob mean when he
certified Charlie's key, and does Charlie mean the same thing when he certifies David's key?

A more sophisticated - but still distributed - approach to trust management that tries to settle these
questions is the Rivest and Lampson Simple Distributed Security Infrastructure/Simple Public Key
Infrastructure (SDSI/SPKI). A thorough comparison of this with PGP's web of trust and PKI systems
is given by Yang, Brown, and Newmarch.[26]

[26] Yinan Yang, Lawrie Brown, and Jan Newmarch, "Issues of Trust in Digital Signature Certificates,"
http://www.cs.adfa.oz.au/~yany97/auug98.html.

All of this brings up many issues of trust and public key semantics, about which we refer to Khare and
Rifkin.[27] The point we're interested in here is the way in which the web of trust depends on reputation
to extend trust to new parties.

[27] Rohit Khare and Adam Rifkin, "Weaving a Web of Trust,"
http://www.cs.caltech.edu/~adam/papers/trust.html.

16.4.1.2 Who will moderate the moderators: Slashdot

The news site Slashdot.org is a very popular news service that attracts a particular kind of " Slashdot
reader" - lots of them. Each and every Slashdot reader is capable of posting comments on Slashdot
news stories, and sometimes it seems like each and every one actually does. Reputations based on this
interaction can help a user figure out which of the many comments are worth reading.

To help readers wade through the resulting mass of comments, Slashdot has a moderation system for
postings. Certain users of the system are picked to become moderators. Moderators can assign scores
to postings and posters. These scores are then aggregated and can be used to tweak a user's view of the
posts depending on a user's preferences. For example, a user can request to see no posts rated lower
than 2.

The Slashdot moderation system is one existing example of a partially automated reputation system.
Ratings are entered by hand, using trusted human moderators, but then these ratings are collected,
aggregated, and displayed in an automatic fashion.

Although moderation on Slashdot serves the needs of many of its readers, there are many complaints
that a posting was rated too high or too low. It is probably the best that can be done without trying to
maintain reputations for moderators themselves.

http://sunsolve5.sun.com/secbull/certificate_howto.html
http://www.cert.org/advisories/CA-2000-19.html
http://bcn.boulder.co.us/~neal/pgpstat
http://www.thawte.com/certs/personal/wot/about.html
http://www.cs.adfa.oz.au/~yany97/auug98.html
http://www.cs.caltech.edu/~adam/papers/trust.html

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 195

16.4.1.3 Reputations worth real money: eBay

The eBay feedback system is another example of a reputation service in practice. Because buyers and
sellers on eBay usually have never met each other, neither has much reason to believe that the other
will follow through on their part of the deal. They need to decide whether or not to trust each other.

To help them make the decision, eBay collects feedback about each eBay participant in the form of
ratings and comments. After a trade, eBay users are encouraged to post feedback about the trade and
rate their trading partner. Good trades, in which the buyer and seller promptly exchange money for
item, yield good feedback for both parties. Bad trades, in which one party fails to come through, yield
bad feedback which goes into the eBay record. All this feedback can be seen by someone considering a
trade.

The idea is that such information will lead to more good trades and fewer bad trades - which translates
directly into more and better business for eBay. As we will see, this isn't always the case in practice. It
is the case often enough, however, to give eBay a reputation of its own as the preeminent web auction
site.

16.4.1.4 A reputation system that resists pseudospoofing: Advogato

Another example of reputations at work is the "trust metric" implemented at
http://www.advogato.org/, which is a portal for open source development work. The reputation
system is aimed at answering the fundamental question, "How much can you trust code from person
X?" This question is critical for people working on open source projects, who may have limited time to
audit contributed code. In addition, in an open source project, attempts by one contributor to fix the
perceived "mistakes" of another contributor may lead to flame wars that destroy projects. As of this
writing, the open source development site http://www.sourceforge.net/ (host to Freenet) is
considering using a similar reputation system.

The stakes at Advogato are higher than they are at Slashdot. If the Slashdot moderation system fails, a
user sees stupid posts or misses something important. If the Advogato trust metric incorrectly certifies
a potential volunteer as competent when he or she is not, a software project may fail. At least, this
would be the case if people depended on the trust metric to find and contact free software volunteers.
In practice, Advogato's trust metric is used mostly for the same application as Slashdot's: screening
out stupid posts.

The method of determining trust at Advogato also contains features that distinguish it from a simple
rating system like Slashdot moderation. In particular, the Advogato trust metric resists a scenario in
which many people join the system with the express purpose of boosting each others' reputation
scores.[28]

[28] Raph Levien, "Advogato's Trust Metric," http://www.advogato.org/trust-metric.html.

Advogato considers trust relationships as a directed flow graph. That is, trust relationships are
represented by a collection of nodes, edges, and weights. The system is illustrated in Figure 16.1 (we
omit weights for simplicity). The nodes are the people involved. An edge exists between A and B if A
trusts B. The weight is a measure of how much A trusts B.

What we are interested in, however, is not just how much A trusts B, but how much B is trusted in
general. So Advogato measures how much trust "flows to" B, by designating a few special trusted
accounts as a source and by designating B as a sink. It then defines a flow of trust from the source to B
as a path from the source to B. Advogato assigns numbers to edges on the path that are less than or
equal to the edge weights. The edge weights act as constraints on how much trust can be "pushed"
between two points on the flow path. Finally, the trust value of B is defined as the maximum amount
of trust that can be pushed from the source to B - the maximum flow.

http://www.advogato.org/
http://www.sourceforge.net/
http://www.advogato.org/trust-metric.html

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 196

Figure 16.1. Users and trust relationships in Advogato

Calculating flows through networks is a classic problem in computer science. Advogato uses this
history in two ways. First, the Ford-Fulkerson algorithm lets the system easily find the maximum flow,
so B's trust value can always be computed.[29] Second, a result called the " maxflow-mincut theorem"
shows that the Advogato system resists the pseudospoofing attacks described earlier, in Section
16.1.5.1. Even if one entity joins under many different assumed names, none of these names will gain
very much more trust than if each had joined alone.

[29] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest, Introduction to Algorithms (MIT Press and
McGraw-Hill, Cambridge, MA, 1990).

Pseudospoofing is resisted because each of the new names, at least at first, is connected only to itself
in the graph. No one else has any reason whatsoever to trust it. Therefore, there is no trust flow from
the source to any of the pseudospoofing nodes, and none of them are trusted at all. Even after the
pseudospoofing nodes begin to form connections with the rest of the graph, there will still be " trust
bottlenecks" that limit the amount of trust arriving at any of the pseudospoofing nodes.

This property is actually quite remarkable. No matter how many fake names an adversary uses, it is
unable to boost its trust rating very much. The downside is that nodes "close" to the source must be
careful to trust wisely. In addition, it may not be readily apparent what kinds of weights constitute
high trust without knowing what the entire graph looks like.

16.4.1.5 System successes and failures

Reputation in the brick-and-mortar world seems to work quite well; spectacular failures, such as the
destruction of Barings Bank by the actions of a rogue trader, are exceptions rather than the rule.
Which reputation-based systems have worked online, and how well have they worked?

The Slashdot and Advogato moderation systems seem to work. While it is difficult to quantify what
"working" means, there have been no spectacular failures so far. On the other hand, the eBay fraud of
mid-2000[30] shows some of the problems with reputation systems used naively.

[30] "eBay, Authorities Probe Fraud Allegations," CNET news article, http://www.canada.cnet.com/news/0-
1007-200-1592233.html.

In the eBay case, a group of people engaged in auctions and behaved well. As a result, their trust
ratings went up. Once their trust ratings were sufficiently high to engage in high-value deals, the
group suddenly "turned evil and cashed out." That is, they used their reputations to start auctions for
high-priced items, received payment for those items, and then disappeared, leaving dozens of eBay
users holding the bag.

As for PGP's web of trust, it has been overtaken by hierarchical PKIs, like those offered by VeriSign, as
a widespread means of certifying public keys. In this case, peer-to-peer did not automatically translate
into success.

http://www.canada.cnet.com/news/0-

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 197

16.4.2 Scoring systems

Reputation systems depend on scores to provide some meaning to the ratings as a whole. As shown in
Chapter 17, scores can be very simple or involve multiple scales and complicated calculations.

In a reputation system for vendors, buyers might give ratings - that is, numbers that reflect their
satisfaction with a given transaction - for a variety of different dimensions for each vendor. For
instance, a given vendor might have good performance in terms of response time or customer service,
but the vendor's geographic location might be inconvenient. Buyers provide feedback on a number of
these rating dimensions at once, to provide a comprehensive view of the entity. The job of the
reputation system is to aggregate these ratings into one or more published scores that are meaningful
and useful to participants in the system. A good scoring system will possess many of the following
qualities:

Accurate for long-term performance

The system reflects the confidence (the likelihood of accuracy) of a given score. It can also
distinguish between a new entity of unknown quality and an entity with bad long-term
performance.

Weighted toward current behavior

The system recognizes and reflects recent trends in entity performance. For instance, an entity
that has behaved well for a long time but suddenly goes downhill is quickly recognized and no
longer trusted.

Efficient

It is convenient if the system can recalculate a score quickly. Calculations that can be
performed incrementally are important.

Robust against attacks

The system should resist attempts of any entity or entities to influence scores other than by
being more honest or having higher quality.

Amenable to statistical evaluation

It should be easy to find outliers and other factors that can make the system rate scores
differently.

Private

No one should be able to learn how a given rater rated an entity except the rater himself.

Smooth

Adding any single rating or small number of ratings doesn't jar the score much.

Understandable

It should be easy to explain to people who use these scores what they mean - not only so they
know how the system works, but so they can evaluate for themselves what each score implies.

Verifiable

A score under dispute can be supported with data.

Note that a number of these requirements seem to be contradictory. We will explore the benefits and
trade-offs from each of them over the course of the rest of this section.

16.4.2.1 Attacks and adversaries

Two questions determine how we evaluate the security of reputation systems. First, what information
needs to be protected? Second, who are the adversaries?

The capabilities of potential adversaries and the extent to which they can damage or influence the
system dictate how much energy should be spent on security. For instance, in the case of Free Haven,
if political dissidents actually began using the system to publish their reports and information,
government intelligence organizations might be sufficiently motivated to spend millions of dollars to
track the documents to their sources.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 198

Similarly, if a corporation planning a $50 million transaction bases its decisions on a reputation score
that Reputation Technologies, Inc., provides, it could be worth many millions of dollars to influence
the system so that a particular company is chosen. Indeed, there are quite a few potential adversaries
in the case of Reputation Technologies, Inc. A dishonest vendor might want to forge or use bribes to
create good feedback to raise his resulting reputation. In addition to wanting good reputations,
vendors might like their competitors' reputations to appear low. Exchanges - online marketplaces that
try to bring together vendors to make transactions more convenient - would like their vendors'
reputations to appear higher than those of vendors that do business on other exchanges. Vendors with
low reputations - or those with an interest in people being kept in the dark - would like reputations to
appear unusably random. Dishonest users might like the reputations of the vendors that they use to be
inaccurate, so that their competitors will have inaccurate information.

Perhaps the simplest attack that can be made against a scoring system is called shilling . This term is
often used to refer to submitting fake bids in an auction, but it can be considered in a broader context
of submitting fake or misleading ratings. In particular, a person might submit positive ratings for one
of her friends (positive shilling) or negative ratings for her competition (negative shilling). Either of
these ideas introduces more subtle attacks, such as negatively rating a friend or positively rating a
competitor to try to trick others into believing that competitors are trying to cheat.

Shilling is a very straightforward attack, but many systems are vulnerable to it. A very simple example
is the AOL Instant Messenger system. You can click to claim that a given user is abusing the system.
Since there is no support for detecting multiple comments from the same person, a series of repeated
negative votes will exceed the threshold required to kick the user off the system for bad behavior,
effectively denying him service. Even in a more sophisticated system that detects multiple comments
by the same person, an attacker could mount the same attack by assuming a multitude of identities.

Vulnerabilities from overly simple scoring systems are not limited to "toy" systems like Instant
Messenger. Indeed, eBay suffers from a similar problem. In eBay, the reputation score for an
individual is a linear combination of good and bad ratings, one for each transaction. Thus, a vendor
who has performed dozens of transactions and cheats on only 1 out of every 4 customers will have a
steadily rising reputation, whereas a vendor who is completely honest but has only done 10
transactions will be displayed as less reputable. As we have seen, a vendor could make a good profit
(and build a strong reputation!) by being honest for several small transactions and then being
dishonest for a single large transaction.

Weighting ratings by size of transaction helps the issue but does not solve it. In this case, large
transactions would have a large impact on the reputation score of a vendor, and small transactions
would have only a small impact. Since small transactions don't have much weight, vendors have no
real incentive to be honest for them - making the reputation services useless for small buyers.
Breaking reputation into many different dimensions, each representing the behavior of the vendor on
a given category of transaction (based on cost, volume, region, etc.), can solve a lot of these problems.
See Section 16.4.2.6, later in this chapter for more details and an analysis of this idea.

16.4.2.2 Aspects of a scoring system

The particular scoring system or algorithm used in a given domain should be based on the amount of
information available, the extent to which information must be kept private, and the amount of
accuracy required.

In some situations, such as verifying voting age, a fine-grained reputation measurement is not
necessary - simply indicating who seems to be sufficient or insufficient is good enough.

In a lot of domains, it is very difficult to collect enough information to provide a comprehensive view
of each entity's behavior. It might be difficult to collect information about entities because the volume
of transactions is very low, as we see today in large online business markets.

But there's a deeper issue than just whether there are transactions, or whether these transactions are
trackable. More generally: does there exist some sort of proof (a receipt or other evidence) that the
rater and ratee have actually interacted?

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 199

Being able to prove the existence of transactions reduces problems on a wide variety of fronts. For
instance, it makes it more difficult to forge large numbers of entities or transactions. Such verification
would reduce the potential we described in the previous section for attacks on AOL Instant
Messenger. Similarly, eBay users currently are able to directly purchase a high reputation by giving
eBay a cut of a dozen false transactions which they claim to have performed with their friends. With
transaction verification, they would be required to go through the extra step of actually shipping goods
back and forth.

Proof of transaction provides the basis for Amazon.com's simple referral system, "Customers who
bought this book also bought..." It is hard to imagine that someone would spend money on a book just
to affect this system. It happens, however. For instance, a publishing company was able to identify the
several dozen bookstores across America that are used as sample points for the New York Times
bestseller list; they purchased thousands of copies of their author's book at these bookstores,
skyrocketing the score of that book in the charts.[31]

[31] David D. Kirkpatrick, "Book Agent's Buying Fuels Concern on Influencing Best-Seller Lists," New York Times
Abstracts, 08/23/2000, Section C, p. 1, col. 2, c. 2000, New York Times Company.

In some domains, it is to most raters' perceived advantage that everyone agree with the rater. This is
how chain letters, Amway, and Ponzi schemes get their shills: they establish a system in which
customers are motivated to recruit other customers. Similarly, if a vendor offered to discount past
purchases if enough future customers buy the same product, it would be hard to get honest ratings for
that vendor. This applies to all kinds of investments; once you own an investment, it is not in your
interest to rate it negatively so long as it holds any value at all.

16.4.2.3 Collecting ratings

One of the first problems in developing reputation systems is how to collect ratings. The answer
depends highly on the domain, of course, but there are a number of aspects that are common across
many domains.

The first option is simply to observe as much activity as possible and draw conclusions based on this
activity. This can be a very effective technique for automated reputation systems that have a lot of data
available. If you can observe the transaction flow and notice that a particular vendor has very few
repeat customers, he probably has a low reputation. On the other hand, lack of repeat customers may
simply indicate a market in which any given buyer transacts infrequently. Similarly, finding a vendor
with many repeat customers might indicate superior quality, or it might just indicate a market in
which one or a few vendors hold a monopoly over a product. Knowledge of the domain in question is
crucial to knowing how to correctly interpret data.

In many circumstances it may be difficult or impossible to observe the transaction flow, or it may be
unreasonable to expect parties to take the initiative in providing feedback. In these cases, a reasonable
option is to solicit feedback from parties involved in each transaction. This can be done either by
publicizing interest in such feedback and providing incentives to respond, or even by actively going to
each party after an observed transaction and requesting comments. Reputation Technologies, Inc., for
instance, aggressively tries to obtain feedback after each transaction.

Tying feedback to transactions is a very powerful way of reducing vulnerabilities in the system. It's
much more difficult for people to spam positive feedback, since each item of feedback has to be
associated with a particular transaction, and presumably only the latest piece of feedback on a given
transaction would actually count.

On the surface, it looks like this requires an exchange or other third-party transaction moderator, to
make it difficult to simply fabricate a series of several thousand transactions and exploit the same
vulnerability. However, vendors could provide blinded receipts for transactions - that is, the vendors
would not be able to identify which buyer was providing the ratings. Without such a receipt, the
reputation system would ignore feedback from a given buyer. Thus, buyers could not provide feedback
about a vendor without that vendor's permission. There are a number of new problems introduced by
this idea, such as how to respond if vendors fail to provide a receipt, but it seems to address many of
the difficult issues about shilling in a decentralized environment.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 200

A final issue to consider when collecting ratings is how fair the ratings will be - that is, how evenly
distributed are the raters out of the set of people who have been doing transactions? If the only people
who have incentive to provide ratings are those that are particularly unhappy with their transaction,
or if only people with sufficient technical background can navigate the rating submission process, the
resulting scores may be skewed to the point of being unusable. One solution to this could involve
incentives that lead more people to respond; another approach is to simply collect so much data that
the issue is no longer relevant. (The Slashdot moderation system, for instance, depends on the
participation of huge numbers of independent moderators.) But systematic errors or biases in the
ratings will generally defeat this second approach.

16.4.2.4 Bootstrapping

One of the tough questions for a reputation-based trust system is how to get started. If users make
choices based on the scores that are available to them, but the system has not yet collected enough
data to provide useful scores, what incentive do buyers have to use the system? More importantly,
what incentive do they have to contribute ratings to the system?

Free Haven can avoid this problem through social means. Some participants will be generous and
willing to try out new nodes just to test their stability and robustness. In effect, they will be performing
a public service by risking some of their reputation and resources evaluating unknown nodes.
However, businesses, particularly businesses just getting started in their fields and trying to make a
name for themselves, won't necessarily be as eager to spend any of their already limited transaction
volume on trying out unknown suppliers.

The way to present initial scores for entities depends on the domain. In some noncommercial
domains, it might be perfectly fine to present a series of entities and declare no knowledge or
preference; in others, it might be more reasonable to list only those entities for which a relatively
certain score is known. Reputation Technologies needs to provide some initial value to the users; this
can be done by asking vendors to provide references (that is, by obtaining out-of-band information)
and then asking those references to fill out a survey describing overall performance of and happiness
with that vendor. While this bootstrapping information may not be as useful as actual transaction-
based feedback (and is more suspect because the vendors are choosing the references), it is a good
starting point for a new system.

Bootstrapping is a much more pronounced issue in a centralized system than in a decentralized
system. This is because in a decentralized system, each user develops his own picture of the universe:
he builds his trust of each entity based on his own evidence of past performance and on referrals from
other trusted parties. Thus, every new user effectively joins the system "at the beginning," and the
process of building a profile for new users is an ongoing process throughout the entire lifetime of the
system. In a centralized environment, on the other hand, ratings are accumulated across many
different transactions and over long periods of time. New users trust the centralized repository to
provide information about times and transactions that happened before the user joined the system.

In a newly developed system, or for a new entity in the system, the choice of the default reputation
score is critical. If it's easy to create a new identity (that is, pseudonym), and new users start out with
an average reputation, users who develop a bad reputation are encouraged to simply drop their old
identities and start over with new ones. One way to deal with this problem is to start all new users with
the lowest possible reputation score; even users with a bad track record will then have an incentive to
keep their current identities.

Another approach to solving this problem is to make it difficult to create a new identity. For instance,
this can be done by requiring some proof of identity or a monetary fee for registration. Tying the user
to her real-world identity is the simplest, and probably the most effective, way to reduce abuse - but
only if it's appropriate for that system.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 201

16.4.2.5 Personalizing reputation searches

The user interface - that is, the way of presenting scores and asking questions - is a crucial element of
a reputation system. Scores cannot simply be static universal values representing the overall quality of
an individual. Since a score is an attempt to predict future performance, each score must be a
prediction for a particular context. That is, the user interface must allow participants to query the
system for the likelihood of a successful transaction for their particular situation. The more flexibility
a client has, the more powerful and useful the system is (so long as users can still understand how to
use it).

The user interface must also display a confidence value for each score - that is, how likely the score is
to reflect the reality of the subject's behavior. The mechanism for generating this confidence value
depends on the domain and the scoring algorithm. For instance, it might reflect the number of ratings
used to generate the score, the standard deviation of the set of ratings, or the level of agreement
between several different scoring algorithms that were all run against the ratings set. Confidence
ratings are a major topic in Chapter 17.

Not only does a confidence value allow users to have a better feel for how firm a given score is, but it
can also allow a more customized search. That is, a user might request that only scores with a certain
minimum confidence value be displayed, which would weed out new users as well as users with
unusual (widely varying) transaction patterns.

In some domains, qualitative statements (like verbal reviews) can enhance the value of a quantitative
score. Simply providing a number may not feel as genuine or useful to users - indeed, allowing for
qualitative statements can provide more flexibility in the system, because users providing feedback
might discuss topics and dimensions which are difficult for survey authors to anticipate. On the other
hand, it is very difficult to integrate these statements into numerical scores, particularly if they cover
unanticipated dimensions. Also, as the number of statements increases, it becomes less useful to
display all of them. Choosing which statements to display not only requires manual intervention and
choice, but might also lead to legal liabilities. Another problem with providing verbal statements as
part of the score is the issue of using this scoring system in different countries. Statements may need
to be translated, but numbers are universal.

16.4.2.6 Scoring algorithms

As we've seen in the previous sections, there are many different aspects to scoring systems. While we
believe that query flexibility is perhaps the most crucial aspect to the system, another important
aspect is the actual algorithm used to aggregrate ratings into scores. Such an algorithm needs to
answer most of the requirements that we laid out in Section 16.4.2. Broadly speaking, the scoring
algorithm should provide accurate scores, while keeping dishonest users from affecting the system
and also preventing privacy leaks (as detailed in the next section).

Keeping dishonest users from affecting the system can be done in several ways. One simple way is to
run statistical tests independent of the actual aggregation algorithm, to attempt to detect outliers or
other suspicious behavior such as a clique of conspiring users. Once this suspicious behavior has been
identified, system operators can go back, manually examine the system, and try to prune the bad
ratings. While this appears to be a very time-intensive approach that could not possibly be used in a
deployed system, eBay has used exactly this method to try to clean up their system once dishonest
users have been noticed.[32]

[32] "eBay Feedback Removal Policy," http://pages.ebay.com/help/community/fbremove.html.

A more technically sound approach is to weight the ratings by the credibility of each rater. That is,
certain people contribute more to the score of a given entity based on their past predictive ability.
Google makes use of this idea in its Internet search engine algorithm. Its algorithm counts the number
of references to a given page; the more pages that reference that page, the more popular it is. In
addition, the pages that are referenced from popular pages are also given a lot of weight. This simple
credibility metric produces much more accurate responses for web searches.

http://pages.ebay.com/help/community/fbremove.html

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 202

By introducing the notion of local credibility rather than simple global credibility for each entity, the
system can provide a great deal of flexibility and thus stronger predictive value. Local credibility
means that a rating is weighted more strongly if the situation in which that rating was given is similar
to the current situation. For instance, a small farmer in Idaho looking into the reputation of chicken
vendors cares more about the opinion of a small farmer in Arkansas than he does about the opinion of
the Great Chinese Farming Association. Thus, the algorithm would generate a score that more
accurately reflects the quality of the vendor according to other similar buyers. Similarly, if Google
knew more about the person doing the web search, it could provide an even more accurate answer.
Before being bought by Microsoft, firefly.net offered a service based on this idea.

One of the problems with incorporating credibility into the scoring algorithm is that, in some
domains, an individual's ability to perform the protocol honestly is very separate from an individual's
ability to predict performance of others.

In the Free Haven system, for instance, a server may be willing to store documents and supply them to
readers, but keep no logs about transactions or trades (so it has no idea which other servers are
behaving honestly). In the case of Reputation Technologies, one vendor might be excellent at
providing high-quality products on time, leading to a high reputation score, but possess only average
skill at assessing other vendors. Indeed, a consulting firm might specialize in predicting performance
of vendors but not actually sell any products of its own.

One way to solve this problem is to have separate scores for performance and credibility. This makes it
more complex to keep track of entities and their reputations, but it could provide tremendous
increases in accuracy and flexibility for scoring systems.

Weighting by credibility is not the only way to improve the accuracy and robustness of the scoring
algorithm. Another approach is to assert that previous transactions should carry more weight in
relation to how similar they are to the current transaction. Thus, a vendor's ability to sell high-quality
Granny Smith apples should have some bearing on his ability to sell high-quality Red Delicious apples.
Of course, this could backfire if the vendor in question specializes only in Granny Smith apples and
doesn't even sell Red Delicious apples. But in general, weighting by the so-called category of the
transaction (and thus the vendor's reputation in related categories) is a very powerful idea. Separating
reputations into categories can act as a defense against some of the subtle shilling attacks described
above, such as when a vendor develops a good reputation at selling yo-yos and has a side business
fraudulently selling used cars.

The category idea raises very difficult questions. How do we pick categories? How do we know which
categories are related to which other categories, and how related they are? Can this be automated
somehow, or do the correlation coefficients have to be estimated manually?

In the case of Free Haven, where there is only one real commodity - a document - and servers either
behave or they don't, it might be feasible to develop a set of categories manually and allow each server
to manually configure the numbers that specify how closely related the categories are. For instance,
one category might be files of less than 100K that expire within a month. A strongly related category
would be files between 100K and 200K that expire within a month; perhaps we would say that this
category is 0.9-related to the first. A mostly unrelated category would be files more than 500MB in
size that expire in 24 months. We might declare that this category is 0.05-related to the first two.

With some experience, an algorithm might be developed to tweak the correlation coefficients on the
fly, based on how effective the current values have been at predicting the results of future transactions.
Similarly, we might be able to reduce the discrete categories into a single continuous function that
converts "distance" between file size and expiration date into a correlation coefficient.

Reputation Technologies is not so lucky. Within a given exchange, buyers and sellers might barter
thousands of different types of goods, each with different qualities and prices; the correlation between
any pair of categories might be entirely unclear. To make matters worse, each vendor might only have
a few transactions on record, leaving data too sparse for any meaningful comparison.

While we've presented some techniques to provide more accuracy and flexibility in using ratings, we
still haven't discussed actual algorithms that can be used to determine scores. The simplest such
algorithm involves treating reputations as probabilities. Effectively, a reputation is an estimate of how
likely a future transaction in that category is to be honest. In this case, scores are simply computed as
the weighted sum of the ratings.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 203

More complex systems can be built out of neural networks or data-clustering techniques, to try to
come up with ways of applying nonlinear fitting and optimizing systems to the field of reputation. But
as the complexity of the scoring algorithm increases, it becomes more and more difficult for actual
users of these systems to understand the implications of a given score or understand what flaws might
be present in the system.

Finally, we should mention the adversarial approach to scoring systems. That is, in many statistical
or academic approaches, the goal is simply to combine the ratings into as accurate a score as possible.
In the statistical analysis, no regard is given for whether participants in the system can conspire to
provide ratings that break the particular algorithm used.

A concrete example might help to illustrate the gravity of this point. One of the often referenced
pitfalls of applying neural networks to certain situations comes from the U.S. military. They wanted to
teach their computers how to identify tanks in the battlefield. Thus they took a series of pictures that
included tanks, and a series of pictures that did not include tanks. But it turns out that one of the sets
was taken during the night, and the other set was taken during the day. This caused their high-tech
neural network to learn not how to identify a tank but how to distinguish day from night. Artificial
intelligence developers need to remember that there are a number of factors that might be different in
a set of samples, and their neural network might not learn quite what they want it to learn.

But consider the situation from our perspective: what if the Russian military were in charge of
providing the tank pictures? Is there a system that can be set up to resist bad data samples? Many
would consider that learning how to identify a tank under those circumstances is impossible. How
about if the Russians could provide only half of the pictures? Only a tenth? Clearly this is a much more
complicated problem. When developing scoring systems, we need to keep in mind that simply
applying evaluation techniques that are intended to be used in a "clean" environment may introduce
serious vulnerabilities.

16.4.2.7 Privacy and information leaks

Yet another issue to consider when designing a good scoring system is whether the system will be
vulnerable to attacks that attempt to learn about the tendencies or patterns of entities in the system.
In a business-oriented domain, knowledge about transaction frequency, transaction volume, or even
the existence of a particular transaction might be worth a lot of time and money to competitors. The
use of a simple and accurate scoring algorithm implies that it should be easy to understand the
implication of a vendor's score changing from 8.0 to 9.0 over the course of a day. Perhaps one or more
ratings arrived regarding large transactions, and those ratings were very positive.

The objectives of providing timeliness and accuracy in the scoring algorithm and of maintaining
privacy of transaction data seem to be at odds. Fortunately, there are a number of ways to help
alleviate the leakage problems without affecting accuracy too significantly. We will describe some of
the more straightforward of these techniques in this section.

The problem of hiding transaction data for individual transactions is very similar to the problem of
hiding source and destination data for messages going through mix networks.[33] More specifically,
figuring out what kind of rating influenced a published score by a certain amount is very similar to
tracking a message across a middleman node in a mix network. In both cases, privacy becomes
significantly easier as transaction volume increases. Also in both cases, adversaries observe external
aspects of the system (in the case of the scoring system, the change in the score; in the case of the mix
network, the messages on the links to and from the mix node) to try to determine the details of some
particular message or group of messages (or the existence of any message at all).

[33] D. Chaum (1981), "Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms."
Communications of the ACM, vol. 24, no. 2, pp.84-88.

One common attack against the privacy of a scoring system is a timing attack . For instance, the
adversary might observe transactions and changes in the scores and then try to determine the rating
values that certain individuals submitted. Alternatively, the adversary might observe changes in the
scores and attempt to discover information about the timing or size of transactions. These attacks are
like watching the timings of messages going through various nodes on a mix network, and trying to
determine which incoming message corresponds to which outgoing message.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 204

A number of solutions exist to protect privacy. First of all, introducing extra latency between the time
that ratings are submitted and the time when the new score is published can make timing correlation
more difficult. (On the other hand, this might reduce the quality of the system, because scores are not
updated immediately.) Another good solution is to queue ratings and process them in bulk. This
prevents the adversary from being able to determine which of the ratings in that bulk update had
which effect on the score.

A variant of this approach is the pooling approach, in which some number of ratings are kept in a
pool. When a new rating arrives, it is added to the pool and a rating from the pool is chosen at random
and aggregated into the score. Obviously, in both cases, a higher transaction volume makes it easier to
provide timely score updates.

An active adversary can respond to bulk or pooled updates with what is known as an identification
flooding attack . He submits ratings with known effect, and watches for changes in the score that are
not due to those ratings. This approach works because he can "flush" the few anonymous ratings that
remain by submitting enough known ratings to fill the queue. This attack requires the adversary to
produce a significant fraction of the ratings during a given time period.

But all this concern over privacy may not be relevant at all. In some domains, such as Free Haven, the
entire goal of the reputation system is to provide as much information about each pseudonymous
server as possible. For instance, being able to figure out how Alice performed with Bob's transaction is
always considered to be a good thing. In addition, even if privacy is a concern, the requirement of
providing accurate, timely scores may be so important that no steps should be taken to increase user
privacy.

16.4.3 Decentralizing the scoring system

Many of the issues we've presented apply to both centralized and decentralized reputation systems. In
a decentralized system such as Free Haven, each server runs the entire reputation-gathering system
independently. This requires each node to make do with only the information that it has gathered
firsthand, and it generally requires a broadcast mechanism in order for all nodes to keep their
information databases synchronized.

Another approach is to decentralize the scoring system itself, spreading it among the entire set of
machines participating in the system. In this section, we present two ways of decentralizing a scoring
system. The first exploits redundancy along with user flexibility to reduce the risk from cheating or
compromised servers. The second is a more traditional approach to decentralizing a system, but it also
brings along the more traditional problems associated with decentralization, such as high bandwidth
requirements and difficult crypto problems.

16.4.3.1 Multiple trusted parties

Assume there is a set of scorers around the world, each independently run and operated. When a
transaction happens, the vendor chooses a subset of the scorers and constructs a set of tickets. Each
ticket is a receipt allowing the buyer to rate the vendor at a particular scorer. The receipts are blinded
so that the vendor is not able to link a ticket with any given buyer.

At this point, the buyer can decide to which scorer or scorers he wishes to submit his ratings. Since
each scorer could potentially use its own algorithm and have its own prices or publishing habits, each
scorer might have its own set of trade-offs based on accuracy, privacy, and security. This technique
allows the vendor to veto some of the scorers first. Then the rater chooses from among the remaining
scorers. Thus, the ratings will only be submitted to mutually agreeable scorers.

We could extend this scenario to allow both parties in the transaction to provide tickets to each other,
creating a more symmetric rating process. This approach introduces complications, because both
parties in the transaction need to coordinate and agree on which tickets will be provided before the
transaction is completed. There also needs to be some mechanism to enforce or publicize if one side of
the transaction fails to provide the promised receipts.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 205

The beauty of decentralizing the scoring system in this manner is that every individual in the system
can choose which parts of the system they want to interact with. Participants in transactions can list
scorers whom they trust to provide accurate scores, raters can choose scorers whom they trust not to
leak rating information, and users looking for scores on various entities can choose scorers whom they
trust to provide accurate scores.

Of course, this decentralization process introduces the issue of meta-reputation: how do we determine
the reputations of the reputation servers? This sort of reputation issue is not new. Some Mixmaster
nodes are more reliable than others,[34] and users and operators keep uptime and performance lists of
various nodes as a public service. We expect that reputation scoring services would similarly gain
(external) reputations based on their reliability or speed.

[34] "Electronic Frontiers Georgia Remailer Uptime List," http://anon.efga.org/.

16.4.3.2 True decentralization

In this scenario, both sides of the transaction obtain blinded receipts as above. Apart from these
raters, the system also consists of a set of collectors and a set of scorers. They are illustrated in Figure
16.2.

Figure 16.2. Truly decentralized scoring system

After the transaction, each rater splits up his rating using Shamir's secret sharing algorithm (described
in Chapter 11) or some other k-of-n system. At this point, the rater submits one share of her rating to
each collector. This means that the collectors together could combine the shares to determine her
rating, but separately they can learn no information. It is the job of the scorers to provide useful
information to clients: when a client does a reputation query for a specific category (situation), the
scorer does the equivalent of an encrypted database query on the set of collectors.[35]

[35] Tal Malkin (1999), MIT Ph.D. thesis, "Private Information Retrieval and Oblivious Transfer."

A number of technical challenges need to be solved in order to make this scheme work. First of all, the
collectors need to have some mechanism for authenticating a rating without reading it. Similarly, they
need to have some way to authorize a rater to put his share onto the system without their knowing the
author of a given rating. Without this protection, malicious raters could simply flood the system with
data until it overflowed.

Once these problems are solved, we need to come up with some sort of computationally feasible and
bandwidth-feasible way of communication between the scorers and the collectors. We also need a set
of rules that allow the scorers to get the information they need to answer a given query without
allowing them to get too much information and learn more than they ought to learn about raters.

http://anon.efga.org/

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 206

With this decentralization comes some subtle questions. Can scorers "accidentally forget" to include a
specific rating when they're computing a score? Said another way, is there some way of allowing
scorers to provide proof that they included a certain rating in the calculation of the score, without
publishing the actual ratings that were used? This question is similar to the question of allowing mix
nodes to prove that they forwarded a given message without yielding information that might help an
adversary determine the source or destination of the message.[36]

[36] Masayuki Abe (1998), "Universally Verifiable MIX-Network with Verification Work Independent of the
Number of MIX Servers," EUROCRYPT '98, Springer-Verlag LNCS.

16.5 A case study: Accountability in Free Haven

As described in Chapter 12, the Free Haven project is working toward creating a decentralized and
dynamically changing storage service that simultaneously protects the anonymity of publishers,
readers, and servers, while ensuring the availability of each document for a lifetime specified by the
publisher. Our goals of strong anonymity and long-term persistent storage are at odds with each
other. Providing as much anonymity as possible while still retaining sufficient accountability is a very
difficult problem. Here we will describe the accountability requirements in greater detail than in
Chapter 12 and discuss some approaches to solving them.

Our job is two-fold: We want to keep people from overfilling the bandwidth available from and
between servers, and we want to keep people from overfilling the system with data. We will examine
each of these goals separately.

16.5.1 Micropayments

In general, there are a number of overall problems with using micropayments in peer-to-peer systems.
This general analysis will help motivate our discussion of using micropayments in the Free Haven
context. We'll talk about them, then try to apply them to Free Haven.

16.5.1.1 The difficulty of distributed systems: How to exchange micropayments among
peers

Consider the simple approach to micropayments introduced early in this chapter, in Section 16.3.
Alice wants resources operated by Bob. Alice pays Bob with some micropayments. Bob provides Alice
with the access she purchased to his resources.

This sounds like a great model for economically-based distribution that provides both accountability
and effective congestion-management of resources. However, the problem is rarely so simple in the
case of peer-to-peer distributed systems on the Internet. The reason is that many intermediaries may
be involved in a transaction - and one doesn't know who they are before the transaction starts, or
perhaps even after the transaction is finished.

Consider an anonymous remailer like Mixmaster. Alice sends an email to Bob through a number of
intermediate proxy remailers, which strip all identifying information from the message before
transmitting it. This design is used to distribute trust across operational and often jurisdictional lines.
Only a very powerful adversary - able to observe large sections of the network and use advanced traffic
analysis techniques - should be able to link the sender and recipient of any given message. Hence, we
achieve an essentially anonymous communications path for email.

Consider again the Gnutella routing protocol. Alice seeks some piece of information contained in the
network. She sends out a query to all peers that she knows about (her "friends"); these peers in turn
propagate the request along, branching it through the network. Hopefully, before the time-to-live
(TTL) of the query expires, the request traverses enough intermediate hops to find Bob, who responds
with the desired information. The Freenet routing protocol works similarly, covering some fraction of
the surrounding network over the course of the search.

These examples highlight a design quite common in peer-to-peer systems, especially for systems
focusing on anonymity (by distributing trust) or searching (by distributing content). That is, endpoint
peers are not the only ones involved in an operation; Alice and Bob are joined by any number of
intermediate peers. So how should we handle micropayments? What are the entities involved in a
transaction? Four possible strategies are illustrated in Figure 16.3:

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 207

Figure 16.3. Ways micropayments could be used in a peer-to-peer communication path

End-to-end model

The simplest approach is to make Alice send Bob some form of payment and not worry about
what happens to any intermediaries. This model works fine for operations that do not make
use of intermediate nodes. But if intermediate peers are involved, they lack any protection
from attack. Bob might even be fictitious. Alice can attack any number of intermediate peers
by routing her queries through them, using up their bandwidth or wiping out the data in
Freenet-style data caches. This problem is precisely our motivation for using micropayments!

Pairwise model

Recognizing the problems of the end-to-end model, we can take a step upward in complexity
and blindly throw micropayments into every transaction between every pair of peers. One
long route can be modeled as a number of pairwise transactions. This model might appear to
protect each recipient of payments, but it is also fundamentally flawed.

Using fungible micropayments, each peer earns one unit from its predecessor and then
spends one unit on its successor. Assuming equal costs throughout the network, Alice is the
only net debtor and Bob the only net creditor. But if a single malicious operator is in charge of
both Alice and Bob, these two peers have managed to extract work from the intermediate
nodes without paying - a more subtle DoS or flooding attack!

Using nonfungible micropayments, Alice remains a net debtor, but so are all intermediate
peers. Alice can make use of greater computational resources (centralized or distributed) to
flood intermediate peers with POWs. Being properly-behaving nodes, these peers attempt to
make good on the micropayment exchange, and start churning out POWs for the next hop in
the protocol... and churning... and churning. Eventually Alice can exhaust the resources of a
whole set of smaller, honest peers.

Amortized pairwise model

Taking what we learned about the risks of the pairwise model, we can design a more
sophisticated one that amortizes Alice's cost throughout the network route by iteratively
decreasing the cost of transactions as they move through the system. Say Alice pays X with
four units of micropayment, X pays Y with three units, Y pays Z with two units, and Z finally
pays Bob only one unit.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 208

In the case of nonfungible POWs, we still lose. First of all, Alice can still make use of greater
wealth, economies of scale, distributed computing, etc., in order to attack intermediate nodes.
While the load decreases as it moves though the system, peers X, Y, and Z still need to devote
some of their own resources; they may be unable to afford that load.

For fungible payments, this model appears more promising. Intermediate nodes end up as net
creditors: their resources are paid for by the cut they take from Alice's initial lump-sum
payment.

But this model has another weakness from a security point of view: we leak information
regarding the route length. We mentioned the Mixmaster mix net at the beginning of this
section; the system allows a sender to specify the number and identity of intermediate
remailers. This number of hops and their corresponding identities are unknown to all other
parties.[37] But if we use amortized payments, each peer in the chain has to know the amount it
is given and the function used to decrease payments, so intermediate peers can extrapolate
how many hops are in the route as well as their relative positions in the chain.

[37] We ignore the possibility of traffic analysis here and assume that the user chooses more than one
hop.

Furthermore, Alice may not know the route length. If a system uses Gnutella- or Freenet-type
searching, Alice has no idea how many hops are necessary before the query reaches Bob.

As Alice's query branches out through the network, payments could become prohibitively
expensive. For example, in Gnutella, we can estimate the number of nodes that a query
traverses by treating the network as a binary tree rooted at the originating node, where the
query traverses the first k levels (k is the query's time-to-live (TTL)). This gives a total of 2k+1-
1 nodes visited by the query - and all of these nodes want to be paid. Thus the amount of
nodes to pay is exponential in the TTL. Indeed, in reality the branching factor for the tree will
be much greater than 2, leading to even more nodes that need payment. Freenet searching
may be much more efficient; for more details, see Chapter 14.

All points model

These previous problems lead us to settle on an all points model. Alice pays each peer engaged
in the protocol, intermediate and endpoint alike. Of course, we immediately run into the same
problem we had in the previous model, where Alice may not know which peers are involved,
especially during a search. But let's assume for this discussion that she knows which nodes
she'll be using.

This solution is ideal for such fully identified systems. The cost of resource use falls solely
upon its instigating requestor.

Anonymous systems add a few difficulties to using this model. First of all, we lose some of our
capacity to use interactive payment models. For the forward-only Mixmaster mix net,
intermediate nodes cannot tell Alice what client puzzle she should solve for them because only
the first hop knows Alice's identity. Therefore, payments must be of a noninteractive variety.

To stop double-spending, the scheme must use either a centralized bank server model (such
as Chaumian e-cash) or have recipient-specific information encoded in the payment (such as
hash cash). This recipient-specific information should further be hidden from view, so as to
protect an eavesdropper from being able to piece together the route by looking at the
micropayments. Recipient-hiding cryptosystems[38] help ensure that the act of encrypting the
micropayment does not itself leak information about to whom the data is encrypted.

[38] David Hopwood, "Recipient-Hiding Blinded Public-Key Encryption," draft manuscript.

In short, the all points payment model - while offering advantages over the prior three models
- presents its own difficulties.

Micropayment schemes can help ensure accountability and resource allocation in peer-to-peer
systems. But the solution requires careful design and a consideration of all security problems: there
are no simple, off-the-shelf solutions.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 209

16.5.1.2 Micropayments in the Free Haven context

Most Free Haven communication is done by broadcast. Every document request or reputation referral
is sent to every other Free Haven server. Even if we can solve the micropayments issue for mix nets as
described above, we still need to ease the burden of multiple payments incurred by each server each
time it sends even a single Free Haven broadcast.

The first step is to remember that our communications channel already has significant latency.
Nobody will care if we introduce a little bit more. We can queue the broadcasts and send a batch of
them out every so often - perhaps once an hour. This approach makes the problem of direct flooding
less of a problem, because no matter how many broadcasts we do in the system, our overall use of the
mix net by the n Free Haven servers is limited to n2 messages per hour. We assume that the size of the
message does not dramatically increase as we add more broadcasts to the batch; given that each Free
Haven communication is very small, and given the padding already present in the mix net protocol,
this seems like a reasonable assumption.

However, batching helps the situation only a little. For several reasons - the lack of a widely deployed
electronic cash system, our desire to provide more frictionless access regardless of wealth, and the
complex, central-server model used by most fungible payment systems to issue coins - nonfungible
POW micropayments are better suited for Free Haven. Likewise, nonfungible payments work best
with the expensive all-points payment scheme. We still have the problem, therefore, that every server
must pay each intermediate node used to contact every other server each hour.

It is conceivable that spreading the waste of time for each message over the hour would produce a
light enough load. Servers could simply do the computation with idle cycles and send out a batch of
broadcasts whenever enough calculations have been performed.

We can solve this more directly by thinking of the server Alice as a mailing list that uses pay-per-send
email as described earlier in this chapter, in Section 16.3.2. In this case, users attach special tickets to
messages sent to Alice, so they don't have to perform a timewasting computation. Similarly, we might
be able to introduce into the mix net protocol a "one free message per hour" exception. But making
this exception introduces a difficult new problem - our primary purpose is to maintain the anonymity
of the senders and recipients through the mix net, but at the same time we want to limit each server to
sending only one message per recipient in each hour. Thus, it seems that we need to track the
endpoints of each message in order to keep count of who sent what.

Having Alice distribute blinded tickets as an end-to-end solution doesn't work easily either, as these
tickets are used with the intermediate mix net nodes. The tickets would need to assure the nodes of
both Alice's identity as a Free Haven server and her certification of the user's right to mail her, while
still maintaining the pseudonymity of both parties.

The alternative is to have node-specific tickets for our all points model. More precisely, each mix net
node issues a limited number of blinded tickets for each hour and user. This design also adds the
functionality of a prepaid payment system, if we want one. Project Anon, an anonymous
communications project, suggests such a technique.[39] It's important to note that most blind signature
techniques use interactive protocols, which are less suitable for our type of application.

[39] Oliver Berthold, Hannes Federrath, and Marit Köhntopp (2000), "Anonymity and Unobservability in the
Internet," Workshop on Freedom and Privacy by Design/Conference on Computers, Freedom and Privacy 2000,
Toronto, Canada, April 4-7.

Introducing a free message every hour to the mix net protocol also allows for smooth integration of
another Free Haven feature: we want to allow anonymous users to proxy a document retrieve request
through certain (public) Free Haven servers. Specifically, a user generates a one-time mix net reply
block and a one-time key pair and passes these to a Free Haven node along with a handle to the
document being requested. This Free Haven node broadcasts the query to all other servers, just as in a
normal retrieve operation. Because bundling extra broadcasts into each hourly message is virtually
free, we can allow these extra anonymous requests without much extra cost. Of course, a concerted
flood of document requests onto a server could cause its hourly message to be very large; public Free
Haven servers may have to drop document requests after a certain threshold or find some other
mechanism for limiting this threat of flooding.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 210

Overall, providing bandwidth accountability along with anonymity is a tough problem. What we
describe above does not provide any clear solution for an environment in which we want to maintain
strong anonymity. This discussion may help to explain why current mix net implementations don't use
micropayments to address accountability. Further research is certainly necessary.

16.5.2 Reputation systems

The Free Haven reputation solution has two parts: first, we need to notice servers that drop data early,
and second, we need to develop a process for "punishing" these servers.

It's very difficult to notice if a server drops data early, and we still haven't solved the problem
completely. The buddy system laid out in Chapter 12 is our current approach, and it may well be good
enough. After all, we simply have to provide a system that is difficult to reliably fool - it doesn't have
to catch every single instance of misbehavior.

As for punishing misbehaving servers, that's where our reputation scheme comes in. The first step in
developing a solution that uses reputation systems is to examine the situation more thoroughly and
try to understand our goals and limitations. Every situation contains features that make it hard to
develop a reputation solution and features that make it easier.

We expect the Free Haven domain to include a number of generous individuals who will take some
risks with their reputations and resources. Since disk space is very cheap and getting cheaper, and
there's no significant loss if a single trade goes bad, the Free Haven environment is relatively lenient.

Ratings in the reputation system are tied to transactions and include digitally signed receipts. So we
can be pretty certain that either a given transaction actually did happen, or the two parties are
conspiring. At regular intervals, each Free Haven server broadcasts a " reputation referral," a package
of ratings of other servers. Nodes should broadcast reputation referrals in several circumstances:

• When they log the honest completion of a trade

• When they check to see if a buddy to a share they hold is still available and find that it is
missing

• When there's a substantial change in the reputation or credibility of a given server, compared
to the last reputation referral about that server

How often to broadcast a referral can be a choice made by each server. Sending referrals more often
allows that server to more easily distribute its current information and opinions to other servers in the
network. On the other hand, frequent broadcasts use more bandwidth, and other servers may ignore
servers that talk too much.

Servers get most of their information from their own transactions and trades. After all, those are the
data points that they are most certain they can trust. Each server keeps its own separate database of
information that it knows, based on information it has observed locally and information that has come
to it. Thus every server can have a different view of the universe and a different impression of which
servers are reputable and which aren't. Indeed, these local decisions introduce a lot of flexibility into
the design: Each server operator can choose her own thresholds for trust, broadcast frequency, which
trades are accepted or offered, etc. These decisions can be made to suit her particular situation, based,
for instance, on available bandwidth and storage or the expected amount of time that she'll be running
a Free Haven server.

Since each server is collecting referrals from other servers (and some of those servers may be trying to
discredit good servers or disrupt the system in other ways), we need a robust algorithm for combining
the referrals. Each server operator can use an entirely separate algorithm, but realistically speaking,
most of them will use a default configuration recommended by the Free Haven designers.

Some ways of choosing a good algorithm are described earlier in this chapter, in Section 16.4.2. In
Free Haven, we don't expect to have to focus on very many parameters in order to get a reasonable
score. Our basic approach to developing a score for a given server is to iterate through each rating
available on that server and weight each rating based on how important and relevant it appears to be.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 211

Parameters that we might want to examine while weighting a score include the following:

How recent is this rating?

Newer ratings should get more weight.

How similar (in terms of size and expiration date) is this rating to the transaction I'm currently
considering?

Similar ratings should get more weight.

In my experience, has this server accurately predicted the behavior that I have observed?

This deals with the credibility of the rater.

How often does the server send referrals?

If a server is verbose, we might choose to assign a lower weight to each rating. On the other
hand, if this is the first referral we've ever gotten from this server, we might regard it with
skepticism.

How long has the rating server been a Free Haven server?

We will probably have greater confidence in servers that have been part of the system for a
long time.

As explained in Chapter 12, each server needs to keep two values to describe each other server it
knows about: reputation and credibility. Reputation signifies a belief that the server in question will
obey the Free Haven Protocol. Credibility represents a belief that the referrals from that server are
valuable information. For each of these two values, each server also needs to maintain a confidence
rating. This indicates how firmly the server believes in these values, and indicates how much a value
might move when a new rating comes in.

When new servers want to join the system, they must contact certain servers that are acting as
introducers . These introducers are servers that are willing to advertise their existence in order to
introduce new servers to the rest of the servnet. Introducing consists simply of broadcasting a
reputation referral with some initial reputation values. Each introducer can of course choose her own
initial values, but considering the discussion in Section 16.1.5.1 earlier in this chapter, it seems most
reasonable to broadcast an initial referral value of zero for both reputation and credibility.

At first glance, it seems that we do not need to worry about information leaks from the compiled
scores - after all, the entire goal of the system is to communicate as much information as possible
about the behavior history of each pseudonym (server). But a closer examination indicates that a large
group of ratings might reveal some interesting attributes about a given server. For instance, by looking
at the frequency and quantity of transactions, we might be able to learn that a given server has a
relatively large hard drive. We currently believe that leaking this type of information is acceptable.

16.5.3 Other considerations from the case study

Alice has paid for some resource. But did she get what she paid for? This question deals with the
problem of trust, discussed more fully in Chapter 15. But given our discussion so far, we should note a
few issues that apply to various distributed systems.

In the case of data storage, at a later date, Alice can query Bob for her document and verify its
checksum in order to be sure Bob has properly stored her document. She cannot be sure Bob has
answered all requests for that document, but she may be more convinced if Bob can't determine that
she's the one doing the query.

A distributed computation system can check the accuracy of the results returned by each end user. As
we saw earlier in this chapter, some problems take a lot longer to solve than a checker takes to verify
the answer. In other situations, we can use special algorithms to check the validity of aggregate data
much faster than performing each calculation individually.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 212

For example, there are special batch verification methods for verifying many digital signatures at once
that run much faster than checking each signature individually.[40] On the other hand, sometimes these
schemes leave themselves open to attack.[41]

[40] Mihir Bellare, Juan A. Garay, and Tal Rabin (1998), "Fast Batch Verification for Modular Exponentiation
and Digital Signatures," EUROCRYPT '98, pp. 236-250.

[41] Colin Boyd and Chris Pavlovski (2000), "Attacking and Repairing Batch Verification Schemes," ASIACRYPT
2000.

The methods we've described take advantage of particular properties of the problem at hand. Not all
problems are known to have these properties. For example, the SETI@home project would benefit
from some quick method of checking correctness of its clients. This is because malicious clients have
tried to disrupt the SETI@home project in the past. Unfortunately, no quick, practical methods for
checking SETI@home computations are currently known.[42]

[42] David Molnar (September 2000), "The SETI@home Problem," ACM Crossroads,
http://www.acm.org/crossroads/columns/onpatrol/september2000.html.

Verifying bandwidth allocation can be a trickier issue. Bandwidth often goes hand-in-hand with data
storage. For instance, Bob might host a web page for Alice, but is he always responding to requests? A
starting point for verification is to sample anonymously at random and gain some statistical assurance
that Bob's server is up. Still, the Mixmaster problem returns to haunt us. David Chaum, who proposed
mix nets in 1981,[43] suggested that mix nodes publish the outgoing batch of messages. Alternatively,
they could publish some number per message, selected at random by Alice and known only to her.
This suggestion works well for a theoretical mix net endowed with a public bulletin board, but in
Internet systems, it is difficult to ensure that the mix node actually sends out these messages. Even a
bulletin board could be tampered with.

[43] D. Chaum, "Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms," op. cit.

Above, we have described some approaches to addressing accountability in Free Haven. We can
protect against bandwidth flooding through the use of micropayments in the mix net that Free Haven
uses for communication, and against data flooding through the use of a reputation system. While the
exact details of these proposed solutions are not described here, hopefully the techniques described to
choose each accountability solution will be useful in the development of similar peer-to-peer
publication or storage systems.

16.6 Conclusion

Now we've seen a range of responses to the accountability problem. How can we tell which ones are
best? We can certainly start making some judgments, but how does one know when one technique is
better suited than another?

Peer-to-peer remains a fuzzy concept. A strict definition has yet to be accepted, and the term covers a
wide array of systems that are only loosely related (such as the ones in this book). This makes hard
and fast answers to these questions very difficult. When one describes operating systems or databases,
there are accepted design criteria that all enterprise systems should fulfill, such as security and fault
tolerance. In contrast, the criteria for peer-to-peer systems can differ widely for various distributed
application architectures: file sharing, computation, instant messaging, intelligent searching, and so
on.

Still, we can describe some general themes. This chapter has covered the theme of accountability. Our
classification has largely focused on two key issues:

• Restricting access and protecting from attack

• Selecting favored users

Dealing with resource allocation and accountability problems is a fundamental part of designing any
system that must serve many users. Systems that do not deal with these problems have found and will
continue to find themselves in trouble, especially as adversaries find ways to make such problems
glaringly apparent.

http://www.acm.org/crossroads/columns/onpatrol/september2000.html

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 213

With all the peer-to-peer hype over the past year - which will probably be spurred on by the
publication of this book - we want to note a simple fact: peer-to-peer won't save you from dealing with
resource allocation problems.

Two examples of resource allocation problems are the Slashdot effect and distributed denial of service
attacks. From these examples, it's tempting to think that somehow being peer-to-peer will save a
system from thinking about such problems - after all, there's no longer any central point to attack or
flood!

That's why we began the chapter talking about Napster and Gnutella. Unfortunately, as can be seen in
Gnutella's scaling problems, the massive amounts of Napster traffic, and flooding attacks on file
storage services, being peer-to-peer doesn't make the problems go away. It just makes the problems
different. Indeed, it often makes the problems harder to solve, because with peer-to-peer there might
be no central command or central store of data.

The history of cryptography provides a cautionary tale here. System designers have realized the limits
of theoretical cryptography for providing practical security. Cryptography is not pixie dust to spread
liberally and without regard over network protocols, hoping to magically achieve protection from
adversaries. Buffer overflow attacks and unsalted dictionary passwords are only two examples of easy
exploits. A system is only as secure as its weakest link.

The same assertion holds for decentralized peer-to-peer systems. A range of techniques exists for
solving accountability and resource allocation problems. Particularly powerful are reputation and
micropayment techniques, which allow a system to collect and leverage local information about its
users. Which techniques should be used depends on the system being designed.

16.7 Acknowledgments

First and foremost, we'd like to thank our editor, Andy Oram, for helping us to make all of these
sections fit together and make sense. Without him, this would still be just a jumble of really neat ideas.
We would also like to thank a number of others for reviews and comments: Robert Zeithammer for
economic discussion of micropayments, Jean-François Raymond and Stefan Brands for
micropayments, Nick Mathewson and Blake Meike for the reputations section, and Daniel Freedman,
Marc Waldman, Susan Born, and Theo Hong for overall edits and comments.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 214

Chapter 17. Reputation
Richard Lethin, Reputation Technologies, Inc.

Reputation is the memory and summary of behavior from past transactions. In real life, we use it to
help us set our expectations when we consider future transactions. A buyer depends on the reputation
of a seller when he considers buying. A student considers the reputation of a university when she
considers applying for admission, and the university considers the student's reputation when it
decides whether to admit her. In selecting a candidate, a voter considers the reputation of a politician
for keeping his word.

The possible effect on one's reputation also influences how one behaves: an individual might behave
properly or fairly to ensure that her reputation is preserved or enhanced. In situations without
reputation, where there is no prospect of memory after the transaction, behavior in the negotiation of
the transaction can be zero-sum. This is the classic used car salesman situation in which the customer
is sold a lemon at an unreasonable price, because once the customer drives off the lot, the salesman is
never going to see her again.

A trade with a prospective new partner is risky if we don't know how he behaved in the past. If we
know something about how he's behaved in the past, and if our prospect puts his reputation on the
line, we will be more willing to trade. So reputation makes exchange freer, smoother, and more liquid,
removing barriers of risk aversion that interfere with trade's free flow.

Reputation does all this without a central authority. Naturally, therefore, reputation turns up
frequently in any discussion about distributed entities interacting peer-to-peer - a situation that
occurs at many levels over the Internet. Some of these levels are close to real life, such as trade in the
emerging e-marketplaces and private exchanges. Others are more esoteric, such as the interaction of
anonymous storage servers in the Free Haven system described in Chapter 12. Chapter 16, includes a
discussion of the value of reputation.

The use of reputation as a distributed means of control over fairness is a topic of much interest in the
research literature. Economists and game theorists have analyzed the way reputation motivates fair
play in repeated games, as opposed to a single interaction, which often results in selfish behavior as
the most rational choice. Researchers in distributed artificial intelligence look to reputation as a
system to control the behavior of distributed agents that are supposed to contribute collectively to
intelligence. Researchers in computer security look at deeper meanings of trust, one of which is
reputation.

In this chapter, I will present a commercial system called the Reputation Server™[1] that tries to bring
everyday aspects of reputation and trust into online transactions. While not currently organized in a
peer-to-peer fashion itself, the service has the potential to become more distributed and prove useful
to peer-to-peer systems as well as traditional online businesses.

[1] Reputation Server™ is a trademark of Reputation Technologies, Inc.

The Reputation Server is a computer system available to entities engaging in a prospective transaction
- a third party to a trade that can be used by any two parties who want reputation to serve as
motivation for fair dealing.

The server accepts feedback on the performance of the entities after each transaction is finished and
stores the information for use by future entities. It also provides scores summarizing the history of
transactions that an entity has engaged in. The Reputation Server, by holding onto the histories of
transactions, acts as the memory that helps entities build reputations.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 215

17.1 Examples of using the Reputation Server

A North American buyer of textiles might be considering purchasing from a new supplier in China.
The buyer can check the Reputation Server for scores based on feedback from other buyers who have
used that supplier. If the scores are good enough to go forward, the buyer will probably still insist that
the trade be recorded in a transaction context on the Reputation Server - that the seller be willing to
let others see feedback about its performance - in order to make it costly for the seller to perform
poorly in the transaction. Without the Reputation Server, the buyer has to rely solely on other means
of reducing risk, such as costly product inspections or insurance.[2]

[2] These other risk reduction techniques can also be used with the Reputation Server.

But the motivation to use the Reputation Server is not exclusively on the buyer's side: A reliable seller
may insist on using the Reputation Server so that the trade can reinforce his reputation.

In some cases, the Reputation Server may be the only way to reduce risk. For example, two entities
might want to trade in a securely pseudonymous manner, with payment by a nonrepudiable
anonymous digital cash protocol. Product inspection might be unwanted because it reveals the entity
behind the pseudonym. Once the digital cash is spent, there's no chance of getting a refund.
Reputation helps ease some of the buyer's concern about the risk of this transaction: she can check the
reputation of the pseudonym, and she has the recourse of lowering that reputation should the
transaction go bad. Thus, the inventors of anonymous digital cash have long recognized the
interdependence of pseudonymous commerce systems and reputations. Also, the topic gets attention
in the Cypherpunks Cyphernomicon as an enabling factor in the adoption of anonymous payment
technologies.[3]

[3] Tim May (1994). The Cyphernomicon, Sections 15.2-4, archived in various places on the Net, e.g.,
http://swissnet.ai.mit.edu/6805/articles/crypto/cypherpunks/cyphernomicon/CP-FAQ1994.

But more mundane risks can also make using the Reputation Server worthwhile. The example I
started with in this section, of a buyer in North America purchasing textiles from China, has some
aspects of functional anonymity: even though the buyer and seller aren't actively hiding from each
other, they don't know each other because of the geographic, political, cultural, class, and language
barriers that separate them. Reputation Servers can be the social network that is otherwise lacking
and that enforces good behavior or allows the system to correct itself. As the Internet bridges the
traditional barriers to create new relationships, the need for Reputation Servers grows.

At first, the implementation of this system seems trivial: just a database, some messaging, and some
statistics. However, the following architecture discussion will reveal that the issues are quite complex.
With keen competition and high-value transactions, the stakes are high. This makes it important to
consider the design carefully and take a principled approach.

17.2 Reputation domains, entities, and multidimensional
reputations

To understand how the Reputation Server accomplishes its task, you have to start with the abstraction
of a reputation domain, which is a context in which a sequence of trades will take place and in which
reputations are formed and used. A domain is created, administered, and owned by one entity. For
example, a consultant integrating the software components for a business-to- business, online e-
marketplace might create a reputation domain for that e-marketplace on the Reputation Server.
Thousands of businesses that will trade in the e-marketplace can use the same domain. Or someone
might create a smaller domain consisting of auto mechanics in Cambridge and the car owners that
purchase repairs. Or someone might create a domain for the anonymous servers forming Free Haven.

The domain owner can specify the domain's rules about which entities can join, the definition of
reputation within that domain, which information is going to be collected, who can access the data,
and what they can access. Reputations form within the domain according to the specified
configuration. For the moment, we assume that there is no information transfer among domains: A
reputation within one domain is meaningless in another domain.[4]

[4] This constraint is relaxed later in the chapter.

http://swissnet.ai.mit.edu/6805/articles/crypto/cypherpunks/cyphernomicon/CP-FAQ1994

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 216

Entities in a Reputation Server correspond to the parties for whom reputations will be forming and
the parties who will be providing feedback. Entities might correspond to people, companies, software
agents, or Pretty Good Privacy (PGP) public keys. They exist outside the domains, so it is possible for
an entity to be a participant in multiple domains.

The domain has a great degree of latitude in how it defines reputation. This definition might be a
simple scalar quantity representing an overall reputation, or a multidimensional quantity representing
different aspects of an entity's performance in transactions. For example, one of the dimensions of a
seller's reputation might be a metric measuring the quality of goods a seller ships; another might be
the ability to ship on time. The scoring algorithms do not depend on what the individual dimensions
"mean"; the dimensions are measures within a range, and the domain configuration simply names
them and hooks them up to sources and readers.

The notion of a domain is powerful, even for definitions that might be considered too small to be
meaningful. For example, a domain with only one buyer seems solipsistic (self-absorbed) but can in
fact be quite useful to an entity for privately monitoring its suppliers. The domain can provide a
common area for the storage and processing of quality, docking, and exception information that might
otherwise be used by only one small part of the buyer's organization or simply lost outright.

Reputation information about a supplier might be kept internal to the buyer if the buyer thinks this is
of strategic importance (that is, if knowing which supplier is good or bad in particular areas conveys a
competitive advantage to the buyer). On the other hand, if the buyer is willing to share the reputation
information he has taken the trouble to accumulate, it could be useful so that a seller can attract other
buyers. For example, ACME computer company might allow its ratings of suppliers to be shared
outside to help its suppliers win other buyers; this benefits ACME by allowing its suppliers to amortize
fixed costs, and it might even be able to negotiate preferred terms from the supplier to realize this
benefit.

17.3 Identity as an element of reputation

Before gaining a reputation, an entity needs to have an identity that is made known to the Reputation
Server. The domain defines how identities are determined.

Techniques for assuring an entity's identity are discussed in other areas of this book, notably Chapter
15, and Chapter 18. An entity's identity, for instance, might be a certified public key or a simple
username validated with password login on the Reputation Server.

Some properties of identities can influence the scoring system. One of the most critical questions is
whether an entity can participate under multiple identities. Multiple participation might be difficult to
prevent, because entities might be trivially able to adopt a new identity in a marketplace. In this
situation, with weak identities, we have to be careful how we distinguish a bad reputation from a new
reputation. This is because we may create a moral hazard: the gain from cheating may exceed the loss
to reputation if the identity can be trivially discarded and a new identity trivially constructed. Weak
identities also have implications for credibility, because it becomes hard to distinguish true feedback
from feedback provided by the entity itself.

While it is possible to run a reputation domain for weak identities, it is easier to do so for strong
identities. Reputation domains with weak identities require the system to obtain and process more
data, while strong identities allow the system to "bootstrap" online reputations with some grounding
in the real world.

17.4 Interface to the marketplace

We use the term marketplace loosely: generally it corresponds to an online e-marketplace, but a
marketplace might also correspond to the distributed block trading that is taking place in Free Haven
or the private purchasing activity of the single buyer who has set up a private reputation domain.
While some marketplaces, such as eBay, include an embedded reputation system, our Reputation
Server exists outside the marketplace so that it can serve many marketplaces of different types.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 217

The separation of the Reputation Server from the marketplace creates relatively simple technical
issues as well as more complex business issues. We discuss some of the business issues later in Section
17.10. The main technical issue is that the marketplace and the Reputation Server need to
communicate. This is easy to solve: The Internet supports many protocols for passing messages, such
as email, HTTP, and MQ. The XML language is excellent for exchanging content-rich messages.

One of the simple messages that the marketplace can send to the Reputation Server indicates the
completion of a transaction. This message identifies the buyer and seller entities and gives a
description of the type of transaction and the monetary value of the transaction. The description is
important: A reputation for selling textiles might not reflect on the ability to sell industrial solvents.

The transaction completion message permits the Reputation Server to accept feedback on the
performance of entities in the transaction. For some domains, it also triggers the Reputation Server to
send out a request for feedback on the transaction. In the most rudimentary case, the request for
feedback and the results could be in electronic mail messages. Since a human being has to answer the
email request for feedback, some messages may be discarded and only some transactions will get
feedback. For this reason, obviously, it is preferable to automate the collection. So some businesses
may interface the trader's Enterprise Resource Planning (ERP) systems into the Reputation Server.
For automated peer-to-peer protocols like Free Haven, an automated exchange of feedback will be
easier to generate.

The marketplace and the Reputation Server will also exchange other, more complex messages. For
example, the marketplace might send a message indicating the start of a potential transaction. Some
transactions take a long time from start to finish, perhaps several weeks. Providing the Reputation
Server with an early indication of the prospective transaction allows the Reputation Server to provide
supplementary services, such as messages indicating changes in reputation of a prospective supplier
before the transaction is consummated.

17.5 Scoring system

One of the most interesting aspects of the Reputation Server is the scoring system, the manner in
which it computes reputations from all of the feedback that is has gathered.

Why bother computing reputations at all? If, as asserted in the first sentence of this chapter,
"Reputation is the memory and summary of behavior from past transactions," why not simply make
the reputation be the complete summary of all feedback received, verbatim? Some online auctions do
in fact implement this, so that a trader can view the entire chain of feedback for a prospective partner.
This is okay when the trader has the facility to process the history as part of a decision whether to
trade or not.

But more often, there is good reason for the Reputation Server to add value by processing the chain
into a simple reputation score for the trader. First, the feedback chain may be sensitive information,
because it includes a description of previous pricing and the good traded. Scoring algorithms can
mask details and protect the privacy of previous raters. This trade-off between hiding and revealing
data is more subtle than encryption. Encryption seeks to transform data so that, to the unauthorized
reader, it looks as much like noise as possible. With reputation, there is a need to simultaneously mask
private aspects of the transaction history - even to the authorized reader - while allowing some portion
of the history through so it can influence the reputation. Some of this is accomplished simply by
compressing the multiple dimensionality of the history into a single point, perhaps discretizing or
adding another noise source to the point to constrain its dimensionality.

Furthermore, the Reputation Server has a more global view of the feedback data set than one can
learn from viewing a simple history listing, and it can include other sources of information to give a
better answer about reputation. Stated bluntly, the Reputation Server can process a whole bunch of
data, including data outside the history. For example, the Reputation Server may have information
about the credibility of feedback sources derived from the performance of those sources in other
contexts.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 218

17.6 Reputation metrics

The Reputation Server is a platform for multiple scoring functions, and each domain can choose the
kinds of scoring used and the functions that compute the scores.

A number of reputation metrics have been proposed in the literature. Some simply provide ad hoc
scales, dividing reputations into discrete steps or assigning boundaries and steps arbitrarily. While ad
hoc definitions of reputation can seem reasonable at first, they can have undesirable properties.[5] For
example, simply incrementing reputation by one for each good transaction and decrementing by one
for each bad transaction allows a reputation to keep growing indefinitely if a seller cheats one buyer
out of every four. If the seller does a lot of volume, she could have a higher reputation in this system
than someone who trades perfectly but has less than three quarters the volume. Other reputation
metrics can have high sensitivity to lies or losses of information.

[5] Raph Levien and Alexander Aiken (1998), "Attack-Resistant Trust Metrics for Public Key Certification,"
Proceedings of the 7th USENIX Security Symposium, UNIX Assoc., Berkeley, CA, pp. 229-241.

Other approaches to reputation are principled.[6] One of the approaches to reputation that I like is
working from statistical models of behavior, in which reputation is an unbound model parameter to be
determined from the feedback data, using Maximum Likelihood Estimation (MLE). MLE is a standard
statistical technique: it chooses model parameters that maximize the likelihood of getting the sample
data.

[6] Michael K. Reiter and Stuart G. Stubblebine, "Authentication Metric Analysis and Design," ACM Transactions
on Information Systems and Security, vol. 2, no. 2, pp. 138-158.

The reputation calculation can also be performed with a Bayesian approach. In this approach, the
Reputation Server makes explicit prior assumptions about a probability distribution for the reputation
of entities, either the initial distribution that is assumed for every new entity or the distribution that
has previously been calculated for entities. When new scores come in, this data is combined with the
previous distribution to form a new posterior distribution that combines the new observations with
the prior assumptions.

Our reputation scores are multidimensional vectors of continuous quantities. An entity's reputation is
an ideal to be estimated from the samples as measured by the different entities providing feedback
points. An entity's reputation is accompanied by an expression of the confidence or lack of confidence
in the estimate.

Our reputation calculator is a platform that accepts different statistical models of how entities might
behave during the transaction and in providing feedback. For example, one simple model might
assume that an entity's performance rating follows a normal distribution (bell) curve with some
average and standard deviation. To make things even simpler, one can assume that feedback is always
given honestly and with no bias. In this case, the MLE is a linear least squares fit of the feedback data.

This platform will accept more sophisticated reputation models as the amount of data grows. Some of
the model enhancements our company is developing are described in the following list:

• Allowing dynamic reputation. Without this, reputation is considered a static quantity with
feedback data providing estimates. If an entity's reputation changes, the estimate of
reputation changes only with the processing of more feedback data. When we incorporate
drift explicitly, confidence in the reputation estimate diminishes without feedback data.

• Incorporating source feedback models. With multiple ratings given by the same party, we can
estimate statistically their bias in providing feedback. This might even permit the
identification of sources that are not truthful.

• Allowing performance in one context to project the entity's ability to perform in another
context. For instance, the ability to sell shoes is some prediction of the ability to sell clothes.

The rate of reputation drift, the related weight assigned to more recent feedback, biases, the estimate
of the credibility of sources, and contextual correlation become additional free parameters to be
chosen by the MLE solver. Getting good estimates of these parameters requires more data, obviously.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 219

A property of this approach is that reputation does not continue increasing arbitrarily as time
advances; it stays within the bounds established when the reputation domain was configured.
Additional data increase the data points on which the extracted parameters are based, so as a trader
earns more feedback, we usually offer greater confidence in her reputation. Confidence is not being
confused with the estimate of reputation.

It's interesting to think about how to incorporate the desire to punish poor performance quickly
(making reputation "hard to build up, and easy to tear down") into the model-based approach. It
seems reasonable to want to make the penalty for an entity's behaving in a dishonest way severe, to
deter that dishonest behavior. With an ad hoc reputation-scoring function, positive interactions can be
given fewer absolute reward points than absolute punishment points for negative behavior. But how is
the ratio of positive to negative feedback chosen? There are a number of approaches that permit
higher sensitivity to negative behavior.

One approach is to increase the amount of history transmitted with the reputation so the client's
decision function can incorporate it. If recent negative behavior is of great concern, the reputation
model can include a drift component that results in more weight toward recent feedback. Another
approach is to weight positive and negative credibility differently, giving more credence to warnings.

The design choices (including ad hoc parameter choices) depend intimately on the goals of the client
and the characteristics of the marketplace. Such changes could be addressed by adapting the model to
each domain, by representing the assumptions as parameters that each domain can tune or that can
be extracted mechanically, and perhaps even by customizing the reputation component in a particular
client.

How is MLE calculated? For simple models, MLE can be calculated analytically, by solving the
statistical equations algebraically. Doing MLE algebraically has advantages: The answer is exact,
updates can be computed quickly, and it is easier to break up the calculation in a distributed version of
a Reputation Server. But an exact analytical solution may be hard to find, nonexistent, or
computationally expensive to solve, depending on the underlying models. In that case, it may be
necessary to use an approximation algorithm. However, some of these algorithms may be difficult to
compute in a distributed manner, so here a centralized Reputation Server may be better than a
distributed one.

17.7 Credibility

One of the largest problems for the Reputation Server is the credibility of its sources. How can a
source of feedback be trusted? Where possible, cryptographic techniques such as timestamps and
digital signatures are used to gain confidence that a message originates from the right party. Even if
we establish that the message is truly from the correct feedback source, how do we know that the
source is telling the truth? This is the issue of source credibility, and it's a hairy, hairy problem.

We address this in our Reputation Server by maintaining credibility measures for sources. These
credibility measures factor into the scoring algorithms that form reputations - both our estimated
reputation and the confidence that our service has in the estimate. Credibility measures are initialized
based on heuristic judgments, and then updated over time using the Bayesian/MLE framework
previously described. Sources that prove reliable over time increase their credibility. Sources that do
not prove reliable find their credibility diminished.

This process can be automated through the MLE solver and folded into the scoring algorithm.
Patterns of noncredible feedback are identified by the algorithm and given lower weights. Doing this,
though, requires something more than the accumulated feedback from transactions; we should have
an external reference or benchmark source of credible data. One way that we solve this is by allowing
the domain configuration to designate benchmark sources. The Reputation Server assigns high
credibility to those sources because the designation indicates that there is something special backing
them up, such as a contractual arrangement, bonding of the result, or their offline reputation. In a
sense, credibility flows from these benchmark sources to bootstrap the credibility of other sources.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 220

17.8 Interdomain sharing

Popular online marketplaces such as auctions have rudimentary reputation systems, providing
transaction feedback for participants. These marketplaces strongly protect their control over the
reputations that appear on their site, claiming they are proprietary to the marketplace company! The
marketplaces fight cross-references from other auctions and complete copying of reputations with
lawsuits, and they discourage users from referring to their reputations from other auctions.

These practices raise the question: Who owns your reputation? The popular auction sites claim that
they own your reputation: It is their proprietary information. It is easy to understand why this is the
case. Portable reputations would be a threat to the auction sites, because they reduce a barrier to
buyers and suppliers trading on competitor auctions. Portable reputations make it more difficult for
auctions to get a return from their investment in technology development and marketing that helped
build the reputation.

The Reputation Server supports auction sites by isolating the reputation domains unless the owners of
the domains permit sharing. In cases where the sharing can be economically beneficial, the scoring
algorithms can permit joining the data of two domains to achieve higher confidence reputations. This
is performed only with the permission of the domain owners.

17.9 Bootstrapping

One obstacle to the use of the Reputation Server is a bootstrapping or chicken-and-egg problem.
While the server is of some use even when empty of transaction histories (because it serves as a place
where entities can put their reputations on the line), it can be difficult to convince a marketplace to
use it until some reputation information starts to appear.

Consequently, our server offers features to bootstrap reputations similar to the way reputations might
be bootstrapped in a real-world domain: through the use of references. A supplier entering the system
can supply the names of trade references and contact information for those references. The server
uses that contact information to gather the initial ratings. While the reference gathering process is
obviously open to abuse, credibility metrics are applied to those initial references. To limit the risk of
trusting the references from outside the reputation system, those credibility metrics can signal that
the consequent reputation is usable only for small transactions. As time passes and transactions occur
within the reputation system, the feedback from transactions replaces the reference-based
information in the computation of the reputation.

17.10 Long-term vision

Business theorists have observed that the ability to communicate broadly and deeply through the
Internet at low cost is driving a process whereby large businesses break up into a more competitive
system of smaller component companies. They call this process "deconstruction."[7] This process is an
example of Coase's Law, which states that other things being equal, the cost of transacting -
negotiating, paying, dealing with errors or fraud - between firms determines the optimal size of the
firm.[8] When business transactions between firms are expensive, it's more economical to have larger
firms, even though larger firms are considered less efficient because they are slower to make
decisions. When transactions are cheaper, smaller firms can replace the larger integrated entity.

[7] Philip Evans and Thomas Wurster (2000). Blown to Bits: How the New Economics of Information
Transforms Strategy. Harvard Business School Press.

[8] Ronald Coase (1960). "The Problem of Social Cost," Journal of Law and Economics, vol. 3, pp. 1-44.

As an example, Evans and Wurster point to the financial industry. Where previously a bank provided
all services like investments and mortgages, there are now many companies on the Internet filling
small niches of the former service. Aggregation sites find the best mortgage rate out of hundreds of
banks, investment news services are dedicated solely to investment news feeds, and so on. Even
complex processes like the manufacturing of automobiles - already spread over chains of multiple
companies for manufacturing parts, chassis, subsystems - could be further deconstructed into smaller
companies.[9]

[9] Clayton M. Christenson (1997) The Innovator's Dilemma. Harvard Business School Press.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 221

With more entities, there is an increased need for tracking reputations at the interaction points
between them. At the extreme, a firm might completely deconstruct: One vision is that the substations
that currently make up a factory can become independent entities, all transacting in real time and
automatically to accomplish the manufacturing task that previously occurred in the single firm. The
Reputation Server, as one of the components reducing the cost of transacting between firms, serves as
a factor to assist in this deconstruction, which results in lower manufacturing costs.

17.11 Central Reputation Server versus distributed Reputation
Servers

The first version of the Reputation Server is a centralized web server with a narrow messaging
interface. One could well argue that it should be decentralized so that the architecture conforms to our
ultimate goal: to provide fairness in a noncentralized manner for peer-to-peer networks.

Can we design a network of distributed Reputation Servers? Yes, in some cases, such as when the
reputation metric computation can be executed in a distributed fashion and can give meaningful
results with partial information. Not all reputation metrics have these properties, however, so if the
design goal of a distributed server is important, we should choose one that does.

17.12 Summary

Reputation is a subtle and important part of trade that motivates fair dealing. We have described
technologies for translating the reputation concept into electronic trade, applicable to business
transactions and peer-to-peer interaction. The Reputation Server provides these technologies. Scoring
algorithms based on MLE and Bayesian techniques estimate reputations based on feedback received
when trades occur. We describe enhancements for addressing the credibility of sources. Reputation
domains, which are an abstraction mapped to the client marketplace, serve to store the configuration
of rules about how reputations form for that marketplace, allowing the Reputation Server to be a
platform for many different reputation systems.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 222

Chapter 18. Security
Jon Udell, BYTE.com, and Nimisha Asthagiri and Walter Tuvell, Groove Networks

Security is hard enough in traditional networks that depend on central servers. It's harder still in peer-
to-peer networks, particularly when you want to authenticate your communication partners and
exchange data only with people you trust. Earlier chapters stressed protection for users' anonymity.
The need to assert identity is actually more common than the need to hide it, though the two are not
mutually exclusive. As shown in Chapter 16, systems that assign pseudonyms to users need not
absolve users of responsibility. This chapter touches on the interplay of identity and pseudonymity
too, but will mainly focus on how to authenticate users and ensure they can communicate securely in a
peer-to-peer system.

At Groove Networks Inc., we've developed a system that provides a type of strong security consistent
with Groove's vision of a peer-to-peer system. The details are described in this chapter. We hope that
our work can serve not only as proof that traditional conservative security principles can coexist with a
novel distributed system, but also as a guide to developers in other projects. Groove is a peer-to-peer
groupware system. Before we focus on its security architecture, we should first explain its goals and
the environment in which it operates. Using Groove, teams of collaborators form spontaneous shared
spaces in which they collect the documents, messages, applications, and application-specific data
related to group projects. The software (which is available for Windows now and for Linux soon)
works identically for users on a LAN, behind corporate firewalls, behind DSL or cable-modem
Network Address Translation (NAT), on dial-up connections with dynamic IP addresses, or in any
combination of such circumstances. The key benefits of Groove shared spaces are:

Spontaneity

Groove needs no administrator. Nobody has to wait for IT to create the support system for a
project. Users can do this for themselves, easily and right away.

Security

Shared spaces are, in effect, instant virtual private networks (VPNs).

Context

The shared space provides a context that helps users understand the nature, purpose, and
history of all the messages and documents related to an activity.

Synchronization

Shared spaces synchronize automatically among all members' devices and among all Groove
devices owned by each member. Users can work offline; changes automatically synchronize
when they reconnect.

Granularity

Groove users don't typically exchange whole documents (though conventional file sharing is
supported). Rather, they exchange incremental edits to documents. Groove-aware
applications can even enable shared editing in real time.

Groove is really a new kind of Internet-based platform that delivers basic support for collaboration - in
particular, security and synchronization. Users automatically enjoy these services with no special
effort. Developers can build on them without needing to reinvent the wheel. In terms of data
synchronization, Groove arguably breaks new technical ground with its distributed, transactional,
serverless XML object store. But in terms of security - the focus of this chapter - Groove relies on
tried-and-true techniques. What's novel isn't the algorithms and protocols, but rather the context in
which they are used. Groove enables spontaneous peer-to-peer computing while at the same time
abolishing the human factors problems that bedevil real-world security.

The environment in which Groove does all this is a hostile one. Firewall/NAT barriers often separate
members of a group. Even within a group, people do not necessarily trust one another and do not
typically share a common directory service or Public Key Infrastructure (PKI). People aren't always
online, and when they are, they're not always using the same computer. People connect to the Net in
different ways, using channels with very different bandwidths and latencies, so that, for example, an
encrypted message may arrive before the message bearing its decryption key. Groups are dynamic;
membership is fluid and constantly changing.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 223

The unit of secured data - that is, data that is authenticated, encrypted, and guaranteed not to have
been tampered with - is not typically a whole document, but rather an incremental change (or delta),
possibly an individual keystroke.

In the face of this hostile environment, Groove makes an impressive set of security guarantees to
users. Here are some of them:

• Strong security is always in force. No user or administrator can accidentally or intentionally
turn it off.

• All shared-space data is confidential. It's encrypted not only on the wire, where it's readable
and writable by only group members, but also on disk, where it's readable and writable by
only the owner of that copy of the data.

• No group member can impersonate another group member or tamper with the contents of
any group message.

• A lost message can be recovered from any member, with assurance of the integrity of the
recovered message and proof of its true originator.

• No nonmember or former member who has been uninvited from the group can eavesdrop on
or tamper with group communication.

How Groove implements these security guarantees, thereby accomplishing its mission to deliver
flexible and secure groupware in a hostile environment, is the subject of this chapter. We'll explore the
implementation in detail, but first let's consider how and why Groove is like and unlike other
groupware solutions.

18.1 Groove versus email

The world's dominant groupware application is email. Like Groove, email enables users to create
primitive " shared spaces" that contain both messages and documents (i.e., attachments). Nobody
needs to ask an administrator to create one of these shared spaces. We do it quite naturally by
addressing messages to individuals and groups. Because firewalls are always permeable to email, we
can easily form spaces that include people behind our own firewalls and people behind foreign
firewalls. Email enables us to modify group membership on the fly by adjusting the To: and Cc:
headers of our messages, adding or dropping members as needed. This is powerful stuff. It's no
wonder we depend so heavily on it.

To the extent that we exchange sensitive information in email, though, we incur serious risks. People
worry about the efficacy of the SSL encryption that guards against theft of a credit card number during
an online shopping transaction. Yet they're oddly unconcerned about sending completely unencrypted
personal and business secrets around in email. Secrets stored on disk typically enjoy no more
protection than do secrets sent over the wire, a fact deeply regretted by the Qualcomm executive
whose notebook computer was recently stolen.

Although it is convenient in many important ways, email is terribly inconvenient in others. The shared
space of a group email exchange is a fragmentary construct. There is no definitive transcript that
gathers all project-related messages and documents into a single container that's the same for all
current (and future!) group members. Newsgroups, web forums, and web-accessible mail archives
(such as Hypermail) or document archives (such as CVS) can make collaboration a more coherent and
controlled exercise. But the IT support needed for these solutions is often missing within
organizations, and especially across organizational boundaries.

There is, to be sure, an emerging breed of hosted collaborative solutions that make shared spaces a do-
it-yourself proposition for end users. Anyone can go to eGroups (http://www.egroups.com/), for
example, and create a project space for shared messages and documents. But eGroups provides only
modest guarantees as to the privacy of such spaces, and none with respect to the integrity and
authenticity of messages exchanged therein. What's more, services similar to eGroups fail the
convenience test when users are connected poorly, or not at all. In these cases, users wind up
manually replicating data to their local PCs - a procedure that is arduous, error-prone, and thus
insecure.

http://www.egroups.com/

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 224

Security, as cryptographer and security consultant Bruce Schneier likes to observe, is a process. When
that process is too complex - which is to say, when it requires just about any effort or thought - people
will opt out, with predictably disastrous results.

Collaboration places huge demands on any security architecture. It's a convenient fiction to believe
that we are all safe behind our corporate firewalls, where we can form the groups in which we do our
work, and create and exchange the documents that are the product of that work. But we never were
safe behind the firewall, and the fiction grows less believable all the time as email worms burrow
through firewalls and wreak havoc.

Furthermore, in a company of any substantial size, the firewall-protected realm cannot usefully be
regarded as an undifferentiated zone of trust. Real people doing real work will want to form
spontaneous workgroups; these workgroups ought to be isolated from one another. When we rely only
on the firewall, we create the kind of security architecture that hackers call "crunchy on the outside,
soft and chewy on the inside."

We need more granular security, distributed at the workgroup level rather than centralized in the
firewall. Historically, people could form password-protected group spaces on departmental servers or
even among their own peer-enabled PCs. But if the internal network is compromised, a sniffer
anywhere on the LAN can scoop up all the unencrypted data that it can see. Likewise, if a server or
desktop PC is compromised, the intruder (possibly a person with unauthorized physical access,
possibly a virus) can scoop up all available unencrypted data.

The LAN, in any case, is a construct that few companies have successfully exported beyond the firewall
to the homes, hotel rooms, public spaces, and foreign corporate zones in which employees are often
doing their collaborative work. In theory, virtual private networks extend the LAN to these realms. In
practice, for many companies that doesn't yet happen. When it does, there is typically only protection
on the wire, not complementary protection on the disk.

So far, all these models assume that collaboration is an internal affair - that we work in groups under
the umbrella of a single corporate security infrastructure. For many real-world collaborative projects,
that assumption is plainly false. Consider the project that produced this chapter. Two of the authors
(Nimisha Asthagiri and Walt Tuvell) are employees of Groove Networks, Inc. Another (Jon Udell) is
an independent contractor. Beyond this core team, there was the editor (Andy Oram, an employee of
O'Reilly & Associates, Inc.), and a group of reviewers with various corporate and academic affiliations.
Projects like this aren't exceptions. They're becoming the norm.

To support our project, one of the authors created a Groove shared space. There, we used a suite of
applications to collaborate on the writing of this chapter: persistent chat, a shared text editor, a
discussion tool, and an archive of highly confidential Groove Networks security documents. As users
of the shared space, we didn't have to make any conscious decisions or take any explicit actions to
ensure the secure transmission and storage of our data. Under the covers, of course, were powerful
security protocols that we'll explore in this chapter.

18.2 Why secure email is a failure

Before we dive into the details of Groove's security system, let's look again at the big picture. It's
instructive to ask, "Why couldn't ordinary secure email support the kind of border-crossing
collaboration we've been touting?" PGP, after all, has been widely available for years. Likewise
S/MIME, which lies dormant within the popular mail clients. These are strong end-to-end solutions,
delivering both on-the-wire and on-disk encryption. Why don't we routinely and easily use these tools
to secure our shared email spaces? Because it's just too hard. In the case of PGP, users must acquire
the software and integrate it with their email programs. Then they confront a daunting user interface
which, according to a study called Why Johnny Can't Encrypt,[1] few are able to master.

[1] http://www.cs.cmu.edu/~alma/johnny.pdf.

http://www.cs.cmu.edu/~alma/johnny.pdf

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 225

S/MIME, though built into common email programs (Netscape Messenger and Microsoft Outlook
Express), requires users to acquire client certificates (VeriSign calls them " digital IDs") that unleash
signing and encryption.[2]

 [2] To the extent that we have any routine on-the-wire encryption at all on the Web, it's in the form of SSL-
protected shopping carts. This works because although servers have certificates that authenticate them to clients
(and that enable the SSL handshake to occur), almost no clients have certificates that reciprocally authenticate
them to servers. It's unfortunate that this is so. E-commerce ought to have much more robust client
authentication than it does. But the Public Key Infrastructure (PKI) gymnastics that server administrators are
required to perform go way beyond what normal people are willing to put up with. So we settle for one-way,
server-only authentication on the secure Web. And the only reason we have at least this much security is that it
was possible to make it a no-brainer, an out-of-the-box default for a web shopper. You click the link, you see the
golden key, it's "secure" - at least in a limited sense of that term, notwithstanding the risk of a hostile takeover of
your PC, spoofing of the server's identity (since nobody actually checks the certificate sent from the server), or
capture of your credit card number after decryption on the server.

The next weakness of email shared spaces is that they aren't as coherent as we need, or as functional.
Email is a good way to exchange interpersonal messages but a poor medium for group discussion and
document archiving. When we ask it to serve these functions - as we often do, lacking other
convenient tools - the result is a mess. Documents and pieces of conversations end up scattered across
a bunch of computers. People get confused and waste time because they can't find everything related
to the collaboration in one place; there's no single, consistent view of the project's data.

Finally, email can be a little too spontaneous for our own good. Information can leak out of an email
shared space when anyone "ccs" someone else. That kind of spontaneity is a wonderful thing, and it's
vital for effective collaboration. But it's not always a good idea to enable anybody in a shared space to
include anybody else. People can leak information because of malice, poor judgment, or just operator
error. The kinds of groups that form in email shared spaces are just too loosely defined. There's no
way to balance the necessary freedom of spontaneous group formation with the equally necessary
control of a centrally determined policy that governs modes of group formation.

The authors of this article could have used the S/MIME capabilities of our respective mail readers
instead of Groove. And, in fact, we tried that experiment. But even for the three of us, all well versed in
crypto software, S/MIME presented daunting configuration and use challenges. In any case, S/MIME
only governs the email domain. It doesn't empower users to form the coherent but replicated
multiapplication workspace that makes Groove so effective. For us, the benefits of a secure shared
space far outweighed the learning curve presented by Groove. The same will hold true for most typical
Groove users.

18.3 The solution: A Groove shared space

Now we can start to put in place the foundations of a better data exchange system. A shared space is a
copy of an XML object store. Incremental changes to objects are transmitted to all Groove devices
participating in a shared space in the form of Groove delta messages. These messages may carry pieces
of application data (a line of text in a chat, a stroke in a sketch) or pieces of administrative data (an
invitation to join a shared space, a cryptographic key). The distributed communications engine
ensures that delta messages are reliably delivered to and stored on each node. It adapts as needed
(sometimes with the assistance of a central relay service) in order to reach nodes that are offline, that
don't have fixed IP addresses, or that are behind firewalls and NATs.

Users see none of this plumbing.[3] They just interact with a viewer/editor called the transceiver.
Figure 18.1 is a picture of a Groove transceiver displaying the shared space that we used to collaborate
on this chapter.

[3] In its base version, Groove does not require nor support the notion of a shared-space administrator. However,
Groove Networks expects to offer an enterprise version of Groove that gives IT personnel more control over
shared-space policy.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 226

Figure 18.1. Transceiver viewing and editing Groove shared space

The shared space is defined by a set of members, a set of tools, and the data created by members using
those tools. In our case, the primary tools used for the collaboration included a persistent chat session,
several threaded discussions, several notepads, a calendar, and a file archive. The tools are Groove-
aware, which means that any change made in a notepad, discussion, or calendar propagates to all
instances of the shared space. For an individual member, this synchronization may involve two or
more devices (such as a desktop PC and a notebook PC).

18.4 Security characteristics of a shared space

In normal operation, a shared space has a fixed (steady state) population of members. Delta messages
are being exchanged among the devices (one or more per user) that access the shared space. The kind
of security that governs these messages may vary, for two different reasons. First, the Groove system
can support different cryptographic algorithms (and key lengths) for each shared space. The default
asymmetric algorithm for authentication and key exchange is ElGamal with a 1536-bit modulus. The
default symmetric algorithm for bulk encryption on the wire is MARC4[4] with a 192-bit key.[5] But
hooks exist to enable someone to use these algorithms in one shared space and other algorithms in a
different shared space. These other algorithms might be stronger versions of ElGamal/MARC4
(though the Groove defaults are already massively strong) or different algorithms altogether, such as
RSA/Blowfish. A Groove user can choose different cryptographic algorithms to transact business with
different organizations in parallel shared spaces. Imagine a consultant who works with the NSA on
some projects and with a university on others.

[4] Because the symbol RC4 is trademarked by RSA Data Security, Inc. (now RSA Security, Inc.), Groove uses the
symbol MARC4, which stands for "Modified-Alleged-RC4." "Alleged" refers to a freely available algorithm that's
plug-compatible with RSA Data Security, Inc.'s RC4. "Modified" means that the first 256 bytes of the keystream
are discarded, to thwart a weak-key attack.

[5] In symmetric encryption, a single key is used for both encryption and decryption; in asymmetric encryption,
the decryptor keeps a private key and the encryptor uses a public key. Symmetric encryption is more efficient,
hence it's used wherever possible, subject to security considerations. For more information, see Chapter 15.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 227

Security for shared spaces can also vary in another way. The protocols that govern message encryption
and authenticity/integrity can vary independently along these dimensions:

Encryption/confidentiality

Who can read delta messages exchanged within the shared space? In theory, encryption can
be turned off, just as SSL can use a null cipher. In practice, it's not interesting or useful to do
this, and Groove doesn't.

Data-origin authenticity/integrity

Is every delta message guaranteed to have come from its purported sender (and, perforce, not
to have been tampered with)? Again, it's possible to turn off authenticity/integrity, although
Groove doesn't. Messages are always authenticated and integrity-protected. There are,
however, two flavors. A delta message may be guaranteed only to have come from some
unspecified member of the group, or guaranteed to have come from a specific member. Each
shared space, for its lifetime, uses one or another of these modes. The first, which we'll call
"mutual trust," is the most common and least computationally expensive. The second, which
we'll call "mutual suspicion," is less common and involves more overhead.

18.5 Mutually-trusting shared spaces

Let's assume a shared space in "mutual trust" mode - the most convenient and likely setup - and
review the security model from that perspective. We'll also show why you might want to switch to
"suspicious" mode.

18.5.1 Anatomy of a mutually-trusting shared space

Every Groove user maintains an account on one or more devices. An account is a container of
identities. A user can project a single identity into all shared spaces but is not restricted to a single
identity. Carol can be just "Carol" in spaces she shares with her friends, but "Carol Smith, Marketing
Director" in spaces she shares with colleagues. Technically, a member of a shared space is an
instantiation of an identity as a participant in that space; the same identity may be a member of many
shared spaces.

Each identity is defined by two public/private key pairs - one for signing and verification, one for
encryption and decryption. The private half of each of these key pairs is stored in the account. The
public half is stored in the shared space, accessible to all members, and also (optionally) in each user's
Groove Contacts (an address book), to protect and authenticate Groove instant messages. These
Groove instant messages are exchanged among Groove identities, but outside the context of a shared
space. So they're encrypted with one-time symmetric keys that are exchanged via the identity keys. By
contrast, the delta messages that carry the user and administrative data are exchanged within a shared
space, so they're encrypted using a symmetric key that's stored in the shared space and thus is
available to the group, as we'll see later. (If you're confused already about the various keys, you can
refer regularly to the final section of this chapter, Section 18.13.)

When members are joining or leaving a shared space, the identity's signing/ verification key pair is
used to authenticate the messages that invite (or uninvite) members. The encryption/decryption key
pair is used to encrypt/decrypt the symmetric key, which is in turn used to encrypt/decrypt the
invitation messages. We'll explore the invitation protocol later. But for now, let's complete the
description of the security model when the shared space is in normal use.

When Bob types a line of text into his transceiver's chat window, the data flows in two directions -
down to the disk, where it's written to the encrypted object store, and over the wire, in encrypted form,
to the other members' transceivers and object stores. If Bob owns another Groove device, the data
goes there too. The integrity of the message carrying Bob's chat line is protected by a Message
Authentication Code (MAC).[6]

[6] All Groove data that is encrypted is of course also integrity-protected. But to simplify the exposition, we
sometimes abuse terminology and only explicitly mention the encryption aspect of data protection.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 228

Why each Groove identity requires two
public and private keys

It's possible to combine the signature/verification and encryption/ decryption functions
into a single key pair. Beyond the obvious divide-and- conquer rationale, here are some
subtler reasons why Groove doesn't combine these functions:

Plug-in cryptography

Groove's security subsystem is templatized (fully parameterized) and can work with
virtually any public-key algorithms. Because some algorithms can only digitally
sign while others can only encrypt, it's necessary to distinguish between the two
purposes. Further, algorithms differ in the required length and properties of their
keys.

External PKI policy

Groove plans (tentatively) to import key pairs from PKI sources. Such key pairs
sometimes come with policy (as opposed to technical) constraints - for instance,
signing might be allowed, but no encryption or key agreement. In order to comply
with such policies, Groove must keep these key usages separate.

The encryption of each disk file is handled by a per-member, per-shared-space symmetric key. This
key is in turn protected by a master symmetric key, stored in the account Bob created when he first
installed Groove.[7] Why not just directly encrypt all on-disk shared spaces with the master key? The
extra level of indirection isolates each shared-space file into its own security domain.

[7] The account itself is protected by a key derived from the passphrase chosen by the user when the account was
created. Just as the master key is used to decrypt each shared-space-storage key, this passphrase-derived key is
used to decrypt the account's storage key - and that's the only thing the passphrase is used for.

The encryption of Groove delta messages sent over the wire is handled by a symmetric key - which
we'll call the group key - that's stored in the shared space and accessible to all members. In fact, there
are two such keys - one MAC key, called LG, for data integrity and authentication (the symmetric-key
analogue of signing and verification), and one cipher key, called KG, for encryption and decryption.
Here, G denotes the set of group (shared space) members.

The default algorithm used for the MAC is HMAC-SHA1. SHA1 (FIPS 180-1) is used to produce a hash
of the header and body of the message. HMAC (RFC 2104) provides authentication and integrity
protection of the resulting hash.

18.5.2 The key to mutual trust

Our term "mutual trust" concerns how closely you can trace messages to senders. Upon receiving a
message within a shared space, a member of the shared space can prove it was not tampered with by
recomputing the MAC using the LG key and comparing the resulting MAC with the transmitted MAC.

The message's sender is authenticated by the same means. Since the group key, LG, was exchanged in
an authenticated way (that is, via the invitation protocol or piggy-backed on a standard Groove delta
message, as later described), only group members will have it. If the MACs match, the message must
have been sent by a group member. But the exact member who sent the message cannot be verified,
because LG is common to all members of the shared space. That's why we call this a mutually-trusting
shared space. Members are not prevented from spoofing each others' messages; they merely agree to
trust one another not to do so.

To see why this mutual trust might not suffice, imagine a transcorporate shared space in which
members engage in a high-stakes negotiation. It's not enough to know that a message came from an
authenticated member of the group. It's crucial to know that a message came from an authenticated
individual who's part of a particular negotiating team. In such cases, you'll need to form a mutually-
suspicious shared space.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 229

Why not always be suspicious? All things being equal, you'd rather bind message authenticity to
individuals rather than just to the group. But all things aren't equal; it's more costly to authenticate
individuals, as we'll see. And for many of the group activities that Groove can support, group-level
authentication works just fine. When we were collaborating on this chapter, we cared about three
things:

Confidentiality

We didn't want anybody else reading our stuff.

Authenticity

We didn't want anybody else impersonating a group member.

Integrity

We didn't want any data corrupted in transit.

We got these assurances in a mutually-trusting shared space. And we got them just by installing and
using Groove. When impersonation is a real risk, though, you'll want to create a mutually-suspicious
shared space. Let's look at how that works.[8]

[8] In the preview version of Groove available at the time this chapter was written, the ability to configure a
shared space to run in trusting or suspicious mode was not exposed to the user. By default, shared spaces ran in
trusting mode.

18.6 Mutually-suspicious shared spaces

It's time to introduce some more keys. Each member in each shared space has a Diffie-Hellman
public/private key pair. These Diffie-Hellman keys (which are authenticated via the identity key pairs
mentioned previously) are used to establish pairwise symmetric keys - that is, keys shared between
each pair of members within a shared space. Through the magic of Diffie-Hellman, the pairwise keys
aren't sent over the wire. Instead, they're independently computed by each pair of members. Bob
computes a Bob/Carol pairwise key from his Diffie-Hellman private key and Carol's Diffie-Hellman
public key. Carol computes the same pairwise key from her private key and Bob's public key.

There are two kinds of pairwise keys between members Mi and Mj. A cipher pairwise key, Kij, encrypts
the group keys (KG, LG) for distribution. A MAC pairwise key, Lij, assures the data origin
authenticity/integrity of messages in a suspicious shared space.

Recall that in the trusting case, a MAC is attached to each message. It's a MAC of the header and body
of the message, protected in the group key: {X}LG. Rather than a group-level MAC, suspicious mode
uses a set of individual MACs denoted as {X}Lij, one for each pair of members. Each of these uses
HMAC-SHA1 to authenticate a message using the pairwise key shared between a pair of members. The
resulting MACs are called authenticators (or multiauthenticators). These are symmetric-key analogues
of public-key signatures.

Figure 18.2 shows what the authenticator looks like for a message in the trusting case. The size is the
same for groups of any number. For each message, there's just a header, a body encrypted in the group
key KG, and an authenticator in the group key LG. In a suspicious group, however, as shown in Figure
18.2, the multiauthenticator grows linearly with group number. For each message, there's a header, a
body encrypted in the group key KG, and one MAC per member in the pairwise keys Lij.

Groove could have used public-key signatures instead of multiauthenticators. The advantage is that
the size of such signatures and the time required to compute them remain constant. But public-key
signatures are big, and they are very slow. For the small groups that are the focus of the initial release
of Groove, multiauthenticators work best.

There are two different reasons to bundle authenticators into multiauthenticators: to support message
fanout and to support the recovery of lost messages.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 230

Figure 18.2. Authentication overhead: suspicious mode vs. trusting mode

18.6.1 Message fanout

The Groove system supports pure peer-to-peer communication. In the simplest case, two Groove-
equipped PCs connected by a null 10BaseT cable can communicate happily. But what if a member is
firewalled, or offline, or connected by way of a very slow link? In these cases, the Groove software can
use a relay server to enable or optimize peer communication.[9]

[9] Other companies may also offer relay services to support the Groove software.

A relay server is a system that understands Groove communication protocols and can route messages
accordingly. The relay doesn't know anything about members, only about shared spaces and devices.
Suppose Bob is on a modem link and sends a message to Carol and Alice. Rather than send two
messages over that slow link, he'd like to send just one message to the relay and have the message fan
out to everybody on its fast link. (The relay can also store and forward the message to someone who is
offline.) The single multiauthenticator enables the sender to create a single delta message and push it
to the relay server.

Consider the alternative: multiple deltas, each equipped with a single-authenticator. In that case, the
sender would have to transmit n times the data through the pipe. Or the relay would have to interpret
application layer data and then tag on the appropriate authenticator for the appropriate member,
rather than just blindly relaying application data without parsing or interpreting it.

A complete description of Groove's communication protocols is beyond the scope of this chapter.
Briefly, the Device Presence Protocol (DPP) solves the naming and awareness issues for devices. The
Simple Symmetric Transport Protocol (SSTP) connects clients to clients, clients to relays, and relays to
relays. It's SSTP that propagates information about a delta message, including its target endpoint.

For each target endpoint, there are three possible routes, listed here in order of preference:

1. Send directly (peer-to-peer) to the endpoint. This is impossible if target or sender is offline.

2. Send to the endpoint's preferred relay (currently hardcoded, but eventually user-
customizable). This is impossible if either the relay or sender is offline.

3. Store it on the sender until it can be sent to the target or relay. This is always possible, as a last
resort.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 231

The preferred choice depends not only on who's online, but also on a heuristic calculation - by the
sender - of the relative efficiency of the three choices. The sender considers line speed and message
size to determine whether multicast (1) or fanout (2) would be better. The sender also needs to
consider the firewall situation. Once the target's IP address is resolved through DPP, the source client
will try to communicate directly to the target client. A direct peer-to-peer connection is always
preferred over a relayed connection. However, sometimes it's necessary to use the relay as an
intermediary even if both clients are online. Table 18.1 summarizes the possibilities.

Table 18.1, Relaying vs. direct connection

Source/client A Target/client B Connection

Public[10] Public Direct

Firewall/ NAT/Proxy W/ 2492[11] Public Direct

Firewall/NAT/Proxy NO 2492[12] Public Via relay

Firewall/NAT/Proxy Firewall/NAT/Proxy Via relay

Public Firewall/NAT/Proxy NO 2492 Via relay

Public Firewall/NAT/Proxy W/ 2492 Initially via relay[13]

[10] Public: A device with a public IP address to which a direct connection is possible. This includes devices with
DHCP-assigned public addresses.

[11] W/ 2492: A configuration where port 2492 (the network port used by Groove's proprietary SSTP protocol) is
allowed inbound (if it appears in the "source" column) or outbound (if it appears in the "target" column).

[12] NO 2492: A configuration where Groove is forced (since other paths have failed) to use a path (such as an
HTTP proxy) that blocks port 2492 inbound (if it appears in the "source" column) or outbound (if it appears in
the "target" column). In this case, Groove must encapsulate all SSTP messages within HTTP messages and send
them through port 80 (the HTTP port). This configuration also implies that the connection must go through the
relay server since a Groove client cannot accept inbound connections on port 80 at this time. Groove does not
want to conflict with other applications (such as a web server) that may be running on the client.

[13] The connection is initially established via the relay server. However, it is possible that the connection can
transition into a direct connection if client B decides to change roles and become not only a listener from client A,
but also a sender to client A. If so, client B creates a new connection to A that takes the properties of the second
scenario (in the second row above), a direct connection. Since Groove favors direct connections over relayed
connections, the original relayed connection from A to B terminates and is replaced by the direct connection
from B to A .

18.6.2 Fetching lost messages

Suppose Alice never receives Bob's message. Because messages are sequenced, Alice's Groove software
will discover that the message is missing and try to fetch it. Ideally, she'll fetch it from Bob. But what if
Bob has, meanwhile, gone offline? In this case, Alice will try to fetch the lost message from Carol.
Carol then encrypts the message in her Carol/Alice encryption key but attaches the Bob/Alice MAC
(which Carol memorized earlier for this purpose) so Alice can correctly authenticate the message as
one from Bob.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 232

18.7 Shared space formation and trusted authentication

The person who sends an invitation to join a shared space is called the "chair" - in the sense of
"chairperson of a meeting." If all of the members of a would-be shared space are already running
Groove, the invitation protocol can begin with a Groove instant message from the chair to the invitees.
Alternatively, this invitation can travel as email. The email alternative is especially important because
it's a bootstrapping mechanism that brings non-Groove users into the Groove realm. In this case, the
message's subject says "Please join our shared space." Its body describes the purpose of the shared
space and offers a link to download and install the Groove software in case the recipient isn't already
running it. Finally, the email message attaches the first in the sequence of Groove messages that
comprise the Groove invitation protocol. Once the Groove software is installed, double-clicking that
attachment "injects" the message into Groove and kicks off the invitation protocol.

Note that in this scenario, Groove uses email only as an unsecured carrier. This raises the specter of
end-entity authentication: how do the chair and the invitee convince themselves that they're talking to
the "right" person, i.e., that the invitation protocol hasn't been hijacked by an imposter? It's possible,
though unlikely, that the sender and recipient will use S/MIME or PGP to authenticate and/or encrypt
the invitation message.

In the case of S/MIME, trust resides in a PKI-based system. If an S/MIME signature were attached to
the chair's invitation message, the invitee could examine the certificate bound to that message. The
certificate would in turn be signed by a certification authority (CA). The CA assures the invitee that the
chair's certificate - on the invitation - binds to a specified real-world identity.

In the case of PGP, trust resides in a more decentralized web of trust system. Rather than depending
on a PKI hierarchy, PGP models trust in a more collegial way. Certificates are signed, not by
specialized CAs, but by other people. PGP users sometimes expand their webs of trust by holding
"signing parties" where people can meet face-to-face and cross-certify their keyrings.

It's plainly evident that neither the hierarchical nor the web of trust approach has taken the world by
storm. For most people, PGP and S/MIME implementations are far too complex and hard to use. The
result is that the percentage of signed and/or encrypted email on today's Internet is vanishingly small.

Groove aligns itself more closely with PGP than with S/MIME. And it's influenced by recent initiatives
to simplify PKI: Simple Public Key Infrastructure (SPKI, RFC 2692), and Simple Distributed Security
Infrastructure (SDSI, http://theory.lcs.mit.edu/~rivest). These initiatives, now merged, aim to make
direct user-to-user cross-certification easy enough so that users can actually do it for themselves, in a
natural way. Central to this approach is SDSI's notion that identities need not be represented by
globally unique names, nor characterized by a fixed set of attributes. SDSI stresses that it is human
judgment that must decide, given a set of attributes, whether to accept a claimed identity as valid. To
that end, it should be easy to create and read certificates containing attributes that are meaningful to
people: Phone numbers, photos, and free-form text. Groove, though not an implementation of SDSI,
subscribes to these ideas.

In Groove, the public persona of an identity is called a contact. It contains a self-chosen free-form
name,[14] and the public halves of the identity's two self-chosen key pairs.[15] In an enterprise version of
Groove, it might also contain a student ID or an X.500 name (such as O="Big Corporation
Ltd"/OU="Finance"/CN="John Doe").

[14] The self-asserted name will typically be the user's real-world name, but it could also be an email name, or
indeed any display name or alias the user chooses.

[15] The key pairs are currently "self-chosen" in the sense that Groove automatically generates them (locally, on
the user's machine) and assigns them to the identity when it is created (there is a different set of generated key
pairs for each identity). There is no central "identity authority." In the future, Groove will almost certainly allow
users to import their key pairs from external sources, such as PKI certificates.

http://theory.lcs.mit.edu/~rivest

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 233

When Bob creates his identity, he may decide to add more information to the contact - for example,
his phone number. Here's how Alice can use that information to authenticate Bob's invitation
message. The message is signed by Bob. It comes with the public key that is purportedly Bob's.[16]
Alice's Groove software first verifies the signature using the transported public key (thereby
guaranteeing that the message was really signed by the private key corresponding to the transported
public key) and then locally computes the fingerprint (hash of the public key, a string of hex digits).
She can then phone Bob and ask Bob to report his genuine fingerprint to her. If the fingerprints
match, the message could only have come from (i.e., been signed by) Bob - assuming that the private
key for Bob's Groove identity, protected by Bob's passphrase, remains uncompromised under Bob's
control.

[16] To simplify the narrative, we sometimes pretend the two Groove key pairs are just one key pair, used for
signature/verification and encryption/decryption/key establishment.

Alice knows Bob, along with his phone number and his voice, through trusted, out-of-band, real-world
channels. For example, Bob might have printed his fingerprint on his business card and given the card
to Alice in a face-to-face meeting. Later, recalling that meeting, Alice matches the fingerprint on the
business card to the fingerprint computed from a message claiming to come from Bob. Authentication
doesn't depend on third-party certification of Bob's public key. Groove depends on relationships that
are rooted in real-world collaboration, and it extends those relationships into the realm of shared
spaces.

Admittedly, this scheme places the burden of establishing trust on the user. But the truth is that the
burden always rests with the user. Technologies such as S/MIME and SSL purport to take matters out
of users' hands. But they, too, ultimately rely on fingerprints that people should in theory check before
investing trust, but in practice almost never do. From the user's perspective, what sets Groove apart
from other systems is its all-crypto, all-the-time approach. You never have to worry about whether
messages are confidential, because they always are. Messages are likewise always authentic - to
precisely the degree that you care about authenticity. In a shared space that supports casual
discussion, you may not care about the risk of impersonation. What's more, some spaces may be
explicitly pseudonymous, with no use of real-world identities. In these cases, you may not bother to
check fingerprints. In a shared space that supports highly confidential business activities, however,
you should worry about impersonation, and you should check fingerprints.

Note that while Groove does not implement or require PKI, neither is it incompatible with PKI. Recall
that Groove is flexible about the kinds of information stored in an identity's contact. If an enterprise
has assigned X.500 names to employees, these names can be included in Groove identities. In this way
Groove can ride on preexisting directory and naming structures. Further, its authentication protocols
can be extended to handle PKI-style certificate validation. When an enterprise runs its own CA, for
example, an enterprise version of Groove might be configured to trust that CA, just as browsers today
accept SSL and S/MIME certificates signed by VeriSign, Entrust, and others. Look for PKI integration
in post-preview editions of Groove.

18.8 Inviting people into shared spaces

When Bob invites Alice into a shared space that already includes Bob and Carol, the following things
will have to happen:

• Bob and Alice must complete the invitation protocol.

• New pairwise keys (Alice/Bob, Alice/Carol) will need to be established.

• The group key will need to be given to Alice.

Note that the first step of the invitation may not be confidential. Alice isn't a member yet, and the key
that will be used by the new group doesn't exist. What's more, Alice may not even be a Groove user
yet, in which case she has no Groove account, identity, or public key that Bob can use to encrypt the
first invitation message. In this case, the invitation is not confidential - unless Bob and Alice have
established confidentiality in another way, for example, using S/MIME to encrypt an email version of
the invitation message. But the invitation is always digitally signed by the Groove software with Bob's
signature private key, regardless of the channel used to send it.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 234

Alternatively, Bob and Alice may already be Groove users who have communicated before. In this
case, the invitation - if sent as a Groove instant message - is confidential.

Either way, the invitation includes all the information needed to bring the new member into the
shared space:

• A cryptographic context, which defines the algorithms to be used in that shared space. It
includes, among other things, the Diffie-Hellman parameters used within the shared space.
Alice's Groove software will use this information to generate her Diffie-Hellman key pair.
Once Bob's Groove software has distributed Alice's Diffie-Hellman public key to everyone, she
will be able to use the key to compute pairwise keys with other members.

• The public keys for Bob's identity.

On receiving the message, Alice can verify that it's intended for her (by checking the name on the
invitation), authenticate Bob's contact (by calling the phone number listed there and checking the
fingerprint), and consider what kind of shared space she's been asked to join. In practice, when the
two parties have previously communicated in Groove, the authenticity of the message is not in
question. It's only a question of whether to join for the stated purpose (for instance, to collaborate on a
project), given the stated mode (for instance, trusting vs. suspicious).

To accept the invitation, Alice will have to install Groove if she hasn't already done so. If Alice then
agrees to join the group, her Groove software sends Bob's software a message containing the following
information:

• A one-time key encrypted in Bob's public key.

• Alice's Diffie-Hellman public key for the shared space, signed by the private half of the
identity key in her account so that each member can verify its authenticity.

On receiving Alice's acceptance, Bob's Groove software decrypts the one-time key, decrypts Alice's
reply with the one-time key, and verifies the validity of Alice's acceptance. Bob himself, after a
fingerprint authentication of Alice, can then manually confirm (by clicking an OK button) that Alice
should be added to the group. That confirmation triggers the following events:

• A New-Member-Added message is sent to the group.

• Alice receives a copy of the shared-space data, which includes the group keys, KG and LG. The
shared-space data is encrypted in a one-time key which is, in turn, encrypted in Alice's public
key.

18.9 The New-Member-Added delta message

The message that tells everybody a new member has joined is called, appropriately, the New-Member-
Added delta. This message, sent from Bob to the preexisting members (in this case, only Carol),
announces that Alice has joined the group. It includes Alice's Diffie-Hellman public key, which Carol
stores in her member list and uses to establish her pairwise key with Alice.

Arguably, the New-Member-Added message should also trigger the establishment of a new group key.
It doesn't. Only when a member is uninvited is a new group key established. When Alice is invited, she
gets the same group key that Bob and Carol were already using. Therefore, she can read all previous
messages stored in the shared space. The policy might instead be that Alice is not necessarily privy to
the prior activities of the group. Resetting the group key on invitation would prevent her from reading
messages (had she recorded them) that were exchanged among preexisting members before she
joined. An early implementation of Groove in fact worked just this way. But this model conflicted with
the way most people want to use Groove. When you join a shared space, you don't typically want to
receive only future messages exchanged within it. You want to see the whole history of the shared
space. Access to that prior transcript is, in many cases, the prime motivation to join. So when Alice
joins the group, her shared space synchronizes fully with the group's.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 235

Groove's security subsystem retains latent support for reestablishing the group key on invitation, and
this feature may be reenabled, at least as an option, in post-preview editions of Groove. Of course,
users can themselves achieve a similar effect. If Bob and Carol had been collaborating in a shared
space and then wanted to invite Alice without giving away the contents of that shared space, they
could simply create a new shared space and invite Alice into it.

If Carol uninvites someone, her Groove software sends a rekey delta message, which includes the
changed group membership information plus " piggy-backed" rekey information. A rekey delta can
include any combination of group rekeys. In the case of a simple member removal, it's used to
establish a new group key. The new group key is transmitted by separately encrypting a copy of it, per
member, in the pairwise key (Kij) shared with that member. This applies in both modes: trusting and
suspicious.

Groove adds rekey information onto the delta message for two reasons:

• So security metadata (including the rekey information and MACs) can be transparent to the
higher-level application. It can MAC the delta without knowing that rekey information was
added to it. On the receiving end, the security layer strips off the rekeys before handing the
delta back to the application layer.

• So the new key sent in the piggy-back rekey information can be immediately used to encrypt
the delta that it is being piggy-backed onto. If the rekey information were embedded inside
the payload of the delta, then on the receiving side, the delta would first need to be decrypted
in a previous key. Because the rekey information is piggy-backed outside the encrypted delta
payload, that delta itself can be encrypted in the new key.

The uninvitation protocol cannot, as yet, be controlled administratively using credentials and
permissions. Currently, any member can kick another member out of a shared space. An authorization
architecture, for controlling access to this and other actions, is planned for a near-future release. In
the meantime, tool writers can use the authentication machinery to implement tool-specific
authorization rules, though we recommend waiting (if you can) for explicit authorization support in
Groove.

18.10 Key versioning and key dependencies

Groove messages may arrive in any order. In particular, Carol might receive a message from Alice
encrypted in the new group key, K2, before she receives the message from Bob that bears that new key.
This can happen, for example, if her link to Alice is faster than her link to Bob.

The solution is for Alice's message to state its dependence on a version of the group key. The message
says, in effect, "I depend on a key-bearing message from Bob," and it includes the sequence number of
that message. If Carol's Groove software hasn't yet seen the message bearing K2, it will defer handling
of Alice's K2-encrypted message until the key arrives. Fortunately for Groove's security system,
message sequencing is a fundamental property of the underlying communication layer.

In fact, things are a bit more complex. It's not just that Carol is waiting for a message from Bob in
order to be able to decrypt a message from Alice. More accurately, Carol at her desktop PC is waiting
for a message from Bob at his notebook PC in order to decrypt a message from Alice at her desktop
PC. Sequence numbers are, in short, device-specific. Bob himself may have sent K2 from his notebook
PC but not yet received it at his desktop PC at work. Like all Groove messages, a rekey message has to
propagate to all endpoints.

At some point, Carol's Groove software will want to delete the old group key, K1. Can it do this once it
knows that everyone has received K2? No. It must also know that every message depending on K1 has
been received by all user/device pairs. To disseminate this knowledge, all Groove endpoints
periodically broadcast their current state to the shared space members, and describe their latest
dependency sequences.

The old and new keys, K1 and K2, represent major versions of the group key. There's also a need to
further differentiate keys using minor versions. Here's why. Consider two companies, C1 and C2,
participating in a shared space by way of their respective Internet connections, using group key K3.
Figure 18.3 shows the configuration of members in the shared space.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 236

Figure 18.3. Shared space before disruption

Now C1's T1 line goes down temporarily, isolating the C1 members from the C2 members. During this
period of separation, M1 (in C2) uninvites M2, and M4 (in C1) uninvites M5. Figure 18.4 shows the
result.

Figure 18.4. Shared space after disruption

Each uninvitation independently produces a new group key, K4. Now the T1 line comes back up. How
does the system distinguish between the two K4s? To handle this case, the major version of a key is
qualified by a minor version, which is actually the sequence number of the message that transmitted
the key.

18.11 Central control and local autonomy

Assuring that Groove would work in a fully decentralized, peer-to-peer mode was a major challenge.
"It wasn't just for amusement that we undertook to do this," says Ray Ozzie, founder and CEO of
Groove Networks, and before that the creator of Lotus Notes. He notes that the current trend toward
hosting critical business software at ASP (application service provider) sites introduces worrisome
points of failure. Groove de-emphasizes (but does not abolish) centralization. If a relay service
provided by Groove Networks (or another provider) fails, Groove users can in general continue to
communicate, and even execute such complex protocols as concurrent uninvitations involving
disconnected subgroups.

At the same time, there are crucial aspects of security that should be at least logically centralized. For
enterprise IT, a hybrid approach is better than a pure peer model. You want to centrally determine a
policy for your network of peers and then distribute that policy to the individual desktops. Such a
policy might control the following:

• The required length, complexity, and change frequency of the account passphrase

• Whether a user's PC can memorize the account passphrase

• Whether users are required to authenticate one another, and if so, how

• Whether everyone, or only designated shared-space administrators, can invite and uninvite
members

• Who, outside of the enterprise, can join a group, and on what terms

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 237

The Groove product was designed to be as easy to use as a PalmPilot, because Ozzie's prior experience
with Notes showed that the vast majority of security leaks were caused by human (that is, user and
administrative) error. The goal was therefore to create a product that delivers high-grade security by
default, requiring as little of the user (or administrator) as possible. Users, in particular, see no
security-relevant configuration choices, and as a result their secure use of the system is as failsafe as
possible. Administrators, likewise, will be constrained to a minimal set of security choices.

One such choice deserves special note. A user can ask the Groove software to memorize the account
passphrase, so that it need not be retyped once per session. If the user must first authenticate to the
operating system (Windows NT, 2000), this won't be a problem so long as there is a passphrase. (It's
possible, but inadvisable, to create an account with no passphrase at all. In that case, nothing is
securely protected on disk.) But if the user doesn't authenticate to the operating system (as Windows
95 and 98 allow), the machine boots up automatically into Groove and only physical security governs
the Groove data. Because the goal is for the Groove software to become as ubiquitous as the browser,
it was decided to allow this feature.[17] Clearly this is the kind of policy that you might want to reverse
in an enterprise deployment of Groove, in order to ensure that users do the right thing.

[17] There's more to the story. Memorized passphrases are, locally, the moral equivalent of null passphrases. But
remotely they are superior. That's true because Groove accounts are mobile. A user can transfer an account
from one device to an Internet-based service, and thence to another device. Memorized passphrases encourage
long/strong passphrases, so are accounts stored on the Internet strongly protected.

There's another important sense in which Groove's central services help people do the right thing with
respect to security - or, rather, discourage them from doing the wrong thing. The Groove relay server
will proxy connections between peers when one or both are behind firewalls or NATs. Although
Groove prefers direct connections between endpoints, it will always work out of the box for users who
cannot establish such connections. That means people need not try to make complex, and thus error-
prone, modifications to their perimeter security.

18.12 Practical security for real-world collaboration

At the end of the day, all software is rife with vulnerabilities. No one pretends that Groove is immune
to this law. Although Groove encrypts to hard disk, it can't encrypt the virtual memory pages swapped
out by the operating system. It can't save you from rogue software components that you trustingly
install and use or Trojan horse programs that install themselves without your knowledge. It can't hide
the data on your screen from a microcamera hovering over your shoulder or from a Van Eck device
down the street.

Security is never wholly attainable, for a long and depressing list of reasons. But you should still take
every reasonable precaution. Today, few people bother. And in truth, the popular decision to shun
existing ways to secure our routine collaboration is not an irrational one. It's hard to take reasonable
precautions. Doing so interferes with the spontaneity we require. The procedures are complex and
therefore error-prone. Even when we try to secure our communications, we often fail to do so.

Groove aims to make reasonable precautions automatic and failsafe. It envisions a world in which
peer-enabled groupware is as easy and spontaneous as email, yet as secure as anything transpiring on
the Net today.

18.13 Taxonomy of Groove keys

The cryptographic keys used in Groove are described in the following list:

One passphrase per account

Not shared with anybody else. Stored in the user's brain (unless the user requests Groove to
memorize it on a machine, which is convenient but discouraged). The Unicode passphrase can
have any length and take any form. It can be changed wherever you want, but if you have
multiple copies of an account on multiple machines, you have to change the passphrase
yourself on each machine.

One asymmetric key pair per identity for signature/verification

The default algorithm is ElGamal. This key pair is used for several signature/verification
purposes: to authenticate invitations, instant messages, and Diffie-Hellman public keys. It's
stored in the account and cannot be changed (except by creating a new identity). The public
half of the key pair is also stored in the identity's contact, which is shared with other users.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 238

One symmetric key per account

This key protects the account itself (actually, the storage key for the account file, described
later in this list). By default, it is a MARC4 key generated from the user's passphrase using the
PBKDF2 algorithm, with a salt and an iteration count. In this case, MARC4 uses 256-byte
keys, rather than the Groove default 24-byte keys. The length of the salt is 20 bytes, and the
iteration count is currently set at 256 (i.e., approximately one-tenth of a second on current
typical CPUs). These unusual precautions ensure that the passphrase itself, not the
cryptography surrounding it, is the weakest link - as it should be.

Another asymmetric key pair per identity for encrypting/decrypting symmetric keys

The default algorithm is ElGamal. This key pair is used to encrypt/decrypt the symmetric (by
default, MARC4) keys that in turn protect the invitation protocol and instant messages. It's
also stored in the account and cannot be changed (except by creating a new identity). The
public half of the key pair is also stored in the identity's contact, which is shared with other
users.[18]

[18] As noted previously, this key pair and the preceding one are sometimes conflated in informal
discussion. When we say "the key pair of the identity," we mean both the signature and the encryption
key pairs.

One digital fingerprint per identity

This is a hash of the public halves of the above two identity key pairs, as verifiably calculated
by Groove on a per-use basis. It enables Groove users to authenticate one another.

One Diffie-Hellman key pair per member, per shared space

It's deterministically generated from the private halves of the previous two identity key pairs
and the GUID (24-byte random globally unique ID) of the shared space. This key is constant
for the duration of the member's participation in the shared space and is used to establish
pairwise keys with other members of that shared space.

One pairwise key (Kij), per pair of members, per shared space, used for key distribution

The algorithm for this symmetric key is, by default, MARC4. The key is computed for each
pair of members from the Diffie-Hellman key pairs, by means of the classical (authenticated)
Diffie-Hellman key agreement algorithm. It's cached in each member's copy of the shared
space and used to distribute the group key when it changes.

Another pairwise key (Lij), per pair of members, per shared space, for message authentication

The associated algorithm is, by default, HMAC-SHA1. The key is again computed for each pair
of members from the Diffie-Hellman key pairs, and it's used to assure message authenticity
and integrity in mutually-suspicious mode.

One group key per shared space (KG), for confidentiality

This key (by default, MARC4) is used for shared space confidentiality. It's stored in the shared
space and is reestablished whenever a member leaves the shared space.

Another group key per shared space (LG), for message integrity

This key (by default, HMAC-SHA1) is used for shared-space integrity in trusting mode. It's
stored in the shared space, and is reestablished whenever a member leaves the shared space.

Master key

One per account, stored in the account (and hence protected by the passphrase). This key
(MARC4 by default) is used to protect storage keys (next item).

Storage keys

One per shared-space file, including the account file. These keys encrypt/decrypt on-disk
data. The storage keys for (non-account) shared spaces are protected by the master key and
stored with the shared-space files. The storage key for the account is protected by the
account's passphrase and stored with the account file.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 239

Chapter 19. Interoperability Through Gateways
Brandon Wiley, Freenet

In my travails as a Freenet developer, I often hear a vision of a file-sharing Utopia. They say, "Let's
combine all of the best features of Freenet, Gnutella, Free Haven, Mojo Nation, Publius, Jabber,
Blocks, Jungle Monkey, IRC, FTP, HTTP, and POP3. We can use XML and create an ÜberNetwork
which will do everything. Then we can IPO and rule the world."

When I hear this vision, I shake my head sadly and walk slowly away. I have a different vision for
solving the world's file-sharing problems. I envision a heterogeneous mish-mash of existing peer-to-
peer applications creating one network with a thousand faces - what you might call an OmniNetwork.

19.1 Why unification?

Every network has its flaws. As a Freenet developer, I never miss an opportunity to give Gnutella's
scalability and anonymity a good-natured ribbing. At the same time, Freenet is constantly criticized
because (unlike with Gnutella) you have to donate your personal hard drive space to a bunch of
strangers that may very well use it to host content that you disapprove of.

The obvious solution is to use only the network that best suits your needs. If you want anonymity,
Freenet is a good choice. If you also want to be absolutely sure that you are not assisting the forces of
evil (can you ever really be absolutely sure?) use Gnutella.

Ah, but what if you want Freenet's "smart routing" and yet you also want Gnutella's fast integration of
new nodes into the network?

The answer is obvious: build an ÜberNetwork with anonymity and smart routing and fast node
integration and a micropayment system and artist compensation and scalability to a large number of
nodes and anti-spam safeguards and instant messaging capability, etc. It is ideas such as this that
make me want to cast off the life of a peer-to-peer network developer in exchange for the gentle ways
of a Shao-lin monk.

19.1.1 Why not an ÜberNetwork?

The problem with an ÜberNetwork is simple: it's impossible. The differences in file-sharing networks
are not merely which combinations of features are included in each particular one. While many file-
sharing networks differ only in choice of features, there are also distinct and mutually exclusive
categories of systems. Several optimization decisions are made during the design of a network that
cause it to fall into one of these categories. You can't optimize for everything simultaneously. An
ÜberNetwork can't exist because there are always trade-offs.

19.1.2 Why not an ÜberClient?

The idea of an ÜberClient is similar to that of an ÜberNetwork: To create a single application that
does everything. An example of such an application in the client/server world is the ubiquitous web
browser. These days, web browsers can be used for much more than just browsing the Web. They are
integrated web, news, email, and FTP clients. The majority of your client/server needs can be serviced
by a single application. Unlike the ÜberNetwork, the ÜberClient need not force everyone to convert to
a new system. An ÜberClient would be compatible with all of the current systems, allowing you to pick
which networks you wanted to retrieve information from.

The problem with the ÜberClient is that it is a client, and clients belong in the client/server world, not
the world of peer-to-peer. Furthermore, the ÜberClient that already exists - the web browser - can
serve as a kind of gateway to peer-to-peer applications. Many file-sharing networks either act as
miniature web servers or are developing browser plugins. Someday you will probably be able to access
all of the file-sharing networks from your web browser.

However, there is a catch: you will have to be running a node on each file-sharing network that you
want to access. To do otherwise would not be peer-to-peer, but client/server. Also, the advantages of
files crossing over between networks are lost. Files on Free Haven will still take a long time to load and
unpopular files on Freenet will still disappear.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 240

19.1.3 Why not just use XML?

The next most popular solution after the creation of an ÜberClient is to link all of the existing
networks together using an interoperable protocol, such as something based on XML, like XML-RPC
or SOAP. The problem with this approach is that is doesn't solve the right problem. The beauty of
XML is that it's a single syntax that can be used for many different purposes. It's a step in the right
direction for cross-platform, language-independent object serialization and a universal syntax for
configuration files. However, the problem of interoperability between file-sharing networks is not the
lack of a shared syntax. The syntax parsers for all existing file-sharing networks are minor
components of the code base. A message parser for any existing system could be written in a weekend
if a clear specification was available.

The problem of interoperability is one of semantics. The protocols are not interoperable because they
carry different information. You wouldn't expect Eliza to be a very good chess player or Deep Blue to
be a good conversationalist even if they both used an XML-based protocol for communicating with
you. Similarly, you should not expect a free system such as Gnutella to understand a micropayment
transaction or an anonymous system such as Freenet to understand user trust ratings.

19.2 One network with a thousand faces

The solution to the problem, then, is not an ÜberNetwork, but the integration of all the different types
of networks into a single, interoperable OmniNetwork. This has some advantages over the current
state of many non-interoperable networks. Each person could use his or her network of choice and
still get content from all of the other networks. This means that everyone gets to choose in what way
they want to participate, but the data itself reflects the cumulative benefits of all systems.

To clarify this statement, I will describe how a gateway might work between Freenet and Free Haven.
What are the advantages of a gateway? They pertain to the relative strengths and weaknesses of the
systems. Data on Freenet can be retrieved quickly, whereas speed is recognized as a problem on Free
Haven. However, data can disappear at unpredictable times on Freenet, whereas the person who
publishes data on Free Haven specifies when it expires. Combine the two systems and you have
readily available, potentially permanent data.

Suppose a user can insert information into either Free Haven or Freenet, depending on her
preference. Then a second user can request the same information from either Free Haven or Freenet,
depending on his preference. If the users are on the same network, the normal protocols are used for
that network. What we're interested in here are the two possibilities left: either the information is on
Free Haven and the requester is on Freenet, or the information is on Freenet and the requester is on
Free Haven. In either case, the information should still be retrievable:

When Free Haven data is requested through Freenet

Requesting data through Freenet guarantees the anonymity of the requester even if he
distrusts the Free Haven node. Additionally, every request of the file through Freenet causes
the information to migrate to Freenet, lending the caching ability of Freenet to future
requests. While the first request has to go all the way to Free Haven to fetch the information,
subsequent requests need only traverse Freenet and will therefore be faster. If the information
expires from Freenet, a copy still exists in Free Haven.

When Freenet data is requested through Free Haven

In this case, the information is retrieved from Freenet and cached in Free Haven. Since the
information was fetched from a Freenet node, the anonymity of the requester is guaranteed
even if he mistrusts the Freenet node. Additionally, requesting the data from Free Haven will
cause it to be cached in Free Haven, so a copy with a guaranteed lifetime will now exist. If it
should expire from Freenet, a copy still exists in Free Haven.

This is just one example of the ways that the synergy of systems with opposing designs can create a
richer whole. Each of the major types of file-sharing systems adds its own benefits to the network and
has its own deficiencies that are compensated for. We'll look at some details in the next section.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 241

19.3 Well-known networks and their roles

In this section I'll list the characteristics that distinguish each of five popular networks - Freenet,
Gnutella, Mojo Nation, Free Haven, and Publius - so we can evaluate the strengths each would offer to
an all-encompassing OmniNetwork.

While the world of peer-to-peer is already large at quite a young age, I've chosen to focus here just on
file storage and distribution systems. That's because they already have related goals, so comparisons
are easy. There are also several such systems that have matured far enough to be good subjects for
examination.

19.3.1 Freenet

Freenet adds several things to the OmniNetwork. Its niche is in the efficient and anonymous
distribution of files. It is designed to find a file in the minimum number of node-to-node transactions.
Additionally, it is designed to protect the privacy of the publisher of the information, the requester of
the information, and all intervening nodes through which the information passes.

However, because of these design goals, Freenet is deficient in some other aspects. Since it is designed
for file distribution and not fixed storage, it has no way to ensure the availability of a file. If the file is
requested, it will stay in the network. If it is not requested, it will be eliminated to make room for other
files. Freenet, then, is not an ideal place to store your important data for the rest of eternity.

Second, Freenet does not yet have a search system, because designing a search system which is
sufficiently efficient and anonymous is very difficult. That particular part of the system just hasn't
been implemented yet.

A final problem with Freenet is that in order to assure that the node operators cannot be held
accountable for what is passing through their nodes, the system makes it very difficult for a node
operator to determine what is being stored on his hard drive. For some this is fine, but some people
want to know exactly what is being stored on their computers at all times.

19.3.2 Gnutella

Gnutella offers an interesting counterpoint to Freenet. It is also designed for file distribution.
However, each node holds only what the node operator desires it to hold. Everything being served by a
Gnutella node was either put there by the node operator or else has been requested from the network
by the node operator. The node operator has complete control over what she serves to the network.

Additionally, this provides for a form of permanent storage. The Gnutella request propagation model
allows that if a single node wants to act as a permanent storage facility for some data, it need do
nothing more than keep the files it is serving. Requests with a high enough time-to-live (TTL) will
eventually search the entire network, finding the information that they are looking for. Also, Gnutella
provides searching and updating of files.

However, the Gnutella design, too, has some deficiencies. For instance, it does not provide support for
any sort of verification of information to avoid tampering, spamming, squatting, or general
maliciousness from evil nodes and users. It also does not have optimized routing or caching to correct
load imbalances. In short, it does not scale as well as Freenet. Nor does it provide much anonymity or
deniability for publishers, requesters, or node operators. By linking Freenet and Gnutella, those who
wish to remain anonymous and those who wish to retain control over their computers can share
information.

19.3.3 Mojo Nation

What Mojo Nation adds to the peer-to-peer file-sharing world is a micropayment system, and a rich
and complex one at that. A micropayment system adds the following advantages to the OmniNetwork:
Reciprocity of contribution of resources, compensation for the producer of content, and monetary
commerce.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 242

Reciprocity of contribution simply means that somebody has to give something in order to get
something. Both Freenet and Gnutella must deal with a lack of reciprocity, an instance of the
archetypal problem called the tragedy of the commons. Actually, this has been a problem for file-
sharing systems throughout the ages, including BBSs, anonymous FTP sites, and Hotline servers.
Now, in the peer-to-peer age, there is no centralized administrator to kick out the leeches. In an
anonymous system, it's impossible even to tell who the leeches are (unless the providers of content
want to voluntarily give up their anonymity, which they generally don't).

Micropayments solve the reciprocity of contribution problem by enforcing a general karmic balance.
You might not give me a file for every file you get from me (after all, I might not want your files), but
all in all you will have to upload a byte to someone for every byte you download. Otherwise, you will
run out of electronic currency. This is indeed a boon for those who fear the network will be overrun by
leeches and collapse under its own weight.[1]

[1] See the Jargon File "Imminent Death of the Net Predicted!",
http://www.tuxedo.org/~esr/jargon/jargon.html.

Solving reciprocity is particularly important for controlling spam and denial of service attacks. For
every piece of junk someone asks you to serve to the network, you receive some currency. If you are
flooded with requests from a single host, you receive currency for each request. The attacker may be
able to monopolize all of your time, effectively rendering your node inoperable to the rest of the
network, but he will have to pay a high price in order to do so. With micropayments, you are, in effect,
being paid to be attacked. Also, the attackers must have some way of generating the currency for the
attack, which limits the attackers to those with enough motivation and resources.

There are other uses for micropayments besides reciprocity, particularly the ability to engage in actual
commerce through a file-sharing network. If you want to trade other people's content for them in
order to gain some currency, the handy tip button, a feature of the Mojo Nation interface, allows
people to send some currency to the producers of content as well as the servers.

Also, the system could someday perhaps be used to exchange electronic currency for not just
information, but things like food and rent. I can already see the kids dreaming of supporting
themselves through savvy day trading of the latest underground indie tunes (the artists being
supported by the tip button). Hipness can metamorphose from something that gets you ops on an IRC
channel to a way to make mad cash.

However, not everyone wants to exchange currency for information. Even exchanges are certainly one
mode of interaction, but it is very different from the Freenet/Gnutella philosophy of sharing
information with everyone. Freenet and Gnutella serve a useful role in the Mojo Nation framework
when a single node does not have the resources to make a transaction. If you don't have any resources
(you have a slow machine, slow connection, and small hard drive) it is hard to get currency, since you
get currency by contributing resources. Without currency you can't request anything. However, if a lot
of low-resource nodes decided to get together and act as a single, pooled node, they would have
significant resources. This is exactly how Freenet and Gnutella work. One node is the same as a whole
network as far as your node is concerned. Thus, low-resource Mojo Nation nodes can form
"syndicates" so that they will not be excluded from having a presence on the Mojo Nation network.

By combining the two types of networks, the free and communal networks of Freenet and Gnutella
with the commercial network of Mojo Nation, people can choose whether to share freely or charge for
resources as they see fit. Different people will choose differently on the matter, but they can still share
content with each other.

19.3.4 Free Haven and Publius

Free Haven and Publius are in an entirely different category from other file- sharing networks. While
the other networks concentrate on the distribution of content people want (reader-centric systems),
these systems concentrate on anonymously preserving information (publisher-centric systems). The
flaw people point out most often in Freenet is that data disappears if no one requests it for a long
enough time. Luckily, Free Haven and Publius are optimized to provide for just that eventuality. They
are conceptually derived from the mythical " Eternity Service" in which once you add a file it will be
there forever. While it may be possible to delete a file from a Free Haven or Publius node, these
networks are specifically designed to be resistant to the removal of content.

http://www.tuxedo.org/~esr/jargon/jargon.html

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 243

File storage networks have problems when viewed as file distribution networks. They are generally
much slower to retrieve content from (because they are optimized for storage and not distribution).
Additionally, they do not deal well with nodes fluttering on and off the network rapidly. To lose a node
in a file storage network is problematic. To lose a node in a good file distribution network is
unnoticeable.

There are great possibilities with the combination of reader-centric distribution networks with
publisher-centric storage networks. It would be ideal to know that your information will always be
available to everyone using a file-sharing network anywhere. People can choose to share, trade, buy,
and sell your information, anonymously or non-anonymously, with all the benefits of distributed
caching and a locationless namespace, and with no maintenance or popularity required to survive.
Once the information is inserted in the network, it will live on without the publisher needing to
provide a server to store it. Unfortunately, making gateways between networks actually work is
somewhat problematic.

19.4 Problems creating gateways

The problem with creating gateways is finding a path. Each piece of information is inserted into a
single network. From there it must either find its way into every connected network, or else a request
originating in another network must find its way to the information. Both of these are very difficult. In
short, the problem is that an insert or request must find its way to a node that serves as a gateway to
the separate network where the information is stored.

19.4.1 Problems with inserts

The problem with finding a path to another network during an insert is that the paths of inserts are
generally very short and directed. Each network routes its inserts using a different method:

• Freenet takes the "best" path to the "epicenter" for a given key. The length of the path is
specified by the user. A longer path means that there is a greater chance for an insert to
happen upon a gateway. However, longer paths also mean that you have to wait longer for the
insert to complete.

• Gnutella doesn't have inserts.

• Mojo Nation splits a file into multiple parts and inserts each part into a node. The nodes are
chosen by comparing the file part's hash to the range of hash values that a node advertises as
serving.

• Free Haven splits up the file using k-of-n file splitting and inserts each part to a node. The
nodes are chosen by asking trusted nodes if they want to trade their own data for that
particular file part.

• Publius sends a file to a static lists of nodes and gives each node part of the key.

Some of these techniques could be extended to put material on a gateway node (for instance, Free
Haven and Publius choose which nodes to use), but techniques that depend on randomizing the use of
nodes are inimical to using gateways.

19.4.2 Problems with requests

The problem with finding a path on a request is that the networks do not take into account the
presence of gateways when routing a request message. Therefore, it is unlikely that a request message
will randomly happen upon a gateway. The easy solution, of course, is to have everyone running a
node on any network also run a gateway to all of the other networks. It's an ideal solution, but
probably infeasible.

The following sections describe the routing techniques used by each of the systems we're looking at.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 244

19.4.2.1 Freenet

Freenet requests are routed just like inserts, using the "best" path to the "epicenter." The length of the
path is set by the user if the information is in Freenet (and if it is, we don't need a gateway), but longer
paths take longer to fail if the key is not in the network. You could, of course, find a gateway by
searching all of Freenet, assuming that the number of nodes in the network is less than or equal to the
maximum path length. That would almost certainly take longer than you would care to wait. Freenet is
designed so that if the file is in the network, the path to the file is usually short. Consequently, Freenet
is not optimized for long paths. Long paths are therefore very slow.

19.4.2.2 Gnutella

Gnutella messages are broadcast to all nodes within a certain time-to-live, so choosing a path is not an
issue. You can't choose a path even if you want to. The issue with Gnutella is that a gateway has to be
within the maximum path radius, which is usually seven hops away. Fortunately, Gnutella is generally
a very shallow network in which your node knows of a whole lot of other nodes. Generally, a gateway
out of Gnutella to another system would have a high probability of being reached, since every request
will potentially search a large percentage of the network. If there is a gateway node anywhere in the
reachable network, it will be found. This is good if you want to access the whole world through
Gnutella. Of course, it doesn't help at all if you want to gateway into Gnutella from another system.

19.4.2.3 Mojo Nation

Mojo Nation requests are somewhat complicated. First, you must find the content you want on a
content tracker that keeps a list of content and who has a copy of it. From the content tracker, you
retrieve the address of a node that has a copy of the file part that you want. Then, you request the file
part from the node. You do this until you have all of the parts needed to reconstruct the file.

This process actually lends itself quite well to gatewaying. As long as the gateways know what files are
in Freenet, they can advertise for those keys. Unfortunately, gateways can't know what files are in
Freenet. A gateway can only know what files have passed through it, which is only a fraction of the
total content of the network.

However, if gateways also act as content trackers, they can translate requests for unknown keys into
Freenet requests and place any keys found into the Mojo Nation content tracker index. In this way,
you can access content from Freenet as long as you are willing to use a content tracker that is also a
Freenet gateway. While it would be nice just to ask the network in general for a key and have it be
found in Freenet (if appropriate), that is not how Mojo Nation works. In Mojo Nation, you ask a
particular content tracker for content.

One way to integrate gatewayed and non-gatewayed content trackers in Mojo Nation would be to have
a proxy node that acts as a Freenet gateway. Using that, any content tracker that functions as a
gateway and a proxy could be used. The content tracker would be searched first, and if it failed, the
gateway could be searched.

19.4.2.4 Publius

Gatewaying Publius is an interesting problem. Each file is split into a number of parts, each of which is
sent to a different server. In order to reconstruct the file, you need a certain number of parts. It is
therefore necessary for at least that number of parts to make it into gateways.

The length of the path for each part of the file is only 1 because the file goes directly to a single node
and then stops. That means that if you need k parts of the file, k of the nodes contacted must be
gateways in order for the file to be able to be reconstructed in the other network. The only solution,
therefore, is to make most Publius nodes gateways.

19.4.2.5 Free Haven

Making a gateway out of Free Haven is not quite as difficult as making one out of Publius, because
parts of files get routinely traded between nodes. Every time a trade is made, the file part could
potentially find a gateway, thus reaching the other network. However, when and how often files are
traded is unknown and unpredictable. Thus, file trading cannot be counted on to propagate files,
although it certainly will increase the probability of propagation by a nontrivial amount.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 245

19.5 Gateway implementation

There is much theoretical work to be done in the area of making actual, working gateways between the
different networks. However, even once that has been worked out, there is still the issue of
implementation specifics.

There are a couple of ways that this could be approached. The first is to make each gateway between
networks X and Y a hybrid X-Y node, speaking the protocols of both networks. This is undesirable
because it leads to a combinatorial explosion of customized nodes, each of which has to be updated if
the protocol changes for one of the networks.

A preferable solution would be to define a simple and universal interface that one node can use to
query another for a file. Then, a gateway would consist merely of a cluster of nodes running on
different networks and speaking different protocols, but talking to each other via a common interface
mechanism. Using a common interface mechanism, gateway nodes would not even have to know what
foreign networks they were talking to.

There are different possible interface mechanisms: CORBA,[2] RMI,[3] XML-RPC,[4] SOAP,[5] etc. The
mechanism that I would recommend is HTTP. It is a standard protocol for requesting a file from a
particular location (in this case a particular node, which represents a particular network). Also, some
file-sharing networks already have support for HTTP. Freenet and Gnutella support interfacing
through HTTP, for instance.

[2] http://www.corba.org/

[3] http://java.sun.com/docs/books/tutorial/rmi

[4] http://www.xmlrpc.com/

[5] http://www.w3.org/TR/SOAP

Modification of the code base for each system to make a normal node into a gateway would be minor.
The node need merely keep a list of gateways and, upon the failure of the network to find a requested
file, query the gateways. If a file is found on a gateway, it is transferred by HTTP to the local node and
then treated exactly as if it was found in the node's local data storage.

19.6 Existing projects

Despite the desire for interoperability among networks, little has been done to facilitate this. Network
designers are largely consumed by the difficult implementation details of their individual networks.

The only gatewaying project currently underway, to my knowledge, is the World Free Web (WFW)
project, which aims to combine Freenet and the World Wide Web. While the Web may not at first
seem like a file-sharing network as much as a publication medium, now that we find web sites offering
remote hosting of vacation photographs and business documents, the two uses are merging into one.

Freenet and the Web complement each other nicely. Freenet is adaptive, temporary, and locationless,
whereas the Web is static, semipermanent, and location-based. The point of the WFW project is to
ease the load of popular content on web servers by integrating Freenet into web browsers. A WFW-
enabled web browser will first check Freenet for the requested file. If the browser can't find the file, it
will fetch the file from the Web and insert it into Freenet. The net effect is that popular web sites will
load faster and the web servers will not crash under the load. This project, like many open source
projects existing today, really needs only developers. The concepts are sound and merely call for
experts on the various browsers to integrate them.

http://www.corba.org/
http://java.sun.com/docs/books/tutorial/rmi
http://www.xmlrpc.com/
http://www.w3.org/TR/SOAP

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 246

19.7 Conclusion

The peer-to-peer file-sharing developer community is not large. While the peer-to-peer world is
expected to explode in popularity, those who have code in the here and now are few. There has been
much discussion of interoperability among the various projects, so it may well happen. The technical
challenges of routing requests to gateways are difficult ones, but certainly no more difficult than the
challenges involved in anonymity, scalability, performance, and security that network designers have
already had to face.

19.8 Acknowledgments

I'd like to thank Christine and Steve for contributing greatly to my second draft, and Isolde for making
me write when I'd rather go to the park.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 247

Chapter 20. Afterword
Andy Oram, O’Reilly & Associates, Inc.

Like many new ideas with substantial “disruptive” potential (that is, ideas whose impacts can
fundamentally change the roles and relationships of people and institutions), peer-to-peer has been
surrounded by a good amount of fear. In particular, it has been closely associated in the public mind
with the legal difficulties faced by Napster over claims that the company engaged in copyright
infringement. The association is ironic, because Napster depends heavily on a central server where
users register information. It is precisely the existence of the central server that makes it technically
possible for a court to shut down the service.

However, Napster does demonstrate important peer-to-peer aspects. Files are stored on users’
individual systems, and each download creates a peer-to-peer Internet connection between the source
and destination systems. Furthermore, each system must furnish metadata information about the title
and artist of the song. The legal questions Napster raises naturally attach themselves to some of the
other peer-to-peer technologies, notably Gnutella and Freenet.

20.1 Precedents and parries

The Napster case in itself may not be dangerous to other peer-to-peer technologies. Its particular
business model, its dependence on the preexisting popularity of exchanging MP3 files that are
unauthorized copies of copyrighted material, and the many precedents for the concepts invoked by
both sides (fair use, vicarious and contributory copyright infringement, substantial non-infringing
uses) make the case unique.

But there are several indications that large copyright holders wield their legal weapons too widely for
the comfort of technological innovators. For instance, during the Napster case, the band Metallica
conducted a search for Metallica MP3s and created a list of 335,000 Napster users that it forced
Napster to ban temporarily from the system. This raises the possibility that a determined plaintiff
could try to prosecute all the individuals that form an entire community of peer-to-peer systems, such
as Gnutella, Freenet, or Publius.

Users of those systems could then face the dilemma of being condemned for providing computer
resources to a system that has social value, simply because one user of that system (perhaps a
malicious user) provided material that raised the ire of a powerful commercial or political force. It
would be interesting to see whether users would then try to invoke a kind of “ISP exemption,” where
they claim they are simply providing communications channels and have no control over content.

This legal status for ISPs is pretty well established in some countries. In the United States, numerous
courts have refused to prosecute ISPs for Internet content. Still, a section of the enormous Digital
Millennium Copyright Act, passed by the U.S. Congress in 1998, requires sites hosting content to take
it down at the request of a copyright holder. Canada also protects ISPs from liability.

The status of ISPs and hosting sites is much shakier in other countries. In Britain, an ISP was
successfully sued over defamatory content posted by an outsider to a newsgroup. The German
parliament has shrouded the issue in ambiguity, stating that ISPs are responsible for blocking illegal
content when it would be “technically feasible” to do so. Of course, some countries such as China and
Saudi Arabia monitor all ISP traffic and severely restrict it.

France exempts ISPs from liability for content, but they have to remove access to illegal content when
ordered to by a court, and maintain data that can be used to identify content providers in case of a
court request. The latter clause would seem to make a system like Freenet, Publius, or Free Haven
automatically illegal. The November 2000 French decision forcing Yahoo! to block the display of Nazi
memorabilia auction sites sets a precedent that peer-to-peer users cannot ignore. It has already been
echoed by a ruling in Germany’s high court declaring that German laws apply to web sites outside the
country. The trend will undoubtedly lead to a flood of specialized legal injunctions in other countries
that try to control whether particular domain names and IP addresses can reach other domain names
and IP addresses.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 248

Further threats to technological development are represented by companies’ invocation of copyrights
and trade secrets to punish people who crack controls on software content filters or video playback
devices. The latter happened in the much publicized DeCCS case, where the court went so far as to
force web sites unrelated to the defendants to delete source code. In 1998, Congress acceded to the
wishes of large content vendors and put clauses in the extensive Digital Millennium Copyright Act that
criminalize technological development, like some types of encryption cracking and reverse
engineering.

It would be irresponsible of me to suggest that copyright is obsolete (after all, this book is under
copyright, as are most O’Reilly publications), but it is perfectly reasonable to suggest that new
movements in society and technology should make governments reexamine previous guidelines and
compromises. Copyright is just such a compromise, where government is trying to balance incentives
to creative artists with benefits to the public.

Napster showed above all that there is now a new social context for music listening, as well as new
technological possibilities. The courts, perhaps, cannot redefine fair use or other concepts invoked by
both sides in the Napster case, but the U.S. Congress and the governing bodies of other countries can
ask what balance is appropriate for this era.

20.2 Who gets to innovate?

Peer-to-peer, like all technologies, embodies certain assumptions about people and future directions
for technology. It so happens that peer-to-peer is moving the compass of information use in a
direction that directly contradicts the carefully mapped-out plans drawn by some large corporate and
government players.

The question now posed is between two views of how to use technology and information. One
common view gives consumers and users the maximum amount of control over the application of
technology and information. One example will suffice to show how powerful this principle can be.

Despite Tim Berners-Lee’s hope that the World Wide Web would be a two-way (or even multiperson
to multiperson) medium, early browsers were pretty much glorified file transfer programs with some
minimal GUI elements for displaying text and graphics together. The addition of CGI and forms
allowed users to talk back, but did not in itself change the notion of the Web as an information
transfer service. What caused the Web to take on new roles was the crazy idea invented by some
visionary folks to use the available web tools for selling things. An innovative use of existing
technology resulted in an economic and social upheaval.

Putting tools in the hands of users has an impact on business models, though. People might no longer
buy a technical manual from O’Reilly & Associates; they might download it from a peer instead - or
more creatively, extract and combine pieces of it along with other material from many peers. And
peer-to-peer, of course, is just a recent option that joins many other trends currently weakening
copyright.

When a revenue stream that information providers have counted on for over 2000 years threatens to
dry up, powerful reactions emerge. Copyright holders have joined with a wide range of other
companies to introduce legal changes that revolve around a single (often unstated) notion: that the
entity providing information or technology should control all uses of it. The manufacturer of a disk
decides what devices can display it. A compiler of information decides how much a person can use at
any one time, and for how long. The owner of a famous name controls where that name can appear.

Trying to plug serious holes in the traditional web of information control - copyrights, trade secrets,
patents, trademarks - information owners are extending that control into areas where they have
previously been excluded. In their view, new ideas like selling over the Web would have to come from
the company who provides the media or the service, not from people using the service.

So where do we look for the future uses of information and technology? The two answers to this
question - users versus corporate owners - are likely to struggle for some time before either a winner
or a workable compromise appears. But the thrust of peer-to-peer implicitly throws its weight behind
the first answer: trust the users. The technological innovations of peer-to-peer assume that users have
something to offer, and some peer-to-peer projects (notably Jabber in its community-building, and
Gnutella in its search model) actually encourage or even provoke users to contribute something new
and different.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 249

20.3 A clean sweep?

Some people ask whether peer-to-peer will replace the client/server model entirely. Don’t worry, it
emphatically will not. Client/server remains extremely useful for many purposes, particularly where
one site is recognized as the authoritative source for information and wants to maintain some control
over that information.

Client/server is also a much simpler model than peer-to-peer, and we should never abandon
simplicity for complexity without a clear benefit. Client/server rarely presents administrative
problems except where the amount of traffic exceeds the server’s capacity.

Peer-to-peer is useful where the goods you’re trying to get at lie at many endpoints; in other words,
where the value of the information lies in the contributions of many users rather than the authority of
one. Peer-to-peer systems can also be a possible solution to bandwidth problems, when designed
carefully. (Of course, they can also cause bandwidth problems, either because their design adds too
much overhead or because people just want a lot of stuff without paying for the bandwidth that can
accommodate it.)

In short, peer-to-peer and client/server will coexist. Many systems will partake of both models. In fact,
I have avoided using the phrase “peer-to-peer model” in this book because such a variety of systems
exist and so few can be considered pure peer-to-peer. The ones that are completely decentralized -
Gnutella, Freenet, and Free Haven - are extremely valuable for research purposes in addition to the
direct goals they were designed to meet. Whether or not other systems move in their direction, the
viability of the most decentralized systems will help us judge the viability of peer-to-peer technology
as a whole.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 250

Appendix A. Directory of Peer-to-Peer Projects
This is a partial list of interesting projects, companies, and standards that could reasonably be
considered examples of peer-to-peer technology. It is not meant to be exhaustive, and we apologize for
any worthy projects that were not included. The field, of course, expands constantly.

Agents as Peers

Infobot
Sandia National Laboratories
WebV2

Collaboration

Engenia Software, Inc.
eZ
Interbind

Development Frameworks

Mithral Communications & Design, Inc.
WorldOS Corporation

Devices as Peers

Bluetooth
Brazil Project
dHTTP (Distributed HTTP)
Endeavors Technology, Inc.
Jini

Distributed Computation

2AM
Applied MetaComputing
Centrata
Datasynapse
Distributed.net
DistributedScience
Entropia
Parabon Computation
Popular Power
Porivo Technologies, Inc.
SETI@home: The Search for Extraterrestrial Intelligence
Ubero
United Devices, Inc.: Individuals Accelerating Science

Distributed Search Engines

gonesilent.com (aka InfraSearch)
OpenCOLA
Plebio
WebV2

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 251

File Sharing
CuteMX.Com (GlobalScape, Inc.)
File Navigator
Free Haven
Freenet
Gnutella
Hotline Communications, Ltd.
Jungle Monkey
Mojo Nation
Napster
Ohaha
OnSystems, Inc.
OpenNap
Pointera
Publius
Spinfrenzy.com

Gaming

2AM
CenterSpan

Internet Operating System

Applied MetaComputing
Globus
ROKU
Static

Licensed Media Distribution

eMikolo
Flycode
Kalepa Networks, Inc.

Messaging Frameworks

AIMster
BXXP
CenterSpan
IMXP
Jabber

Metadata

RDF
RSS
XNS (eXtensible Name Service)

Servers/Services as Peers

.NET
BXXP
Meerkat: An Open Wire Service
Simple Object Access Protocol (SOAP)
Universal Description, Discovery and Integration (UDDI)
XML-RPC

Superdistribution

2AM
3Path
Freenet
vTrails

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 252

The Writable Web
Amaya Web Editor/Browser
Blogger
Brazil Project
Endeavors Technology, Inc.
Manila
Radio Userland
WebDAV
Wiki Wiki Web

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 253

Appendix B. Contributors
Nelson Minar,

CTO and cofounder of distributed computing leader Popular Power, has an extensive history
researching Internet systems. While at the MIT Media Lab, he built a mobile agent based peer-to-peer
computing platform called Hive, and previously studied agent-based modeling at the Sante Fe
Institute. Minar sees the Internet as a place, a world with its own rules and behaviors.

Marc Hedlund

is the chief executive officer and cofounder of Popular Power, the first distributed computing company
to launch commercial software. He previously served as the founder and director of Lucasfilm Ltd.’s
Internet division and director of engineering at Organic Online. His Internet experience dates to early
1994, when he worked on several IETF committees and built early e-commerce applications while
CTO of a Web start-up.

Clay Shirky

is a Partner for Technology and Product Strategy at The Accelerator Group, which invests active
strategic capital in digital businesses. Prior to joining the Accelerator Group, he was Professor of New
Media at Hunter College, and CTO of Site Specific. Mr. Shirky writes extensively about the social and
economic effects of the internet. His essays appear regularly in the O’Reilly Network, Business 2.0,
and FEED, as well as the New York Times, the Wall Street Journal, and the Harvard Business Review.
His writings are archived at http://www.shirky.com/.

Tim O’Reilly

is founder and president of O’Reilly & Associates, Inc. Tim’s goal is to enable change by capturing and
transmitting the knowledge of innovators and innovative communities via books, conferences, and
web sites.

Daniel Bricklin,

a software designer, is best known as the cocreator of VisiCalc, the first electronic spreadsheet. In
addition to the spreadsheet, he helped develop one of the first word processing systems in the mid-
1970’s, programmed the most popular prototyping tool of the MSDOS world, and helped introduce the
world to the capabilities of electronic ink on pen computers. Mr. Bricklin has served on the boards of
the Software Publishers Association and the Boston Computer Society and has received many honors
for his contributions to the computer industry, including the IEEE Computer Society’s Computer
Entrepreneur Award and Lifetime Achievement Award from the SPA. Most recently he is the founder
and CTO of Trellix Corporation which creates web site building systems.

David P. Anderson

is the director of the SETI@home project. He co-founded Tunes.com and is currently CTO of United
Devices. From 1985 to 1991 he was on the faculty of the U.C. Berkeley Computer Science Department.

Jeremie Miller

has been developing Internet-related and Open Source projects since 1993, having been involved with
the early Web standards and projects such as Apache and Linux. In 1997 he started following the
DHTML and XML standards very closely, and in 1998 founded Jabber, an Open Source movement
designed to create a new, standard, distributed XML-based platform for instant messaging and
presence applications. Today he continues developing Jabber, helping to advance the new XML
infrastructure available on the Internet.

Adam Langley

is student in England and a free software programmer in his free time. Interests range from software
to politics/freedom, typesetting, and theater. His current project is an implementation of Freenet in
C++, with which he could really do with some help.

http://www.shirky.com/

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 254

Gene Kan

was among the first to produce an open source version (under the GNU General Public License) of
Gnutella software after Gnutella was released by Justin Frankel and Tom Pepper of Gnullsoft. Soon,
Mr. Kan became one of Gnutella's key spokesmen. Previously an SGML/XML consultant and kernel
network engineer at Check Point Software, Mr. Kan is now CEO of InfraSearch. In his spare moments
he enjoys racing his cars, LTLENDN and BIGENDN.

Alan Brown

is currently the assistant director of a human rights organization. He has served on the executive
committee of an ACLU state affiliate and taught mathematical logic at several midwest universities.
He will launch a new cyber-rights organization in Russia this year and is engaged to the most beautiful
woman in Russia.

Marc Waldman

is a Ph.D. candidate in Computer Science at New York University. He is one of the co-developers of the
Publius censorship-resistant publishing system. His research interests include privacy-enhancing
technologies and computer security. Marc received a BA and MS in Computer Science from New York
University.

Dr. Lorrie Faith Cranor

is a Senior Technical Staff Member in the Secure Systems Research Department at AT&T Labs-
Research. She is also chair of the Platform for Privacy Preferences Project (P3P)Specification Working
Group at the World Wide Web Consortium. Her research has focused on a variety of areas where
technology and policy issues interact, including online privacy, electronic voting, and spam. She is
frequently invited to speak about online privacy, and in1998 Internet Magazine named her an unsung
hero of the Internet for her work on P3P.

Dr. Aviel Rubin

is a Principal Researcher at AT&T Labs-Research and a member of the board of directors of USENIX,
the Advanced Computing Systems Association. He also has an appointment as an adjunct professor in
the Computer Science department at NYU, and he serves as Associate Editor of the Electronic
Commerce Research Journal.

Roger Dingledine

graduated from MIT in May 2000 (B.Sc. computer science, B.Sc. mathematics, M.Eng. computer
science and electrical engineering), where his Master's research in anonymous distributed publishing
systems was supervised by Ronald Rivest. He is project leader for both the Simple End-User Linux
project (seul.org) and the Free Haven project (freehaven.net). Currently he works as the Security
Philosopher for Reputation Technologies, Inc. (reputation.com).

Michael J. Freedman

is a graduate student in computer science at MIT. His research interests focus on cryptography and
computer/network security, especially in the realm of distributed systems. He is a principal researcher
of the Free Haven project, and has worked at Zero-Knowledge Systems implementing an electronic
cash architecture.In his spare time, Michael enjoys climbing, mountaineering, and other outdoor
pursuits, much to the concern of family and friends.

David Molnar

began using PGP in 1993. He became interested (obsessed?) with figuring out “why it worked” and has
been studying cryptography ever since. Now an undergraduate at Harvard University, he keeps up
with security issues by attending courses, reading newsgroups, mailing lists, and conference papers,
and attending DEF CON in his home city of Las Vegas. David is an ACM Student Member and a
member of the International Association for Cryptologic Research.

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 255

Rael Dornfest

is a maven at the O’Reilly Network. He is the developer of Meerkat: An Open Wire Service and one of
the architects of RSS 1.0.

Dan Brickley

is a longstanding RDF advocate and chair of the W3C RDF Interest Group.

Theodore Hong,

Freenet developer, is a graduate student in computer science at Imperial College, London. He holds an
A.B. from Harvard University and is a 1995 Marshall scholar.

Richard Lethin

is a founder of Reputation.com, a provider of tools and services for the formation and use of online
reputations in electronic commerce, president of Reservoir.com, a computer systems research and
development firm, and Adjunct Professor in Electrical Engineering at Yale College. Richard is also one
of the founders of the Digital Commerce Society of Boston. He received his Ph.D. from the MIT,
wherein his research he developed analytical models of large scale message-passing systems.

Jon Udell

was BYTE Magazine's executive editor for new media, the architect of the original
http://www.byte.com/, and author of BYTE’s Web Project column. He's now an independent
Web/Internet consultant. His first book, Practical Internet Groupware, was published by O’Reilly
and Associates in 1999.

Nimisha Asthagiri,

at Groove Networks, is a Senior Security Architect and the Security “Czar” (a title they give for
someone who is “ultimately responsible for continuity and execution within certain specific technical
areas that span across the product”). She has been with Groove since September 1998 (employee #17).
Prior to Groove, she was at OSF Research Institute (later called The Open Group Research Institute)
for one year, where she worked on security-related projects and proposals in the areas of intrusion
detection systems and authorization. She graduated from MIT in 1997 with a Bachelors and Masters
in Computer Science and Engineering. She did her Masters thesis on a history-based authorization
framework for Java applets.

Walter Tuvell

has badge #11 at Groove Networks and is the senior security guru there. Before that he spent six years
at Bell Labs, working on AT&T’s Unix kernel and networking, and then became the security architect
for DCE at the Open Software Foundation (now the Open Group). He went to MIT for his B.S., and to
the University of Chicago for his M.S. and Ph.D., all in mathematics.

Brandon Wiley

cofounded the free software initiative to implement the Freenet architecture. When not coding for
freedom, he is a freelance consultant, playwright, and filmmaker. He specializes in online
communities and postmodern romantic comedies.

http://www.byte.com/

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 256

Interview with Andy Oram
The term "peer-to-peer" has come to be applied to networks that expect end users to contribute their
own files, computing time, or other resources to some shared project. Even more interesting than the
systems' technical underpinnings are their socially disruptive potential: in various ways they return
content, choice, and control to ordinary users. Andy Oram, editor of O'Reilly's recently released Peer-
to-Peer: Harnessing the Power of Disruptive Technologies talks with oreilly.com's Tara McGoldrick
about his experience working on this cutting-edge book, how the book developed, and the current
backlash against P2P.

McGoldrick: This is O'Reilly's first book on peer-to-peer (P2P) and, indeed, the first book on P2P by
any publisher. How did you approach such a new and revolutionary topic?

Oram: With a topic that's so fast-moving and--no way to deny it--poorly defined, I wanted to get a lot
of opinions from a lot of knowledgeable and thoughtful people. They came through with flying colors.
I also was determined to cover the field on many different levels: the kinds of problems P2P could
solve, the kinds of problems P2P raises, its impacts on users and businesses, and so on. I really had to
jump on the topic and let it carry me where it wanted; not try to capture it and cage it and wrap it up
with a pretty bow to deliver it.

One critical goal stayed uppermost in my mind. I knew the field was loaded with hype. I also knew
there was something significant going on behind the hype, and that O'Reilly was the best publisher to
show the public that significant core. While I wanted to talk a bit about collaborative networking's
social meaning and its potential impact on people, I knew that was good for only a few dozen pages
worth of text. The rest had to be solid technical issues and solutions.

McGoldrick: P2P gets a lot of criticism as well as hype. In fact, just last week the P2P concept got
slammed twice on the same day by major writers and publications: Lee Gomes in the Wall Street
Journal (reprinted on ZDNet and on MSNBC) and Jon Katz on Slashdot:

http://www.zdnet.com/zdnn/stories/news/0,4586,2704598,00.html
http://www.msnbc.com/news/554433.asp
http://slashdot.org/article.pl?sid=01/03/27/1820213

Oram: I guess we should get used to Internet time, and be thankful at O'Reilly that the book had five
weeks to circulate in a relatively positive medium before the sharks converged. Of course, neither
article criticizes the book. Gomes doesn't mention it at all. Katz actually writes that "Peer-to-Peer:
Harnessing the Power of Disruptive Technologies does a great job of explaining how P2P works." He
questions not the book's quality, but its relevance. I respect what both these writers have said, and I
do have comments that put their questioning in perspective. Clay Shirky also offers a valuable and
balanced response, Backlash!, on O'Reilly's openp2p.com Web site.

 http://openp2p.com/pub/a/p2p/2001/04/05/shirky.html

The Wall Street Journal is responsible for letting its readers know where to invest and what the
prospects are for success in a given industry. Gomes must feel acutely the risks his key readership is
facing, from venture capitalists through pension fund managers. He has to let them know that P2P is
no "exception to the dot-com downturn." Definitely a valid concern, but it's only one aspect of a
complex field.

I have to admit that I'm not a regular WSJ reader, but I trust it will also tell another side of the story:
not just whether businesses can succeed at creating P2P applications, but about the benefits and
drawbacks of businesses using P2P applications. There's a lot of intriguing potential in P2P, along
with organizational and funding issues that businesses should start considering.

And while I wouldn't tussle with Gomes's assessment of investor prospects, I have talked to lots of
business people creating P2P applications. They have strong stories to tell. You can read about them
by visiting my P2P Profiles on openp2p.com. I haven't invested a dime in any of these companies, and
I don't consider myself an investment expert. But if you come to the site every week or so and see who
we're interviewing, you'll have a chance to judge whether the idea of P2P is fertile.

 http://www.oreillynet.com/pub/ct/36

http://www.zdnet.com/zdnn/stories/news/0,4586,2704598,00.html
http://www.msnbc.com/news/554433.asp
http://slashdot.org/article.pl?sid=01/03/27/1820213
http://openp2p.com/pub/a/p2p/2001/04/05/shirky.html
http://www.oreillynet.com/pub/ct/36

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 257

On to Jon Katz. He has some of the same "show me" attitude as Gomes--a healthy attitude--but he
also stakes out the strange claim that not many readers will use P2P. To declare that an idea has no
practical application is the most dangerous kind of technology prediction--all the more so when, as
Katz accurately points out, the major pieces of robust P2P infrastructure haven't fallen into place yet.

We have to remember (as some of the respondents on Slashdot remembered) that lots of great
computing ideas have entered everyday use under thick layers of simplifying technology. How about
the complicated mathematical graphical functions that are used to paint our monitors (and the
psychological theories of researchers such as Ben Shneiderman, which informed the GUI revolution)?
How about structured programming, which harks back to Edsger Dijkstra's "Go To Statement
Considered Harmful" letter in 1968 and was generally ignored by programmers, but now underlies
point-and-click component technologies used by thousands of Visual Basic users every day? [Editor's
Note: A reprint of Dijkstra's letter is available online.]

http://www.cs.umd.edu/users/ben/
http://www.cs.utexas.edu/users/UTCS/report/1997/dijkstra.html
http://www.acm.org/classics/oct95/

By the way, Katz's claim that "In most of the world, inventors identify a need and wear themselves out
creating innovations to meet it" is directly refuted by the famous book Guns, Germs, and Steel (by
Jared Diamond, 1999). Diamond states that most inventions start as tinkering and take a long time to
become useful. I think P2P is one of those slowly unfolding advances that will have repercussions on
how people work and interract.

 http://www.wwnorton.com/catalog/fall96/germs.htm

McGoldrick: Back to the book itself, why did you decide to publish an anthology as opposed to, say,
a Definitive Guide to P2P or P2P in a Nutshell?

Oram: The field of peer-to-peer, which is at such a formative stage, requires a different approach.
First, there's no single path to developing or deploying a P2P application. You don't just follow the
pull-down menus or even write programs following a strict sequence of API calls. There are multiple
applications, multiple APIs, multiple levels to work at. So, instead of trying to fashion a step-by-step
guide for a field that's not ready for one, we offer three kinds of information in the book:

• Part 1: Historical and social context.

• Part 2: Descriptions of real-life projects.

• Part 3: Technical lessons drawn from those projects in such areas as performance, security,
and accountability.

There's material in there to let people develop new P2P projects, to evaluate the value or risk of
existing ones, and to judge the viability of the whole endeavor.

Because the P2P terrain is wide open and multifaceted, it's worth hearing the different viewpoints of
many productive people who have explored that terrain. I have wanted to let as many of them speak as
possible.

Some people dismiss peer-to-peer as just a buzzword or too vague a concept. But what united all the
projects in the book was the problems the project's leaders faced. Each one had to accomplish certain
tasks to get their project off the ground. Let me tell you that every person I approached to contribute
to the book (including the ones who declined because they were too busy) recognized the relevance of
the topic to their work and the value of coming together to do this book. Some of them protested that
their applications weren't true peer-to-peer (the Publius team, for example--a team that contributed
two fascinating and fundamental chapters), but they all could still see how their research fit the book.

 http://publius.cdt.org/publius.html

http://www.cs.umd.edu/users/ben/
http://www.cs.utexas.edu/users/UTCS/report/1997/dijkstra.html
http://www.acm.org/classics/oct95/
http://www.wwnorton.com/catalog/fall96/germs.htm
http://publius.cdt.org/publius.html

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 258

Luckily, O'Reilly had a precedent for an anthology about an emerging field: our Open Sources: Voices
from the Open Source Revolution. That book, like Peer-to-Peer, contains far-ranging essays by a wide
range of leaders (some of them quite well known) doing various work in a big space. In both books, the
authors all worked together to define their spaces well.

 http://www.oreilly.com/catalog/opensources/

McGoldrick: Why do you think this will be an important book?

Oram: I'm glad we're publishing this interview now, in the shadow of the media storm clouds
concerning peer-to-peer, because now it would be silly for me to answer, "The book's important
because of the hype around P2P." Instead, the book rests firmly on its solid analysis of an important
technological movement.

I mentioned earlier that I've talked to a lot of people running companies that are trying to develop P2P
products. Invariably they tell me they're reading this book.

The book tells people key information they can't get anywhere else about computing projects that are
widely regarded as important models for other developers: Jabber, Groove, Gnutella, SETI@home,
and so on. Some projects will stand and some will fall, but the technologies they're using and the
things they're trying to accomplish will provide important lessons for the future.

http://www.jabber.com/index.shtml
http://www.groove.net/
http://gnutella.wego.com/
http://setiathome.ssl.berkeley.edu/

The largest part of the book (Part 3), therefore, comprises technical topics, but the smaller social
analysis section (Part 1) is valuable, too. For P2P to spread, there has to be a lot of changes in thinking
and practice among businesses, IT staff, and users.

McGoldrick: The subtitle of this book is "Harnessing the Power of Disruptive Technologies." What
do you mean by 'Disruptive'?

Oram: That's well worth an explanation. I did not choose this subtitle. It was chosen by marketing. In
fact, I balked for a while at the subtitle, and a number of the authors protested the use of the word
"disruptive." They were afraid that it would further swell the bad image that the legal controversy over
Napster was casting on their own work. Still, calling P2P a set of disruptive technologies is extremely
apt, and I'll be glad if that subtitle causes some less technically-minded readers in business or the
general public to take a closer look at the book.

 http://www.napster.com/

Clayton Christensen popularized the term "disruptive technology" in his book The Innovator's
Dilemma. These are technologies that change how people and organizations do what they're doing day
to day. To quote from my own text (in the "Afterword" to Peer-to-Peer), their "impacts can
fundamentally change the roles and relationships of people and institutions." I expect that many P2P
applications that are beginning to hit the market will fit that description.

http://www.hbsp.harvard.edu/hbsp/prod_detail.asp?5851

Instead of people pushing documents to each other (often over email in a dozen evolving versions),
they may sit at their PCs and see a relevant document come to them automatically. Instead of
depending on some programmer at a central site to envision and code up a service, users may create it
themselves using their own data. Groups may be able to form and regroup more spontaneously and
efficiently, crossing organizational boundaries. There's a lot of potential forms of interaction ahead
that can excite people willing to try something new--and scare people who depend on old ways of
controlling the flow of information.

McGoldrick: How did you choose the contributors to this book?

Oram: O'Reilly tries to find and stay friendly with all kinds of people doing new and promising
projects. So when we decided we should write this book, we drew on our contacts in the computing
field, both academic and commercial.

http://www.oreilly.com/catalog/opensources/
http://www.jabber.com/index.shtml
http://www.groove.net/
http://gnutella.wego.com/
http://setiathome.ssl.berkeley.edu/
http://www.napster.com/
http://www.hbsp.harvard.edu/hbsp/prod_detail.asp?5851

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 259

Personally, I had contacts with Freenet creator Ian Clarke (who was too busy to write, so three other
members of that team contributed chapters instead) and with Gene Kan of Gnutella fame. These
contacts grew out of two popular articles I wrote last July, Gnutella and Freenet Represent True
Technological Innovation and The Value of Gnutella and Freenet.

http://freenet.sourceforge.net/
http://www.oreillynet.com/pub/a/network/2000/05/12/magazine/gnutella.html
http://www.webreview.com/pi/2000/05_12_00.shtml

People we knew suggested others whose work they respected, and we gradually built up an impressive
roster that includes writer Clay Shirky, product designer Dan Bricklin, privacy researcher Lorrie Faith
Cranor, consultant and O'Reilly author Jon Udell, and W3C researcher Dan Brickley.

http://www.shirky.com/bio.html
http://www.bricklin.com/
http://www.research.att.com/~lorrie/
http://udell.roninhouse.com/
http://ilrt.org/people/danbri/

I don't want to suggest that the chapters by famous people are the most important ones. I like every
chapter, and in fact some stunning contributions were turned in by people who were pretty unknown
before the book was published.

Like most communities working together, we see each other all over the place. I started recruiting
authors in August 2000; a lot of them were invited to the O'Reilly Peer-to-Peer Summit that took
place in September 2000. We saw each other again at the first-ever O'Reilly Peer-to-Peer Conference
and I've been in touch with many of them regarding other projects.

http://www.oreillynet.com/pub/a/linux/2000/09/22/p2psummit.html
http://conferences.oreilly.com/p2p/

McGoldrick: Did you define topics for chapters and assign them to the writers or did you solicit
writers and let them define their topics?

Oram: This was the most difficult and most inspiring stage in the development of the book. It was a
very rich collaborative process--I have to break down and call it a peer process--because I knew
certain topics were important but wanted to choose the right topic to excite each writer. I spent days
and days talking to some of the authors in order to hone each idea into a topic that would be
engrossing for readers, stimulating to the authors, and focused enough to fit in a single chapter. We
also wanted to avoid overlap, so the writers talked to each other to establish boundaries between their
chapters. A few reviewed each others' drafts.

McGoldrick: How did the finished book compare to what you had envisioned?

Oram: It astonished me. I gave the authors--all busy people with demanding projects to develop--just
a month to write chapters and a couple more weeks to incorporate reviewer comments. But when the
drafts arrived, I was taken aback by their depth, their comprehensive understanding of background
research, their philosophical and historical richness--and often, the cleverness of their writing style.
(Some authors required substantial rewriting, but the clarity and relevance of their vision was never in
question.) This book is more than a snapshot of current work; it is a weighty statement about a field in
rapid motion. Weight plus motion lends the book substantial kinetic energy.

McGoldrick: Because there is so much disagreement about what P2P is, was there a lot of passionate
discussion about the content in the essays?

Oram: Certainly. As I said earlier, some contributors didn't really consider their technologies peer-to-
peer, although their work was still highly relevant because the projects all tended to face the same
problems. Many of the authors in Part 1 of the book grappled with "What is peer-to-peer?" And
perhaps even more interesting, with: "What is the part of peer-to-peer that's worthwhile?" Authors
didn't always agree. Clay Shirky has been evolving and refining his own answer to the question "What
is peer-to-peer?" for almost a year.

http://freenet.sourceforge.net/
http://www.oreillynet.com/pub/a/network/2000/05/12/magazine/gnutella.html
http://www.webreview.com/pi/2000/05_12_00.shtml
http://www.shirky.com/bio.html
http://www.bricklin.com/
http://www.research.att.com/~lorrie/
http://udell.roninhouse.com/
http://ilrt.org/people/danbri/
http://www.oreillynet.com/pub/a/linux/2000/09/22/p2psummit.html
http://conferences.oreilly.com/p2p/

Peer to Peer: Harnessing the Power of Disruptive Technologies

 page 260

Authors disagreed about minor technical points as well; their polite but candid review of each other's
work definitely improved the book. By no means did we resolve all differences. To illustrate how
diverse the viewpoints are, I'll reveal that Lucas Gonze, moderator of the Decentralization mailing list,
tried near the end to pull together a glossary for our book. But the authors realized they were using the
same terms in slightly different ways, so that for this edition at least, a glossary would be confusing
rather than illuminating. Luckily, Gonze could publish his list of terms, which he calls a MemeBag, on
O'Reilly's openp2p.com Web site.

http://groups.yahoo.com/group/decentralization
http://openp2p.com/pub/a/p2p/glossary/memebag.html

McGoldrick: You recently returned from O'Reilly's first Peer-to-Peer Conference. Did you hear
about any new developments at the conference that you wish you could have included in this edition?

Oram: Of course, I heard about lots of juicy projects that, in some ways, were going beyond what the
projects in the book had achieved. Many of the authors who wrote in the book about the projects they
were working on in October or November of 2000 are currently starting new projects. Most
fundamentally, I realized that the field of P2P is moving beyond the heroic early-experimentor stage
and is giving rise to hard-nosed, secure, scalable products.

McGoldrick: The Peer-to-Peer book hit bookstore shelves in March, but a small print run was made
available at the Peer-to-Peer Conference. How was it received?

Oram: People were very glad to have it, naturally, and the book required only a few hours to sell off.
(We put out part of the stock on the first day of the conference, and the rest on the second.) We wish
we had more books, of course, but the print schedule was so tight we were lucky to have the 200 that
we got. At any rate, we didn't expect to get 1,000 people at the conference! (Not counting the ones we
had to turn away.)

It was quite a trip sitting at a row of tables with about a dozen of the authors, watching conference
participants troop by to collect signatures from each in turn. And the authors were even more excited
than the other attendees--excited to see the book and excited to be able to meet each other in the flesh.

http://groups.yahoo.com/group/decentralization
http://openp2p.com/pub/a/p2p/glossary/memebag.html

	Table of Contents
	Preface
	1. A Network of Peers: Models Through the History of the Internet
	2. Listening to Napster
	3. Remaking the Peer-to-Peer Meme
	4. The Cornucopia of the Commons
	5. SETI@home
	6. Jabber: Conversational Technologies
	7. Mixmaster Remailers
	8. Gnutella
	9. Freenet
	10. Red Rover
	11. Publius
	12. Free Haven
	13. Metadata
	14. Performance
	15. Trust
	16. Accountability
	17. Reputation
	18. Security
	19. Interoperability Through Gateways
	20. Afterword
	A. Directory of Peer-to-Peer Projects
	B. Contributors
	C. Interview with Andy Oram

